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Abstract 

The attenuation of X-ray photons is material- and energy dependent. This 

dependency can be exploited to obtain additional spectral information of the scanned 

object. This work focuses on the different techniques of multi-energy CT and the 

possible clinical applications that take advantage of the additional information 

obtained. The main aim is to study the effectiveness and the applicability of two 

material decomposition techniques – image-based and projection-based material 

decomposition – in detecting and distinguishing two or more materials in an object. 

The decomposed images are then used for various applications such as for beam-

hardening corrections, metal artifact reduction, detection of low-concentrated contrast 

medium, and the distinguishing of two or more K-edge materials. Results from each 

of these applications show a significant improvement in image quality, the ability to 

enhance low iodine signal in the image, and the potential usage of a mixture of two or 

more contrast agent in a single scan.  Additionally, the same material decomposition 

techniques are tested with objects scanned with micro-CT. The positive outcome of 

this investigation shows the feasibility of extending the algorithm for applications 

beyond medical purposes such as for pre-clinical imaging and non-destructive testing. 

In conclusion, multi-energy CT provides many advantages in clinical diagnostics as 

well as in pre-clinical and industrial CT. 
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Chapter 1 

Introduction 

1.1 Motivation 

Soon after the introduction of CT in early 1970s, researchers in the medical 

imaging field began to pursue the idea of dual-energy CT (DECT). Early investigators 

such as Alvarez, Macovski and Lehmann [1-3] recognized the potential of dual-

energy x-ray acquisition for characterization of tissue, bone and other components in 

the body. However, DECT approach was abandoned due to the limitations of CT 

scanners at that time [4, 5]. Previously, DECT acquisition required two separate 

scans. This was problematic not only due to dose consideration, but also due to poor 

image registration as a result of movement between scans. Thus, dual energy scans 

were deemed unfeasible on human subject.  

Since then, CT scanners have undergone many developments and technical 

advances. The introduction of slip ring in the gantry, for example, enables the fast 

scanning of patients within a single breath-hold [6, 7]. Improvements in CT scanners 

have revived the idea of multi-energy imaging and made DECT acquisition on human 

subject possible again. The availability of DECT imaging has improved tremendously 

the diagnostic processes; while at the same time provides additional spectral 

information that aids diagnosis [8, 9]. 

Further advancements in detector technology have contributed to the 

development of energy-resolved photon counting detectors (PCDs). PCDs have the 

ability to discriminate incoming photons based on their energies – PCDs split the X-

ray spectrum into several predefined energy bins – enabling the acquisition of 

separate CT data in each energy bin [10, 11]. As a result more information of the 

object can be obtained in a single scan at the same tube voltage. Besides that, 

quantum efficiency in PCDs suppresses electric noise at the detectors; thus low dose 

acquisition protocol is possible without compromising the quality of the CT image. 

This work focuses on the different techniques of multi-energy CT and the 

possible clinical applications that take advantage of the additional information 
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obtained from the techniques. New applications and algorithm were developed for 

DECT and photon counting based spectral CT. 

1.2 Organization 

This dissertation is divided into several chapters. It begins with an 

introduction to X-ray CT imaging, which includes a brief overview on the X-ray 

physics and image reconstruction.  

Chapter 3 discusses dual-energy CT (DECT) technique. The chapter starts off 

with an explanation of the theory of dual-energy imaging, as well as the different 

implementations of DECT. Then, new possible clinical applications for DECT are 

introduced and the results of proposed clinical application are shown. In Chapter 4, 

the fundamental idea of photon counting based Spectral CT (SCT) is explained, 

including the detector technology that enables the implementation of such technique. 

The data generation methods used in this work are described, which includes two 

simulation techniques and the acquisition of spectral data using the Medipix3RX chip. 

Further, three possible clinical applications specially designed for Spectral CT are 

introduced and the results are shown and discussed.  

In Chapter 5, the possibility of extending the developed algorithms to 

applications beyond clinical CT, such as in pre-clinical imaging and in industrial CT, 

is investigated. In order to test the feasibility, the same algorithm developed for 

clinical applications are tested on data acquired from a Micro-CT.  

A general discussion on this work and the future directions are discussed in 

Chapter 6. Finally, a brief but concise summary on a whole is given in the last 

chapter.  
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Chapter 2 

Principles of X-ray CT Imaging 

This chapter briefly describes the principles of X-ray CT imaging, from the 

generation of X-ray in CT to the detection process at the detector, and finally to the 

process of image reconstruction. Explanations on the various physical processes that 

take place in between are also provided. At the end of the chapter, a short overview of 

the relationship between image quality and radiation dose is given. 

2.1 X-ray Generation 

X-rays for usage in clinical radiography and CT are produced by accelerating 

a beam of high-energy electrons onto a metal target. Upon striking the metal solid 

anode, the electrons experience rapid deceleration, generating X-ray photons with a 

wide range of energies that are commonly called bremsstrahlung.  If the electrons 

have sufficient energy, they can eject an electron out of an inner shell of the target 

metal atoms. Then, electrons from higher state fill the hole left by the expelled 

electron, in the process emitting another type of radiation known as the characteristic 

X-rays of the target material [12].  

A typical X-ray tube used in CT consists of rotating metal target at the anode 

and small thin tungsten filament at the cathode, enclosed in an evacuated vessel made 

of glass. The evacuated vessel is surrounded by oil to provide cooling, by dissipating 

heat from the tube, and electrical isolation. A schematic diagram of an X-ray tube is 

shown in Figure 2.1. 
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Figure 2.1: The schematic diagram of an X-ray tube. 

There are a few considerations for the metal anode target. First, the metal 

anode must be able to produce X-rays efficiently. A general rule is that metal with 

high atomic number has higher X-ray production efficiency. Secondly, due to the 

constant bombardment of electrons, the metal must be able to withstand high heat. A 

commonly used metal target is tungsten, which has a high atomic number, 74, and a 

high melting point of 3400°C [12]. Other suitable metal targets are molybdenum and 

rhodium. Even though tungsten is considered to be an efficient anode metal target, 

only about 1% of the energy of the electrons is converted into X-rays, while the 

remainder of the energy is dissipated as heat. Due to high heat dissipation in the X-ray 

generation process, the anode is rotated to reduce the localization of heat.  

Adjusting the electrical parameters of the tube controls the quality and the 

quantity of the X-ray. The range of the produced photon energies, also called the X-

ray spectrum, can be adjusted by changing the potential difference (kV) between the 

anode and cathode. On the other hand, the tube current (mA) and exposure time (s) 

determines the quantity of the produced X-ray photons. An increase either in the tube 

current or exposure time increases the number of X-ray photons generated by the 

tube. An example of X-ray spectrum produced from a clinical grade tube at different 

voltages is shown in Figure 2.2. 
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Figure 2.2: X-ray spectrum generated at different energy levels. 

2.2 Photon-Matter Interaction 

As the X-ray photons penetrate a scanned object, the material in the scanned 

object attenuates the photons. In the diagnostic energy range of 25keV to 150keV, the 

photon-matter interactions that take place are the Rayleigh scattering, photoelectric 

absorption and Compton scattering (see Figure 2.3). Rayleigh scattering is the elastic 

scattering of the electromagnetic radiation by particles much smaller than the 

wavelength of the incident radiation. In Rayleigh scattering, the energy of the photons 

is conserved, but the direction of the incident photon changes. Rayleigh scattering is 

dominant at low energy but becomes constant as the energy of the incident photon 

increases. Therefore, Rayleigh scattering is of less interest in CT, but has been shown 

to be sensitive to structural variation and density fluctuation, and is important in bone 

characterization and in deriving cellular and molecular information [12, 13].  
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Figure 2.3: The photon-matter interactions in diagnostic imaging energy range. Rayleigh scattering only occurs at 

a very low energy, thus the primary photon-matter interactions in diagnostic are photoelectric absorption and 

Compton scattering. 

The next important photon-matter interaction is the photoelectric absorption. 

In this physical process, the entire energy of an incident X-ray photon is absorbed by 

an atom, resulting to the ejection of an electron of a lower shell from the atom. Some 

of the energy is used to liberate the electron, while the rest is converted to the emitted 

photoelectron’s kinetic energy. Electrons from the outer shells then fill the vacancy 

left by the ejected electron, in the process emitting X-ray characteristic of the atom. In 

order for photoelectric absorption to occur, the energy of the incident X-ray must be 

greater than or at least equal to the binding energy of the inner-shell electron. The 

probability of photoelectric absorption depends on the energy of the incident photon 

and the atomic number, Z, of the absorber material and can be approximated by: 

! ! ∝ !!
!! (2.1)!

The strong Z4 dependence of the absorption coefficient makes iodine (Z = 53) or 

barium (Z = 56) an ideal choice for contrast media in CT. However, due to low 

effective atomic number of biomaterial in the body (Zeff ≈ 7.6) and the E-3 dependence, 

the probability of photoelectric absorption is only dominant in the lower energy (< 50 

keV) range and decreases rapidly as the photon energy E increases. 

 The primary particle-matter interaction in the diagnostic imaging energy range 

is the Compton scattering. Compton scattering occurs when an X-ray photon collides 

with a loosely bound valance electron in the outer shell. The interaction causes the 

incident photon to transfer part of its energy to the recoiling electron, also known as 

the Compton electron or secondary electron, while the rest of the energy is kept by the 

scattered photon. If the energy is adequate, both the scattered photon and the 
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Compton electron may undergo further interactions such as Rayleigh scattering, 

photoelectric absorption, or even Compton scattering. As the incident photon energy 

increases, both scattered photons and electrons are more likely to be scattered in the 

forward direction; thus, these photons are more likely to be detected by the detector. 

For an incident photon with energy E, the total cross section for Compton scattering 

can be derived from the Klein-Nishina equation [1]: 

! !!" ! = 1+ !
!!

2(1+ !)
1+ 2! − 1! !"(1+ 2!) + 1

2! !"(1+ 2!)−
(1+ 3!)
(1+ 2!)! (2.2)!

! with%ε%=%E/511%keV%%
% !

 

Figure 2.4: Mass attenuation coefficient of soft tissue, as defined by ICRU-44. At lower energy below 25 keV, 

photoelectric absorption is the most dominant attenuation factor, but at the higher energy, Compton scattering 

(incoherent scattering) dominates the most. 

2.3 Detector 

After interaction with matter in the scanned object, remaining photons are 

detected at the detector. Most modern CT systems available are equipped with 

scintillator detectors.  A scintillator detector consists of two components: the 

scintillator medium and the photon detector [12] (see Figure 2.5). Generally, the 

detection process occurs in two steps. In the first step, the incident photons are 

converted into optical photons (or light) inside the scintillation media. The photodiode 
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absorbs the emitted light and reemit signals in the form of electron charges. These 

electrons are first amplified, before they are collected and integrated at the integrator. 

Finally, these analog signals are converted to digital signals by an Analog-Digital-

Converter.  

 

Figure 2.5: A schematic diagram of a CT detector. Incident photons are first converted into optical photons in the 

scintillator and subsequently converted into electrical signal at the photodiode. The electrical signal is then 

collected and converted into digital signal. 

Earlier generations of CT scanners are equipped with single row detectors. 

