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Abstract
Information theory serves well as the mathematical theory of com-
munication. However, it contains no provision that makes sure its 
theorems are consistent with the physical laws that govern any 
existing realization of a communication system. Therefore, it may 
not be surprising that applications of information theory or signal 
processing, as currently practiced, easily turn out to be inconsistent 
with fundamental principles of physics, such as the law of conser-
vation of energy. It is the purpose of multiport communication the-
ory to provide the necessary framework ensuring that 
applications of signal processing and information 
theory actually do comply with physical law. 
This framework involves a circuit theoretic 
approach where the inputs and outputs 
of the communication system are 
associated with ports of a multi-
port black-box. Thanks to each 
port being described by a pair 
of two instead of just one vari-
able, consistency with physics 
can be maintained. The con-
nection to information theory 
and signal processing is then 
obtained by means of isomor-
phisms between mathemat-
ical (formal) symbols of the 
latter and the physical quanti-
ties of the multiport model. In 
this article, the principles of the 
multiport communication theory 
are presented and accompanied by 
a discussion of a number of interest-
ing results of its application to single and 
multi-antenna radio communications in sin-
gle- and multi-user contexts.

I. Introduction

There exist a number of fundamental principles in 
physics which can be stated as conservation laws, 
meaning that there are quantities which can be 

calculated for a physical system at one time, and when 
recalculated at a later time come out the same [1]. An 
example is the law of conservation of energy. Frequently, 
application of these laws help in arriving at elegant solu-
tions of complicated problems. For instance, the motion of 

planets around the sun can be obtained solely by follow-
ing the implications of the laws of conservation of energy 
and angular momentum [2]. Moreover, the conservation 
laws are also deep principles for they relate to symmetry 
in physics [3]. For instance, conservation of energy implies 
that the laws of Nature are time-invariant, and vice versa. 

Also in signal processing and information theory, the con-
cept of energy is a prominent one. It appears as the energy 

required to transfer one bit of information, or 
one symbol of the signal alphabet, or 

sometimes in form of transmit power, 
i.e., the rate at which energy must 

be supplied per unit of time 
to keep the communication 

going. Yet, it is interesting 
that the fact that energy 
is conserved, this very 
fact that is of such fun-
damental importance in 
physics, apparently plays 
no role in standard text-
books on information the-

ory [4], signal processing 
[5], communication theory 

[6] or signal theory [7]. The 
authors are also not aware of 

any research work in these areas 
where the remarkable fact that energy 

is conserved is explored or discussed. 
The reason for this strange absence of con-

servation laws in signal processing, information 
theory and related disciplines seems to be the fact that 
inputs and outputs are described by single variables each, 
instead of by a pair of conjugated variables, like position 
and momentum in Hamiltonian mechanics [3], or voltage 
and current in circuit theory [8]. Such conjugated pairs 
are, however, necessary to capture the notion of energy 
or power and, by virtue of the fluctuation-dissipation the-
orem [9], the notion of thermal equilibrium noise. 

The absence of conjugated pairs in information theory 
and signal processing shows that they are ill equipped 
to handle fundamental concepts such as energy, power 
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and noise in any way consistent with physics. This is 
the point where the multiport communication theory 
comes into the play. It establishes an interface between 
the physical world which uses conjugated pairs, and the 
information world, which uses only half the number of 
variables. Thereby it restores physical consistency and, 
thus, ensures the applicability of those mathematical 
theories of communication to the physical world. 

After elaborating a little bit on making mathematical 
models consistent with physics, we describe the principles 
of multiport communications and finally present results 
of its application to multi-antenna radio communication 
systems. In particular, the results on array gain, diversity, 
spatial multiplexing and space division multiple access are 
presented, and may turn out to be rather surprising. 

II. Physical Meaning and Consistency

A. Scalar Signals and One-Ports
Scalar signals occurring in information processing and 
communication systems are usually either complex val-
ued continuous functions of time, ( ) ,x t C!  or sequences 

[ ]x k C!  of complex numbers. The instantaneous power 
is in most textbooks (e.g., [6], [10], [11]) defined as: 

	 ( ) ( ) , [ ] [ ] .P t x t P k x k2 2= = � (1)

In the case that x  is a random variable, it is conven-
tional to apply the expectation operation to arrive at the 
average power [ [ ]] .P P kEav =  The physical power flow-
ing into a one-port is given by: 

	 ( ) ( ) · ( ) ( )/ ( ) · ,P t u t i t u t R i t R2 2
phy = = = � (2)

where we have assumed that the port is terminated by 
a passive linear resistor .R 02  In this specific case, the 
signal power (1) is strictly proportional to the physical 
power (2) provided that an isomorphism between sig-
nals and physical quantities is made in one of the fol-
lowing ways: 

( ) ( )
( ) ( )
( ) ( ) ( )

( ) ( ) .
x t u t
x t i t
x t u t i t

P t P tor
or

phy&+

+

+

+

a b+^ h
4

Therefore, the question »what does the signal ( )x t  
mean physically?« is of secondary interest in this case. 
The standard textbook definition of signal power and 
signal energy can be applied and there is no conflict. 

B. Vector Signals and Multi-Ports
Let us now consider a vector signal ( ) ,tx Cn!  or [ ] ,kx Cn!  
the instantaneous power of which is usually defined as: 

	 ( ) ( ) , [ ] [ ] .P t t P k kx x2
2

2
2= = � (3) 

The physical power which flows into a multi-port is 
equal to the sum of the powers flowing through the 
ports. Let us show with a simple example with only two 
ports, that it is not possible to have a simple assignment 
of signals to physical quantities, as was possible in the 
scalar case. The physical power which flows into the 
two-port in Figure 1 turns out to be 

	 ( ) / .P t R i i i i u u u u R2 3
2

1
2

2
2

1 2 1
2

2
2

1 2phy = + + = + -^ ^h h � (4) 

Even in this simple case, signal power (3) is not pro-
portional to physical power (4), no matter which of 
the following isomorphisms between the vector signal 

( )tx  and the physical quantities ( ) [ ( ) ( )]t u t u tu 1 2
T=  or 

( ) [ ( )  ( )]t i t i ti 1 2
T=  we may choose: 

( ) ( )
( ) ( )
( ) ( ) ( )

( ) ( ) .
t t
t t
t t t

P t P t
x u
x i
x u i

or
or

phy& ?+

+

+

a b+^ h
4

Nevertheless, it is possible to save the conventional way 
(3) of computing power using the isomorphism 

( )
( ) ( )

( ) ( ) , { } .t
u t u t
u t u tx 2 3with
1 2

1 2
!+ !

a

a
a

+

+
-; E

This does make the signal power strictly proportional 
to physical power. But obviously this isomorphism was 
exactly tailored to the two-port in question. For other 
two-ports it usually would have to be different. There-
fore, and in contrast to the case of scalar signals, the iso-
morphism is important. Let us, therefore, have a closer 
look into the isomorphisms and their implications. 

In signal processing and information theory, the concept of energy is a prominent  
one. It appears as the energy required to transfer one bit of information, or one symbol  

of the signal alphabet, or sometimes in form of transmit power.
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C. Implications of Isomorphisms
Any mathematical system model can be made consist-
ent with the governing physics by following a two step 
procedure. At first, meaning is assigned to the formal 
symbols of the mathematical model by creating an 
isomorphism with physical quantities. Once this iden-
tification of formal symbols with physical quantities is 
made, all applicable physical laws and technical con-
straints that govern the relationship between those 
physical quantities are going to imply certain relation-
ships between the formal symbols of the mathematical 
model. Thus, the second task is to find out all the rele-
vant implications of the chosen isomorphism. The whole 
process is shown in Figure 2. To illustrate this rather 
abstract points let us have a look at a simple but illumin-
ating example. 

