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Abstract—The energy-efficiency of a receiver, which we mea-
sure in this work by the number of information bits conveyed
per Joule of energy consumption at the receiver, is greatly
influenced by the design and bit resolution of the analog-to-
digital converter (ADC) it employs. For a given ADC, using higher
resolution leads to less quantization error in the digitized receive
signal, yet requires a larger power dissipation. This trade-off
can be utilized to maximize the energy-efficiency by adapting
the ADC resolution according to the state of the communication
channel. For a receiver with multiple antennas, the resolution
of ADC associated with each antenna can be jointly adapted,
leading to a multivariate integer programming problem which
is difficult to solve to optimality. We propose several adaptation
strategies which differ in complexity and the amount of online
computations, and compare their performances based on the
simulation results. Furthermore, we show that equipping the
receiver with more antennas is beneficial to its energy-efficiency
when only a subset of antennas associated with relatively good
channel conditions is chosen for reception, and an appropriate
ADC resolution is employed for the quantization of receive
signals. As the improvement in energy-efficiency falls off with
increasing number of antennas, a cost-effective antenna number
can be determined by the receiver, depending on the application
scenario and the physical limitations on the device.

I. INTRODUCTION

In modern receiver design, more and more receive func-
tions are implemented by digital hardware due to its high
speed and low cost, which requires the analog receive signal
to be converted into digital format as early as possible [1]. The
analog-to-digital converter (ADC), which is connected directly
to the output of receive antenna in this case, is expected to be
a limiting factor of the system as it consumes a significant
amount of power when operating at high sampling rate and
resolution. It was reported in [2] that the power dissipation
of an 8-bit ADC with sampling rate 20 GS/s reaches as
much as 10 Watt, which is obviously impractical for most
mobile devices. From a communication point of view, this
motivates the employment of low ADC resolution, as high
sampling frequency is required by many applications such as
cognitive radio. In recent years, there have been various works
investigating the performance limit of communications over
quantized channel, e.g., [3][4], where the focus was on the loss
of capacity when low ADC resolution is used, as well as design
of the quantizer. In our previous work [5], we treat the ADC
resolutions in a multi-antenna receiver as adaptable parameters
and attempt to maximize the energy-efficiency of the system,
which is quantified as the number of information bits conveyed
per Joule of energy consumption. The optimization is based
on the trade-off between power dissipation of the receiver
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and quantization error introduced by the A/D conversion, and
significant gain over systems employing fixed, although low,
ADC resolutions has been observed with the simulation results
provided in the paper. In this work, we further pursue the idea
of ADC resolution adaptation based on available channel state
information (CSI), with the emphasis on methods with low
complexity and less online computations, and discuss also the
impact of the number of antennas on system energy-efficiency.

At the receiver side, diversity can be achieved via the
deployment of multiple antennas. With independent signal
paths and maximal ratio combining (MRC), the gain in receive
signal-to-noise ratio (SNR) equals the number of receive
antennas [6]. However, the hardware complexity and power
consumption of the receiver also scales with the number
of antennas. A common technique to compensate for this
drawback, known as antenna selection (AS) [7], is to choose
signals received by a subset of antennas based on the SNR
values for further processing, thus reducing the necessary RF
chains and the associated power consumption. When opti-
mizing the ADC resolution for each antenna, we implicitly
perform AS since the receive signal of an antenna with 0 bit of
resolution will not be processed. This motivates the proposal
of suboptimal algorithms which aim at finding the optimal
number of active antennas while their ADC resolutions are kept
identical. The important role of AS can be understood when
we compare the performance of the optimal ADC adaptation
scheme and suboptimal adaptation schemes with or without
AS via numerical simulations.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and in particular, give ex-
pressions of a lower bound on channel capacity and the total
power dissipation as functions of the ADC resolution vector.
The problem of maximizing energy-efficiency is then formally
given. We propose several static and adaptive schemes for
the adaptation of ADC resolutions in Section III, followed
by simulation results and analysis exhibited in Section IV.
Section V concludes the paper with a summary of ideas,
methods, and results which have been presented, and shortly
discusses related open issues as well as possible future works.

