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Abstract

In several areas of biomedical research, the publication rate exceeds the human reading speed. From

this imbalance a fundamental need for technical assistence to deal with the flood of scientific findings

arises. Text mining tries to tackle this problem by automatically extracting relevant knowledge from

scientific articles by applying different natural language processing procedures. Current text mining

tools, however, are far away from reaching the quality of information extraction shown by manual

curators.

In order to reach its full potential, different methods from different linguistic and other adjacent

mathematical and logical fields need to be integrated into a text mining analysis. In this thesis, the term

Supersemantics is coined as an umbrella term to refer to approaches that work towards achieving this

integration. Supersemantics connects approaches from morphology, syntax, semantics, pragmatics and

corpus linguistics as well as approaches from logic and statistics. It bridges the boundaries between

typical units of linguistics like words, sentences and texts as well as external knowledge and integrates

the information from each of them for a better analysis.

Besides the definition and overview of this emerging field, this thesis presents a variety of algorithms

that integrate information from different fields, linguistic levels and sources. A word sense disambigu-

ation algorithm improves the interpretation of terms by considering contextual information from a

sentence. Extracted biological events are enriched by contextual information from predicate-argument

structures. Event extraction tasks are simplified by considering the structure of the used documents.

Word senses are derived from statistical corpus information. And text mining results are integrated

with external structured resources to improve the quality of gene set enrichment analyses. In addition

to these modules of supersemantic information integration, the path to a full-fledged supersemantic

system incorporating all of these relevant elements is outlined both conceptually and by the imple-

mentation of two prototypes.

The results obtained in this work show that supersemantic algorithms can improve the quality and

extend the coverage of existing text mining tools. Furthermore, the developed prototypes hint towards

a possible approach to realizing a supersemantic framework and already outperform some existing

text mining systems like Excerbt on tasks like protein event extraction.
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Zusammenfassung

In vielen Bereichen der biomedizinischen Wissenschaft übersteigt die Publikationsrate die mensch-

liche Lesegeschwindigkeit. Aus diesem Ungleichgewicht ergibt sich eine fundamentale Notwendigkeit

technische Hilfmittel zur Verarbeitung der Flut an wissenschaftlichen Erkenntnissen einzusetzen.

Text Mining nimmt sich dieses Problems an, indem es mithilfe von Verfahren des Natural Language

Processing automatisiert Wissen aus wissenschaftlichen Publikationen extrahiert. Die Qualität gegen-

wärtiger Text-Mining-Verfahren reicht jedoch noch nicht an die Qualität der Informationsextraktion

manueller Annotatoren heran.

Um das volle Potential einer Text-Mining-Analyse auszuschöpfen bedarf es der Integration von Ver-

fahren aus unterschiedlichen linguistischen und anderen verwandten mathematischen und logischen

Bereichen. In dieser Arbeit wird der Begriff Supersemantiken als Sammelbegriff für Ansätze, die

diese Integration vorantreiben, eingeführt. Supersemantiken verbinden Ansätze der Morphologie,

Syntax, Semantik, Pragmatik und Korpuslinguistik, sowie Ansätzen aus der Logik und Statistik. Sie

überbrücken die Grenzen zwischen typischen linguistischen Einheiten wie Wörtern, Sätzen und Texten,

sowie externemWissen und integrieren die Informationen für eine bessere Analyse.

Neben einer Definition und einer Übersicht über dieses neue Feld werden in dieser Arbeit ver-

schiedene Algorithmen präsentiert, in denen die Integration von Informationen aus unterschied-

lichen Disziplinen, Informationsquellen und linguistischen Leveln praktisch umgesetzt wurde. Ein

Word-Sense-Disambiguation-Algorithmus verbessert die Interpretation von Begriffen durch die Ber-

ücksichtigung von Kontextinformationen eines Satzes. Extrahierte biologische Events werden mit

Kontextinformationen aus Prädikat-Argument-Strukturen angereichert. Eventextraktionsverfahren

werden durch die Berücksichtigung der Dokumentenstruktur vereinfacht. Wortbedeutungen werden

von den statistischen Eigenschaften eines Korpuses abgeleitet. Und Text-Mining-Ergebnisse werden mit

externen strukturierten Wissensressourcen integriert um die Qualität von Genexpressionsanalysen zu

verbessern. Über diese supersemantischen Informationsintegrationsmodule hinaus wird zudem der

Weg zu einem umfassenden supersemantischen System, das alle relevanten Analysen umfasst, sowohl

konzeptionell als auch anhand von zwei prototypischen Implementationen aufgezeigt.

Die erzielten Ergebnisse zeigen, dass supersemantische Algorithmen die Qualität und Reichweite von

Text-Mining-Tools verbessern können. Darüber hinaus deuten die entwickelten Prototypen mögliche

Herangehensweisen zur Realisierung eines superemantischen Frameworks an und liefern in Bereichen

v



wie Protein-Event-Extraktion schon jetzt bessere Ergebnisse als einige etablierte Text-Mining-Systeme

wie z.B. Excerbt.
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1

Introduction

1.1 Motivation
“They say that Samuel Taylor Coleridge was the last person to have read everything. By the

time he died there were too many books, they suggest, for any single brain to engage with.
’They’, as usual, are wrong. There were already millions of books in Europe by the year 1500,
just half a century after the first printed page flew from the first press. To read a million books
in a lifetime you would have to read 40 a day for 70 years. I couldn’t even smoke half that
many cigarettes for half as long before giving up and it takes a lot longer to read a book than
to smoke a cigarette, let me tell you.
Philosophers, wits, novelists, cooks, poets, essayists, herbalists, mathematicians, builders,

poets and divines had poured out more thoughts in that first 50 years than had been committed
to paper or vellum in the previous thousand. And the rate only continued to increase as it
approached this century’s dizzyingly insane levels of oversupply. With so much flowing from
so many different human brains, who can be bothered to read it? Not I, sir and madam, not I.”

Stephen Fry, QI Book of Advanced Banter

As described by Stephen Fry, the amount of literature that is published is ever increasing. And with

it, the relative amount of what a single person is able to read decreases accordingly. Not only has it

become impossible to have read everything, but it has also become impossible to have read everything

about biology, neuroscience or most other fields. Even very specific topics can no longer be covered

completely. This situation has led to disturbing circumstances in many fields of science. Researchers

entering a scientific field today will never be able to build on all the experiences of previous researchers

- at least not without technical help.

To exemplify this point, if a scientist nowadays starts to research Alzheimer’s, he is confronted with a

vast plethora of scientific publications about the topic. PubMed (Pubmed, 2014), the most comprehens-
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1 Introduction

ive search engine for biomedical publications, returns 98,353 documents (as of the beginning of 2014)

when entering ’alzheimer’s’. If such a Samuel Taylor Coleridge of Alzheimer’s was to read all of these,

he would have to invest years of his life. More precisely, at an average reading speed of 250 words per

minute1, an average paper length of 8,467 words2, 229 workdays per year3 and a workday of eight

hours the scientist would have to read for over 30 years. Furthermore, in the 30 years of reading, many

more publications would have been published on Alzheimer’s. Assuming that the current publication

rate (8,187 articles in December 2013 about Alzheimer’s) would stay constant4, then there would be

248,066 new articles published by the time the scientist would be done reading the articles published

up to today. This in turn would take another 76.4 years to read. The point where a scientist could read

everything in his discripline are long gone. This example showed that even the days where he could

read everything about his own topic - leaving aside publications on methods and related topics - have

passed as well. Nowadays, on topics like Alzheimer’s, the rate of publication is higher than the average

reading speed. From this a fundamental need for other ways of knowledge transfer arises.

Scientists typically tried to minimize the effort of extracting knowledge from publications by using

different kinds of heuristics. Scientific publications are structured in a way that they provide a very

brief summary in the form of an abstract, thus potentially avoiding the need to read the whole paper.

Furthermore, one tends to choose the paper one reads intelligently. Factors that are commonly used to

filter the publications that one reads are the impact factor and reputation of the authors and journals

of the publication. Additionally, the use of keywords describing a publication as well as more advanced

information retrieval techniques help to filter the vast amount of possible reading matters.

While such heuristics provide a way of dealing with the information flood, they can at best postpone

the problem temporarily. With exponential growth rates of scientific publications (see Figure 1.1), it

will become impossible to read every relevant abstract or to read through all relevant publications that

are tagged with certain keywords. The consequence of this will be overlooked or forgotten knowledge

that might be relevant to current problems. Examples of these already occur throughout all disciplines.

In computer science, such a disregarding of knowledge happened e.g. for a procedure called back-

propagation. The backpropagation algorithm can be used to train artificial neural networks to solve

non-linearly separable problems. Prior to the invention of this algorithm the simpler Perceptron

learning algorithm was used. This algorithm could only solve linearly separable problems but failed at

problems like the XOR-problem. The introduction of backpropagation by Paul Werbos (Werbos, 1974)

in 1974 could thus have immensly increased the potential of neural nets. Unfortunately, his findings

were largely ignored for around 12 years.

The fact that the backpropagation algorithm was overlooked had far-reaching consequences for the

whole field. The shortcoming of neural networks to solve non-linear problems, had led to a harsh

criticism of artificial neural nets in general by Minsky and Papert (Minsky and Papert, 1969) in their

book Perceptrons in 1969, which resulted in a nearly complete halt of research in the field until the

mid-80s. Even more, together with other setbacks in related domains the criticism of neural nets lead

to a period called the “AI winter” , in which funding for the whole field of artificial intelligence was

heavily cut and the reputation of the field worsened. It was only 12 years after Werbos’ invention that

1The average reading speed of an adult is at around 200-250 words per minute

2I averaged the length of 20 randomly chosen papers

3The amount of workdays in Bavaria (249 in 2014) minus 20 days of holidays

4which it most probably does not, instead the last years showed that it tends to grow exponentially

2



1.1 Motivation

Figure 1.1: The diagram shows the growth of the Medical Literature Analysis and Retrieval System Online (MEDLINE), the
main part of PubMed, the most comprehensive collection of biomedical knowledge, in the years between 1965
and 2012 (Pubmed, 2014).

the field was revived by Rumelhart, Hinton and Williams (Rumelhart et al., 1986) who rediscovered the

backpropagation algorithm.

Another, more recent example from the biomedical domain was described by Steven A. Greenberg

(Greenberg, 2009) in 2009. Greenberg analyzed how conflicting claims about the role of β amyloid

inclusion body myositis patients were cited over time. β amyloid is a protein that accumulates in

the brain of Alzheimer patients. Starting from four primary research papers that were supportive of

the claim that β amyloid is produced by and injures skeletal muscle of patients with inclusion body

myositis, and six critical ones, Greenberg analyzed which claims prevailed and how this happened. He

found, that in the 12 years after the publication of the papers 94% of the citations were received by

the supportive papers. Only 13 of the 214 citations were towards critical papers. Thus, in literature a

very one-sided picture was drawn suggesting clarity about the claims. Even more, the existence of the

critical results was largely forgotten.

Objectively, however, the critical papers were more trustworthy, since they were conducted from three

independent labs, while the supportive ones all originated from the same lab. Furthermore, two of the

critical papers were published by people from the very lab that published the supportive ones earlier

on. Shortly after Greenbergs paper, Soscia et al. (Soscia et al., 2010) even published findings that β

amyloid might actually be beneficial for Alzheimer patients. And Evans and Rzhetsky concluded that

“the information cascade surrounding the deleterious effect of β-amyloid almost certainly prolonged

experimental consideration of its possible beneficial role in Alzheimer disease and immunity” (Evans

and Rzhetsky, 2011). Again important scientific findings were overlooked and again the scientific

progress was delayed for over a decade.
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1 Introduction

While current heuristics are already error-prone, the challenges for scientific knowledge management

are steadily increasing. In biology, the quite focussed approach on investigating the function of single

genes is increasingly substituted by a systems approach that considers the interplay of many genes and

environmental factors. With more complex models the required scientific background knowledge is

increasing. In view of these ever more complex challenges, the typical heuristics are being stretched to

their limits. The need for a technological way to support knowledge management arises. One field that

tries to satify this need is text mining.

Most of the scientific knowledge that was gained over the years is published in scientific articles. These

articles are aimed at a human audience, which is why they are written in normal continuous text, in

text mining often referred to as unstructured text. In order to use the information given in the text, a

computer program would, however, need the information in a structured form like e.g. a database or

a graph. Only then it is possible to query such a program for typical scientific questions like “Which

algorithm can train neural networks so that they solve non-linearly separable problems?” or “What is

the role of β amyloid in inclusion body myositis patients?”. Thus, text mining employs methods from

computer linguistics in order to extract structured information from unstructured text.

Text mining already succeeded at extracting mostly binary relations between proteins and other

biological entities. Its error rate, however, is still clearly above that of human curators. The reason

for this lies in the complexity of human language. Linguists struggled for decades to identify and

solve typical error sources. Yet, there does not exist a system that could match the human ability to

understand written texts. Possibly, the most central phenomenon responsible for this is the fact that

every utterance needs to be interpreted within its context. Words, sentences and whole texts can vary

in meaning depending on the circumstances within which they occur. Thus, including the context in a

text mining analysis can prove to be a key to improving its performance.

Within this thesis ways to include context information at various stages in the text mining analysis are

explored. This should on the one hand improve the precision of the analysis but also on the other hand

extract additional contextual information from the text that current text mining systems often do not

capture. The latter of these is a trend which occurred in the field of text mining in parallel to my work

on this thesis. It is commonly referred to as contextualizaton. Since the core of this thesis is to introduce

a framework that includes but goes beyond contextualization, a new term for these kind of analyses

is coined here. Within the course of this work, such methods are referred to as supersemantics. This

terminology should subsume all efforts to provide the principles, architectures and methods to produce

better results and extract more information using context information.

The contribution made in this thesis is to define and give a comprehensive overview of supersemantics.

Furthermore, it is to develop and apply methods that bridge levels of meanings and classical linguistic

fields by incorporating contextual information. And finally, it is to provide an outlook into how a

comprehensive supersemantic analysis incorporating all required aspects of contextualization might

look like. In the remainder of this chapter the biological context of this work is described by giving an

overview of systems biology. Additionally, text mining is described in order to provide the technical

and scientific background of the work presented in this thesis.
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1.2 Systems Biology

1.2 Systems Biology
In 2003, the Human Genome Project announced the human genome sequence to be essentially de-

ciphered. The "book of life" had been read the scientists of the project proclaimed (Noble, 2003).

However, the so-called "blueprint of life" could not solve all the questions one hoped to find answers

for. Ever since, a view has been established that the genome sequence only provides a "parts list" of

life. But in order to fully understand how whole organisms work it needs to be understood how these

parts interact. This view is the core idea behind systems biology (Newman, 2003).

Instead of investigating every component on its own the whole system is considered at once. Such a

system is commonly represented as a network of interconnected elements which together form a whole.

This network can be analyzed for its own properties - properties that are not necessarily displayed by

any of its components on their own (Trewavas, 2006).

The observation, that a system can possess properties its components do not, is referred to by the term

emergence. Emergence is one of the main motivations for systems biology. Only by considering the

properties of the correct level of abstraction certain biological questions can be answered.

Emergent properties are attributed to a variety of phenomena, especially in complex systems. Fre-

quently mentioned examples of emergence include behavioral patterns in swarms, consciousness

and life itself (Bedau, 2003; Marsh, 2009). Swarm intelligence exceeds the abilities of its individuals.

Consciousness and life appear as properties that are indivisible and not experienced by the single

parts of the organisms that posses them. Each of the systems (a swarm, a brain, a body respectively)

possessing such properties is made up of parts that by themselves do not posses the properties of the

system or cannot account for them.

As can be seen in the simplified example from plant biology given in Figure 1.2 biological systems are

systems of systems. Together they form a hierarchy of different levels of complexity with each level

displaying its own emergent properties. Work in this field could also show that these levels interact

with each other. Higher levels make use of the components of lower levels (downward causation)

but also changes in lower levels, like mutations in DNA, can change higher level behavior (upward

causation) (Trewavas, 2006).

With its perspective systems biology stands out against the traditional reductionist view of science.

According to this paradigm complex problems are tackled with a "divide and conquer"-strategy. By

dividing the problem into smaller parts, one retrieves a set of problems that are simpler to solve. E.g.

instead of investigating the whole organism only single genes and their correlation to a disease are

analyzed. While this methodology has produced plenty of great advances throughout all scientific

disciplines, it seems to fail to deliver answers for some very relevant questions of today (Ahn et al.,

2006).

The introduction of systems biology into biology as alternative to pure reductionism constitutes a

paradigm shift. The history of reductionism in science dates back to Rene Descartes who saw the world

as a clockwork mechanism that could fully be explained by the analysis of its parts. Later, Newton

expanded Descartes approach laying the foundation of classical physics (Mazzocchi, 2008). Based on

this a mechanistic biology evolved that saw organisms in analogy to a clockwork as deterministic
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Figure 1.2: Hierarchy of the different levels of biological complexity in the domain of plant biology. Figure taken from
(Trewavas, 2006).

machines. Loeb manifested this view in 1912 by stating that all animals of the same species would be

behaving identical and predetermined like complex machines (Trewavas, 2006). In the 1950s a lot of

researchers came from physics to molecular biology and further implemented the approach in the

context of organisms (Mazzocchi, 2008). Accordingly, Francis Crick stated the goal of biology as "to

explain all biology in terms of physics and chemistry" (Crick, 1966).

In line with these early reductionist ideas of scientific inquiry are experiments like knock-outs to

determine the functional role of a gene. One focuses only on the gene, ignoring other causes or inter-

relations in the explanation of a certain phenotype. Such methods, however, have only restricted

explanatory power when a phenomenon is a function of a complex network or can overemphasize the

importance of a specific gene (Mazzocchi, 2008).

Correspondingly, in some areas of modern biology the limits of this approach seem to be reached.

Diseases like cancer might be too complex to overcome them with the traditional strategies. Likewise

in the neuronal system reductionism seems not to deliver enough insights for a comprehensive under-

standing of the subject (Mazzocchi, 2008). Instead, complexity as an important source for emergence

needs to be considered in the biological study of higher level phenomenons like complex diseases.

While the idea of thinking of systems as a whole rather than a mere assembly of its sub-units dates back

to Aristotle’s famous quotation "the whole is something over and above its parts and not just the sum of

them all", within the biological field the earliest roots of modern systems biology can be attributed to Jan

Smuts (Smuts, 1926) who first introduced the term holism to the scientific community. Smuts pointed to

emergent properties to argue against the reductionist approach. Furthermore, work in neurology and

animal development made obvious that the behavior of individual parts of a system is dependent on the

structure of the whole. This kind of orchestration of a system can be seen in situations of compensation,

e.g. when hormone sensitivity increases as a result of low levels of hormones. The whole causally acts

on its parts that cannot be explained by simply looking at the individual parts and trying to take the
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Figure 1.3: Hypothesis-driven loop of systems biology. Figure taken from (Kitano, 2002).

sum of them (Trewavas, 2006). Starting from these early observations, the investigation of complexity

entered more and more in the biological worldview.

While complexity theory is a science on its own and does not have a single definition, complexity

is often associated with some common properties. Complex systems are nonlinear, have build-in

feedback methods and can produce spontaneous order (Ladyman et al., 2011). Systems biology is

trying to account for this by modeling such systems in the form of networks and calculate stable states

within these models. Furthermore, complex systems often inherit a certain robustness without a

central control, have emergent properties, possibly a hierarchical order and consist of many elements

(Ladyman et al., 2011).

The understanding of a biological system, according to Kitano (Kitano, 2002), can be achieved by

investigations in four key properties: the system structures, the system dynamics, the control method

and the designmethod. The system structure can be examined by the analysis of networks of interacting

biological elements. Temporal analyses are necessary for understanding the dynamics of a system.

Typical patterns that control the behavior of a cell or another biological unit can be identified and

used in therapies. And finally, understanding the design principles of a biological system makes it

possible to investigate biological processes by simulations and opens up the possibility to design desired

phenotypes. Systems biology research focused in all of these areas may prove to greatly advance the

field (Kitano, 2002).

The roots of this field are in the first half of the 20th century, but only with the introduction of methods

in the field of molecular biology it became feasible to analyze systems systematically. With high-

throughput measuring technologies and next-generation sequencers, biologists were finally equipped

to look at biological processes on a higher level (Kitano, 2002).

As a new paradigm on doing research in biology, systems biology also stands for a new workflow of

how to integrate the work of bioinformaticians and biologists. This so-called loop of systems biology
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(see Figure 1.3) models the frequent exchange of information between the two fields. Starting with a

biological question, bioinformaticians can build models on the existing data and derive new hypotheses

from thosemodels that behave correctly in their simulations. Biologists in turn can test these hypotheses

and rule out the models that make false predictions, thus narrowing the space of possible models. By

deriving the hypotheses exclusively on the basis of the original data the systems biology loop stands for

a strongly hypothesis-driven approach to science (Kitano, 2002).

In order to build complex models, the bioinformatician needs to acquire the relevant data. While some

biologists put great effort into creating databases collecting the results of the field, a lot of results are

still scattered across the many publications of the different journals and not recorded in a database. To

use this hidden information and to create tools that give scientists a better overview over their field,

automated methods extracting information from publications are needed. The field of text mining is

trying to provide these methods.

1.3 Text Mining
For ages, humans have been collecting their knowledge of the world within books. Libraries grew and

in times of the information age masses of information became available to everyone with an internet

connection. However, availability does not necessarily imply findability. Already in the 17th century,

with growing sizes of text collections, librarians saw the necessity for cataloguing systems to facilitate

the retrieval of relevant texts. From this need, in modern days the field of Information Retrieval (IR)

originated which studies the ways text documents can be searched effectively in databases and other

text collections to fulfill different information needs (Miner et al., 2012).

However, the recent information overload resulted in the demand for more sophisticated ways to

collect information. The traditional keyword-based information retrieval approaches did not suffice

anymore. From the need for the advanced organization, maintenance and interpretation of information

from textual sources the field of text mining arose (Ananiadou et al., 2006).

Definition
The most common definition of text mining dates fromMarti Hearst’s 1999 paper "Untangling Text Data

Mining", in which he discriminated text mining, or text data mining how he called it, from bordering

areas like information retrieval, text categorization and computational linguistics. According to Hearst

text mining is the analysis of unstructured texts with the goal of uncovering new, previously unknown

information (Hearst, 1999).

This new information can come in the form of associations, patterns or clusters of related texts.

Different information pieces can be combined to synthesize new information. In the context of systems

biology, text mining can be used to generate hypotheses that can afterwards be tested by experimental

biologists (Ananiadou et al., 2006).

Biomedical text mining is a highly interdisciplinary field. As it is treated within this thesis, it is at

the intersection between biology, linguistics, computer science, artificial intelligence and information
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Figure 1.4: The workflow of a prototypical text mining system. Document are fist collected using information retrieval
methods and then analyzed using information extraction methods. The structured information is then used
to create new hypotheses or directly stored in data bases or used to build other tools. The depiction of the
hypothesis generation step is taken from (Evans and Rzhetsky, 2010).

science. Biology asks the questions and provides important domain specific knowledge that is necessary

to facilitate the analysis. Linguistics, or more specifically computer linguistics, provides the tools for

analyzing the texts. Computer science solves the problems that arise from the need to deal with huge

amounts of data in an efficient way. Information science offers ways of representing the information in

a structured way. Finally, artificial intelligence is included. This area contributes in two ways: first it

provides machine learning methods for generating new hypotheses and secondly inference algorithms

might become a valuable part of future text mining tools when automated reasoning about the collected

information might become more important (I will talk more about automated reasoning in sections 7.1

and 11.4).

While different applications might ask for deviating strategies, the general approach to text mining

can be subdivided into the subtasks of information retrieval (IR) , information extraction (IE) and data

mining (see Figure 1.4). In this workflow, information retrieval methods are used to collect the relevant

text documents. Afterwards, information extraction methods are applied to extract facts from the

documents. Finally, in the data mining stage new information is inferred on the basis of the extracted

facts (Ananiadou et al., 2006). In many applications the results of the information extraction stage can

also be used immediately for providing resources of structured data or tools helping scientists in their

daily work without the application of data mining tools.

All three stages of this pipeline should be described in the following. Since both IR and IE heavily

depend on algorithms borrowed from Natural Language Processing (NLP) the introduction of these

stages is preceded by an overview over some of the relevant methods and resources from NLP.
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Natural Language Processing

The main problem when trying to extract information from freely written text is the complex nature

of modern languages. Firstly, languages are open systems. People can invent new words, talk about

previously unseen objects and events and thereby extend or change the language. Furthermore,

languages have complex grammars, in which words can be combined in different order or be inflected

to change their meanings (Vogt, 2005).

Additionally, languages are designed to allow for ambiguities, which poses another fundamental

problem for reliable information extraction from text. Multiple possible interpretations can occur on

several levels. Terms can have multiple meanings (lexical ambiguity), sentences can have multiple

grammatical structures resulting in different meanings (syntactic ambiguity) and sentences can be

read in different ways (semantic and pragmatic ambiguity) (Ceccato et al., 2004).

The range of this problem might be illustrated by looking at systems that try to determine the gram-

matical structure of a sentence. In 1987, Martin et al. famously reported that their system assigned

455 possible structures to the sentence "List sales of the products produced in 1973 with the products

produced in 1972." (Martin et al., 1987).

The problem broadens even when transfered to the biomedical domain. Different studies (Chen et al.,

2005; Fundel and Zimmer, 2006; Tuason et al., 2004) showed the extraordinary degree of ambiguity in

papers published in this domain. According to Chen et al. ambiguity among terms describing genes

can reach up to 85% (Chen et al., 2005). Even worse, some of the ambigue terms are very common

english words like ’we’, ’fold’, ’gel’ or ’inactive’ which frequently occur in biological papers (Fundel and

Zimmer, 2006). As demonstrated in Figure 1.5 each term in the sentence ’Homer and Maggie go to Paris

to meet a large, hairy clown and chat with the happy tinman.’ can also refer to a biological entity. This

phenomenon is mainly due to the use of aliases instead of official names.

Since it is so complicated to deal with text, especially in the biomedical domain, text mining needs

to borrow methods from experts that dealt with the pitfalls of modern languages for longer. Thus, a

variety of methods developed in the field of natural language processing is used when trying to extract

information from biomedical texts. This part of the thesis is meant to give an overview of the most

relevant methods of NLP.

Natural language processing acts as a tool box for text mining in various ways. Firstly, within the

NLP community several resources have been created that can be utilized when solving a language

processing problem. Most notably different corpora have to be mentioned here. These corpora can act

as gold standard to evaluate the performance of an algorithm for a given task and can be used to train

machine learning algorithms for solving the problem. Within the biomedical domain the GENIA corpus

(Ohta et al., 2002) and the data sets created within the BioCreAtIvE competitions (Arighi et al., 2011;

Hirschman et al., 2005a; Krallinger et al., 2008) are among the most noteworthy. Furthermore, there

exist word lists containing terms especially relevant for certain tasks and thesauri that list synonyms or

semantically related terms. Finally, there are ontologies that model the concepts and their relationships

within a specific domain. For genes and their products e.g. the Gene Ontology (Ashburner, 2000) was

designed to create a standardized representation of the inter-relations of the concepts.
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Homer and Maggie go to Paris to meet a large, hairy clown and chat with the happy tinman.

Figure 1.5: An example sentence to show the high level of ambiguity in gene names and aliases. All words in this sentence
are names or aliases of genes or gene products. 11
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Depending on the task, different representations of the given text are more useful. When one wants to

know what topic a text is about e.g. it can be helpful to simply ignore the very common words in a text.

Such a procedure is called stop word removal. On the other hand when one is interested in extracting

more sophisticated information from a sentence it would be better to leave these words in, since a lot

of stop words are function words that determine the structure of the sentence.

Because of such different requirements for different problems, a series of basic methods to change the

representation of a text have been developed which can be applied as preprocessings. Besides stop

word removal, these include tokenization (detecting term boundaries), sentence splitting (detecting

sentence boundaries) and stemming (Cohen and Hunter, 2004). The idea of stemming is to change the

declined form of a word to its word stem, e.g. the words ’stems’ and ’stemming’ would be stemmed

to ’stem’. This is useful when all occurrences of a concept should be analyzed together no matter in

which form they appear. While stemming only cuts off the ending of words to remain with the stem,

lemmatization goes a step further and tries to map words to their base form (Ingason et al., 2008). Thus,

the terms ’wife’ and ’wives’ would have the same lemma, but not the same stem.

These preprocessing steps can be sufficient, when the text should only be represented by the words it

is made of. A well-established representation of this form is the so-called bag-of-words model. Here,

after stop word removal and possible normalization (stemming or lemmatization) the collection of the

remaining terms is considered the feature vector of the text. This methodology is widely applied in the

field of information retrieval (Jiang et al., 2004).

In order to extract more detailed information from text, more sophisticated preprocessing procedures

are needed. In this case, not simply the word but the complete sentence is taken into consideration.

The surrounding of the word can be used to disambiguate the meaning of the word or structural

information for the words or parts of the sentence can be determined.

Classically, computer linguists used constituency or dependency parsers that constructed parse-trees

which represented the syntactical structure of sentences. Later on, also shallow parsers or chunkers

were developedwhich tried to get asmuch structural information as possible out of the sentencewithout

having to determine the overall grammatical structure. These methods cluster words into labeled

’chunks’ that represent e.g. noun phrases or verb phrases. The motivation behind the development

of these systems was the need to produce better performant systems for the application to very large

collections of text (Delmonte, 2005).

Both full and shallow parsers commonly work on so-called part-of-speech (POS) tags. The task of POS

tagging is to assign each word in a sentence its word class. These word classes are distinguished on

the basis of the syntactic and morphological behavior of the words (Voutilainen, 2004). Methods for

determining the right POS tag reach from rule-based methods over transformation-based learning (the

system learns rules by itself) to Hidden Markov Models (Martinez, 2012).

Going beyond the syntactic analysis of sentences the field of Semantic Role Labeling (SRL) tries to tackle

the semantic interdependencies of different parts of a sentence. The idea behind SRL is to answer the

question "Who did What to Whom, and How, When and Where?" (Palmer et al., 2010). Thus, such

systems assign roles to clusters of words which tag them as the agent, recipient, item and so forth of a

relation commonly described by a verb.
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There exist two major schemes to assign roles to parts of the sentence. One is defined in the FrameNet

corpus (Baker et al., 1998), the other one in the PropBank corpus (Palmer et al., 2005). While the former

has a very wide range of hierarchically arranged roles, the latter tries to generalize by combining roles

to a more concise tagging scheme.

The majority of SRL systems are based on Machine Learning algorithms and are making use of a large

variety of features. Here, the syntactic structure is commonly taken into account by deriving features

from parse-trees generated by different parsers (Palmer et al., 2010). However, lately also systems

avoiding parse-trees have been established. This approach is taken in order to create more performant

systems that qualify for application in large text collections. Of these the Senna system (Collobert et al.,

2011a) is the most noteworthy, reaching comparable results with the parser-based systems.

All of themethods described above can bemade use of when designing a text mining system. Besides the

already described tags and the bag-of-words model, some additional important forms of representation

should be mentioned here. The vector space model (Salton et al., 1975) is often used in information

retrieval systems. Here, whole documents are represented as high-dimensional vectors. Each entry

in the vector corresponds to a particular term which does (non-zero value) or does not (zero value)

occur in the document. By comparison of such vectors documents relevant to a query, which can also

be represented as a vector, can be found.

The vector space model has recently also been extended to capture semantic representations between

different text types. Besides measuring similarities between documents, they were also successfully

applied to words by taking into consideration the context vector of the word and word pairs with the

vectors representing their shared context (Turney and Pantel, 2010). Further representations of words

can be produced by extracting word embeddings from trained language models or by using clustering

methods (Turian et al., 2010b).

Information Retrieval
The term information retrieval (IR) was coined in 1950 by Calvin Mooers (Mooers, 1950) but the roots

of the field go back way further to the origins of library systems. Nowadays, IR stands for every system

that aims to find a relevant subset of informational items from a larger collection. This can involve

finding relevant videos, images or, as relevant in the context of TM , texts. The relevance of IR increased

immensely with the rise of the internet where also its most prominent applications can be found - the

search engines (Larson, 2012).

The general workflow of an IR system is shown in Figure 1.6. Both the query and the document are first

processed with NLP techniques like parsing and normalization procedures. Indexing procedures then

turn the document and the query into their final representation (e.g. the vectors of the vector space

model). In this form the two entities are compared and ranked according to their similarity. Based on

this scores the relevant documents are finally returned (Larson, 2012).

Within the domain of biomedical TM the information retrieval stage can either be used to restrict the

considered text collection to relevant documents in order to focus the process on a certain domain.

Alternatively, it can also simply be reduced to collect as many documents from the biomedical domain

as possible in order to widen the range of the output.
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Figure 1.6: Overview of the components of an Information Retrieval system. Figure based on (Larson, 2012).

Furthermore, the process of acquiring relevant documents is closely related to information retrieval.

Most biomedical text mining systems rely on comprehensive resources of digitally accessible publica-

tions like PubMed (Pubmed, 2014) or PMC (PMC, 2014). While such resources cover many publications

at least partly, there are still many that cannot be accessed this way. The reasons for this can be that

they are published in proprietary journals that do not allow such a distribution or simply by journals

not covered by the resources. One solution to reach the latter of these are web crawlers. A web crawler

is a computer program that starts with an initial set of websites and uses the hyperlinks in these find

new interesting sites and documents. Then these are in turn analyzed for further hyperlinks, so that the

crawler can expand in the search space (usually the internet). Web crawlers can be focussed on certain

domains and types of documents (Chakrabarti et al., 1999). Thus, they can be used to find publications

not covered by the resources used by one’s text mining system.

Information Extraction
The objective of information extraction (IE) is to search through textual documents and to extract

information that is relevant to a certain interest. This can concern the extraction of entities, relations

or events (Hobbs and Riloff, 2010). In the case of the extraction of entities this process is called

named entity recognition (NER) . In the case of relations its called relation recognition (RR) and event

recognition (ER) when events are detected (Ananiadou et al., 2010).

Named entity recognition is the task of identifying proper names in a text. Traditionally, this approach

is focused on detecting mentions of persons, locations and companies. However, depending on the

domain of the IE system this can be extended or shifted to different entities (Hobbs and Riloff, 2010).

Within the biomedical domain the detection of gene names or phenotypes are common applications for

NER.
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There are different strategies to extract named entities from texts. Dictionary-based approaches com-

pare occurring terms to existing lists of terms for which the corresponding class is known. More soph-

isticated approaches to NER include rule-based, classification-based and sequence-based approaches.

Rule-based systems decide on a specific role for a term on the basis of hand-crafted or syntactic rules

(e.g. capital letters or digits can be hints for protein names). The remaining two strategies consider NER

as a classification problem and employ machine learning algorithms to solve it. Here, the classification-

based approaches classify token-wise (single words or phrases) while the sequence-based methods

consider a whole sequence of tokens at once (Leser and Hakenberg, 2005).

Additionally, different strategies can be combined for hybrid approaches. The more sophisticated

systems are based on NLP methods like POS-tagging and normalization. Furthermore, word sense

disambiguation and abbreviation resolution can be applied, since ambiguities and varying notations

are among the biggest difficulties of NER (Leser and Hakenberg, 2005).

A relation describes a connection that exists between several, usually two, terms. Thus, the most

frequent representation of a relation is a pair of entities. A relation has a type, e.g. in the context

of genes a regulation is a typical relation, and the two entities building up the relation have fixed

RelationSemanticssemantic roles. In the regulation relation e.g. the entity with the semantic role of

the agent is the one regulating the other one. The second entity has a role called theme and is the one

being regulated (Ananiadou et al., 2010).

Events on the other hand always correspond to concrete incidents in the real world. They can be

described by relations but can also have more participants and the semantic roles corresponding to

the different participants vary depending on the specific event. Some of the participants might be

necessary like the localized entity in a localization event, while others might only occur optionally in

certain sentences. For example events can often be detected without knowing their cause. The cause

can, however, be given as additional information. For the extraction of events a detailed analysis of

the structure of the sentence has to be performed. Within the biomedical domain among other things

event extractions can be used to identify protein-protein interactions, support pathway construction

and improve the search abilities of text collections like MEDLINE (Ananiadou et al., 2010).

Approaches to the extraction of events or relations are diverse. The first systems relied on rather naive

hand-crafted rules to detect the relations. An easy way to create an automated system is by predicting a

relation between entities on the basis of co-occurrences of the entities. Furthermore, machine learning

(ML) algorithms can be applied to the problem. ML methods can either be used to learn suitable rules

or templates for the extraction, thus, avoiding the extensive effort of the manual creation of these

rules. Alternatively, ML algorithms can be used to learn to tag a sentence according to the relations

or events immediately, or to detected patterns in the text in an unsupervised fashion. Sophisticated

linguistic rule systems can derive relations way more reliable than the naive rule systems. Apart from

that, discourse-oriented approaches take a wider context of the sentence into account e.g. by the prior

identification of event-related sentences. Finally, NLP-based approaches build on the structural analysis

of the sentence to increase the performance of the prediction. This can be done by building on parsing

or semantic role labeling (Cohen and Hersh, 2005; Hobbs and Riloff, 2010).

Since NER is part of the relation and event extraction in many of the approaches (e.g. co-occurrences

and the NLP-based extraction) the preprocessing steps word sense disambiguation and acronym

resolution can be applied here, too. Furthermore, anaphora resolution, the resolution of referential
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Figure 1.7: Prototypical representation of an information extraction pipeline.

expressions like pronouns, can be applied to increase the recall of the methods. By replacing pronouns

or other references by their respective named entity more relations can be found.

The different information extraction steps are commonly arranged in a pipeline of software modules.

A prototypical representation of such a pipeline is given in Figure 1.7. First sentences are preprocessed

by detecting sentence and token boundaries. The latter of which are POS tagged. This is the input of the

sentence analysis that uses syntactic and/or semantic analyses. Finally, named entities are found within

the syntactic/semantic roles. These patterns are then transformed in events where applicable. The

details of the single steps can vary as described above. Furthermore, there exist various variations of

this pipeline depending on the approach and purpose of the tool. For example co-occurrence analyses

can omit the POS tagging and sentence analysis steps.

Data Mining
Data mining is defined by an objective rather than by a certain procedure. It is a broad collection of

methods used to extract information, that is difficult to acquire, from any kind of data. This hidden

information commonly can come in the form of patterns, that can be extracted e.g. as association rules,

as clusters, that order the information according to its internal structure, or as classifications, that

order the information in accordance with known examples (Coenen, 2011).

Many applications of data mining depend on the use of machine learning algorithms to classify or

cluster the data. The most prominent here are support vector machines, artificial neural nets, random

forests and various clustering methods. When applied in the context of text mining these can be used

to classify texts. Furthermore, texts can be summarized or opinions can be mined making use of free

texts or questionnaires (Coenen, 2011).

Within the biomedical domain additional applications and methods arise. The data mining stage of

the text mining workflow is often used to produce new hypotheses. Famously, Don Swanson was the

first to implement the ABC model for hypothesis generation from texts of different scientific fields. The

simple idea was to make use of the principle of transitivity to correlate formerly unconnected concepts.

If in one piece of scientific literature it was written that A causes B and in another that B causes C, then

it could be concluded that A causes C (Swanson, 1986).

Making use of this simple principle Swanson produced the hypotheses that fish oil could moderate the

symptoms of Raynauld’s blood disorder (Swanson, 1986), that magnesium deficits are correlated to

migraine (Swanson, 1988), which were both later confirmed experimentally, and that indomethacin

was correlated to Alzheimer’s disease (Swanson and Smalheiser, 1994).
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Apart from that, datamining was already applied to several areas in bioinformatics like e.g. in sequence-

based functional classification of proteins. Such approaches might be improved by the integration

with text mining. Here, text mining can be used as a way to make unstructured data available. Thus,

structured and unstructured information can be combined to deliver better results (Ananiadou et al.,

2006).

If relations are extracted from text these can be composed to form graphs. On the basis of this, graph

mining techniques (data minig on graphs) can be applied at this stage of the pipeline. A common

technique here is to detect frequent or especially meaningful sub-graphs, so-called motifs. Furthermore,

algorithms from the growing field of network analysis can be applied to find hidden information in the

graph structure and to produce new hypotheses (Coenen, 2011).

Excerbt
The development of a comprehensive text mining system is a very complex endeavor that cannot

be accomplished by a single person on its own. For this reason, it is important to describe the text

mining infrastructure that existed when I started my thesis, respectively that was built in parallel to

my work. A text mining system called Excerbt was developed between 2006 and 2012 at the Institute of

Bioinformatics and Systems Biology at the Helmholtz Centre in Munich. Excerbt was first designed by

Thorsten Barnickel (Barnickel, 2009) in his Phd thesis and developed further by Benedikt Wachinger

(Wachinger, 2013) in his Phd thesis and Robert Strache (Strache, 2012) in his Master’s Thesis. The

system serves as basis for my work and hence should be introduced in this section.

In order to extract biological events from unstructured texts a semantic analysis of the text is needed.

Most semantic analysis methods, however, depend on syntactic analyses that take long processing times.

This poses a problem considering the current size of corpora like MEDLINE and the anticipated further

growth of the collection of biomedical literature. In order to create a system that can efficiently be

applied to large corpora and that can scale up in the future, Excerbt was based on an efficient semantic

analysis called Senna (Collobert et al., 2011b) that omitted time-consuming syntactical analyses.

Senna is based on a deep neural net that performs several natural language processing tasks simul-

taneously. Most importantly it creates predicate-argument structures (PAS) from sentences. Such a

structure is trying to capture all semantic aspects about a single proposition that are mentioned within

one sentence. It formalizes the answers to the question "Who did What to Whom, and How, When,

and Where?" by assigning different roles that represent the semantic dimensions of the proposition.

An overview of the roles assigned by Senna is given in Table 1.1. Most importantly, the roles ARG0

and ARG1 correspond to the actor and theme of the PAS. The actor is the one that actively initiated

something and the theme is the entity something is done to. For example in the sentence "Ice cream

causes overweight." ’ice cream’ would be the ARG0 and ’overweight’ would be the ARG1.

Excerbt uses Senna to extract different biological events by searching the ARG0, ARG1 and Pred roles

for biological entities from its internal ontology and verbs indicating biological events respectively. Its

ontology is based on a multitude of common biological resources - e.g. gene and protein names are,

among others, taken from Entrez Gene, Swissprot and Interprot. In Excerbt all abstracts from PubMed

and all freely available full-text articles from PMC are analyzed.
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Table 1.1: The roles assigned by the Senna role labeling tool. The roles correspond to the Propbank definition. The example
sentences are based on or taken from the examples from the Propbank annotation guidelines Bonial et al.
(2010).
Role Name Example

REL Predicate Mr. Bushmet him privately.
ARG0 Argument 0 Mr. Bushmet him privately.
ARG1 Argument 1 Mr. Bush met him privately.
ARG2 Argument 2 Mary left her daughter her pearls.
ARG3 Argument 3 They will remain on the list.
ARG4 Argument 4 Let them return to the city.
ARG-A Secondary Agent John walked his dog.
ARGM-COM Comitatives I sang a song with my sister.
ARGM-LOC Locatives Mr. Bush met him in the White House.
ARGM-DIR Directional I got kicked out of the class.
ARGM-GOL Goal The child fed the cat for her mother.
ARGM-MNR Manner Mr. Bush met him privately.
ARGM-TMP Temporal Mr. Bush met him on Tuesday.
ARGM-EXT Extent The shares closed at $3.75, off 25 cents.
ARGM-REC Reciprocals He would build it himself.
ARGM-PRD Secondary Predication He will join them as a director.
ARGM-PRP Purpose Clause They will return for future meetings.
ARGM-CAU Cause Clause They will stay because of the interview.
ARGM-DIS Discourse But for now, they stayed.
ARGM-MOD Modals John can’t keep up with her.
ARGM-NEG Negation John can’t keep up with her.
ARGM-LVB Light Verb Yesterday, Marymade an accusation.
ARGM-ADV Adverbials Happily, she sang.
ARGM-ADJ Adjectivals His shocking abuse outraged them.
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1.3 Text Mining

Figure 1.8: The text mining landscape. Some of the most influential research groups and researchers are shown.

Excerbt contains around 175 million different biological events extracted from 1.44 billion sentences.