Figure 3 shows an additive white Gaußian noise chan-
nel with input signal ,x  output signal ,y  channel coeffi-
cient ,h  and additive, zero-mean, white Gaußian noise 
j  with variance .2vj  It can serve as a simple incarnation 
of a mathematical model of a communication system. A 
key parameter that can be extracted from this model is 
the signal to noise ratio 
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If the magnitude of the channel coefficient h  is reduced 
by a factor of 2 we would expect a reduction of SNR by 
a factor of 4 as predicted by (5). But that would only 
be true if 2vj  is independent of .h  However, as soon as 

we assign physical meaning to this model there arises a 
certain relationship between 2vj  and .h  It is actually this 
relationship that constitutes the essence of the model. 
To illustrate this point, let us assume that Figure 3 shall 
be used to model an idealized physical communication 
system whose circuit model is shown in Figure 4. It con-
sists of an ideal transformer that is driven by a voltage 
source with voltage uG  and source resistance ,R  and 
terminated with a load resistance ,R  both resistances 
subject to thermal equilibrium noise represented by the 
two current sources with zero mean and variance of .0

2v  
The noise sources are uncorrelated with each other. 
The voltage transformation ratio, ,up  shall be variable 
between 0 and 1. Let the simple isomorphism: 

	 , ,x u y uG L= = � (6)

establish the correspondence between the mathemat-
ical model from Figure 3, and the circuit from Figure 4. 
Circuit analysis then reveals with 

	 / ,h1 1 4 22 2
0
2v v= - -j ` j � (7) 

a peculiar relationship between the channel coefficient 
h  and the variance 2vj  of the additive noise. Therefore, 
(7) is an implication of the isomorphism (6). Another 
implication is that /h 1 2#  must hold true, because 2vj  
must be real-valued. Finally, using (7) in (5), we obtain 
the most intriguing implication. As shown in Figure 5, 
the SNR keeps increasing with decreasing magnitude 
of the channel coefficient! How absurd it gets! Yet, this 

R
R

R
u2u1

i2i1

Figure 1.  Resistive, passive )(R 02  two-port.
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Figure 2.  Modeling systems consistently with physics.

Figure 3.  A simple mathematical system model.
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unexpected result is perfectly correct and merely a result 
of the isomorphism (6) and the applicable physical laws 
represented by Kirchhoff’s equations, Ohm’s law and the 
constituent equations of the ideal transformer. 

Finally note that /h 1 2=  corresponds to extracting all 
available power from the generator (power matching), while 
h 0"  corresponds to supplying the load with the largest 
SNR (noise matching). We will meet these two quite differ-
ent matching strategies again later, for they are essential for 
optimum implementation of communication systems. 

III. The Principles of Multiport Communications
As such simple a circuit as the one shown in Figure 4 leads to 
rather an involved relationship between the formal symbols 
of the mathematical model, it is clear that a systematic proced-
ure for extracting all relevant implications is necessary when 
the situations get more complicated. The multiport commu-
nication approach offers such a systematic procedure. 

A. Main Assumptions
We consider communication systems which use a sinus-
oidal carrier to transfer information by modulating its 

amplitude and/or phase. Such signals are conveniently 
described by so-called complex envelopes. In particular, 
we define with 

	 ( ) ( )Reu t u t2 e f t2
RF

j= r 0" ,� (8) 

the complex envelope ( )u t  of a real voltage ( )u tRF  which 
is used for the communication. Herein f0  denotes the 
constant frequency of the carrier. Obviously, ( )u t  con-
tains the amplitude and phase of ( )u tRF  in its magni-
tude and its argument, respectively. The factor 2  is 
included for later convenience. 

The complex envelope ( )i t  of a real current ( )i tRF  is 
defined analogously. In the description of multiports it is 
convenient to collect all complex port voltage envelopes 
into a vector ( ) [ ( )   ( )]t u t u tu K1

Tg=  and all complex port 
current envelopes into the vector ( ) [ ( )   ( )] ,t i t i ti K1

Tg=  
where K  is the number of ports. In the following, we restrict 
the discussion to linear (or affine) multiports. With con-
stant complex envelopes, a linear multiport is described 
by an equation like 

	 ( ) ( ) ( )t f tu Z i0= � (9)

exactly, where ( )fZ 0  is the impedance matrix of the mult-
iport evaluated at the carrier frequency. In the following, 
we will frequently simply write Z  meaning ( ) .fZ 0  Now 
the complex envelopes are not constant, but assuming 
they are sufficiently narrow in bandwidth, (9) holds true 
in good approximation. Wide-band systems can then be 
treated as a collection of a number of narrow-band sys-
tems each with a slightly different carrier frequency. The 
total physical power flowing into a multiport being given 
as the sum of the powers flowing through each port, can 
be written in complex envelope notation as: 

	 ( ) ( ) ( ) ( ) .Re ReP t t t tu i u iE E e f t4H T j 0= + r6 6@ @" ", , � (10) 

The expectation operation [·]E  is used to allow the com-
plex envelopes to be random processes rather than deter-
ministic signals. As the second term on the right hand 
side of (10) can be written ( ) ( ) ,Re t ti i Ztr E e f t4T T j r 0^ h6 @" ,  
it follows that 

	 ( ) ( )t ti iE OT /6 @ � (11) 

is sufficient to make the expected power be computable as 

i

u ü · u uG

R

R

iN,1

iN,2
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−i/ü

h
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0 0.1 0.2 0.3 0.4 0.5

Figure 4.  A simple circuit model of a physical communica-
tion system.

Figure 5.  The SNR of the mathematical AWGN-channel 
model from Figure 3 applied to the circuit model from Figure 
4 of an idealized physical communication system using the 
isomorphism (6). The SNR is shown as a function of the 
AWGN-channel coefficient .h

The absence of conjugated pairs in information theory and signal processing  
shows that they are ill equipped to handle fundamental concepts such as energy,  

power and noise in any way consistent with physics.
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	 ( ) ( ) .ReP t tu iE H= 6 @" , � (12) 

Note that (11) holds true for all linear superpositions 
of a number of random processes with i.i.d. real- and 
imaginary parts, especially for complex, circularly 
symmetric Gaußian random vector processes. If the 
continuous time complex envelopes are obtained from 
a discrete-time sequence using root-Nyquist pulse shap-
ing [6], and a discrete-time sequence is obtained from 
the continuous-time signals by matched filtering fol-
lowed by sampling in symbol time ,Ts  it can be shown 
that the power, averaged over a symbol time, can be 
written as 

	 P [ ] [ ] ,Re n nu iE H= 6 @" , � (13) 

while the multiport is described by: 

	 [ ] [ ] .n nu Zi= � (14)

Thus, because of root-Nyquist pulse-shaping, matched 
filtering and the requirement (11), one can use the same 
model both for the continuous-time and the discrete-time 
case. We will, therefore, usually simply write u  and ,i  
omitting explicit reference to the time index (( ),t  or [ ]) .n  

B. Noisy Two-Ports
The affine extension of (9) or (14) obtained by adding to 
their right hand sides a complex voltage envelope vector 
uNu  which is independent of i  and ,u  one obtains a model 
for a noisy linear multiport. In case there are two ports, 
one obtains the system shown in Figure 6. Whether the 
stochastic properties of the noise variables u ,1Nu  and u ,2Nu  
can be inferred from the deterministic properties of the 
twoport depends on the nature of the noise. 

