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Abstract—We give an explicit example that answers the
question whether the transmission of messages over arbitrarily
varying quantum channels can benefit from distribution of
randomness between the legitimate sender and receiver in the
affirmative.
The specific class of channels introduced in that example is
then extended to show that the deterministic capacity does have
discontinuity points, while that behaviour is, at the same time,
not generic: We show that it is in fact continuous around its
positivity points. This is in stark contrast to the randomness-
assisted capacity, which is continuous in the channel.
We then quantify the interplay between the distribution of
finite amounts of randomness between the legitimate sender and
receiver, the (nonzero) decoding error with respect to the average
error criterion that can be achieved over a finite number of
channel uses and the number of messages that can be sent.
These results also apply to entanglement- and strong subspace
transmission.

I. INTRODUCTION

We will first explain the model of an arbitrarily varying
channel and provide examples for communication scenarios
whose essential features are captured by the model. We then
explain the effect of shared randomness for these systems and
state a corresponding result. In close connection, we discuss
the relevance of continuity of capacities, state results and give
examples. Finally, we quantify the interplay between finite
errors, block length and amount of common randomness
needed to achieve that error.

Imagine a sender wants to transmit for example messages
to a remote receiver. They each have access to a quantum
system which is modeled on a finite dimensional Hilbert
space and are connected by a quantum channel. Dependent
on the message he wants to transmit the sender prepares
some quantum state, which is then transmitted to the receiver
over the channel. In-and output of the channel will most of
the time not be identical. The question then is, whether the
receiver can infer which message the sender intended to send
just by performing measurements on the output states.
We assume that multiple channel uses are available and that
the channel does not have a memory - but instead assume the
existence of a jammer, which tries to prevent the two legal
parties from communicating properly. Such a situation can
arise e.g. in secret key distribution or transmission scenarios
over quantum channels as developed by Devetak in [11], but
when the evil third party is either not interested in or unable
to do eavesdropping on the legal communication, but has