Thus, an event is backed by 8.2 sentences on average. Excerbt’s ontology contains around 580,000

entities. There have been attempts to evaluate Excerbt on the BioNLP 2011 and the BioInfer corpus

as well as by a comparison to SIDER database. The obtained results were mostly poor, however, it

was argued that this might have been due to insufficiencies in the data sets (Strache, 2012; Wachinger,

2013).

Current Text Mining Landscape
In the years since Marti Hearst first introduced text mining, the field developed quickly and diversely.

Today, many groups all over the world work on text mining and develop tools that may help scientists

in their daily work. There are competitions held that should provide an objective quality assessment of

the different systems and resources created to support and test systems. While the field is too large to

cover comletely, at least the most influential elements with respect to the biomedical domain should

be introduced here. This is intended to provide a comprehensive picture of the state-of-the-art in text

mining and give an idea of the background in front of which this thesis was developed.

Figure 1.8 takes the text mining landscape literally and shows some of the most important text mining

institutions. Most notably, the National Centre for Text Mining (NaCTeM) , the Watson Lab and the

Turku University should be mentioned here. NaCTeM is the first national center for text minnig. It is

located in Manchester and headed by Sophia Ananiadou. Researchers from the NaCTeM are among

the most active members of the text mining community. They are involved in organizing competitions
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Figure 1.9: Simplified schematic description of different approaches to text mining.

like the BioNLP 2013 shared task (Nédellec et al., 2013), implementing a variety of text mining tools

like BioContext (Gerner et al., 2012) and even the publication of a journal specifically dedicated to

text mining (Journal of Biomedical Semantics). The Turku University is noteworthy because of its

development of TEES (Björne et al., 2009). This text mining system can be considered the state-of-the-art

in the domain of protein-protein event detection. It won several competitions and was integrated in

different other text mining systems. Finally, the Watson Lab of IBM deserves mention. The researchers

of the technology company developed a program called Watson (Ferrucci, 2011) that was able to

compete in the television quiz Jeopardy. It performed so well that it was able to beat the best human

players in a direct competition. Furthermore, this publicity stunt introduced text mining also to a

considerable part of the non-scientific community.

A more detailed view of the text mining community is given in Figure 1.10. In line with typical

representations of text mining results, a network seemed like the most appropriate way to display this.

As one can see, there are complex involvements of different research groups with each other and on

various topics. Besides the already mentioned Excerbt and BioContext, iHOP (Hoffmann and Valencia,

2005), EVEX (Van Landeghem et al., 2013), COREMINE (COREMINE, 2014) and String (Franceschini

et al., 2013) are popular text mining resources that are available through web interfaces. As shown in

Figure 1.9, the different text mining systems follow different strategies. Co-occurrence-based systems,

like iHOP or String, immediately associate entities found by a NER system. In contrast to this, more

sophisticated systems take results of linguistic parsers and/or semantic analysis tools into account.

EventMine for example is based on the Enju (Sagae et al., 2007) and Gdep (Sagae and ichi Tsujii, 2007)

parsers and Excerbt is based on Senna (Collobert et al., 2011b). The linguistic sentence analysis results

are then combined either by rules (Excerbt) or by machine learning algorithms (EventMine, TEES) to

detect biomedical events.
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Figure 1.10: Network of some of the most influential entities of the biomedical text mining community.
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While all of these systems have their main focus on event extraction, there exist several tools for more

specific tasks: Negmole (Sarafraz and Nenadic, 2010) detects negations, LINNAEUS (Gerner et al., 2010)

detects species names, and GNAT (Hakenberg et al., 2011) and GeneTUKit (Huang et al., 2011) detect

proteins. Analogously, to the different tools there exist different annotated corpora that can be used

for training and evaluation of systems. Most notably here, the BioInfer (Pyysalo et al., 2007a) and the

GENIA (Kim et al., 2003) corpus can be used for event detection and the BioScope corpus (Szarvas

et al., 2008) for hedge detection (negations and speculations). Since a vast majority of text mining

tools depend on natural language processing methods, there is a close connection to the field of NLP.

Some text mining researchers like Tsuji developed their own parsers while others drew on existing

NLP frameworks like NLTK (Bird, 2006), OpenNLP (The Apache Software Foundation, 2010), Stanford

NLP (University, 2011), GATE (Cunningham et al., 2011) or LingPipe (Carpenter and Baldwin, 2011) or

combined existing ones into comprehensive frameworks (e.g. ACCCA (Kang et al., 2012)). The different

foci are also represented by different competitions. While the BioNLP competitions focus most on event

extraction, the BioCreAtIvE challenges (Hirschman et al., 2005b) traditionally are more concerned with

named entity recognition and the CoNLL shared tasks (Ng et al., 2013) concentrate on natural language

processing methods. The question answering domain is comparatively separated from the information

extraction community. While Watson’s focus is not on biology, there still exist biomedical question

answering systems like AskHermes (Cao et al., 2011), EAGLi (Gobeill et al., 2009) and HONQA (Cruchet

et al., 2009).

The overview, of course, only provides an extract of the domain. Many other active research groups

and tools exist, which have not been covered here. Furthermore, because of the dense interconnections

in large parts of the community possibly some connections have been missed in this overview picture.

Other kinds of resources have been left out. For example, many biological ontologies and databases

are frequently used as vocabularies for different text mining systems. And finally, many detailed

applications or very specified tools have not been covered due to the sheer amount of them. To

counteract this unavoidable shortcoming, each of the following chapters that describes a supersemantic

application developed in this work is accompanied by a section that briefly summarizes the relevant

related work for this specific topic.
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Supersemantics

Biomedical text mining has changed over recent years. It developed from rather rudimentary ap-

proaches like co-occurrences over more sophisticated event extractions to the inclusion of contextual

information. The trend of contextualization developed in parallel to the process of writing this thesis

and is still ongoing. Supersemantics is a neologism coined in this thesis. As presented in this work, it

encapsulates contextualizations and tries to provide a comprehensive framework for it. Furthermore,

it tries to include important trends and design paradigms for successful future text mining. The idea

that should be promoted in this thesis breaks with the traditional ways in which linguistic analyses are

performed in the sense that it ignores and bridges the boarders between adjacent linguistic fields for

the purpose of a more practical solution.

The elements of language convey meaning on different levels. Single words or groups of words can

refer to entities, clauses can describe situations or events and texts can tell whole stories. One of

the major difficulties in analyzing language is the fact that these different levels of meaning are not

independent of each other. While the upward dependencies from words to sentences to texts seem

obvious, also effects exist where the superordinate level influences the meaning of the underlying

ones. For example, words can have multiple meanings and can only be distinguished by considering

the sentence or text they occur in. Likewise, sentences can have multiple meanings and need to be

interpreted within the discourse they occur in. Even whole texts can vary in meaning depending on

the context they are published in. For example the meaning of the first verse of the Deutschlandlied

depends on the temporal context. It changed heavily in what it represented ever since it became a

symbol for Nazi Germany. Thus, the different levels of linguistic utterances are highly connected. Yet,

most semantic analyses only work bottom-up.

Furthermore, there exist different linguistic fields for different levels and different types of analyses.

Morphology analyzes the subelements of single words. Classical syntactic and semantic analyses work

on sentence level. And corpus linguists concentrate on complete corpora. Many times, researcher from
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one specific area stay within the boundaries of their field and treat situations where information from

other levels might be needed as special cases instead of looking for a general solution.

Instead of separating linguistic levels and linguistic disciplines from each other, supersemantics

promotes an integration of them. In this respect, the ’super’ in the term stands for going beyond

borders. This includes the artificial borders of the research fields as well as the linguistic levels of

different utterances. The goal behind this is to always use the best available tool for the task at hand

instead of feeling the need to stay within its limits. So, instead of performing a mere syntactic analysis

based on possibly ambigue words, supersemantics would favor an analysis that integrates contextual

lexical or semantic information that helps to overcome this ambiguity.

Summing up, one can state that supersemantics is grounded in three maxims that should be used as

foundation when designing a linguistic analysis system: contextualization, integration of linguistic

levels and integration of linguistic fields.

The rest of this chapter motivates the use of contextual information and bridging of linguistic levels.

Furthermore, existing linguistic approaches that try to provide comprehensive analyses independent of

linguistic levels are presented to describe the scientific background of supersemantic analyses. Finally,

a brief overview of the levels of linguistic utterances and the relevant information that they contain

is given as well as a road map on how one could integrate all of these aspects of a supersemantic

analysis into one comprehensive all-in-one solution. The general picture that is given there is drawn in

further detail in the following chapters. Each of these presents the details of a linguistic level and how

it can be used to give valuable context information to tasks of lower levels. Additionally, at least one

practical application that was implemented in the course of this work is introduced in each chapter.

This way the practical relevance of the given information is shown. In the end, in chapters 9 and

10 first prototype implementations of text mining systems that could be extended to comprehensive

supersemantic analyses are described.

2.1 Levels of Context
The English language is a very complex construct and in it meaning is transported on various levels.

Furthermore, the different levels influence each other. Syntactic rules constrain the choice of words,

semantic contexts clarify ambigue expressions. Different subfields of linguistics focus on specific levels

or try to bridge them.

The most elemental unit in a written language is a letter. The smallest meaning-bearing one is the

morpheme. Morphemes are either word roots or their prefixes or suffixes. For instance the word

“friendly” consists of the morphemes “friend” and “ly”. In some applications one is interested in

mapping all mentions of words with the same root together. In such cases stemming or lemmatizing

algorithms are used to reduce the word to this morpheme. A hierarchy of linguistically relevant levels

can be seen in Figure 2.1. The figure is rather coarse-grained and could additionally include morphemes

or chunks. However, for the approaches presented in this work the level of detail suffices.

The problems which Supersemantic methods attempt to solve bridge these different levels. This can

be seen in Figure 2.2 where some typical linguistic problems are arranged according to the levels
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2.1 Levels of Context

Figure 2.1: Different levels of linguistic utterances. The arrows indicate the interconnections between them. While classical
approach usually only address the bottom-up direction, supersemantics tries to take both into account.

they affect. For example, for solving PP-attachment (the problem of deciding whether postposed

prepositional phrases modify the verb or object of a sentence) one needs to either make logical

deductions using external knowledge (e.g. in the sentence “Neprilysin is poorly expressed in dogs

with cognitive dysfunction syndrome”, one can deduce that the prepositional phrase belongs to the

object “dogs” using the external knowledge that “cognitive dysfunction syndrome” is something living

creatures can have rather than being an instrument of gene expression) or make use of contextual

knowledge from the same document (e.g. in the sentence “The man saw the boy with the binoculars.”

one could check the rest of the text in order to find out whom the binoculars belong to).

Often there exist different approaches to solve a problem with respect to how much context is taken

into account. It might be possible to disambiguate a word or to resolve an abbreviation by simply

considering the sentence they occur in. But e.g. for abbreviations that are defined in the beginning of

the text analyzing the whole text might be necessary. Of course one could as well steer a middle course

by considering the paragraph or the section. The arrows shown in the illustration should only point to

the most commonly applied ways to solve the problem and do not make a claim to completeness.

The different levels of language are also reflected in the linguistic disciplines that study them. Mor-

phology deals with morphemes and affixes to determine the structural buildup of words. Lexicology

concentrates on words and their meaning. Sentence analysis is the study of the structural rules by

which sentences are formed. Text Linguistics deals with whole texts and the circumstances in which

these texts are situated. Finally, Corpus Linguistics is concerned with the compilation and analysis of

whole corpora of commonly used language. The last four of these different fields of linguistics were

also included in Figure 2.2. It seems obvious that tools developed by researchers only focussing on one

of these levels cannot avoid having problems with those problems that require bridging of levels.

Apart from these, however, there also exist linguistic fields that are not just focused on a single level or

explicitedly focus on the effects of context. These fields are largely based on alternative theories to

the Chomskyan Generative School. While Chomsky focussed on analyzing sentences, the alternatives

25



2 Supersemantics

Figure 2.2: Different levels of linguistic utterances and how they need to be bridged in order to solve typical linguistic
problems (on the right). Furthermore, some linguistic disciplines that focus largely exclusively on one of the
levels are shown (on the left).

all believed that a comprehensive linguistic analysis should go beyond the sentence. This alternative

disciplines that emerged in the twentieth century are (Alba Juez, 2009):

• Functionalism (functional grammars)

• Cognitive Linguistics

• Sociolinguistics

• Pragmatics

• Text Linguistics

• Discourse Analysis

The last three of these are the most relevant to Supersemantics and thus should be examined in the

following. Discourse Analysis and Text Linguistics are related fields that focus on the analysis of

complete discourses. They try to analyze intentions and focuses and other properties on complete texts.

While the main focus of Discourse Analysis are spoken conversations, insights gained from it may also

affect written text. Furthermore, Pragmatics deals with all aspects of meaning that are caused by the

context and were not analyzed by the older field of Semantics. The following two sections will more

comprehensively introduce these terms.

2.2 Pragmatics
The field of pragmatics is not easy to define. From its widest definition as "the study of understanding

intentional human action" (Green, 1989) to its narrowest definition as "the study of [...] expressions

whose reference is a function of the context of their utterance" (Green, 1989), there exist different
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interpretations of the term. However, they seem to have in common that pragmatics deals with

interpreting things that go beyond what is explicitely stated.

For example the sentence "The restaurant looks good." might be interpreted differently in different

situations. It might be a proposal to enter the restaurant and a remark that one is hungry. If a

restaurant critic states it on the other hand it might refer to the ambience and outer appearance of the

establishment and if it is stated by an architect the architecture of the building might be referred to.

The wide definition of the term dates back to Charles Morris who first used the concept in modern

times. In his study of semiotics (the science of signs), he distinguished syntax, semantics and pragmatics.

While syntax described "the formal relation of signs to one another" and semantics described "the

relation of signs to the objects to which the signs are applicable", pragmatics described "the relation of

signs to interpreters" (Morris, 1938). In accordance with this distinction, he characterized pragmatics

by stating that it "deals with [...] all the psychological, biological, and sociological phenomena which

occur in the functioning of signs" (Morris, 1938).

While this wide interpretation of pragmatics lived on in fields like sociolinguistics or psycholinguistics

(Levinson, 1983), the narrower interpretation of pragmatics is more common and is the one relevant

for this thesis.

If one restricts oneself to the domain of language, pragmatics deals with believes, intentions and

goals within the process of communication (Green, 1989). While semantics is the study of meaning,

pragmatics is the study of language usage. In this connection, the interplay of language structure and

the principles that govern how language is used are of special interest (Levinson, 1983).

In the view of pragmatics, when people communicate they do not merely exchange umambiguous

information, but rather the recipient of a message successfully interprets the intent of the message. In

doing so, a so-called linguistic act is performed (Green, 1989). This view of communication is based on

Grice’s theory of meaning (Grice, 1957, 1981).

In his framework, Grice sees the speaker as somebody who wants to communicate a certain communic-

ative intent to a recipient. If the recipient understands the intent the communication was successful

and the intent becomes mutual knowledge. Here, the intent of the speaker does not necessarily need to

be formulated explicitely. For this reason, Grice distinguishes sentence meaning and speaker meaning.

Pragmatics then is the study of explaining how sentence meaning can be translated into speaker

meaning by considering the context. In the analysis of the meanings, one can make use of four maxims

that ideally should guide the communication between speaker and recipient (Grice, 1957, 1981). These

maxims are:

• maxim of quality (one only states accurate information)

• maxim of quantity (one is as informative as necessary, but not more)

• maxim of manner (one formulates comprehensibly to avoid misunderstandings)

• maxim of relevance (one talks about relevant issues with respect to the current topic)

While these maxims are not always consequently followed they can be used to formulate heuristics to

resolve the speaker meaning (Blum-Kulka and Hamo, 2011). In the example given above, the meaning
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of the sentence "The restaurant looks good." might be resolved by the maxim of relevance. If the

sentence is embedded in a discussion of construction styles, this might be a good hint that the outer

architecture of the building is referred to.

The analysis of linguistic acts - or more precisely speech acts - is based on the work of Austin and Searle.

Austin was the teacher of Grice and introduced the term implicature for that what is meant but not said

within an utterance. Searle’s work was also based on that of Austin but in contrast to Grice focussed

more on acts. Austin originally made a distinction of speech acts. Each act was characterized by being

intentional and goal-directed by itself.

In such a framework, already the production of the sounds that constituted speech are acts on their

own (phonetic act). The goal of this act is for the recipient to understand it and be able to use it to

build the sentence it belongs to. A phatic act is the act of building an expression in accordance with

the grammatical rules of the language. A rhetic act can be a reference to an object in the real world

or a predication. A predication in turn is the process of assigning properties to a subject. With this

process meaningful logical statements can be formed from text. Austin called these three kinds of acts

locutionary. In contrast to this, an illocutionary act dinstinguishes the way in which a statement is used.

This can be an act of stating, questioning, commanding, promising and so on (Austin, 1975).

Searle’s speech acts were a bit more coarse-grained. He distinguishes between utterance acts, propos-

itional acts and illocutionary acts. An utterance act subsumes everything that is necessary to utter

words (producing the sounds of speech, forming a grammatically correct sentence, intonation, ...).

Thus, he combines Austin’s phonetic and phatic acts. The propositional act corresponds to the rhetic

act in Austin’s framework and Searle adopts the illocutionary act (Searle, 1969). Building on Austin’s

theory Searle formulated additional contextual conditions that need to be met in order for an act to be

successful (Blum-Kulka and Hamo, 2011):

• Propositional content (properties of the semantic content of an utterance, e.g. requests reference
s.th. in the future)

• Preparatory conditions (the necessary context information, e.g. a recipient must be able to
perform the task requested from him)

• Sincerity conditions (the speaker’s attitude, e.g. his wish that the recipient performs the requested
act)

• Essential condition (the convention by which the statement is associated to the respective act, e.g.
that the sentence "the restaurant looks good" can be interpreted as request to enter it)

While the theory of speech acts is more interested in a general theory of human communication,

Supersemantics as described in this thesis focusses on the practical aspects. Thus, some preparatory

conditions are of lower interest. At the current stage, one is interested in what is meant, not yet in

whether this can also be realized. Also, the sincerity conditions can be assumed to be met in the context

of scientific publications, even though the reliability of published results should be questioned in some

cases. Such analyses fall into the domain of automatic reasoning, which is an important next step of

future comprehensive Supersemantic analyses.
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The findings of pragmatics build the foundation for a lot of Supersemantic methods. The propositional

content and the essential condition are necessary to interpret texts. Also some preparatory conditions

can be used to check whether an interpretation makes sense within that context. Likewise, the maxims

of Grice are useful in situations where different interpretations of an utterance need to be distinguished

with respect to the most likely one in the given situation. Additionally, the analysis of deixis is often

also attributed to belong to the field of Pragmatics. As will be discussed in section 2.4, resolving deitic

expressions is an important task for Supersemantics. Taking all of this into consideration one might

think of Supersemantics as some kind of Computational or Applied Pragmatics.

2.3 Discourse Analysis and Text Linguistics
Discourse Analysis and Text Linguistics are related fields that root in different areas of research.

While Text Linguistics is mostly studied by linguists, Discourse Analysis is applied in very different

fields reaching from Anthropology over Sociology, Rhetoric and Literary Scholarship to Psycho- and

Sociolinguistics (Alba Juez, 2009; van Dijk, 1977). While both disciplines usually analyze whole texts

their focus differs. Text Linguistics aims at understanding the structure of coherent text. Here, so-called

text grammars were developed to analyze texts analogously to sentences. Discourse Analysis, on the

other hand, uses the analysis of texts as a mean rather an end. Its focus is the analysis of psychological

or social factors that can be identified by analyzing the communication of people. For this reason,

Discourse Analysis also often focuses on recorded speeches instead of written texts (Yatsko, 1998).

Accordingly, Text Linguistics concentrates mainly on text-internal features like cohesion and coherence

and is more formal whereas Discourse Analysis (sometimes also described as "the study of language in

use" (Alba Juez, 2009)) concentrates more on external factors that help to put the text into context and

explain its function within the general discourse. Furthermore, some fields started to apply Discourse

Analysis also to non-verbal communication like gesture, dance, photography or clothing (Alba Juez,

2009; Titscher et al., 2000).

Since the differences between the two fields when dealing with text are more in nuances and focus

than in substance, no distinction between the methods they use will be made here. Instead the term

text analysis is used as an umbrella term refering to both fields. Among the most important phenomena

studied in text analysis are coherence and cohesion. Both refer to different kinds of connections that

need to be in place within a coherent text. Scientists started analyzing connections between sentences

by looking at lexical and grammatical features. This syntactical analysis examines the cohesion of a

text and is based on such phenomena as conjunction, ellipsis, anaphora and recurrence (Alba Juez,

2009; Yatsko, 1998).

However, it became clear that cohesion was not enough to describe all the connections between

sentences in a coherent text. The sequence of sentences "It is summer. It is a table. It is difficult." is

coherent with respect to its surface structure (the repetition of the subject) but does not make sense. On

the other hand, the sequence of sentences "He wants to write a play for me. One act. One man. Decides

to commit suicide." (from Bliss from Katherine Mansfield) lacks any form of syntactical connection

but does occur in a real story and can be understood. Based on this the distinction between cohesion

and coherence was established. While cohesion described the "relationship between text and syntax"

(de Beaugrande and Dressler, 1981), coherence is concerned with the meaning of the text. This includes
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semantic connections that are not explicitely realized by linguistic structures in the text (de Beaugrande

and Dressler, 1981).

The possible semantic connections constrain the set the of acceptable sentences and would rule out the

first of the two sequences. Van Dijk (van Dijk, 1977) dinstinguishes between two kinds of constraints:

linear and global ones. While linear constraints arise from direct connections between sentences or

parts of sentences like clauses, global constraints reach further. The global constraints are based on

global structures which van Dijk calls macro-structures. Within these a sentence can contribute, like a

word contributes to a sentence by taking a certain syntactic function. The difference is that the function

of the sentence is a semantic one and that the concepts of macro-structures are less well understood

than the syntax of a sentence. With these global structures van Dijk sees texts as more than merely

sequences of sentences but moreover as a whole with its own structure.

A macro-structure can further be analyzed for its topic. Here, van Dijk based his framework on the

more common analysis of the topic of a sentence. In discourse analysis, a sentence can be divided

in topic and comment (also sometimes called focus). While the topic represents what is talked about,

which often but not always coincides with the subject of a sentence, the comment represents what

is said about the topic. Van Dijk extends this concepts to texts giving a whole text or part of a text a

division into topic and comment. The topic of a text passage in turn constraints the comments within

that text passage to match the topic. Moreover, topics and comments can be nested making it possible

to create sub-topics. In line with this, he also points out the possibility to nest macro-structures (van

Dijk, 1977).

Furthermore, a macro-structure can have a type that requires or allows certain sub-structures. In

a novel e.g. the overall structure could be called a NARRATIVE which in turn subsumes the macro-

structures SETTING (describing the setting of the story), COMPLICATION (describing the conflict),

RESOLUTION, EVALUATION and MORAL. These sub-structures do not necessarily have to be at one

stretch but can be discontinuous. For example the description of the conflict can be distributed over

different parts of the novel. Different macro-structure categories can have different functions, e.g. the

SETTING can have the function of introducing the characters, and these functions can effect the rest

of the discourse like e.g. the SETTING can determine the language and location of the story (van Dijk,

1977).

Both Text Linguistics and Discourse Analysis are related to Supersemantics as presented in this thesis.

The analysis of cohesion with phenomena like ellipses and anaphoras can increase the recall of a

text mining system. Understanding conjunction, recurrence and coherence better will improve the

precision by interpreting sentences correctly within their context. In the same way the constraints of

macro-structures can help to better interpret ambigue statements by ruling out interpretations violating

the constraints. Additionally, identifying topics of texts or parts of texts is a task that is included into

the range of Supersemantic methods. Generally, the focus on language in use within Discourse Theory

matches the requirements of biomedical text mining.

30



2.4 Why Supersemantics?

2.4 Why Supersemantics?
The reason why supersemantic methods are needed are manifold. Common errors of text mining

systems occur because the context of relations or entities is ignored. The certainty of claims might

be overemphasized because the speculative environment of the claim is overlooked. Or specialized

questions could not be answered because the temporal or spatial restrictions of a claim are not captured.

While pragmatics and text analysis cover some of these aspects, their scope is still too limited to focus

on all of them. Furthermore, there are few approaches that practically realized computational solutions

of these supersemantic tasks, let alone tried to integrate multiple or all of them in a single system. To

give an overview of a selection of situations where supersemantics is needed a series of examples is

presented in this section.

Disambiguation of terms
As mentioned before, words can have different meanings in different circumstances. This phenomenon

is especially important in the biomedical domain where the frequency of ambigue terms is higher than

in other domains. In order to understand which meaning is to be used the surrounding text can be

analyzed. The meaning of the term can be given explicitly in the form of a definition or must be infered

implicitly. Among linguists the following two sentences are a common example for ambiguity:

“Time flies like an arrow. Fruit flies like a banana.”

Here the word “flies” is used as a verb in the first and as a noun in the second sentence. Furthermore,

“like” is first a preposition and then a verb. Gene names and symbols are often ambigue. Methods

to distinguish the meaning could greatly increase the quality of relation extraction systems. The

information needed to resolve ambigue terms properly is usually givenwithin the surrounding sentence

or text.

Abbreviation Resolution
Scientific terms are often long and composed of many words. In order to formulate more concisely

as it is typically done in scientific publications and simply for the sake of convenience the use of

abbreviations is very common. While sometimes standard abbreviations for certain terms like gene

aliases exist, other abbreviations are introduced only within the scope of a publication. To resolve the

used abbreviations properly one has to consider the complete text as well as additional sources where

common abbreviations are stored.

The fact that this problem of abbreviation resolution is especially relevant in a context of scientific

publications should be illustrated by Figure 2.3. In this example several abbreviations are nested

resulting in a total of five levels of resolved abbreviations. While the term “V-SNARE” might be a

special case with its many layers the use of simpler abbreviations is customary. Abbreviations could

be resolved by the integration of external resource that already collected them. For example lexical

resources like the Human Phenotype Ontology (Robinson et al., 2008) often have integrated lists of

abbreviations and synonyms. In cases where the available resources do not cover the respective
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Figure 2.3: Different levels of abbreviations of the term V-SNARE. Figure based on (Morgan, 2005).

abbreviation, resolution methods can be applied. Commonly, an abbreviation is explicitly introduced

within the scope of a text. Resolving this definition and using it as context information for the rest of

the text analysis would be a supersemantic approach to this problem.

Deixis
Besides abbreviations there exist other elements of language that result in more concise phrasing.

When writing a text the writer assumes some things to be known and introduces others within the text.

Each of these can be referenced in a shortened way.

The most common practice here might be the use of pronouns. Apart from that, however, other

pro-forms exist that reference other word types. Pro-adjectives refer to adjectives (e.g. the word “so”

in “His is blue. So is hers.”), pro-adverbs to adverbs (e.g. “this way”), pro-verbs to verbs (e.g. “do”)

and pro-sentences refer to whole sentences (e.g. “That’ in “That is true.”’). Furthermore, additional

reference phenomena exist. The term anaphora when used in its wider sense subsumes all of them.

The phenomenon that the interpretation of a word is dependent on contextual information is referred

to by the term deixis.

Different expressions exist to reference things from different categories. The most common of these

categories are the following:

• Persons: I, you, he, she, it, we, ...

• Objects: this, that, which, ...

• Places: here, there, this city, ...

• Time: now, today, tomorrow, earlier, later, ...

• Manner: hereby, thereby, ...
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• Reason: herefore, therefore, ...

The resolution of what these expressions refer to is not a trivial task. The different kinds of references

are unequally important to fact extraction. So focussing on the ones that contribute most seems to be

the prefered strategy. In any case this problem is a very prototypical example of the urgent need of a

contextualized text mining approach.

Disambiguation of Sentence Structures
Ambiguity of syntactic interpretations of sentences poses another problem. This came as a surprise

for computer linguists when computers became powerful enough to implement the grammars they

were creating. When presenting their system with the sentence “List sales of the products produced in

1973 with the products produced in 1972.” Martin et al. (Martin et al., 1987) were presented with 455

different results. While the scope of this problem might be reduced by more sophisticated modern rule

systems, the underlying problem remains. Syntax on its own cannot avoid ambiguity.

More intuitive examples of these kinds of problems are given by common linguistic example sentences:

“Police help dog bite victim.”

“The man saw the boy with the binoculars.”

From a syntactic point of view it seems equally likely that the police helped the dog or the victim.

Furthermore, it is not clear if the man used the binoculars to see the boy or if the boy was the one

with the binoculars. To overcome this form of ambiguity additional context information is needed.

This problem mainly boils down to choosing the most sensible interpretation that does not violate

any linguistic or logical constraints. In order to measure this meaningfulness a reasoning mechanism

based on the information extracted from the text and possibly additional a priori knowledge would be

necessary.

Negation and Speculation
Relation extraction focuses on the verb, subject and objects of a sentence. This approach on its own

is ignoring negations and speculations. While it is obvious that negations are essential to a properly

working text mining system also the detection of speculations holds great value.

Within the discussion sections of papers scientists tend to speculate about further implications of

they results and possible future connections that still need to be verified. If these kind of relations

are extracted by a relation extraction system the results become less reliable. Thus, identifying both

negations and speculations may improve every text mining system.

Additional Contextualization
Even if a relation is extracted properly the context of its validity has to be considered. A biological

event might only occur in certain species, tissues or cells. Results obtained from experiments with mice
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might not always be transferable to humans. Furthermore, the time and manner might be important.

For example, the method by which the results were obtained might have implications on the reliability

of the result.

Negations, speculations and other contextualizations are important to get a more fine-grained picture of

what was said in a text. Depending on the application it can be crucial to add these kind of information

in order to get meaningful results.

Argumentation Analysis
A more advanced application for supersemantics might be the analysis of the argumentation structure

of a text. Humans are prone to logical fallacies. Causation is often implied by correlation, statements

are considered valid because of the reputation of the person stating them, cause and effect are mixed

and probabilities are interpreted incorrectly. There exists a long list with dozens of typical fallacies

humans tend to fall for. An automated system that is capable of detecting such errors could be of

benefit for identifying unsufficiently supported claims. The challenge here is that arguments usually

span over several sentences. Thus, a supersemantic application incorporating a multi-sentence analysis

would be required.

All of these problems fall within the range of supersemantic applications. In each of the cases informa-

tion from multiple linguistic levels is integrated or used to complement the analysis results. It is the

goal of this thesis to work towards solving them.

2.5 A Supersemantic Analysis
In order to solve these problems a more sophisticated analysis than the typical text mining pipeline

shown in Figure 1.7 is needed. The existence of both bottom-up and top-down dependencies excludes

the possibility to comprehensively analyze text in a mere sequential manner. Thus, a supersemantic

analysis replaces the typical processing pipeline by an architecture that allows connections in both

directions. How such an architecture might look like is shown in Figure 2.4.

Here, the pipeline is substituted by a network setup. As one can see, different levels of utterances

(words, sentences, sections, texts and corpora) are arranged in different columns. On each of these

utterances different analysis steps (arranged in the corresponding columns) are based. The network

structure, however, allows connections from higher level procedures to lower level ones. The protypical

architecture given here does not make any specifications on how to realize such backwards connections.

Possible realizations, however, include correction procedures that trigger reprocessings from the point-

of-change onwards, multi-objective optimization techniques that try to maximize the utility of the

different constraints, that arise at the different stages of the linguistic analysis, all at once, andmulti-task

machine learning algorithms that optimize a variety of objective functions simultaneously.

While Sentence Splitting and Tokenization are left out of the scheme for readibility, the other steps

in the prototypical text mining pipeline can be found in Figure 2.4. The named entitiy recognition is

placed in front, since it creates the foundation for the sentence analysis. Furthermore, it is extended to
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Figure 2.4: A prototypical overview of a comprehensive supersemantic analysis network.
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include a pattern recognition step. Thus, it is referred to by NE/PR , named entity/ pattern recognition.

These patterns include utterances that can be detected without considering contextual information,

like time designations, or domain specific patterns like citations in scientific publications. Placing these

steps in front allows an early integration of semantic information into the otherwise mere syntactical

analysis, thus helping to bridge the distinction between these two linguistic fields.

Also for readibility, POS tagging and sentence analysis are subsumed to a single node called sentence

analysis. Finally, the last step, event extraction, is included in the analysis network. It is combined

with the prior relation recognition in the node called relation extraction. In addition to these, the

supersemantic analysis includes further steps. The extracted relations are first contextualized and then

combined in a text analysis module. Finally, the semantic networks of contextualized relations from

many texts are combined with knowledge from external resources in an automated reasoning module.

This module then produces hypotheses, reveals contradictions and is able to draw conclusions.

Apart from these additional processing steps, a second difference to the typical text mining pipeline is

the inclusion of several tools that use higher level analysis to improve lower level ones. On a sentence

level, a word sense disambiguation (WSD) module supports the NE/PR module. On section and text

level, information about the structure of the document supports the relation extraction. Furthermore,

on a text level, the resolution of abbreviations and deitic expressions additionally facilitates the NE/PR.

Finally, on corpus level, different association patterns are collected. Such association patterns are

frequently occurring patterns that can be used to improve linguistic analysis on several levels. If e.g.

an association pattern of a typical formulation “as mentioned by x”where x is always a person is found,

then this can be used in the NE/PR stage to distinguish different meanings of words. Thus, if the word

“Pidd” occurs in an expression “as mentioned by Pidd” the NE/PR module can infer that here a person

called Pidd is meant and not the p-53-induced death domain protein PIDD. Such patterns can then in

turn be used to extend one’s external resources. In the previous example, the term “Pidd” could be

included in the lexical resource used of NER as a person if it would not have been known before. Such

a procedure is called Bootstrapping. In Figure 2.4, the more general name pattern learner is used to

indicate that various methods are possible. Analogously, association patterns could be used to improve

relation extraction and relation contextualization (association patterns will be presented in more detail

in section 7.1).

The work presented in this thesis is directed towards the realization of such a supersemantic analysis

network. While the realization of a complete system is beyond the scope of a single dissertation,

different modules were implemented in the course of this work. Chapter 3 describes a WSD system.

Chapter 4 gives additional information about various ways of relation contextualizations and describes

a relation contextualization module that complements relations with information about whether they

are negated. Chapter 5 explores the ways in which structured information from semi-structured docu-

ments can be included in the text mining process and describes an analysis in which such information

was used to analyze semi-structed articles about rare diseases. Chapter 6 provides further information

about contextualizations based on whole texts, like abbreviation resolution systems. Additionally, it

introduces an anaphora resolution module (a type of deixis analysis). Chapter 7 provides an overview

of corpus-based contextualizations and describes a visualization tool that is based on word association

patterns (a so-called word space model). Next, chapter 8 talks about the integration of external know-

ledge with text mining results and describes a tool using such an integration in order to facilitate the

interpretations of gene set enrichment analyses. Finally, chapters 9 and 10 describe the first prototypes
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developed in the course of this thesis that could serve as the foundation for a supersemantic analysis

network like the one shown in Figure 2.4.

2.6 Related Work
An overview over related related approaches that try to provide a comprehensive, context-aware

analysis of texts is given in table 2.1

Table 2.1: Supersemantics: Related work
Authors Year Approach Domain

Gerner et al. (2012) 2012 Contextualized event extraction Biomedical

Mei (2009) 2009 Contextual text mining General

Csaba (2013) 2013 Contextual named entity recognition Biomedical

Pecheux (1995) 1995 Automatic discourse analysis General

Evi (2014) 2014 Pragmatic question answering General

Graesser et al. (2004) 2004 Text linguistics for measuring text coherence General

Brown et al. (2008) 2008 Text linguistics for measuring idea density General

Ferrucci (2011) 2011 Pragmatic question answering General

Van Landeghem et al. (2013) 2013 Contextualized event extraction Biomedical

Tamames and de Lorenzo (2010) 2010 Contextualized measurement extraction Biomedical
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Supersemantics is an umbrella term that encompasses many methods that look at the context of

utterances to better understand their meaning. To exemplify the importance of context and at the

same time to tackle one of the big problems in text mining this chapter introduces a word sense

disambiguation method that ignores the word that should be disambiguated completely and instead

infers it’s meaning solely from the context.

The importance of disambiguation algorithms in the biomedical domain was already pointed to in the

previous chapters. Especially, genes and gene aliases are often ambiguous and context information is

necessary to distinguish them from common english words or abbreviations of compounds, diseases or

other biological terms. This is a core application field for Supersemantic methods, since meaning is

deduced from context. The algorithm realized in this thesis formulates the problem as a classification

problem and utilizes a spam filter to distinguish between meanings. It was designed together with

Anita Winkler who implemented it in the course of her Master’s Thesis (Winkler, 2011). I contributed

to this project by modifying the problem formulation into a two-class-problem, extending the approach

to contain the different pre-processings, and supervising the development process.

3.1 Ambiguity and the Need for Disambiguation
Words, sentences and whole texts can vary in meaning when uttered in different tonality or context.

Examples of this are ambigue words, ironic or metaphoric statements, puns, vague statements and

many others. Linguistics distinguishes different kinds of meaning variations. If the definition of an

utterance is general enough to apply it to many different things, then one speaks of vagueness. For

example the term clock can refer to all kinds of clocks from digital ones to cuckoo clocks. If two

meanings just happen to have the same form, one speaks of ambiguity. This is the case for sentences
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or words with multiple meanings. Finally, polysemy is a mixture of the two. If an utterance has two

different meanings which, however, are related to one another, one calls this polysemy. For example

the word ’foot’ can refer to the body part or the scale unit. Both meanings, however, have the same

root in the Old English word ’fot’.

The different distinctions between these meaning variations are not clear cut but one can rather

consider them on a continuous scale with ambiguity and vagueness at its extremes (Deane, 1988;

Murphy, 2010). All kinds of meaning variations are addressed in this thesis, starting with ambiguity in

this chapter.

Ambiguity is omnipresent. It occurs on all levels of linguistics. Beside the already mentioned semantic,

syntactic and lexical ambiguity, morphemes (e.g. “’s” can indicate a genetive or the short form of is)

and phonemes (the sounds used to build words) can be ambigue. Ambiguity, however, must not be

considered an imperfection or shortcoming of a language. Instead, linguistic studies show that the use

of ambigue terms can improve effective communication (Piantadosi et al., 2012).

The occasional use of ambigue utterances is a tradeoff between clarity and ease. In a communication, a

speaker wants to minimize his effort in the production of language (he wants to use less, shorter and, if

the communication is verbal, easier to pronounce words) to tranfer a certain message to a recipient.

He can achieve this by reusing expressions that are easy to utter for different meanings as long as the

recipient still understands what was meant. The number of easy to communicate utterances, however,

is limited. This is why they are most often ambiguous. An example where ease is traded for clarity is

the use of pronouns which are easier to express for a speaker but require deduction from the recipient.

An example where clarity is traded for ease on the other hand is the NATO alphabet where letters are

replaced by whole words to ensure greater clarity (Piantadosi et al., 2012).

In order to maximize both aspects one leaves out information that can be inferred from the context.

This way less redundant information is given while at the same time the clarity is largely unaffected.

Generally, there is a tendency towards ambiguity since for humans articulation is considered expensive

while inference is considered cheap (Piantadosi et al., 2012). For computers on the other hand produc-

tion is easy while inference is complicated. This asymmetry explains why disambiguation is a major

problem for text mining.

Armstrong (Armstrong, 2010) points out that themain problem in the biomedical domain are ambiguous

gene aliases. Beside the official name, genes usually have a set of aliases that serves as abbreviation of

the full name. The use of this aliases is very common. Schuemie et al. (Schuemie et al., 2004) report

70% in abstracts and 82% in full text. At the same time these aliases are way more ambigue than full

names as suggested by the tradeoff between ease and clarity. Chen et al. (Chen et al., 2005) report for

mouse genes an ambiguity rate of 14% for full names and 85% for aliases.

While one might intuitively expect that the use of aliases is decreasing over time in favor of the use of

a controlled vocabulary, Armstrong found that the opposite is the case. The use of multiple aliases is

increasing. Armstrong tries to explain this by arguing that the different aliases may serve different

information needs. If a certain alias is established in a certain domain or for a certain organism, it is

e.g. easier to find information about the entity within this specific context, if a special name exists for

this. This finding suggests that the use of aliases and, as a consequence of this, the ambiguity of genes

will remain an issue in the future.
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As already mentioned especially lexical ambiguity poses a major problem for biomedical text mining.

Falsely resolved ambigue terms lead to the extraction of incorrect biological events, which if used in a

systems biology model leads to incorrect edges between biological entities. Furthermore, if the same

word can have multiple part-of-speech tags (e.g. ’fly’ can be a verb or a noun), incorrect disambiguation

can lead to an incorrect syntactic analysis of a sentence. Thus, the error gets propagated to further

levels of the linguistic analysis.

3.2 Context Matters - The Case of Word Sense Disambiguation
Word sense disambiguation (WSD) is a classification task. Depending on whether a limited set or all

words are disambiguated the task is called ’Targeted WSD’ or ’All-words WSD’. A variety of approaches

has been proposed to tackle the problem: different supervised learning algorithms (decision lists,

decision trees, naive bayes classifiers, neural networks, instance-based learning, support vector ma-

chines, ensemble approaches and others), unsupervised (usually clustering word meanings without a

predefined set of meanings) and knowledge-based approaches (making use of external resources like

dictionaries, thesauri or ontologies) were employed.

The main quality measures for WSD systems are precision, recall and F-measure. Precision is the

fraction of correctly labeled terms over all labeled terms. Recall is the fraction of correctly labeled

terms over all terms that should be labeled. And the F-measure is a combination of the two defined as:

2 ∗ Recall∗PrecisionRecall+Precision . Furthermore, Accurracy (the fraction of correctly labeled terms) is often taken into
consideration. In addtion to these quality measures the applicability to large corpora is important. For

this reason, a good disambiguation system should be scalable to large amounts of data and be able to

process them quickly. Additionally, generic methods are preferred over specialized ones, since they

can be reused for similar problems. These performance measures, of course, do not only apply to

word sense disambiguation algorithms, but serve as quality assessments throughout this thesis for all

implemented modules and prototypes.

The approach presented in this work is a Targeted WSD system realized by a generic supervised

learning algorithm that has been shown to outperform comparable approaches in the field of spam

filtering. It was designed with focus on high quality classification and the good applicability to large

scale problems.

3.3 Approach
In the approach presented here, the words that should be disambiguated are ignored in the classification

process. The decision about the word sense is solely based upon the context of the word. In accordance

with this the disambiguation turns into a text classification task of the context. A common field of

text classification is spam filtering. Here, the CRM114 (Yerazunis, 2004) has proven itself as the most

successful framework. The underlying idea of the presented WSD system is to take advantage of the

reformulation of the problem as text classification problem and to apply the CRM114 to the task.
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Figure 3.1:Workflow of the biomedical WSD system. Picture taken from (Winkler, 2011).

Figure 3.1 shows how the preprocessing steps and the CRM114 are integrated into a processing pipeline

to train and test the classifier. The particular steps in the classification process are described in the

following.

Data Set Generation
In order to apply and evaluate a supervised learning algorithm, train and test data sets are required.

To maximize the use of the trained classifier and the relevancy of the evaluation the categories with the

most ambigue biological terms were determined. To this end, eight broad categories (Gene, Compound,

Disease, Pathway, Organism, Environmental Factor, Gene Ontology Categories, Others) were defined

and filled with terms from 17 different databases. The four categories with the highest level of ambiguity

(Gene, Compound, Disease, Others) were chosen and used for further analysis.

The train and test data sets were designed to include common, highly ambigue terms. To achieve this,

the number of categories a term can belong to (as indicator of ambiguity) as well as the number of

databases it occurs in and the frequency with which it occurs in MEDLINE (as indicator of commonness)

were considered. On the basis of this list the data sets were created by searching sentences containing

one of the top-ranked terms and annotating it to one of the four chosen categories.

This process resulted in two data sets. Data set Manual I contains of 168 sentences from 14 different

terms from the four categories. It was extended to data set Manual II to be uniformly distributed

between all classes. Manual II consists of 240 sentences. Furthermore, the test set of the second data

set (T2) is based on different terms than the corresponding training set, to test the generalizability of

the approach.

Preprocessing
Different preprocessing steps were applied in order to increase the generalization abilities of the

features learnt by the classifier. The text was first tokenized using a regular expression. Additionally,

case folding and stemming were applied. Case folding turns all words into lower case. This was done

to recognize words when they were capitalized (e.g. at the beginning of a sentence or in headlines).
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Stemming reduces the word to its stem by removing the ending. The ending of a word usually encodes

grammatical but no semantic information (e.g. ’activates’ and ’activating’ both have the stem ’activat’,

which contains the semantic information, while the ending only encodes the tempus). By focussing on

the word stem the same features were created for semantically equal words in different grammatical

forms. This was done to improve the generalization properties of the classifier.