Thermal Equilibrium Noise: In case the twoport intern-
ally consists of passive only components and its noise is 
solely thermal equilibrium noise, the correlation matrix 
of uNu  can be obtained immediately from the impedance 
matrix of the multiport [12]: 

	 .TWu u Z Z2E kN N
H H= +u u ^ h6 @ � (15) 

Herein, k  refers to the Boltzmann constant, while T  is 
the absolute temperature, and W  the noise bandwidth 
of the system ( /W T1 s=  for the discrete-time case). This 
result is a direct consequence of the law of conserva-
tion of energy, highlighting again the versatility and 
importance of the latter. It holds true for any number of 
ports. In case the multiport is also reciprocal ( ),Z ZT=  
the noise correlation matrix is proportional to the real-
part of .Z  This is, for example, the case for the thermal 
equilibrium noise of antenna arrays. 

Non-Equilibrium Noise: In all the other cases, the sto-
chastic properties of the noise cannot be inferred from 
the deterministic behavior of the twoport. Instead, all 
of the physical noise origins inside the twoport have 
to be modeled by appropriate noise sources. Thus, the 
twoport cannot be seen as a black-box anymore, but its 
internal structure has to be known and analyzed. This 
is, for example, the case for an amplifier twoport. Usu-
ally the noise analysis is done by circuit simulation or, 
better, by measurement. 

Under fairly general conditions ( ,Z 021 !  and 
),Z11 31  the model of a noisy twoport from Figure 6 

can be reformulated into the equivalent model shown in 
Figure 7. It also uses two noise sources: however they are 
both located at the first port, and one of them is a current 
source. While both of these noise models are electrically 
equivalent, the one shown in Figure 7 is much better 
suited to take part in a multiport model of a communica-
tion system. The reason is that the signal to noise ratios 
at both of its ports are equal ( ) .SNR SNR1 2/  From an 
information theory perspective, it is therefore sufficient 
to look at the first port. Provided that the stochastic 

Z

ũN,1 ũN,2

i2i1
u2u1

Z

i1 i2

u1 u2

iN

uN Zin

SNR1 SNR2

Figure 6.  Modeling a noisy twoport as a noiseless twoport 
and augmenting each port with a noise source.

Figure 7.  Modeling a noisy twoport as a noiseless twoport 
and augmenting one port with two noise sources.

i1

u1

iN

uN

Zin uR

Figure 8.  Generic model of a linear noisy receive amplifier.
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properties of the equivalent input noise sources (uN  and 
)iN  are known, the only further property of the twoport 

that is of any immediate interest is its input impedance 
.Zin  By interpreting the twoport as a noisy receive ampli-

fier, one therefore obtains the generic model as shown in 
Figure 8. The port is the input, while the complex enve-
lope uR  of the voltage across Zin  constitutes the (SNR-
equivalent) output. The noise parameters are given by 
the triple ( , , ),RNb t  defined as 

	

,

/ ,

/ · .

i

R u i

u i u i

E

E E

E E E*

2

2 2

2 2

N

N N N

N N N N

b

t

=

=

=

8
8 8
6 8 8

B
B B
@ B B

_

`

a

b
b

bb
� (16) 

The full specification of the amplifier noise, therefore, 
requires 4 real numbers, at least two of them non-negative. 

C. The Canonical Model
Figure 9 shows a canonical multiport model of a linear 
multi-input multi-output (MIMO) communication system. 
The N  ports on the left hand side are associated with 
the N  inputs, while the M  ports at the right hand side 
are associated with the outputs of the MIMO system. 
The transmit signals are obtained from linear genera-
tors whose generic model consists of a voltage source 
with complex envelope u ,nG  and a series impedance ,ZG  
where { , , , } .n N1 2 f!  These generators are connected 
to the N  left hand side ports of the linear multiport. 
The remaining M  ports are connected to generic noisy 
receive amplifier models. The complex envelopes ,u ,mR  
with { , , , },m M1 2 f!  constitute the outputs. 

At first glance, it appears that the model from Figure 9 
is missing M  noise sources at its M  receive side ports. 
However, in the canonical model, these receiver side 
noise sources of the multiport are subsumed in the noise 
voltage sources u ,mN  of the receive amplifier. On the 
other hand, the voltage sources u ,nNl  at the transmit side 
ports are made explicit (rather than being subsumed 
into the ),u ,nG  so that u ,nG  can be used as the sources of 
the desired signal. Of course it is possible to add respect-
ive noise sources to the receive side ports for mathem-
atical tractability. Due to their being redundant, they are, 
however, excluded from the canonical model. 

The term transmit power is now precisely defined as 
the power Pin  which flows through the N  transmit side 
ports with all noise signals switched off: 

.P P no noise=Tx in

Expressed in terms of the vector [   ]u uu , ,N1G G G
Tg=  of 

the complex envelopes of the generator’s open circuit 
voltages, the transmit power can be written as 

	 .P R u Bu4
1

G
H

G=Tx � (17) 

The Hermitian matrix B CN N! #  depends on the imped-
ance matrix Z  of the multiport, on the values of ZG  and 
Zin  and on the arbitrary reference resistance .R 02  
The input-output relationship is described by: 

	 ,Ru DuR G h= + � (18) 

where [   ]u uu , ,M1R R R
Tg=  is the vector of the complex 

envelopes of the received voltages, and the matrix 
D CM N! #  depends on ,Z  ZG  and ,Zin  while h  is a vector 
of the resulting noise complex envelopes. It is usually 
safe to assume that h  consists of zero-mean, complex 
Gaußian distributed random variables such that it is 
defined by its covariance matrix: 

ZG

ZG

Zin

uG,1

uN,1

uN,M

iN,M
uR,M

Zin

uN,1

iN,1
uR,1

Z

Pin

′

uG,N

uN,N′

Z

B

D

Rη

H

Figure 9.  Canonical multiport model of a linear communica-
tion system.

Figure 10.  Encapsulation of the physical context into the 
channel matrix.
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	  .RR u u u1 0E R R
H

G;= =h 6 @ � (19) 

Of course, also Rh  depends on ,Z  ,ZG  Zin  and ,R  but 
also on the receiver noise parameters ( , , )RNb t  and on 
the stochastic properties of the .u ,nNl  

D. Isomorphism and its Implications
Let x  be an N-dimensional vector denoting the N  inputs 
in a channel used in signal processing or information 
theory. Moreover, let y  be an M-dimensional vector 
denoting the M  channel outputs. This model acquires 
physical meaning by assigning the channel input x  to 
physical quantities at the transmit side, and by assigning 
the channel output y  to some other physical quantities 
at the receiver side. By such an assignment, an iso-
morphism is formed between formal symbols and ele-
ments from the physical world. Let us try the following 
isomorphism: 

	
,

.

R

R

x B u

y R u

2
1 /

/

1 2

2
1 2

G

R
v

=

= h
-

_

`

a

bb

bb
� (20) 

Herein 02 2v  is an arbitrary positive number. We 
assume that both B  and Rh  are invertible matrices. 
In this way, (20) is bijective, and thus, information 

preserving. Applying (20) in (18), the following implica-
tions are revealed: 

1)	 There is the following input-output relationship: 

	 y Hx j= + � (21) 

2)	 The matrix H CM N! #  is given by 

	 H R D B4 / /2 1 2 1 2v= h
- - � (22) 

3)	 In case that ,B 02  there is 

	 ,PxE 2
2 = Tx8 B � (23) 

4)	 and finally, 

	 ,E IM
2Hjj v=6 @ � (24) 

where IM  is the M M#  identity matrix.
With (21), (23) and (24), a standard and easy to use 

channel model for signal processing or information 
theory is obtained. The so-called channel matrix ,H  
defined in (22), contains all the relevant physical con-
text, extracted from the matrices ,B  D  and Rh  of the 
physical world. As illustrated in Figure 10, each of those 
three matrices is essentially derived from the same 

R iT,1 iA,1 iB,1 iD,1

iD,M

uD,1

uD,M

uR,1

uR,M

iN,1

iN,M

iB,MiA,NiT,N

u T,1 uA,1 uB,1

uB,M

uC,1

uC,MuA,N

uG,1

u T,NuG,N

R

ZMT ZA

uN,1˜ uN,1

uN,MuN,M˜ ZMR

R

R

Signal
Generation

Lossless Impedance
Matching

Lossless
Impedance
Matching

Noisy Receive
Amplifier

Transmitter’s Side Receiver’s Side

Antenna Mutual Coupling
btw. All Antennas, and

Reception of Extrinsic Noise

Figure 11.  Linear multiport model of a radio multi-antenna communication system covering signal generation, impedance match-
ing, antenna mutual coupling and noise of both extrinsic origin (received by the antennas) and intrinsic origin (from low-noise 
amplifiers and remaining circuitry).