The introduction of multi-row detector CT (MDCT) has improved scanning times and 

enables the imaging of rapidly moving organs such as the heart. The fast scanning 

time is mainly due to the increased coverage in a single rotation and is in particular 

advantageous in clinical cardiac CT.  

2.4 Image Reconstruction 

There are two main categories of image reconstruction in CT, analytical 

reconstruction and iterative reconstruction [14, 15]. The most popular reconstruction 

algorithm in the analytical reconstruction category is the filtered back-projection 

(FBP). In the FBP algorithm, the projection data obtained from the CT scanner is first 

filtered in the frequency domain, before the filtered data is back-projected into an 

image. The back-projection process involves adding each filtered projection dataset’s 

contribution to each pixel of the final image (see Figure 2.6). The quality of the final 

image depends on the filter, also known as reconstruction kernels, used. The selection 

of the reconstruction kernel is based on the intended clinical application. In general, a 

smooth kernel generates less noisy images but with reduced spatial resolution, which 
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makes it suitable to view soft tissue. On the other hand, a sharp kernel offers images 

with higher spatial resolution, but has the drawback of increased noise in the image. 

The usage of a sharp reconstruction kernel is mostly suitable to assess bony 

structures. FBP is the reconstruction method of choice because it is very fast. 

However, one particular disadvantage of FBP is that in the back-projection process, 

all X-rays are equally weighted, although in reality the X-ray source is polychromatic 

in nature. The discrepancy between the simplified model of FBP and the true physical 

nature of the acquisition gives rise to artifacts in images such as beam hardening.  

 

Figure 2.6: A comparison between simple back-projection, and filtered back-projection (FBP) presented for 

different numbers of projections (column-wise). The higher the number of projections, the higher is the sampling 

rate, thus the better the image quality will be. 

Another method of image reconstruction in CT is iterative reconstruction. 

Iterative reconstruction takes into account the accurate modeling of the acquisition 

process, such as the photon statistics, X-ray beam spectrum, and the detector 

absorption efficiency. Although the first CT image reconstruction by Hounsfield was 

carried out using iterative reconstruction, this technique was not the method of choice 

for image reconstruction due to the massive computation effort involved. With the 

advancement of computational technology in recent years, iterative reconstruction has 

gained in popularity [15, 16]. The accurate modeling of the acquisition process results 

in a reduced appearance of image artifacts such as beam hardening and metal artifacts 

in CT images. Further, it has been shown that the usage of iterative reconstruction has 

the potential to reduce radiation dose, without compromising the diagnostic quality of 
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the image [17]. There are many types of iterative reconstruction algorithms developed 

by the medical imaging community; with the most popular ones are the algebraic 

reconstruction technique (ART) and the maximum-likelihood (ML) method.  

2.5 Image Quality and Radiation Dose 

Image quality in CT is important as it can determine the outcome of patient 

diagnosis. Generally, image quality can either be assessed visually or measured 

quantitatively [18]. In a visual assessment, also known as human observer-based 

measurements, radiologists subjectively score the CT images according to a set of 

criteria, for instance, tissue contrast and lesion detectability. Common human 

observer-based tests include receiver operating characteristics (ROC) and alternative 

forced-choice (AFC). Human observer-based measurements are usually the 

benchmark for image quality assessment, but are impractical as such tests are time-

consuming, prone to bias, and limited to specific acquisition parameters and 

techniques. On the other hand, quantitative measurements, also known as observer-

independent measurements, do not involve human interactions, thus are bias-free and 

can be universally applied to all systems and acquisition techniques[19, 20]. Metrics 

such as modulation transfer function (MTF) [21], noise-power-spectrum (NPS) [22], 

and noise-equivalent quanta (NEQ) [23] are commonly used to characterize 

radiographic imaging systems, but may not be the real representation of image quality 

for diagnostic purposes.    

One important parameter for visual assessment is image contrast. Image 

contrast refers to the ability to differentiate small changes in tissue density [24]. In 

theory, CT scanners can differentiate tissue attenuation differences of less than 0.5% 

but the contrast detectability of different tissue depends on the amount of statistical 

variations (noise) in the measured region. In order to enhance low contrast 

detectability, good sampling statistics are needed. As the signal measured in CT is 

directly proportional to the amount of radiation detected, higher sampling statistics 

can be achieved by increasing the number of X-ray photons transmitted through the 

patient, or in other words, by increasing the radiation dose. The relationship between 

noise in an image and dose is inversely proportional and can be written as 1/√dose. 

Thus, in order to reduce noise by half, a fourfold increase of radiation dose is 

required. Figure 2.7 illustrates an example of the effect of dose on image quality.  
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Figure 2.7: The effect of radiation dose on image quality. The image quality is best at highest dose level (600 

mAs) and becomes worse as the radiation dose is decreased (from left to right). The image at the lowest dose level 

(35 mAs) suffers due to increased noise levels, reducing the contrast between different components in the image. 

Although X-ray CT offers many benefits in clinical diagnostics, as in many 

aspects of medicine, there are also risks associated with the use of X-ray CT.  One of 

the most discussed risks in recent years is the increased possibility of radiation-

induced cancer [25, 26]. X-rays transmitted through patients can damage DNA and 

create mutations that induce tumor growth. The high association of X-ray usage to 

cancer has lead to many studies on methods of reducing the amount of radiation 

exposure to patients, without compromising image quality [27]. Suggested techniques 

include better image reconstruction methods such as iterative reconstruction [28, 29] 

and the introduction of more efficient detector technology [30]. For example, a 

retrospective study of CT scans done in a clinic shows that the amount of radiation 

dose from CT has decreased over the years (see Figure 2.8), especially on the onset of 

the introduction of iterative reconstruction [17]. This shows that advanced 

reconstruction technique can significantly reduce radiation dose, while at the same 

time maintain or even improve image quality.  
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Figure 2.8: The median effective dose and number of examinations per quarter year in mSv for all types of CT 

examination between 2010 and 2012. After the iterative reconstruction scheme is introduced clinically (between 

the 1/11 and 2/11), a significant reduction in radiation exposure is reported. Source: Noël et al. PLOS ONE 8.11 

(2013). 

2.6 Summary 

This chapter of the dissertation provides an overview of the fundamentals of 

X-ray CT imaging. It also forms the basis for the various concepts of multi-energy CT 

that will be described and explained in the rest of this work. For example, the 

different X-ray energies that can be generated by an X-ray tube are essential in two 

out of three dual-energy CT approaches, while the material- and energy dependency 

of X-ray photon attenuation described in section 2.2 brings forth many applications 

that make use of the additional information in multi-energy spectral CT.  

Further, the inefficiency of conventional detector based on scintillation and 

signal amplification as explained in section 2.3 necessitates the development of more 

advanced detectors that are not only more efficient, but also are able to count and 

discriminate incident photons based on their energies. Besides, the need to produce 

images of high diagnostic quality without increasing the radiation dose has motivated 

the development of new algorithms that will be introduced in the following chapters 

of this work.   
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Chapter 3 

Dual-Energy CT 

3.1 Basic Principles 

3.1.1 Attenuation Dependence 

As explained in the previous chapter, the type of photon-material interactions 

are heavily influenced by the incident energy of a photon and the material it interacts 

with. The same fundamentals form the basis of Dual-Energy CT (DECT), in which 

the main principle behind this technique is that the attenuation of X-ray photons is 

material- and energy dependent. Figure 3.1 shows the attenuation of X-ray photons by 

different materials at different energy levels. These materials represents components 

normally seen in CT scans: water is a representation of soft tissues in the body, 

calcium for bone, and iodine for contrast medium widely used in CT scans for image 

enhancements. From the plot, one can see that iodine attenuates photons more in 

comparison to calcium and water, while at the same time, the degree of attenuation 

decreases with increasing photon energy. What this means is that scanning the same 

object with at least two different spectra yields more information on the scanned 

object, and thus different components in the scanned object can be distinguished.  
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Figure 3.1: The attenuation of X-ray photons for different materials at different energy levels. Water represents 

the attenuation for soft tissue in the body, calcium for the bone, and iodine for the contrast agent widely used in 

CT. The difference of attenuation value at the low- and high-energy levels is larger for iodine than calcium and 

soft tissue. This difference can be used to decompose the anatomical components of the scanned object. 

The choice of spectra used is essential to the degree of differentiation of 

materials in material decomposition techniques. Ideally, the object would have to be 

scanned with two distinctive spectra; one spectrum with a very low energy and 

another with a very high energy. Besides that, the amount of overlapping between 

those two spectra has to be minimal. Figure 3.2 shows three different spectra available 

in most clinical systems. Although the difference in energy level is high, the 

combination of 80kVp and 140kVp is less desirable due to the huge overlap of the 

two spectra. One way of increasing the spectral separation is to apply additional filters 

such as tin or aluminum, especially to the higher energy spectrum [31]. The effect of 

filtration ‘hardens’ the beam, i.e. increases the mean energy, and ‘shifts’ the spectrum 

to a higher energy level. An example is the combination of spectra of 80kVp together 

with 140kVp filtered with copper and tin, as this combination has less overlapping 

and thus yields better material separation. 
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Figure 3.2: Profiles of three different X-ray spectra: unfiltered 80kVp, unfiltered 140kVp, and 140kVp filtered 

with copper and tin. The unfiltered spectra of 80kVp and 140kVp overlaps each other in the entire spectrum, thus 

has poor spectral separation. The filters ‘harden’ the beam and ‘shift’ the spectrum to a higher energy. As a result, 

only a small overlap exists between the low- and high-energy spectra, as shown by the shaded region. 

3.1.2 Acquisition Techniques for Dual-Energy CT 

There are currently several techniques of acquiring CT data with spectral 

information. These techniques are divided into two categories based on the working 

principles: the usage of different pre-patient X-ray spectra or the deployment of 

energy-resolving detectors.  

Rapid kV-Switching 

In the rapid kV-switching technique, the voltage tube of the X-ray tube is 

rapidly switched between the lower and higher energy at every other projection 

during the course of the scan [32, 33]. The projections at odd numbered angles θ1, 3, 5… 

are acquired with low energy kV settings, while the projections at even numbered 

angles θ2, 4, 6… are scanned with the higher kV settings. Although the acquisition of 

each set of projections has less angular sampling due to the alternating angles, the 

differences between the two sets of projections are only small and can be overcome 

by interpolation between the projections. In comparison to the conventional dual-

energy method of scanning the same patient twice in succession, acquiring projections 
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alternatingly has the advantage that it is fast, does not require additional radiation 

dose, and avoids artifacts due to patient motion. Besides, the rapid kV-switching 

technique enables instantaneous scanning of changes in contrast medium 

concentration.  

The rapid kV-switching method requires fast generator and scintillator 

response. Current X-ray tube technology only enables tube voltage switching in the 

magnitude of one half a millisecond. This means that in order to avoid angular 

sampling artifacts, the CT needs to be rotated at 0.6 – 1s, even though modern CT 

systems are known to be able to rotate at 0.35s [32]. As a consequence, this method is 

unsuitable for scanning of fast moving organs such as the heart or dynamic perfusion 

scans. Another consideration is the dose imbalance between the low-energy and high-

energy acquisition. While the X-ray tube can be rapidly switched, the tube current 

cannot be rapidly changed. At equal tube current, 80kV acquisition yields as much as 

3 times lower dose than 140kV [32]. A solution to this problem is to increase the 

integration time of the 80kV by a factor of three, thus the X-ray flux of both 

acquisitions will be approximately the same. 