Furthermore, in term labeling an unusual preprocessing step was included. The classifier constructs

its features from word combinations of the sentence. For a sentence like ’The patient suffers from

diabetes’ e.g. it will build features from combinations like ’suffers from diabetes’ or ’The patient _ _

diabetes’. Such features however would not match for combinations like ’suffers from Alzheimer’ or

’The patient _ _ Raynaud syndrome’. By replacing the disease with a dummy term, however, these

combinations would turn into ’suffers from <dummy term>’ and ’The patient _ _ <dummy term>’. In

this case the features derived from the combinations are equal. Term labeling was used to avoid the

classifier from simply memorizing words and instead to force it to create more general features.

CRM114
The CRM114 is a powerful classification framework. Instead of consisting of a single classification

algorithm, it offers a multitude of classifiers (Markovian (MV) , Orthogonal Sparse Bigram (OSB) , OSB

Unigram (equivalent to Bayesian classifier), OSBF (OSB + frequency features ), Winnow, Correlate

and Hyperspace) and training methods (train everything (TET) , train only errors (TOE) , single sided

thick threshold training (SSTTT) and train until no errors (TUNE) ), both of which can be flexibly

used to combine them to powerful classification algorithms (Yearzunis, 2006). For the biomedical

disambiguation system a workflow consisting of a Markovian or OSB classifier using the TET method

was implemented and applied to 2-, 3- or 4-class classification problems.

Both Markovian and OSB classifiers are Bayesian filtering techniques based on a method called Sparse

Binary Polynomial Hashing (SBPH) in combination with the Bayesian Chain Rule (BCR) . SBPH is used

for feature generation from text. While classical Bayesian text classifiers consider each word as a

feature, SBPH uses a sliding window approach where combinations of words from such a window are

the basis for feature creation. In general SBPH works with arbitrary window sizes. The Markovian and

OSB classifiers of the CRM114, however, use a window size of five. As seen in Figure 3.2 for a window

size of five 16 different combinations of words are created. Each of these combinations consists of

one to five words. 32-bit hashes are then created from these combinations and subsequently used

as features for the classification. In this step the OSB classifier differs from the Markovian by only

considering combinations from the sliding window that consist of two words. This way the method

takes less time to process, requires less memory and has also often been found to perform better than

the Markovian classification (Yearzunis, 2006).

Depending on the number of occurrences of a feature within a certain class, probabilities for each class

given the feature can be calculated:

P(C|F) = P(F|C) ∗ P(C)
(P(C|F) ∗ P(C)) + (P(C|F) ∗ P(C)) (3.1)
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Figure 3.2: Example feature selection process using SBPH. Picture taken from manage-this.com 5.

Here, the probability that a given text that shows feature F belongs to class C is given by the a priori

probability of C (P(C)) multiplied by the conditional probability P(F|C), which denotes the probability
that the given feature occurs when a text from class C is given and which can be inferred simply by

couting the feature occurrences of the classes. The term is normalized by P(C|F) ∗ P(C)) + (P(C|F) ∗ P(C) to
account for the feature occurrences in other classes(C). In the CRM114 implementation the conditional
probabilities P(F|C) and P(F|C) are bounded to avoid probabilities of 0 and 1. Using the Bayesian Chain
Rule with the Bayesian assumption that the features are independent, the probabilities of the single

features can be combined to a conditional probability of a class given the whole set of features of a text

by multiplying them .

Even though the Bayesian independence assumption is clearly violated in this case, the classification

process still performs well. However, the probabilities suffer from the dependence between the

features, which results in overconfident classifications. To circumvent such misinterpretations the

CRM114 offers so-called pR values that should give a better assessment of the classification confidence.

These confidence values are calculated by the difference of the logarithms of the probabilities that the

given text is within (P) or outside (P) the given class:

pR = log10(P) – log10(P) (3.2)

From the different training methods offered by the CRM114, TET turned out to give the best results (see

Appendix A). This method is the standard training method that takes all training examples equally into

consideration.

5http://manage-this.com/taglocity-autotag-engine-crm114, Accessed: April 24th 2014
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3.4 Results
The WSD system was evaluated on different problem formulations, configurations and data sets to give

a comprehensive performance overview. Furthermore, the effect of the different preprocessing steps

was analyzed. A complete overview of the evaluations is given in Appendix A. The most important

findings are described in this section.

First, the effect of classifying sentences instead of complete abstracts was evaluated. It turned out that

using sentences as basis for the classification process increased the accurracy by 2%-8% depending on

the problem formulation and data set. Replacing the word by a dummy term increased the accurracy

by 2% on data sets that consisted of terms not used in the training set and decreased it by 3%-9%

in those that contained the same terms as in the training set. This indicates that the classifier tends

to learn certain terms by heart without the term replacement. When replacing the term, however,

a better generalizability was achieved. Case folding improved the accurracy by another 2%-4% on

the test sets with different terms and stemming by another 3%-4%. In total the preprocessing steps

were responsible for a performance increase of 11% on the four class problem and 17% on a two class

problem (gene vs. disease) given the data sets with different terms. This showed the usefulness and

great importance of the applied preprocessing steps.

Using its optimal configuration the system was evaluated on T2. The configuration consisted of all the

described preprocessing steps, the OSB learning algorithm, and the TET train mode. An accurracy of

88% was reached. Since T2 is a balanced data set, also the performance for imbalanced data was tested.

To achieve this, half of the gene samples of T2 were taken out. Such a 25% reduction of the data set size

naturally leads to decreased accurracy values. However, still an accurracy of 76% was accomplished.

In order to compare the performance of the WSD system with other state of the art systems, it was

further evaluated on the BioCreAtIvE task 1A competition data set. BioCreAtIvE (Critical Assessment of

Information Extraction systems in Biology) is a community-wide challenge that evaluates biomedical

text mining systems. It was initiated in 2003 to establish common standards and evaluation criteria in

the thriving field of biomedical text mining. The first challenge consisted of three tasks:

• Task 1A: A named entitiy recognition task. Gene or protein names had to be detected in unstruc-
tured text.

• Task 1B: A gene name identification and normalization task. The gene names found in an
abstracted had to be mapped to unique identifiers from different sources.

• Task 2: An event extraction task. Gene Ontology terms together with the corresponding found
proteins had to be returned from full-text articles.

Since word sense disambiguation is a crucial part of named entity recognition, the first of the three

tasks was chosen to compare the system with other contestants. The BioCreAtIvE corpus used for task

1A consists of a training set of 15.000 sentences and a testing set of 5.000 sentences. It was derived

from texts in MEDLINE and annotated manually. Both training and test data sets are nearly evenly

split between sentence containing a protein name mention and sentences not containing one. To apply

the WSD system to a NER task it was extended with a gene vocabularity. For this purpose the Entrez

Gene database was used. The evaluation was performed on the BioCreAtIvE corpus reduced to gene
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Figure 3.3: Comparison of WSD-based NER with contastants of BioCreAtIvE task 1A. The results for all 15 participants of
the BioCreAtIvE task (A-O) for the open and closed version of the task are shown.

mentions that actually occured within Entrez Gene. A two class classification algorithm was trained

on the classes gene and others. The OSB and Markovian classifiers were both used in TET mode. For

comparison with the results obtained in the BioCreAtIvE challenge precision, recall and F-measure

values were computed. The results are shown in Figure 3.3.

The WSD-based NER system reaches a recall of 0.91, a precision of 0.798 and a f-measure of 0.85.

The numbers correspond to the Markovian classifier, which performed slightly better than the OSB

classifier that reached a f-measure of 0.844. As can be seen, the WSD system outperforms all other

closed and open systems of the challenge with respect to recall and f-measure. The term open system

referes to algorithms that make use of external resources like word lists, while closed systems do not.

The displayed letters refer to the different teams, which were allowed to submit mulitple solutions.

Since the obtained results were very promising, the WSD system was integrated into the Excerbt text

mining system. The approximately 130 million sentences of Excerbt were analyzed with OSB and

Markovian classifiers and the results were stored in Excerbt’s database. The system operated at a speed

of 5000 sentences per second, which showed its usefulness for application to large scale problems.

3.5 Conclusion
The adaptation of the software to the biomedical domain was successful. It could be shown that

the necessary semantic information could be deduced solely from the context. The system could
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outperform comparable approaches and delivered results that could be used to improve existing

text mining systems. One of the most important steps in achieving these promising results was

the use of the different preprocessing steps, which improved the performance by over 10%. In

a comprehensive supersemantic analysis, the disambiguation of additional word classes, sentence

structures and relations should be included to account for all levels of ambiguity in natural language.

3.6 Related Work
Table 3.1 gives a brief overview of some of the most important related approaches to word sense

disambiguation.

Table 3.1:Word Sense Disambiguation: Related work
Authors Year Approach Domain

Al-Mubaid and Gungu (2012) 2012 Suppor Vector Machine Biomedical

Alexopoulou et al. (2009) 2009 Ontology-, Metadata-based Biomedical

Hatzivassiloglou et al. (2001) 2001 Supervised Learners Biomedical

Pedersen et al. (2003) 2003 Network Similarity Measures General

Pedersen (2006) 2006 Unsupervised corpus-based General

Murata et al. (2001) 2001 Bayes, SVM General

Escudero et al. (2000) 2000 Naive Bayes, Exemplar-based General

Garla and Brandt (2012) 2012 Semantic Similarity Measure Biomedical

Preiss and Stevenson (2013) 2013 Semantic Similarity Measure Biomedical

Chen et al. (2013) 2013 SVM-based active learning Biomedical
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PAS Contextualization

A relation between entities is commonly defined by the interacting entities and the relation type. Such

a definition, however, does not account for all relevant nuances of meaning. A statement described

by a relation might only hold under certain temporal or spatial constraints. It might be speculative or

a fact. To capture this additional information, the contextualization of relations is important. Many

contextualizations are given within predicate-argument-structures. The probably most fundamental

of these is the distinction whether or not a relation is negated. In this chapter, a brief overview

over possible uses of information from a PAS is given. Furthermore, the integration of a negation

contextualization into Excerbt and its application to build a resource of negated protein-protein

interactions is described.

4.1 Predicate-Argument-Structures as Context
A good first approach of trying to give an overview over all the information contained in a predicate

argument structure is looking at the different roles that can be a part of one. The Propbank definition

of roles lists 24 roles (see Table 1.1). This contains the relation type and entities directly involved in the

relation like the agent (who does something), theme or patient (whom something is done to), instrument

(with which something is done) and benefactive (who receives something). These correspond to the

common definition of a relation (though they can include more than two players). However, there

exist additional roles that describe the certainty of the relation (negation, speculation), and add further

contextual information about the place, time, manner, extent, cause, purpose and further more detailed

information. All these roles can be analyzed and used to complement the relation to give a more precise

and more informative picture. The integration and application of the negation information is described

in this chapter.
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A PAS can further contain implicit information. In such a case, it can e.g. be used to resolve certain types

of lexical ambiguity. Exemplarily, the term ”big brain” can refer to an anatomical description. When it

occurs in a PAS as an ARG1 of the predicate ”express” one can, however, deduce that the gene with the

same name is meant. Such information can be based on implicit associations of predicate-argument

pairs e.g. by considering co-occurrence statistics or training machine learning models. Alternatively,

patterns of certain biological events can be formulated explicitely. Such patterns are used in the

integrated text mining system presented in chapter 10.1 and based on these the event feature of the

anaphora resolution algorithm presented in chapter 6 was designed.

4.2 Negative results
Protein-protein interactions (PPIs) are omni-present in the human body. They are involved in most

biological processes such as gene expression, cell growth, signal transduction, apoptosis and many

more. Because of their central role they are a major focus of research. Different resources exist that try

to collect all known interaction. The IntAct database (Kerrien et al., 2012) currently contains nearly

50 000 interactions. Stumpf et al., however, estimated the total amount of interactions in humans

to be around 650 000 (Stumpf et al., 2008). Taken that the estimate is appropriate and that IntAct

appropriately covers the current knowledge about PPIs, this means less than 8% of the existent PPIs are

currently known. Correspondingly, research in finding more interactions is ongoing. One approach to

this is the use of prediction algorithms that try to hypothesize PPIs based on structural, phylogenetic and

other features. Commonly, these algorithms are supervised machine learning classifiers like random

forests or support vector machines.

In order to use supervised learners, training data is required. Thus, protein pairs known to interact and

those known not to interact are needed. While resources for known PPIs existed for longer until the

creation of the Negatome (Smialowski et al., 2010) there was a lack of resources for non-interactions.

Consequently, often simply random pairs of proteins, for which it was not known whether they

interacted or not, were used as negative samples. The Negatome database could offer an alternative for

this imprecise approach and was already used for this purpose (Valente et al., 2013). Futhermore, it

was used in the classification of structural features of interaction interfaces (Planas-Iglesias et al., 2013),

benchmarking high-throughput experiments (Hosur et al., 2012; Royer et al., 2012) and the conduct of

network-based gene function inference (Erten et al., 2011). Because of its different uses, it was also

integrated into IntAct.

The Negatome database was created by analysis of the three-dimensional structure of protein complexes

and by manual annotation, the latter of which is very time-consuming. Thus, to accelerate the second

release of the database, text-mining was employed to facilitate the annotation process. For this purpose,

Excerbt was extended to be able to find pairs of proteins that have been described in literature to be

non-interacting. This work was done in collaboration with Dmttrij Frishman, Florian Goebels, Pawl

Smialowski (IntAct filtering, merging of data sets, structural analysis), Goar Frishman, Andreas Ruepp

(manual annotation), and Benedikt Wachinger (PAS extraction). I implemented the filtering of the text

mining results, designed and implemented the confidence score and the annotation tool, evaluated

the system at the different stages, analysed the ability of Excerbt to reproduce Negatome 1.0, and
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performed the error analysis. The results were also published in the database issue of Nucleic Acids

Research (Blohm et al., 2014).

4.3 Extraction of Non-interacting Protein Pairs
The relations extracted by Excerbt were extended by a possible negation modifier by extracting the

ARGM-NEG role returned from Senna for the corresponding predicate-argument-structure. Thus, in this

case the PAS was considered as context for the biological event and used to complement the information

of the event. These extended relations were then used to detect non-interactions between proteins by

filtering out any PAS that did not contain an ARGM-NEG role or did not contain proteins in the ARG0

and ARG1 roles.

This resulted in 58733 potential non-interactions. In order to get an idea of the quality of the found

candidates a sample of 20 sentences was inspected manually. Within this sample set only 20% were

actual non-interactions. Analyzing the misclassified non-interactions suggested that the low accurracy

might be due to verbs not describing an interaction.

Thus, to increase the precision of the filter, in a second iteration the verb of the PAS was additionally

constrained. A narrower set of allowed verbs describing interactions or bindings (to interact, to bind,

to co-immunoprecipitate, ...) was compiled and used to filter the PAS. The resulting set contained 2135

potential non-interactions. Again, a sample of the results was inspected manually. Using the confidence

score described in the next section, the top, median and bottom 20 sentences were evaluated. This

resulted in accurracy values of 95%, 45% and 15% respectively.

Considering that all freely-availabe articles from MEDLINE where analyzed, one has to state that this

number of potential non-interactions is very low. This finding might be explained by the fact that

negative results are less likely to be mentioned in biological publications but might also point towards

a recall problem of Excerbt. For manual annotation of the Negatome, however, this result provided a

manageable, yet sufficently large corpus.

Examining the results showed that the main remaining source of error was the ambiguity of protein

symbols and compounds. Since the same names were often used for both kinds of entities, a lot of

non-interactions between two compounds or a compound and a protein were detected as protein-

protein non-interactions. To overcome this problem we applied different disambiguation algorithms

and heuristics, including the WSD approach presented in the previous chapter. Unfortunately, none

of the applied methods could significantly improve the situation. This was most likely due to the fact

that all the applied methods worked on a sentence level but the ambiguity often could not possibly be

resolved on such a level. Often there were the same formulations used to describe non-interacting

compounds or proteins. A more successful disambiguation method would need to target the passage

within the paper where the relevant entities were introduced.

Based on the unsuccessful attempt to disambiguate proteins and compounds we decided to leave the

compounds in the data set and annotate them along with the protein-protein non-interactions. Further-

more, a second data set was created containing protein-protein, protein-compound and compound-

compound non-interactions in case the non-interaction containing compounds would be of interest
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in the future. The resulting data set consisted of 4177 potential non-interactions. Again the quality of

the data was checked by looking at samples. Accurracy values of 90%, 65% and 50% were obtained for

the top, median and bottom samples respectively. As can be seen, if all three kinds of non-interactions

are considered correct, the results significantly improved. This indicates that text mining systems can

benefit greatly from more sophisticated disambiguation algorithms within the biomedical domain.

4.4 Confidence Score
Including a confidence score into a text mining system has different advantages. It can be used to

produce results with higher precision when a confidence threshold is applied. Or if the results are

validated by annotators the results can be ordered by the score, so that the most likely results are

presented first. This proves especially helpful when more results are returned than could be annotated

manually.

For the development of Negatome 2.0, Excerbt was extended to deliver such a score. This way an

annotator could start with the more likely sentences and stop once enough non-interactions were found.

The confidence score was based on simple surface features of the sentence and the predicate-argument-

structure. It was defined as follows:

c = α ∗ (1 – l0
100
) +β ∗ (1 – l1

100
) + γ ∗ RT + δ ∗NW + ε ∗ EQ + ζ ∗ (1 – ls

1000
) (4.1)

Here l0 and l1 are the length of the arguments 0 and 1 found by Senna. Longer arguments might indicate
that the sentence is more complicated or that the argument contains additional relative clauses. RT

referes to the relation type. If the Excerbt relation is a binding or interaction this value is one. However

additional less likely relation types were allowed but discounted by assigning a lower RT value. For

the types ’functions_as’ and ’expression, is_a’ RT is 0.5 and for ’is_a’ it is 0.25. NW corresponds to the

term that Senna tagged as ARGM-NEG. If this is one of the words ’not’, ’never’ or ’unable’ NW is one,

otherwise 0.5. EQ refers to whether the hits in ARG0 and ARG1 are the same. If this is the case, most

likely there was an error in the relation construction. Thus, EQ is 0 if this is the case and 1 otherwise.

The relations are still kept in the result set, however, since the negated predicate and the existence

of a protein in an argument role stills points towards a non-interaction, just not the one predicted

by Excerbt. Finally, ls stands for the length of the sentence. Shorter sentences are easier to analyze
and thus more likely to contain a true non-interaction. α, β, γ, δ, ε and ζ are weights of the different

features. For the Negatome annotation an equal weighting of
1

6
was applied. These weights migh still

be optimized in the future.

As mentioned above the confidence score seems to correspond well to the classification precision of

Excerbt. The highest scoring candidates in the sample sets performed 40 - 80 % better than the lowest

scoring ones. The use of confidence scores is especially useful, when text mining results are used in

conjunction with manual annotation and can significantly accelerate the annotation process.
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Figure 4.1: Tool for annotating the non-interactions proposed by Excerbt.

4.5 Results
As described above, the filtering approach increased the precision so that more than 50% of the non-

interactions were classified correctly. The sample evaluation also pointed towards the usefulness of the

confidence score. Based on these promising results all the remaining candidate non-interactions were

evaluated by manual annotators to create Negatome 2.0. To facilitate this process an annotation tool

was developed that was intended to enable an efficient annotation process. Figure 4.1 shows the tool.

As can be seen, ARG0 and ARG1 of the relation found by Excerbt are shown. The annotator has the

possibility to enter a correction in case the arguments are incorrect or to flag the whole entry as wrong.

Additionally, the annotator has the possibility to further add contextual information about the relation

like the species it was observed in, the UniProt IDs of the proteins and the method that was used for the

detection (using the HUPO-PSI controlled vocabulary (Kerrien et al., 2007)). To facilitate the decisions

the sentence, fromwhich the non-interaction was extracted, and a link to the corresponding publication

is shown.

The 2134 potential non-interactions of Excerbt were manually evaluated using this tool. Furthermore,

non-interactions from the publications proposed by Excerbt were included, if the annotators noticed

them while searching for information about the propositions of Excerbt. This process resulted in 895

non-interaction between proteins and 119 between proteins and compounds. The results were largely

based on mammalian proteins (86%). 64 of the non-interacting protein pairs (NIPs) include at least

one splice variant. Around 90% of these were proposed by Excerbt while the rest was added from

the investigated publications. The non-interactions found by text-mining-aided manual annotation

were complemented with further ones derived from three-dimensional structures of PDB biological

units (Kouranov et al., 2006). Combined with the results from Negatome 1.0, this resulted in a manual

data set of 2171 NIPs and a structural one of 4397. Both data sets were then checked for whether a PPI
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Figure 4.2: Acceptance Rate of Negatome annotation. One can see what ratio of Excerbt proposals was accepted by the
manual curator and how many non-interactions the annotator added from papers proposed by Excerbt.

between them was reported in IntAct. Filtering out these, resulted in more stringent data sets of 1991

and 4161 NIPs respectively.

The ratio of correct Excerbt predictions and of additionally found non-interactions with respect to the

confidence score is shown in Figure 4.2. The acceptance rate and the addition rate are plotted in relation

to the confidence score. The acceptance rate corresponds to the ratio of Excerbt propositions that were

included into the final version of Negatome 2.0. The values are lower than the performance measures

mentioned before because of the strict acceptance criteria of the Negatome. Excerbt works on rather

coarse grained meaning definitions while a more fine-grained distinction was made by the annotators

of the Negatome. For example, Excerbt does not distinguish between proteins and protein complexes

or between mutated and wild type proteins. In the Negatome, on the other hand, the distinctions were

made and protein complexes as well as mutated proteins were excluded. Furthermore, the context of

the non-interaction was considered by the annotators. For example in the sentence “Inversin does not

coprecipitate with tubulin after addition of colcemid.” Excerbt correctly identifies the non-interaction

between inversin and tubulin. However, Excerbt lacks a proper context resolution, which could

determine that the non-interaction only exists after the addition of colcemid. For this reason, the

non-interaction was not accepted by the annotators. The addition rate, on the other hand, corresponds

to the amount of additions made by the annotators that were not proposed by Excerbt but that they

came across while reading the papers proposed by Excerbt. It can be seen that both rates correlate

with the confidence score.

In order to compare the text-mining-aided annotation results with the ones derived from an unguided

annotation approach the overlap between Negatome 1.0 and Negatome 2.0 was analyzed. This analysis

yielded a very small overlap of only 15 NIPs. Likewise, the overlap between structure-based and
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annotation-based pairs in Negatome 2.0 was only 36 pairs. From this it can be concluded that depending

on the method of information gathering/creation very different results are obtained. For example the

structure-based analysis created de novo predictions while the annotation could only deliver results

already described in the literature. In order to obtain an unbiased and comprehensive resource it

therefore seems recommendable to combine multiple approaches.

Because of the low observed overlap between the annotation results, the text mining results were

analyzed further. Here, the reasons for not finding the NIPs described in Negatome 1.0 were at the focus

of attention. A manual error analysis was performed on a subset of 40 randomly chosen NIPs from

Negatome 1.0. Only one of the NIPs was correctly identified by Excerbt. The availability of information

turned out to be the biggest problem. 32 of the NIPs were contained either in the full text of publications

where Excerbt could only access the abstract, or in figures or tables. This points towards the larger

problem that many biomedical publications are not freely accessible for text mining systems. Apart

from this, however, the approach of Excerbt is flawed since it is not able to detect biological events

that are described by elipses, anaphora or nominalizations. These linguistic phenomena accounted

for four cases. Finally, in one case there was an error in Negatome 1.0, in one case an unofficial name

not covered by the Excerbt ontology was used an in another case Senna made a mistake. This points

towards an immense recall problem of text mining in general and Excerbt in particular.

In order to investigate the recall of Excerbt more specifically, twelve additional examples from text

reachable by Excerbt were chosen. Together with the eight examples from above more meaningful

explanations for the recall problems should have been detected. From these 20 NIPs still one was an

error in Negatome 1.0, three were found by Excerbt, in two cases Excerbt was wrong, and in four cases

unofficial names were used. The remaining 10 examples were not findable with Excerbt’s aproach.

Here, in one case a ’failed to’-formulation was used which could not be resolved since Excerbt has

no way of interpreting nested predicate-argument-structures. Two cases were ellipses. In an ellipsis

the verb is omitted since it can be derived from the context (e.g. in formulations like ’... activated X

but not Y’). Since Excerbt only detects biological events that are described by a verb, there was no

way of correctly understanding ellipses. For the same reasons two cases could not be detected where

nominalizations were used to describe the NIP (e.g. formulations like ’the non-interaction of X and

Y’). Finally, Excerbt lacks an anaphora resolution module, which accounted for four missed cases (e.g.

formulations like ’The two proteins did not interact’). All of this resulted in a data set, which had an

appropriate size to enable a reasonable update for the Negatome but which was most probably very low

compared to the amount of non-interactions that were actually described in the biomedical literature.

4.6 Conclusion
The use of a text mining system to assist the manual annotation process proved useful. The developed

confidence score was shown to correlate with the quality measures of Excerbt. The precision of the

approach was sufficiently high for this application. However, different problems of data availability

and the Excerbt approach restricted the number of results making it questionable whether this method

is applicable to more specific problems. Further contextualizations from PAS would seem very useful

to provide annotators with additional information (e.g. species, used method) in order to design more

precise filters and to further facilitate the annotation process.
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4.7 Related Work
An overview of related work concerning negation and other PAS contextualizations is given in Table

4.1.

Table 4.1: PAS Contextualization: Related work
Authors Year Contextualization Domain

Sanchez-Graillet and Poesio (2007) 2007 Negation Biomed.

Morante and Sporleder (2010) 2010 Negation, speculation General

Agarwal and Yu (2010) 2010 Negation Biomed.

Gerner et al. (2012) 2012 Negation, speculation, Biomed.

species, anatom. location

Sarafraz and Nenadic (2010) 2010 Negation Biomed.

Vita et al. (2006) 2006 Experimental context Biomed.

Wei and Collier (2011) 2011 Species Biomed.

Rinaldi et al. (2008) 2008 Experimental method Biomed.
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Section Contextualization

Many documents are structured in sections or chapters. This helps to order the train of thought of the

author as well as the reader. Moreover, such an organization provides the text with a certain kind of

structure. Since the text within each section, however, is freely written again, such documents are

called semi-structured. When analyzing the unstructured text within such sections, it makes sense to

use the structure of the document as contextual information. This chapter gives an overview of typical

information that can be used in semi-structured texts and presents an application where such a section

contextualization was used within the course of this thesis. Since this application focussed on text

mining of rare disease profiles, prior to the description of the approach an introduction to rare diseases

is given.

5.1 Section Information
Every document that follows a standardized scheme at some point might be referred to as a semi-

structured document. Examples of such documents are websites, medical records and scientific

publications. In a HTML-website at least the headings are standardized. Furthermore, there exist

standardized ways to emphasize text, link to other pages and create tables. In medical records, usually

there are standardized formulations to describe the state of the patient. This can complicate the analysis

because the formulations might not be grammatical anymore turning typical sentence analysis tools

useless. On the other hand, the consistent formulations might make it easier to formulate a set rules for

information extraction. In scientific publications, the respective journals or conferences often require

the authors to follow a rigid organization of the paper. Typical sections, like ’Introduction’, ’Materials

& Methods’, ’Related Work’, ’Results’, ’Discussion’ and ’Conclusion’, are frequently present and hint

towards the contents of the respective text.
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Standardized formulations, a standardized organization in sections or additional annotations in the text

(e.g. links in a website) can be used in various ways. The practical realizations, however, are manifold

and diverse. There does not exist a standardized way of dealing with semi-structured documents.

Instead, the many different ways to structure documents give rise to a variety of approaches to make

use of them. Many of these are closely linked to the respective domain and problem at hand. Yet, at

least a generalized categorization of these approaches and some examples of these should be given in

this section. The structured information can either be extracted directly (e.g. to detect cross-references

between scientific publications), or used in order to benefit other text mining approaches. In the

latter case, the use of structured information can be subdivided in approaches that use it to produce

additional features for the respective text mining algorithms and those that use it for filtering. Thus,

the structure of the document can be made use of by creating specialized features for classification

algorithms or by restricting the search space for certain information.

If the text consists of common sections or chapters, these divide the whole text in different zones

that belong to different categories. This additional information can be fed directly into information

extraction machine learning algorithms to improve their performance (Chieu and Ng, 2002). So, if

e.g. a hedge detection algorithm (an algorithm that tries to detect negations and speculations) is given

an additional feature of whether the extracted event is from the discussion section or not, it might

be easier for it to determine whether the event is a fact or speculation, since specualations should be

more common in the discussion section. Likewise, if e.g. a text categorization algorithm is trained to

distinguish between different kinds of scientific publications, it might be helpful to know whether the

text contains a ’Materials & Methods’ or a ’Results’ section which typically exist in research but not in

review articles.

A related strategy of how to use structured elements can be found when instead of machine learning

algorithms context free grammars are used for information extraction. This might be useful, when the

structured elements are not section headings but are part of the text, like e.g. HTML-tags in websites.

Here, the structured elements can easily be defined as elements of the grammar. This is a very natural

way of integrating structured and unstructured data. Furthermore, context free grammars have the

advantage of being able to model dependencies reaching over several tokens which certain machine

learning algorithms like conditional Markov chain models can not (Viola and Narasimhan, 2005). A

similar strategy can also be implemented in other rule based systems besides context free grammars

(see e.g. (Muslea et al., 1998)).

Furthermore, there might be keywords within the text that bear special meaning and could thus be

treated like structured elements. For instance, in a document announcing a seminar, the lecturer and

the place of the seminar might be mentioned after certain standardized formulations like ’Who: ...’ or

’Where: ...’. Using a priori knowledge about such a structure in the document can significantly improve

the information extraction results (Chieu and Ng, 2002).

Apart from feature and rule generation, the zones of the document can be used for filtering. Here,

certain information extraction searches are restricted to certain sections (Smith et al., 1997). For

example, if one is interested in extracting the analysis method of an experimental paper, one could

restrict the search to the Materials & Methods section. This way the false positive rate that might occur

by extracting methods mentioned when describing related works of other authors might be reduced.

Such techniques make use of Grice’s maxim of relevance mentioned in section 2.2. Since the topic of a
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certain section is predetermined by the structure of the document, the author of the text is inclined to

restrict his remarks to this topic and not to focus on it in other parts of the text.

In addition to that, strict structural rules can simplify event extraction. Take, for instance, the seminar

announcement example from above. If the location L1 and the lecturer L2 are extracted from the
text, one can immediately deduce that these information bits belong to the seminar S described in
the heading or elsewhere in the document. Thus, the relations located_at(S,L1) and taught_by(S,L2)
can be formed, even though the relations are not described in any sentence and thus the entities

are not connected by any syntactic structure. Instead the structure of the document provides the

required additional information to connect the pieces. One refers to the task of extracting information

from documents like this as single-slot information extraction. In such documents, event extraction is

simplified by the fact that one argument is always given by the topic of the text. The opposite, where

multiple topics might be discussed in a document, is referred to by the term multi-slot information

extraction (Chieu and Ng, 2002). The same distinction can be made for single sections. The author

field in a scientific paper is for example such a single-slot section. Each term given there must be a

researcher and stands in a published relation to the publication itself.
An additional method that can utilize certain types of structured or semi-structured information

is bootstrapping. Bootstrapping tackles the problem that information extraction typically requires

large amounts of manually annotated data. This data can either be in the form of annotated training

examples or lexical/ conceptual resources. Either way, huge manual effort is necessary. Bootstrapping

tries to reduce this by first learning a simple information extraction model and iteratively extending it

by learning from the results obtained in the previous iteration (Maedche et al., 2003).

For example, large ontologies can be learnt from small seed ontologies by bootstrapping. In such a

case, patterns are learnt that typically describe the elements in the different classes of the ontology

and these patterns in turn are used to further fill the ontology, which in turn leads to the extraction of

more patterns in the next iteration. Borrowing an example from Califf and Mooney (Califf and Mooney,

1999), the utterances:

’located in Atlanta, Georgia’
and

’offices in Kansas City, Missouri’
could be generalized to a pattern of the form

’in <POS tag = NNP, max. length = 2, ontology category = city> , <POS tag = NNP, ontology category
= state>’.
Here, the expressions in the angle brackets stand for one term that fulfills the given constraints. Such a

pattern can then be used to learn new cities or states for the ontology and a larger ontology, in turn,

can be useful in finding additional patterns.

Bootstrapping is inspired by the language acquisition process of children. Researchers like Lila Gleitman

(Gleitman, 1990) and Steven Pinker (Pinker, 1994) analyzed the way children learnt newword meanings

and proposed a bootstrapping strategy where new words are learnt from the syntactical and semantical

constraints imposed on them by the known words in the context in which they are used. Exemplarily,
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if a child tries to learn the meaning of the word ’glip’ and hears it used in sentences like ’I glipped the

book’ and ’I glipped the book from across the room’ but never in sentences like ’Glip that the book is on

the table!’ and ’What John did was glip the book’, it can draw several conclusion. The first two sentences

imply that ’glip’ is something that can have a direction and something that can be done to an object.

The other two would suggest that glip is something voluntary like an action. But since the word is never

used in such sentences it can be deducted that ’glip’ is involuntarily and not an action. Combining

these bits of information the child can then conclude that ’glip’, as an nonvoluntary non-action that can

have a direction and be applied to an object, might mean something like ’see’, which possess the same

features (Pinker, 1994).

Such methods build on patterns that need to be as rigid as possible. Therefore, semi-structured or

even structured documents are ideal for applying bootstrapping techniques. The more structured the

utterances are, the smaller is the danger of a so-called semantic drift. This drift describes the viscious

circle where wrong terms or patterns are learnt which in turn lead to more mistakes, since the learnt

knowledge is used as basis in further iterations. Consequently, bootstrapping has been frequently used

on semi-structured documents (see e.g. (Carlson et al., 2010a; Carlson and Schafer, 2008)).

5.2 Rare Diseases
Traditionally, the main focus of research has always been on diseases that affect many people. Here, the

benefit from providing cure as well as the financial incentives were the highest. Besides, the commonly

researched diseases, however, there exists a vast amount of rare diseases. Each of these diseases

affects only comparatively few individuals. Yet, because of the large amount of rare diseases, there

are many millions of people suffering from one of these. For this reason, since the 1970s rare diseases

slowly moved in the focus of research, resulting in different legislation for the development of so-called

’orphan drugs’ for rare diseases since the 1980s (Bavisetty S, 2013).

A rare disease is defined by its prevalence. The threshold, however, differs regionally. In the United

States, a disease is considered rare if less than 200,000 people in the USA are affected by it. In Europe,

the threshold is at less than one in 2,000 affected Europeans (HHS, 1989). These definitions result in

over 6800 rare diseases which affect ca. 25 million people in the US and ca. 30 million in Europe.

This constitutes around 8% of the population. It is estimated that 80% of rare diseases are genetically

determined (Bavisetty S, 2013; Eurodis, 2005; HHS, 1989).

The development of treatments for rare diseases is difficult. It is complicated by a lack of knowledge

about the disease, a lack of patients to investigate and to use for clinical trials of potential drugs and the

decreased market potential of the drugs. While the amount of patients suffering from a rare disease is

not amenable to influence, there has been some effort to overcome the lack of knowledge and financial

appeal. Legislation both in the US and Europe created incentives for research of rare diseases. As a

consequence of this, research on different rare diseases increased (Wästfelt et al., 2006). Furthermore,

knowledge bases for rare diseases were created that try to collect the comparatively sparse information

about them.

Most notably Orphanet (Orphanet, 2014) is a portal for rare diseases and orphan drugs. It provides

basic information about currently 6,760 rare diseases. Furthermore, Orphanet offers information on
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the prevalence of diseases, orphan drugs and research infrastructures in Europe. The Office of Rare

Diseases Research (ORDR) (ORDR, 2014) at the National Center for Advancing Translational Services

might be considered the American counterpart to Orphanet. It also provides a list of rare diseases

and provides certain basic information for them. Additionally, it links to Orphanet and other relevant

resources. Apart from that, the rare diseases database of the Swedish National Board of Health and

Welfare (Greek-Winald et al., 2010) should be mentioned. It contains more detailed descriptions of over

300 rare diseases. Besides these specialized resources, general disease resources play an important role

in collecting information about rare diseases. Since around 80% of rare diseases are genetic diseases,

especially resources that focus on genetic aspects, like GeneReviews (Pagon RA, Adam MP, Bird TD, et

al., 2014) or OMIM (OMIM, 2014), are of interest.

The low prevalence of rare diseases poses a major problem for physicians when trying to diagnose

patients. Since the physician hardly ever gets to see a patient with a rare disease, his knowledge and

experience of the respective disease is likely to be very restricted and the danger of a misdiagnosis

increases. Knowledge resources, like the ones described above, could build the foundation for tools

that support physicians in their decision making. Here, decision support tools could assist the physician

by proposing common and rare diseases that match the symptoms of his patient.

5.3 Single-slot symptom extraction for a decision support tool
In order to use existing knowledge bases for decision support tools, the knowledge in them needs to

be in structured form. Unfortunately, Orphanet and the ORDR only provide little information and the

information in GeneReviews and the rare diseases database of the Swedish National Board of Health

and Welfare is only available in semi-structured articles. In order to overcome this, in the course of

this work text mining was used to extract symptom-disease relations from GeneReviews. The extracted

knowledge was stored in a new rare diseases database called PhenoDis. Furthermore, a website to

manually check and extend the text mining results and to present the results to rare disease researchers

was created. The data in the database was used to create a decision support tool. This work was done

in collaboration with Andreas Ruepp and the annotation group at the Institute of Bioinformatics and

Systems Biology (IBIS) at the Helmholtz Center. Additionally, Jon-Magnus Meier (created the database

and website) (Meier, 2014) and Maximilian Herzog (parsed OMIM and OrphaNet and mapped the

entities) (Herzog, 2014) worked on this project under my supervision in the course of their Bachelor

Theses. I designed and implemented the text mining approach, chose the significance weighting scheme

and the features for the symptom mappings, designed and implemented the N-gram analysis and the

decision support tool, and evaluated the system.

The biological experts I collaborated with chose GeneReviews as the most qualified resource for the

description of rare diseases. GeneReviews consists of 599 chapters that describe diseases or give

overviews over a collection of related diseases. The different chapters follow a somewhat rigid

scheme depending on their type. Overview chapters typically consist of the sections ’Summary’,

’Definition’, ’Causes’, ’Evaluation Strategy’, ’Genetic Counseling’, ’Resources’, ’References’ and ’Chapter

Notes’. Furthermore, some chapters like ’Management’ and ’Molecular Genetics’ are optional. Disease

chapters consist of the sections ’Summary’, ’Diagnosis’, ’Clinical Description’, ’Differential Diagnosis’,

’Management’, ’Genetic Counseling’, ’Resources’, ’Molecular Genetics’, ’References’ and ’Chapter Notes’,
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Figure 5.1: Simplified version of an information extraction pipeline that can be used for relation extraction in single-slot
tasks.

with no optional sections. We decided to focus on the disease chapters and examined the sections for

where the disease-symptom relations were described.

This manual examination showed that the symptoms were largely described in the ’Clinical Description’

section and furthermore that this sectionwas nearly exclusively dedicated to symptoms of the respective

disease. Based on these observations the information extraction task at hand could be classified as a

single-slot IE task. As described above, this reduced the complexity of the text mining problem. Since

all symptoms described in this section belong to the disease of the respective chapter, the relation

extraction task could be reduced to a named entity recognition task. Thus, all symptoms found in

this section form a symptom-disease relation with the disease that is indicated in the heading. This

simplified the typical text mining pipeline as it was shown in Figure 1.7 to the shorter pipeline shown

in Figure 5.1.

Like in Excerbt, the named entity recognition was performed with a dictionary-based approach.

However, in order to have a proper mapping to the resources instead of the Excerbt vocabulary

other established lexical resources were used. For this MedDRA, the Human Phenotype Ontology, the

Mammalian Phenotype Ontology, ICD10 and a self-constructed N-gram-based dictionary (see section

7.2) were tested for their applicability. The results of this evaluation are described in the following

section.

Based on the results of the single-slot relation extraction, a decision support tool was developed. In

addtition to the text mining results, structured information from Orphanet and OMIM was integrated

into the database. The information about which symptoms are present or not for a specific disease

were collected in so-called disease profiles. These profiles consisted of a binary symptom vector that

contained a 1 at every position belonging to a certain symptom if this was present in the disease and a 0

otherwise. Furthermore, for each symptom its significance was calculated using the following formula:

wi = oi
maxj oj (5.1)

The significance was used as a weight in the decision support tool. By defining each weight wi in
this way the significance are normalized by the ratio between the occurrences oi of symptom i and
the number of occurrences of the most frequent symptom. Besides this, a normalization by the total

amount of symptom occurrences was tested but delivered worse results due to the fact that the total

number of occurrences was way larger than the maximum number of a single symptom and thus the

weighting effects were diminished.

The decision support tool was based on calculating similarities between disease profiles. In this work,

the cosine similarity was used in this step. This similarity is defined as follows:
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s =
∑
(Xi ∗ Yi)√∑X2i ∗∑Y2i (5.2)

Here, the similarity s between two vectors X and Y is calculated by calculating the cosine of the angle
between the two vectors. The similarity measure was used both with the binary and the weighted

symptom vectors. It was evaluated on a dataset based on the rare disease database of the Swedish

National Board of Health andWelfare (Greek-Winald et al., 2010). The results are shown in the following

section.

In addition to the NER results, disease-symptom relations taken directly from OMIM and Orphanet were

included in the database. Consequently, the mentioned symptoms were also included in the vocabulary.

As far as there existed mappings the diseases and symptoms mentioned in the different resources were

consolidated. In addition to that a String similarity algorithm was used to map additional entities. This

algorithm changed the form of a String in the following ways:

• the Strings were transformed to lower case

• the whitespace surrounding the String was removed

• a range of special characters was removed (commas, brackets, consecutive white space characters,
quotation marks, ...)

• expressions between brackets were removed

• the words were replaced by their lemmas

• for terms with up to five words all permutations of the words were used for comparison

The so mapped diseases and symptoms were combined with the text mining results and stored in the

PhenoDis database.

5.4 Results
A dictionary-based named entity recognition approach is highly dependent on the quality of its dic-

tionary. For this reason, the following four different dictionaries were tested for their applicability:

the Human Phenotype Ontology (HPO) (Robinson et al., 2008), the Mammalian Phenotype Ontology

(MPO) (Smith et al., 2004), ICD10 (World Health Organization, 2014), and MedDRA (MedDRA, 2014).

Beside these established vocabularies a N-gram analysis was performed in order to create an additional

alternative. Since such an analysis is a form of using corpus information to derive a dictionary, it is

explained in the corpus contextualization chapter (see section 7.2).

The N-gram analysis was performed on the Clinical Description section of all disease chapters of

GeneReviews. In total 14.407 N-grams were extracted. All N-grams that occured at least seven times

(693 N-grams) were manually checked. The process confirmed the observation that symptom terms

were the dominant category in the Clinical Description sections. Apart from that, also terms describing

age, anatomical regions and methods could be determined as recurring and were thus also extracted.
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Figure 5.2: Average amount of entities found with NER using all vocabularies.

The dictionary dervied from this n-gram analysis consisted of 162 symptoms, 105 anatomical terms, 15

method terms and 8 age terms. Figure 5.2 shows how many terms from all vocabularies were found on

average in one Clinical Description section. This figure does not contain any consolidation procedures.

Thus, duplicates from multiple vocabularies could be present. Figure 5.3 shows how many symptoms

were found on average from each of the single vocabularies.

As can be seen, MedDRA turned out to be the most suitable vocabulary with 37.8 symptoms on average.