The multiport formalism automatically takes care of all  
dependencies and makes sure that the relevant physical context  

is encapsulated into the channel matrix H.
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impedance matrix .Z  This leads to rather complicated 
dependencies of ,B  D  and Rh  on each other, similar in 
spirit as (7), only much more involved. The multiport 
formalism automatically takes care of all dependencies 
and makes sure that the relevant physical context is 
encapsulated into the channel matrix .H

IV. Wireless Multiport Communication
In the following, we apply the described multiport com-
munication theory to wireless multi-antenna commu-
nication systems. In order to facilitate mathematical 
tractability, the canonical model from Figure 9 is both a 
little bit expanded and a little bit simplified. 

As displayed in Figure 11, the single multiport of the 
canonical model is split into three multiports: 1. the 
antenna multiport, which encapsulates not only the anten-
nas themselves but also the complete wave propagation 
between receiver and transmitter, 2. the transmit matching 
multiport, which models all circuitry which is connected 
between the antenna excitation ports and the power 
amplifiers of the transmitter, and 3. the receive matching 
multiport, which contains all circuitry which is connected 
between the receiver’s antenna ports and the low-noise 
amplifiers. The transmit side noise sources from the 
canonical model are omitted here, because in wireless 
communications it is usually only the receive side noise 
that matters. On the other hand, we have explicitly 
included the antennas’ open-circuit noise voltages u ,mNu  
because of substantially better mathematical tractability. 
We note in passing that a similar multiport model was also 
used in [13], albeit missing consistent treatment of noise. 

A. Transmit Matching
The reason for a transmit matching multiport is to make 
the transmit side antennas and the power amplifiers 
comfortable with each other. In practice, this usually 
means that the multiport impedance presented by the 
transmit antennas is changed by the transmit matching 
multiport in such a way which allows all the available 
power to be extracted from the amplifiers. This strategy 
is called power matching. If the matching multiport is 
lossless, the amplifier’s available power is fed into the 
antenna array. If the latter is lossless, too, the available 
power is completely radiated. As the impedances of the 
power amplifiers in Figure 11 are uncoupled and equal 
to ,R  a lossless transmit matching multiport, set up for 
power matching, will present to the power amplifiers a 
bank of uncoupled resistances of the same value .R  In 

the following, we assume that such a lossless matching 
multiport is employed. 

B. Receive Matching
While extracting and radiating maximum power is 
clearly a sensible goal for the transmitter, the extraction 
of maximum power from the electromagnetic field by the 
receiver is usually sub-optimum. Instead, the receiver 
should try to obtain the largest possible signal to noise 
ratio (SNR) at the outputs of its low noise amplifiers. A 
matching strategy which aims at maximization of SNR is 
called noise matching [14], [15]. If the receive matching 
multiport is lossless, it can provide this maximization 
without adding noise of its own, and without dissipating 
desired signal energy. In the following, we assume that 
such a lossless matching multiport is employed. 

C. Antenna Noise
The open-circuit noise voltage which appears at the 
antenna ports comes from two effects: 1. from received 
background radiation, and 2. from fluctuations caused 
by its own heat loss. Lossless antennas only have noise 
from background radiation. In case that the antennas 
are in thermal equilibrium with their environment, the 
covariance matrix of the complex envelopes of their 
open-circuit noise voltages is proportional to the real-
part of their impedance matrix [12]. In the following, we 
assume that this is the case. 

D. Antenna Multiport
The antenna multiport is responsible to model: 1. the 
interaction of the transmit side antennas with them-
selves due to electromagnetic mutual near-field coup-
ling, 2. the interaction of the receive side antennas with 
themselves due to electromagnetic mutual near-field 
coupling, and 3. the interaction of the transmit array 
and the receive array due to electromagnetic mutual 
far-field coupling. The latter critically depends on the 
wave propagation environment, while the first and sec-
ond depend mostly on the geometry of the arrays and 
the type and orientation of the antennas. In some simple 
cases, the impedance matrix ZA  of the antenna multi-
port may be calculated analytically. In more realistic 
situations, a full-wave solution of Maxwell’s equations is 
necessary, which can only be done numerically. At any 
rate, the result of all antenna interaction is captured in 
the impedance matrix ,ZA  which we can partition into 
four blocks: 

The reason for a transmit matching multiport is to make the transmit side  
antennas and the power amplifiers comfortable with each other.
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= = G � (25) 

Herein, ·Z CN N
AT ! X#  is the transmit impedance mat-

rix. It describes the interaction of the transmit side 
antennas for the case of vanishing port currents at the 
receive side. Similarly, ·Z CM M

AR ! X#  is the receive 
impedance matrix. It describes the interaction of the 
receive side antennas for the case of vanishing port 
currents at the transmit side. Finally, ZART  models the 
action of the transmit array on the receive array, while 
ZATR  models the action of the receive array back on the 
transmit array. Because antennas are reciprocal, these 
two actions are the same, and .Z ZATR ART

T=  We note in 
passing, that from this circuit theoretic description, it 
is also possible to arrive at a more abstract description 
of antenna mutual coupling which is based on a special 
kind of non-Euclidean geometry [16]. 

E. The Channel Matrix
For the system from Figure 11, together with the assump-
tions in Sections IV-A, IV-B, IV-C and IV-D, one can com-
pute the ,B  D  and Rh  matrices, and from them, using 
(22), the channel matrix .H  By setting 

	 ,TW4k NFmin
2v = � (26) 

where NFmin  is the minimum noise figure [17]–[20] of the 
low noise amplifiers which results from noise matching, 
one finds the surprisingly simple expression [19]–[20]: 

	 .Re ReH Z Z Z/ /1 2 1 2
AR ART AT= - -^ ^h h" ", , � (27) 

Recall that the matrices ZAR  and ZAT  quantify the 
antenna mutual coupling within the receive-and trans-
mit-side arrays (intra-array coupling), while ZART  quanti-
fies the antenna mutual coupling between receive- and 
transmit-side arrays (inter-array coupling). It turns out 
that the key difference between the results obtained 
with the help of multiport communication and those 
obtained with the help of standard array signal process-
ing comes from the fact that the latter ignores mutual 
coupling within the arrays. That is, standard array sig-
nal processing emerges as a limiting case of multiport 
communication, when ZAR  and ZAT  become scaled iden-
tity matrices. In many practical situations however, fun-
damental principles of physics prevent those matrices 
from becoming scaled identities. The very existence 
of the inverse square root of their real-parts in (27), is 
then responsible for a host of interesting effects. But 
before we can have a look into some of those, we first 
have to obtain some information about the nature of 
those matrices. 