 

Figure 3.3: Left: A sketch of a kV switching system. This method employs a single X-ray tube and a 

corresponding detector. The voltage of the tube alternates between the low- and high-energy for every other 

projection. Right: An ideal fast kV switching scheme. The integration time for the 80kV is longer than for 140kV 

in order to equalize the radiation dose between the low-energy and the high-energy spectra. 

 A further drawback of the kV-switching method is the under- or overshoots of 

the tube voltage [32]. Ideally the switching curve of the X-ray tube has to be a 

rectangle, as shown in Figure 3.3. However, under- or overshoots of voltage can occur 

due to the instability of the generator, and as a consequence reduce the spectral 
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separation between the generated energy spectra. A way to limit such occurrence and 

to enable stable switching of tube potential is to optimize both acquisition settings 

(e.g. tube current) to only the high tube current at the expense of the ability to 

modulate dose according to specific examination.  

Dual-Source CT 

Another widely used method for DECT that utilizes differences in pre-patient 

X-ray spectra is dual source CT (DSCT). A DSCT is equipped with two acquisition 

systems (two X-ray tubes and two corresponding detectors) that are simultaneously 

operated to acquire data from the same anatomical slice [32]. DSCT has several 

advantages to other DECT methods. Firstly, each X-ray tube-detector pair can be 

individually adjusted. Scan parameters such as tube voltage and tube current can be 

independently set-up and thus the problem of unequal radiation dose from a low- and 

high-energy acquisition is eliminated. The availability of dedicated detectors avoids 

the problem of slow scintillator response between the different energy acquisitions. 

The second advantage of DSCT is that, due to the simultaneous acquisition of data, 

DSCT systems have improved temporal resolution and are suitable to image rapidly 

moving organs such as the heart and lungs [34]. Further, the simultaneous acquisition 

avoids registration problems for the two sets of low- and high-energy projections. 

This is important for many diagnostic applications using contrast medium for contrast 

enhancements, as early changes in contrast agent concentration can be accurately 

detected.  

Nevertheless, mounting separate acquisition systems in a single gantry poses 

several technical limitations. The limited space in a gantry means that one of the two 

detectors has to be built smaller than the other one, resulting in two different fields of 

views (FOV). A typical combination is the detector A has full FOV, while detector B 

has about half the FOV of detector A. The smaller FOV for the second detector can be 

a problem for the examination of larger-sized patients and makes raw-data based 

dual-energy algorithms difficult to be realized. Further, mounting two acquisition 

systems gives rise to the problem of cross-scatter contamination – scattered radiation 

from tube A is detected in detector B and vice versa [35]. The cross-scatter 

contamination causes artifacts, reduces the contrast-to-noise ratio (CNR) of the image 

[36], and has a negative impact on the dual-energy analysis of the acquired data. One 
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method of correcting for this contamination is to directly measure the cross-scatter 

radiation and later subtract the amount from the measured signal [32, 37]. While this 

reduces the effect of cross-scatter radiation, it does so at the expense of noisy images 

and lower CNR, which in turn implies more radiation dose to compensate for the low 

CNR.  

 

Figure 3.4: Left: A schematic diagram of a dual-source CT (DCST) system. Two separate acquisition systems are 

fitted into a single gantry. Due to the limited space, one system has a smaller detector array than the other. Right: 

The dashed line shows cross-scatter contamination, in which scattered radiation from tube A is detected in the 

detector B.  

Dual-Layer (Sandwich) Detector 

Instead of using different X-ray spectra for the realization of dual-energy 

imaging, another method is to use energy-resolving dual-layer detectors. Dual-layer 

detectors still use conventional scintillation detectors, but are distinctive from other 

detectors in that they have two sets of scintillation arrays and photodiodes stacked on 

top of each other [32]. In this setup, lower-energy photons are absorbed by the top 

scintillator array, while the higher-energy photon penetrates the top layer and are 

absorbed by the bottom scintillator array [38]. 

The use of dual-layer detector has several advantages to the other DECT 

methods. Firstly, upgrading current CT systems to enable dual-energy imaging only 

involves upgrading the existing detector module to one with dual-layer capabilites. 

Secondly, dual-energy data acquisition can be done using standard CT parameters at 

full FOV and can be optimized for the type of examination. This is important as 
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radiation dose savings can be achieved by adapting the image acquisition to the 

patient’s needs and physical attributes. Thirdly, due to the simultaneous acquisition of 

low- and high-energy projection datasets, they are perfectly aligned making it 

possible to detect early phase of contrast concentration changes [39]. Further, since 

the acquisition of both projection datasets are consistently done at the same angle, 

raw-data based dual-energy analysis can be directly done without the need for 

interpolation. And lastly, due to the single acquisition system, the problem of cross-

scatter contamination will not arise [32, 39]. 

Despite of these advantages, the biggest drawback of dual-layer detectors are 

the poor spectral separation in comparison to techniques that utilize different X-ray 

spectra [40]. Although the top layer is meant to absorb lower-energy photons, there is 

a high possibility for higher-energy photons being absorbed on the same layer. Figure 

3.5 illustrates the phenomenon of huge overlap between the low- and high-energy 

spectra.   

 

Figure 3.5: Left: A sketch of a dual-layer detector with a single source. There are two scintillators stacked on top 

of one another. The top layer absorbs the lower-energy photons, the bottom layer the higher-energy ones. Right: 

The spectral profile of the top- (dashed line) and bottom-layer (solid line) material irradiated with a 140kV 

spectrum. The top-layer is made of 1mm ZnSe and the bottom layer of 2mm of gadolinium oxysulfide (GOS). The 

overlap goes over the entire spectral range. 

3.1.3 Clinical Applications of DECT 

The advantage of having additional spectral information has spurred the 

development of many new applications that add diagnostic value to clinical CT. These 

new applications do not only help clinicians make accurate and reliable diagnostic 

decisions in real time, but also open new avenues to more specific treatment planning 

[41]. One such application of DECT is the differentiation of kidney stone. Basically, 
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there are three clinical relevant types of renal stones: calcified stones, uric acid and 

struvite stones [8]. Uric acid calculi can be easily dissolved with urine alkalization, 

but calcified and struvite stones can only be removed mechanically or crushed using 

shock wave therapy. Therefore, the accurate identification of these renal stones, as 

shown in Figure 3.6, is essential for the treatment of patients. 

 

Figure 3.6: Some examples of dual-energy applications. DECT imaging enables the detection and characterization 

of renal stones. Image A shows a renal stone characterized as uric acid stone (color-coded in red), while image B 

as calcified stone (color-coded in blue). All images were taken from the Siemens Healthcare webpage.  

3.2 Material Decomposition 

Datasets acquired by DECT systems contain additional spectral information 

and can be used and processed in several different ways. One of the known methods 

is to decompose the datasets to several basis materials that constitute the components 

of the scanned object. The material decomposition technique can be applied either on 

the reconstructed images (image-based decomposition) or on the raw data (projection-

based decomposition).  Decomposition on the reconstructed images can be done by 

solving a system of linear equations [42], analysis of 2D histogram measurements, or 

calculating the difference between the low- and high-energy images. On the other 

hand, decomposition on the raw data can be implemented using the maximum-

likelihood estimator (MLE) [43], the A-table method [44], or the empirical dual 

energy calibration (EDEC) [45] method. Generally, the image-based methods are easy 

to implement and usually produce results in a short period of time. In contrary, the 

projection-based methods are more complex, slow, and computational expensive, but 
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produce superior image quality than image-based methods.  A summary of widely 

known methods for material decomposition is given in Table 3.1. It has to be noted 

that the list is by no means exhaustive. 

Table 3.1: A summary of methods for image-based and projection-based decomposition. 

Image-Based Decomposition Projection-Based Decomposition 

Solving a system of linear equations Maximum-likelihood estimator (MLE)  

2D histogram analysis A-table method  

Difference image Empirical dual energy calibration (EDEC) 

[45]  

3.2.1 Image-Based Decomposition 

In this work, the image-based decomposition is achieved by solving a system 

of linear equations. The reconstructed images from the scanner (DICOM-formatted 

images) are used as input for the decomposition. First, the reconstructed images are 

transformed from the Hounsfield Units (HU) scale to the linear attenuation 

coefficients. The Hounsfield units can be written as: 

! !" = 1000! ∗ !!! − !!"#$%!!"#$%
 (3.1)!

where μX and μwater are the average linear attenuation coefficient and linear 

attenuation of water respectively. 

 The inverse transformation is done for both high- and low-energy scans. 

Then, the rescaled images are decomposed into two materials, e.g. water and iodine, 

to determine the local concentration Ai of the material by solving the following 

equation. 

! !!!! !!!!
!!!! !!!!

∗ !!
!! = ! !!!!!!  (3.2)!

! where!
!!(!) = !

!
! (!) ∗ !!

!

 

Ai is the local fraction of the material, LE(i) the linear attenuation coefficient of 

the input images, �/� (E) is the mass attenuation coefficient at energy E, and � the 
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density of the material. As the X-ray spectra have photons with a wide range of 

energies, the effective energy Eeff of each spectrum is used as E. 

3.2.2 Projection-Based Decomposition 

In projection-based decomposition technique, the composition of known 

materials in the scanned object can be obtained from at least two CT measurements. 

In the presence of two known materials, the measurements with two different source 

spectra can be written as [1] 

! !! !!,!! = ! !! ! !"# !! ! !! + !! ! !! !"!

!!(!!,!!) = ! !! ! !"# !!(!)!! + !!(!)!! !" 
(3.3)!

! ! !
where Ii is the intensity measurements, Si(E) the photon number spectra, Ai the 

line integrals of the material coefficient and fi the mass attenuation coefficient of the 

material.  

In order to estimate the line integrals of the individual materials Ai, a number 

of parameter estimation techniques can be used, such as the least-squared method or 

maximum-likelihood method. In this work the maximum-likelihood parameter 

estimation method derived from a Poisson distribution model is used. A detailed 

explanation is given in the Chapter 4. 

3.3 Clinical Application (I) – Beam Hardening Correction 

The polychromatic nature of X-ray source used in CT causes beam-hardening 

artifacts [14, 46]. As photons penetrate through an object, more low energy photons 

are readily absorbed, resulting in a shift of the X-ray spectrum to a higher energy 

range. This causes two types of artifacts: cupping artifacts and dark streaking between 

dense objects [46, 47]. One way of overcoming this problem is to use a 

monochromatic X-ray source. However, this is not practical in clinics as such kind of 

radiation can only be generated in a large synchrotron. Another possible way to 

reduce the effects of beam hardening is to use the decomposed images to produce 

virtual monochromatic images of the scanned object.  
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3.3.1 Virtual Monochromatic Images 

Virtual monochromatic images (VMI) are images that are produced as if the 

images are acquired using monochromatic sources. The VMI can be generated from 

the decomposed images for different energy levels. For the image-based 

decomposition, the calculation is done by summing up the products of the local 

density of the individual materials and their linear attenuation coefficients at energy 

E.  