ICD10 on the other with only 0.32 symptoms hardly found anything at all. The N-gram analysis found

more than 6 symptoms on average which was a quite high turn-out considering that the vocabulary

consisted of only 162 terms in comparison to the thousands of terms from the other vocabularies. The

low turn-out of ICD10 can be explained by the fact that this vocabulary was written as a reference

for humans and contains formulations like the following that are unsuitable for text mining without

further processing because they would not occur in texts like that:

Epidemic louse-borne typhus fever due to Rickettsia prowazekii

Spotted fever, unspecified

Acute paralytic poliomyelitis, other and unspecified

Based on these evaluation results, my collaborating biologists chose MedDRA and HPO as vocabulary

for the decision support tool. Even though MPO showed slightly higher NER values, HPO was chosen

because of its specific focus on humans. In addition to this evaluation of the amount of found entities,

the different NERs were also manually evaluated on a sample of five GeneReview chapters chosen by

the biological experts. These chapters contained 417 symptom mentions. The results of this evaluation

can be seen in Table 5.1. The ICD-10 vocabulary was left out of this evaluation, since the ICD-10-based

NER did not find any term within the sample texts.

As expected in a dictionary-based NER approach, the precision values are very high. Among the

remaining errors were enumerations that broke the split off part of the term or symptoms described in

whole sentences. In addition to that, some broad superior terms (e.g. all from the HPO) created the
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Figure 5.3: Average amount of symptoms found with NER using different vocabularies.

Table 5.1: NER Performance on sample of GeneReviews with different vocabularies.
Dictionary Precision Recall F-Measure

HPO 0.80 0.17 0.28

MedDRA 0.85 0.58 0.69

MPO 0.96 0.38 0.54

Ngram 0.88 0.19 0.31

largest amount of false positives. To avoid this, in future applications a blacklist ignoring these terms

created by biological experts would prove valuable. The main difference of the dictionaries lies in

their recall. Here, MedDRA showed by far the best performance. Consequently, MedDRA was chosen as

the main reference for symptoms for the whole project. The symptoms from HPO and the structured

disease-symptom resources OMIM and Orphanet were mapped on MedDRA terms where possible.

The NER based on all these vocabularies resulted in disease profiles containing 44.1 symptoms on

average. These profiles were used in the decision support tool. The quality of the decision support tool

was evaluated on the Swedish Rare Diseases Database (SRDD) . From the 175 disease descriptions in

SRDD 60 could be matched to diseases described in GeneReviews using an exact string match (here the

String similarity matching was not used in order to guarantee the identity of the diseases). From these

60 disease descriptions the ’Symptoms’-sections were extracted. From each of these sections disease

profiles were derived using the NER and for each of these 60 profiles the similarity to each of the 535

GeneReviews disease profiles was calculated. In each case the GeneReviews were ordered according to

their similarity and the position for the matched disease profile was determined. The results of this

evaluation can be seen in Figure 5.4 and Table 5.2.

As can be seen, the decision support system showed very promising results. In over half the cases the

correct disease profile had the highest similarity score. In 75% of the cases it is in the top 5 results (top

1%) and in 95% in the top 26 (top 5%). The significance weighting helped to improve the results. The
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Figure 5.4: Performance of the decision support tool with and without weighting for different cutoffs relative to the total
amount of diseases.

Table 5.2: Evaluation of decision support tool.
Approach Completely correct Average rank Median rank

No weighting 48.3% 17.48 2

Significance weighting 51.7% 12.15 1

average rank of the correct disease profile was 12.15 compared to 17.48 without the weighting and the

median was 1 compared to 2. Using the weighting scheme all but one of the test cases where within the

the top 10% of the similarity ranked diseases.

5.5 Conclusion
The decision support tool performed verywell even though the simplified NLP pipeline was used and the

vocabulary was still completely automatically merged without any blacklist or manual consolidation.

Likewise, the similarity ranking algorithm might be replaced by more sophisticated reasoning or

machine learning algorithms. Furhter work on these issues may create an extremely valuable tool to

physicians to support them in their daily work and to prevent misclassifications of rare diseases. And

even the current state of the decision support tool has a remarkable precision.

More generally, this application also showed the potential of using section contextualization for text

mining. Based on these very good results a contextualization similar to the one described here might

prove to provide valuable context information also for general event extraction systems.
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5.6 Related Work
Table 5.3 gives a brief overview of some of the most important approaches related to the decision

support tool.

Table 5.3: Decision Support Systems: Related work
Authors Year Approach Domains

Graber and Mathew (2008) 2008 NLP, rules Pediatrics

Segal (2004) 2004 Pattern matching Medical

Köhler et al. (2009) 2009 Semantic similarity metrics Medical

Dragusin et al. (2013) 2013 Information retrieval Rare diseases

Yan et al. (2006) 2006 Artificial neural net Heart diseases

Stylios et al. (2008) 2008 Fuzzy cognitive maps Language pathology, speech pathology,

obstetrics

Kuperman et al. (1991) 1991 Rule-based Medical

Myers (1987) 1987 Scoring scheme Internal medicine

Middleton et al. (1990) 1990 Belief networks Internal medicine

London (1998) 1998 Bayesian reasoning Medical

Coulson et al. (2001) 2001 Rule-based Genetic risk assessment

Wells et al. (2007) 2007 Rule-based Cardiovascular diseases
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Text Contextualization

Text contextualization can work in the same way as the section contextualization described in the

previous chapter. The type of text might influence the information extraction methods performed on

it. Apart from that, the text seems to be a quite natural unit for contextualization. Because of this,

several ways of text contextualization exist. This chapter is intended to give an overview of these. Here,

especially anaphora resolution, for which an algorithm was implemented in the course of this thesis,

will be presented in detail.

6.1 Text Information
Themain focus of text mining is the extraction of relations and susequently events. Besides the relations

it contains, a text can, however, have certain features on its own. It can have a topic, a type (e.g. a

research paper or a review) or can be written in a certain style. Different techniques exist to capture

some of these aspects.

Topic detection identifies the topic of the text. It is often accompanied by approaches to track the

identified topics over a stream of documents (Allan et al., 2005). This research is mainly focussed on

classifying news articles or more recently social networking sites like Twitter (Cataldi et al., 2010) but

can potentially also have value in other domains and as part of other problems. E.g, topic detection can

be used as part of a summarization system or to distinguish text types.

Text categorization techniques can be used to distinguish text types or more generally to order a

collection of texts in different categories. Depending on whether these categories are predefined or

not, the approaches to text categorization differ. After early rule-based expert systems, statistical and

machine learning approaches got established. If there exist predefined categories, supervised methods

can be trained to assign the text in question to these categories. Furthermore, unsupervised approaches
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can cluster documents without the need to define categories a priori or arrange documents in a high

dimensional vector space that represents their semantic relatedness (Sebastiani, 2005).

Besides these classification tasks, a variety of text measures have been developed. Sentiment analysis

captures the mood or opinion transported in a text. Here, efforts exist to predict psychological diseases

based on texts written by potentially ill people (Wald et al., 2012) or to associate sentiment values

with stock market prices (Bollen et al., 2011). Additionally, there exist formulas that try to determine

the readibility of a text. An example of a text measure comparable to the readibility formulas was

developed in the course of this work. A description of it can be found in Appendix E.

All of these methods that take the complete textual information into consideration can complement

and enhance existing text mining systems or be used to solve problems on their own. In information

retrieval, they can be used as filters to restrict the collection of considered documents by topic, document

type or readibility. In this connection, especially the text measures can also be used to influence the

ordering of returned results in information retrieval systems. For event extraction, these text analysis

approaches can provide valuable context information. It might e.g. make a difference, if a fact was

extracted from an article that mainly talks about a completely different topic or one that focusses on

the issue. Likewise, the type of article and the language quality of the text could influence the reliability

of an extracted event. Different text types often come with different structures. Here, approaches

similar to the ones described in the previous chapter could be applied, if these text types come along

with a certain type of structure.

Furthermore, text-oriented linguistic disciplines have to be considered when describing approaches

to extract relevant information from texts. Pragmatics, discourse analysis, and text linguistics have

already been described in chapter 2. Pragmatic approaches that try to interpret an utterance in the

context of the text it occurred in can be used to improve information extraction. Discourse analysis and

text linguistics, in turn, can be used to extract additional events. For example, by analyzing semantic

connections that are not explicitly instantiated, one can extract additional information that would be

lost if one sticks to the sentence level in its analysis. Picking up the example from Bliss from Katherine

Mansfield from section 2.3: “He wants to write a play for me. One act. One man. Decides to commit

suicide.” Using the pragmatic analysis of the coherence of the text, one could deduce that the man from

the third sentence is meant to be the subject of the fourth sentence. This information is unattainable

when one only looks at sentences.

In addition to that, pragmatic approaches for resolution of abbreviations and anaphoras can support

a text mining system to find more events. The problem of the frequent use of abbreviations was

already pointed to in chapters 1 and 2. There the focus was mostly on distinguishing them from other

abbreviations and normal short words. This could be supplemented by the problem of abbreviations

that are newly introduced in texts. An analysis on the basis of sentences would only be able to detect

the proper entity in the sentence where the abbreviation is introduced but not in the remaining of the

document. Instead a text-based analysis, that keeps the association between entity and abbreviation

in its working memory while processing the sentences of the text, would be required. Resolving

abbreviations consists of two tasks: the identification of an abbreviation definition and the redirection

of the mentions of the abbreviation to the referenced entity. Since the latter is rather trivial, researchers

commonly focus on approaches for the first task. Rule-based approaches for abbreviation resolution can

achieve precision and recall values of as high as 98% and 97% respectively on certain data sets (Gooch,
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2012). The values can, however, vary strongly depending on the used evaluation data. Additionally,

machine learning approaches to abbreviation resolution exist (Zweigenbaum et al., 2013).

Finally, anaphora resolution is an important component of every comprehensive text mining system.

An anaphor is a referential utterance like a pronoun that can only be understood by considering the

context it occurred in. The problem of such expressions was already mentioned in section 2.4 under the

name deixis. While deixis and anaphora refer to the process of referring to something in the context,

an anaphor is the referrential utterance itself. Thus, an anphor is a deitic utterance. Each anphor goes

along with a so-called antecedent, which is the utterance it is referring to. Multiple anphoras can refer

to the same antecedent, e.g. in an expression like ’Cake is great. It tastes good and it gives you diabetes.’

the two ’it’ both refer to the ’cake’. Such an anaphora is called a chain. If there is only one anaphor it is

called a pair (Zheng et al., 2011).

Approaches to anaphora resolution can be categorized in three classes: rule-based, supervised and

unsupervised approaches. In case of the rule-based approaches, often a variety of constraints is defined

to restrict the choices of a possible antecedent. Unsupervised approaches are more rare and often

far less powerful than the other approaches. However, attempts to combine them with rule-based

ones exist (Zheng et al., 2011). In this chapter, an anaphora resolution system will be presented that

implements a constraint-based approach. It was partly implemented by Tobias Lutzenberger under

my supervision during his work on his Bachelor Thesis (Lutzenberger, 2014). I designed the anaphora

resolution approach, implemented parts of the system, evaluated it and performed the error analysis.

The choice for a rule-based approach was based on the lack of comprehensive corpora in the biomedical

domain a supervised approach could be trained on.

6.2 Constraint-based anaphora resolution
A comprehensive anaphora resolution system cannot exist on its own. Instead it needs to be integrated

with a sentence analysis framework, from which it can receive the syntactic and semantic information

needed for either feature or constraint generation. The constraint-based approach presented in this

section is integrated with IntegreSSA, the prototype of a supersemantic event detection framework

presented in chapter 10. IntegreSSA, in turn, is based on the natural language processing framework of

Clueda6.

The resolution of anaphoras is a two-step-process. First the anaphors that trigger the resolution process

have to be detected and secondly the correct antecedent needs to be found. In this work, the detection

of anaphors was realized by a dictionary approach. The lexical resource used for this was the newly

created biological ontology described in more detail in chapter 10. Ontologies are typically hierarchical

and the individuals they contain are distinguished between classes and individuals. Individuals are

the leafs in the hierarchy that do not contain any children. These are concrete entities that exist in

reality, like p53, Alzheimer’s disease or concrete verbs that describe events like ’to activate’. Classes, on

the other hand, are all the superordinate elements that have children. These are umbrella terms, like

protein, disease or positive regulation, that have many different instantiations.

6http://www.clueda.com
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Besides pronouns, these class terms are the utterances that can act as anaphors. Expressions like ’these

proteins’, ’the disease’ or ’such elements’ need to be resolved to their corresponding antecedents in

order to extract meaningful events. For this reason the used ontology was extended to include all

relevant anaphor terms from the BioNLP 2013 anaphora resolution task. However, not every use of

such class terms should be resolved. Take for example the following sentence:

“Bacterias can be beneficial but in some cases they can cause a disease.”

Here, both ’bacterias’ and ’disease’ are class terms that can refer to concrete individuals. In this case,

however, they should not be resolved since the statement is of general nature. In the contraint-based

anaphora resolution approach presented here, the distinction of whether a class term is considered an

anaphor is made based on the determiner they occur with. Only class terms occurring with definite

articles will be resolved, while ones with undefinite articles are not. This way utterances like ’these

proteins’ or ’the disease’ are considered while the ones in the example sentence given above are

omitted.

Once the anaphors are detected, the resolution procedure is triggered. This procedure looks back

several sentences of the anaphor for a potential antecedent. Here, each noun phrase is a candidate.

However, only the ones fullfilling a certain list of constraints are regarded eligible. Among these eligible

candidates the one closest to the anaphor is chosen. The constraints implemented in the approach are

the following:

• Grammatical person - The gender and the number of the anaphor and the antecedent have to
match. ’They’ should only be resolved to antecedents in plural and ’she’ only to female antecedents.

• Ontological category - Antecedents need to be children of their anaphors. For example, only
proteins like p53 or Foxp3 should be considered eligible antecedents of ’this protein’.

• Event information - If an anaphor is part of an event, the corresponding antecedents need to
match the category requirements of this event. For example, in a protein binding event derived

from ’it bound to Foxp3’ ’it’ should only be resolved to proteins, since a protein binding event

demands proteins as its arguments.

Additional to this, in future development a syntactic role constraint is planned. This is useful for

examples like the following:

“P53 activates Foxp3. However, it inhibits lrrk2.”

Here, the distance ordering would suggest Foxp3 as most likely antecedent of ’it’. However, because of

the agreement of the syntactic role (here the subject), the correct antecedent would be p53. The feature

was not yet included in the implementation of the approach due to a lack of these syntactic information.

At the point of the development, the output format of the Clueda sentence analysis framework did not

include information about which entity is the subject or object of a sentence, only the semantic roles

were given.

The output of the sentence analysis framework is a linguistically enriched topic map. Topic maps are

a way to describe information on a semantic level. The main components of a topic map are topics,

assertions and occurrences (the TAO of topic maps). Topics represent the entities which act or is acted

72



6.3 Results

upon. Assertions describe the relations between topics. For a biomedical protein-protein interaction

event, e.g., the proteins that interact would be modelled as a topic while the type of interaction would

be modelled as an assertion. Furthermore, occurrences exist that link to additional information about

topics. In the previous example, this might be a weblink to the Entrez Gene webpage giving additional

information about the corresponding proteins. Within an assertion, each topic is assigned a specific

role, the so-called assertion role (Hatzigaidas et al., 2004). In the context of biomedical event extraction,

this role refers to the semantic role the entity has with respect to the verb describing the event. These

semantic roles are in accord with the roles of semantic role labeling described in section 1.3.

One important occurrence provided by the linguistically enriched topic map is an indication of the

head word of each topic. Topics consist of chunks of words. For example, in the following sentence

’Awareness in dementia’ would be the topic with the Arg0-role in the ’to increase’-assertion:

“Awareness in dementia is increasing.”

An intuitive way of using such arguments to extract events would be to simply look in each of them for

known entities. In this given example, however, this approach fails if dementia is known and awareness

is not (how it would be expected if a biomedical dictionary is used for named entity recognition). In

such a case, an event describing that dementia is increasing would be extracted. Exemplarily, this is

one major error source for Excerbt that makes use of this straight-forward approach. Instead, terms

within a chunk can have different roles that should be considered. The head word of a chunk is the

most relevant role in this connection. It determines the syntactic type of the chunk and is the part of

the topic that is relevant in event extraction. For ’Awareness in dementia’ the head word would be

’Awareness’. In many other cases, the head words stands at the end of the chunk. Examples of this

are chunks like ’might have increased’, ’this strong Foxp3 activation’ or ’mostly yellow’. In some cases

(e.g. genitive constructions like ’the president of the United States’), however, the head word can be in

the front. In the context of anaphora resolution, the head words of topics need to be considered when

resolving anaphoras.

In order to resolve anaphors properly the previously described constraints are tested on the head

words of potential antecedent chunks. The list of candidate antecedent chunks consists of all noun

chunks that occurred previous to the trigger word with a horizon of currently five prior topic maps.

However, one exception to this typical strategy was implemented. When formulations like ’such as’ or

’including’ are used, the term referred to by the anaphor will most likely occur after it. Thus, in such

cases the list of candidate “antecedents” consists of the noun chunks from the same sentence that occur

after the anaphor. Furthermore, in such cases the number feature has to be disabled since possibly a

single example from a larger group of entities can be given.

6.3 Results
The anaphora resolution algorithm was evaluated on an anaphora resolution corpus derived from

the BioNLP 2013 shared task (Nédellec et al., 2013) data. The BioNLP data is described in more detail

in chapter 10. In the first task (GE task) of BioNLP, an anaphora resolution task was integrated. The

annotations given in the data sets were extracted and a pure anaphora resolution corpus was created

from them. The anaphora resolution system was evaluated on the development data set (the gold
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standard of the test data set was not yet released). This data set consisted of 826 sentences from 9

different publications.

After a first evaluation of the system, however, it became obvious that the BioNLP annotation was

incomplete. Not all anaphoras occurring in the sentences were properly annotated. This lead to cases

where our algorithm delivered correct results that were missed in the annotation and thus would be

counted as false positives. Take for example the following passage:

We cloned a 1025 bp promoter, which ranges from position - 959/+66 relative to the

identified TSS. Luciferase reporter assays showed that this promoter was transcriptionally

active in A3.01 T cells.

The constraint-based anaphora resolution algorithm correctly resolved ’which’ and ’this promoter’ to ’a

1025 bp promoter’. In the BioNLP corpus, however, there were no anaphoras annotated. Including such

cases would have distorted and worsened the evaluation results. For this reason, sentences containing

anaphoras that were not annotated were removed from the evaluation data set. In addition to that in

some cases BioNLP annotated anaphoras that were not actual ones. In these cases, usually a class term

immediately preceded a biological entity like in ’the cytokines interleukin (IL)-4, IL-5, and IL-13’. Here,

the noun ’cytokines’ serves as an explanatory attribute of the following terms. In some cases, BioNLP,

however, annotated such formulations as anaphoras. These instances were removed as well. Both of

these filtering procedures resulted in a reduced final set of 687 sentence containing 95 anaphoras.

Table 6.1: Performance of anaphora resolution system on BioNLP data.
Task Accuracy Precision Recall F-measure

Trigger detection 0.74 0.37 0.49

Antecedent resolution 0.53

Anaphora resolution 0.39 0.18 0.24

For anaphora resolution as well as its subtasks trigger detection and antecedent resolution performance

values were calculated. For antecedent resolution, the accuracy was calculated instead of precision,

recall and F-measure values since triggers were only detected when an antecedent was found. Thus,

the missed antecedents in cases of found triggers are already incorporated in the trigger detection

values. The results can be seen in Table 6.1.

As can be seen the trigger detection is fairly reliable with a precision of 0.74. Examining the remaining

errors showed that all of them were due to utterances describing an individual but containing a

trigger word like ’the p53 protein’. These cases can easily be resolved by constraining the trigger

detection process. However, a reliable ontology is required in order to distinguish such cases from

other modifiers, that can occur before trigger words (e.g. like in ’the activated protein’ or ’the virus

protein’).

The recall values are lower than the precision values as would be expected in a rule-based system.

More than half of the trigger words were resolved correctly. Thus, if the trigger detection is resolved as

mentioned above the anaphora resolution system contributes to increasing the performance of the text

mining system it is used in. Yet, the overall performance values are not completely satisfying. In order
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to detect possible starting points for improvements of the system, an error analysis with special focus

on false negatives was conducted. This error analysis revealed the following error sources:

• As mentioned before, the syntactic role constraint was planned but not yet included in the system
due to the lack of information in the topic maps. The error analysis showed that including this

constraint would prove beneficial. For example, in the following passage the system falsely

resolved ’its’ to ’transcription factor’ instead of ’FOXP3’which would not have happened if the

syntactic role constraint would have already been used.

FOXP3 is an essential transcription factor for natural, thymus-derived (nTreg) and

inducible Treg (iTreg) commitment; however, the mechanisms regulating its expression

are as yet unknown.

• The anaphora resolution system increases its performance with the quality and especially the
extent of the used ontology and event extraction system. The more terms one can categorize

within the ontology, the better the constraints of the anaphora resolution system take effect. The

lack of a very large, comprehensive ontology consequently caused errors.

• The Clueda sentence analysis framework does not yet resolve all kinds of appositions properly.
Since there are often anaphors or antecedents in appositions, this is another source of error. An

example of this can be seen in the following utterance:

... two PKD isoforms, PKD1 and PKD3, ...

Here, ’PKD1 and PKD3’ is the apposition that contains two antecedents the anaphor ’two PKD

isoforms’ should be resolved to. The lack of syntactic information in the topic maps, however,

avoids a proper resolution of this anaphora.

• Some peculiarities of the annotation additionally caused a decrease in the observed performance
values. Exemplarily, in the following sentence ’interferons’was considered a trigger word and

resolved to two before mentioned interferons. Depending on how one interprets this statement,

however, it either means that not further specified interferons caused the upregulation or that all

interferons did so. Yet, in both cases ’interferons’ does not reference specifically the two before

mentioned ones, which would be the case if the statement included ’these interferons’ instead of

the version without a determiner.

It has been described previously that A3G gene expression is upregulated by interfer-

ons in hepatocytes and macrophages (46-48 , 52) .

In other cases, the anaphora was not fully resolved but instead another anphor was annotated to

be the antecedent. An example of this is given in the following passage:

Thus, the induction we observed was most likely mediated by the described interferon-

responsive elements. However, according to our results, these motifs can enhance

transcription in hepatic cells, but not in T cells.

Here, the BioNLP annotation resolves ’these motifs’ to ’the described interferon-responsive ele-

ments’ instead of the actually described interferon-responsive elements mentioned earlier in the
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text. This annotation procedure differs from the strategy followed in the system described in

this chapter. Furthermore, it seems pointless to resolve anaphors to other underspecified terms

considering that the aim of anaphora resolution is to resolve such underspecified terms to the

actual entities they reference. A proper anaphora annotation would recognize this chain correctly.

These and other peculiarities (e.g. the approach to metonyms) reduced the meaningfulness of the

evaluation results and decreased the obtained values.

• Very complex structures need more sophisticated constraints. For example, the term ’family
member’ includes two anaphoras at once. First the family that is meant needs to be determined.

Based on this the ontology constraints of the member can be deduced, which then needs to be

resolved in a second resolution step. Utterances like this accounted for additional errors of the

system.

• The system lacks an algorithm to distinguish between expletive and normal pronouns. Expletive
pronouns (also called dummy pronouns) are pronouns that have an exclusively syntactical

function but do not contribute to the semantics of a sentence and thus should not be resolved to

an antecedent. Expletive pronouns occur quite frequently in scientific texts in expressions like

the following:

It has been shown ...

Here, the ’It’ is the expletive pronoun, which produces a false positive if it is resolved. Since for

the word ’it’ the expletive pronoun seemed to occur more frequently than the normal one, it was

decided to leave ’it’ out of the vocabulary of pronouns that were resolved. Consequently, in the

cases where normal forms of ’it’ were used, false negatives occurred. This could be corrected

in future work by building a simple expletive pronoun detector that checks for the verbs the

pronouns are occurring with.

• Finally, as with every high-level linguistic algorithm, the quality of the underlying natural language
processing tools influences the quality of the system. Errors in sentence splitting, tokenization,

POS tagging, chunking, PAS extraction and event detection diminished the quality of the anaphora

resolution system. Since the anaphora resolution system described here is based on a prototype

such errors still occurred comparatively frequently. Once the surrounding system is more mature

and correcting procedures like the backtracking described in chaper 10 are included, the quality

of the anaphora resolution is likely to increase accordingly.

6.4 Conclusion
Summing up one can state that based on the obtained results the anaphora resolution system still

requires additional modifications in order to reach the full potential of the approach. The shortcomings

that caused these results, however, could be explained by the lack of required information in the input

topic maps, the too sparse ontology and event extraction system and a required distinction algorithm

between expletive and other pronouns. Each of these could be corrected with additional future work

leading to the conclusion that the approach in general seems promising. Cases in which these missing

functionalities and information were not required to solve the anaphora were already resolved with
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reasonable precision. The situation that an algorithm automatically improves its performance when

additional functionalities and information are added to the system corresponds to the supersemantic

paradigms promoted in this thesis.

6.5 Related Work
An overview over related related anaphora resolution approaches is given in Table 6.2

Table 6.2: Text contextualization: Related work
Authors Year Approach Domain

McCarthy and Lehnert (1995) 1995 Decision trees Business

Soon et al. (2001) 2001 Decision trees Business

Ng and Gardent (2002) 2002 Decision trees Business

Uryupina (2010) 2010 Support vector machine Multilingual

Culotta et al. (2007) 2007 First-order probabilistic model Various

Morton (2000) 2000 Maximum-entropy classifier Politics, Business

Bengtson and Roth (2008) 2008 Perceptron Politics

McCallum and Wellner (2005) 2005 Conditional random fields Politics, Business

Ng (2008) 2008 EM clustering Politics

D’Souza and Ng (2012) 2012 Rule-based Biomedical

Gasperin and Briscoe (2008) 2008 Bayes classifier Biomedical

Su et al. (2008) 2008 Augmented learning Biomedical
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7

Corpus Contextualization

A corpus is commonly the largest unit of textual information. It can incorporate arbitrarily vast

collections of texts and hence is not limited in its size. Because of this corpora are especially interesting

for assessing the statistics of underlying units, like words or relations. In this chapter, a brief overview

over the information that can be extracted from a corpus is given. Furthermore, two methods to use

such information and their application to support building a dictionary and to visualize large amounts

of text mining results respectively are presented.

7.1 Corpus Information
The linguistic field that typically deals with corpus information is corpus linguistics. Corpus linguistics

is often distinguished from classical linguistic approaches, since it is more practically oriented. Instead

of focussing on the theoretical framework of language, it investigates how language is practically used

(Gries, 2010). Thus, its methodology is based on analyzing large collections of real texts, speeches or

conversations (Dash, 2010). Or as McEnery and Wilson provocatively put it: "Corpus Linguists study

real language, other linguists just sit at their coffee table and think of wild and impossible sentences"

(McEnery and Wilson, 2005) 7. These corpora are analyzed with computerized empirical methods to

determine quantitative features of the given collection. The features, in turn, are then qualitatively

interpreted to determine their function (Biber et al., 1998).

Because of the large amount of textual data statistical evaluations are possible. These were initially

used to count frequencies of words, word combinations or parts of speech. More elaborate studies

extended this to detect more complex patterns within the corpus. Such patterns are called association

patterns and they describe how different linguistic entities, like words or grammatical structures,

7It should be mentioned that Enery and Wilson renounce this view as folklore.
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are associated with each other or with non-linguistic features within the given corpus. These non-

linguistic features include the distribution of patterns within different text collections, e.g. the different

distributions within review and research articles or within papers from different domains. Futhermore,

the distinction between text collections in corpus linguistics has often been made based on dialect, time

period, and register (alternations of language motivated by different social situations, e.g. very casual

expression while talking to friends) (Biber et al., 1998). A possible use of such association patterns is

the bootstrapping method that was already described in chapter 5.

The early approaches to biomedical text mining were strongly influenced by corpus linguistics. Espe-

cially, the co-occurrence analysis - or collocation how it is often referred to in corpus linguistics - of

terms was and in many cases still is applied to associate biological entities. In such an analysis terms

are associated with each other when they co-occur frequently within a certain window of text. One can

try to infer the type of association by looking at co-occurring terms describing such types, e.g. ’activates’

or ’inhibits’ in the biomedical context. Such approaches were used to collect meaningful biological

associations, like protein-protein interactions.

Most of the association patterns detected nowadays contain implicit information. They are rather

vague and do only allow a statistical interpretation but not a precise, logical one. With text mining

methods evolving, however, more and more explicit and reliable information about real biological

events and their contexts will be extracted. Combining this information on a corpus level requires

adequate resoning capabilities. While applications in this direction are still scarce (see (Tari et al., 2010)

for one of the few current applications), it has alredy been pointed to (e.g. in (Ananiadou et al., 2010))

that the future of text mining might be an integration with automated reasoning.

Automated reasoning is part of the field of artificial intelligence and is deeply rooted in logics. It

originated from the work of Newell, Shaw and Simon who first created a program called the Logic

Theorist. This program was able to formally prove thrity-eight theorems presented in the Principia

Mathematic by Rusell and Whitehead, including in one case a more elegant proof than the original one

(Lewis, 2000). Automated reasoning methods are currently mostly used for mathematical proofs, error

checking of software code and communication protocols as well as the synthesis of knew knowledge

by reasoning in knowledge bases and ontologies (Konev et al., 2010). In the context of biomedical text

mining, automated reasoning might be used among others in the generation of new hypotheses and the

detection of conflicting information as well as logical fallacies in the argumentation of scientists.

Beside the analysis of corpora, the construction of them is the second important task in corpus linguistics.

This process subsumes the compilation of the text collections but often more importantly also the

annotation of them. Corpora are often annotated with part of speech tags. On top of this, syntactic or

semantic structures are frequently annotated. In this case the corpora are commonly referred to as

treebanks due to the tree structure of syntactic and semantic analyses. Among the most well known

corpora are the Brown corpus (Francis and Kucera, 1979) and the Wall Street Journal corpus (Paul and

Baker, 1992). An example of a syntactically annotated treebank is the Penn Treebank (Taylor et al.,

2003) that is among others based on both the Brown and the Wall Street Journal corpus. An example

of a semantically annotated treebank is the Propbank (Kingsbury and Palmer, 2002) which is in turn

based on the Wall Street Journal section of the Penn Treebank.

Annotated corpora are a necessary requirement for a variety of machine learning based NLP tools.

Sentence detectors, POS taggers as well as syntactic and semantic analyzers all take their training
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examples from usually manually annotated corpora. Exemplarily, the Senna tool that is the foundation

of Excerbt is trained on the Propbank corpus.

7.2 N-gram Analysis
Creating ontologies and dictionaries is a very time-consuming task. It is necessary, however, to have a

knowledge base, from which one can identify named entities, in order to perform most text mining

analyses. Hence, approaches that quicken the ontology creation process can be very useful. One of

these approaches coming from corpus linguistics is N-gram analysis. It is frequently used in ontology

learning (see e.g. (Hazman et al., 2011)) and has also been used in the context of Excerbt by Robert

Strache in his Master’s Thesis (Strache, 2012).

N-grams are collections of N consecutive words that frequently occur together in a corpus. The idea

behind N-gram analysis for ontology learning is to look for the most frequent N-grams consisting of

certain parts-of-speech. Expecting the most frequent ones to also be the most important ones, one can

then use these directly or after manual verification as dictionary or in the hierarchical ordering of an

ontology.

There are many variations on how to exactly perform this analysis. The one used together with Excerbt

so far is exemplarily described in the following. Here, only unigrams to 4-grams consisting of adjectives,

nouns, gerund forms, determiners and prepositions were used. Unigrams were restricted to nouns,

while the others needed to start or stop either with a noun, adjective or gerund form. Furthermore, to

increase the frequencies stemming was employed and to avoid non-specific terms stop words were

removed (Strache, 2012).

In the context of the rare diseases analysis (see chapter 5) a similar but modified version of this al-

gorithmwas used. Here, all word sequences starting and endingwith a noun consisting of nouns,adjectives,

the genetive ’s’, the genetive ’of ’, and the determiner ’the’ were extracted. This way sequences of arbit-

rary length N could be extracted. For the rare diseases analysis, every N-gram that occurred at least

seven times was manually checked whether it described a symptom.

7.3 Word Space Models
While N-gram analysis might answer the question of which terms are important in a corpus, it cannot

say anything about their meaning. A corpus linguistic approach to term meaning are word spaces. In a

word space, meaning is modelled as a multi-dimensional space where words with similar meanings

are close to each other. Thus, every word is modelled as a multi-dimensional vector that represents its

meaning. The vectors are derived by considering in which contexts in the corpus they are occurring.

Or as John Rupert Firth put it: "You shall know a word by the company it keeps" (Firth, 1957).

The word-space model was introduced by Magnus Sahlgren in his doctor thesis (Sahlgren, 2006). The

foundation of the model is the so-called distributional hypothesis, which states:

"Words with similar distributional properties have similar meanings."(Sahlgren, 2006)
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The hypothesis has been experimentally validated several time (McDonald and Ramscar, 2001; Miller

and Charles, 1991; Rubenstein and Goodenough, 1965). For instance, Rubenstein and Goodenough

(Rubenstein and Goodenough, 1965) found a correlation between distributional features of terms and

synonym judgements of university students. There exist different methods to create word space models.

Among the most popular ones are latent semantic indexing and random indexing.

Latent semantic indexing (LSI) , or latent semantic analysis (LSA) , was introduced by Deerwester et

la. in 1990 (Deerwester et al., 1990). In this method the occurrence frequencies of terms with respect

to different documents of a large corpus are counted. The result of this is a very large and often very

sparse term-document matrix. This matrix is made up of vectors, each representing the distributional

features of a term within the corpus. Additionally, the frequency values are weighted according to

the importance of the respective words in their context. However, since it is very impractical to work

with such a large matrix, it is decomposed into its so-called principal components. These principal

components aremore concise representations of the term vectors that should still capture the important

distributional features. In latent semantic analysis, this dimensionality reduction is often performed by

a linear procedure called singular value decomposition (SVD) (Landauer and Dumais, 1997; Landauer

et al., 1998).

SVD was first introduced in latent semantic analysis. It decomposes the original matrix into three

individual ones, where the product of the three matrices is the original one. One of the matrices

contains the information of the rows of the original matrix in the form of orthogonal factor values.

Another one does the same for the columns. The middle matrix is a diagonal matrix responsible for

scaling the factors correctly in order to obtain the original matrix when multiplying. Applying this

analysis results in a matrix describing terms and another one describing documents. This is why latent

semantic analysis can be used to create word spaces as well as document spaces. Since the scaling

of the factors can be seen in the diagonal matrix, the dimensionality reduction can be accomplished

simply by deleting the smallest factors in it. This reduction results in a least-squares best fit of the

original matrix (Landauer et al., 1998). The resulting reduced word vectors then make up the word

space.

One drawback of SVD is that it is computationally expensive and since it is its very purpose to be applied

to very large corpora, this can become an issue in many applications. For this reason, approximate

alternatives to LSA were constructed that avoid this problem. One of these methods is random

indexing (RI). RI omits the time-consuming decomposition by reversing the order of the collection of

distributional features and the dimensionality reduction. In RI, the first step is to randomly create

sparse document vectors that already have the desired dimensionality. These vectors, called index

vectors, are unique and contain only values of 0, +1 and -1. Then the term vectors are created by

summing up the document vectors in which the term occurs. RI is only an approximation of LSA, since

the randomly chosen vectors are usually not orthogonal. Based on an observation of Hecht-Nielsen

(R., 1994), however, it is possible to approximate orthogonality in this way because there are so many

nearly orthogonal directions in a very high-dimensional space (Sahlgren, 2005).
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7.4 Word Space Visualization of Text Mining Results
Text mining of large collections of texts often returns large collections of results. These results when

represented in the form of a graph produce a so-called "hairy ball". This term refers to a highly-

connected graph that is too large to be intuitively interpretable by humans. Thus more time or more

detailed analyses are required to understand the text mining results properly. In many situations,

however, it would be valuable to get a quicker grasp of the returned results. For instance, if one wants

to get a quick overview or if one is new to a field, a more intuitive representation of text mining results

would be useful.

Based on these considerations I designed and developed a visualization system utilizing word spaces

(a paper describing the results is currently in revision for publication in the Journal of Biomedical

Semantics (Blohm and Meiners, 2014)). The underlying idea is to focus on one or a few terms and

display all relations found by a text mining system. In order to ensure the clarity of the displayed

information, the related concepts are clustered and only the most important ones are shown. This

approach is based on a human’s natural reaction to complexity. First the information is ordered, then it

is prioritized. The ordering process uses the word space model. The prioritization process is based on

frequency counts, which as mentioned are frequently employed in corpus linguistic applications.

The result of this visualization is a graph like the one seen in Figure 7.1. At the center of the graph is the

search term, for which all relations are shown, in this case the ’proteasome’. The entities with which

this search term interacts are clustered in semantic groups. The clustering is performed on the basis of

the Semantic Vectors Package (Widdows and Ferraro, 2008) implementation of LSI and RI. The derived

semantic vectors are then clustered using a k-means clustering algorithm from the same package. One

can see that semantically related terms occur in the same clusters. For instance, ’MHC’ and ’Antigens’

are clustered together. The major histocompatibility complex (MHC) molecules have the function to

present antigens to T cells in order to indicate whether foreign proteins have entered the cell.

The amount of terms in each cluster is indicated by the size of the node in the graph. Additionally, the

bigger clusters are colored in green, the smaller ones in purplish blue. The displayed terms of each

cluster correspond to the ones that have the most connections to the central search term. Thus, the

prioritization here is conducted by frequency counts. Analogous to the nodes the edges give a hint

about the frequency properties of the underlying data. The more evidences (relations found by the

text mining system) point to a connection between the search term and the cluster, the larger is the

edge between them. Furthermore, stronger connections are displayed in green, more moderate ones in

yellow and weak ones in red.

This presentation should give the user an intuitive overview about the search term and its relations

to other biological entities. For instance, for the term proteasome the strongest connection is to the

cluster in which proteins and degradation are prioritized. This makes sense since the main function

of the proteasome is the degradation of proteins. To investigate the results further, the user can then

click on one of the clusters. By doing so the terms belonging to this cluster are presented in the same

form. If the amount of them is large, they are again clustered and prioritized in the same manner. If

the amount is small, each term is represented by its own node. Additionally, information about the

sources of the relations is available to the user of the tool. By clicking on the edges on any level of the

graph all evidences for this edge are displayed. An evidence consists of the sentence from which the
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Figure 7.1: Visualization of Excerbt text mining results of the term ’proteasome’.
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Figure 7.2: Overview of the architecture of the visualization tool.

text mining system extracted the relation and a link to the corresponding PubMed or PMC publication.

Using this information the user can check for errors of the text mining system or gather additional

context information about the relation.

Figure 7.2 illustrates how the different components of the system interact. As can be seen, the analyzed

corpus is the origin of the analysis. Both the word space model and the text mined relations are

extracted from it. The corpora for the two does not need to be the same. It makes sense, however, to

choose corpora from the same domain in order to properly represent the domain specific aspects of

language. The terms in the text mined relations are then clustered according to their term vectors

resulting in clustered relations.

The system was evaluated using text mining results from Excerbt for the terms ’proteasome’, ’COPD’

and ’IPF’ . However, in order to increase the applicability of the tool binary relations from any text

mining tool can be visualized with it. For this purpose, a generic input format was defined. Finally, the

clustered relations are presented to the user through the visualization module. Each of the clusters

is labeled with the most frequent terms for prioritization. For visualization the Prefuse (Heer, 2005)

Java-library was used.

The tool is designed to explore text mining results for a certain topic. The visualization is centered

around this topic. This should be especially useful, when one wants to become acquainted with

a certain field or just wants to get a quick overview. A second application scenario is comparing

multiple concepts. Here, the direct and indirect (over one other node) connections of two concepts are

important. To allow the visualization tool to be useful in these situations a second visualization mode
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Figure 7.3:Multi-concept mode of the visualization tool.
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Figure 7.4: Visualization of the text mined results for IPF.

was implemented. In this mode, there are several topics at the center of the visualization. The rest of

the implementation stays the same. An example of such a visualization is given in Figure 7.3.

7.5 Evaluation
Evaluating a visualization tool is always difficult since there are rarely any easily accessible objective

measures. The optimal solution to this usually is an extensive usability study. However, for this a large

amount of test persons is required, which often is not available to the developer of the tool. Likewise, in

this work we lacked the resources for such an extensive evaluation. Alternatively, different indicators

were considered, which should give a comprehensive picture of the way the tool is working.

First the ability of the tool to order the relations in a meaningful way was explored. For this purpose

the results of the semantic clustering were investigated in more detail. One peculiarity that catches

the eye just by browsing through the results is the clustering of synonyms. The synonym module of

Excerbt was used to consolidate synonyms. The tool, however, showed that the module misses a lot

of synonyms. As can be seen in Figure 7.4, synonymous terms or more general terms like ’lung’ and

’Lungs’ or ’Fibroblasts’, ’fibroblast’ and ’lung fibroblast’ are not mapped onto each other. Interestingly,

however, the terms are very often clustered together. This opens up the possibility of an additional

application field for the presented tool. It might be useful when working with different vocabularies

to support the mapping of identical but differently named concepts. Furthermore, the clustering of

synonyms is an indicator that the semantic clustering is working in the intended way. Synonyms are

semantically identical concepts. Thus, in a semantic clustering approach, they are supposed to be

clustered together.
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A classical way of ordering concepts in a semantic manner is the use of an ontology. Ontologies

are typically hierarchically organized and the entities within them are standing in a is_a or part_of

relation. In many cases, however, ontologies are not available or do not cover a desirable range of

relations. Therefore the presented visualization tool offers an alternative to the use of established

ontologies. It considers all relations found by a text mining system and clusters them according

to distributional features. Since both ways of orderings are semantic, however, there should be a

correlation between both. In the progress of this work, such a possible correlation was investigated.

The terms’memberships in different clusters or ontology classes are nominal features, because the

different clusters and ontology classes (as long as one considers classes of the same level) are not in

a particular order. A typical way to measure associations in nominal data is an association measure

called Cramer’s V.

Cramer’s V is based on the work of the swedish statistician Harald Cramer. It approximates how much

of the values of a group of nominal variables can be ascribed to the association of the second group of

nominal variables. In this cases it states how much of the semantic clustering based on the word space

model of the visualization tool can be explained by its association with a given ontology. The measure

was calculated for the two different approaches to creating word space models. The Excerbt ontology

was used for the association. This ontology is composed of a variety of other ontologies like MeSH

terms, Entrez Gene and many others. The results of the association analysis can be seen in Table 7.1.

Table 7.1: Association scores for different word space approaches.
Association clustering - ontology

Graph Avg. Cramer’s V Avg. Cramer’s V

Random Indexing Latent Semantic Indexing

Proteasome 0.444 0.462

COPD 0.462 0.494

IPF 0.364 0.389

Avg. 0.423 0.448

The association scores are between 0.364 and 0.494. Thus, between a third and half of the semantic

clustering can be explained by the association with the ontology. Furthermore, the LSI values are

slightly higher than the ones of RI. This was to be expected, since RI is only an approximation of LSI. All

in all the association analysis confirmed that the semantic clustering works appropriately. A substantial

portion of the ordering in the Excerbt ontology can be seen in the clusters derived with this different

method. However, the semantic clustering also provides information not contained in the Excerbt

ontology and thus can be seen as a valuable complement.

Both considered indicators support the proper functioning of the semantic clustering. Additionally, the

prioritization process was investigated in more detail. The goal of the prioritization is that the most

important information about the investigated topic is displayed on the highest level. As a ground truth

for what the most important information about a topic might be we considered official definitions of

terms. If the prioritization approach works as intended, it should prioritize the terms used in these

definitions. We applied this evaluation using the MeSH definitions of the terms ’proteasome’, ’COPD’

and ’IPF’. MeSH defines these terms as follows:
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Figure 7.5: Visualization of the text mined results for COPD.

"Proteasome Endopeptidase Complex: A large multisubunit complex that plays an important role in the

degradation of most of the cytosolic and nuclear proteins in eukaryotic cells. It contains a 700-kDa
catalytic sub-complex and two 700-kDa regulatory sub-complexes. The complex digests ubiquitinated
proteins and protein activated via ornithine decarboxylase antizyme"

(http://www.ncbi.nlm.nih.gov/mesh/68046988).

"Pulmonary Disease, Chronic Obstructive: A disease of chronic diffuse irreversible airflow obstruction.
Subcategories of COPD include CHRONIC BRONCHITIS and PULMONARY EMPHYSEMA"

(http://www.ncbi.nlm.nih.gov/mesh/68029424).