Notations: we use boldfaced letters to represent vectors and
matrices throughout the paper. The operator (-)¥ stands for
the Hermitian of a matrix, the symbol 1,; denotes the identity
matrix of dimension M x M, and diag(A) denotes the diagonal
matrix with the same diagonal elements as A.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multiple-input multiple-output (MIMO) system
with [V transmit antennas and M receive antennas. The vector
channel output y € CM before quantization is given by

y=+aHz+n,

where the channel matrix H € CM*N contains i.i.d. Gaus-

sian distributed channel coefficients with zero mean and unit
variance, € C is the vector of transmitted symbols, and
n € CM is the i.i.d. zero-mean complex circular Gaussian
noise vector. The positive scalar « stands for the average
combined gain of transmit power per antenna and the commu-
nication channel. Assuming uniform power allocation at the
transmitter and uncorrelated transmit symbols, we have that
the covariance matrix of the transmit signal R,, = E [me]
is equal to the identity matrix. The covariance matrix of the
unquantized channel output y is then computed as

R, =E[yy"] = R,,+aHH",

where R,,, = E [nn] = ¢ - 1) is the covariance matrix
of the noise vector with o2 denoting the noise power at each
receive antenna. Defining the ratio v = /02, we have

Ry, =0 (1 +yHH").

The receiver is equipped with a number of A/D converters,
possibly less than the number of antennas M due to the
limitation in size and power. For the ease of derivation, we
assume that there are M identical A/D converters at the
receiver, all of which act as scalar quantizers. The continuous-
time receive signal at each antenna is first sampled at rate f;,
and then quantized to a certain level represented by a finite
number of bits. Let b € {0,1,...,bmax}™ be the vector
of resolutions employed by each ADC, where by, is the
maximal number of bits that an ADC could use for a single
sample. Antennas whose receive signals are not selected to be
processed can be seen as connected to an ADC with resolution
0. The vector of quantized output » € CM can be written as

r=y+q,

where g stands for the quantization noise which is usually
correlated with y. We depict the system model of the multi-
antenna receiver in Figure 1, where the quantization process
is represented by the ((-) operator. Given the channel matrix
H, which can be obtained via training and channel estimation,
the ADC resolution b can be adapted accordingly in order
to optimize certain performance metrics which include the
power or energy consumption of the receiver circuitry. The
assumption of perfect knowledge of H is of course unrealistic,
especially when the case of data access with finite precision
is under consideration. We make such an assumption here to
evaluate the performance limit of ADC resolution adaptation
exploiting the diversity gain, and leave the problem of channel
estimation with quantized receive pilots and ADC resolution
optimization with imperfect CSI for future work.

We have derived in [5] a capacity lower bound of quantized
MIMO channels as dependent on the resolution vector b, which
generalizes the result in [8] where uniform ADC resolution
across the antennas is employed. A simple power consumption
model was also established therein to enable the formulation of
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Figure 1. Quantization of the MIMO channel and ADC resolution adaptation

the energy-efficiency maximization problem. Since the system
model used in this work remains in large part the same, a
review of the framework in [5] will be given in the sequel
without elaboration on the technical details.

A. Capacity lower bound of the quantized channel

According to the Bussgang theorem [9][8], the output of
the nonlinear quantizer can be decomposed into a desired
signal part and an uncorrelated distortion as

r=Fy+te,

where the noise vector e is uncorrelated with y, and the linear
operator F' is taken as the MMSE estimator of r from y:
-1

F=E[ry"|E[yy"] =R, R,
Consequently, we can define an effective channel H' = FH
and an effective noise vector n’ = Fn + e, such that r =
Hzx+ 7’. Now, if we define a new MIMO Gaussian channel
with the input-output relation r¢ = H'z+7 and assume that
the covariance matrix of the noise vector 7 is the same as that
of 1/, the capacity of the new channel provides a lower bound
on that of the quantized channel, for Gaussian distributed noise
minimizes the mutual information. Based on this observation
and assuming that the channel input « is Gaussian distributed
and the transmission bandwidth is B, we have

I(z;r) > Blog, ‘1M n R;,;,H’RMH’H‘ .