some influence on the channel between the legal parties. The
power of the jammer is, in the model chosen here, precisely
quantified by his ability to influence the channel:
He is able to choose, for each of the multiple channel uses,
one out of a fixed set I of channels. This set is known to
all three parties. The goal of sender and receiver is now
to find encoding-and decoding procedures such that they
can reliably transmit their data, no matter which choice the
jammer makes. It can even be assumed that the jammer
knows in advance how the encoding-decoding procedure
of sender and receiver works. This assumption will always
be satisfied in commercial communication systems, where
standardized protocols are being used. The model that we
just introduced is called an arbitrarily varying quantum
channel, and will be abbreviated AVQC henceforth. A precise
mathematical formulation is postponed to the definitions
section. Please note that, throughout the entire manuscript,
we restrict attention to finite AVQCs, e.g. those for which
|I| < ∞ holds. The main reason for this is that it greatly
simplifies proofs and puts a clean focus on the most relevant
features of the systems under consideration. Nevertheless, it
should be noted that all the approximation techniques to deal
with the general cases are published in [4] and ready to use.
Of course, the very same model can be formulated by using
as the basic channels either classical, classical-quantum or
quantum-classical channels, and the underlying systems that
the three parties act upon could be described by any kind of
physical theory. Another possible change in the model would
be to enable the jammer to use quantum inputs to the system.
In this work, we will stick to the model we described first.
The situation described by the model can, in these days, be
found in denial-of-service attacks. It is important to note that
the quality of an arbitrarily varying classical channel can not
only be described by entropical quantities, as is the case for
stationary memoryless channels. It has rather been found that
its capability to transmit any messages at all is completely
characterized by so-called symmetrizability conditions.
Let us get into a bit more detail here. It has been proven,
first in [1] for classical arbitrarily varying channels, then in
[2] for classical-quantum arbitrarily varying channels that
these systems exhibit a dichotomic behaviour: the message-
transmission capacity under average error criterion, Cd, is
either zero or equals an easily computable number, called
the random capacity Cr. The latter quantity is the amount of
messages that can be sent with transmission error approaching
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zero, when the number of channel uses goes to infinity and
sender and receiver share a sufficiently large amount of shared
randomness (polynomially much common randomness, in
the number of channel uses, is sufficient). It turned out later
[10], [13] that those arbitrarily varying channels W for which
Cd(W) = 0 holds are exactly characterized by so-called
“symmetrizability” conditions.
The dichotomic behaviour has been proven to hold true for
both entanglement and message transmission over AVQCs in
[4]. Another result of the work [4] was that encoding-decoding
schemes for entanglement transmission are also good for
strong subspace transmission and vice versa. The later work
[8] showed that this is also true for message transmission
under average- and maximal error criterion. These results
enable us to restrict our discussion to the average error
criterion and entanglement transmission henceforth.
Despite these achievements, it remained an open question until
now whether shared randomness really helps the transmission
of messages over AVQCs, and the same question remained
open for entanglement-and strong subspace transmission.
More precisely, it has been conjectured in [4] that shared
randomness does not increase the entanglement transmission
capacity of AVQCs and in [8] that there exist examples of
AVQCs I for which Cr(I) > 0 but Cd(I) = 0 holds.
It is the first result of this work to give exactly such an
example.
With hindsight on applications of the model, we then study the
continuity properties of Cd for AVQCs. It is desirable from
a practical point of view to have a continuous dependence
of the capacity of the system on its parameters, since small
uncertainties due to measurement errors can never be totally
eliminated. We find that Cd is continuous around every
AVQC I for which Cd(I) > 0 holds. Put into simple words:
If a system which is modeled as an AVQC is ’useful’ in the
sense that Cd(I) > 0, then this remains true even if small
errors are present in the evaluation of the system parameters.
An obvious question that comes with the above two results
is, whether there really exist discontinuities for the function
I 7→ Cd(I). The continuity of the message- and entanglement
transmission capacity of a stationary memoryless quantum
channel has been an open problem for quite a while, it
was posed by M. Keyl and listed in the open problem
page [16] of R. Werner’s group since 2003. After partial
results, it was completely solved by Leung and Smith in
[15] in 2009, and answered in the affirmative: Both message-
and entanglement transmission capacity are continuous for
stationary memoryless quantum channels.
Quite on the contrary, we prove in this work that the message
transmission capacity of AVQCs without assistance by
shared randomness is not continuous. We do so by explicit
construction of an example. This is the first example of a
discontinuous behaviour of a quantum capacity other than the
zero-error capacities [12].
Our previous results clearly demonstrate the importance of
shared randomness for AVQCs. In [4], Ahlswede, Bjelaković
and the authors showed that already a small amount of

common randomness is sufficient to ensure that transmission
of messages is possible at rates arbitrarily close to Cr. The
same holds true for transmission of entanglement. Building
on that and the work [3] of Ahlswede and Cai, the authors
were able to to show in [8] that already the use of arbitrarily
small amounts of correlation yield the same result.
This demonstrates that shared randomness has two important
effects for AVQCs: First, it boosts the capacity to the
maximally possible value, and second it stabilizes the system
with respect to small changes (the capacity function with
assistance by either unlimited shared randomness, positive
correlation or small amounts of common randomness is
always continuous).
This gives a strong motivation to start a closer investigation
of the exact interplay between the system parameters, the
error of message transmission at a specific block length
and the amount of randomness used for stabilization of the
system. The results of that investigation are summarized
in Theorem 4. We give bounds on the number of shared
secret bits (common randomness) K needed to achieve some
pre-given maximal error λ within L channel uses. Assuming
that the AVQC under consideration has |S| constituents,
the scaling law is roughly K ≤ log |S|

E·λ , where E is the
reliability function of the compound channel conv(I) and
L is more implicitly given through E, roughly scaling as
L(1− 1

L logL) ≈ −E log(E/λ). In case that the AVQC I is
symmetrizable, we note that the results of [4] imply 1

2λ ≤ K,
and for non-symmetrizable AVQCs we know that K = 0 is
sufficient by the quantum-Ahlswede dichotomy of [4].
Another important observation is that the number K of
random bits needed to guarantee a certain quality of
transmission is essentially independent of the number l of
channel uses, if only l ≥ L holds, and is indefinite for l < L.
The technique of proof we utilize here applies for
entanglement transmission as well.
It is clear that a similar result could be obtained by using only
correlation to first establish enough common randomness,
then use it with the above stated bounds. The exact trade-off
between λ, L and the ’amount’ of correlation remains unclear
and we leave that question open for future work.