! ! ! = !!! ∗
!!
!!
(!) ∗ !! + !!! ∗

!!
!!
(!) ∗ !!!!

!
(3.4)!

! ! !
For the projection-based decomposition, the calculation is carried out in the 

projection space itself. This is done by summing up the products of the line integrals 

of the individual materials and its mass attenuation coefficients at energy E. 

! ! !,! = !!!(!) ∗
!!
!!
(!)+ !!!(!) ∗

!!
!!
(!)!

!
(3.5)!

After this step, the projection data is reconstructed using a conventional filtered back-

projection (FBP) reconstruction. 

3.3.2 Description of Experiment  

The effectiveness of both image-based and projection-based material 

decomposition methods in distinguishing different materials was evaluated. Further, 

the amount of reduction in beam hardening was also visually and quantitatively 

assessed.  

In this investigation, retrospective datasets from five patients subjected to 

ultra-low-dose dual-energy scans and administered with iodine were used. These 

patients were scanned on a Siemens SOMATOM Definition Flash (Siemens 

Healthcare, Erlangen, Germany) operated in dual-source mode at 80kVp and 140kVp. 

Both the image-based and the projection-based material decomposition techniques 

were applied to all the datasets. Further, using the decomposed images, VMI were 

generated at 120 kV. The choice of 120 kV was made, as this is the standard tube 

voltage used in most clinical CT applications.  
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The problem with the different FOV between the low- and high-energy 

datasets was avoided by applying a padding scheme to the smaller projection dataset. 

In this scheme, the outside of the smaller projection dataset is padded with values 

from the larger one in order to have projection dataset of a similar size for both. This 

scheme was only applied to the projection datasets, as the reconstructed images from 

the scanner were of the same size for both low- and high-energy acquisitions.  

3.3.3 Results 

Figure 3.7 shows the decomposed images obtained from both methods. One 

can see that both decomposition techniques are able to separate iodine from other 

materials. On closer inspection, bone is wrongly classified as iodine in the image-

based method, but in the projection-based method the appearance of bone is not as 

distinctive. This suggests that the projection-based method has a better material 

separation capability in comparison to the image-based method. Note that the 

projection-based images appear to be noisier than the image-based method. This is 

due to the different kernel feature of the FBP image reconstruction process. The 

image-based technique uses images from the scanner, which are reconstructed using 

proprietary software and incorporates more information on the imaging system, such 

as the detector efficiency. On the other hand, the projection-based reconstructions are 

done using in-house developed general-purpose image reconstruction software. 
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Figure 3.7: The decomposed images from the both the image-based and projection-based methods. Both 

decomposition methods are able to detect iodine. However, the bone is wrongly classified as iodine in the image-

based method whereas the projection-based method works almost correctly. The original images are windowed 

with WL of 0 and WW of 2000. The material decomposed images are normalized to 1 and illustrated with WL of 

0.5 and WW of 1.0 

Figure 3.8 shows the VMI obtained from both decomposition methods. One 

can observe that the VMI at 120 kV shows less beam hardening in the images in 

comparison to the original image acquired at 80kVp. An analysis of the line profiles 

suggests that the VMI better reflects the theoretical value of soft tissue (~0 HU). 

Further analysis of the plot indicates that the projection-based technique delivers 

better results than the image-based technique, as shown by the constant HU value, 

indicating less beam hardening-induced CT number variations in the image.  
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Figure 3.8: An original CT image at 80kVp and the corresponding VMI at 120keV generated using both image-

based and projection-based techniques. Visually, one can see the reduction of beam-hardening artifacts in the 

VMIs. The line profile shows that, quantitatively, the projection-based method is less noisy and better reflects the 

true value than the image-based technique. Images on the top row have WL of 0 and WW of 2000. 

The choice of energy influences the outcome of the VMI generated. At a high 

energy level, the effect of beam hardening due to the presence of high-attenuating 

material such as iodine can be significantly reduced; however, the drawback of 

generating images at a high energy is that the contrast in the image gets reduced. 

Figure 3.9 illustrates this phenomenon. At 80kV, one can see that the image has more 

soft-tissue contrast than the ones at 120kV and 140kV as indicated by the solid arrow, 

but more streaks due beam hardening artifacts are also observed, especially around 

the area shown by the dashed arrows.  
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Figure 3.9: VMI generated at different energy levels. One can observe that at higher energy levels, beam-

hardening artifacts due to the presence of iodine is minimized as shown by the dashed arrow (in red), but at the 

same time the contrast in the image is also reduced as can be seen by the solid arrow (in yellow). All images have 

WL of 0 and WW of 2000. 

3.4 Clinical Application (II) – Improving CAD Performance in CT 

Colonoscopy 

CT colonoscopy (CTC) is a procedure used for experimental screening of 

colorectal cancer [48, 49]. In this clinical procedure, patients are administered with 

contrast agents and then scanned with two different X-ray spectra (typically 80kVp 

and 140kVp). From these two X-ray spectra, a virtual unenhanced image can be 

produced. The combination of the contrast-agent enhanced and virtual unenhanced 

images is able to assist the detection of polyps, especially the ones obscured by 

residual fecal material in the colon.  

CTC with the combination of computer-aided diagnosis (CAD) is able to 

distinguish small polyps from feces, which are otherwise difficult to detect. While 

CAD has been reported to be able to detect lesions with high sensitivity [50, 51], the 

success of this technique depends highly on the quality of the input image. The use of 

contrast agent such as barium and iodine causes beam hardening artifacts that leads to 

inconsistencies in CT values, especially around the polyps [52]. The presence of the 

beam hardening artifacts can severely affect the detection performance. 

In this preliminary study, the CAD performance for segmentation of colon and 

the detection of polyps is evaluated. Three types of input images were investigated: 

reconstructed images from the scanner (hereafter called original images), image-based 

VMI, and projection-based VMI. 
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3.4.1 Description of Experiment  

A total of 20 patients underwent ultra-low-dose CTC scanning using Siemens 

SOMATOM Definition Flash (Siemens Healthcare, Erlangen, Germany) operated in 

dual-source mode at 80kVp and 140kVp. Each patient was prepared for CTC by use 

of reduced bowel cleansing and orally administered fecal tagging with iodine and was 

scanned twice, once in supine position and once in prone position.  

The dual-energy datasets were first decomposed into two basis materials – 

water and iodine – using the image-based and projection-based decomposition 

techniques. Then, image-based VMI and the projection-based VMI were generated at 

120 kV. The VMI images were then used as inputs to a virtual CT colonoscopy CAD 

Program (Philips IntelliSpace Portal, Philips Healthcare, Best, The Netherlands).  

3.4.2 Results 

In general, the CAD program using original images, as well as both image-

based and projection-based VMIs as input was able to segment the colon from other 

organs in the body as shown in Figure 3.10 (A) and (B).  But in the axial slices, the 

VMI images deliver better segmentation result in comparison to the original image. 

This is evident in images C-E. The poor quality of the original image in C results in 

areas being wrongly classified as the contrast agent (pointed by the solid arrows), and 

thus is not included in the cleansed image.  
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Figure 3.10: The results of the segmentation done by the CAD program using projection-based VMI as input. 

Image A shows all successfully segmented organs, while in image B only the colon is selected. The second column 

shows the axial view. Some parts of the image are wrongly segmented in image C as pointed by the arrow. This is 

due to the poor input image quality. The results are much better for VMI images (D and E). The axial images have 

WL of 0 and WW of 2000. 

Further analysis suggests that the beam hardening artifacts have a negative 

impact on the performance of the CAD program. Figure 3.11 shows images in 

presence (uncleansed) and in absence (cleansed) of iodine. The solid arrow in image 

C shows part of the iodine solution that is wrongly classified as the colon tissue. The 

beam hardening artifacts were corrected in the generated VMI images as can be seen 

in image C. This also results in a correct segmentation of the colon shown in D. 
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Figure 3.11: Axial images of uncleansed and cleansed colon using input from original images (first column) and 

generated VMI (second column). In image A, severe beam hardening can be seen around the iodine. This causes 

problems in the CAD segmentation of the colon resulting in the wrong classification of iodine in the cleansed 

image as pointed in image B. The VMI (image C) has better image quality; thus misclassification does not occur, 

as evident in image D. All images have WL of 0 and WW of 2000. 

In order to evaluate the potential improvement by the VMI images in 

improving CAD performance, a CAD system [53] was used to detect lesion 

candidates automatically from the prone VMI datasets of 6 patients out of the 20 

patients scanned, where 5 of the patients had a colonoscopy-confirmed polyp ≥6 mm 

in size. The detection sensitivity of CAD was 100% with both VMI methods. 

Furthermore, the CAD system calculated several three-dimensional image-based 

features from the extracted regions of lesion candidates to be used for the reduction of 

false positives. To measure the performance between VMI techniques, the area under 

receiver operating characteristic (ROC) curve for the discrimination performance of 

the CAD features was calculated. Table 3.2 demonstrates the discrimination 

performance in terms of the area under the ROC curve, Az, for the mean of CT value, 

which is expected to be sensitive to the quality and consistency of input image. The 

generally higher values of the Az with the projection-based method indicate that the 

use of the projection-based method makes it possible to discriminate true-positive and 

false-positive polyp candidates more accurately than the use of the image-based 

method. This also suggests that the CAD may have higher and more consistent 
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detection performance using the VMIs from the projection-based method than from 

the image-based method. 

Table 3.2: Evaluation of the area under the ROC curve (Az) of the CT value feature in the discrimination of true-

positive and false-positive CAD detections. Higher values of the Az indicate higher performance. 

Energy of VMI Images 

(kV) 

Area under the ROC curve (Az) 

Image-Based VMI Projection-Based VMI 

80 0.53 0.52 

100 0.51 0.65 

120 0.54 0.61 

140 0.50 0.66 

 

3.5 Discussions 

Material Decomposition Technique 

One of the methods for processing data acquired using DECT systems is to 

decompose the dual-energy datasets to several basis materials that represent the 

components of a human body. In this chapter, it is shown that iodine can be 

distinguished from other components of the image such as the adipose tissue, soft 

tissue and bone. This finding has several clinical benefits. For example, the detection 

of iodine can help detect diseased tissues or tumor in contrast-enhanced CT 

examination. Some diseased tissues such as lesions and polyps are known to absorb 

iodine more rapidly than healthy tissues, while at the same time do not excrete the 

iodine as fast as the healthy ones. Hence, the iodine-decomposed image may assist 

clinicians in detecting diseased tissues in patients. Further, the decomposed iodine 

image can be combined with the original image to produce color-coded images that 

will aid the diagnostic process of patients.  

Two types of material decomposition techniques have been demonstrated – 

image-based decomposition and projection-based decomposition. In the image-based 

method, decomposition is done on reconstructed images. This is a particular 

advantage as such images are readily available in most clinics, thus the image-based 

method can be easily applied. Further, it is fast and the results are reliable and 

accurate. Single-slice decomposition takes less than a minute to complete and does 
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not require expensive computational power. Theoretically, a pair of dual-energy 

datasets can be decomposed to up to three basis functions if additional constraints are 

introduced into the equation 3.2 [42]. However, the decomposition to more than two 

basis functions for a pair of low- and high-energy datasets was not used in this work 

as such decomposition usually results in noisy decomposed images and less accurate 

differentiation of materials. 