"Idiopathic Pulmonary Fibrosis: A common interstitial lung disease of unknown etiology, usually occur-
ring between 50-70 years of age. Clinically, it is characterized by an insidious onset of breathlessness

with exertion and a nonproductive cough, leading to progressive DYSPNEA. Pathological features
show scant interstitial inflammation, patchy collagen fibrosis, prominent fibroblast proliferation
foci, and microscopic honeycomb change" (http://www.ncbi.nlm.nih.gov/mesh/68054990).

The terms or their synonyms that were prioritized the way that they appeared on the highest level

of the visualization (see Figures 7.1, 7.4 and 7.5) are shown in bold. As one can see, for all three

concepts important terms of the definition appear on the highest level of the visualized graph. If one

looks more closely, one can even observe what kind of terms appear. The visualization tool seems to
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cover the functions of the terms or, in case of the diseases, the resulting phenotypes very well: for the

proteasome its main function, the degradation of proteins, is found; for COPD the main symptome of

airflow obstruction; and for IPF even multiple phenotypes.

On the other hand, two types of information seem to be left out quite consistently. First, the direct

definition is missing: neither for the proteasome the large multisubunit complex shows up nor for the

other two the term disease (although disease progression appears for IPF). Secondly, the parts of which

the term is made up of are not accounted for. In case of the proteasome the sub-complexes are not

mentioned and in case of COPD the subcategories. These shortcomings can, however, be explained

quite easily, when considering that relations taken from Excerbt were used. Definitions are commonly

expressed in is_a relations and sub-system relationships in the form of part_of relations. Excerbt,

however, does not cover these two relations. Consequently, it had to be expected that they would not

show up in the visualization. Using a more comprehensive text mining system instead of Excerbt would

probably circumvent this shortcoming. In order to make this possible the tool was implemented the

way that relations given in a generic format coming from any text mining system could be used as

input.

7.6 Conclusion
The practical approach of corpus linguistics is well suited for the biomedical textmining. The association

patterns that can be found in corpora can quicken the necessary construction of ontologies and event

definitions. Furthermore, the quantitative analysis of them can be used to order concepts and relations.

In this chapter, two practical applications of corpus linguistic approaches were presented. The N-gram

analysis proved useful in establishing a vocabulary, while the word space model could help consolidate

vocabularies by detecting synonyms. Furthermore, the word space model was used as the basis for a

visualization tool that helped represent text mining results in a more comprehensible way.

Future developments of biomedical corpus linguistics might lead to a use of methods from the field of

automated reasoning. A more comprehensive discussion on how such a development might look like is

given in the discussion. Furthermore, the association patterns might become more complex and better

fit the needs of biomedical researchers as biomedical text mining evolves.
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7.7 Related Work
An overview over related related corpus contextualization approaches is given in table 7.2

Table 7.2: Corpus contextualization: Related work
Authors Year Approach Domain

Felizardo et al. (2010) 2010 Similarity-based Software

corpus visualization engineering

Fortuna et al. (2005) 2005 LSI-based visualization Research projects

Malheiros et al. (2007) 2007 Visual Text Mining Software eng.

Nikitin et al. (2003) 2003 Pathway visualization Biomedical

Kemper et al. (2010) 2010 Pathway visualization Biomedical

Hazman et al. (2011) 2011 N-gram ontology learning Agriculture

Sanchez and Moreno (2004) 2004 Bi-gram ontology learning Biosensors

Cimiano et al. (2005) 2005 Formal Concept Analysis Tourism and

finance

Dezhkam and Khalili (2013) 2013 Pattern-based Biomedical

ontology learning
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8

Integration of External Knowledge

Text mining focuses on unstructured or semi-structured information. In order to get a full picture of

the existing knowledge, however, it has to be integrated with all the information. This includes the

structured information from databases. In the biomedical domain, this first and foremost experimental

results are stored in structured resources and often only partially described in publications. The

missing data can either be taken directly from experiments or from structured resources, like IntAct

(Kerrien et al., 2012) and others, that collect experimentation results. A good example of such an

integration is String (Franceschini et al., 2013), which among others integrates text mining results and

results from coexpression and high throughput experiments.

The integration of text-mined and structured data with the purpose of reaching a better understanding

is a supersematnic task. The reasoning on the basis of both data sources can either happen automatically

or by a human. In this chapter a tool combining structured and text-mined information for an improved

human experiment interpretation is introduced. The tool focusses on gene enrichment analysis. It

facilitates the interpretation of the results by providing additional information from different text

mining resources. It was implemented under my supervision in the course of the Bachelor Thesis of

Tim Jeske (Jeske, 2013). I designed the system and supervised the development process as well as the

GO analysis and the practical application.

8.1 Functional Analysis of Gene Lists
The introduction of high-throughput experiments fundamentally changed the way genes were analyzed.

Instead of focussing on single genes, analyses on the whole genome became possible. This immensely

increased the range of single experiments and lead to a less biased approach, since the considered genes

were no longer predetermined by the researchers opinions and intuitions. On the other hand, the high-
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troughput approach increased the challenges that were presented to the respective researcher. Before

he was able to acquire deep expert knowledge of the limited domain he was investigating. Afterwards,

the interpretation of his high-throughput results required him to have far-reaching expertise about all

the very different genes that might prove significant in the experiment.

With the use of microarrays many thousands of genes could be analyzed at once. This made it

impossible for the scientist interpreting the experiment to be an expert on each one of them. In order

to nevertheless facilitate an appropriate interpretation different resources were created to support the

scientist. These resources order the genes according to different criteria like which known pathways

they belong to, which properties they have or which functions they fulfill. The most prominent resource

for pathways is the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000). The

most prominent functional ordering of genes is given by the Gene Ontology (GO) (Ashburner, 2000).

The Gene Ontology consists of three subparts: the biological process ontology, the molecular function

ontology and the cellular compartment ontology. GO defines the three categories as follows:

"Biological process refers to a biological objective to which the gene or gene product contrib-
utes. A process is accomplished via one or more ordered assemblies of molecular functions.
Processes often involve a chemical or physical transformation, in the sense that something
goes into a process and something different comes out of it. Examples of broad (high level)
biological process terms are ‘cell growth and maintenance’ or ‘signal transduction’. Examples
of more specific (lower level) process terms are ‘translation’, ‘pyrimidine metabolism’ or ‘cAMP
biosynthesis’." (Ashburner, 2000)

"Molecular function is defined as the biochemical activity (including specific binding to ligands
or structures) of a gene product. This definition also applies to the capability that a gene
product (or gene product complex) carries as a potential. It describes only what is done
without specifying where or when the event actually occurs. Examples of broad functional
terms are ‘enzyme’, ‘transporter’ or ‘ligand’. Examples of narrower functional terms are
‘adenylate cyclase’ or ‘Toll receptor ligand’." (Ashburner, 2000)

"Cellular component refers to the place in the cell where a gene product is active. These terms
reflect our understanding of eukaryotic cell structure. As is true for the other ontologies, not
all terms are applicable to all organisms; the set of terms is meant to be inclusive. Cellular
component includes such terms as ‘ribo-some’ or ‘proteasome’, specifying where multiple
gene products would be found. It also includes terms such as ‘nuclear membrane’ or ‘Golgi
apparatus’." (Ashburner, 2000)

The terms within the different ontologies can be in different kinds of directed relations to each other.

As common in ontologies there exist is_a and part_of relations. Furthermore, GO comprises regulation

relations. These can be further specified as positive or negative. Apart from that a NOT qualifier exists

that indicates that a function, which might be intuitive, was tested not to exist. Finally, each entry in

GO is accompanied by an evidence code. Such a code denotes how the entry was created. Here, it is

distinguished whether this was automatic or with the contribution of manual curators and whether it

was based on an experiment, computational analyses or merely statements.
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Figure 8.1: Overview of the workflow of the text mining assisted functional analysis tool. Picture taken from (Jeske, 2013).

Functional orderings like KEGG and GO can be used to facilitate the interpretation of high-throughput

experiments. The results of such experiments are usually a list of significant genes. A common strategy

then is to associate these genes with functions by looking at the categories in which these genes fall.

The categories that contain a significant amount of genes from the input list are called enriched and

considered relevant for the interpretation of the experiment. This process is automated in different

tools. In this work, the Database for Annotation, Visualization and Integrated Discovery (DAVID) (Dennis

et al., 2003) was used.

DAVID comprises a knowledge base of different resources and a variety of tools. For the further analysis

the gene annotation enrichment analysis was used. This analysis associates gene lists with GO terms by

using a modified Fisher’s exact test. The communication with the tool was implemented using the web

services of DAVID (Jiao et al., 2012).

Tools like DAVID can give the scientist a general idea of the relevant functions. If the interpretation

leaves it at that, however, it remains rather superficial. Thus, in order to allow a more profound

interpretation of the experimental results again expert knowledge of the scientist is needed. Con-

sequently, the quality of the analysis is based on how detailled the knowledge of the corresponding

researcher is. This can again lead to rather shallow interpretations or to researchers only focussing on

those areas which they are familiar with. The latter again introduces a bias towards the background

knowledge of the person interpreting the experiment. In order to further enable scientists to perform a
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Figure 8.2: Input window of the tool. Picture taken from (Jeske, 2013).

more comprehensive and unbiased analysis more detailled information about how the genes that are

subsumed in the gene sets actually interact with each other would be required. For this purpose, in

this work a tool offering a more detailled description of the relevant GO categories on the basis of text

mining is introduced.

8.2 Functional Analysis Using Text Mining
The idea behind the functional analysis tool developed in this work is to provide more context inform-

ation to the user by integrating text mining results into a gene annotation enrichment analysis. For

this purpose several existing tools and resources were integrated into one comprehensive system that

should facilitate a more informed interpretation. In order to maximize the utility of the tool a modular

implementation approach was taken that enables an easy extension of the program (see Appendix B

for details on this). The tool implements a workflow that integrates the text mining resources Excerbt

and String with the functional analysis tool DAVID. Furthermore, a variety of visualizations and graph

measures was implemented in order to support the analysis.

An overview of the implementation of the tool is given in Figure 8.1. As can be seen, the analysis starts

with a gene list. This generic format enables the application of the tool to results of various different

experiments. On starting the tool, the user is presented with an input window (see Figure 8.2), in which

he can load the list from a file (in any format that is supported by DAVID) or simply paste his list of

gene identifiers into the input field. In order to properly retrieve the genes from the GO, an organism

has to be chosen from a drop-down box. Furthermore, the user can restrict the returned GO terms by

requiring a certain level of enrichment and a minimum number of genes that need to fall in a category

in order to be considered. The provided gene list is then used to send a query to DAVID’s web services.

The results of DAVID are in turn put into context by querying the GO Database for the given terms.

Having determined the relevant GO terms the tool then uses either Excerbt or String for providing

additional information. The idea behind this is to use the relations between the genes within a GO
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Figure 8.3: Overview window displaying the highest three levels of the GO. Only the enriched GO terms are shown. The
color indicates the degree of enrichment with darker terms being more enriched. Picture taken from (Jeske,
2013).

category to offer amore detailed view of the respective functional module. Both Excerbt and String offer

text mining results. In contrast to Excerbt, however, String’s relations are based on a co-occurrence

analysis. Such an analysis typically has a higher recall but a lower precision than more elaborate

approaches. Apart from that String also offers relations from other resources besides text mining. It

categorizes its additional sources as genomic context, coexpression, and high throughput experiments.

Here, genomic context refers to a collection of different prediction methods for functional associations

of genes. The other two categories refer to direct results of high-throughput or gene expression

experiments correspondingly (von Mering et al., 2003, 2005).

Once the relations are retrieved from the respective resource, they are combined to a graph for each of

the enriched GO categories. Furthermore, the following variety of graph measures is calculated for

each of the GO terms: the central node, the node with the highest degree, the amount of vertices and

edges, the relative size of the largest component of the graph, the diameter, the density and the average

clustering coefficient. Finally, all of this information is send to the visualization module of the tool and

displayed for the user.

The first thing one is interested in when analyzing the results of an experiment is usually the big picture.

In accordance with this, first an overview about the general enrichment of the superclasses is given. An

exmaple of this can be seen in Figure 8.3. In this visualization all enriched GO terms of the highest three

levels are displayed. The amount of enriched genes within a category is indicated by the color of the

node. Darker nodes have more terms, while lighter ones have less. This intuitive representation should

help the researcher using the tool to get an immediate impression of which functional categories play

an important role in his experiment. In this visualization different relation types are shown in different

colors (blue: is_a relation, orange: part_of relation, black: regulates relation, green: positively_regulates
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Figure 8.4: Screenshot of the main window of the functional analysis tool. Picture taken from (Jeske, 2013).

relation, red: negatively_regulates relation). Since experimental results can sometimes affect many

categories the user is offered the possibility to set a threshold. In this case, only the GO categories

containing at least as many genes as asked for are displayed.

After the display of the overview, the user gets the chance to browse through the different GO categories.

For this purpose, the user is presented with the graphical user interface (GUI) seen in Figure 8.4. As can

be seen, on the left side the enriched GO categories are displayed. The user can choose from them and

is presented with the text mining based graphs in the middle of the GUI. Here, in the graph the genes

from the input list are displayed in blue. The central genes of the graph as determined by degree and

betweeness centrality are displayed in red. It is possible to choose between three different views. In the

Standard view all interactions are displayed. Since the resulting graphs can be very complex, however,

two additional views are offered that provide a more focussed presentation. In the Interactions view,

all unconnected nodes are hidden. In the List view, only the genes from the input list and the central

genes are shown.

The connections are again colored like in the overview. The user can click on each node to see a

window containing the evidences for the connections of this node as determined by Excerbt. An

evidence consists of the relation, the sentence it was extracted from and a link to the paper from which

the sentence was taken. Additionally, on the right side the subcategories of the GO term are shown.

By clicking on the subcategory the user has the chance to go futher into detail. Apart from that the

visualizations are complemented by the graph measures for the respective GO term.
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8.3 GO Analysis

The development of the tool was complemented by an analysis of the GO. The Gene Ontology represents

the complex interplay of biological systems in a directed acyclic graph. Each abstraction comes at

the cost of a restriction of expressiveness. In case of the GO such restrictions include the fact that

it is impossible to model temporal or local constraints for relations. In reality certain regulations

might only occur under certain conditions. In GO a regulates relation is only included if the regulation

occurs always and anywhere. Furthermore, the representation is fully qualitative. The quantitative

effects of interactions are not captured and neither are thresholds of concentrations that might trigger

interactions. Finally, complex interactions can not be modelled. For example a regulation might only

occur if multiple processes occur simultaneously. Such interrelationships that might be modelled with

Boolean logic cannot be captured in the GO representation. Finally, the restriction to a directed graph

causes the situation that bottom up interactions can be modelled while top down ones cannot. All of

these effects are due to the fact that the GO intends to provide a general and static resource. Thus, not

all dynamic aspects of biological interactions can be captured and higher levels of detail are traded for

a more comprehensive resource.

By modeling the relationships of genes within GO categories, one can gain insights about the structure

of the Gene Ontology. Different graph measures might hint towards whether the categories really

represent functional modules like they are supposed to do. For this purpose, the number of genes, the

density, the clustering coefficient, the diameter, and the average proportion of the largest component of

the graph were analyzed with respect to the depth of the GO category within the GO hierarchy. Since

there often exist multiple paths from a virtual root node (above the three subparts) to the respective

GO term, as a convention the longest of these was chosen. The diameter was calculated on the largest

component. If there did not exist any connection in the GO category, this category was left out for the

calculation of the diameter and the largest component.

The analysis was performed on 13,288 categories of the Homo sapiens section of GO. Categories

containing none, one or more than 1000 genes were excluded from the analysis, since either no

meaningful graphs could be build from them or the amount of genes was too large for the String

webservice to handle the request. While the categories with zero or one element made up a substantial

portion of the GO (60% - 72% of the respective subparts), the exclusion of very large categories was

insignificant (0% - 1%). Each of the subparts of GO was considered individually in order to see whether

there exist differences between the single ontologies. Furthermore, both the graphs of Excerbt and

String were considered individually. This way differences in the sources of the two approaches were

accounted for and additionally both text mining resources could be compared. The results of the

analysis are given in Figure 8.5.

The first two diagrams (a,b) show the distribution of genes and GO terms with respect to the depth

within the ontology. Since higher GO terms subsume the genes of all underlying categories, it was

to be expected that the average number of genes within a category decreased with increasing depth.

The amount of GO terms on the hand seems to be normally distributed with means around a depth

of six (molecular function ontology and cellular compartment ontology) or eight (biological function

ontology) respectively. It can be seen that classes with three or less and those with ten or more for
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Figure 8.5: Graph measures of GO categories by depth within the GO hierarchy. Pictures taken from (Jeske, 2013).
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molecular functions and cellular compartments or 13 and more for biological functions are very rare.

Thus, the statistical significance of the graph measures calculated for these is very limited.

The first thing that catches attention when looking at the other plots of the density (c), average clustering

coefficient (d), average proportion of the maximum component (e) and the diameter are the peaks

around a depth of 10 to 13. As mentioned before, however, the significance of these are small. They

can be explained by very few highly connected classes. For example the peak in the Excerbt plot of the

density at depth 11 is due to three GO classes that only contain 2-3 genes between all of which Excerbt

finds relations. Such classes, however, seem to be outliers that distort the observed results.

Generally it can be seen that the graphs created with relations from String have higher density as well

as larger average clustering coefficients and largest components. This observation can be explained by

the fact that String finds more connections than Excerbt. Here, String profits from using additional

resources besides text mining. This can partly explain the difference which is most striking for the

cellular components ontology, probably because cellular components are not that often described in

the text of a publication. The difference might, however, also indicate a recall problem of Excerbt.

Especially, if one considers that the String results are restricted by a confidence score of 0.900. If this

score is decreased to 0.700 the differences become even larger (see Appendix C for details).

The question whether the GO consists of functional modules that become more specific in the lower

categories of hierarchy cannot clearly be answered. In specific functional modules one would expect

highly connected graphs. The effects that could be observed in the plots are, however, relatively small.

The increases in density, clustering coefficient and proportion of the largest component are largest in

the regions were there are few GO terms or few genes. Still a similar but weaker tendency can also be

seen in the density and the proportion of the largest component. The average clustering coefficient

on the other stays fairly constant between a depth of 5 and 9. Additionally, the classes that were not

connected at all point towards a questionable ordering in GO categories. Likewise, the proportion of the

largest component was rather low. If one (for significance reasons) only considers the GO terms with

depth 10 or lower the average largest component only makes up for about 50% - 60% (considering the

higher String values). The remaining 40% - 50% are not connected with the main component even on

the lower levels. Thus, the genes do not interact with a large amount of genes from the same category.

This lack of connection goes hand in hand with a lack of functional relationship of the genes within the

category. Based on these findings it seems necessary to bring the ordering of some of the GO category

into question. Further research in this direction might prove useful in order to find a system that

possibly better represents the functional modularity of the genome.

8.4 Application: mRNA Blood Expression Patterns in Epilepsy
Patients Study

In order to test its utility the functional analysis tool was applied to analyze the results of a gene

expression study. The chosen study was done by Greiner et al. (Greiner et al., 2013) in 2013. It

investigated "mRNA blood expression patterns in new-onset idiopathic pediatric epilepsy" (Greiner

et al., 2013). Children with yet untreated epilepsy (37 subjects) were compared to a healthy control
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group (28 subjects8). Furthermore, the study distinguished between two seizure type subgroups. Here,

partial (22 subjects) and generalized seizure epilepsy (15 subjects) were considered individually.

In their functional analysis of the gene list of the partial seizure vs. control group (PvC) , Greiner et al.

identified apoptosis, inflammatory defense, and cell motion as important pathways. For the gene list of

generalized seizure vs. control group (GvC) , Greiner et al. reported the respiratory chain, mitochondria,

and lymphocyte activation pathways as relevant. Greiner et al. obtained their results using DAVID, just

like in the text mining supported functional analysis tool. Nevertheless, the functional analysis that

was performed in the course of this work could only partially reproduce these results.

For PvC the reproduced results were similar to that reported by Greiner et al. Several inflammotry and

apoptotic processes were significantly enriched. Additionally, cell motion was enriched, but only at a

fold change of 1.3 and not as Greiner et al. reported also at a fold change of 1.5. Furthermore, the most

enriched GO term JAK-STAT cascade (p-value of 7.9E-4) was not mentioned at all by Greiner et al.

To gain further insights into these GO categories the text mining based graph visualizations of them

were created. They can be seen in Figure 8.6. For better readibility the List view of the graphs was

chosen. The graphs of the inflammatory response were highly connected. They centered around

IL6, which was central both in the Excerbt and the String graph. The importance of IL6 was further

supported by the fact that it also appeared prominently in the Excerbt graphs of apoptosis and cell

motion. The text mining based analysis supported the involvement of the inflammatory response in

partial seizure epilepsy patients. While Greiner et al. could only point to different chemokines and

proinflammatory factors, the graphs provided by the integration of text mining showed that and how

these are interconnected.

While the interactions of the inflammatory response resembled a highly connected cluster, the connec-

tions in apoptosis looked more like a pathway. Both Excerbt and String showed the involvement of the

expression regulating genes STAT1 and JUN. Furthermore, JAK2 appeared in both graphs. Considering

that the JAK-STAT cascade was the most enriched term, this could indicate that the enrichment of

apoptosis might be a side effect of the involvement of this cascade. In this connection, it should also

be pointed out that further genes found in the JAK-STAT graphs could also be seen in those of the

inflammatory response (CCR2) and cell motion (JAK2). Thus, the functional analysis pointed towards

the JAK-STAT cascade as the most relevant GO category. Additionally, it showed how other categories

like the positive regulation of apoptosis, cell motion and the inflammatory response are connected with

it. This goes beyond the comparatively shallow analysis of simply listing enriched GO terms.

For GvC, the results of Greiner et al. could not be reproduced. Instead of the respiratory chain, mito-

chondria and lymphocyte activation among the most enriched categories were GO terms concerning

the cell cycle and nuclear import. Mitochondrial membrane and respiratory chain at least for a fold

change of 1.3 got p-values of 1.1E-3 and 1.3E-3 repectively. Lymphocyte activation was not enriched

for GvC but instead showed an enrichment for PvC at a fold change of 1.3. The poor reproducibility

of these results made it impossible to refine the interpretations of Greiner et al. Still a look into some

relevant categories is given in Appendix D.

8It should be pointed out that the size of the control group is considerably too small which might be one explanation of the

comparatively poor results of the study.
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8.4 Application: mRNA Blood Expression Patterns in Epilepsy Patients Study

(a) Inflammatory response Excerbt (b) Inflammatory response String

(c) Positive regulation of apoptosis Excerbt (d) Positive regulation of apoptosis String

(e) Cell motion Excerbt (f) Cell motion String

(g) JAK-STAT cascade Excerbt (h) JAK-STAT cascade String

(i) Lymphocyte activation Excerbt (j) Lymphocyte activation String

Figure 8.6: Text mining based graphs of GO terms relevant for partial seizure epilepsy patients. Pictures taken from (Jeske,
2013).
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8 Integration of External Knowledge

Beside the insights one could gain about GO categories, the proposed functional analysis tool also

revealed some interesting aspects of the used text mining resources. The first aspect that drew attention

in this respect was the unreliability of the availability of the webservices of the two tools. This was

more problematic for Excerbt but was partially resolved by Benedikt Wachinger during the work on

the analysis tool. In addition to that Excerbt’s unusual way of handling entities became apparent.

Instead of focussing on biological entities and adding synonyms to them, Excerbt has entities for every

different spelling and synonym of a term. These different spellings are in turn connected via synonym

relations. However, these are not automatically resolved, when queried. Thus, e.g. if one sends a query

to Excerbt for results of ’brca1’, Excerbt does not return results for ’BRCA-1’ or ’BRCA1’. One could

circumvent this problem by first querying for the synonyms of a term and then subsequently including

all results into the query. This, however, causes new problems since Excerbt often failed to execute

too complicated queries. Furthermore, there are inconsistencies in the synonymmodule of Excerbt.

The syonym relations are not symmetrical, how it would be expected. For example ’20S Proteasme’ is

returned as a syonym of ’Macropain’ but ’Macropain’ is not returned as a synonym of ’20S Proteasome’.

Similarly, for ’phi-1’ 4 synonyms are returned, for its synonym ’ppp1r14b’ 13 synonyms are returned.

Finally, the graph visualizations of the two text mining resources revealed differences in the respective

coverages of relations between genes. This might have become most obvious in the visualization of

the respiratory chain seen in Figure 8.7. As can be seen, String returns a highly connected cluster

of 1417 relations, while Excerbt only finds three interactions. The most likely explanation for the

differences in the two graphs is the fact that respiratory chain comprises many proteins that aggregate

in complexes like the NADH dehydrogenase. Such complexes are rarely explicitely described in

literature. Thus, text mining approaches have no chance of extracting these relations. Here, String

profits from the fact that it includes several resources. The respiratory chain is also a good example

where the functional analysis including resources like String can support the interpretation of gene

expression results. Greiner et al. claimed that the role of mitochondrial gene expression in epilepsy was

unknown. Closer examination of the String graph of the respiratory chain, however, pointed towards

an involvement of the NADH dehydrogenase and the cytochrom c reductase, since various genes of

these were differentially expressed.

8.5 Conclusion
Especially, the last figure (8.7) obviously demonstrated the need of knowledge integration. While

the purely text mining based Excerbt could only find three connections in the GO class “respiratory

chain”, the visualization of String that is additionally based on other resources is a hairy ball. For

a comprehensive picture of the current knowledge about a topic all relevant resources need to be

considered.

While the integration of the results of text mining with prior knowledge is rather intuitive, there might

also be value in integrating a priori knowledge in the text mining process itself. Since communication

is optimized for efficient comunication, already known facts are only briefly referenced or completely

left out. Thus, in order to get a comprehensive understanding of a text a text mining systems requires

similar background information like the author of the text. For example, knowing that certain patterns

are well-established might help to better interpret ambigue, unclear or uncertain formulations.
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(a) Excerbt (b) String

Figure 8.7: Text mining based graphs of GO term respiratory chain for generalized seizure epilepsy patients. Pictures taken
from (Jeske, 2013).

8.6 Related Work
Table 8.1 shows related approaches to the integration of text mining results into functional analyses.

Table 8.1: Text mining-based functional analysis: Related work
Authors Approach

Medina et al. (2010) Gene expression analysis suite containing text mining and

GO categorization

Gotz et al. (2008) Functional annotation of DNA or protein sequences using

GO-graph visualization

Hur et al. (2009) Text mining of continuous texts with subsequent

functional analysis

Al-Shahrour et al. (2007) Text mining for additional functional analysis

Tiffin et al. (2005) Integration of text mining and data mining of

gene expression data

Scherf et al. (2005) Integration of genomic analysis into text mining to

improve performance

Lussier et al. (2006) Text mining for providing phenotype context

information for GO annotations
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9

Towards a Supersemantic Analysis I - Shallow SRL

9.1 Excerbt Restrictions
The supersemantic applications presented in the last chapters were either implemented from scratch

or based on the Excerbt text mining system that was developed at the IBIS (the only exception to this

is the anaphora resolution system presented in chapter 6). During the work on these applications

many shortcomings of Excerbt became obvious. Some of these impaired the results of the developed

algorithms and tools. All of them, however, have an impact on the quality of the overall results of a

possible supersemantic text mining system that is based on Excerbt. The apparent problems of Excerbt

are the following:

A very coarse grained ontology
Ontologies are commonly hierarchically organized systems with many intermediate levels. The entries

in the different levels are connected with is_a, part_of or even more specific relations. For example, in

the Gene Ontology, the proteasome complex is defined as a protein complex which in turn is a cellular

component. Likewise, the nuclear proteasome complex is a proteasome complex. Such a hierarchical

representation allows to simplify searches. For example one can easily look for all kinds of protein

complexes without having to list each single one.

Furthermore, it allows to choose the level of detail that seems most appropriate for the given task.

Exemplarily, for the creation of the Negatome protein complexes andmutations were excluded. Excerbt,

however, is based on an ontology that is too coarse grained to distinguish them from other proteins.

Instead, Excerbt only has one big gene/protein category in which all of these fall. In the Negatome

example, this resulted in the difference between the sample evaluation and the final acceptance rate.
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While during the sample evaluation all kinds of interactions involving proteins were accepted, in

the final annoation of the Negatome mutations and complexes were excluded. This lead to a drop

in accurracy from Excerbt of about 15%-20%. In the highest confidence interval (according to the

confidence score) this value even reached over 40%.

In addition to that, Excerbt’s ontology does not contain any subcategories. Unfortunately, this signific-

antly increases the amount of irrelevant results returned for queries in many application fields and

even completely disqualifies Excerbt in others.

A lack of mappings to existing resources
A second shortcoming of the ontology used by Excerbt is the fact that it does not map to other resources.

This is especially unnecessary since it was originally largely based on other ontologies. This way it is

hard to keep track of changes in the underlying ontologies which in turn explains why the ontology is

not frequently updated as new versions of the source ontologies are created. A comprehensive system

would try to automate this process as much as possible and would provide mappings. This shortcoming

has also become a nuisance in the creation of the Negatome. Since the format in which the Negatome is

published requires gene identifiers, these had to be manually added by the curators. This additional

work could have been diminished if Excerbt would provide the corresponding identifiers.

An incoherent entity system
Quite a few things about the entities in Excerbt are counterintuitive. Since Excerbt’s ontology is based

on multiple resources, it contains the same things multiple times. Instead of mapping these entities

onto each other, however, each entry is kept and treated individually. Furthermore, even the synonyms

taken from the same resources are treated individually. Thus, Excerbt returns thousands of results for

p53 but none for prac which is listed as a synonym of p53 in EntrezGene (one of the resources Excerbt’s

ontology is based on).

Instead the user has to actively select all listed synonyms in order to get the results. The synonym

system, however, is inconsistent itself. Synonyms are by definition bidirectional. Yet, Excerbt does not

treat them that way. Thus, for p53 there are 87 synonyms listed. For prac, on the other, Excerbt only

offers 12 synonyms.

Additionally, there seem to be synonyms missing - even some very common ones. The term Alzheimer’s

e.g. is only considered as a pathway but not as a disease/phenotype.

The necessity of syntactical post-processing
Syntactic processing is very time-consuming. For this reason, the design choice to avoid it was taken

when developing Excerbt. Instead Excerbt was based on Senna - a tool that largely circumvents

syntactic processing and instead immediately provides a semantic interpretation of an input sentence.

Senna is trained on the Propbank corpus and correspondingly classifies semantic roles as described in

Propbank. Unfortunately, due to the semantic role definitions of Propbank these roles are often not
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suited for the immediate extraction of biological events. Instead syntactic post-processing would be

required to avoid an accumulation of false positive results.

The problem of the role definitions was e.g. pointed out by Robert Strache (Strache, 2012) in his Master

thesis by providing the following example:

“At the light microscope level, brush cells can be identified by antibodies against the

actin filament crosslinking proteins villin and fimbrin that not only stain the apical tuft

of microvilli and their rootlets, but also label projections emanating from the basolateral

surface of these cells.”

For this sentence, Senna returns, among others, the following predicate-argument-structure:

PRED: “identified”

ARG0: “by antibodies against the actin filament crosslinking proteins villin

and fimbrin that not only stain the apical tuft of microvilli and their rootlets”

ARG1: “brush cells”

ARGM-MOD: “can”

ARGM-LOC: “At the light microscope level”

The very simple event extraction step of the original Excerbt implementation simply looked in the

ARG0 and ARG1 for biological entities. This lead to the extraction of erroneous events, like “rootlets

identified brush cells” in the given example. This approach was improved by a heuristic implemented

by Robert Strache in his Master thesis. According to this heuristic, only entities that occurred before the

first verb within the argument were used for event extraction. This restriction is meant to deal with

cases where subclauses occur in arguments. Thus, in the given example, ’rootlets’ is discarded since it

occurs after the first verb (“crosslinking”).

The heuristic tries to make up for the lack of a proper syntactic analysis, but is only able to cover

certain special cases. While it succeeds at discarding objects of subclauses within an argument, it

fails to discard the subjects of the subclauses. For example in the sentence “Alzheimer’s is caused by

brain cell death that Smithee et al. attribute to plaques.” Senna would tag the end of the sentence

beginning with “by” as ARG0, the heuristic would eliminate everything after “attribute” but “Smithee et

al.” would still be a valid argument. Furthermore, genitive expressions and word combinations are not

handled properly. For example, the sentence “Liver diseases cause depressions” would produce an

event cause(Liver,depressions) or the sentence “Bacteria can cause heart infections”would produce

an event cause(Bacteria, heart). A proper linguistic analysis would determine the head word of such

expressions in order to get the right results.

Senna is a blackbox
Senna is an external machine-learning tool. The problem that arises when using machine learning

models is that for each alternation in ones problem definition or solution strategy one has to train a

new model. Furthermore, one requires the corresponding training samples that properly represent the

problem one tries to solve. The acquisition of such training corpora is a very time-consuming process.

Thus, if one e.g. wanted to correct the annotation scheme of Senna in order to avoid annotating whole
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subclauses into arguments, one would first need to annotate a new corpus or use a completely new tool

that accomplishes the task and can be used as post-processing.

Additionally, machine learning models like the deep neural net used by Senna are a black box whose

information is not in any kind of human readable format. Thus, one is very restricted in identifying

and fixing problems in the classification. Finally, Senna is an external tool whose source code is not

publicly available. Because of this it is not possible to modify the classification algorithm. Even if one

only wants to make small changes post-processing or reimplementation are the only choices. This

situation strongly restricts the possibility of including improvements into the Excerbt workflow.

A need for verbs to extract events
Excerbt’s event extraction is exclusively based on Senna. Senna, in turn, extracts predicate-argument-

structures that are always rooted in verbs. Verbs, however, are not the only way events can be described.

This approach is very restricting and is a main source of Excerbt’s recall problems. In order to give an

idea of the extent of this restriction, Table 9.1 gives an overview over forms of expressions missed by

Excerbt.

Table 9.1: Utterances that describe an event without using a verb.
Type Example

Nominalization of predicate The activation of Bax by p53
Argument nominalization P53 is a regulator of Bax.
Adjectives The p53-induced activation of Bax
Ellipsis P53 activated Bax, but not lrrk2
Multiple clauses Bax is activated, when p53 occurs in the cell.

The sample evaluation performed in the course of the Negatome analysis revealed that about 25% of

relations are not found because they are formulated in one of these ways. Thus, the restriction to verb

events was the biggest recall problem in this, however, limited evaluation. It was followed by a lack of

anaphora resolution (20%) and a lack of nested events (5%). The last of these again can be attributed to

the restricted approach taken by Excerbt.

A restriction to simple events
In the Negatome sample evaluation the focus was on non-interacting proteins. These are usually

described in simple events. In order to get a more comprehensive picture of the biological knowledge

described in a publication, one needs a more powerful framework that is able to extract and represent

nested events. Already in the small Negatome evaluation one non-interaction was missed due to the

lacking possibility to extract nested structures. For other tasks this is even more important. Nested

events can be used to express causal chains of events but often also direct relations are described

in a nested way. Take for example the adjectives example from Table 9.1. Even though the direct

interaction of p53 and Bax is described, linguistically it is a nested event that could be written as

induction(p53, activation(Bax)). Such formulations occur often in publications and are thus an essential
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part of contemporary text mining evaluations like the BioNLP shared task 2013. Excerbt ignores such

events, which further limits its applicability.

A lacking sanity-check for events
Well defined events impose certain restrictions on what kind of entities are allowed as their players.

For example, a gene expression event needs by definition a gene as theme (ARG1) or a protein binding

event needs at least one argument that is a protein and the second argument has to be some kind of

substance or another protein. A comprehensive event extraction system should take these restrictions

into account in order to improve the precision of its results.

Unfortunately, Excerbt is missing such a sanity check. Events in Excerbt are only defined by the verbs

by which they are identified. All biological entities that are found in predicate-argument-structures are

combined to such events independent of whether this would make sense. The consequence of this are

results like the following:

• Sentence: “For example, report of a fall would trigger a home safety assessment, whereas loss of
a loved one or pet would trigger a depression evaluation by the social worker.”

Entities: pet ∈ Gene, social worker ∈ Person
Event: Activation(pet, social worker)

• Sentence: “’We can extrapolate from the United States to a degree,’ says Ferguson, ’but there are
too many variables to judge accurately.’ The United States has a lot of automobiles, and compared

to many other countries, Americans tend to build more (and wider) roads, more (and bigger)

parking lots, more (and more expensive) shopping centers, and larger houses (with accompanying

larger roofs).”

Entities: parking lot ∈ Environmental factor, countries ∈ Geolocation
Event: Binding(parking lot, countries)

• Sentence: “OBJECTIVES: After more than 10 years’ experience in France, the French Foot Surgery
Association (Association francaise de chirurgie du pied [AFCP]) presents an update on mobile-

bearing ankle prostheses, based on a multicenter study.”

Entities: France ∈ Geolocation, bears ∈ Species
Event: Expression(France, bears)

• Sentence: “The library was initially depleted of phages recognized by naive mouse serum by 3
sequential pannings of the library with immobilized serum of non-immunized mice.”

Entities: library ∈ Environmental factor, mouse ∈ Species
Event: Inhibition(mouse, library)

These events should have been defined on the entities that they can actually occur with. Instead,

geolocations can trigger gene expression events, libraries can be inhibited and countries bind to

111



9 Towards a Supersemantic Analysis I - Shallow SRL

parking lots. Besides the lacking sanity check, these example of course also reveal other shortcomings

of Excerbt. For example, in the last sentence the fact that ’mouse’ is found as an argument is due to

the insufficient syntactic processing. A proper syntactic analysis would have detected serum as the

head word of the chunk. Furthermore, in the first sentence, the lacking detection and processing of

nominalizations and nested events is responsible for the wrong event.

A lack of a comprehensive evaluation
One possible reason this widespread range of problems was not addressed yet, might be the lack of

a comprehensive evaluation that could have brought them to light. The only evaluation that was

conducted, however, could only give limited insights. Robert Strache (Strache, 2012) evaluate Excerbt

on data from BioInfer (Pyysalo et al., 2007b), IntAct (Kerrien et al., 2012) and BioGRID (Stark et al., 2006)

in his Master Thesis.

The BioInfer evaluation resulted in a low F-measure of 0.113. However, even this very low value is

sugarcoated since certain events were taken out of the evaluation beforehand. Whenever biological

entities were described in a more complicated way that overstrained Excerbt’s simplistic named entity

recognition, they were left out. Thus, the evaluation only focussed on the event extraction but not

the named entity recognition necessary to that end. The meaningfulness of the BioInfer evaluation is

furthermore doubtful because of the shortcomings of the BioInfer corpus reported by Robert Strache.

The evaluations on the IntAct and BioGRID data were no evaluations on annotated corpora but on

databases containing known protein-protein interactions. Text mining systems are commonly eval-

uated by measuring the F-measure of the instances of found biological events within texts. Thus,

the evaluation on these two resources cannot act as a valuable comparison with other text mining

tools. Furthermore, the obtained results of F-measures of 4.76 ∗ 10–3 and 9.05 ∗ 10–3 respectively were
alarmingly low. Here, the F-measures were calculated on relations level, which is unorthodox and

complicates the comparability. Furthermore, both resources might lack protein-protein interactions

(PPIs) that are described in the literature and the other way around PPIs within those resources might

not be mentioned in any of the texts analyzed by Excerbt. Thus, this second evaluation is even less

comprehensive than the first one.

Summing up one can conclude that Excerbt is lacking a proper evaluation. The restricted obtained

results, however, seem to indicate a huge quality problem. While the recall problem was already

mentioned in this chapter, the precision problem might yet be worse. In all three of the evaluations the

precision was lower than the recall. Thus, a comprehensive evaluation might only be the first step in

an attempt to create a trustworthy text mining system.

9.2 Shallow Semantic Role Labeling
This list of shortcomings suggests that the development of a more comprehensive text mining system

is necessary. Such an endeavour, however, requires a huge effort. By way of illustration, BioContext,

currently probably the best comparison for a contextualized Excerbt, was developed over three

years (though some components are even older) at a national center for text mining. The different
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contextualization, text analysis and event extractionmodules were published separately by six different

first authors in nine different publications (this only includes the publications of the researchers and

their collaboration partners, modules that were from other research groups are not counted) (Gerner

et al., 2012). This can illustrate to some extend the necessary workload of developing a modern text

mining system. Implementing a complete one along the lines within the course of my thesis is therefore

unrealistic. Nevertheless, the insights gained by the work on the different supersemantic methods can

be put to use in two ways. First, a concept and roadmap on how a modern text mining system that

avoids the mistakes of its predecessors should look like can be provided. And secondly, prototypes that

illustrate at least certain relevant aspects of such a system can be implemented. Both of these were

realized in the course of this work. The concept of a modern supersemantic text mining system was

already presented in section 2.5. Two prototypes will be presented in the rest of this and the following

chapter.

The first prototype is called Shallow SRL. The idea behind it is to tackle the lacking syntactical processing

at least partially and to implement a system that is less of a black box and instead can be more easily

extended and changed. The main problem when including a syntactic analysis is a loss of efficiency.

BioContext that included multiple sentence analysis tools took six months to process Medline (Gerner

et al., 2012) and Thorsten Barnickel examined different tools for syntactical processing in the course of

his doctoral thesis with the result that none was suitable for an efficient application to the large amount

of biomedical publications that currently exist (Barnickel, 2009). In order to include the necessary

syntactic information without loosing efficiancy, in Shallow SRL I steered a middle course.

9.3 Approach
Instead of applying a full parsing approach only shallow parsing, or chunking how it is often referred to,

was used. In syntactic analyses, the words of a sentence are ordered in a hierarchy of groups of related

utterances. For example, articles and the corresponding nouns form noun phrases, verbs and noun

phrases form verb phrases and noun and verb phrases can be combined to sentences. In a shallow

parsing approach, this procedure is simplified by leaving out the hierarchical structure and instead

only chunking the lowest level of the syntactic analysis. This level includes the chunks described in

Table 9.2.

Shallow parsing is very efficient compared to full parsing. Thus, it is a way of obtaining some syntactic

information without suffering from the processing time drawbacks of other parsing approaches. In

Shallow SRL, this approach is complemented with a second heuristic in order to get additional syntactic

information in an efficient way. The second heuristic is meant to detect clause boundaries within

a sentence. This was motivated by the problems observed in Excerbt. By detecting the clauses of a

sentence before extracting events, one can avoid having whole clauses within arguments. The chunks

within a clause are then labeled by a machine learning algorithm that was (like Senna) trained on the

Propbank corpus (Palmer et al., 2005).

An overview over the sentence processing pipeline is given in Figure 9.1. The sentences themselves are

detected by the sentence detector of the OpenNLP Java library (The Apache Software Foundation, 2010).

In the first step of the pipeline, the following preprocessings are performed on the sentence:
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Preprocessing

Tokenization

POS Tagging

POS Modification

Chunking

Chunking 
Modification

Clause Detection

Feature Generation

Role Labeling

Sentence

Predicate-argument-structure

Figure 9.1: Shallow SRL processing pipeline.
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Table 9.2: Chunk types of the OpenNLP chunker. The type set is based on CoNLL-2000 shared task (Sang and Buchholz,
2000). The examples are mostly taken from Sang and Buchholz (Sang and Buchholz, 2000).

Type Label Example/description

Noun phrase NP “the most volatile form”

Verb phrase VP “has got”

Adjective phrase ADJP “old”

Adverb phrase ADVP “earlier”

Prepositional phrase PP “such as”

Subordinate clause SBAR “even though”

Particles PRT “on and off”

Conjunction phrase CONJP “as well as”

Interjection INTJ “good grief!”

Punctuation mark O “,”

List marker LST All kinds of listings

Unlike coordinated phrase UCP Collective term for everything else

• Line breaks and tabs are removed.

• Everything between any kind of brackets is cut out and treated as a sentence on its own.

• Everything between two hyphens is cut out and treated as a sentence on its own.

• The sentence is split at the following characters: ’;’, ’:’ and ’-’. Both parts are treated as separate
sentences.

• Quotation marks are changed to match the format of Propbank.

The main intent of these preprocessings is to filter out additional sentences that are embedded in the

one under investigation. Furthermore, the complexity of the sentence structure should be reduced.

The preprocessing is followed by two typical natural language processing steps. The sentence is first

tokenized and the tokens are subsequently POS tagged. Both steps are again performed using the

implementations of the OpenNLP package. Since the OpenNLP tools were trained on financial text

data they sometimes experience problems when confronted with entities from the biological domain.