F. Intra-Array Coupling
Because the antennas of an antenna array are usually 
located in rather close proximity to each other, the 
intra-array coupling is due to the antennas responding 
to the near-fields generated by their neighbors and by 
themselves. From (27) it is however clear that we do not 
need to know the whole near-field coupling to come up 
with the channel matrix. Knowing the real-part of the 
transmit/receive impedance matrix is already enough. 

Consider an antenna array in otherwise empty space. 
For antennas are reciprocal, the physical power which 
flows into the antenna array is given by: 

.ReP i Z iE H
AT=in 6 @" ,

If the antennas are lossless (i.e., have no heat loss), the 
law of conservation of energy demands that the power 
Pin  is radiated out in space. Now the radiated power can 
also be computed from integrating the Poynting vector 
over any closed surface that contains the whole antenna 
array [21]. Making this surface large enough, the inte-
gration can be carried out entirely in the far-field of the 
array. Thus, despite the intra-array coupling being a 
near-field effect, one can obtain important information 
about it, namely the ,Re ZAT" ,  from far-field considera-
tions and the law of conservation of energy. This is yet 
another example of how conservation laws can help 
solve an otherwise complicated problem. Following this 
approach, for an array of Hertzian dipoles uniformly 
placed on a line which is perpendicular to all dipoles, it 
is shown in [22] that: 

	 , ( ),Re R kd m nZ C Cwhere, ,m nAT r HD HD HD W= = -^ h" ,
� (28) 

d  being the inter-element spacing, and 
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Figure 12.  Comparison of the coupling function for Hertzian 
dipoles ( ( ))xW  and for hypothetical isotrops ( ( )) .xj0
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where / ,k 2r m=  with m  as the wavelength, and R 0r,HD 2  
is the radiation resistance (see, e.g., [23]) of the Hertz-
ian dipole. The same coupling function (29) can also be 
obtained from near-field considerations [24]. Note that 
CHD has unity entries on its main diagonal. For small elem-
ent spacing (with respect to the wavelength), the off-diagonal 
components are also large in magnitude. For example, set-
ting / ,d 3m=  one finds for a 3-element array that 
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which is far from being a scaled identity. In the same 
way as for the Hertzian dipoles one can also calculate 
the mutual coupling of isotropic radiators, by merely 
replacing the direction dependence of the Hertzian 
dipole by a constant [22]. Even though Maxwell’s equa-
tions do not permit a coherent isotropic radiation, one 
can, in this way, obtain the coupling matrix C  of a uni-
form linear array of hypothetical isotropic radiators: 

	 ( ), ( ) ,sinkd n m x x
xC j where j,m n 0 0= - =^ h � (30) 

so that 

	 ,Re RZ CAT r=" , � (31) 

with some constant .R 0r 2  The main difference to the 
case of Hertzian dipoles is, therefore, that the coupling 
function ( )j0 $  is used instead of ( ) .$W  At first glance, 

( )xj0  and ( )xW  appear to be rather different. However, 
when we look at Figure 12, we observe that there actually 
is a striking similarity. Both functions are decreasing at 
first, when x  is increased from zero, and then display 

an oscillatory behavior as x  is further increased. While 
( )xj0  has equidistant roots (integer multiples of ),r  the 

function W  has almost equidistant roots at almost the 
same positions as ( ) .xj0  From what we see in Figure 12, 
we may therefore conclude that ( ),xj0  and ( )xW  are 
qualitatively the same. This justifies the use of isotropic 
radiators in the theoretical treatment of antenna arrays, 
even though they are not permitted by Maxwell’s the-
ory. The obtained results for isotropic radiators are 
qualitatively the same as the ones obtained for Hertzian 
dipoles. The differences are, therefore, only quantita-
tive and turn out to be not too large [22]. Since arrays of 
isotrops are determined solely by the collection of the 
mutual distances, one can easily generalize the coup-
ling matrix for arbitrary arrays of isotrops: 

	 ( ),kdC j, ,m n m n0=^ h � (32) 

where d d, ,m n n m=  is the geometrical distance between 
the m-th and the n-th isotrop. The presence of a medium 
(rather than air or vacuum) can be taken care of by using 
the wavelength suitable for the medium when comput-
ing / .k 2r m=

Because one can use the same antenna array for 
reception as for transmission, the matrix Re ZAR" , is 
calculated exactly the same as .Re ZAT" ,

G. Inter-Array Coupling
The inter-array coupling obviously depends on the wave 
propagation environment present between transmitter 
and receiver, the simplest case being empty space. If the 
separation is large, the coupling reduces inversely with 
distance. Furthermore, the same phase must occur in 
integer multiples of the wavelength. Assuming isotropic 
radiators, we do not have to worry about directional or 
orientational dependence. Hence, 

	 ,rZ e
,

,
m n

m n

kr

0ART

j ,m n

C=
-

^ h � (33) 

where 0C  is a constant, and r ,m n  is the geometric dis-
tance between the m-th antenna of the receiver and the 
n-th antenna of the transmitter. 

Note that (33) requires the concept of canonical mini-
mum scattering (CMS) antennas [25]. A CMS antenna 
becomes essentially »invisible« if the current at its exci-
tation port vanishes. For other antennas in its neighbor-
hood, it is then as if the CMS antenna with zero port 
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Figure 13. Two arbitrarily oriented uniform linear arrays in free space.

Any mathematical system model can be made consistent with the governing  
physics by following a two-step procedure.
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current were not present physically. While the CMS 
property is an idealization of reality, a half-wavelength 
dipole (or shorter) made of thin wire is a good approxi-
mation [26]. We prescribe this ideal behavior also to the 
hypothetical isotropic radiator. 

The best way to describe arrays of CMS antennas is 
via the impedance matrix description, for an element of 
Z  is obtained by letting all port currents, except one, 
become zero. Together with the CMS property, the prob-
lem is therefore reduced to pairs of antennas. In (33) 
one can, therefore, not use, say, the admittance matrix 
or scattering matrix, for these would imply non-vanish-
ing port currents, prohibiting pair-wise treatment. One 
would have to consider the fields due to non-vanishing 
port currents of all antennas and not only the field gen-
erated by the n-th transmit side antenna. Obviously, this 
is much more complicated and better avoided by use of 
the impedance matrix, the canonical way to describe 
CMS antennas. 

Picking up development by defining ,r r r, , ,m n m n1 1 D= +  
we can re-write the right hand side of (33) in the follow-
ing way: / ,r re , ,

k r
m n1 1

j ,m na D-  with / .re ,
kr

0 1 1
j ,1 1a C= -  For the 

case of two uniform linear arrays, as shown in Figure 13, 
there is 

( ) ( ) ( ) ( ) .cos cosr d n d m1 1,m n T Ri iD = - + -

Moreover, one can replace the term /r r, ,m n1 1  by unity, 
because receiver and transmitter are usually separated 
much farther than the distances of the antennas inside 
the arrays. Thus, (33) becomes for the case of uniform 
linear arrays: 

	 ( ) ( ),Z a aART R R T
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are the so-called transmit and receive steering vectors. 
Multipath propagation is then easily introduced by 

( ) ( ) .Z a a, ,i
i

i iART R R T
T

Ta i i=/

A stochastic model for fading propagation conditions 
arises by letting the ia  be random variables. Assuming 

[ ] ,E *
,i j i i ja a c d=  with ,i jd  being unity for i j=  and zero 

else, one obtains the correlation matrices: 

	 ( ) ( ),NZ Z a aE , ,i
i

i iART ART
H

R R R
H

Rc i i=6 @ / � (35) 

	 ( ) ( ) .MZ Z a aE *
, ,i

i
i iART

H
ART T T T

T
Tc i i=6 @ / � (35a)