For scalar distortion-minimizing quantizers, we are able to
arrive at the achievable rate expression in bit/sec as

R(b) £ Blog, ‘1M n R,;,IU,H’RMH’H‘

|Ryy (1 — p) + pdiag(Ry,)|
g |Ry(1ar — p) + pdiag(Ry,)|’

where p is a diagonal matrix containing the distortion factors

= Blog @))]

pl 272171

Q

p= .

PM 92—2bm
The approximation of distortion factor p; with 272 is in the
asymptotic sense and is valid for Gaussian quantization source.

Note that R as a function of the resolution vector b depends
also on B, v and the channel matrix H.
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B. Power consumption model

Power dissipation of the ADC associated with the ¢-th
antenna can be calculated as [10]

| coro? 2,
Papc,i = 0
Y

where ¢ is a constant determined by the specific design of the
ADC. When positive resolution is employed, power dissipation
of the ADC grows exponentially with b;. Otherwise, the ADC
does not incur any power consumption. We model the total
power consumption of the receiver by

Pb)=co-0” > 2"+, 3)
1:b;,>0

b; > 0,
b =0, @

where c; is a constant accounting for the power consumption
of other components of the receiver. In practice, the specific
design of the receiver, especially the complexity of decoding,
determines whether the power consumption of A/D converters
is the dominant part in the total power consumption [11]. For
all simulations we take B = 1 MHz, bya. = 8, ¢co = 2 X
10*4/02 Watt, and ¢; = 0.02 Watt with reference to [12].

C. Maximization of Energy-efficiency

Motivated by the demand to increase the lifetime of mobile
terminals and other communication devices powered by bat-
tery, as well as by the desire to conduct green communications,
energy-efficiency has become another important performance
metric for communication systems over the past years. For
different applications, one might want to minimize the energy
needed to transmit/receive a certain amount of data, or to
maximize the operation time given fixed available energy while
a constant data rate is provided. In this work, we focus on the
unconstrained maximization of the bit per Joule metric at the
receiver, with the ADC resolution vector b as the optimization
variable, which is defined as

R(b)

P(b)

1>

B0, Lo msbunen} ! @
where the expressions for R(b) and P(b) are given by (1) and
(3), respectively. This problem is of particular interest as it
potentially provides insight to the solutions of the constrained
optimizations we mentioned above. We denote the optimization
objective, i.e., energy-efficiency of the receiver, with  and
subsequently denote its optimal value with n*.

The optimization in (4) with respect to integer-valued bit
resolutions is a combinatorial problem with a search space
growing exponentially with M and by.x + 1, leading to
prohibited computational complexity. For a practical ADC,
the maximal bit resolution by, is typically a rather small
number. Therefore, when the number of receive antennas M is
also small, an exhaustive search for the optimal b is possible.
Yet for a large receive antenna array we would need more
effective search algorithms. Common techniques for tackling
integer programming, such as the branch and bound method,
often requires the computation of upper bounds on the optimal
objective, which is usually achieved via solving a relaxation
of the original problem [13]. In our case, this does not seem
an option due to the non-linearity and discontinuity of the
objective function, i.e., even if we allow b; to take real values
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on [0, byax], it is still very hard to solve (4) to optimality.
We propose in [5] to apply the Particle Swarm Optimization
(PSO) technique, which has been shown to produce near-
optimal solutions for systems of small-to-medium scale. In the
next section, we discuss a few more methods for solving (4)
suboptimally, but require a lot less online computations.