Especially, gene aliases are occasionally assigned a wrong POS tag. To counteract this behavior to some

extent a rule-based post-processing of the POS tags is performed. Here, words that contain at least one

digit but are not tagged as number (CD) or nouns are relabeled as nouns.

The modified POS tags are then used as input for the chunker. Again, the OpenNLP implementation is

used for this step and again the results of the tool are modified according to a set of rules. The applied

chunking modification rules are the following:

• Chunks containing two possible NPs seperated by a ’and’ are split into three chunks (the two NPs
and the ’and’).

• Chunks are split at commas, brackets and hyphens. The separation characters and the rest of the
chunk before and after it are again turned into separate chunks.
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• Two NPs and the chunk between them are combined if the intermediate chunk contained only
the expressions ’ of ’ or ’ ’s ’.

• Two NPs and the chunk between them are combined if the intermediate chunk contained only of
a single apostrophe and the first NP ends with a ’s’.

• An enumeration detection heuristic is applied that tries to combine chunks of the same type that
are connected with commas and the coordinating conjunctions ’and’ and ’or’.

The objective of the chunking post-processing steps is to get the chunks in a form that most precisely

resembles the arguments that should be extracted in the role labeling step. Thus, genitive constructions

and enumerations are combined into single chunks. For the enumerations, a heuristic was constructed.

The problem when trying to detect enumerations in a context-free manner is that they can look the

same as the point of contact of two clauses that are combined by an ’and’ or a ’or’. Take for example

the utterance ’p53 and lrrk2’. This looks like an enumeration on first sight. It could, however occur in a

sentence like the following:

Bax activates p53 and lrrk2 inhibits it.
In this case, the clauses are enumerated and not the noun phrases. There exist several additional

formulations where enumerations look similar to other utterances. Therefore, the developed heuristic

goes beyond merely combining utterances that look like enumerations at first. For this, the range of the

enumeration and the amount of verbs within the respective clauses are considered. Only utterances

that span over more than two entities are considerd enumerations. If this is not the case, the heuristic

considers the two clauses that would be created if the enumeration is not created. If both of the clauses

contain a verb, no enumeration is created, otherwise it is. While this procedure is not perfect, it at least

provides an improvement over ignoring enumerations.

Afterwards, the clause boundaries are detected by a set of rules: Commas and a set of unambigue

function words that commonly indicate subordinate clauses are considered as clause boundaries. The

following function words were used: although, because, but, how, if, that, though, what, when, where,

whether, which, while, who, whom, why. Additional ones, like ’since’might be included in the future.

However, here a disambiguation is required in order to distinguish occurrences of ’since’ that begin a

subordinate clause from those that only begin a prepositional phrase like in ’since 1990’. Furthermore,

infinitives were considered as indicating clause boundaries if they were not in a verb chunk with a

finite verb. This was done in order to create subordinate clauses with at most one verb, thus, reducing

the argument search space. In infinitive constructions, one word is often used as argument for two

predicates. Take for example the following sentence:

Bill told Bob to go to Beth.

Here, Bob is the ARG1 of the predicate ’tell’ and the ARG0 of ’go’ at the same time. Such constructions

are a way of shortening expressions. When extracting events from them this has to be considered. Thus,

the noun phrase preceding the infinitive clause needs to be considered as the missing argument in the

infinitive clause. This feature was not yet implemented, since it was irrelevant for the tool Shallow SRL

was applied in. In the future, however, this should be included, if Shallow SRL is used for generalized

event extraction. In the English language, infinitive clauses and some subordinate clauses are not

surrounded with commas. Thus, in these cases the end of the clause was predicted by a heuristic. The
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clause was considered to end when another verb occurred. However, if the other verb was preceded by

a noun this noun was not considered part of the subordinate clause but instead subject of the verb. This

was done to avoid the problems described in the ’The necessity of syntactical post-processing’ section.

Once the clauses were detected, they are labeled with a specific type. The following types were

considered: main clause, relative clause, causal clause, contrary clause, conditional clause, other

subclause, ellipsis, said-clause, that-clause, infinitive clause, gerund clause, temporal clause, location

clause, temporal insertion, manner clause, other verb modification. This is a mixture of syntactical and

semantical types. Where possible, e.g. in the case of tempus or location, the semantic interpretation

of the clauses was already assigned. If this was not obvious, a syntactic type, like relative clause, was

assigned. Main clauses that were interrupted by subordinate clauses (e.g. by the insertion of a relative

clause after the subject) were merged to be treated like one clause.

Having detected and classified the clauses, now features for the machine learning algorithm were

created. Each chunk was turned into a feature vector for each verb within its clause (this should be

maximally one if the clause heuristic works perfectly). Table 9.3 gives an overview over the used

features.

Table 9.3: Overview over the features used by the support vector machine in Shallow SRL.
Feature

Distance of chunk in question (CIQ) to verb

Word embeddings of head words in five chunk window around CIQ

Word embeddings of head words in five chunk window around verb

Voice of the verb

Amount of verb chunks between CIQ and verb

Amount of prepositional phrases between CIQ and verb

Amount of other chunks (0) between CIQ and verb

POS types of head words in five chunk window around CIQ

POS types of head words in five chunk window around verb

Amount of words in CIQ

Chunk types in a five chunk window around CIQ

Chunk types in a five chunk window around verb

Amount of verbs in the sentence

Whether CIQ was preceded by ’who’ or ’which’

Whether CIQ was preceded by ’whom’ or ’whose’

Whether CIQ was preceded by ’that’

Whether the first word in CIQ is from a list of temporal terms

Whether the last word in CIQ is from another list of temporal terms

Whether the sentence contains subordinate clauses

Whether the chunk is a placeholder for a subordinate chunk

If it is a placeholder, the type of the subordinate clause

Whether the current clause is a placeholder in another sentence

The used word embeddings were obtained from Collobert andWeston as published on the metaoptimze

website (Turian et al., 2010a). Word embeddings are vector representations of words. Like the term
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9 Towards a Supersemantic Analysis I - Shallow SRL

vectors described in chapter 7, they describe a word space model. Collobert and Weston created theirs

by training a deep neural net. The distance to verb feature was bound to values of up to +/- 5 to avoid

data sparseness. Likewise, the amount of intermediate verb chunks was bound to three, the amount of

words within the chunk in question to four, and the amount of verbs in the sentence to seven. Two

lists of temporal terms were created to check for temporal arguments. The first list contained words

that typically stand at the beginning of a temporal expression, like ’after’ in ’after the game’. Likewise,

the second list contained words that typically stand at the end of a temporal expression, like ’ago’ in

’three years ago’. In nested events, whole subordinate clauses can be arguments. To account for such

situations, subordinate clauses can - depending on their type - be treated as chunks in their respective

superordinate clauses. This allows them to be labeled just the same ways as normal chunks. The last

three features in Table 9.3 refer to such placeholder chunks.

The featureswere used to train, test and apply a linear support vectormachine. The Java-implementation

of LibLinear (Waldvogel, 2013) was used for this. The classification was performed on chunk level with

the restriction that only chunks within the same clause as the respective verb were classified. Since

verb chunks can contain ArgM-MOD and ArgM-NEG arguments, these were extracted rule-based in a

post-processing step. For this, modal verbs and the negation terms ’not’, ’n’t’ and ’never’were extracted

and labeled accordingly. The final predicate-argument structure was then used analogously to Senna in

Excerbt to get an improved event extraction.

9.4 Evaluation & Application
Shallow SRL was evaluated on section 23 of the Propbank corpus. This section is traditionally used for

evaluation of semantic role labeling systems. Thus, the comparability with other systems is given. The

evaluation was performed on chunk level in order to match the problem representation of Shallow

SRL. Furthermore, the systems performance was evaluated within the clause boundaries. Here, a recall

of 0.74, a precision of 0.7 and a f-measure of 0.72 was reached. This value is comparable but slightly

lower than the reported f-measure of 0.75 of Senna on section 23 of the same corpus. Additionally, the

efficiency of the two approaches was compared. Shallow SRL needed on average 7.68 miliseconds to

process one sentence on a Mac Book Air with a 1.7 GHz Intel Core i5 processor with 4 GB RAM. Senna,

on the other hand, took 98.71 miliseconds per sentence on the same hardware. Thus, Shallow SRL has a

significant efficiency advantage.

Furthermore, Shallow SRLwas applied to a practical problem of text mining. Dictionaries and glossaries

are useful tools in every specialized domain. They can be used as a reference system as well as to

look up unknown terms. An overview over related work on this is given in Table 9.4. As one can see,

multiple systems have already been proposed, but within the biomedical domain for English texts to

my knowledge only the Definder system of Klavans and Murescan (Klavans and Muresan, 2001) exists.

The construction of such resources is very time- and labor-consuming. Furthermore, languages are

dynamical. New terms and concepts emerge on a regular basis which quickly lets the existing resources

become outdated. As a consequence of this, very specialized domains often lack appropriate up-to-date

dictionaries. In order to overcome this shortcoming, automated approaches to extract definitions from

unstructured text corpora need to be developed. In the course of this thesis, Shallow SRL was adapted

for the specialized problem of definition extraction in a tool called DefineTHAT.
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In order to automatically extract definitions, two central problems need to be solved. First, sentences

containing definitions need to be identified and secondly the term that is defined needs to be extracted.

To accomplish the first task, Shallow SRLwas combined with a rule-based filter that determines whether

the sentence under investigation contains a definition. The identification of the defined term then

boiled down to identifying the subject of the corresponding statement. The filter identified a sentence

as containing a definition if one of the following conditions was fulfilled:

• The verb is a form of “to be”, there exists a noun chunk in front of the verb, the word before the
verb is not “there” and the verb is followed by an article.

• The verb is a plural form of “to be”, there exists a noun chunk in front of the verb, the word before
the verb is not “there” and the verb is followed by an adjective and a noun.

• The verb is a form of “to be”, there exists a noun chunk in front of the verb, the word before the
verb is not “there” and the verb is followed by a noun.

• The verb is a form of “to be”, there exists a noun chunk in front of the verb, the word before the
verb is not “there” and the verb is followed by an adverb and an article.

If a sentence was detected as containing a definition, the term that is defined was identified by role

labeling the sentence. Then the ARG0 and ARG1 roles with respect to the “to be”-verb were considered.

Since Propbank is not annotated for “to be” there is no reliable destinction between the two. Thus,

they are treated as equally likely candidates. A sample evaluation on the considered corpus revealed,

however, that the defined term is usually (in around 95% of the cases) in the subject of the sentence.

Consequently, the ARG0 or ARG1 that is in this position is taken.

The approach was evaluated on a part of the Wesbury Lab Wikipedia corpus (Shaoul and Westbury,

2010). The sentences were first automatically filtered to only include sentences that were detected

by the rule scheme described above. Afterwards they were manually inspected to correct sentence

parsing errors in the corpus and to label the subject of all “to be” verbs within it. In total, 451 sentences

were labelled manually. Testing the system on a data set from domains independent of the data the

classifier was trained on should increase the expressiveness of the obtained result with respect to its

generalisability. The statistical values were calculate word-based and on the complete sentence to

facilitate comparability. The classifier reached a precision of 0.93, a recall of 0.94 and a f-measure of

0.94 on word level. All in all, 89.14% of the sentences were classified completely correctly. The classifier

was applied to a corpus, consisting of more than 120 million sentences. This yielded approximately 11.1

million definitions. Providing the results as a website and an Android-App is currently in preparation.

9.5 Related Work
Table 9.4 gives an overview over other approaches to definition extraction. One can see that the focus

of most of the systems is on e-learning and question answering. The picture is more heterogeneous for

the languages of the systems. For a wide variety of languages, definition detection systems have been

developed.
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Table 9.4: Related work on automatic definition detection.
Authors Approach Language Domain

(Klavans and Muresan, 2001) Rule-based English Medicine

(Gaudio and Branco, 2007) Rule-based Portugese E-Learning

(Navigli and Velardi, 2010) Word class lattices English Various domains

(Kobyliński and Przepiórkowski, 2008) Random forest Polish E-Learning

(Westerhout, 2009) Random forest Dutch E-Learning

(Fahmi and Bouma, 2006) Maximum entropy Dutch Medicine

(Borg, 2007) Genetic algorithms English E-Learning

(Storrer and Wellinghoff, 2006) Rule-based German Technical texts

(Trigui et al., 2010) Rule-based Arabic Question answering

(Przepiórkowski et al., 2007) Rule-based Slavic languages E-Learning

(Miliaraki and Androutsopoulos, 2004) Support vector English Question answering

machine

(Saggion, 2004) Rule-based English Question answering

(Walter and Pinkal, 2006) Rule-based German Law
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Towards a Supersemantic Analysis II - IntegreSSA

While Shallow SRL showed quite good results in the Propbank evaluation and the definition detection

applications, there were also shortcomings to the approach: the clause splitting was based on a rule-

based heuristic, which cannot be as powerful as a full-fledged syntactic analysis, likewise the detection

of enumerations was only heuristic-based and prone to errors and finally the classification of the

chunks was performed independent of each other making it possible to obtain argument combinations

within a predicate-argument-structure that do not make sense (e.g. multiple ARG1s).

Most of these could be tackled by developing the heuristic used in Shallow SRL into a more powerful

syntactic analysis tool or by replacing it by an existing one at the cost of sacrificing the efficiency of

the system. Additional to these, however, there exist more fundamental problems with the general

approach that was taken by Excerbt and adapted in Shallow SRL. While part of Shallow SRL’s internal

logic was extracted to a rule system, at the heart of it, it is still a machine learning system. As mentioned

before, the problem with such systems is the fact that the models that they learn are encoded in a way

incomprehensible for humans. Thus, they act as a black box and integration of expert knowledge and

additional modules is tricky and at best indirectly possible.

Furthermore, a supervised classifier, like the ones used in Senna and Shallow SRL, always depends

on available training data. For semantic role labeling, the Propbank corpus (Palmer et al., 2005) is the

only available comprehensive corpus for training semantic role labeling 9. Thus, all classifiers trained

to role label are predetermined to follow the Propbank annotation scheme. One problem with this is

the definition of large arguments mentioned before that makes syntactic post-processing necessary.

Another, more fundamental one, is the fact that Propbank only creates PAS from verbs. Biological

events, however, can also be described using adjectives or nominalizations (e.g. ’Foxp3-dependent

activation of lrrk2’). These cases can never be captured when using a Propbank-trained classifier.

9Though it should be mentioned that with BioProp (Tsai et al., 2007) there exists a considerably smaller biomedical alternative that

follows the same annotation guidelines as Propbank.
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Likewise, Propbank does not account for nested events. Apart from that, it has to be pointed out that

Propbank consists of annotations of financial news. Language might, however, differ between different

domains. Consequently, a classifier trained on data from the financial domain might perform worse in

the biomedical domain.

Based on all these considerations a second prototype was designed and developed. Because of the

fundamental restrictions of the Excerbt approach, the underlying design was changed in this second

prototype. Instead of using a supervised classifier a system efficiently combining a syntactic and

semantic analysis was realized. The integration of syntactic and semantic information followed the

approaches of feature structures, which define grammars including semantic features (see e.g. (Gardent

and Kallmeyer, 2003; Kikui, 1992; Latreche, 2011) ). This framework was designed to naturally integrate

important NLP modules like word sense disambiguation, negation detection or anaphora resolution

instead of having to apply them as mere post-processings. This way the syntactic analysis itself can

benefit from semantic information provided by the modules. Moreover, this strong amalgamation of

syntax and semantics is further promoted by including semantic information early on in the sentence

analysis. In the spirit of this integration of modules and linguistic analyses, this second prototype is

called IntegreSSA (integrated supersemantic analysis) .

10.1 Integrated analysis
For the work on IntegreSSA I collaborated with Felix Sappelt, a Master student I supervised, who

implemented a German version of IntegreSSA for the analysis of German patient records (Sappelt, 2013).

I designed the German sentence analysis together with Felix Sappelt and supervised the development

process as well as the evaluation. This application of IntegreSSA will be presented in section 10.3. The

technical realization of the system is based on a comprehensive linguistic analysis system that was

provided by a Munich software company called Clueda10. Clueda’s text analysis conforms with the

ideas of a Supersemantic analysis. Based on this fundamental framework, I implemented different

adaptations for the biomedical domain, additional PAS extraction levels and a biomedical event

extraction system. The modular structure of the framework allowed the seamless integration of

the anaphora resolution system described in chapter 6. In the remainder of this section, first the

general concept of IntegreSSA and then the adaptations for the biomedical domain as well as the event

extraction system are presented.

In order to guarantee a sound and comprehensive concept and framework the conception of IntegreSSA

is based on a list of considerations that largely arose from the experiences made with Excerbt, Shallow

SRL and the implemented tools described in the previous chapters. These considerations were reflected

in several design decisions. In particular the following ones should be pointed out (cf. (Sappelt, 2013)):

• The artificial boundary between syntax and semantics was abolished. To this end the named
entity recognition is preponed in contrast to Excerbt and many other text mining systems. This

way lexical semantic information is available and can be beneficial during the sentence analysis.

As mentioned before, his line of reasoning is adapted from feature structures. Furthermore, a

semantic pattern recognition module was included at the beginning of the sentence analysis. This

10http://www.clueda.com
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module tackles the detection of semantic concepts that naturally are not stored in a knowledge

base, yet are still possible to detect without additional context information. An example of this are

time designations like dates. In the scientific domain, such a pattern recognition module could

e.g. be extended to detect citations. The pattern recognition module adds additional semantic

information early in the analysis which can subsequently be used to make better decisions when

analyzing the syntactic structure of a sentence. From a typical text mining perspective the pattern

recognition module is a collection of NER algorithms like they are commonly used in many text

mining systems.

• The system should be understandable as well as easily extendable and adaptable. Therefore,
instead of having to deal with the blackbox character and training corpus dependency of machine

learning systems, a rule-based approach was taken. This way events derived from nominaliz-

ations and adjectives could naturally be included without having to annotate training corpora.

Furthermore, the adaptability of the system should be guaranteed by implementing IntegreSSA

in a highly modular and flexible pipeline architecture. A so-called level stack allows to add and

exchange modules with minimal effort. A module in this connection is a linguistic algorithm

designed to solve a specific subproblem in the integrated analysis.

• Modules should be integrated at the stage were they make most sense. This includes e.g. modules
like negations, word sense disambiguation, and contextual arguments like time or location

information. Following this paradigm, the detection of time and location chunk is integrated

early on in the pattern recognition stage. Likewise negation and WSD are integrated into the

sentence analysis level stack instead of applying them as mere post-processings. Furthermore,

word sense disambiguation is split into multiple tasks at different stages. Early on a comparison

with POS tags is carried out. This way word senses with different POS tags like ’ache’, the noun

and ’to ache’, the verb could be differentiated. At a later stage event information is taken into

account to differentiate different word senses. For example, in a sentence ’ACHE is regulated

in two neural cell lines by APP.’ the information that the regulation event requires a gene as its

theme (ARG1) is used to distinguish the gene ’ACHE’ from the pain ’ache’. Thus, each relevant

module to distinguish word senses is integrated where it would naturally fit into the processing

pipeline.

• A way to solve multiple problems at once should be provided. The flexible level stack allows to
solve problems at the stage that it makes most sense to solve them, e.g. by prepending the NER or

by combining the extraction and contextualization of relations. In other tools like BioContext such

contextualizations are performed in a post-processing step where the results of two individual

tools are combined. In IntegreSSA, this is performed in one step when the relations between

entities are extracted. As already pointed out in chapter 2, there are, however, interdependencies

between different NLP tasks. In order to account for this, a backtracking mechanism to allow

for down-stream effects of higher levels is included in the concept of IntegreSSA. This way e.g.

chunks that look like enumerations could subsequently be split, if their components are needed

as arguments in the event extraction step.

• The computational efficiency of the approach should still be guaranteed. Adding more syntactic
analyses usually comes at the cost of higher processing times. Yet, for a large-scale application a

certain degree of efficiency is required. For this reason, performance was constantly taken into
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consideration during the implementation of IntegreSSA. This aspect was largely accomplished

by the Clueda implementation that based the processing of their levels on specifically optimized

grammars.

Based on these considerations, IntegreSSA was designed. A schematic overview of the developed

prototype is given in Figure 10.1. As one can easily see, the design strongly followed the comprehensive

supersemantic analysis network presented in Figure 2.4. While this prototype does not yet have all

the features mentioned in Figure 10.1 (e.g. the learning capabilities and the section information are

missing), the flexible architecture simplifies the integration of these modules.

In this framework, a text is analyzed by first disassembling it into its components. For this purpose,

the sentences making up the text are extracted using a sentence detection module. The sentence, in

turn, is split into the tokens it is made up of using a tokenizer. These tokens are then POS tagged in

order to identify the part-of-speech of each token. All of these, sentence splitting, tokenization and POS

tagging, are performed with the corresponding modules of the Java NLP analysis framework OpenNLP

(The Apache Software Foundation, 2010). Based on these preprocessings the actual sentence analysis is

conducted.

As mentioned before, the first step in this is the detection of named entities. In IntegreSSA, a dictionary-

based NER approach was taken. The lexical information required for this was entered into and

managed by the Clueda ontology technology, which guaranteed performant access and the possibility

of extensively scaling up the resource in the future. The typical NER was accompanied by a pattern

recognition step, hence the name NE/PR. Pattern recognizers already implemented in the Clueda imple-

mentation include date and time recognizers, a currency recognizer, and a percentage recognizer. The

flexible implementation of the NE/PR module, however, allows to define and add additional recognizers

with minimum effort. Two examples of these will be given in 10.3 where both the recognition of

measurements and dosages were realized as recognizers in the NE/PR module.

The detected entities and patterns constitute the lowest level of chunks. A chunk is an accumulation

of words that form a meaning-bearing whole. Chunking is a well-established linguistic procedure

that has been widely applied to structure sentences (see e.g. (Grover and Tobin, 2006; Latreche, 2011;

Ramshaw and Marcus, 1995; Sang and Buchholz, 2000)). In IntegreSSA, a chunk always has a type and

potentially has meaning objects attached to it. Entities and patterns found by the NE/PR module form

so-called ’KnownStuff ’ chunks. Each of these chunks is accompanied by a meaning object referencing

the corresponding entry in the lexical resource. This way, the complete semantic information stored in

the lexical resource is available during the whole sentence analysis process and can be used in the rules

for building chunks and extracting contextualized relation. The common linguistic task of connecting

entities in a text with a knowledge base is typically referred to as entity linking (see e.g. (Chen and Ji,

2011; Han et al., 2011; Zhang et al., 2010)). Exemplarily, for verbs frame set information is stored in

the lexical resource that is essential for identifying the arguments of the verb. In such a frame set, the

amount and the allowed types of arguments for a verb are stored. For the verb ’to activate’ that can

describe a positive regulation event e.g., the frame set contains the information that two arguments are

needed. The frame set information for this was taken from Propbank (Kingsbury and Palmer, 2002).

In IntegreSSA, contextualized relations are extracted as predicate-argument-structures. By using the

frame set information, the algorithm knows how many arguments it needs to look for. In the case of

’to activate’ this is two (who activated what), while for ’to give’ it would be three (who gave what to
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Figure 10.1: Schematic overview of IntegreSSA
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whom) and for ’to die’ only one (who died). Furthermore, the frame sets provide information about

the types of the entities. This way an event PAS for ’to activate’ is only produced if in Arg1 one of the

required classes (protein or promoter) is found. If the same verb describes different events, multiple

entries were included in the lexical resource resulting in multiple meanings that could potentially

be appended to a chunk. This way the algorithm is presented with all possibilities and can rule out

variants when they stop making sense in the course of the sentence analysis. Such decisions based on

semantic constraints are in accordance with the semantical agreement of feature grammars (Latreche,

2011). In order to decide between multiple interpretations that all make sense, frequency information

giving an a priori probability could be entered in the lexical resource and are considered during the

event extraction step. In the biomedical case, this was done e.g. for the verb ’to express’which could

be used to describe gene expression as well as transcription events.

The low level KnownStuff chunks and remaining tokens are then iteratively combined tomore andmore

complex chunks. This Sentence Analysis module is realized by a modified context-free grammar (CFG) .

CFGs were invented by Noam Chomsky in the late 1950s (Chomsky, 1959) and have been frequently

applied ever since (e.g. (Charniak, 1997; Earley, 1983; Tomita, 1985)). Formally, a CFG is a 4-tuple

consisting of an initial symbol S, a terminal vocabulary∑, a non-terminal vocabulary V , and a finite
set of rewriting rules R. The intitial symbol S ∈ V and subsequently other non-terminal symbols from V
can be rewritten by a series of rules defined in R : V → (V ∪∑)∗. This way each non-terminal symbol is
replaced by other terminal and non-terminal symbols until only terminals remain. In sentence analysis,

such grammars are used to determine the syntactic structure of a sentence. Here, the terminal symbols

correspond to words, the non-terminal symbols to phrases and the intitial symbol to the complete

sentence. In IntegreSSA, a modified version of this CFG was used. Instead of terminal and non-terminal

symbols actual objects of an object-oriented programming language were used in the implementation.

Furthermore, the rewriting rules were adapted to work on functions of chunks instead of symbols.

Here, arbitrary functions that map a chunk to truth values indicating whether or not it matches were

allowed. These functions worked as a kind of algorithmic symbols which can be used to write rules

similar to those in traditional CFGs. However, they are more powerful allowing to define constraints

based on the tokens, POS tags, chunk types or even semantic properties of the chunks in question (cf.

(Sappelt, 2013)). An example of how such a rule can be written is given in following:

< NC >::= π(c,DT)? π(c, JJ) ∗ π(c,NN)
Here, a rewriting rule for a non-terminal noun chunk (NC) is shown. The function π is one of the

algorithmic symbols mentioned above. It takes two parameters - a chunk and a POS tag - and matches

if the given chunk possesses the given POS tag. In this case, an optional determiner (DT) is possibly

followed by an arbitrary number of adjectives (JJ) and a noun (NN) . Using a variety of such rules

different chunks and clauses are detected. The different chunks are detected with grammars organized

in levels in the already mentioned level stack. For IntegreSSA, a total of 27 of such levels were created.

The first of these levels is the NE/PR, the remaining ones are chunking or PAS extraction levels. The

latter of which are also defined as grammars. Relations and their contextualizations (currently negation,

time and location) are extracted in the form of PAS at different stages of the analysis pipeline. This

allows to use the semantic interpretations of the PAS in the remaining sentence analysis in the same

way the lexical semantics of ontology entities and patterns from the NE/PR step could be used. An

example of the results of such a sentence analysis is given in Figure 10.2.
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Figure 10.2: Example output of the IntegreSSA sentence analysis.

Finally, in IntegreSSA the PAS are filtered for those corresponding to biological events. To determine

which PAS are relevant the training set of the BioNLP corpus was examined for verbs, nouns and

adjectives that can trigger biological events. For each of these, the corresponding frame set information

was manually included in the ontology. In total 293 frame sets were created and categorized in the

eleven different event categories of BioNLP. The different categories were: Binding, Gene Expression,

Negative Regulation, Positive Regulation, Localization, Phosphorylation, Protein Catabolism, Protein

Modification, Regulation, Transcription and Ubiquitination. A filter for biological events was written

that accepted a PAS only if it matched the corresponding frame set information of an event predicate.

Both the filtered biological events and the normal PAS derived from the single sentences are then used

in the text analysis module. Here, the different relations are combined to form a semantic network

representing the knowledge of the underlying text. This network is an abstraction of the original text.

Semantic networks are a typical representation of semantic relationships between concepts that has

been widely applied in different linguistic and AI applications (see e.g. (Havasi et al., 2007; Niemann

et al., 1990; Shapiro and Rapaport, 1986; Sussna, 1993)). In IntegreSSA, this network is represented as a

topic map. Such an abstract representation is in line with van Dijk’s idea of information reduction which

he discussed in the context of his macrostructure framework for discourse analysis (van Dijk, 1977).

Van Dijk proposed different macrostructure operations to reduce semantic complexity. For example, he

proposed the deletion of rather irrelevant attributes of arguments. In an utterance ’a little town’, for

instance, van Dijk proposed to omit the attribute ’little’ in order to simplify the macrostructure of the

text. In accordance with this, the semantic network created based on topic maps avoids attributes that

are not explicitely entered in the ontology. The inclusion of further paradigms from pragmatics and

discourse theory in the supersemantic analysis is planned for the future. Exemplarily, the different

illocutionary speech acts of Austin described in section 2.2 result in different sentence types like

questions, commands or normal statements. A detection and distinction of these is planned. This would

on the one hand support the sentence analysis and could on the other hand be used in the text analysis

in order to use the statements derived from these appropriately. In accordance with this, a distinction

of different discourse types could be added in a similar fashion.

The general text analysis framework described above was extended and modified in several ways

to meet the requirements of the biomedical event extraction task IntegreSSA was designed for. An

overview of these extensions and modifications is given in the following:
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Tokenization modifications
The tokens used in IntegreSSA are slightly more fine-grained than the original ones. First of all, the

OpenNLP tokenizer used by the Clueda framework sometimes leaves brackets attached to words. This

is corrected in InegreSSA. Furthermore, a certain type of chunk is separated into three different chunks

due to the adjective event extraction discussed further below. In BioNLP expressions like the following

are considered biological events:

CD40-induced upregulation of CD80

In this example two nested events should be detected. The first one is the upregulation of CD80 and

the second one is the induction of this upregulation that was triggered by CD40. Thus, the word

’CD40-induced’ includes both the predicate and the Arg0 of the predicate-argument structure describing

the second of these events. Since the PAS detection mechanism implemented in IntegreSSA aims at

identifying and labeling chunks for the different roles in a PAS, it is necessary to split this word up.

This way the different parts become token chunks that can be identified as predicate respectively Arg0

of a PAS. For this reason, such formulations that contained relevant predicate trigger words were split

into three tokens: the noun, the hyphen and the adjective.

POS tagging modifications
Like most NLP tools the POS tagger used in IntegreSSA (OpenNLP POS tagger) was trained on financial

news texts. This typically produces problems when the tagger is used in other domains with words it

never encountered during its training phase. For this reason, in order to improve the quality of the POS

tags a series of post-processings was performed. This way the tagger was adapted to the biomedical

domain.

Furthermore, POS taggers highly depend on the capitalization of words. Unfortunately, in scientific

articles headlines are often capitalized, which frequently leads to missclassified tokens. Such a behavior

is especially problematic for verbs. Many capitalized verbs are tagged as nouns and thus can be used to

derive meaningful biomedical events from them. In order to correct for this, another post-processing

step is required. In total, in IntegreSSA the following post-processings of POS tags were conducted:

• POS tags of event words were changed to their corresponding correct POS as determined by the
ontology entry of the word, whenever the assigned POS tag clashed with the ontology information

and the form as it was given in the text.

• POS tags of proteins as given in BioNLP were corrected to proper nouns.

• POS tags of words containing digits as well as letters were changed to proper nouns. In addition to
the BioNLP proteins other proteins and compounds were commonly misclassified by the original

POS tagger. This post-processing counteracted this.

• The bracket tokens detached in the tokenization modifications were POS tagged with the corres-
ponding -LRB- and -RRB- tags.
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Biomedical ontology
Since the approach taken in IntegreSSA depends on the early availability of lexical semantic information,

the creation of a biological ontology was required. In contrast to the ontology used in Excerbt, the

IntegreSSA ontology is hierarchical. This hierarchy was made use of at different stages. For example,

in the anaphora resolution module described in chapter 6 the parent-child information were used to

detect appropriate antecedents. This way, for example, ’Eomesodermin’ could be matched to all its

parents in the hierarchy like ’T-box’, ’transcription factor’ and ’protein’, while other proteins like ’il-10’

would also be matched to the term ’protein’, however not to ’T-box’ but instead to its own parent nodes

like ’Interleukin’.

The created biomedical ontology consisted of 69 classes and 5076 individuals. Classes are all umbrella

terms that can describe different individuals. They are the possible anaphors in the anaphora resolution

algorithm. Individuals are the leafs of the ontology tree. They correspond to real entities in the world

and actual descriptions of activities. Thus, the type of biological event (e.g. a gene expression event)

was categorized as a class, while the actual term describing the event (e.g. the verb to express) was

categorized as an individual. The largest amount of individuals are so-called unclassified verbs. They

were provided by Clueda and consisted of verbs and their frame set information. These entries were

used in the course of the sentence analysis and PAS extraction. Additional to these, in the course of this

work frame set information for verbs describing the events covered in the BioNLP competition were

included in the ontology. These consisted of 293 entries.

BioNLP entity recognizer
Since task 1 of the BioNLP competition is a pure event recognition task that is largely independent of

named entity recognition, the relevant proteins for which events should be extracted are given in all

texts. In order to integrate this information in the IntegreSSAworkflow, an additional protein recognizer

was implemented and added to the NE/PR module. The recognizer reads the protein information given

in the BioNLP input files and accordingly creates KnownStuff chunks with the corresponding protein

meanings. This way the correct proteins are detected and the semantic information that this chunk

refers to a protein can be used throughout the analysis.

Chunking modifications
Since Clueda did not provide me with all required functionalities, it became necessary to add certain

chunking and PAS extraction levels in order to be able to capture all relevant information. Concerning

the chunking the following modifications and additions were implemented:

• In expressions like ’CD40-induced upregulation of CD80’, adjectives are built by combining a noun
and an adjective with a hyphen. Like mentioned before both the adjective and the noun need

to be detected since they can form the cause and the predicate in a biomedical event. Thus, the

tokenization separates them to make them detectable individually. However, the different tokens

would break the usual sentence analysis because the knowledge that the construct noun-hyphen-
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adjective corresponds to an adjective is missing. Consequently, to account for this, an additional

AdjectiveHyphenLevel was implemented that builds adjective chunks from such utterances.

• An ellipsis chunk was added that detects utterances of the form ’, but not ...,’. As could be seen in
the small sample evaluation performed in the evaluation of the Negatome text-mining approach

in section 4.5, such ellipses could make up as much as 10% of negated events. Furthermore,

detecting these chunks prevents the elements of it to be mistaken for arguments in other PAS and

thus increases the performance of the sentence analysis.

• A domain-specific phenomenon of scientific articles is the use of certain forms of citations. In
many of these the cited element is put in brackets in the middle or at the end of a sentence but

is not part of the sentence in a linguistic sense. Thus, in order to analyze the sentence correctly

these citations have to be detected as such. In the articles in the BioNLP data numbers in squared

brackets are used to indicate citations. In order to detect these a level building chunks from

digits surrounded by these brackets was implemented. Furthermore, to properly detect biological

entites like the virus ’[HTLV-I]’ as nouns, all other expressions in such brackets were combined to

noun chunks.

• Since Clueda did not provide me with a comprehensive enumeration detection for noun chunks,
a heuristic similar to the one in Shallow SRL was implemented. Noun chunks before the first and

after the last verb that look like an enumeration were combined to noun chunks. Furthermore,

such patterns in between two verbs were combined based on an educated guess. If the last

noun chunk was immediately followed by a verb, it was considered likely that there are two

clauses combined with and ’and’ and thus no enumeration was detected. Furthermore, in order

to indicate that multiple PAS need to be build from arguments containing an enumeration, an

enumeration meaning was constructed and attached to the resulting chunk, which referenced the

components of the enumeration.

Additional PAS extraction levels
Analogously, for PAS extraction certain levels needed to be implemented, so the most common ways,

in which biomedical events were described in the BioNLP data, were covered. For this purpose, the

following PAS extraction levels were added:

• While nominalizations derived from genitive constructions like ’the activation of Foxp3’ could be
detected by the sentence analysis pipeline, nominalizations without a genitive structure like ’Foxp3

activation’ could not be detected. To counteract this shortcoming an additional nominalization

PAS extraction level was implemented that extracted PAS from noun chunks if they contained a

protein and a fitting biomedical event predicate.

• A PAS extraction level for adjective predicates was implemented. Here, noun chunks containing
adjective predicates were analyzed. Both normal adjectives and those with the noun-hyphen-

adjective construction mentioned above are used for analysis. This way an utterance like ’CD40-

induced upregulation of CD80’ results in a PAS with the predicate ’induced’, Arg0 ’CD-40’ and Arg1

’upregulation of CD80’, the last of which in turn contains an additional PAS with ’upregulation’ as

a predicate and ’CD80’ as Arg1.
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• Apart from within noun chunks adjectives can also express events in other forms. Two examples
of these are given in the following two utterances:

“LMP1 was detectable in LMP1 transgenic B cells, ...”

‘Deletion of the FKH domain, critical for nuclear localization, ...”

In the first case, the adjective appears as an object of a ’to be’-verb. The subject of the verb should

be the Arg1 in this case. The PC belonging to the verb should be the ArgM-Loc. The second case is

similar to the first. However, here the ’to be’-verb is omitted and the adjective appears within the

resulting ellipsis. Again the NC in the beginning, which would be the subject of the ’to be’-verb

should be the Arg1 of the PAS generated from the adjective. In order to cover both of these cases,

a second adjective PAS extraction level was implemented that detects these utterances.

• A level extracting PAS from the ellipsis chunks mentioned before was implemented. In an expres-
sion like ’Overexpression of Foxp3, but not of deltaFKH, ...’ this level creates a PAS containing of

’Overexpression’ as predicate and ’deltaFKH’ as Arg1.

Apart from these additions, there were slight modifications made to the format of the predicate-

argument-structures in order to match the representation used in BioNLP. For example, in the original

Clueda sentence analysis pipeline PAS were defined on chunks which lead to predicates like ’have been

activated’. In contrast to this, BioNLP referenced only the head word of the verb chunk (’activated’). In

such cases, the format was adapted to match BioNLP in order to provide a meaningful evaluation.

Furthermore, as mentioned above, for PAS containing arguments with enumeration meanings for each

of the referenced elements one PAS containing the referenced element as the corresponding argument

was created.

Nested events
Another functionality, not yet, provided by the Clueda pipeline was the extraction of nested events. In

order to circumvent this short coming, a mechanism to simulate the nesting of events was implemented.

Whenever biological events were detected, a meanig representing this event was attached to the

corresponding predicate. This way the semantic information about the event could be used when

checking whether this event would fit as an argument for the superordinate event.

10.2 Evaluation
IntegreSSA was evaluated and compared to Excerbt on various levels and for various quality measures.

First, the quality and the processing speed of the two sentence analysis modules were compared.

For this purpose, an evaluation on Propbank was conducted. Both systems were tested on the same

Clueda testing system in order to allow comparability. The results of the processing speed in relation

to sentence length can be seen in Figures 10.3 and 10.4. With an average processing time of 40 and

41 ms respectively, IntegreSSA and Senna showed very similar performance. Looking at the time vs.

sentence length plot one can, however, make out an exponential increase of processing times with

increasing sentence length for Senna. This could turn out to be problematic when using the tool in a
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Figure 10.3: Processing times of Senna in relation to the length of a sentence.

Figure 10.4: Processing times of the IntegreSSA sentence analysis in relation to the length of a sentence.

scientific domains with possibly more complicated and complex sentences. IntegreSSA, on the other

hand, showed a more linear increase of processing times with respect to the sentence length.

The quality comparison of Senna and the sentence analysis module of IntegreSSA was conducted on the

full corpus of Propbank. Since IntegreSSA thus far focusses on the extraction of obligatory arguments,

the evaluation was concentrated on the extraction of predicates, Arg0 and Arg1. Here, Senna detected

95.9% of the predicates of all PAS correctly. For Arg0, a precision of 0.66, a recall of 0.99 and a F-measure

of 0.79 was reached. For Arg1, a precision of 0.69, a recall of 0.99 and a F-measure of 0.81 was reached.

In comparison to this, the sentence analysis module of IntegreSSA detected 82.8% of all PAS correctly.

For Arg0, the precision, recall and F-measture values were 0.53, 0.69 and 0.60 respectively. For Arg 1

these were 0.42, 0.78 and 0.55.

For two reasons, these values should, however, be treated with caution. First of all, Senna has an

advantage because the data for testing mostly consisted of its own training data. The reported results

obtained when the training data of Senna is removed from the testing corpus is a F-measure of 0.75

for all arguments (including predicates). It should be noted that this still includes a - eventhough

smaller - advantage for Senna, since both training and testing set are based on the same domain

(Wall Street journal corpus) while the rules of IntegreSSA were not developed based on Wall Street

journal texts. Secondly, the annotation scheme of Propbank differes from the predicate-argument-

structure definitions used in IntegreSSA. As mentioned before, Propbank has a tendency to define large
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arguments. For example in the following sentence, the Arg0 encompasses two appositions, a relative

clause and a prepositional phrase:

{Los Angeles, California, at the West Coast of the United States, which is famously known

for Hollywood, the home of the entertainment industry,}Arg0 {has to deal}Predicate {with a
major debt problem}Arg1.

IntegreSSA, on the other hand, would only detect ’Los Angeles’ as Arg0 and consider all the other

information as additional information concerning ’Los Angeles’ but not as argument of ’has to deal’.

As mentioned before, this extensive argument definition caused a problem when using Propbank-

trained tools for event extraction systems and thus motivated the inclusion of argument restriction

rules in Excerbt implemented by Robert Strache (Strache, 2012). In order to soften the effect of these

different definitions the quality values mentioned above are derived using a soft matching approach

that considers two arguments to be the same if at least 80% of its tokens overlap. While this attenuates

the effect, in cases like the one above the more sensible Arg0 ’Los Angeles’ derived by IntegreSSA would

still not be considered correct. To my knowledge there do not exist comprehensive alternatives to

Propbank. For this reason, the event extraction evaluation presented in the following might be more

meaningful for assessing the quality of the two sentence analysis systems compared with the Propbank

performance evaluation.

The event detection of IntegreSSA was evaluated on the BioNLP 2013 shared task 1 data (Nédellec

et al., 2013). BioNLP is a series of shared tasks that was initiated in 2009 and ever since held every two

years. BioNLP sees itself as a “community-wide effort to address fine-grained, structural information

extraction from biomedical literature” (Nédellec et al., 2013). The shared task is typically accompanied

by a workshop in which the obtained results are presented and the different experiences are shared.

In 2013 this workshop was held in Sofia. The BioNLP competition always consists of different tasks.

Teams are able to participate in as many of these as they like. In the original 2009 shared task there

was one task focussing on event extraction offered. This was extended to five different tasks in 2011

and six in 2013. The different tasks of 2013 were the following:

• [GE] Genia Event Extraction for NFκB knowledge base

• [CG] Cancer Genetics

• [PC] Pathway Curation

• [GRO] Corpus Annotation with Gene Regulatory Ontology

• [GRN] Gene Regulation Network in Bacteria

• [BB] Bacteria Biotopes

All of these tasks were event extraction tasks from different domains. Text with a marked set of

biomedical entities was always given as input and events containing these (and potentially additional

ones) needed to be extracted. Besides the domain, the tasks vary in their focus. The GRO task focusses

on the construction of a complex semantic ontology, the GRN task additionally requires to build gene

regulation networks, and the BB task largely focusses on location contextualization. Furthermore, the

GE task additionally includes an anaphora resolution and a negation/speculation detection subtask,

which the participating teams could additionally solve.
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For the evaluation presented in the following, the core event extraction annotations from the develop-

ment data of the GE task were used. While the anaphora resolution data was used for the evaluation of

the anaphora resolution system presented in chapter 6, it was left out in the event extraction evaluation

presented in the following. This was done in order to guarantee comparability with the Excerbt results

that are used as a baseline (since Excerbt lacks an anaphora resolution mechanism). The core event

extraction metric was the major metric used within the BioNLP competition. To extract a core event

the predicate, the type of the event and the primary arguments (referred to as causes and themes) need

to be correctly identified. Secondary arguments refer to additional contextual information like the site

at which a protein modification event took place. These were considered in a second task called event

enrichment which is not the focus of the evaluation presented in the following.

Precision, recall and F-measure were calculated for the evaluation. The results are shown in Table 10.1.

In addition to the core event extraction results, the values for detecting the correct event type at the

correct position (but possibly making errors at the arguments) are shown. As can be seen, Excerbt

scores rather low F-measure values of 0.07. The poor quality is largely due to the extremely low recall.

This is in accord with the shortcomings discussed in chapters 4 and 9.

Table 10.1: Performance of IntegreSSA in comparison to Excerbt on BioNLP shared task GE task data.
System Prec. ev. type Rec. ev. type F-m. ev. type Prec. core Rec. core F-m. core

IntegreSSA 0.67 0.35 0.46 0.56 0.29 0.38

Excerbt 0.51 0.04 0.08 0.45 0.04 0.07

IntegreSSA on the other hand, reaches between five and six times the quality values of Excerbt (F-

measure) both for core event extraction and for detecting the correct event type at the correct position.