The 0i $c  are proportional to the average power gain of 
the i-th path of the multipath propagation environment. 
By choosing a (large) number of directions ( , ),, ,i iT Ri i  
and assigning appropriate values to the ,ic  one can 
realize fading multipath propagation with arbitrary 
angle-spreads. We note in passing that the interface to 
common spatial channel models (SCM), e.g., to [27] for 
3Gpp-UMTS, works such that what those SCM refer to 
as »channel-coefficients« should be interpreted as the 
elements of ,ZART  instead of .H

V. Applications
Let us now apply the described multiport communication 
theory of wireless multi-antenna systems to several inter-
esting figures of merit of such systems. In the present 
view, the multiple antennas can be used to different bene-
fit compared to systems which have only a single antenna 
at either side of the link: 1. Reduction of necessary trans-
mit power. This benefit is quantified by the array gain 
[19]. 2. Reduction of the variation of the channel quality. 
A suitable figure of merit is the diversity measure [28]. 
3. Increase of the data rate by spatial multiplexing [29]. 
This is best analyzed in terms of mutual information, or 
channel capacity of the individual streams. 4. Increase of 
the capacity region in a multi-user context [30]. We focus 
here on the multiple-access scenario, where one receiver 
listens to several users who transmit simultaneously. 

A. Array Gain
Consider a wireless multi-antenna communication sys-
tem with N  transmit antennas and M  receive anten-
nas. As described in Section III-D, such a system can be 
modeled as a multi-input multi-output (MIMO) system 
described by 

, , .Py Hx xE E I2
2 2
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Hjj j v= + = =6 6@ @
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Figure 14.  Array gain A  in »end-fire« direction, as function of 
the antenna separation for different number N  of antennas.
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Every MIMO system of this kind can be turned into a vir-
tual single-input single-output (SISO) system by virtue 
of transmit and receive beamforming: 

· , ,s sx t r yH= =t

where s  and st  are the transmit and receive signals of 
the virtual SISO system, and t CN 1! #  and r CM 1! #  are 
the transmit and receive beamforming vectors. The SNR 
w.r.t. st  is given by 

 .P
r t
r HtSNR 2

2
2

2
2

2H

v
= Tx

The array gain is defined as [19]: 
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SNR

SNR
/M N P1 const2

=
v= = =Tx

� (36) 

where the maximization in the numerator is done with 
respect to r  and ,t  while in the denominator it is with 
respect to the choice of which of the N  transmit and 
which of the M  receive antennas to use. Therefore, the 
array gain quantifies the maximum increase in SNR of 
the virtual SISO systems, which comes by using all N  
antennas at the transmitter and all M  antennas at the 
receiver simultaneously, compared to the case where 
transmitter and receiver use only a single antenna each. 
The array gain can then be computed as: 

	
 

.
max

max
A

H
HH

 
EigVal

M N 1
2

H

=
= =

" ,
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Of course, the matrix H  in the denominator is a scalar! 
Note that H HH  can be substituted for HH H  in case that 
it yields the smaller matrix, for they have the same non-
zero eigenvalues. As a corollary: if H  is a vector (sin-
gle row, or single column), then the numerator equals 

its squared Euclidean norm. Such a case refers to either 
single-input multi-output (SIMO) or multi-input single-
output (MISO) systems. In either case, the array gain is 
easy to compute. 

Considering a system which employs multiple anten-
nas at the transmitter only, and assuming a uniform 
linear array of isotrops, using (34) and (31) in (27), the 
array gain from (37) becomes ( ) ( ) .A a C a1

T
H

T T Ti i= -  
Because ( ) ,Na 2

2
T Ti =  it follows for the array gain of a 

uniform linear array of isotrops: 
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It depends not only on ,N  but also on the dedicated 
direction Ti  of beamforming, and also on the antenna 
spacing, ,d  which influences both ( )aT Ti  and .C  Only if 
C  is the identity matrix, the array gain is independent of 

Ti  and equals the number N  of antennas. However, C  
is only an identity if d  is an integer multiple of half the 
wavelength, as can be seen from (30). Thus, all other 
antenna spacings result in an array gain which depends 
on the dedicated direction of beamforming, and whose 
value is usually different from ,N  where both larger and 
smaller values are possible. For ,0Ti =  the so-called 
»end-fire« direction, the resulting array gain is shown 
in Figure 14. For large antenna spacings, the array gain 
is more or less equal to the number of antennas. How-
ever, as soon as the distance d  drops below half of a 
wavelength, there is sharp increase of array gain with 
decreasing d  which approaches the square of the num-
ber of antennas as /d m  approaches zero. 

Interestingly, the effect of a quadratic growth of array 
gain with antenna number was already predicted in [31] 
as early as 1946, and was surely known, yet not spelled 
out, by the author of [32] three years earlier. However, 
such »super-gain« effects do not seem to have been very 
well received, perhaps because of the work [33], which 
unveiled the high sensitivity of super-gain arrays with 
respect to the presence of heat loss in the antennas. In 
practice, heat loss would actually eat up all the super-
gain. Until recently, the term super-gain was therefore 
described as a »miss-nomer« in standard textbooks [23], 
[34]. However, it was shown theoretically in [35] and 
by experiment in [36], that large amounts of super-gain 
can be retained even with lossy antennas, provided the 
antenna spacing is chosen properly. To see this, we can 
adopt a simple model for antenna heat loss by using 

,Re R RZ C IAT r d= +" ,

where Rd  is the effective dissipation resistance of the 
antennas. Thus, all one has to do to arrive at the array 
gain of a uniform linear array of lossy isotrops, is to 
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isotrops, when beamforming in »end fire« direction is applied.
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replace in (38) the coupling matrix C  by ,C Ic+  where 
/R Rd rc =  is the loss-factor. 

The results for the case of N 4=  isotrops is shown 
in Figure 15. Cleary, the situation is not that bad. Hav-
ing a . ,0 01c =  and choosing the optimum separation of 

. ,d 0 27m=  the array gain is still by 4.2 dB larger than 
the number of isotrops in the array, and 1.8 dB away 
from the theoretical maximum for lossless isotrops. 
Even a .0 1c =  allows for having super-gain in end-fire 
direction (gain of 7 with four elements) by placing the 
isotrops by /3m  apart. However, the sensitivity to the 
presence of heat loss increases with antenna number. As 
a consequence, the quadratic growth of array gain with 
antenna number eventually has to yield to an almost 
linear growth for larger numbers of lossy isotrops [35]. 
Between two and four antennas per dimension seems to 
be the practical range. Such numbers are interesting for 
many mobile communication devices. 

B. Diversity
When electromagnetic waves hit an object they shake 
up the object’s free electrons (if any). These acceler-
ated electrons generate electromagnetic waves of their 
own which superimpose on the incident waves. Because 
of the Doppler effect, the presence of relative mobility 
causes each new wave to have a slightly different fre-
quency. Consequently, their superposition results in a 
time-varying signal strength at a receive antenna, which 
shows the characteristic occasional deep fades resulting 
from a destructive superposition. A common attempt to 
lower the chance of falling into a deep fading hole is to 
employ antenna diversity, which combines signals from 
several antennas. If the antennas are spaced sufficiently 
far apart, chances are that the respective signal ampli-
tudes will be (almost) uncorrelated and simultaneous 
deep fades become much less likely, thereby improving 
link reliability [37]. 

The correlation between antenna signals essentially 
depends on a number of factors. Two prominent ones 
are the angular power density and the antenna separ-
ation [38]. In general, receiving substantial amount of 
power from a wide range of angles tends to make for 
low correlation, as does a large separation of antennas, 
preferably by several wavelengths [39]. Close antenna 
spacing is therefore traditionally avoided in diversity 
applications because it is feared that the closely spaced 
antennas will receive almost the same signal, thus 
rendering antenna diversity ineffective. This however 
ignores another important factor: the antenna mutual 
coupling. It turns out that mutual coupling not only 
has important impact on array gain (as we have seen 
before), but also affects the diversity performance in a 
remarkable way. 