III. STATIC AND ADAPTIVE RECEIVE STRATEGIES

Bit resolution of the A/D converter is conventionally a
fixed parameter and is not included in the design optimization.
Exploiting the trade-off between data access precision and
power consumption of the ADC, gain in energy-efficiency of
the system can be expected from the optimization on ADC
resolution. We touched upon this issue first in [14], where the
ADC resolution as a real-valued parameter is optimized for
single- and multi-antenna receivers. Therein it has been as-
sumed that uniform ADC resolution is employed for all receive
antennas, which is also the common practice in real systems.
According to the result of [5], this is obviously suboptimal
given the availability of channel state information, not only
because higher or lower resolution can be chosen for antennas
with good or bad channel conditions, but also because of the
fact that the receive signal from an antenna with relatively bad
channel condition can be completely ignored, i.e., processed
with 0 bit resolution of the ADC. This observation motivates
some of the methods we propose in the following, which
combine the idea of ADC resolution adaptation together with
antenna selection, and achieve, to different extents, balance
between performance and computational complexity.

A. Uniform ADC resolution adaptation without AS

The simplest way of performing ADC resolution adaptation
is to allow a single, positive resolution for all antennas, and
optimize this value based on the instantaneous CSI. This
can be done via the enumeration of all feasible resolutions
1,...,bmax, hence requires by, times of evaluations of the
objective. Another even simpler method is to optimize the
single resolution offline, and apply the obtained optimal value
irrespective of the CSI which means no online computation is
needed. For the offline optimization, one could generate inde-
pendently a large number of channel realizations, enumerate
all feasible ADC resolutions for each realization, and finally
find the resolution that gives the maximal average energy-
efficiency. In fact, we have maximized the ergodic energy-
efficiency with this process. The results of the optimization
can be recorded in a look-up table and used directly online.

B. Uniform ADC resolution adaptation with AS

With this method, we try to distinguish the antennas
according to their channel conditions and abandon the signals
from the bad ones. For the remaining selected antennas,
uniform ADC resolution is applied so that the complexity of
the algorithm does not increase too much. Similar as before, an
offline and an online version of this method can be proposed.
For the offline method, we optimize over a large number of
channel realizations, the ADC resolution as well as the number
of active antennas. During the online operation, one only needs
to find the corresponding number of antennas with the best
channel conditions, and apply the optimized ADC resolution.
For the online method, the optimal number of active antennas
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and the optimal ADC resolution with respect to the given
CSI are to be found via enumerations over both parameters,
rendering much heavier computational burden to receiver.

C. Non-uniform ADC resolution adaptation based on PSO

When we do not restrict the ADC resolutions employed
by the active antennas to be identical but attempt to find the
energy-efficiency maximizing, non-uniform resolution vector
b, more effective integer programming technique is necessary
if M and by, .« are not small enough for an exhaustive search to
be feasible. The PSO method [15] serves as a good candidate
here since it is rather independent of the problem structure and
can be implemented easily. Although originally proposed for
solving unconstrained optimizations with real-valued variables,
the method can be applied to tackle integer programming
without any complicated modification [16].

The PSO method is a stochastic optimization technique
based on the social behaviour of a population of individuals.
Each individual, termed as a particle, moves in the feasible
region of the optimization problem probing for good solutions,
and shares information with the whole set of particles, called
the swarm. The movement of the particles in each generation
of the algorithm is random, but also depends on the memory
of the individual particles as well as of the swarm. Let the
swarm contain S particles. For initialization of the algorithm, S
feasible solutions of the optimization are generated at random,
which are denoted with bY,b3,...,b%. In the (k + 1)-th
generation, the particle s evolves according to the formula