For both tasks the precision values are nearly twice as high as the recall values. This can be partially

explained by the rule-based approach and the annotation peculiarities of BioNLP discussed later in this

chapter.

Looking more into detail one can see that Excerbt performs reasonably at detecting causes in the

few cases where events were detected (precision of 0.45, recall of 0.46 and f-measure of 0.45), but

often fails at detecting themes (precision of 0.1, recall of 0.1 and f-measure of 0.1). In contrast to

this, IntegreSSA performs more evenly with a performance advantage for detecting themes reaching

precision/recall/f-measures of 0.26/0.25/0.25 for causes and 0.46/0.44/0.45 for themes.

Likewise, the event type evaluation shows clear advantages for IntegreSSA over Excerbt. IntegreSSA

even increases its large lead to 0.38 F-measure points compared to the core event extraction. This

measure was considered because it might serve as an indicator for the suitability of the system for

using it in a semi-automatic fashion like as an assistant tool for manual annotators (like in chapter 4).

In such a set-up, it is important to detect the correct events at the correct places in order to speed up the

annotation process. Smaller mistakes in the arguments of the events are less problematic since they

could be quickly fixed manually. Such scenarios seem to be the most practical use case of temporary

text mining systems considering that none of the currently existing systems (see Table 10.4) could

exceed a precision 0.63 and thus could be considered reliable enough for a completely automatical use.
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In comparison to the participants of the BioNLP contest, IntegreSSA scores in the lower midfield.

Considering that IntegreSSA is a prototype built in few months and only containing very few of the

supersemantic modules proposed in this thesis as well as not yet any learning capabilities these results

seem rather satisfactory. For comparison, the top two entries in BioNLP have been developed since

at least four years, the third placed BioSEM for at least one. Since BioSEM, like IntegreSSA thus far, is

rule-based, this might be seen as an indicator that rule-based systems could be a strong competitor for

the established machine learning approaches or at least that a larger feature base derived from a more

sophisticated rule system can be very beneficiary for all kinds of text mining systems.

In addition to the quality assessment of IntegreSSA, an error analysis was performed in order to identify

the reasons for remaining missed or missclassified events. This analysis revealed that there does not

seem to be one predominat reason for the errors but instead that it is a variety of many small error

sources which often could be fixed in the scope of a rule-based systemwith additional effort. An excerpt

of identified error sources is given in the following:

• Prepositional predicates were not yet included in IntegreSSA. Beside events from verbs, nominal-
izations, adjectives and ellipses that were included in IntegreSSA, some events in the BioNLP data

set are derived from prepositional clauses. Take for example the following sentence:

RT-qPCR was used to determine gene expression levels of il-6 and cxcl8 in response to

PMA following inhibition of NF-kappa.

In such formulations, the preposition is usually the predicate, the theme is an event described

by a clause or a nominalization and the cause is the noun chunk of the PC of the preposition

which also often describes an event in the form of a nominalizaton. In the given example, both

the ’following’ and the ’in response to’ are such prepositional predicates. The ’in response to’ is

an expression that acts like a preposition. Such prepositional events were not yet included in

IntegreSSA and were thus a source of missed events.

• For effective communication, all parts of an expression that could be infered from the context
could be omitted. These omissions are known as ellipses. For ellipses that leave out verbs, an

event extraction module was implemented in IntegreSSA. In addition to this, however, there exist

ellipses that omit an argument of the event. In the following sentence, e.g., the theme of the

binding event was omitted and needs to be inferred from the context:

Deletion of the carboxyl-terminal forkhead (FKH) domain, critical for nuclear localiza-

tion and DNA-binding activity, abrogated the ability of Foxp3 to suppress NF-kappaB

activity in HEK 293T cells, but not in Jurkat or primary human CD4+ T cells.

Here, a localization and a binding event of Foxp3 should be detected. The theme (Foxp3) of the

predicates that are given in nominalizations (localization, binding) is omitted in the apposition

and can only be inferred from its occurrence later in the sentence. These special cases of ellipses

are not yet implemented in IntegreSSA.

• Events can be given as parts of definitions. Such definitions can occur in the form of clauses, often
with predicates derived from ’to be’ or expressions like ’act as’, or in the form of appositions. The

following two utterances give examples of these two cases:
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Stat6, the IL-4 target, ...

LMP1 acts as a constitutive signal through ligand-independent oligomerization ...

In the BioNLP data, the first expression constitutes a regulation event, the second a binding

event with ’oligomerization’ as predicate and ’LMP1’ as theme. Such formulations are not yet

implemented in IntegreSSA.

• For comparison reasons, the anaphora resolution module (see chapter 6) was not used for the
evaluation. Including a comprehensive anaphora resolution system would improve the resutls

significantly.

• In addition to these factors, an integrated system always depends on the quality of its components.
Since IntegreSSA promotes low-level analyses, this problem is reduced. However, there still exists

errors in sentence splitting, tokenization and POS tagging, for which external tools were used.

In addition to this, the quality values of all systems suffer from certain inconsistencies or peculiarities

of the annotation of the BioNLP data. Some of these that were encountered during the error analysis

should be discussed in the following:

• In event extraction systems, the event type is often closely linked to the predicate. In Excerbt
e.g., the event type was fully defined by the verb that occurred as predicate. IntegreSSA went a

step further and used the complete predicate-argument-signature for its event definition. This

way a verb like ’express’ could describe a gene expression event if the theme is a protein and a

transcription event if the theme is a mRNA. In BioNLP, however, there are different event types

defined on the same predicate-argument-signatures. For example, the predicate ’overexpression’

with a protein as theme is defined 17 times as positive regulation and 5 times as gene expression

event in the train data set and 11 times as gene expression and 2 times as positive regulation in

the development data set. While there might exist hints in the context of the expressions which of

these interpretations should be used in a given situation, the fact that the distinguishing factor is

not annotated within BioNLP makes it harder to deal with these kind of situations. Moreover, the

same formulations with the same predicate-argument-structure are inconsistently annotated as

events at all. Take for example the following two consecutive sentences:

Deficiency of RUNX1 or RUNX3 resulted in markedly reduced TGF-beta - mediated

induction of FOXP3 mRNA in naive CD4+ T cells compared with control cells transfected

with scrambled siRNA. The level of FOXP3 mRNAwas further reduced when both RUNX1

and RUNX3 were knocked down in naive CD4+ T cells during their differentiation to iT

reg cells (Fig. 1 B).

In the second sentence, ’FOXP3 mRNA’ is considered a transcription event. In the first sentence,

however, the same expression ’FOXP3 mRNA’ was not annotated. It might be interpreted that the

second ’FOXP3 mRNA’ is a metynonym that actually refers to the transcription of FOXP3 and not

the product of this transcription, the mRNA. In such a case, however, a comprehensive annotation

should indicate this (possibly in a similar fashion as anaphoras are resolved). Including such

complicated constructions without also annotating the underlying linguistic concepts further

complicates the event extraction.

136



10.3 Patient Record Analysis

• Sometimes the annotation deviates from a linguistic semantic analysis. Take for example the
following sentence:

Phosporylation of Ser127 on NF-kappaB by PKA recruits the transcription co-activator,

p300.

Here, BioNLP defined a positive regulation with the predicate ’by’ and a nested phosphorylation

event without a cause as theme. Linguistically, however, one would consider the ’by PKA’ as an

agent (thus in this connection a cause) of the phosphorylation. Such deviations from the linguistic

norm make it more complicated to build systems following the BioNLP annotation scheme.

• While anaphoras of nouns are annotated within the BioNLP data, deitic verbs are not. Instead of
leaving such terms out for the event extraction, however, pro-verbs like ’do’ are used as predicates

in events. An example of this can be seen in the following sentence:

Wild-type NleH1 expression significantly reduced TNF-induced RPS3 S209 phosphoryla-

tion, whereas the K159A mutant failed to do so (Fig. 7b).

In the BioNLP annotation, a negative regulation containing the predicate ’do’ is expected. From

my perspective, it seems more sensible to use ’reduced’ as a predicate for both events (the one

including the wild-type and the one including the mutant) and include an anaphora with the

trigger ’do’ and the antecedent ’reduced’ in the annotation.

The analysis of annotation peculiarities in BioNLP revealed another advantage of rule-based systems.

When developing a rule-based system one seems to be more inclined to study the annotation scheme

in more detail. Since contradictory annotations make rule-creation impossible, one can often quicker

identify such annotation shortcomings.

10.3 Patient Record Analysis
In addition to the English version of IntegreSSA, a German version was implemented by Felix Sappelt

under my supervision in the course of his Master thesis (Sappelt, 2013). Both versions use the same

technical framework but differ with respect to the used models for tokenization and POS tagging as

well as the language-dependent chunking levels and NE/PR recognizers. This prototype (subsequently

referred to as German IntegreSSA) was applied to the problems of measurement and named entity

recognition in German patient records.

As already pointed out in chapter 5, text mining systems can be used as a backbone for diagnosis support

systems. In such systems, patient files are analyzed semantically in order to derive a comprehensive

patient profile. This profile can then be directly compared to known profiles of diseases using weighted

vector similarity measures or can be used as input for machine learning algorithms. Using such decision

support systems can help a physician in his diagnosis of patients. Such systems become especially

useful in cases were diseases are very rare or very complex. In the first case, the physician simply

lacks the experience about the disease in question, since he might only encounter it once in his whole

career. In the second case, the interplay of many factors might hint towards the disease. Because of
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Figure 10.5: Example output of the German IntegreSSA chunking analysis.

this multitude of factors, however, it becomes difficult to recognize the specific patterns. In such cases,

an automated system might help to avoid overlooking diseases.

In chapter 5, only nominal attributes (which symptomes are present) were considered for the disease

profiles. A lot of important information, however, is given in the form of numeric values. Among the

most prominent of these are measurements and dosages of all forms. In order to make these accessible

to the analysis of a decision support system, in German IntegreSSA a special measurement detection

NE/PRmodule was implemented. In addition to that, the foundation of a full-fledged analysis of German

patient records was created by setting up a German biomedical ontology and implementing German

sentence analysis chunking levels. For this purpose, the following additions and changes to the original

IntegreSSA were made:

Table 10.2: Units supported by the German IntegreSSA measurement recognizer.
Measurement Units

Length Metre, Inch

Mass Gram, Ounce, Dalton

Substance amount Mole

Electrical current Ampere

Temperature Kelvin, Celsius, Fahrenheit

Volume Cubic metre, Litre

Voltage Volt

Energy Joule

Information Byte

Reactive amount International Unit

• A biomedical ontology was created consisting of 7245 drugs or substances and 199 measurands.
The drugs and substances were derived from the Rote Liste 11. Including synonyms 17515 terms

for drugs and substances are findable. The measurand entries were manually created by Felix

Sappelt. Including synonyms a total of 405 measurand terms are findable.

11http://www.rote-liste.de
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• The OpenNLP tokenizer and POS tagger were used with the corresponding German models. It
should be pointed out that the POS tagger model was trained on the Tiger corpus, which uses the

STTS POS tag set. This German tag set with its 53 different tags is considerably more powerful

than its English pendent, the Penn Treebank tag set, with its 36 different tags, which was used for

the training of the English version. An overview of the STSS POS tag set is given in Appendix F.

• A measurement recognizer was implemented. This recognizer detected combinations of numeric
values or ranges and units. A step-wise rule-based approach was implemented to detect first

the numeric values and ranges (using a regular expression) and the units (using a context-free

grammar) and then to combine these to measurements. An overview over the covered units is

given in Table 10.2. Each of these units could be combined with any SI prefix or its symbol ranging

from Pico (p) to Exa (E).

• Each detected measurment was accompanied by a special Quantity object. A Quantity object is a
Meaning object that automatically internally transforms the measurement into the appropriate SI

unit. Thus, both 254cm and 100” would be converted to 2.54 meters. This allows to easily perform

calculations on the detected measurements.

• German chunking levels were implemented. Since PAS extraction is not yet included in the
German IntegreSSA, this implementation consists only of a smaller level stack of eight levels. An

overview of the used chunk types is given in Table 10.3. An example of the chunking results is

given in Figure 10.5.

Table 10.3: Chunk types used by German IntegreSSA.
Chunk Type Symbol in Visualization

Noun Chunk NC

Prepositional Chunk PC

Verb Chunk VC

Adjective Chunk AdjC

Adverb Chunk AdvC

Known Stuff Chunk KnownStuff

Enumeration Chunk Enum

Relative Clause Chunk RelativeClause

Subordinate Clause Chunk SubordinateClause

Verb Particle Chunk VPC

Parentheses Parens

Undetermined Noun Chunk uNC

Conjunction Chunk Conjunction

Relative Clause Start RCStart

Subclause Body and End SCEnd

Token Chunk Token
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For the development and the evaluation of German IntegreSSA, a set of 82402 anonymized patient

records was provided by the Friedrich Baur Institut12. In most of the cases, the patients described in

these records were treated for neuro-muscular diseases. From this set, a random sample of 100 records

containing 4857 sentences was selected. The sentences were filtered for whether they contained at

least one digit. 267 of these sentence were found to contain actual lab values. These sentences were

split into two separate test sets (in the following referred to as S1 and S2) to hint towards the variance

of the quality assessment. Both the NE/PR modules and the chunking were evaluated on these sets.

For the ontology-based NER and the measurement recognition accurracy values were calculated. The

evaluation of the chunking was done exemplarily on a collection of randomly chosen samples due to

the lack of a gold standard.

For the measurand recognition, the evaluation revealed an accurracy of 60.6% on S1 and 65.2% on S2.

Manual evaluation of the results showed that lacking measurands or synonyms in the ontology were

the main reason that prevented higher values. Adding these entries increased the accurracy to 99.1%

and 97.8% respectively. The remaining missed entities could be attributed to mistakes in sentence

splitting and tokenization. For the drug and substances recognition, accurracy values of 62.7% on S1

and 50.8% on S2 were measured. The missed instances could be attributed to missing drugs in the

Rote Liste ontology in about half the cases. In the second half of these cases, the missing entities could

be manually associated with at least one ontology entry. Here, the format of the Rote Liste posed a

considerable problem. The entries are designed for human understanding and not for an automatic

recognition, which lead to entries like the following:

Pravasin protect 10 mg/-20 mg/-40 mg

Such formulations, however, are never written in this form in patient records by physicians. For this

reason, an ontology creation algorithm was applied when deriving the ontology from the Rote Liste,

which produced synonyms like ’Pravasin protect’ and ’Pravasin protect 10 mg’ from the above entry.

Yet, the names used in the patient records were sometimes even further altered, which accounted for

about half of the missed entities. In the case above, e.g., ’Pravasin’ was used by a physician, which was

not created as a synonym by the ontology creation algorithm. In order to capture all relevant synonyms

considerable domain knowledge would be required.

For the measurement recognition, accurracy values of 89.5% on S1 and 88.7% on S2 were obtained.

Additionally, 5.7% and 7.7% respectively of the measurements were partially detected. The error

analysis of the missed measurements showed that unusual formats (using a ’.’ instead of the correct ’,’

as a decimal separator or having fractional units with a left out numerator as in ’70/min’) and missing

units (e.g. ’mmHg’ or ’nmol/UCS’) were the main reasons for the remaining errors.

The sample analysis of the chunking showed many correctly formed chunks ranging from rather

simple NCs to more complex enumerations and subordinate clauses and even for not grammatically

well formed sentences. Still, there existed a large range of rarer situations that result in chunking

errors. Examples of these are prepositional phrases with an adjective as head word like ’nach oben’,

detached verb particles like in ’gab an’, and the correct attachment of postposed auxiliary verbs like

in ’eingenommen habe’. In addition to that, the chunker was naturally error-prone when it was fed

with erroneous tokens or POS tags, and like any sentence analysis had problems with very complicated

12http://www.baur-institut.de/
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linguistic problems like PP-attachment . Examples of the chunking results can be found in Figure 10.5

and Appendix G.

The patient record analysis is an example of how the flexible architecture of IntegreSSA can be easily

extended to include additional analysis modules for additional tasks and even different languages.

Furthermore, it shows that the kind of rule-based analyses promoted in IntegreSSA can provide very

promising results on real data.

10.4 Related Work
IntegreSSA is intended to be the prototype of a supersemantic analysis system. Therefore, all of the

approaches mentioned to be related to supersemantics in section 2.6 are also related to IntegreSSA.

Furthermore, since IntegreSSA includes a semantic role labeling module also all approaches mentioned

in section 9.5 should be taken into consideration as related to IntegreSSA. Additional to these the

participants of the BioNLP shared task 2013 are listed in Table 10.4 to provide further information

about the scientific background of IntegreSSA.

Table 10.4: Results of the official BioNLP shared task GE task (Nédellec et al., 2013) submissions for core event extraction.
Team name Reference Approach Recall Precision F-Measure

EVEX (Hakala et al., 2013) SVM-based pipeline 45.44 58.03 50.97

TEES-2.1 (Björne and Salakoski, 2013) SVM-based pipeline 46.17 56.32 50.74

BioSEM (Bui et al., 2013) Rule-based pipeline 42.47 62.83 50.68

NCBI (Liu et al., 2013a) Joint pattern matching 40.53 61.72 48.93

DlutNLP (Li et al., 2013) SVM-based pipeline 40.81 57.00 47.56

HDS4NLP (Liu et al., 2013b) Joint SVM 37.11 51.19 43.03

NICTANLM (MacKinlay et al., 2013) Joint pattern matching 36.99 50.68 42.77

USheff (Roller and Stevenson, 2013) Mixed pipeline 31.69 63.28 42.23

UZH (Schneider et al., 2013) Rule-based pipeline 27.57 51.33 35.87

HCMUS (Pham et al., 2013) Mixed pipeline 36.23 33.80 34.98

141





11

Discussion

11.1 Integrated systems
One of the main ideas promoted in this thesis is that a comprehensive linguistic system requires an

integrated system that combines all relevant syntactic, semantic and pragmatic analyses of linguistic

subtasks in a way that each of these analyses benefits from the other ones. Only such an integration

enables an accurat interpretation of statements in the corresponding context in which they were

uttered. This idea fits in with different current developments in adjacent fields like machine learning

and bioinformatics, which should bementioned here in order to provide already implemented examples

of how sensible integration can increase the performance and flexibility of classification problems.

In machine learning, deep learning and multi-task learning were two trends that delivered very

promising results parallel to my work on this thesis. Deep learning refers to a way of combining

machine learning models usually in subsequent layers. Here, each layer solves its own supervised or

unsupervised learning problem. Often, the first layers are unsupervised learning layers that learn a

better representation of the input data. Using this representation the subsequent layers then solve a

classical supervised classification problem. The unsupervised stage could be realized by autoencoders

or Restricted Boltzmann Machines (both special kinds of artificial neural nets), while the supervised

stage could be realized by a support vector machine or a belief network. But the main idea behind deep

learning does not depend on the actual choice of models but instead on the combination of learning

tasks (Bengio et al., 2013).

For this reason deep learning is also closely related to multi-task learning. Multi-task learning refers to

the approach of learning a model or part of a model for multiple different problems at once. The idea

behind it is to reach a problem-independent abstract internal represenation that is useful for solving

different problems of the same field. This way one can “exploit commonalities between different
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Figure 11.1: Prototypical architecture of a multi-task learning system that learns representative factors for each subtask
and thereby strengthens the generalization abilities of the model. Figure taken from (Bengio et al., 2013).

learning tasks in order to share statistical strength, and transfer knowledge across tasks” (Bengio et al.,

2013). Multi-task learning has already been shown to improve the performance in different natural

language processing tasks (e.g. (Carlson et al., 2010b; Collobert et al., 2011a)). It can naturally be

combined with deep learning by training the first unsupervised layers as general representations for

multiple tasks and then stack different supervised learners on top of this for each of the individual

learning problems (Bengio et al., 2013). See Figure 11.1 for an illustration of such a set-up.

Between 2010 and 2014, deep learning algorithms became the state-of-the-art machine learning al-

gorithms. They outperformed other approaches like random forests and support vector machines

in several competitions (e.g. (Ciresan et al., 2011; Roux et al., 2013; Stallkamp et al., 2011)) and also

industrial leaders shifted their focus in this direction (e.g. Facebook hired the deep learning expert

Le Cun to head its new artificial intelligence lab (Metz, 2013) and the Google Brain project is based on

deep learning algorithms (Le et al., 2012; Markoff, 2012)). The main focus of deep learning application

was on image and speech recognition (see e.g. (Dahl et al., 2012; Le et al., 2012; LeCun et al., 1989))

thus far, but there have also already been transfers to text analysis problems. Interestingly, here

Senna is the best known example. In this connection it should be pointed out that the before uttered

criticism of Senna-based Excerbt should not be understood as a criticism of Senna. Senna’s ability to

detect the semantic roles of elements of sentences as defined in Propbank without the time-consuming

use of rich syntactical features is - to my knowledge - umatched by any role labeling system. The

criticism of Excerbt instead focussed on the point that for event extraction Senna on its own does not

suffice but additional syntactic analysis would be required, which was not sufficiently implemented in

Excerbt. Senna accomplishes its good results by using a combination of multi-task and deep learning as

mentioned above. The different tasks learned simultaneously are part-of-speech tagging, chunking,

named entity recognition, and semantic role labeling (Collobert et al., 2011b).

With an increase of NLP tasks, the need to organize the different modules sensibly becomes more

important. For the implementation of the concepts presented in this thesis and the integration of the

here evaluated modules, a comprehensive framework with clearly defined interfaces that enables

productive collaboration in larger teams would be beneficial. This brings us to the second current trend

in machine learning and bioinformatics: the use of comprehensive multi-purpose workbenches. Such

workbenches comprise a variety of processing algorithms that make up modules, which a user can

easily combine to powerful processing pipelines. The well-defined interfaces and the graphical user

interface greatly simplify the modification of processing pipelines and the reuse of existing modules.
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In machine learning, Weka (Hall et al., 2009), Rapidminer (Rapid-I, 2014) and dotplot (dotplot, 2014)

are among the available workbenches. Furthermore, a more general data processing workbench

that is gaining popularity in the field of bioinformatics is KNIME (KNIME development team, 2013)

(see Appendix B for an example of a KNIME workflow). The creation of such a workbench for a

supersemantic analysis seems very beneficial.

However, existing technologies suffer from two shortcomings that make them impractical for superse-

mantic analyses: a very rudimentary format concerning the interfaces and a commitment to sequential

processing. When it comes to the format for passing information from one module to another, the

workbenches favor maximally general formats. For example, in KNIME the interface format is always

a table. This has the advantage of being able to use these modules for arbitrary data, but might

cause problems for complex structures like the ones required in linguistic processing. Using a more

specialized application programming interface (API) would allow to formulate more complex and

more linguistic specific data structures in a more convenient way. Semantic information (like nested

PAS) e.g. seems to be most naturally represented in complex hypergraphs. As intermediate formats

in the process of sentence processing, additionally alternative interpretations of subgraphs coupled

with conditions or probabilities under which they hold might be required. While all of these could be

translated back into tables, the overhead for doing so and the large amount of conventions that would

have to be applied and followed seems to make this representation very impractical. Since information

representation is a very central topic of complex linguistic analysis, the following section contains more

thoughts on such adequate representations.

Secondly, the commitment to sequential processing poses a problem for using existing workbenches

for linguistic analysis frameworks. As already pointed out in section 2.5, there exists both upwards

and downwards causation between the different levels of linguistic structure and meaning. This

necessitates that a supersemantic framework provides functionality to solve multiple problems with

various interdependencies simultaneously. The deep/multi-task learning approaches provide one way

of realizing this. Others might be optimization techniques with a variety of constraints or iterative

approaches with correction properties like the Backtracking level stack proposed in IntegreSSA. How-

ever, a purely sequential processing pipeline like provided by most current workbenches does not meet

these prerequisites. While some of these workbenches might be diverted to simulate the correction

ability, the other two possibilites seem more complicated. Possibly, the machine learning workbenches

adapt to deep learning algorithms because of their great popularity at the moment. However, if these

adaptations come with the required degree of flexibility remains questionable. Furthermore, in a

comprehensive supersemantic workbench, one would like to exchange the mechanism of simultaneous

processing just in the same way one exchanges a machine learning model in current workbenches. For

this additional work in the field of information science is required to provide a unified representation

that can be used for each of the processing mechanisms. How such a representation could look like

is discussed in the following section. Once such a representation is found, workflow management of

simultaneous workflows or workflows with correction loops become possible.

This can lead to a powerful linguistic workbench that allows flexible integration and exchange of

interdependent modules in the future. Among the current comprehensive natural language processing

toolkits LingPipe (Carpenter and Baldwin, 2011), nltk (Bird, 2006), OpenNLP (The Apache Software

Foundation, 2010) and Stanford NLP (University, 2011) should be mentioned. None of these, however,

is a workbench or provides the possibility to model such interdependencies at the moment.
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11.2 Knowledge Representation
The most fundamental problem of sentence analysis is ambiguity. Different approaches exist to

tackle different instances of this ambiguity. Syntax tries to apply general formal rules of how to form

grammatical sentences in order to determine the structure of a sentence, semantics and logic try to test

the resulting interpretations for coherence in the context of existing knowledge, and statistical methods

try to guess the best interpretation based on frequencies of observed patterns of language use. Each of

these approaches proved itself to be successful for certain tasks and each of them should be part of a

comprehensive sentence analysis system. To exemplify this further, take a look at the interpretation of

the following sentence:

“The boy saw the man with the binoculars.”

This sentence is one of the typical sentences used in linguistics to exemplify the problem of PP-

attachment. Here, the prepositional phrase ’with the binoculars’ could either be attached to the

verb meaning that the man is using the binoculars or the object meaning that the boy is in possession

of them. Besides this syntactic ambiguity, however, there is also a lot of lexical ambiguity: The term ’the

boy’ could refer to a boy mentioned earlier or the planned first movie of a serial killer trilogy produced

by Elijah Wood, the verb ’saw’ could be the past tense of ’to see’ or the infinitive of ’to saw’, and ’the

man’ could refer to a man mentioned earlier, the gene symbol of a the mandarin gene or to the slang

term for an authority. Furthermore, there could be a new term introduced in this sentence. ’The man

with the binoculars’might be a new band, movie or artist that the man went to see.

Now each of the before mentioned studies is able to solve certain of these ambiguities or at least

help to find the most sensible interpretation. Syntax delivers the basic structure associating part-of-

speeches and a hierarchical structure with the elements of the sentence. Furthermore, it can detect

that ’saw’must be the past tense of ’to see’ because otherwise there would be a mismatch concerning

the subject that is in singular and the verb form. However, it cannot distinguish between the different

interpretation where the binoculars belong to the man or the boy or even where ’the man with the

binoculars’ is a named entity. Semantics can rule out that ’the boy’ refers to the movie since movies

do not see things, but in a strict sense of semantics it cannot distinguish whether the gene, authority

or man were seen by the boy. Logic, however, can rule out the version that the binoculars belong to

the gene and additionally that the gene was seen using the binoculars because genes are too small to

be seen using binoculars. Thus, using such an inference logic can deduce that the expression ’man’

could not belong to the gene. Finally, statistical methods can be used to further support the analysis

of the sentence. Using association patterns one could determine that ’man’ more often refers to an

actual man than to the authority and possibly that prepositional phrases at the end of the sentence

more often belong to the verb than the object. Using these information one could come up with a most

likely interpretation of the sentence.

As should have been illustrated by this example, all four analysis practices - syntax, semantics, logic

and statistics - play an important role in the analysis of a sentence. Yet, there is a lack of systems

combining methods from all four fields. One major reason for this is probably the required effort to

integrate the existing tools for the different fields. One of the difficulties one would be faced with in

such a case would be to find a comprehensive data structure that is able to represent all the required
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Figure 11.2: Overview of different approaches to knowledge reprentation.

information. This endeavour is especially complicated since all of these approaches use different

systems of knowledge representation (see Figure 11.2).

Syntax analyses typically use parse trees or chunks to represent the structure of a sentence, semantics

often uses ontologies or semantic networks to represent the interdependencies of concepts, logic most

commonly uses expressions formulated in first- or second-order logic and statistics uses vector spaces

(see chapter 7) or machine learning models or in order to represent the probabilities derived from

the statistical analyses uses Bayesian networks. Finding a representation that subsumes multiple of

these knowledge systems is not trivial. There are several representations that bridge two of these fields.

For example, Fuzzy Logic combines logic with uncertainties (that could be derived with statistical

methods), Topic Maps combine at least certain constraints with semantic networks if scopes are used

and Feature Structures enrich syntactical analyses with additional sometimes semantic features. In

addition to that the contextual meanings (a semantic meaning object together with its instantiating

chunk) of IntegreSSA is a data structure combining syntax and semantics. A data structure combining

all four of them, however, is - to my knowledge - missing. Thus, finding an appropriate data structure

remains an important goal of future work and could also be seen as a prerequisite of the before

mentioned hypothetical supersemantic workbench because working with inappropriate knowledge

representations inevitably complicates and restricts the use of this knowledge as could be seen with

the missing syntactical information in the topic maps used as input for the anaphora resolution system

in chapter 6 where syntactical information was missing and accordingly a feature depending on them

could not be implemented.

Figure 11.3 provides a sketch how such a data structure could look like. Here, the main representation

of a graph was chosen. The syntactic interpretations derived from the sentence are shown in green,

the semantic ones in blue. Furthermore, the events derived from the sentence are shown in orange.

The box containing the X, Y and Z is a semantic frame set that describes how the verb to see can be
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Figure 11.3: Sketch of a possible data structure integrating syntactic, semantic, logical and statistical information.

used in a sentence. There is another box hidden behind it indicating that one verb can have multiple

of these frame sets. Different possibilities to interpret the sentence are represented by explicitely

creating alternative interpretations and assigning probabilities to them. Thus at each junction where

a decision on how to combine tokens has to be taken, all possibilities are evaluated and weighted

with their corresponding probabilities. Depending on the program such a data structure would be

used in, low probability alternatives could be pruned or all alternatives could be played through

until the end. Probabilities were chosen to serve as representations both for the statistical and the

logical interpretation modules. Therefore, all semantic edges in the graph are assigned probabilities. If

they violate a logical constraint these probabilities would be set to zero or to allow for errors in the

logic module to very low non-zero values. For this purpose, edges or more general patterns could be

transformed into logical propositions, which then in turn could be checked by a typical logical solver.

For example, the is_a relation betweenman and person translates to “∀x.Man(x)⇒ Person(x)”. Based on
the probabilities of the edges the probabilities of the events and of the whole interpretation are derived.

The data structure is indepent on the actual mechanism to calculate the probabilities. An intuitive way

to calculate them would be frequency counts on annotated corpora like Penn Treebank (Taylor et al.,

2003) or Propbank (Kingsbury and Palmer, 2002), which provide syntactic and semantic information

for large corpora. Focussing on rather general representations like graphs and probabilities would

make the data structure independent from the processing modules it is used with. Every semantic or

syntactic processing module would simply need to produce weighted edges and in case of ambiguities

multiple interpretations. Every logic or statistics module would simply need to derive probabilities to

modify these probabilities based on the analysis of subgraphs.

A second issue concerning the representation of knowledge is how to represent the meaning of terms.

In dictionaries, terms are usually just listed without any interpretation of their meaning or possibly

associated with a broad superclass that associates the terms with a label like ’protein’ or ’disease’.

Ontologies are more complex allowing for a hierarchy of terms that allows to make more fine-grained
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Figure 11.4: Sketch of a possible graph pattern to represent the meaning of the term ’inhibitor’.

distinctions. For most terms, however, there exist different ways of categorizing them. For example, a

disease could be categorized as rare or frequent depending on its prevalence, as genetic or non-genetic

depending on its cause or as lethal or non-lethal depending on its consequences. For this reason, certain

ontologies also allow multiple hierarchies turning the representation into an acyclic graph. While such

an organization already covers a lot of information, it still seems to fail at representing certain term

meanings. Take for example a word like ’inhibitor’. An inhibition usually consists of two players: the

one inhibiting and the one being inhibited. The description of an inhibition typically consists of three

terms: the two players of the inhibition and the term describing that it is an inhibition (e.g. ’p53 inhibits

lrrk2’). The term inhibitor, however, subsumes both the descriptive term of the inhibition and the

player causing the inhibition. This situation is similar to the hyphen combined adjectives described in

sections 10.1 (e.g. in ’p53-dependent’). While in the hyphen case it was possible to separate the two

elements again, with a term like ’inhibitor’ this is not possible. Instead one would need to create a way

that allows for terms to be represented in a more powerful way.

A natural way of doing this that is convenient in the context of a largely graph-based representation

might be graph patterns. Such a pattern would be a graph just like the semantic network derived from

a text analysis. This graph pattern, however, is underspecified meaning that some of its nodes are not

entities of the real world but rather variables about which certain features are known. For example,

the term inhibitor could be represented by the pattern shown in Figure 11.4.

Here, inhibitor is a pattern VW, where W is the theme of V and V describes the inhibition pattern.

The V corresponds to both the X and the Y in the inhibition pattern. Since X is either a protein or a

biological process also V has to match one of those classes. Likewise, since Z is a biological process so is

W. The Y in the inhibition pattern could further be defined as a negated activation pattern. This way all

knowledge could be set into relation to each other up until very basic physical and linguistic entities.

For clarity the probability values on the edges are left out. The patterns could be extended to represent
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time, location or logical constraints in order to widen the range of representable knowledge. Such

a data structure could provide the foundation of a comprehensive automatic reasoning framework

because it integrates information even if it is uttered in different forms.

11.3 Analysis efficiency
The efficiency of linguistic analysis is an important factor for the evaluation of a system. Many

text mining systems develop in a direction that adds more and more extraction modules extending

processing times. Exemplarily, BioContext that added multiple contextual analyses needed half a year

for processing MEDLINE (Gerner et al., 2012). Such immense processing times make it very complicated

to keep ones system up-to-date. However, especially new information is of particular interest to

scientists and thus the extraction of this is an important application field for text mining systems. Even

more, such long processing times make improvements employing reprocessings impractical.

In this work, the efficiency of analyses was always a deciding factor in choosing underlying tools and

in some cases required the own implementation of rather low-level tools in order to provide adequte

processing times. This approach worked well for the systems developed in the course of this work.

With the extension of the framework to further analysis modules like proposed by the integration of

logic and statistics (Section 11.1), efficiency, however, becomes an issue again. When ambiguity is

explicitly embraced by managing all possible interpretations simultaneously like proposed in Figure

11.3, the processing time of the analysis scales with the number of alternatives (depending on the

stage at which the ambiguities occur). In the spirit that existing modules should always benefit from

additionally added ones, in this section I propose a way of how statistical modules might improve the

processing speed.

A text consists of different types of information. In this section a distinction between explicit and

implicit information is introduced to explain this phenomenon. While facts or speculations are explicitly

mentioned, often there is more information given implicitly. Such implicit information can be hidden

”between the lines”, it can be information left out that can be infered from the context (van Dijk

calls such implicit propositions MISSING LINKS (van Dijk, 1977)) or can be associations based on the

distribution of utterances within a text or corpus. In particular, the association patterns mentioned in

Section 7.1 are a form of this implicit information. The graph patterns introduced in Secton 11.2 are

also a way of representing these association patterns when they are paired with a probability value

that indicates the strength of the association. Text passages can be transformed into such patterns by

generalization. Here, the terms in the sentence could be replaced by their parent terms (the ones that

they are connected to via a is_a relation). Each combination of words and parent terms within the

pattern could be created and for each the occurrence frequency over a large corpus could be estimated.

Take, for example, for the following three sentences:

Lrrk2 activates p53.

P53 activates lrrk2.

P53 activates man.

Here, patterns for activate(Protein, Protein), activate(lrrk2, Protein), activate(p53, Protein), activ-
ate(p53,Person), activate(Protein, p53), activate(Protein, lrrk2), and activate(Protein,man) would be
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created (using the typical notation of predicate logic where the verb in front of the brackets describes

the predicate and the terms between the brackets describe the objects). Since ’man’ is ambigue the

pattern was created for both interpretations of ’man’. If there would be a reliable method to resolve this,

the activate(p53,Person)would of course be left out. However, since only the most frequent patterns
are important it should not influence the procedure too much if all interpretations are kept in. All of

these created patterns would have the frequency of 0.33, only the pattern activate(P53,Protein) would
have 0.66 and activate(Protein,Protein) would have 1.0. Thus, generalization of the players in this
case provided a protein activation pattern like it would also be used in biomedical event extraction

systems. Of course one would have to constrain the generalization by penalizing a too high level of

generalization to avoid a dominance of patterns like activate(Thing, Thing). The frequencies of the
patterns could be interpreted as a form of familiarity of an expression and could be used in the form of

probabilities in the data structure of Figure 11.3.

Furthermore, these probabilities could be used to speed up the processing. Instead of always evaluating

all possibilities only the most likely one could be further analyzed until the end or until it becomes

less likely than one of its alternatives. Thus, in such a procedure the association patterns guide the

processing order and a dynamic pruning of unlikely interpretations. Such an approach is a form of

lazy evaluation, a programming technique used for more efficient algorithms. The principle here is

to evaluate an expression only when and if it is needed. Furthermore, this approach is similar to the

efficient best-first search. In this search, a graph is explored by always expanding the most promising

node as defined by a heuristic evaluation function. In the case of the association patterns guided

analysis, this evaluation function would be given by the probability values of the association patterns.

In addition to that, there is evidence that such an approach also resembles the way humans process

language. An intuitive example of these are garden path sentences. In such sentences, the reader

typically first interprets the meaning of the sentence in one way until at the end of the sentence a

reinterpretation becomes necessary. Garden path sentences are used by psycholinguists to illustrate

that humans normally process sentences sequentially. Some examples of garden path sentences are the

following 13:

The horse raced past the barn fell.

The old man the boat.

The government plans to raise taxes were defeated.

In the first sentence, the horse is first though to actively race past the barn. This interpretation is

changed to a passive ’being raced past the barn’ when the ’fell’ required a subject. In the second

sentence, ’old’ is first interpreted as an adjective and ’man’ as a noun, which then needs to be changed

to a noun and a verb respectively. Correspondingly, in the third sentence the ’plans’ are first interpreted

as a verb and later as a noun. Thus, in case of garden path sentences humans also first process the

most likely interpretation and then move back to an initially less likely one if the first one became

incoherent.

A second phenomenon hinting towards the effects of associations in language understanding is priming.

Priming is an implict memory effect that lets people quicker understand certain utterances if they are

preceded by certain other utterances. For example, people are quicker at whether the String ’NURSE’ is

13Examples taken from http://en.wikipedia.org/wiki/Garden_path_sentence

151



11 Discussion

a well-formed word if it is preceded by the word ’DOCTOR’ (Meyer and Schvaneveldt, 1971; Meyer et al.,

1975; Schvaneveldt and Meyer, 1973). Priming can occur with a wide range of associations. Associative

priming works on terms that co-occur with each other like cats and dogs in the expression ’it is raining

cats and dogs’ (Matsukawa et al., 2005). Thus, priming works strongly on idioms. But it also works on a

semantic level, e.g. between dog and wolf (Reisberg, 2005). By extracting probabilities of meaningful

patterns such a priming effect is transfered to a text mining system as well and thereby improve and

speed up the analysis.

The topic of including statistics in linguistic analyses was famously discussed by Chomsky and Norvig.

At the Brains, Minds, and Machines symposium during the MIT’s 150th birthday party 14, Chomsky

was asked in a panel discussion about his opinion of the increasing use of statistical methods like

machine learning in the field of linguistics. Chomsky answered that there “have been some successes,

but a lot of failures” (Chomsky and Pinker, 2011) and went on critizing that the models do not help

in understanding the underlying principles and are therefore irrelevant for science. Furthermore,

he argued that humans do not base their analysis of texts on probabilities but rather semantic and

syntactic rules (Chomsky and Pinker, 2011). On his website, Peter Norvig countered Chomsky’s criticism

and stated that by analyzing the properties of statistical models also scientifically meaningful insights

could be gained. Norvig went on to claim that language is a stochastic phenomenon and that therefore

probabilistic models would be an obvious choice. Chomsky’s critic of existing stochastic models was

illegitimate according to Norvig because the models are too simplistic in order to explain all of language

(Norvig, 2011). Instead, “ [w]hat is needed is a probabilistic model that covers words, trees, semantics,

context, discourse, etc.” (Norvig, 2011)

Interestingly, Norvig’s vision of a wholistic language learning system as stated here fairly resembles the

ideas of a supersemantic analysis put forward in sections 2.5, 11.1, and 11.2 of this thesis. Consequently,

I disagree with Chomsky, who states that in contrast to statistical learners, humans do not use frequency-

based associations when understanding language. Intuitive associations and plausibility stem from

the occurrence frequencies of the involved elements. Examples like priming or the fact that native

speakers of a language do not need to think about the grammatical rules of this language point towards

the explanation that strong associations can bypass parts of a rule-based analysis. However, Chomsky’s

criticism of the blackbox character of statistical models has to be emphasized. This was one of the

reasons that during the course of the work on my thesis I more and more moved away from statistical

models (like in the WSD tool and Shallow SRL) to more expressive often largely rule-based systems (like

in IntegreSSA). Additionally, the dependency on annotated gold standards that often poses a practical

problem should be pointed to in this connection. In contrast to Chomsky, however, I considered this

as only a first step in order to gather all relevant information that are then in turn needed for a

comprehensive integration with statistical models.

11.4 Implications of literature-based science
Text mining is a literature-based science and as such its opportunities are closely linked to the properties

of the available literature. In this section, two of these properties will be discussed in more detail. The

first implication of literature-based science is the fact that the amount of knowledge extracted by text

14http://mit150.mit.edu/symposia/brains-minds-machines
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mining is bound by the amount of available literature. Secondly, the reliability of text mining results is

depended on the quality of the literature as well.

It is a fact that there exists a considerable gap between published scientific literature and scientific

literature that is freely available for text mining. In chapter 4, in the sample evaluation of the Negatome

1.0 results the ratio of existing and available information was approximated as 5 to 1. Another indicator

of the proportion of available biomedical literature could be the ratio of the free section of Pubmed

(Pubmed, 2014) to PMC (PMC, 2014). Here, the size of Pubmed serves as an approximation of all

articles and the size of the free section of PMC as an approximation of freely available full-texts. With

over 23 million Pubmed citations and around three million PMC citations, this ratio amounts roughly

to 8 to 1. Independent of which of these two approximations is closer to reality, the extent of this

problem becomes obvious. The wast majority of published biomedical knowledge is unreachable for

non-commercial text mining systems.

The problem of this availability gap is noticed by many people in the text mining community. To name

just a few examples, John Wilbanks argued in Nature in his comment “License restrictions: A fool’s

errand” against the Creative Commons attribution license (Wilbanks, 2013), likewise Michael W. Carroll

warned in his article “Why Full Open Access Matters” about publishers trying to commercialize text

mining (Carroll, 2011) and Murray-Rust et al. reviewed how “researchers and information technolo-

gist[s] are blocked by legal and contractual barrie[r]s” (Murray-Rust et al., 2012) and submitted their

results to the UK’s Hargreaves report on intellectual property reform.

The success and progress in turning these efforts into legislation, however, is varying. The Hargreaves

report (Hargreaves and Office, 2011) demanded copyright exceptions among others for the purpose of

text mining. This report was broadly accepted by the British government (Osborne et al., 2011) and is

currently implemented into legislation. In contrast to this, progress on a European level was faltering.

The issue of problematic copyright laws was addressed in a European Commission’s initiative called

“Licenses for Europe”. In this structured stakeholder dialogue one working group was specifically

concerned with text and data mining. However, the “discussions f[e]ll apart” (Van Noorden, 2013) and

the initiative ended with five of the involved citizen organizations stating that they were “compelled to

conclude that 10 months of meetings have largely failed to identify any solutions which can be backed

by all, or even the majority of, stakeholders involved. It is evident that there is very little consensus

among stakeholders about the appropriate approach to making EU copyright law and practice fit for

the digital age. It is unclear as to how licensing solutions can provide a significant improvement to

a copyright system that has been widely recognised as being inefficient and out of date” (Centrum

Cyfrowe et al., 2013). The failure of the “Licenses for Europe” initiative shows that the path to more

text mining friendly copyright laws is still long and weary and that a lot of effort of scientists is still

required to convice the involved stakeholders of the necessity of this endeavour.