II. NOTATION

All Hilbert spaces are assumed to have finite dimension
and are over the field C. The set of linear operators from
H to H is denoted B(H). S(H) is the set of states, i.e.
positive semi-definite operators with trace (the trace function
on B(H) is written tr) 1 acting on the Hilbert space H. The
maximally mixed state with only one eigenvalue dim(H) in
S(H) is written πH or, if no confusion can arise, simply
π. A vector x ∈ H of unit length will be referred to as a
state vector, the corresponding state is denoted |x〉〈x|. For
a finite set X, P(X) is the set of probability distributions
on X, and |X| its cardinality. For any l ∈ N, we define
Xl := {(x1, . . . , xl) : xi ∈ X ∀i ∈ {1, . . . , l}}, and write
xl for the elements of Xl. For any natural number N , we
define [N ] to be the shorthand for the set {1, ..., N}.
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The set of completely positive trace preserving (CPTP) maps
(quantum channels) between B(H) and B(K) is denoted
C(H,K).
Closely related is the set of classical-quantum channels (ab-
breviaton: ’cq-channels’) with finite input alphabet Z and
quantum output in S(K). This set is denoted CQ(Z,K).
Using the usual operator ordering symbols ≤ and ≥ on B(H),
the set of measurements with N ∈ N different outcomes is
written
MHN := {D = (Di)

N
i=1 :

∑N
i=1Di ≤ 1, Di ≥ 0 ∀i ∈ [N ]}.

Throughout the paper, we assume w.l.o.g. that
∑N
i=1Di = 1.

The von Neumann entropy of a state ρ ∈ S(H) is given by
——————–S(ρ) := −tr(ρ log ρ),
where log(·) denotes the base two logarithm which is used
throughout the paper. The Holevo information is for a given
channel W ∈ CQ(X,H) and input probability distribution
p ∈ P(X) defined by
————χ(p,W ) := S(W )−

∑
x∈X p(x)S(W (x)),

where W is defined by W :=
∑
x∈X p(x)W (x). H(p) is the

usual Shannon entropy of p ∈ P(X). The binary Shannon
entropy of p ∈ P({0, 1}) is abbreviated by either h(p(1)) or
h(p(2)).
For ρ ∈ S(H) and N ∈ C(H,H) the entanglement fidelity
(which was defined in [17]) is given by
—————Fe(ρ,N ) := 〈ψ, (idB(H) ⊗N )(|ψ〉〈ψ|)ψ〉,
with ψ ∈ H⊗H being an arbitrary purification of the state ρ.
For a finite set I = {Ns}s∈S ⊂ C(H,K), the convex hull
conv(W) is given by
−−−−− conv(I) =

{∑
s∈S q(s)Ws : q ∈ P(S)

}
.

The distance between sets I, I′ ⊂ C(H,K) is measured by
D♦(I, I′) - the Hausdorff distance which is induced by the
diamond norm ‖ · ‖♦. Further details can be found in [9].

III. DEFINITIONS

For the rest of this subsection, let I = {Ns}s∈S ⊂ C(H,K)
denote a finite set of channels and H,K some arbitrary but
fixed finite dimensional Hilbert spaces over C. Henceforth,
we follow the convention from [4], using the term ’the
AVQC I’ as a linguistic shorthand for the mathematical object
({Nsl}sl∈Sl)l∈N.
Due to the close correspondence between arbitrarily varying
and certain compound channels, we will sometimes also
encounter the case that I stands for the compound channel
({N⊗lq }Nq∈conv(I))l∈N. In those cases, this will be explicitly
mentioned. We will now define the entanglement transmission
capacities of an AVQC. Corresponding coding theorems can
be found in [4].

Definition 1. An (l, kl)−random entanglement transmission
code for I is a probability measure µl on (C(Fl,H⊗l) ×
C(K⊗l,Fl), σl), where Fl is a Hilbert spaces with dimFl =
kl and σl a suitable σ-algebra. The error of the code is given
by εl := 1−

∫
dµl(Rl,P l)Fe(πFl

,Rl ◦ Nsl ◦ Pl).