v§+1 — wvf + 81711 (p’sC — b];) + S979 (p’gc — bf) ,
bEtE = b okt

i.e., the position of particle s is incremented by a velocity
vector v**1, which is computed based on the velocity vector
v” in the previous generation, the distance between the particle
and the best self-found solution p¥ — b’s", and the distance
between the particle and the global best solution found by the
swarm p’gc — bf. The parameter w is called the inertia weight
and is usually chosen as a decreasing function in the generation
index, facilitating global search in early generations of the
algorithm and local search in later generations. The weights
s1 and so are called the cognition and social learning rates,
and they are usually kept constant throughout the generations.
The uniformly distributed random numbers r; and 73 on
[0,1] add randomness into the trajectory of each particle. In
our numerical studies, the parameter setting s; = s = 1,
w = 1 — 0.02k is used. For our optimization problem, the
particle positions correspond to ADC resolution vectors b,
hence each fractional valued particle position obtained from
the update needs to be mapped to a feasible solution by
rounding and fitting the values into the set {0, . .., byax }. After
the mapping and fitting, the objective function is evaluated
at each new particle position, and the local best solutions
as well as the global best solution need to be updated. The
algorithm terminates when a maximal number of generations
G is reached. Depending on the dimension of the optimization,
the values of S and G can be increased to improve the
performance of the PSO. One could also repeat the algorithm
for several runs and pick the best solution among all obtained
global best solutions. In our simulations we take S = G = 20
and run the algorithm 20 times for each parameter setting.
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In the above discussions, the number of antennas the
receiver has is a fixed value. An interesting question we would
like to investigate based on simulation results is, how does
the energy-efficiency of the receiver change with increasing
number of antennas. When capacity or spectrum-efficiency
is the performance metric under consideration, having more
receive antennas always help improve the system performance.
However, as energy-efficiency depends also on the power
consumption of the receiver, it does not necessarily increase
when more receive antennas are employed. If the receive
parameters are carefully chosen, e.g., ADC resolutions are
adapted based on the methods proposed above, increment in
energy-efficiency might still be achieved via adding receive
antennas, ie., by exploiting the diversity while controlling
the power dissipation appropriately. Since antenna number is
also an integer, the gain in energy-efficiency with respect to
increased number of antennas is hard to obtain analytically, for
which reason we leave the question to be studied quantitatively
in the next section where simulation results are presented.

IV. SIMULATION RESULTS

We aim to compare the performance of the methods
proposed in the last section, and study the variation in receiver
energy-efficiency with respect to v and M, with numerical
simulations. Fixed parameters such as ¢y, ¢; and those used
in the PSO method have been given previously. The number
of transmit antennas N is fixed to 1 here for a first study,
which may have an influence on the optimal solutions of the
problem yet the comparative results we obtain can be expected
representative. For the offline methods, 10* independently
generated channel realizations are used to obtain the optimal
ADC resolution and the optimal number of active antennas.
For real simulations, each method is tested with another 10%
independent channel realizations, and the average performance
for each parameter setting is illustrated in this section.

The first thing we find, which is in fact not shown in
any of the figures, is that the offline and online versions
of the uniform ADC resolution adaptation scheme without
AS perform nearly the same. The online version certainly
achieves better energy-efficiency than the offline version, but
the difference is extremely small and in most cases, i.e., for
various values of ~ and M, they achieve exactly the same
energy-efficiency. This is due to the steadiness in the optimal
uniform ADC resolution given different channel conditions.
Consequently, we do not distinguish the two versions of this
method in the following, and refer to it simply as NAS (no
antenna selection). Accordingly, the uniform ADC resolution
adaptation scheme with AS is called SAS (static antenna
selection) for its offline version, and AAS (adaptive antenna
selection) for its online version, respectively.

The performance of NAS, SAS, and AAS methods are
compared in Fig. 2 with two fixed antenna numbers M = 4
and M = 10, for a range of average SNR values. For such
small M, we are able to find the optimal solution to (4) with
exhaustive search, which allows us to quantitatively see the
suboptimality of each method in Fig. 2(a) and Fig. 2(b). As can
be expected, AAS outperforms SAS, which in turn outperforms
NAS. With small values of ~, the three methods all perform
very well, achieving around 95% or even higher percentage
of the optimal energy-efficiency. As ~y grows, the performance
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Figure 2. Comparison of NAS, SAS, and AAS methods with the optimum