While the solution to the availability gap is largely outside of the range of influence of the involved re-

searchers, the second implication of literature-based science, the quality dependency, is not. Linguistic

analyses typically assume that the text they are analyzing is grammatically well-formed and truthful.

In practice this assumption is, however, often violated. Typographical errors can occur everywhere

where texts are written and in a domain like science where many authors are non-native speakers

grammatical errors are fairly common. Luckily, such variations from well-formed utterances can be

tackled by text mining approaches themselves. Many approaches to text normalization have been
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proposed that correct these errors (e.g. (Castellanos, 2004; Nahm, 2004; Nahm et al., 2002)). Especially,

with the increasing use of social media posts and short messages for text mining analyses such methods

move more and more into the center of attention (e.g. (Beaufort et al., 2010; Kaufmann and Kalita,

2010)). For these cases, text mining can correct the errors by itself and furthermore by using text

mining in the form of grammar- and spell-checkers, text mining can improve the quality of future

additions to its literature basis as well.

While the progress concerning syntactic errors is already significant, the correction of semantical errors

is more complicated. Science deals with the unknown and is therefore prone to false interpretations or

the publication of flawed experimental results. In the introduction of this thesis, this was exemplified

with the case of the conflicting results about the role of β amyloid in inclusion body myositis patients

(Greenberg, 2009). With an increasing sophistication of text mining methods, however, also this phe-

nomenon might be counteracted. The most pomising approach to this is automatic reasoning (already

introduced in section 7.1). By performing a logic check against knowledge extracted from the corpus

of previously published papers, conflicts could be determined already before the new experimental

results are published. In analogy to the grammar- and spell-checkers, automated reasoning tools could

functions as a sort of logic-checker. This way text mining could even contribute to the improvement of

the semantic quality of its underlying literature corpus.

In order to include automated reasoning into the text mining workflow, however, further effort is

necessary: The integration of the different knowledge representation systems was already discussed in

section 11.2. Additionally, pragmatic analysis modules would probably gain more importance in order

to distinguish between what is said and what is actually meant. For example, one of these analyses

would be metonymy resolution. “Metonymy is a figure of speech, in which one expression is used to

refer to the standard referent of a related one” (Nissim and Markert, 2003). Resolving metonymys

lets one interpret sentences liek ’England won the World Cup’ in the sense that the English national

football team won the World Cup instead of the country itself (Nissim and Markert, 2003). Likewise, the

reconstruction of implicit information that van Dijk called MISSING LINKS (see section 11.3) would be

required to draw a comprehensive picture of the extracted knowledge.

11.5 Learning to read
The focus on a controllable rule-based system in IntegreSSA might suggest that in this thesis the use

of rules over machine learning methods should be promoted. The focus on rules is meant to allow

improved comprehensibility and to gather more linguistically meaningful features. A rejection of

machine learning, however, is not intended. Instead the extensive rule system should be seen as a

comprehensive foundation for the integration of learning modules. As mentioned before, deep multi-

task learning could be a way of optimizing the different syntactic, semantic and logical constraints

simultaneously. Furthermore, the pattern learning modules play a central role in the prototypical

sketch of a supersemantic analysis network presented in section 2.5.

These pattern learners could be the foundation for a continuously learning text mining system. In

a dynamic field like science, new terms emerge constantly. Furthermore, new types of biomedical

events might emerge as science proceeds and need to be identified. Different pattern learners could
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accomplish these tasks. For new terms, two ways of identifying them were already presented in the

course of this work. Using DefineTHAT definitions of terms could be identified. This approach could

be extended in a way to automatically classify the identified terms within an ontology depending on

their definition. A second way of learning term meanings is bootstrapping (explained in section 5.1).

Here, terms are interpreted depending on the roles they take within known patterns. The DefineTHAT

definition extraction could thus be seen as a special case of bootstrapping where only PAS patterns with

a predicate of ’to be’ were considered.

In addition to learning lexical meanings, more complex patterns could be learnt for keeping the

event extraction of the system up to date. If the network representation of semantics is used (as

proposed in section 2.5), events can be represented in the form of underspecified graph patterns as

shown in section 11.2. These graph patterns in turn could be learnt at least semi-automatically by

finding frequently occurring similar graphs and generalizing from them. This approach is for example

used in the pattern learning phase of bootstrapping and has also been successfully applied for event

extraction. For example, Liu et al. (Liu et al., 2012) identified subgraphs in dependency parses that

describe biomedical events and learnt rules to generalize from these. The learnt patterns could then be

manually checked and categorized as the respective event or additional learners could be applied to

perform this automatically.

A typical problem of bootstrapping is the effect that errors build up over time leading to a decrease in

the quality of the lexical resource as well as the pattern store. Since the two elements are used to extend

each other, errors in one influence the other and this way propagate through the whole system. In the

fully automatic case of a continuously learning text mining system this problem needs to be tackled.

In a supersemantic system the integration of logic might prove very valuable in this connection. The

logic module could constantly check the semantic graph for coherence and consistency and thereby

hopefully ensure a constant quality. Such a module could work as a kind of introspection for the system

to question its own choices in the past in front of the background of its accumulated knowledge.

Learning to read and to understand text is a problem that has been solved before. Humans are able to

nearly flawlessly communicate with each other through language and the human brain is the machine

accomplishing it. When trying to build a man-made machine being able to fullfill the same task it seems

natural to orientate oneself towards already working systems. Consequently, developmental linguists

try to understand how language works by investigating how it develops in children. On a different scale

it might be interesting to see how the ability to use language developed within an evolutionary context.

For this, studies about the ability of primates to understand language and about the development of

communication systems of different species could prove valuable.

When designing a learning approach for a text mining system, the results of developmental linguists

could serve as theoretical foundation. The before mentioned bootstrapping is an example where such

an analogy was alread implemented. As pointed out in section 5.1, bootstrapping is inspired by the

language acquisition process of children. Likewise, further evidence from developmental linguistics

could be used to develop additional learning methods or refine existing ones.

For example, Waxman et al. report that in infants acquiring a language “we see a robust ability to

map novel nouns to object categories, but when it comes to mapping novel verbs to event categories, a

different picture emerges. Infants have considerably more difficulty. Their ability to learn the meaning

of a novel verb varies as a function of the particular language they are acquiring, and within a given
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language, it varies as a function of the particular linguistic contexts in which the verb appears (e.g.,

whether the surrounding noun phrases are mentioned explicitly or dropped)” (Waxman et al., 2013).

This observation could be used to improve bootstrapping in a way that learned lexical categories are

treated as more reliable than certain patterns. Furthermore, this finding suggests that this certainty

estimation of bootstrapping algorithms should be adapted to the language.

Other findings focussed on the vocabulary of children during the phase of language acqusition. To-

masello noted that “their syntax was built around various particular items and expressions. [...] 92% of

these children’s earliest multi-word utterances emanated from one of their 25 lexically based patterns”

(Tomasello, 2000). Such results support the N-gram approach to vocabulary acquisition and suggest

that it might prove valuable to put such an approach first before adding additional learning modules.

Further research into how these lexically based patterns are made up could provide insights on how to

extract more natural N-grams.

11.6 Learning to talk
As a final step, the knowledge that is gained by a text mining analysis has to be transfered back to the

human user of the text mining system. The question of how to present and represent the knowledge is a

question of human-machine interaction and information science. Typically, databases or visualizations

are used in this connection. A more natural way, however, might be the use of a system specifically

designed for human communication - language itself. There exist a handful of fields dealing with

the production of language: question answering specifically targets producing answers for freely

formulated questions, automatic summarization produces summaries from a text or a corpus, and

natural language generation is the more general field of any kind of language production.

The major challenge in question answering is not a linguistic one. Since answers are typically short the

production of natural language answers is relatively trivial. Instead the main focus of the field is on the

reasoning process that analyzes the question and relates it to the knowledge base of the system (Lopez

et al., 2011). Here, it is often necessary for the program to make inferences. Thus, question answering -

at least in non-trivial cases - is largely a matter of logical or statistical programming.

Automatic summarization techniques can be broadly divided into approaches that create summaries

by extracting the most relevant sentences and those that create summaries by reformulating the text

or corpus that is summarized. Because of its decreased complexity the former of the two is more

commonly used. Here, only the relevance of a sentence has to be determined. In the latter case,

however, additionally ways of generalizing and abbreviating formulations are required. This poses a

major problem to summarization problems because a semantic understanding of the text is required

(Nenkova and McKeown, 2011). Reformulations can be realized by using synonyms or semantically

equivalent but syntactically different formulations (e.g. using an active sentence instead of a passive

one). Generalizations can be realized by using a hierarchical ontology and building an analogous

semantic hierarchy of verbs. Such hierarchies could then be used by replacing multiple underlying

concepts by plural forms of upper levels. Take for example the following three sentences:

Tim bought a tennis racket.

Tim borrowed a soccer ball.
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Tim purchased many golf balls.

Using an ontology that categorizes ’tennis racket’, ’soccer ball’ and ’golf ball’ as ’sports equipment’

and a verb hierarchy that identifies ’to buy’, ’to borrow’ and ’to purchase’ as types of ’to acquire’,

a summarization system could summarize the three sentences as ’Tim acquired sports equipment.’

Combining this approach with pruning sentence with little relevance can produce summaries with

original formulations.

While inference and generalization are often complicated, the mere process of producing language is

comparatively easy. In contrast to natural language understanding the problem of ambiguity vanishes.

Since all entities are uniquely identifiable in the internal representation of the language generation

system, there is no lexical ambiguity. Furthermore, since the structure of the sentence can be chosen,

one can more easily avoid syntactic ambiguity. Consequently, most of the focus in natural language

generation is on planning the structure of the conversation and topics that increase the reading ease

or make the text seem more natural (Dethlefs and Cuayáhuitl, 2011). Among these are approaches to

decide when to use pronouns and when to combine sentences. Both of these problems are significantly

easier than there counterparts of interpreting pronouns and complicated sentence structures. Hence,

the challenge of teaching a machine to talk is largely a challenge of teaching a machine to think.
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Conclusion & Outlook

In the course of this thesis, Supersemantics were introduced as a concept of state-of-the-art text mining.

Supersemantics describes a new way of doing text mining in a more integrated and less dogmatic

way. In contrast to traditional approaches that separate syntactic and semantic analyses, it rejects the

artificial boundaries between syntax and semantics as well as between the different fields of linguistics.

Instead a practical approach that uses the best tool at the best time and thereby tries to overcome

the isolation of single linguistic problems is followed. The prototypical overview of a supersemantic

system given in chapter 2 can function as a blueprint for future frameworks following this paradigm.

It includes linguistic analyses on the level of words, sentences, sections, texts and whole corpora and

proposes methods on how to combine these with each other and external knowledge resources.

Each of these levels was presented in detail within this work. A comprehensive overview of existing

methods and problems was given. In addition to this, new approaches were introduced, evaluated and

discussed. The algorithms and tools implemented in this thesis systematically bridged linguistic levels

as illustrated by Figure 12.1. The realized methods showed mostly very good results and could thus

serve as functional modules to improve existing or future comprehensive text mining systems.

There are three ways how text mining can contribute to biological research (as also depicted in Figure

1.4): it can provide resources, help to manage and represent knowledge and produce new hypotheses.

In this work, contributions of all three of these kinds were made. The first of these was successfully

implemented by the generation of the Negatome 2.0 database and the ongoing development of PhenoDis,

the rare diseases database. The Negatome database can be used to improve bioinformatical techniques

like protein-protein interaction prediction and to detect contradictory results. The rare disease database

structures information about rare diseases. This can be used as an easier to search knowledge base.

Furthermore, it can be used in decision support tools and other prediction methods. The second way of

text mining to contribute to biological research, the management and comprehensibility facilitation

of knowledge, was tackled by the word space visualization and the text-mining-based functional
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Figure 12.1: Overview of the different linguistic levels that were bridged with the different methods implemented in the
course of this thesis.
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analysis tool. Both tools aim at the organization of large amounts of data (derived from text mining

and high throughput experiments respectively) and both tools support a researcher in making better

interpretations. Finally, the third kind of contribution was the generation of hypotheses. Such a

contribution was made in the form of the decision support tool in the rare diseases project. Here, the

likelihood of different diseases was hypothesized based on the detected symptom profile of a patient.

Furthermore, the classical ABC model can be rather easily employed on the basis of the event extraction

systems Shallow SRL and IntegreSSA.

The analyses of Excerbt and Shallow SRL revealed fundamental necessities and possible pitfalls in the

realization of such systems. Furthermore, the implemented prototypes showed promising first results

with IntegreSSA strongly outperforming Excerbt and catching up to the performance to the longer

developed leading text mining tools. Based on this, IntegreSSA might be regarded as a proof-of-concept

for supersemantic analysis and as a hint on how supersemantic frameworks can be designed.

In future development, the logical next steps of this work are turning the concept as well as the

developed modules and prototypes into a full-fledged supersemantic analysis framework. In this

connection, the existing modules have to be improved and extended, e.g. IntegreSSA would need

to provide syntactical information for the anaphora resolution system, and the ones mentioned but

not yet realized, like time and location contextualization modules, would need to be added. Here,

future developments concerning the width of the spectrum of provided analyses would be expected.

Furthermore, often neglected analyses on superordinate levels will move stronger into focus. On text

level, for example, pragmatic or discourse analysis approaches will likely be added to a supersemantic

framework. Thus, text structures could be analyzed in the form of rhetoric tree structures or other text

linguistic representations.

In line with the current trends of our time, it seems likely that deep learning strategies will find their

way into linguistic analyses. As discussed, the multi-task deep learning approach already fits in with

the multiple objectives a supersemantic system needs to satisfy simultaneously. In addition to this

learning approach, further learning approaches that are more closely linked to linguistics will probably

increase in importance. Using bootstrapping in combination with a logical self-correction mechanism,

for example, could improve the consistency of the knowledge base, the range of ontological knowledge

as well as the sentence analysis simultaneously.

Finally, with ever improving text mining systems, the range of applications will increase accordingly.

Nowadays, text mining applications often require tedious preparations for the corresponding domain

and for the specific question that should be answered. This includes the implementation of additional

text mining modules or visualizations, the creation of vocabularies or the annotation of corpora for

machine learning approaches or evaluations. With more comprehensive supersemantic systems this

additional effort will decrease and the use of text mining systems will widen. With possible future

applications like the support of literature research, alerts when interesting papers are published,

intelligent hypothesis generation systems or open domain question answering systems, text mining

applications will become a integral component of every researchers daily routine.
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Word Sense Disambiguation Evaluation

The different training methods, preprocessing steps, and two different classifiers were evaluated for

their applicability for biomedical word sense disambiguation. The results can be seen in Table A.1

Classifiers build with the CRM114 framework can be trained using the following methods:

• train everything (TET): All training samples are treated equally.
• train only errors (TOE): Only training samples, that would be classified wrongly with the classi-
fier in its current form, are used to improve the classifier.

• single sided thick threshold training (SSTTT): Like TOE, but also samples that are correctly
classified but under a certain confidence threshold are used (in Table A.1 SSX.X stands for SSTTT

with a confidence threshold of X.X).

• train until no errors (TUNE): A meta-training method that is used with one of the other training
methods (in Table A.1 a T is added at the end of the respective training method if it was used in

combination with TUNE). Lets the training go on until all training samples are correctly classified.

If the name of a data set starts with an ’r’ this means that one of the classes was reduced to contain

only half of the samples. This was done to create an imbalanced data set. The Cl. column stands for the

amount and type of classes used. The type is encoded in the letters that might follow the amount: G

stands for gene, D for disease and O for others. Likewise, the preprocessing steps are encoded with

letters: O stands for omittance of the ambigue term, R stands for replacement with a dummy term, R*

means that only in the training set this replacement was performed, C stands for case folding and S

stands for stemming.
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Table A.1: Evaluation results of WSD system with different configurations on different data sets.
Train Test Cl. Input Classif. Mode Prepr. Acc. Prec. Rec. F

Manual I T1 4 Abstract OSB TET No 0.62 - - -

Manual I T2 4 Abstract OSB TET No 0.36 - - -

Manual II T2 4 Abstract OSB TET No 0.38 - - -

Manual II T1 4 Abstract OSB TET No 0.81 - - -

Manual II T1 4 Sentence OSB TET No 0.86 - - -

Manual II T1 4 Sentence OSB TET O 0.75 - - -

Manual II T1 4 Sentence OSB TET R 0.77 - - -

Manual II T1 4 Sentence OSB TET RC 0.74 - - -

Manual II T1 4 Sentence OSB TET RCS 0.75 - - -

Manual II T2 4 Abstract OSB TET No 0.46 - - -

Manual II T2 4 Sentence OSB TET No 0.48 - - -

Manual II T2 4 Sentence OSB TET O 0.5 - - -

Manual II T2 4 Sentence OSB TET R 0.5 - - -

Manual II T2 4 Sentence OSB TET RC 0.53 - - -

Manual II T2 4 Sentence OSB TET RCS 0.57 - - -

Manual II T1 2 GD Abstract OSB TET No 0.91 - - -

Manual II T1 2 GD Sentence OSB TET No 0.96 - - -

Manual II T1 2 GD Sentence OSB TET O 0.89 - - -

Manual II T1 2 GD Sentence OSB TET R 0.93 - - -

Manual II T1 2 GD Sentence OSB TET RC 0.92 - - -

Manual II T1 2 GD Sentence OSB TET RCS 0.92 - - -

Manual II T2 2 GD Abstract OSB TET No 0.71 - - -

Manual II T2 2 GD Sentence OSB TET No 0.79 - - -

Manual II T2 2 GD Sentence OSB TET O 0.77 - - -

Manual II T2 2 GD Sentence OSB TET R 0.81 - - -

Manual II T2 2 GD Sentence OSB TET RC 0.85 - - -

Manual II T2 2 GD Sentence OSB TET RCS 0.88 - - -

Manual II T2 2 GD Abstract OSB TET RCS 0.92 - - -

Manual II T2 2 GD Abstract OSB TOE RCS 0.67 - - -

Manual II T2 2 GD Abstract OSB TOET RCS 0.66 - - -

Manual II T2 2 GD Abstract OSB SS0.2 RCS 0.69 - - -

Manual II T2 2 GD Abstract OSB SS0.2T RCS 0.7 - - -

Manual II T2 2 GD Abstract OSB SS0.5 RCS 0.7 - - -

Manual II T2 2 GD Abstract OSB SS0.5T RCS 0.71 - - -

Manual II T2 2 GD Abstract OSB SS0.8 RCS 0.72 - - -

Manual II T2 2 GD Abstract OSB SS0.8T RCS 0.74 - - -

Manual II T2 2 GD Abstract OSB SS1.0 RCS 0.74 - - -

Manual II T2 2 GD Abstract OSB SS1.0T RCS 0.77 - - -

Manual II T2 2 GD Sentence OSB TET RCS 0.87 - - -

Manual II T2 2 GD Sentence OSB TOE RCS 0.8 - - -

Manual II T2 2 GD Sentence OSB TOET RCS 0.83 - - -

Manual II T2 2 GD Sentence OSB SS0.2 RCS 0.81 - - -

Manual II T2 2 GD Sentence OSB SS0.2T RCS 0.84 - - -

Manual II T2 2 GD Sentence OSB SS0.5 RCS 0.82 - - -

Manual II T2 2 GD Sentence OSB SS0.5T RCS 0.81 - - -

Manual II T2 2 GD Sentence OSB SS0.8 RCS 0.8 - - -

Manual II T2 2 GD Sentence OSB SS0.8T RCS 0.8 - - -

Manual II T2 2 GD Sentence OSB SS1.0 RCS 0.82 - - -

Manual II T2 2 GD Sentence OSB SS1.0T RCS 0.82 - - -

Manual II T2 2 GD Sentence OSB TET RCS 0.87 - - -

Manual II T2 2 GD Sentence OSB TOE RCS 0.8 - - -

rMan II T2 2 GD Sentence OSB TET RCS 0.75 - - -

rMan II T2 2 GD Sentence OSB TOE RCS 0.73 - - -

rMan II rT2 2 GD Sentence OSB TET RCS 0.76 - - -

rMan II rT2 2 GD Sentence OSB TOE RCS 0.72 - - -

Manual II Bio 2 GO Sentence OSB TET RCS - 0.61 0.82 0.7

Manual II Bio 2 GO Sentence OSB TET R*CS - 0.62 0.83 0.71

Bio Bio 2 GO Sentence OSB TET RCS - 0.78 0.96 0.84
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Bio Bio 2 GO Sentence OSB TET R*CS - 0.78 0.92 0.84

Bio Bio 2 GO Sentence OSB TET CS - 0.52 1.0 0.68

Bio Bio 2 GO Sentence MV TET R*CS - 0.8 0.91 0.85
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Modular implementation of functional analysis tool

Software that was developed in the course of scientific works is rather rarely reused and in even fewer

cases parts of the implementation are integrated into other programs. In order to counteract this trend

some developers publish their code under open source licenses. However, rarely modular approaches

with standardized interfaces are used in order to simplify the integration of parts of the software. One

way of standardization is to implement ones programs as modules in general workbenches for data

analysis like the Konstanz Information Miner (KNIME) (Berthold et al., 2006). Such an approach was

taken for the functional analysis tool described in chapter 8. The KNIME integration is described in this

appendix.

KNIME was developed at the University of Konstanz. It offers an environment in which a user can easy

build analysis pipelines (so-called workflows) using an intuitive visual representation. The steps in

the pipeline are implemented as so-called nodes. The different nodes usually communicate between

each other via tables. This simple format allows the quick integration of various different analysis

modules. Furthermore, the basic node repository of KNIME already offers a variety of nodes that one

can immediately integrate into ones own pipelines. This includes nodes for I/O, statistical calculations,

data mining algorithms, and visualizations (Berthold et al., 2006, 2008; KNIME development team,

2013).

In the course of this work the code for the communication with DAVID, the Gene Ontology database,

Excerbt and String were implemented as KNIME nodes. Since all of these are established resources, this

should provided a high reusability of the components of the program. Furthermore, two workflows

(one including Excerbt, one including String) were designed that are able to perform the whole analysis

from reading the input to visualizing the graphs. An overview of one of these workflows (the one

containing Excerbt) is given in Figure B.1.

As can be seen, the gene list is first read using a File Reader node. Then DAVID, the GO and Excerbt are

called. Using the Network Creator node this information is combined into a network (a). The network is
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(a) Generation of interaction network

(b) Calculation of network measures

(c) Visualization

Figure B.1: KNIME workflow for text mining based functional analysis. Picture taken from (Jeske, 2013).
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then analyzed using the Network Analyzer node (b). Finally, the network is visualized with the Network

Viewer node (c).
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C

Additional results of GO analysis

Section 8.3 described a graph theoretic analysis of the Gene Ontology. This appendix supplements

this section by providing additional results. Figure C.1 shows how the investigated graph measures

change if a different confidence score is used. The plots show the average density (a), average clustering

coefficient (b), average portion of the largest component in the graph (c) and average diamater (d) with

respect to the depth in the hierarchy of the GO.
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Figure C.1: Comparison of density, average clustering coefficient, proportion of the largest component of the graph and
diameter for different confidence scores of String.
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D

Additional results of functional analysis of epilepsy

study

In section 8.4 the application of a text mining based functional analysis to a gene set enrichment study

by Greiner et al. (Greiner et al., 2013) was described. Figure D.1 shows the graphs for some of the

most relevant GO terms with respect to generalized seizure epilepsy patients from this study. Both

the graphs based on interactions found by Excerbt and String are shown for the GO terms ’cell cycle’,

’nuclear import’ and ’respiratory chain’.

As can be seen, Excerbt and String detect different central genes in all GO categories. Interestingly,

for the cell cycle String finds two connections from genes from the enriched gene list to the central

gene UBC. Since UBC regulates the cell cycle, this might be an indicator for a very direct connection

in patients with generalized seizures. Excerbt, on the other side, neglects UBC due to the missing

resolution of synonyms. Likewise, for the nuclear import String finds direct connections between genes

of the input list and a central gene, while Excerbt does not. This together with the completely diverging

results for the respiratory chain shows that the results can differ rather largely depending the used text

mining resource.
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D Additional results of functional analysis of epilepsy study

(a) Cell cycle (Excerbt) (b) Cell cycle (String)

(c) Nuclear import (Excerbt) (d) Nuclear import (String)

(e) Respiratory chain (Excerbt) (f) Respiratory chain (String)

Figure D.1: Text mining based graphs of GO term respiratory chain for generalized seizure epilepsy patients.
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Measuring semantic entropy of texts

Readibility Measures
The evaluation and interpretation of texts is often a very subjective process. As a consequence of this

the variation in how texts are recepted is rather large. In many situations, e.g. when judging the quality

of essays in school or university, however, objective comparability would be desired. One approach

that tries to objectify texts is the application of different text measures. By providing universally valid

and automatically calculatable measures the variation in interpretation is reduced (at least with respect

to the aspects covered by the measures).

Themain focus in science when developing suchmeasures are those that try to determine the readibility

of texts. In the 1940s, different such measures were introduced. Two of the most well-known ones

were the Dale-Chall formula(Dale and Chall, 1948) and the Flesch reading ease formula (Flesch, 1948).

The Dale-Chall formula (DCF) is defined as follows:

DCF = 0.1579 ∗ 100 ∗ dw + 0.0496
w
s (E.1)

Here, w is the amount of words in the text, s is the amount of sentences and d is the amount of difficult
words. This last value can be estimated by using a stop-word list and considering all words that are

not on that list as difficult. Consequently, the exact value of the Dale-Chall formula always depends on

the used stop-word list. Originally, a list containing 763 words that 80% of fourth-grade students were

familiar with was used. The DCF is accompanied by a table (see Table E.1) that can be used to interpret

the values.

While the Dale-Chall formula focusses on the frequency of the used words. The Flesch reading ease

formula focusses on the complexity of the used words and sentences. For this purpose, the number of
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Table E.1: Interpretation of values calculated with the Dale-Chall formula. Based on (Dale and Chall, 1948).
Value Interpretation

64.9 easily understandable for students from 4th grade or lower

5.0 - 5.9 easily understandable for students from 5th or 6th grade

6.0 - 6.9 easily understandable for students from 7th or 8th grade

7.0 - 7.9 easily understandable for students from 9th or 10th grade

8.0 - 8.9 easily understandable for students from 11th or 12th grade

9.0 - 9.9 easily understandable for students from 13th to 15th grade (college)

> 10.0 easily understandable for college graduates

words per sentence ASL and the number of syllables per word ASW is considered. The reading ease
formula is defined as follows:

FRE = 206.835 – (1.015 ∗ASL) – (84.6 ∗ASW) (E.2)

The interpretation of the values calculated by this formula is given in Table E.2.

Table E.2: Interpretation of values calculated with the Flesch reading ease formula. Based on (Flesch, 1948).
Value Interpretation

0-30 Very difficult, for academics

30-50 Difficult

50-60 Moderately difficult

60-70 Moderate, for 13-15 year old pupils

70-80 Moderately easy

80-90 Easy

90-100 Very easy, for 11 year old pupils

BlabberTracker
In the course of this work an additional text measure was developed. While the existing formulas

commonly focussed on rather formal syntactical features, this measure tries to tackle the semantic

information content of a text. The resulting measure is integrated into a tool called BlabberTracker

that tries to distinguish precise texts with a high semantic information content from those that talk a

lot without saying much.

The information content of messages is a well established measurand in the field of information science.

The most common method of acquiring this value is by calculating the Shannon entropy of the message.

This entropy E(X) is defined as follows:
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E(X) = –

∑
xi∈X

P(xi)log(P(xi)) (E.3)

In information science, the entropy is frequently calculated to determine e.g. the possible compression

rate. It then denotes how long the message needed to be in order to transport all information if the

best possible representation would have been used. In this connection the entropy of message X is
calculated on its single characters xi. But the entropy could also be calculated based on words or other
elements of a text.

The train of thought followed in the development of the BlabberTracker measure is to use the entropy

on word level to only focus on words that transport semantic meaning. In linguistics, words can be

categorized in two classes: open class words and closed class words. Open class words are those that

carry semantic meaning. Adjectives, verbs, nouns and adverbs fall into this category. Closed class words

on the other hand are those that determine the syntactic structure of a sentence but do not contribute

any meaning on their own. Words in this category are among others determiners, prepositions and

conjunctions. Thus, in order to focus on the semantically meaningful utterances the Shannon entropy

is calculated only after filtering out all closed class words. The remaining words are used in a bag of

words representation to calculate the entropy on them.

One problem that occurs when dealing with text measures is the danger of creating a measure that

is overly dependent on the length of the text. While a complete elimination of such effects is often

impossible at least a minimization of them is desired. In order to achieve this, a normalization

procedure was applied that tries to counteract text length dependencies. The positive effect of such

normalization approaches has been shown in many cases (see e.g. (Singhal et al., 1996)). Since the

semantic entropy is calculated on open class words, the normalization used here is likewise defined on

open class words:

E(X) = –

∑xi∈X P(xi)log(P(xi))
1 +α ∗ log(t) (E.4)

Here, t is the total amount of open class words in the given text. The logarithmic value of t is used for
the normalization. The one is added to receive positive values. Furthermore, the value is scaled by a

factor α to soften the effect. In the results here α=0.4 was chosen.

For better comparability the Dale-Chall formula and the reading ease formula were additionally

implemented. The different results obtained by the three measures can be seen in the following section.

In order to provide a most comprehensive tool the BlabberTracker also includes the two readability

measures.

Results
As mentioned before, the very objective of text measures is to provide an objective assessment of texts

that is missing so far. Thus, there does not exist a gold standard for a measure like the one presented

here. In order to still provide a certain level of comparability, the obtained results are compared
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Figure E.1: BlabberTracker measure values of different speeches of American politicians.

with the Dale-Chall formula and the reading ease formula. Furthermore, it is shown what values

are obtained for different speeches of politicians. One would expect that more important and better

perceived speech should have higher levels of semantic information content.

For evaluation of the measure a collection containing important speeches of the most recent presidents

George W. Bush (on the terror attacks of 9/11) and Barack Obama (press conference about the death of

Bin Laden, a state of the union, a budget speech) as well as several speeches during their presidental

campaigns were chosen. Furthermore, two historically important speeches of the former presidents

Eisenhower and Wilson were included.

The results of BlabberTracker measures is shown in Figure E.1. As can be seen, Obama’s inauguration

speech, his announcement of to run for president and Eisenhower’s farewell address reach the highest

values. In his final speech Eisenhower warned the public about the military-industrial complex. He

tried to convey a clear and urgent message. Thus, high values of semantic content would be expected

here. Furthermore, Obamas most important speeches stick out compared to all the other considered

speeches he held during his campaign. This also conforms with the expectations of what a semantic

content measure should capture. The same picture is seen within the speeches of George W. Bush.

His address to the 9/11 attacks scores higher than his campaign speeches. However, this last effect

is rather small compared to the differences between different speakers. The lowest scoring speech

is Obama’s address on the last night before the election. At this point in the campaign it is unlikely

that further information should be communicated but rather that his supporters should be motivated

and stimulated to vote. Thus, here rather empty phrases and paroles would be expected. The low

BlabberTracker score confirms this consideration.

Additionally, an evaluation of German speeches was conducted in order to see whether there exist

language dependent effects. The collection of German speeches also includes important historical

speeches. Here, the propaganda speeches of Hitler and Goebbels as well as an important oppositional
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Figure E.2: BlabberTracker measure values of different German speeches.

speech by Otto Wels were included. Furthermore important speeches by former presidents Herzog and

von Weizsäcker were chosen as well as speeches of contemporary politicians like Merkel, Westerwelle

and Steinmeier. Finally, Edmund Stoiber’s infamous gibberish about the planned installation of the

Transrapid in Munich was included as a negative control.

The results obtained on German texts can be seen in Figure E.2. The picture of the German texts

seems even more clear than the English one. The confusing speech of Stoiber scores by far lowest.

Furthermore, propaganda speeches have low values, while important speeches like Herzog’s “Ruck

durch Deutschland” are at the top of the list. A surprisingly high value is also scored by Westerwelle’s

keynote address.

As can be observed, for both languages the supposedly qualitatively higher speeches on average

obtained higher scores. While further evaluations seem necessary, the first results indicate that the

BlabberTracker measure produces reasonable results. Within the scientific community it might be of

value since it can help create better and more informative texts. A possible application of it could be to

use it as a check before publishing publications, books or scripts for students.

For comparision, Figures E.3 - E.5 show the results of the Dale-Chall formula and the Flesch reading

ease. The reading ease formula was only implemented for English due to a lack of an algorithm to

calculate the syllable count in German texts. As can be seen, the Dale-Chall measure gives overall rather

large values. The highest scores are Obama’s budget and energy indepence speeches as well as Wilson’s

and Eisenhower’s speeches. Obama’s campaign speeches score lower. In German, two propaganda

speeches of Hitler and Goebbels score highest. More technical speeches like the ones of Merkel on

China and Steinmeier on Afghanistan score lowest. The values do not differ much and the results in

English and German seem to be inconsistent (high values for propaganda in one and for meaningful

ones in the other). Here, the BlabberTracker seems to work better to distinguish semantic content.

The results of the Flesch formula give a more comprehensive picture. The speeches of Wilson and

Eisenhower stand out from the other speeches by having significantly lower values. The highest scores,
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Figure E.3: Dale-Chall formula values of different speeches of American politicians.

on the other hand, are achieved by different campaign speeches. Thus, the Flesch readibility formula

seems to be a good complement for the BlabberTracker measure.
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Figure E.4: Dale-Chall formula values of different speeches of German politicians.

Figure E.5: Flesch reading ease values of different speeches of American politicians.
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F

POS tag set used in German IntegreSSA

Table F.1: STSS POS tag set. Taken from (Sappelt, 2013), which is in turn based on (Hirschmann, 2014; Institut für Maschinelle
Sprachverarbeitung, Universität Stuttgart, 2013). The STSS POS tag is used in the Tiger corpus and also in the
POS tagger used in German IntegreSSA.

POS tag Description Example

ADJA Attributive adjective eine latente Hypertonie
ADJD Adverbial or predicative adjective er fährt schnell; er ist schnell
ADV Adverb sie kommt bald
APPR Preposition; left part of circumposition nach Berlin
APPRART Preposition with article zur Sache
APPO Postposition der Sache wegen
APZR Right part of circumposition von mir aus
ART Definite or indefinite article ein Haus; die Ärztin
CARD Cardinal number zweiMänner; im Jahre 1994
FM Foreign word er hat das mit “a big fish” übersetzt
INTJ Interjection ach, tja dann halt nicht
KOUS Subordinating conjunction sie wartet, weil sie früh dran ist
KOUI Subordinating conjuction with ’zu’-infinitive um zu arbeiten
KON Coordinating conjunction sie und Emma warten und lesen
KOKOM Comparative conjunction schneller als er; schneller wie er
NN Noun der Computer; die Patientin
NE Proper noun Hans; Hamburg; Diabetes
PDAT Attribute-adding demonstrative pronoun jeneMänner; dieses Spanisch
PDS Substituting demonstrative pronoun denen war dies nicht übelzunehmen
PIAT Attribute-adding indefinite pronoun keinMensch; irgendein Glas
PIS Substituting indefinite pronoun keiner; viele;man; niemand
PPER Non-reflexive personal pronoun ich; er;mich; ihm
PPOSAT Attribute-adding possessive pronoun mein Buch; seineMutter
PPOSS Substituting possessive pronoun meiner; deines
PRELS Substituting relative pronoun der Hund, der
PRELAT Attribute-adding relative pronoun der Mann, dessen Hund
PRF Reflexive personal pronoun sich; einander; dich;mir
PWS Substituting interrogative pronoun wer, was
PWAT Attribute-adding interrogative pronoun wessen Hut, welche Farbe
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PWAV Adverbial interrogative pronoun warum; wo; wann; worüber; wobei
PROAV Pronominal adverb dafür; dabei; deswegen; trotzdem
PTKZU ’Zu’ before infinitive zu gehen
PTKNEG Negation particle nicht
PTKVZ Particle part of separable verb Er kommt an; er fährt rad
PTKANT Answer particle ja; nein; danke; bitte
PTKA Particle ’am’/’zu’ before adjective/adverb am schnellsten; zu teuer
TRUNC Detached first part of compound noun An- und Abreise
VVFIN Finite full verb du gehst; wir kommen an
VAFIN Finite auxilliary verb du bist; wir werden
VMFIN Finite modal verb du darfst; sie sollte
VVINF Infinite full verb gehen; abreisen
VAINF Infinite auxilliary verb sein; werden
VMINF Infinite modal verb wollen; sollen
VVIMP Imperative full verb geh!; reise ab!
VAIMP Imperative auxilliary verb sei!; werde!
VVPP Past participle of full verb gegangen; abgereist
VAPP Past participle of auxilliary verb gewesen
VMPP Past participle of modal verb gekonnt; er hat gehen können
VVIZU Full or particle erb in ’zu’ infinitive wegzuhören
XY Non-word, special character, abbreviation es enthält viel D2XW3
$, Comma ,
$( Other sentence-internal punctuation ( )
$ . Sentence-ending punctuation . ! ? ; :
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G

Additional example of chunking with German

IntegreSSA

In German IntegreSSA, special levels for chunking for the German language were implemented. The

results of the sentence analysis using these levels can be seen in Figure G.1.
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(a)

(b)

(c)

Figure G.1: Results of the German chunking analysis for three randomly chosen sentences.
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List of Abbreviations

AI Artificial intelligence

BCR Bayesian chain rule

CFG Context-free grammar

CIQ Chunk in question

COPD Chronic obstructive pulmonary disease

DAVID Database for Annotation, Visualization and Integrated Discovery

DCF Dale-Chall formula

DT Determiner

ER Event recognition

GO Gene Ontology

GUI Graphical user interface

GvC Generalized seizure vs. control group

HPO Human Phenotype Ontology

IE Information Extraction

IntegreSSA Integrated supersemantic analysis

IPF Idiopathic pulmonary fibrosis

IR Information Retrieval

187



List of Abbreviations

JJ Adjective

KEGG Kyoto Encyclopedia of Genes and Genomes

LSA Latent semantic analysis

LSI Latent semantic indexing

ML Machine learning

MPO Mammalian Phenotype Ontology

MV Markovian classifier

NaCTeM National Centre for Text Mining

NC Noun chunk

NE/PR Named entity/pattern recognition

NER Named entity recognition

NIP Non-interacting protein pair

NLP Natural language processing

NN Noun, singular or mass

NP Noun phrase

ORDR Office of Rare Diseases Research

OSB Orthogonal sparse bigram classifier

OSBF Orthogonal sparse bigram classifier with frequency features

PAS Predicate-argument structure

PC Prepositional chunk

POS Part-of-speech

PP Prepositional phrase

PPI Protein-protein interaction

PvC Partial seizure vs. control group

RI Random indexing
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List of Abbreviations

RR Relation recognition

SBPH Sparse binary polynomial hashing

SRDD Swedish Rare Diseases Database

SRL Semantic role labeling

SSTTT Single sided thick threshold training

SVD Singular value decomposition

TEES Turku event extraction system

TET Train everything

TM Text mining

TOE Train only errors

TUNE Train until no errors

WSD Word sense disambiguation
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Glossary

Anaphora
is a referential utterance pointing to another utterance, the antecedent. Since the anaphora is

only the reference for interpreting its meaning the antecedent is required. Typical anaphoras are

e.g. pronouns. 15, 29, 55, 71, 122, 136, 161

ARG0
is the argument referring to the active entity that initializes the event described by a predicate-

argument-structure. 17, 18, 51, 52, 73, 109, 116, 119, 133

ARG1
is the argument referring to the passive entity that is affected by the event described by a

predicate-argument structure. 17, 18, 51, 52, 109, 116, 119, 123, 133

Association Patterns
are frequently occurring patterns that can be used to improve linguistic analysis on several levels.

If e.g. an association pattern of a typical formulation “as mentioned by x” where x is always a

person is found, then this can be used to distinguish a meaning of a word that describes a person

from another one. 36, 79

Co-occurrences
is a text mining procedure in which relations between entities are inferred based on the frequency

with which they occur within close proximity to each other. 15, 20, 50, 80

Constituency Parser
is an linguistic procedure that analyzes the structure of a sentence using a grammar and represents

it in the form of a parse tree containing non-terminal grammar categories and terminal POS tags.

12
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Glossary

Dependency Parser
is an linguistic procedure that analyzes the structure of a sentence and represents it by arranging

the words of the sentence in a parse tree. 12

Event
is a relation or other linguistic pattern that is specifically searched for during the information

extraction stage of a text mining system. In the biomedical domain typical events include gene

expression and positive or negative gene regulation. 14, 17, 20, 34, 76, 110, 111, 122, 123, 131

Excerbt
is a Senna-based text mining system that extracts binary relations between a multitude of entities.

17, 46, 51, 53, 73, 80, 85, 96, 107, 122, 144, 161

Information Extraction
is the scientific field that tries to extract knowledge in structured form (typically so-called entities

and relations) from unstructured texts using computer-aided methods from artificial intelligence

and computer linguistics. 9, 14, 57

Information Retrieval
is the scientific field that deals with the computer-aided search for information that satisfies

a certain information need from a given collection of documents, songs, videos or any other

information bearing resource. 8, 13, 70

Named Entity Recognition
is a linguistic procedure that associates words in a text with their corresponding entities in a

knowledge base. Typical named entity recognizers find persons, companies, or in the biomedical

domain proteins or diseases. 14, 20, 34, 45, 61, 123, 124, 140

Natural Language Processing
is the scientific field that processing language using methods from artificial intelligence and

computer linguistics to automatically solve a variety of linguistic problems. 9, 71, 115, 123, 128,

144

Part-of-speech tagging
is the linguistic procedure of assigning so-called parts-of-speech to tokens. Parts-of-speech are

finer grained word classes like gerund verbs or plural nouns. 12, 16, 34, 76, 80, 115, 123, 124, 128,

136, 139

Predicate-argument-structure
is a representation of semantic information. It consists of a predicate and possibly a multitude

of arguments. A predicate corresponds to the type of event that occurred, while the arguments
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Glossary

correspond to the entities playing a role in this event. Here, different argument types correspond

to different roles. For example, Arg0 is the argument referring to the active entity that initializes

the corresponding event. 17, 49, 51, 55, 76, 118, 121, 124, 130, 133

Propbank
is a corpus of financial news that is annotated with semantic roles. It is the standard corpus used

to train and evaluate machine learning algorithms to perform semantic role labeling. 12, 18, 80,

108, 113, 118, 121, 131, 148

PubMed
is a "free resource that is developed and maintained by the National Center for Biotechnology

Information (NCBI), at the U.S. National Library of Medicine (NLM), located at the National

Institutes of Health (NIH). It comprises over 24 million citations for biomedical literature from

MEDLINE, life science journals, and online books" (Pubmed, 2014). 1, 14, 17, 153

Relation
is a description of how two entities are connected. In information extraction relations between

entities are often extracted as triples containing of the two connected entities and the type of the

relation. 4, 12, 14, 15, 36, 49, 59

Semantic Role Labeling
is the task of assigning semantic roles to parts of sentences with respect to the corresponding

predicates. The most important semantic roles correspond to answers to the question "Who did

what to whom, when, where, how and why?". 12, 15, 113

Semantics
is the part of linguistics that is concerned with the meaning of utterances. It tries to relate words

to entities in the real world and to identify the relations between these entities. Typical semantic

analyzers are semantic role labelers. 23, 27, 29, 117, 122, 143, 146, 159

Senna
is a deep-neural-net-based natural language processing tool that - among other NLP tasks - per-

forms state-of-the-art sematnic role labeling. 51, 52, 80, 108, 109, 121, 131, 144

Stemming
is the linguistc procedure to reduce a word to its word stem which is usually used to normalize

differently inflected forms of the same word. E.g. "plays", "played" and "playing" would all be

reduced to their stem "play". 12, 42
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Glossary

Syntax
is the part of linguistics that is concerned with the rule systems underlying the grammar and

more generally the formal structure of a language. Typical syntactic analyzers are constituency

parsers based on context-free grammars. 23, 27, 113, 117, 122, 143, 146, 159

Text Mining
is the "analysis of unstructured texts with the goal of uncovering new, previously unknown

information" (Hearst, 1999). 4, 8, 152

Tokenization
is the linguistc procedure to split a sentence into tokens. Tokens are usually words. Depending on

the respective task, however, words can be split into multiple tokens or multiple words can be

combined into one token. 34, 76, 115, 124, 127, 136, 139
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München, den .......................... ..............................................................................

Philipp Blohm
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