Definition 2. R ≥ 0 is said to be an achievable entangle-
ment transmission rate for the AVQC I = {Ns}s∈S with
random codes and error λ ∈ [0, 1] if there is a sequence

of (l, kl)−random entanglement transmission codes such that
both lim inf l→∞

1
l log kl ≥ R and lim supl→∞ εl = 1.

The corresponding capacity is defined by

Ar(I, λ) := sup

R :
R is ach. entanglement
transmission rate for I
w. random codes and error λ

 .

Remark 1. This definition differs from the classical one used
e.g. in [5]. Precisely speaking, if one would define capacities
with finite errors in the spirit of [5] using the symbol Ãr for
those, then one would set

Ãr := lim
n→∞

1

n
log max{kl : ∃ (l, kl)− code s.t. λl ≤ λ}.

Since λ → Ãr(I, λ) is monotone increasing on [0, 1], the
limits limε→0 Ãr(I, λ + ε) exist for every λ ∈ [0, 1). Thus,
Ar(I, λ) = limε→0 Ãr(I, λ+ ε) holds for all λ ∈ [0, 1). This
implies that Ar is simply the right-regularized version of Ãr.
While Ãr might be a practically more relevant definition, it is
clear that the two definitions can lead to a different value
in capacity only at discontinuity points of Ãr. Since both
functions are monotone increasing on the interval [0, 1], the
number of such points is countable by [18], Theorem 4.30.
Notably, at λ = 0, one gets Ar(I, 0) = Ar(I) for ’the’ random
capacityAr of an AVQC according to Definition 2 in [4], while
Ãr(I, 0) gives the randomness-assisted zero-error capacity of
an AVQC.
This latter point makes our definition fit seamlessly with the
previous work [4], [8] on AVQCs. At the same time, we do
not encounter a dramatically different behaviour in most cases.
The same reasoning applies to all the other capacities defined
in this paper.

Having defined random codes and random code capacity for
entanglement transmission we now introduce their determin-
istic counterparts:

Definition 3. A non-negative number R is a deterministically
achievable entanglement transmission rate for the AVQC
I = {Ns}s∈S with error λ ∈ [0, 1] if it is achievable in the
sense of Definition 2 but with point measures µl: For each µl
there exist (P l,Rl) such that I with µl({(P l,Rl)}) = 1.
The deterministic entanglement transmission capacity
Ad(I, λ) is defined accordingly, in the spirit of Definition 2.

We need an additional capacity:

Definition 4 (Strong Subspace Transmission). The strong sub-
space transmission capacities As,r and As,d with assistance
by shared randomness and without are defined analogously
to the entanglement transmission capacities, but with each
Fe(πFl

,Rl ◦ Nsl ◦ P l) replaced by

min
x∈Fl:〈x,x〉=1

〈x,Rl ◦ Nsl ◦ P l(|x〉〈x|)x〉.

From the results in [8], we know that average- and maximal
error criterion lead to the same capacity for AVQCs. Strictly
speaking, this is a consequence of two facts: First, it does not
really make sense to restrict the encoding functions to pure
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signal states in the quantum case. Second, the two criteria
are equivalent in the classical case as well, if one allows
randomized encodings (see [1], Theorems 2 and 3).

Definition 5 (Codes for message transmission). Let l ∈ N. A
random code for message transmission over I is given by a
probability measure γl on the set (CQ(Ml,H⊗l)×MMl

,Σl),
where Σl is a suitable σ−algebra. A deterministic code is
given by a random code γl, where γl is a point measure. The
error of the code is defined by

1− εl := min
sl∈Sl

∫
1

Ml

Ml∑
i=1

tr{DiNsl(P(i))}dγl(P,D).

Definition 6 (Achievability). A nonnegative number R is
called achievable with random codes with error λ under the
average error criterion if there exists a sequence (γl)l∈N
of random codes satisfying both lim supl→∞ εl ≤ λ and
lim inf l→∞

1
l logMl ≥ R.

If the sequence (γl)l∈N can be chosen to consist of point
measures only, then R is called achievable with deterministic
codes under the average error criterion.