A simple way to quantify how well a diversity system 
performs is to consult the so-called diversity measure 
[28]. To this end, consider a SIMO system described by 

, ,sy h E I2Hjjj v= + =6 @

which is used to model a multi-antenna system with 
multiple antennas at the receiver. The vector ,y  thus, 
contains M  noisy »copies« of a signal ,s  received over 
different diversity branches. Diversity combining of 
all signals yields the signal s w y,H=t  where the com-
bining vector w CM 1! #  can be chosen to maximize 
the SNR, which yields the value of ( / ) ,hs

2 2
2
2v v  where 

.sEs
2 2v = 6 @  The diversity measure is then given by: 
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where the last equality assumes the components of the 
channel vector h  to be complex, circularly symmetric 
Gaußian distributed, i.e., a Rayleigh fading channel. The 
symbol Tr  refers to the matrix trace, i.e., to the sum of 
its diagonal components. The diversity measure is the 
inverse of the relative fluctuation of the SNR. The larger 
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Figure 17.  Diversity measure for the system from Figure 16.
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it is, the less the SNR fluctuates with respect to its mean 
value, and the better is the performance of the diver-
sity combing. This is the idea of the diversity measure. 
Due to h  being Gaußian distributed, it holds true that 

,D M1 # #  such that optimum diversity performance 
is characterized by having .D M=  Using (27) with h  in 
place of ,H  and assuming isotropic radiators by virtue 
of (31), one obtains: 

· .hh C Z Z CE const E/ /1 2 1 2H
ART ART

H= - -6 6@ @

Using (35), the matrix Z ZE ART ART
H6 @ can be found for any 

given angular power distribution. Figure 16 shows, for 
the case of ,M 2=  an angular power distribution which 
is uniform inside a cone of opening angle {D  and cen-
tered around the so-called front-fire direction, i.e., per-
pendicular to the array axis. It can be shown (see [40]), 
that in this case 
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and ( )J0 $  is the Bessel function of the first kind and 
zero-th order. The integral must be solved numerically. 

The diversity measure for this scenario is displayed 
in Figure 17. The three solid curves correspond to the 
case of lossless isotrops. As can be seen, the diversity 
performance is almost unaffected by the antenna spac-
ing ,d  but essentially only depends on the amount of 
angle-spread. For an opening angle of 180˚ the maxi-
mum diversity is achieved at any antenna separation. 
Thus, contrary to common belief, antenna separation is 
not a fundamental limit to the diversity performance. 

The three dashed curves in Figure 17 correspond 
to the case of lossy isotrops, with loss factor (see last 

part of Section V-A) of . .0 01c =  For / ,d 42 m  this loss 
has essentially no impact, but for decreasing antenna 
spacing, the diversity measure drops monotonically 
and reaches its minimum as /d m  approaches zero. For 
small antenna separation, it is heat-loss which, ultimately, 
limits the diversity performance. For 180{D = c  and 
loss factor of .0 01c =  one can nevertheless maintain 

.D 1 5$  for separations down to 1/40 of a wavelength! 
Despite heat loss, the diversity performance of compact 
arrays can be excellent. Interestingly, compact diversity 
arrays have been built and proposed for mobile devices 
already a decade ago [41]. Their theoretical justification 
was given later in [40]. 

The three dash-dotted curves in Figure 17 corres-
pond to the case where the antenna mutual coupling is 
simply ignored. It reflects the still wide-spread belief that 
one cannot have good diversity performance with small 
separations. It is plain to see from Figure 17 how far this 
is from the truth and how important both the antenna 
mutual coupling and its consistent modeling really is. 

C. Multistreaming
Besides being able to provide array gain and diversity, 
MIMO systems potentially support the transfer of several 
data streams at the same time using the same band of fre-
quencies. In order for this so-called multistreaming to work, 
the channel matrix must have at least two relatively large 
singular values. Spatial signal processing at the transmit 
and the receive side can then be used to establish at least 
two independent communication channels [29]. 

When modeling a wireless multi-antenna communi-
cation system as a MIMO system, an interesting ques-
tion arises: what kind of physical structure should the 
propagation channel have so that multistreaming is 
well supported? The simple answer is that it must have 
a structure which leads to a channel matrix with many 
strong singular values. But what is this structure? Expe-
rience shows that it can help when there are many 
scattering objects located between receiver and trans-
mitter, which lead to a rich multipath propagation envir-
onment. Such an environment is, however, not strictly 
necessary. Even in a free-space (line of sight) propaga-
tion environment, that is, in total absence of any scat-
terers, multistreaming may be supported, provided the 
antenna positions are carefully selected and the array 
sizes are similar to the distance between receiver and 
transmitter [42]. The latter qualification is a serious 
restriction but can be rather easily fulfilled for satellite 
communications with far-separated ground stations. 

Another important question is how to couple to this 
environment, that is, what kind of and how many anten-
nas should be used and how should they be arranged in 
space, so that multistreaming is well supported? This 
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Figure 18.  Top-view of a test system for multistreaming with 
compact arrays.
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question, too, is difficult to answer. Experience tells 
us that it may help if the antennas are not too select-
ive in direction and their separation inside their arrays 
is pretty large, at least half of the wavelength [30]. Yet 
again, it turns out that it is not strictly necessary to have 
any large antenna separations. In fact, it is possible to 
obtain good multistreaming capability even with very 
compact antenna arrays. In order to explore a little 
further into this direction, consider the configuration 
shown in Figure 18. Two antenna arrays are shown, each 
composed of two thin and lossless small dipoles. One 
array is used for transmission, the other for reception. 
The dipoles are oriented in the same direction, say par-
allel to the z-axis. There are two ideal metallic reflec-
tion plates placed in the middle between the two arrays 
and oriented parallel to the y-z-plane. These reflectors 
ensure that there is multipath transmission and recep-
tion, which is necessary to successfully employ multist-
reaming when the antenna separation within the arrays 
is small. What is not shown in Figure 18 are the high 
power amplifiers (HPA), the low-noise amplifiers (LNA), 
and the two lossless impedance matching multiports 
which are connected between these amplifiers and the 
antenna ports at each end of the link, respectively. 

We can use the multiport communication theory in 
order to model this communication scenario as a MIMO 
system consistent with the governing physics [20]. 
Because there are three paths (a direct path and two 
paths over the reflection plates) by which the transmit-
ter can reach the receiver, the matrix ZART  can be writ-
ten as the sum of three components: 

Z Z Z ZART ART,1 ART,2 ART,3= + +

where 

DZ
1
1

1
1

e kD
0

ART,1

jC=
-

; E 

corresponds to the direct path, and can be obtained 
from (34) setting /2R Ti i r= =  and / ,De kD

0
ja C= -  where 

0C  is a constant. For the two paths over the reflectors 
one can obtain from (33): 
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where r  is the distance from the center of the transmit-
ter’s array to the center of the receiver’s array, taking 
the longer way over the reflection plates / ) .( sinr D z=  
The minus sign in front of the constant 0C  is due to the 
reflected waves having to change their phase by 180 
degrees, because the incident field is polarized tangen-
tial to the reflectors. Assuming, for simplicity, that the 

dipoles are Hertzian dipoles, the real-parts of the receive 
and transmit impedance matrices can be obtained from 
(28). By virtue of (27), the channel matrix, ,H C2 2! #  of 
the corresponding MIMO system model 