The image-based method has several limitations. First, the differentiation of 

materials is not as good as in the projection-based method, as shown in Figure 3.7, in 

which bone is also detected in the iodine-only image. Second, the decomposition 

quality is limited to the quality of the image used as input. Noisy images have a 

negative impact on the decomposition of the material and thus result in less than 

desirable detection results. Third, the difference in FOV between the two datasets 

poses additional problems in that only materials in the FOV can be decomposed, as 

shown in Figure 3.12. This is particularly challenging in decomposing images of 

larger patients and from off-center acquisitions. 

 

Figure 3.12: The effect of different FOV on the image-based material decomposition technique. Outside the FOV, 

materials cannot be accurately decomposed as pointed by the solid arrow. All images have WL of 0 and WW of 

2000. 

It can be said that the projection-based method delivers better decomposition 

results in comparison to the image-based method. It has better material separation 

ability and can correctly distinguish two highly dense materials such as bone and 

iodine. The decomposed images are also less noisy owing to the fact that this method 

takes into account the accurate physical modeling of the acquisition system. Further, 

the projection-based method is able, to some extent, overcome the limited FOV 

problem of the image-based technique. This is due to the padding scheme used on the 
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smaller projection dataset. However, it must be mentioned that the padding scheme is 

not only physically incorrect because of the energy-dependent nature of dual-energy 

acquisitions, but also may not work for all dual-source datasets. It is believed that the 

padding scheme works in the datasets used in this study by virtue of the normalized 

values in the raw-data (projections). Nevertheless, one can still observe residue lines 

in the images, as pointed by the solid arrow in Figure 3.13.   

 

Figure 3.13: The residue lines from the effect of padding of the projection data. The non-linearity of the 

transmission data between the low-energy and high-energy data means that it is impossible to correctly pad the 

data. All images have WL of 0 and WW of 2000. 

Despite the superiority of the projection-based method, it also has some 

limitations. In particular, it is slow and computational expensive. The decomposition 

of a slice may take up to several minutes, although employing parallelization 

techniques can accelerate the decomposition. Besides, the method requires the exact 

modeling of the acquisition process in order to yield the best result. For example, 

information on the X-ray spectrum, detector response, and the shape of the filter 

should be included in the acquisition model, but these details are not widely available 

and may be proprietary. The difficulty in obtaining such information and in accessing 

the raw data from the scanner has made the projection-based technique difficult to be 

widely applied. 

The use of DECT data generated from dual-source CT (DSCT) may pose 

several complications to both material-decomposition techniques. First, the cross-

scatter contamination can to some extent negatively impact the quality of the images 

and subsequently the effectiveness of the material decomposition, if corrections are 

inadequately done. Second, the simultaneous dual-energy acquisition and table 

movement can lead to line integrals from the low- and high-energy datasets to be 
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misaligned for the same slice of the object. This effect is especially worse if the table 

pitch is high or if there is movement in the scanned object. The misalignment between 

the datasets can either be minimized by reducing the table pitch or corrected by 

interpolating the datasets for a given slice position. However, the interpolation of 

datasets may not reflect the true line integral measurements of the slice position, 

which may result to less effective material decomposition. 

Beam-Hardening Correction 

Generation of a VMI has, to some extent, reduced the presence of beam 

hardening artifacts in the image; thus improves the overall image quality as shown in 

Figure 3.8. These images can be produced at any energy level in the diagnostic energy 

range. At higher energy, a higher reduction of beam hardening can be seen. However, 

the choice of energy level also influences the contrast of the image. One can observe 

from Figure 3.9 that while fewer beam-hardening artifacts can be seen at higher 

energy levels, the soft-tissue contrast is also reduced. Therefore, a right balance 

between beam hardening reduction and contrast has to be taken into consideration in 

selecting the energy level for generating VMI. 

CAD Performance 

The CAD CTC performance depends heavily on the quality of the input 

images. In the presence of severe artifacts such as beam hardening, the CAD program 

was not able to correctly distinguish the colon from other organs and materials such 

as bone and iodine. This has the consequence that in the presence of artifacts polyps 

and lesions may remain hidden, which may impede their detection. Therefore, it is 

essential for the CAD program to have input images that are superior in quality and 

artifact-corrected. 

In comparison to the original images obtained directly from the scanner, the 

generated VMI images have shown to deliver better image quality and achieve 

notable reduction of beam-hardening artifacts. This raises the question, which of the 

two types of VMI will yield the best result with moderate effort. Comparison between 

the image-based and the projection-based VMIs suggest that the latter produces less 

false-positive detection than the former. But the generation of projection-based VMI 

is time-consuming and requires information and data that is not widely available. 
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Therefore, one can argue that the best compromise is to use the image-based method. 

It is fast and is readily available as the images are generated from the DICOM images. 

While the quality of the DICOM images can negatively impact the generated VMI, 

there are several workarounds to overcome this image quality problem, for instance, 

by iteratively reconstructing the image or using special filters such as bilateral filter 

[54]. Initial study on the use of bilateral filter for noise reduction has shown 

promising results (see Figure 3.14) and should be considered for future studies. 

 

Figure 3.14: Noise reduction achieved by a bilateral filter. In comparison to the original (A) and the VMI (B) 

image, the application of bilateral reduces the appearance of noise, resulting in a better tissue contrast as seen in C. 

All images have WL of 0 and WW of 2000. 

3.6 Summary 

Dual-energy CT (DECT) imaging offers additional information that is 

otherwise not available in a single-scan acquisition. This additional spectral 

information can be processed in several ways and the result of the processing can be 

used to enhance image quality and aid clinicians in the diagnostic process. This 

chapter shows that the dual-energy datasets can be decomposed into several basis 

materials that constitute the different component of the scanned subject. The 

decomposed images can then be used to produce virtual monochromatic images that 

have been shown to reduce the appearance the beam-hardening artifacts in CT 

images. Such artifact-free images are desirable especially for the use in CAD software 

used in CTC, as it enables the accurate detection of lesions and small polyps in the 

bowel that are challenging to detect. 
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Chapter 4  

Spectral CT 

4.1 Introduction 

In current Computed Tomography (CT) systems the X-ray beam consists of a 

spectrum of energies. Contrast in the reconstructed image is a result of averaging over 

the effects of (absorption at) these various energies. In this regard, the spectrum of 

energies can be seen as a disadvantage to the image contrast because the lower energy 

photons that carry with them information on the contrast are lowly weighted in 

comparison to higher energy photons. However, the same spectrum of energies can be 

an advantage when using detectors that are sensitive to specific energy ranges. One 

example is the energy-resolving photon counting detector (PCD). 

4.2 Detector Technology 

Advancements in detector technology have contributed to the development of 

energy-resolved photon counting detectors (PCDs) [55-57]. PCDs have the ability to 

discriminate incoming photons based on their energies; hence spectral information of 

the object can be obtained in a single scan at the same tube voltage [58, 59]. In this 

technique also known as Spectral CT (SCT) imaging, PCDs split the X-ray spectrum 

into several pre-defined energy bins, enabling the acquisition of separate CT data in 

each energy bin.  

As the main component, PCDs have the ability of counting single photons and 

discriminate the photons into pre-defined energy bins based on their incoming 

energies. These discriminated photons carry with them the spectral information, 

which provides additional absorption information on the composition of the scanned 

object [60]. 
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Figure 4.1: A schematic diagram of a photon-counting detector (PCD). The detector sensor absorbs incident 

photons, producing charge cloud of electrons and holes. The voltage bias applied causes the charges to be drifted 

to their respective electrodes. Electrons at the anode generate impulses, which are detected and counted by the 

digital counters. 

In a conventional detector, incident photons are converted to optical photons 

at the scintillator. The amount of light created in the scintillator is proportional to the 

energy of the X-ray photon. The higher the energy, the larger the amount of optical 

photons produced; thus the energy weighting scheme is advantageous to the higher 

energy photons. Further, the photon detection process, conversion to electrical 

signals, and the subsequent amplification of the signals are inefficient, while the 

digitization process may induce some noise in the signal sampling.  

On the other hand, PCD counts single photons, thus is already discrete in 

nature. This has several advantages. Firstly, electronic noise can be excluded from the 

measurement process by introducing thresholds above the highest amplitude of the 

noise. Due to the ‘absence’ of electronic noise at the detector, low radiation dose 

acquisition protocol is possible without compromising the quality of the CT image 

[61]. Secondly, low energy photons that contain valuable contrast information can be 

correctly detected. In an energy-integrating detector, low-energy photons may get 

‘mixed’ with electronic noise.  Further, due to the integration process over time, the 

low-energy photons are lowly weighted to the higher-energy photons [62]. However, 

in energy resolving single photon-counting detector such problem does not arise, thus 

valuable information contained in the low-energy photons can be preserved. 
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4.3 Data Acquisition Methods 

In this work, two types of data acquisitions methods were used: the generation 

of projection data from PCDs using simulations and data acquisitions using 

Medipix3RX, a experimental PCD predominantly used in laboratories for various 

developmental purposes. 

4.3.1 Simulation 

Despite the many advantages of PCD, there are still many technical hurdles 

such as pulse pile-up [63, 64], detector pulse splitting [65], limited energy resolution 

[43, 56], and charge sharing problems [43] that need to be addressed before Spectral 

CT scanners equipped with PCD can be introduced into the clinical arena. Due to 

these reasons, two software packages that allows for simulation of a Spectral CT 

system equipped with a PCD were developed. They are Analytical Simulation (AS) 

and the more complex Monte-Carlo based Simulation (MCS).  

Analytical Simulation 

The analytical simulation (AS) is the forward projection of the phantom image 

at every energy level up to the peak energy [66]. The attenuation coefficient of the 

phantom image at each energy level is pre-calculated from the NIST website. In the 

projection process, parameters that characterize a clinical CT scanner such as the X-

ray spectrum are taken into account. Additionally, Gaussian noise is added to the 

projection data. The simulation was done at 1keV steps, and the bins were later 

summed up to create several energy windows. A simulation using this technique takes 

several minutes to complete. 

Monte Carlo Simulation 

A more complex method of simulation is by using Monte Carlo (MC) 

simulations. The MC method is widely used in radiation therapy to simulate electron 

and photon transport throughout the body. It is used to calculate energy deposition 

from photons (or electrons) in different parts of the body, thus enabling radiotherapy 

to estimate the dose distribution at a particular target area for cancer treatment 

planning [67]. In recent years, MC simulations gained in popularity to simulate 

photon transport in X-ray imaging, with the main purpose of image quality 

assessment and new detector configuration development [68]. With accurate 
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modeling of the underlying physics and the incorporation of appropriate cross section 

data, MC methods provide in-depth assessment and accurate means of predicting 

radiation transport inside materials with complex geometries [68, 69]. Previously 

published works include the simulation of diagnostic X-ray tubes [69, 70], modeling 

of attenuating medium or phantom [71], study of X-ray scatter distribution [72], and 

simulation of X-ray detectors [64, 65, 73]. All of these work points to the reliability of 

MC technique as a tool to simulate real clinical imaging systems. 