Definition 7 (Message transmission capacities of an AVQC).
The corresponding capacities of I are defined as

Cd(I, λ) := sup

{
R :

R is ach. with det. codes under
average error crit. with error λ

}
,

Cr(I, λ) := sup

{
R :

R is ach. with det. codes under
average error crit. with error λ

}
.

As mentioned already, every AVQC I is intimately con-
nected to the compound quantum channel conv(I): the ca-
pacities of the AVQC I are often given by the respective
formulas for the corresponding compound quantum channels
conv(I). This connection especially shows up in the proof
and formulation of our Theorem 4, where we encounter
the reliability functions of compound quantum channels. In
order to define these, we first define codes, achievability and
corresponding capacities for compound quantum channels:

Definition 8 (Codes, achievability, capacity: compound case).
Let l ∈ N. A code Cl for message transmission over the
compound channel I is given by a natural number Ml, an
encoding P : [Ml] → S(H⊗l) and a decoding D ∈ MMl

.
The error εl associated to the code is given by

εl := 1−min
s∈S

1

Ml

Ml∑
i=1

tr{DiN⊗ls }.

A nonnegative number R is called achievable for the com-
pound channel I with error λ ∈ [0, 1] if there exists a sequence
(Cl)l∈N of codes for I satisfying both lim supl→∞ εl ≤ λ and
lim supl→∞

1
l logMl ≥ R.

The deterministic capacity C
c

d(I, λ) of the compound channel
I with error λ is given by the supremum over all achivable
rates for the compound channel I under the average error
criterion, with error λ.

These definitions enable us to define the following:

Definition 9 (Reliability Function). The reliability function
E : C(H,K)× R+ → R+ is, for a compound channel I and
rate R ≥ 0, defined as:
The supremum over all E ≥ 0 such that there are ε > 0 and
N ∈ N such that for all n ≥ N there is a code for message
transmission over I satisfying both 1

l log(Ml) ≥ R − ε and
εl ≤ 2−l(E−ε), under the average error criterion.

Remark 2. E(I, R) can have nonzero, finite values. This can
be seen from [6], for example. We could make an analogous
definition for any of the other transmission scenarios and
reliability criteria. In case of entanglement transmission, our
techniques are even of sufficient generality to yield comparably
strong results, see the accompanying paper [9].

Another important definition is that of symmetrizability:

Definition 10 (Cf. definition 39 in [4]). Let I denote an AVQC.
1) I is called l-symmetrizable, l ∈ N, if for each finite set
{ρi}Ki=1 ⊂ S(H⊗l), there is a map p : {ρi}Ki=1 → P(Sl)
such that for all i, j ∈ {1, . . . ,K} it holds∑
sl∈Sl p(ρi)(s

l)Nsl(ρj) =
∑
sl∈Sl p(ρj)(s

l)Nsl(ρi).
2) We call I symmetrizable if it is l-symmetrizable for all

l ∈ N.

It was one of the results in [4] (see theorem 40 there) that a
finite AVQC I is symmetrizable if and only if Cd(I, 0) = 0.

IV. MAIN RESULTS

We now list our main results. Throughout, I is a fixed finite
but otherwise completely arbitrary AVQC. If a capacity is
written without specifying the error λ it is assumed that λ = 0
holds.

Theorem 1. If I has the form Ns(ρ) :=
∑
x∈X tr{ρMx}ρs,x,

s ∈ S, for some finite S and POVM {Mi}Mi=1 and probability
distributions {px}x∈X ⊂ P(S) such that∑

s∈S

px′(s)ρs,x =
∑
s∈S

px(s)ρs,x′ ∀x, x′ ∈ X, (1)

then it is symmetrizable and whence Cd(I) = 0. Moreover,
there exist examples of such AVQCs where even Cr(I) > 0.

Remark 3. Let us make a note on the intuition behind it. The
channel I is the concatenation of a stationary memoryless
qc-channel (measurement) W1 and an arbitrarily varying cq-
channel W2 given by the states {ρs,x}s,x. This combina-
tion ensures that the channel itself is entanglement-breaking,
whence its capacity has a one-shot formula and, even more
important, it is l-symmetrizable for all l ∈ N if and only if it
is 1-symmetrizable.
Using entangled inputs as signal states for I results in
mixtures of product states after the application of W1, so W2

sees a randomized code. But since we allow mixed inputs, this
is equivalent to using just a randomized code with separable
inputs for W2. But on the subset of separable states signal
states, 1−symmetrizability is equivalent to l-symmetrizability
for all l ∈ N, so no such code can transmit even a single bit
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with asymptotically vanishing error. Therefore, the determin-
istic capacity of W has to be equal to zero.