, , ,Py Hx xE E I2
2 2Hjjj v= + = =Tx 6 6@ @

can then be computed. One can write the singular value 
decomposition of H  as 

,H U V0
01

2

Hn

n
= ; E

where the two unitary matrices U  and V  contain the 
left- and right-hand side singular vectors, respectively, 
and 01 2$ $n n  are the corresponding singular val-
ues. With the bijective transformations ,y U yH=t  and 

,x V xH=t  one obtains with 

, , ,y x P xE E *
,i i i i

i
i i j i j

2 2
Txn j j j v d= + = =t t t t t t6 6@ @/

where , { , }i j 1 2!  two systems which can be operated 
simultaneously without interfering with each other. 
Assuming that the noise is Gaußian distributed, it fol-
lows from the ijt  being uncorrelated that they are also 
statistically independent. Therefore, one obtains two 
information theoretically independent complex additive 
white Gaußian noise (AWGN) channels over which one 
can transfer information simultaneously. Using Shan-
non’s formula for the channel capacity [43] of a complex 
AWGN channel, the channel capacity, ,C  of the system of 
the two channels is given by the sum of their individual 
channel capacities. The only degree of freedom left is the 
split of power, so that: 

 / , ,max logC P P P1 such that
,P P i
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Figure 19.  Mutual information for the two data-streams.
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where P  is the available transmit power, and .P xEi i
2= t6 @  

The optimum power split ( , )P P1 2  is given by the waterfill-
ing solution [44]. This solution has the property that, for 
small values of ,P  the stronger of the two channels (the 
one with the larger )in  is assigned the whole available 
power, switching off the second channel completely. Only 
when there is sufficient power available, will the weaker 
channel get a share. Asymptotically, for large powers, 
the waterfilling solution approaches an equal split of the 
power, regardless of the strength of the channel. 

Our focus here, however, is more on the channel qual-
ity (quantified by the ),in  and we would like to avoid the 
waterfilling algorithm’s power-level dependent favoriza-
tion of one channel. We therefore set the power levels to 
be equal and obtain the mutual information for the MIMO 
channel as: 

,  
/

.logI I I I
P

1
2

where i i1 2 2
2

2n
v

= + = +c m

Note that I I1 2$  due to .1 2$n n  The results for these 
mutual information is shown in Figure 19. As the antenna 
separation d  is reduced, the total mutual information, ,I  

reduces. However, this reduction is not because the weaker 
stream would break down as /d m  approaches zero. On the 
contrary, as d  is decreased from about . ,0 58m  the weaker 
stream’s mutual information actually increases. In fact, for 
small values of / ,d m  it contributes a substantial amount 
(about 44%) to the sum mutual information. 

D. Multiple Access
In a multiple access channel (MAC), some number of 
independent transmitters communicate simultaneously 
with a receiver while using the same band of frequen-
cies. Information theory characterizes a MAC by its cap-
acity region [30], the set of all rate-tuples which can be 
supported simultaneously. Consider, for instance, the 
Gaußian MAC with two independent single-antenna 
transmitters, where 

	 x xy h h1 1 2 2 j= + + � (39)

is the received signal vector, j  is additive white Gaußian 
noise (AWGN), x1  and x2  are the independent Gaußian 
transmit signals, while h1  and h2  are the M-dimensional 
channel vectors, and M  is the number of receiver anten-
nas. The capacity region of this Gaußian MAC is given by 
the following three inequalities [30]: 

	  , { , },logR P ih0 1 1 2ii 2 2 2
2# # !

v
+c m 	 (40)

	  , .log detR R P H H H h hI1 2 2 2 1 2
H#

v
+ + =c m 6 @ 	 (40a)

For simplicity, it is assumed that both users transmit 
with the same power .P  The first two inequalities (40) 
assert that the achievable data rates Ri  for each user 
cannot exceed the channel capacity they would have, if 
the other user was quiet. (The users do not co-operate 
in any way in a MAC). The third inequality (40a) states 
that the sum of the achievable rates cannot exceed the 
channel capacity that would result if the two users co-
operated and formed a M 2#  MIMO system. One can 
see that (40a) is redundant if and only if .h h 012

H =  Only 
then can each user reliably transfer information at the 
same rate as if it was the only user. 

This MAC can serve as a model for a space-division 
multiple access (SDMA) system, were only the receiver 
is equipped with multiple ( )M  antennas [45]. To be con-
crete, consider the system shown in Figure 20. Here 
M 4=  antennas are placed to form a uniform circular 
array. The two users are located in the same plane as the 
array at azimuthal angles 0z  and / ,20z r+  respectively. 
The propagation environment shall be empty space. By 
virtue of (27), the system from Figure 20 can be mod-
eled as the MAC defined in (39). Assuming that the two 
transmitters are separated far enough that their mutual 
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Figure 20.  MAC formed by two independent transmitters ( ,1Tx  
),2Tx  and a compact 4-antenna receiver in empty space.
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interaction is negligible, the system can be split into two 
independent systems, one for each user. With the help 
of (33), one can then write for those two systems: 

( ), ( / ),Z a Z a 20 0ART,1 ART,2a z a z r= = +
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Assuming all antennas are isotropic radiators, Re ZAR" , 
is proportional to matrix C  from (32), where the dis-
tances d ,m n  can easily be obtained from the array geom-
etry in Figure 20. With (27) then follows: 

( ), ( / ),h C a h C a 2/ /
1

1 2
0 2

1 2
0p z p z r= = +- -

where p  is a constant. Using (40) and (40a) one can then 
compute the capacity region of the system of Figure 20. 
Three such regions are shown in Figure 21 for different 
antenna spacing / ,d m  while the ratio /P 2v  is kept constant. 

As can be observed from Figure 21, a compact size 
of the receiver’s antenna array does not necessarily 
impair the capacity region of a Gaußian multiple access 
channel. On the contrary, it is the smallest arrays (much 
smaller than half of the wavelength) which offer the 
largest capacity region for the same transmit power. 
For certain user positions, it is even possible to obtain 
a rectangular capacity region despite the fact that the 
receiver’s uniform circular array has a much smaller 
diameter than half the wavelength. 

VI. Conclusion
»Did we get the physics right in the modeling of mul-
tichannel communication systems?« This question 
was the starting point of the investigations reported 
here which have lead to quite a number of interesting 
insights and results. A multi-antenna radio communi-
cations system has to be modeled by linear multiports 
to enable consistency with the underlying physics. 
As shown, computation of transmit power or receiver 
noise covariance requires knowledge of the govern-
ing physics. Circuit theory is shown to be the perfect 

link to bridge the gap between electromagnetic theory, 
information theory, and signal processing. Therefore, 
it has become clear that circuit theory is not only of 
fundamental importance for the detailed design of indi-
vidual components of a communication system (such as 
amplifiers, mixers, matching circuits, analog/digital and 
digital/analog converters, to name a few), but it is cru-
cial for the overall conceptual design, where one has to 
decide on the number of antennas and the sizes of the 
arrays, and evaluate performance measures in different 
areas, such as coverage, link quality, information rate 
and multi-user capacity regions. The multiport theory 
of communication provides the perfect framework for 
such conceptual design decision. 
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[16] M. Ivrlač and J. Nossek, “On the physical meaning of the model of 
two uncoupled isotrops,” in ITG Workshop Smart Antennas (WSA2012), 
Dresden, Germany, Mar. 2012.
[17] H. T. Friis, “Noise figure of radio receivers,” Proc. IRE, vol. 32, 
pp. 419–422, July 1944.

[18] H. Hillbrand and P. Russer, “An efficient method for computer aided 
noise analysis of linear amplifier networks,” IEEE Trans. Circuits Syst., 
vol. 23, no. 4, pp. 235–238, June 1976.
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