The EGSnrc is a general purpose Monte Carlo package that can be used to 

simulate the transport of photons and electrons in any arbitrary geometry for particles 

in the energy range of 1 keV to 10 GeV [74, 75]. In this study, the egs_cbct [76] MC 

simulator, which is distributed as a part of the EGSnrc simulation package, were used. 

In general, it allows a fast calculation of scatter distributions on the detector plane 

while having also the option to output the real and ideal (signal only from primary 

photons) scans of a simulation. This MC simulator is capable of producing not only 

circular cone beam acquisitions but also any trajectory or detector configuration. For 

the purpose of this work, a spectral scoring option is implemented in the egs_cbct user 

code, which adds the possibility to use either an energy integrating spectral detector 

or a photon counting spectral detector. Furthermore, different variance reduction 

techniques (VRTs) [77] already implemented in the user code such as forced 

detection and fixed splitting were also used. The splitting numbers for the primary 

and scatter photons used for the fixed splitting technique are empirically determined 

and set to 70 photons and 120 photons respectively. Photons not aimed at the detector 

are eliminated according to a predefined probability (Russian Roulette). The surviving 

photons are then transported using delta transport to speed up the simulation. For the 

calculation of the mean free path, which is used in the delta transport of the photons, 

cross section data of the materials in the phantom are used, which balances speed up 

and accuracy. The use of these VRTs in the egs_cbct user code were validated by 

comparing the results with the ones of the egs_cbct without VRTs and found no 

significant difference. Further, to evaluate whether the MC tool can be used for 

simulating different radiation exposure levels and that the used VRTs are not 

compromising the result, two independent simulations were performed with full dose 

and quarter dose. For this specific purpose a homogeneous water phantom with 20 cm 

thickness was used. The resulting images were evaluated by calculating the signal to 



Data Acquisition Methods 
 

   40 

noise ratios (Figure 4.2). The signal-to-noise ratio for the quarter dose was 4.20 and 

for the full dose 8.33. The ratio between both is 1.98 and corresponds well to the 

expected value of 2.00. This staging of the algorithm illustrated that the expected 

theoretical values can be reached when using VRTs.  

In all simulations the Compton interactions are modeled in the impulse 

approximation [78], the photon cross section is taken from the XCOM tabulations 

[79] and all photons are tracked to an energy level of 1 keV. All electrons set in 

motion are immediately discarded and all their energy locally deposited. This is done 

to speed up the simulation process, as the simulation of electrons is time-consuming, 

although the effects of their interactions are negligible. Further, the Rayleigh 

scattering, atomic relaxations and the photoelectron angular sampling were turned on. 

 

Figure 4.2: MC generated images at quarter dose level (top) and at full dose level (bottom). The signal-to-noise 

ratio in the quarter dose image is as expected half of the signal-to-noise ratio in the full dose image. The images 

are normalized to 1, with WL of 0.975 and WW of 0.05 as shown by the calibration bar. 

Performance of Monte Carlo Simulator 

In order to assess the performance of MCS, a modified version of the CTP515 

module of the CatPhan 600 (The Phantom Laboratory, Incorporated, Greenwich, New 

York, USA) was simulated. The module is designed to measure low contrast 

sensitivity and consists of a series of cylindrical rods of various diameters and 

contrast-levels. Instead of three contrast-levels, the module was modified to have six 

different concentrations of iodine. Figure 4.3 shows the reconstruction of six 

individual energy bins; with energy thresholds set at 25 keV, 30 keV, 50 keV, 70 keV, 

90 keV and 110 keV. One can see that at the energy window of 30 – 50 keV (B) the 

contrast targets exhibit strong attenuation due to the fact that the k-edge of iodine 

(33.2 keV) lies in this particular energy window. On the other hand, at higher energy 

windows (image E and F) the appearance of the iodine targets decreases, especially 
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the sub-slice targets (inner targets) that have lower concentrations of iodine due to the 

lower attenuation of high-energy photons. 

 

Figure 4.3: Reconstructed images from different energy window of X-ray spectra. All images were calibrated to 

Hounsfield units with window level (WL) of 500 HU and width of 2500 HU. 

The presence of scatter does not only influence the quality of the reconstructed 

image, but also may have an impact on material decomposition techniques. One 

feature of the Monte Carlo simulator is the ability to simulate scatter-free (hereafter 

referred as ideal-scan) as well as full simulation with scatter (real-scan). Figure 4.4 

illustrates the reconstruction of the ‘real-case’ scan (left column), the ‘ideal-case’ 

scan, and the difference of both images at different energy window. One can visually 

observe that the presence of scatter causes many streak artifacts and degrades the 

image quality. The effect of X-ray scatter is more obvious in the mid-range energy 

window, in which the attenuation of photons is stronger as illustrated in the second 

row. For the real scan (D), the streak artifacts are strongly visible, while in the ideal 

scan (E) the appearance of streak artifacts is significantly reduced. In addition, the 

presence of scatter reduces the contrast of the targets as shown by the black targets 

(negative values) in the difference images (third column). The calibration bar on the 
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right side of the figure illustrates the difference of HU unit between both sets of 

images.  

 

Figure 4.4: Reconstructed images from real-case (first column) and ideal-case (second column) scans at different 

energy windows (row-wise). The third column is the difference between the real- and ideal scan images. The 

presence of scatter reduces the contrast of the targets as shown by the black targets (negative values) in the 

difference images. The calibration bar on the right side of the figure illustrates the difference of HU unit between 

both set of images. 

Analytical Simulation vs. Monte-Carlo Simulation 

In the performance assessment above, the Monte-Carlo based (MCS) 

technique took about 120 hours for the 360 projections to be completed. For the same 

simulation, the Analytical Simulation (AS) method took about one hour, markedly 

faster than MCS. Figure 4.5 shows the reconstructed image from the MCS and the 

AS. At first inspection, one can see that the difference between those two images is 

only minor, with physical effects such as beam-hardening are more apparent in the 
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MCS than AS. However, when the AS image is subtracted from the MCS image, one 

can observe that the image intensity of MCS is less than AS. When quantified further, 

the discrepancy between those two images are 2-4%. The lower intensity of the MCS 

can be attributed to the more accurate and inclusive modeling of the MCS, such as the 

effects of scatter, in comparison to AS. 

 

Figure 4.5: The reconstructed image from the projection data generated from the two different methods. The 

images are normalized and equally windowed, with WL 500 HU and WW 2500 HU. At first glance, one cannot 

see any difference between the MCS and AS. Only after subtracting the AS image from MCS, one can observe 

minor differences in the image. The differences in value between the two images are about 2 – 4%. 

4.3.2 Medipix3 RX 

The next method of acquiring spectral CT data is by employing the Medipix3 

(Medipix3 Collaboration, CERN) detector, a single photon processing hybrid pixel 

detector. This detector chip is widely used in laboratories for experimental purposes 

and the development of preclinical applications such as targeted gold nanoparticle 

imaging [80] and luminal depiction in vascular imaging [81]. In this work, the 

Medipix3RX is used for the imaging of multi-material k-edge material in a single 

scan and to study the possibility of the differentiation of the materials per material 

decomposing technique. 

The Medipix3RX chip’s pixel matrix consists of 256x256 pixels with each 

pixel having a size of 55 x 55 μm2. In total a maximum of eight thresholds can be set 

up, however, the availability of these thresholds depends on the operating mode of the 

pixels [82]. The pixels can be operated in either the ‘Single Pixel Mode (SPM)’ or in 

the ‘Charge Summing Mode (CSM)’. In the SPM mode, the shaper outputs are 

connected only to the local discriminators, while in the CSM arbitration and 

synchronization logics are enabled to correct for charge sharing [82]. The pixel matrix 
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can be further configured to either work in Fine Pitch Mode or in Spectroscopic 

Mode. In the Fine Pitch Mode, every pixel is allowed to count independently with 

each pixel providing two counters. In this configuration, the pixel pitch size remains 

the same at 55μm; however the number of thresholds available is only limited to two. 

On the other hand, in the Spectroscopic mode, four pixels are grouped as a single 

cluster to provide more thresholds, but as a result the pixel pitch size becomes larger 

at 110μm, thus reducing the spatial resolution. A summary of the modes is given in 

Table 4.1. 

Table 4.1: The different type of operating mode and the number of possible thresholds in each configuration. 

Table adapted from Ballabriga et al. [82]. 

Matrix Configuration Pixel Operating Mode Thresholds 

Fine Pitch Mode 

 

Single Pixel Mode 2 

Charge Summing Mode 1 + 1 

Spectroscopic Mode Single Pixel (Cluster) Mode 8 

Charge Summing Mode 4 + 4 

Earlier generations of the Medipix chip suffer from charge sharing problems, 

in which the charge generated in a photon interaction is ‘shared’ between pixels [82, 

83]. This results in high-energy incident photons being distinguished as two or more 

lower-energy photons, producing a distortion in the energy spectrum measured by the 

individual pixels. In the Medipix3RX chip, this limitation has been addressed by the 

implementation of an architecture that lets two adjacent pixels ‘communicate’ prior to 

assignation of the hit to a single pixel [82]. In this CSM mode, four pixels are 

clustered to form a single unit. The charge deposited to a single cluster unit is 

reconstructed at the summing nodes physically located at the pixel corners [84-86]. 

The arbitration logic will then identify the node with the highest energy deposition in 

the neighborhood and increases its counter; while at the same time inhibits the counter 

from incrementing for the same detected charge. Figure 4.6 illustrates the CSM mode 

in operation.  
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Figure 4.6: A schematic diagram of the Medipix3RX chip in CSM mode. In the first step, the charge deposited to 

a cluster unit is collected and reconstructed at the summing nodes located at the edge of the individual pixels. The 

arbitration logic will then discriminate and select the node with the highest charge deposition. The respective 

counter of the pixel will be increased, while at the same time other pixel counter will be inhibited. Figure adapted 

from Talla et al. [86]. 

The setup used in this study is shown in Figure 4.7. It consists of an X-ray 

source, a rotating sample holder, and the LAMBDA detector assembly (Medipix3 

Collaboration and DESY). The LAMBDA detector assembly is equipped with bump-

bonded Silicon sensors of 300μm thickness that also has a pitch of 55μm. This 

particular configuration enables acquisition with high spatial resolution, but does not 

allow the use of CSM in combination with spectroscopic mode. 

 

Figure 4.7: Image A shows the setup for the spectral CT measurements. The system consists of an X-ray 

source, a rotating sample holder, and the Medipix3RX-based detector. Image B illustrates the LAMBDA 

detector assembly. Credit to DESY and Chair for Biomedical Physics, Technical University Munich for the 

LAMBDA detector and the Medipix3RX chips. 
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4.4 Material Decomposition 

4.4.1 Theoretical Framework 

In diagnostic imaging X-ray energy range of 25 – 150 keV, the attenuation of 

X-ray photons are primarily due to photoelectric absorption and Compton scattering. 

