Alternative Module Drives for Mobile Working Machines

Dipl.-Ing.(FH) Michael Gallmeier
Prof. em. Dr. br. habil. Hermann Auernhammer

Agricultural Systems Engineering
Technische Universität München
Germany

ATOE Conference 2008 Iguassu, Brazil

Requirements resulting from material processing

Yield map of sugar beets, field Hergern (Germany)
October 2001

	Relative flow variability [%]	Standard deviation of yield [kg/ha]
Combine `02	78	96,2
Combine `03	120	181,1
Mower `01	29	15,8
Mower `02	78	32,8
Beet harvester `02	71	260,7
Maize Chopper `02	134	235,0
Maize Chopper `03	41	108,9

Increased machine efficiency by:

- Dynamic machine adaptation
 (KUTZBACH) → closed-loop module speed control
- Closed loop module control systems (BÖTTINGER)
- Increased driveline efficiency

Objectives

Problem:

Which technology fits future demands?

Assessment of alternative drive line concepts for usability in mobile working machines

<u>Criteria:</u>

- satisfying future requirements
- overall efficiency
- power to weight ratio
- overall size of the module drive and the peripheral equipment
- design aspects
- costs

Methode

Carrier Big-X with easyCollect

Hydraulic Header and Intake Drive

- 1. Pumps
- 2. Motorvgearing
- 3. Hydr. Intake Drive
- 4. Hydr. Header Drive

- 5. Gearing
- 6. Intake Module
- 7. Split Gearing Header

- 8. Mech. Driveline Header
- 9. Chaindrive Gearing
- Pressure Sensor
- Flow rate Sensor

Diesel-electric Header and Intake drive (without Cooling System)

- 1. Synchronous Generator
- 2. Power switch
- 3. Rectifier

- Capacitors DC-Link & Braking resistors
- 5. Control and Safety

- 6. DC-Link (400-750 V)
- 7. Motor with Converter
- 8. Planetary Gearing

Diesel-electric Solution

Test Stand Set up

- 2. Hydraulic Header drive with mech. driveline
- 3. Summation gearing

at Engine Gearing

- 4. DLG PowerMix Module with mech. Interface
- 5. Hydraulic Intake drive
- 6. Hydraulic pump system with 100 ccm variable displacement pump
- 7. Hydraulic Interface DLG PowerMix (DLG_{hvdr})
- 8. DLG PowerMix Drawbar Test Vehicle

Results

- Operational behavior during field tests
- ==> Efficiency during stationary operation
- ==> Efficiency during dynamic operation
- Power-to-weight ratio
- ⇒ Power density
- ⇒ Costs

Operational Behavior - Hydraulic and Electric Intake Drive during Field Tests -

Most common operation point

Efficiency of module Drives depending on load

 $(n_{\text{Diesel}} = 1750 \text{ 1/min; } x_{\text{th}} = 8 \text{ mm})$

© 2008

Efficiency Benefits of the electric driveline

Energy efficiency during typical load cycles

Power-to-weight ratio of modules and drivelines

- Obvious disadvantages at the electric module drives:

Averaged electric drives 3 times heavier than hydraulic ones

- New approches enable advantages for the driveline at a glance :

elelctric header drive: 11.3 kg/kW

hydraulic-mechanic header drive: 15.9 kg/kW

- the powertrain for header and intake at a glance:

⇒ diesel-electric approach: 689.6 kg 17.2 kg/kW

⇒ hydraulic approach: 565.6 kg 14.1 kg/kW

But: comparability of the used systems is limited

=> Series Production vs. Prototype

Size and Power Density of electric motors

Hydraulic Motor (Series production)

Electric Motor (Prototype)

 \rightarrow 7.6 dm³

⇒ 29.6 dm³

⇒ 3.566 kW/dm³

⇒ 0.916 kW/dm³

Costs of acquisition

(Careful) Costs of Operation

Summary

Advantages of the diesel-electric driveline:

- Closed loop control of the drives and feedback of the process parameters enables easy integration into driveline managements system
- Efficiency benefits at a wide range of the operation map of about 16 percentage points (between 13.5 to 30 percentage points)
- Efficiency benefits during typical load cycles between 14 to 20 percentage points

Disadvantages of the diesel-electric driveline

- Power-to-weight ratio of the total driveline is about 22 % higher
- Power Density is about 3.9 times inferior
- Amortization or increased acquisition costs after the total useful life

The future power train design in mobile working machines?

Conclusions

Diesel-electric drivelines

- are an additional alternative in mobile working machines
- show high efficiency even under low work load
- improve control and adjustment
- have highest benefit in systems with very large variable requirements
- allow direct use of electricity from solar and fuel cells

Thank you for your attention!

(michael.gallmeier@wzw.tum.de)