Remark 4. It is clear that the conjectured statement “for all
finite AVQCs, it holds that Ad(I) = Ar(I)” is equivalent to
saying that symmetrizability of a finite AVQC I implies that
Ar(I) = 0. It is also clear that either one of the above would
imply that Ad is continuous, since Ar is.

Theorem 2. The capacity function Cdet(·) : C(H,K) → R+

is not continuous.
More precisely, let C2 = span({e1, e2}) ⊂ C3 =
span({ei}3i=1). Let the channels Dη ∈ C(C2,C3) be defined
through Dη(X) := (1−η)X+η·tr{X}·π ∀X ∈ B(C2). There
exists a set {Ns}s∈S ⊂ C(C2,C3) having the structure defined
in theorem 1 such that for any λ, η ∈ [0, 1) the sequence Iηλ =
{N̂s,η,λ}s∈S of AVQCs defined by N̂s,η,λ := (1−λ)Dη+λNs
satisfies

lim
λ→1

Cr(I
η
λ) ≥ 0.5, Cd(Iηλ) = Cr(I), Cd(I1) = 0

and limλ→1D♦(Iηλ, I) = 0 for all η ∈ [0, 1].

Remark 5. This is the first example of discontinuous be-
haviour of a quantum capacity other than the zero-error
capacities. It is not clear to the authors yet, whether similar
results could be proven for purely classical systems.
The example also highlights the stabilizing effect that is
achieved by distribution of shared randomness in a communi-
cation system.

Theorem 3 (Positivity of Cd is stable). If I satisfies Cd(I) >
0, then there exists δ0 > 0 such that for all finite AVQCs I′

satisfying D♦(I, I′) ≤ δ0 it holds Cd(I′) > 0.

Corollary 1. For a sequence (Il)l∈N of finite AVQCs it holds:
If Cd(I) > 0 and liml→∞D♦(I, Il) = 0 then

lim
l→∞

Cd(Il) = Cd(I) and Ad(I) = Ar(I) = lim
l→∞

Ad(Il).

Theorem 4 (Random Code Reduction: finite error, finite
randomness). Let Cr(I) > 0 and λ, ε > 0, 0 < R < Cr(I).
There exist L = L(I, λ,R, ε) ∈ N, K = K(I, λ,R, ε) ∈ N
and Ml ∈ N satisfying 1

l logMl ≥ R − ε such that for all
l ≥ L there are K deterministic codes for I such that:

min
sl∈Sl

1

K

K∑
j=1

1

Ml

Ml∑
i=1

tr(Nsl(ρi,j)Dl
i,j) ≥ 1− λ.

Setting E ≡ E(I, conv(I)), L and K are given by

L = min{L : L(1−2|S| log(L)

L(E − ε)
) ≥ 2

E − ε
log(

4

λ(E − ε)
)},

K =
1

λ
· 8 · log |S|

E − ε
.

Remark 6. It is clear that above statement is especially
interesting for the message transmission capacity of an AVQC,
and there only in the case when the deterministic capacity
vanishes but the randomness assisted one does not.
As a very rough approximation, one may use the scaling law

L(I, λ,R) ≈ 2
E(conv(I))−ε log( 1

λ ·
4

E(conv(I))−ε ). It is clear
that both L and K from above theorem are sub-optimal, even
with the techniques used in this paper. However, their scaling
with λ does not depend on the choice of constants in our proof.
For fixed I and rate R, this means that the block-length needed
to achieve a certain error λ roughly scales as log(1/λ), and
the randomness as 1/λ.

Theorem 5. Let I be a finite AVQC and λ ∈ [0, 1]. Then both

Ad(I, λ) = As,d(I, λ) and Ar(I, λ) = As,r(I, λ).

Remark 7. We expect this picture to change once finite block-
lengths are considered. We leave this for future work.
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