Photoelectric absorption can be approximated by the E-3 energy dependence and takes 

place at the lower energy range [1]. At higher X-ray energies, the Compton effect is 

more dominant and the cross-section can be derived from the Klein-Nishina function. 

In the presence of materials with distinctive k-edge discontinuity such as iodine, the 

linear attenuation coefficient μ can be described as [43]: 

! ! !,! = !! !
1
!! + !! ! !!" + !! ! !!(!) (4.1)!

! ! !
where a1, a2 and a3 denotes the local density of the basis function, fKN the 

Klein-Nishina function and fI the mass attenuation of k-edge material. The Klein-

Nishina function fKN can be derived from (2.2) 

In order to estimate the line integrals !!(!) of the individual basis functions, a 

minimum number of three X-ray intensity measurements are required. In this case, a 

PCD provides the measurements. For a PCD with N energy bins, the number of 

photons λn detected in an energy bin, given photon fluence of Φ(E) , can be estimated 

as [43]: 

! !! !!,!!,!! = !! ! ! ! !"# !!!!!!!!!!!"!!!!! !! ! !"
!

!
 (4.2)!

!
where!

! = 1,… ,!%%%%%%%%and%%%%%%%%!!! = !! ! !"!!!i!=!1,...,3!
!

 

The index n refers to the nth energy window, Ai the line integral of the 

individual material, while Sn(E) is the spectral response of the detector.  

As the number of energy bins exceeds the number of the basis function, the 

system becomes over-determined. The maximum likelihood parameter estimation 

method is used to estimate the line integrals of the individual components. If the 

counting procedure is assumed to have a Poisson distribution, and given by 
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measurement results (m1, m2), the likelihood function parameterized by Ai can be 

written as: 

! ! !!,… ,!!! !!! !! ,… , !! !! ) =
!! !! !!

!!!

!

!!!
!!!! !!  (4.3)!

! ! !
For convenience, it is best to minimize the negative log-likelihood function 

instead of maximizing the likelihood function P [43]. The negative log-likelihood 

function can then be expressed as:  

! ! !!,… ,!!! !!! !! ,… , !! !! ) = ! !! !! − !!! !" !! !!!
!!!    (4.4)!

! ! !
This maximum likelihood technique yields the sinograms of photoelectric 

effect, Compton scattering and the attenuation of the k-edge material.  

4.4.2 Estimation of Noise in Decomposed Sinograms 

For parameters estimated using the Maximum-Likelihood Estimator (MLE), 

the variance of the unbiased estimator can be computed from the Fisher information 

matrix whose inverse defines the Cramer-Rao Lower Bound (CRLB)[87]. As the 

negative log-likelihood L is a function of line integrals Ai, the Fisher information 

matrix can be written as [88]: 

!

!!! = ! − !!!
!!!!"! !!!!!

 

 

= 1
!!

!!!!
!"!!"! !!!!!

!

!!!
 

(4.5)!

! ! !
The diagonal elements of the inverse of the Fisher F-1 matrix provide the lower 

bound for the variance of the line integrals [89]. The noise in the material 

decomposed sinograms can be calculated from the square root of the variance.  

4.5 Clinical Application (I) – Metal Artifact Reduction 

Artifacts occur frequently in CT. They are generally described as the 

discrepancy between the CT numbers of the reconstructed image and the true 



Clinical Application (I) – Metal Artifact Reduction 
 

   48 

attenuation coefficients of the object [47]. Artifacts degrade the diagnostic quality of 

CT images and may result in false evaluation of patients. While the common type of 

artifact in CT image is the beam-hardening artifact, another cause of artifacts in 

clinical CT is the presence of high Z-materials in the field-of-view such as hip 

prostheses, metal implants and dental fillings [47], [90]. These materials have high 

attenuating properties, resulting in the photon starvation phenomenon, whereby the 

amount of photons reaching the detector is highly reduced [91]. The ‘missing 

information’ on the projection data cause incorrect calculations during the 

conventional analytical image reconstruction process, thus leading to severe streaking 

and dark and bright shading around the metal implant, as shown in Figure 4.8.  

 

Figure 4.8: The presence of high Z-materials causes severe photon starvation and results to a significantly reduced 

amount of photons reaching the detector. The image left is metal artifacts due to the hip prostheses, the middle and 

the right due to dental implants. Examples taken from the Department of Diagnostics and Interventional 

Radiology, Klinikum rechts der Isar. 

Various methods have been developed for metal artifact reduction (MAR) [92-

98]. One popular technique is in-painting. In this method, regions associated with 

metal are ‘replaced’ by interpolating neighboring values in the sinogram. [97-99]. In 

detail, the technique involves masking or segmenting the CT images to obtain the 

metal only image, forward projecting it, remove the metal-only data from the original 

sonogram and interpolate the missing sinogram from its neighbors before re-

reconstructing the modified sinogram. While this method removes most of the 

streaking artifacts in the image, it has limited effectiveness, as it is prone to 

reintroduce other artifacts due to interpolation errors, causing a loss of details 

especially around metal implants. Another advanced method is to recover the high 

frequencies of an uncorrected image, which contains edge information and noise, and 

recombine it with the MAR-corrected image [100]. This technique has been shown to 
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preserve details around the metal implant; however, it is very dependent on the 

optimal segmentation of the metal from other high frequency components in the 

image such as bone.  

A unique approach from Stayman et al. [91] uses a model-based penalized 

maximum-likelihood estimation to reduce the effects of metal artifacts. In the method, 

known as Known Components Reconstruction (KCR), information on the shape and 

composition of the metal in the scanned object is derived from a computer-assisted 

design (CAD) model and is incorporated into the iterative reconstruction process as 

prior. CT images reconstructed using this technique have shown significant reduction 

of streaking artifacts and dark shading as a result of the presence of metal, when 

mono-energetic X-rays are used. 

This work adopts the same concept of incorporating prior knowledge into the 

reconstruction algorithm to reduce metal artifacts in CT images. However, instead of 

using a CAD model, the additional information obtained from Spectral CT is used as 

a priori for the reconstruction scheme. The proposed algorithm is based on a two-step 

approach; in the first step the algorithm performs material decomposition on the 

spectral data to determine the shape and the spatial location of the metal implant, and 

in the second step the information is incorporated as a prior into a penalized 

maximum log-likelihood reconstruction algorithm. 

4.5.1 Overview of the Algorithm 

An overview of the algorithm is illustrated in Figure 4.9 as well as in the 

pseudo code in Algorithm 1. It consists of two steps: material decomposition of the 

Spectral CT data (A) and the penalized maximum likelihood iterative reconstruction 

(B). The algorithm is called Spectral-driven Iterative Reconstruction (SPIR). 
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Figure 4.9: An overview of the SPIR technique. In the first of two steps, the projection data is decomposed into several basis 

functions from which the pseudo-monochromatic projection is calculated and the metal image is reconstructed. Using these as 

input and prior respectively, the image is iteratively reconstructed in the second step, while at the same time knowledge on the 

location and density of the metal implant is enforced and corrected. 

4.5.2 Penalized Maximum Likelihood Iterative Reconstruction 

For reconstruction, a penalized maximum likelihood approach was used. This 

Poisson-statistics-based algorithm uses the raw measurements rather than the 

logarithms of the data, and thus is believed to solve nonlinearity of the logarithm and 

handle low radiation scans.  

The goal of the algorithm is to maximize a cost function Ψ, which consists of 

a likelihood term L and regularization term R. L indicates how the reconstructed result 

matches the input sinogram;  

! ! = !"#!"#! ! ,!!!!!!!!!!!! ! = ! ! − !!"(!)! (4.6)!
! ! !

where µ indicates the image matrix in attenuation values. It describes the probability 

of how the reconstructed result matches the measurement [15]. R is a regularization 

term given in [101]. The regularization can be controlled by β. 
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!
! ! = !!"!(!! − !!

!
)!

 
(4.7)!

Adding a penalty term to regularize the problem leads to a faster convergence 

and an enforcement of desired and beforehand known image properties like 

smoothness and edge preservation. Lange’s [102] function is used as penalty function 

ψ(t) in the regularization term.  Lange’s penalty has the feature to eliminate noise as 

well as preserve edges in the images.    

! ! ! = !! !/! − !"#!(1+ !/! !
 

(4.8)!

δ is a constant as the edge threshold in denoising. 

In order to maximize this optimization problem, the separable paraboloidal 

surrogate (SPS) technique [15] is used. Each update step is given by: 

! !!!! = !! + !" ! exp(−!" !∗)− !∗ − ! !!"!(!! − !!! )
!" !∗!" 1 + ! !!"!(!! − !!! )

 (4.9)!

where y* is the monochromatic projection data. FP [] and BP [] denote the forward- 

and backward projection respectively; wjkψ() the regularization term; xj are pixels in 

image μ, while xk are neighboring pixels of xj. wjk indicates the distance-weight 

between xj and xk. b is the X-ray intensity at the source. 

Selecting the constants β and δ for the regularization was subjectively done. 

The user defined the trade-off point between the data fidelity term and the roughness 

term. This was done by a specification of a desired target noise level of the 

reconstructed image.  

Prior to each update step as in (4.9), the location and density of the gold 

determined in the previous section are pre-computed into exact pixel values in image 

matrix μ, where metal material is observed. The modified image matrix with prior 

information is noted as μ*. 

In each update step, a subset of three angles is taken in the forward and back 

projection to compute an update of μ. These angles are randomly chosen from the 

total number of projections to accelerate the optimization process. In this work, a full 

iteration is considered when all projections are chosen (360° rotation). Previous 
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experiments indicate that a convergence can be seen after 10 to 15 full iterations, thus 

for this work 15 iterations were chosen as the stopping criteria. 

In summary a simplified version of the algorithm can be found as pseudo code 

in Algorithm 1. 

Algorithm 1 pseudo code 

A ! initialize parameters A1, A2, A3 

for i = 1 to max projection data do 

 for j = 1 to number of detector elements do 

  A ! min !! ! −!! ln !! !!
!!!   

 end for 

end for 

µmetal ! FBP[A3] 

µ ! initial reconstruction 

! = BP !∗ ∙ FP[1]    

for k = 0 to max iteration do 

for m = 1 to number of subset do 

   !∗ ← !!!"#$%   

   ! ← !!" !∗  

   ℎ! ← ! ∙ !"#! −! − !∗  
   ! ← BP! ℎ     

   ! ← ! + (! − !!)/(! + !!) !
   

 end for 

end for 

 

4.5.3 Description of Experiment 

A phantom based on the information provided by the Phantom-Group (IMP, 

University Erlangen-Nürnberg, Erlangen, Germany) was simulated. It consisted of 16 

molars, with one of which has a dental implant out of pure gold (density 19.3 g/cm3). 

Two of the molars were removed to simulate a gap (see Figure 4.10). In this work, 

different shapes and sizes of dental implants were used. This was done to test the 

influence of prior knowledge on the overall performance of the SPIR algorithm. For 

the simulation, a mathematical phantom made out of known geometry was used, 

instead of a voxel phantom, in order to accelerate the simulation process. 
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Figure 4.10: One of the virtual phantoms used in this work. It contains several anatomic components of a jaw such as soft 

tissue, spine, bone marrow and teeth. A metal implant is embedded on one of the teeth. In this work, three different shapes of 

metal implant: circle, horseshoe and triangle were simulated. 