of NAS drops quickly, and the gap between SAS and AAS
also becomes larger. The AAS method achieves in fact almost
optimal performance in the whole testing range of ~. The
average bit resolution employed by the active antennas can
be seen in Fig. 2(c) and 2(d), while the number of active
antennas is shown in Fig. 2(e) and Fig. 2(f). The optimal
ADC adaptation scheme, due to its flexibility in choosing any
resolution for each of the antennas, is able to use lower average
resolution for small v and higher average resolution for large
v. Yet interestingly, the change in the average bit resolution
is not monotonic in 7. The curves of the AAS method seem
to be a smooth version of those of the SAS method, and they
have very similar shapes with those of the optimal solution.

We have verified that the PSO method is able to find the
optimal solution for M as large as 10. For M larger than
10 but smaller than 14, the PSO method sometimes fails to
find the optimal solution, but gives a solution within 1% to
the optimum. For M beyond 15, we are no longer capable of
finding the optimal solution via enumeration, and therefore can
not justify the performance of the PSO method. However, with
M increased to around 30, the performance of the PSO method
becomes worse than the AAS method, which clearly indicates
the disadvantage of the method to be applied to systems of
large scale. Based on this, we claim that for small system
scale and low values of 7, the SAS method achieves the best
balance between performance and computational complexity.
For large system scale and higher v, the AAS method might
be considered to attain better energy-efficiency.
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We study the performance of the three methods with
increasing number of antennas in Fig. 3, where the cases
that v = —30 dB, v = 0 dB, and v = 30 dB are tested.
From the figures in the first row, we see that the energy-
efficiency achieved with the NAS method does not always
increase, leading to an optimal number of antennas. The SAS
and the AAS methods, on the other hand, always benefit from
having more receive antennas due to the selection process, yet
the improvement in energy-efficiency becomes much smaller
with large M. This relation is shown more clearly in Fig. 3(i),
where the number of antennas from which the increment in
energy-efficiency falls below 1% is drawn for SAS and AAS
methods. We learn from the figures that, with medium-to-large
values of v, the receiver selects a very small subset of antennas,
the signals from which are to be quantized with relatively
high resolution such as 4 or 5 bits per sample. In this case,
equipping the receiver with less than 20 or even less than 10
antennas is enough to achieve near-optimal performance. When
v is small, the signals from more antennas are required to be
processed with lower ADC resolution, and we need much more
receive antennas to achieve near-optimal performance.

V. CONCLUSION

We propose and compare several adaptation schemes of the
ADC resolutions for a multi-antenna receiver with perfect CSI,
aiming at the maximization of energy-efficiency of the system
measured in number of information bits per consumed Joule of
energy. Based on the numerical simulations, we find that the
combination of antenna selection and the offline optimization
of a uniform ADC resolution for the active antennas achieves
good balance between performance and computational com-
plexity. Moreover, the effect of deploying a large number of
receive antennas is also discussed, which depends very much
on the adaptation scheme that is employed.

A few issues need to be addressed regarding the work itself
and its possible extensions. First of all, we have assumed that
the receiver has perfect knowledge about the instantaneous
CSI. Although in the end, we learn that the SAS method seems
to be satisfactory both in performance and in complexity,
which has less dependency on the CSI compared to some other
schemes we proposed, the problem of channel estimation with
inaccurately accessed pilot symbols can not be circumvented.
The impact of quantization of receive pilots which in turn
influences the quality of the channel estimation should be
investigated in future work, and the ADC resolution applied
for the pilot symbols should be chosen appropriately. Secondly,
the energy consumed for the antenna selection process and
the associated signal processing is not included in our power
consumption model, meaning that the results we obtain could
be rather optimistic for a real system. Thirdly, when the
performance of a receiver with a large number of antennas
is evaluated, the correlation between the antennas might be
necessary to be taken into account, depending on the physical
deployment of the antennas e.g. shape and spacing of the array.
Such consideration goes beyond the scope of this work, but is
certainly an interesting direction for further investigation.
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