The X-ray source was generated at tube voltage of 125 kV with Tungsten 

target and aluminum filter of thickness 2.7mm, yielding mean spectrum energy of 

55.457 keV. A total of 3.10x1010 photons were released at the source. A clinical 

dental CT system with a source to detector distance of 80 cm, source to isocenter 

distance of 60 cm and a detector with 2200x2200 pixels of 0.01 x 0.01 cm2 size was 

modeled. The detector was operated in photon-counting mode with each photon 

discriminated according to its kinetic energy into 62 bins, with each bin having a bin 

width of 2 keV. The implementation of 2 keV energy bins allowed the determination 

of the optimal number and size of the energy windows even after the simulation, thus 

avoiding the need to redo the simulations for other energy window configurations. 

These individual energy bins were summed together after the complete simulation to 

obtain spectral CT projection data with six energy windows. Although the number of 

energy windows can be arbitrarily chosen, the choice of six energy windows was 

made as this yielded better material decomposition results, without negatively effect 

the photon statistics in an individual window [10]. In order to make the simulations as 

realistic as possible, all physical effects such as Rayleigh scattering, atomic 

relaxations and photoelectron angular sampling were taken into consideration. The 

detector was assumed to be ideal, thus effects such as charge sharing and pulse 

splitting can be neglected. However, the effects of scattered photons were taken into 

account in the simulation. 
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4.5.4 Results 

In the first step of the SPIR algorithm, the projection data were first 

decomposed into three basis functions that describe the total attenuation in the 

scanned object. Figure 4.11 illustrates the original model and the results of 

decomposition into three basis component images: (A) photoelectric effect, (B) 

Compton scattering and (C) gold attenuation. One can see that the spatial location of 

the gold implant is accurately detected and distinguished from other anatomic 

structures of the phantom such as teeth and spine. On a closer visual inspection, the 

shape of the metal implant is exact and resembles the original model, as illustrated by 

the top row of Figure 4.12. Subtracting images of the gold component image from the 

original model show only a slight difference of 1 pixel between the images, which can 

be attributed to discretization error in the simulation, indicating the high accuracy of 

the material decomposition technique. Further, the average difference in density 

between the decomposed metal and the original model is about 1.5% or 0.285g/cm3. 
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Figure 4.11: The original model of the phantom and the images of the decomposed basis functions reconstructed with filtered 

back-projection (FBP). The second column shows photoelectric attenuation, third column the Compton scattering, and the fourth 

column the gold attenuation. Row-wise are the different shapes of the metal implant: first row circle, second row horseshoe, and 

bottom row triangle. It can be seen that, the location of the gold implant is accurately detected, while the gold implant can be 

distinguished from other parts of the phantom, especially the teeth. The reconstructed images are normalized to 1, and have WW 

of 0.2 and WL of 0.1. 
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Figure 4.12: The zoom-in of the metal implant obtained shown in the top-row indicates the accuracy of the material 

decomposition technique in detecting the metal implant. When compared to the original model, only a slight difference as in 1 

pixel is observed, which can be attributed to discretization error. The average difference in density is about 0.285 g/cm3. The top-

row images are normalized to 1, with WW of 1.0 and WL of 0.5. The bottom-row images have WW 1.0 and WL of -0.5. 

The second step of the algorithm involves the statistical reconstruction of the 

pseudo-monochromatic data, with the information of the gold component used as a 

prior. Figure 4.13 presents the full-view and the zoom-in of the images reconstructed 

with three different reconstruction algorithms: filtered back projection (FBP), 

penalized maximum likelihood iterative reconstruction on the plain absorption data 

without prior information (IR), and SPIR. In the first row, the reconstruction using 

FBP produces images with massive streaks and black and white shadings, especially 

around the metal implant. The presence of these artifacts severely degrades the 

diagnostic quality of the image, while at the same time information near the implant is 

lost. Using the more advance IR algorithm these artifacts are significantly reduced, as 

shown by images in the second row; however the dark and bright shadings around the 

implant are still visible. In the third row one can observe that the incorporation of 

prior information obtained from the material decomposition technique into the 

reconstruction algorithm delivers notably improved images: bright streaks are reduced 

significantly without compromising the anatomical information, while the shadings 

around the dental implant are considerably eliminated, as displayed in the zoom-in. 

The SPIR algorithm is not only able to reduce the artifacts, but also is able to preserve 

the edges and valuable anatomical details near the implant. 
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Figure 4.13: The reconstructions of the phantom using different algorithms: first row using FBP, second row penalized 

maximum likelihood iterative reconstruction without prior (IR), and the third row Spectral-driven Iterative Reconstruction 

(SPIR). Column wise are the different shapes of metal implant at full-view and zoomed-view. The first column-pair has the 

shape circle, second column-pair horseshoe, and third column-pair triangle. All images have WW of 1000 HU and WL of 4000 

HU. 

The results are analyzed quantitatively by selecting a line-of-interest and 

collected pixel values (attenuation values) along the line, as indicated by the green 

line in the middle column images of Figure 4.13, and compare it to the true theoretical 

values used in the Monte Carlo simulation. Figure 4.14 illustrates the line profiles of 

the three reconstruction algorithms. On the y-axis, the theoretical attenuation values 

of several anatomical components such as teeth and the gold implant are shown as 

dashed lines. From the graph one can see that the artifacts in the FBP images cause a 

massive fluctuation of values. The IR algorithm produces a smooth profile but does 

not return attenuation values similar to the true theoretical one. SPIR algorithm is the 

only one to produce robustly and reproducibly the true theoretical value. 
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Figure 4.14: The vertical line profiles as marked in Figure 4.13 for different reconstruction algorithms. The line profile from 

SPIR algorithm reflects the true attenuation values best, in comparison to FBP and IR. 

Computationally, the FBP algorithm needs 5 seconds to reconstruct an image. 

For the same image the IR and the proposed SPIR algorithm took about 20 minutes 

for 15 iterations.  

Further, the influence of accurate localization and detection of the metal 

implant on the performance of the SPIR algorithm is also investigated. Figure 4.15 

shows the result of reconstruction presuming that the prior information on the metal 

implant is inaccurate; i.e. the metal implant is smaller or larger than the original size 

by 1 to 2 pixels. From the images, one can notice that SPIR suffers badly under such 

conditions. Artificially induced artifacts in the form of bright or dark shadings appear 

near the metal implant, resulting in the loss of details near the implant. 
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Figure 4.15: The influence of the prior information on the outcome of the model-based iterative reconstruction. The results 

with a smaller (A and B) or larger (D and E) metal implant show that inaccurate prior results in a less than optimal image. The 

reconstruction result with the original model is shown in C for comparison. All images have WW of 4000 HU and WL of 1000 

HU. 

4.6 Clinical Application (II) – Low Concentration of Iodine 

In unenhanced CTs, the differentiation of abnormalities is difficult, as the 

solid organs have similar density range of 40-60 HU. The usage of CM enhances the 

density of the different tissues; hence an improvement in contrast can be observed 

[103-105]. This is clinically beneficial, especially in the detection of tumors and 

lesions. The magnitude of enhancement is proportional to the amount of iodine 

concentration deposited in the target organ; the higher the amount of iodine, the 

higher the enhancement of the organ [104]. However, the usage of iodinated CM 

poses health issues, ranging from mild side effects such as headache, nausea and 

itching to serious complications such as contrast-induced nephropathy (CIN) [106-

108]. The risks associated with the usage of CM warrant more investigation into 

methods to reduce the amount of CM, without compromising the diagnostic quality. 

Additionally, the reduction of CM would also bring down the related healthcare cost. 

This work focuses on the reduction of iodinated CM in contrast-enhanced DECT. In 

the first step, the material decomposition technique was applied on the projection data 

to identify and discriminate iodine of lower concentration from other materials in the 

phantom. Using the spatial information of the low-concentrated iodinated CM, a CT 
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image that enhances the appearance of the iodine in the image was iteratively 

reconstructed. 

4.6.1 Detection of Iodine per Material Decomposition 

The material decomposition technique explained in section 4.4.1 was used to 

detect and distinguish iodine from other components of the phantom. The basis 

materials chosen were the photoelectric effect, Compton scattering and iodine. 

Additionally, the variance of the likelihood estimation for each basis material line 

integrals, !!!! , was estimated using the Fisher matrix as discussed in subsection 4.4.2. 

The mean value of the line integrals and their variances were used as input in a 

statistical iterative reconstruction scheme. 

4.6.2 Statistical Iterative Reconstruction 

The noise in the material-specific image is affected by the total attenuation of 

all materials in the object. The presence of other strong attenuating materials reduces 

the number of photons reaching the detector, results to the increase in noise in the 

energy bins, which subsequently propagates into the decomposed sinograms. The 

estimated variance can be used in a statistical image reconstruction scheme to reduce 

noise and enhance image contrast. For the statistical image reconstruction of a 

material-specific image, the same penalized maximum likelihood iterative 

reconstruction as discussed in subsection 4.5.2 was used.  However, instead of using 

Poisson distribution, a Gaussian noise model was assumed. The Gaussian noise model 

was chosen because it has been shown that the line integrals of the decomposed 

images approximately follow a Gaussian distribution [89]. The marginal log-

likelihood function and its derivatives is given by: 

!

!!! ! = − 12 !" 2!!!!! − (!! − !)
!

2!!!!
!

!!! ! = ! (!! − !)
!

!!!!
!

! ! = − 1
!!!!
!!

(4.10)!

! ! !
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The term !! is the mean value of the material decomposed sinogram and !!!!  is 

the variance, which can be obtained from the noise estimation steps described in 

section 4.4.2.   

In this work, the statistical image reconstruction is called maximum-likelihood 

iterative reconstruction (MLIR). The algorithm is based on the separable paraboloidal 

surrogates and penalty weighting as discussed in section 4.5.2. However, instead of 

using (4.9), a modified update function is used is given by: 

! !!!!! = !!! +
!" !!! !!!

(!) − ! !!"!(!! − !!! )
−!" !!!∗!" 1 + ! !!"!(!! − !!! )

 (4.11)!

where !!!
(!) describes the forward projection of material image !!(!)at the nth 

iteration and 1 the unity image, which can be pre-calculated. FP [] and BP [] denote 

the forward- and backward projection respectively; wjkψ() the regularization term; xj 

are pixels in image x, while xk are neighboring pixels of xj. wjk indicates the distance-

weight between xj and xk; and β is the penalty strength. The regularization term and 

penalty is as discussed in the previous section. 

4.6.3 Description of Experiment 

A modified CTP515 module of the CatPhan 600 (The Phantom Laboratory, 

Incorporated, Greenwich, New York, USA) was simulated as the object to be imaged. 

The original module is designed to measure low contrast sensitivity and consists of a 

series of cylindrical rods of various diameters and contrast-levels. Instead of three 

contrast-levels, the phantom was modified to have six contrast-levels with each level 

having a different concentration of Imeron 400 MCT, a tri-iodinated non-ionic 

monomeric contrast medium commonly used in diagnostic radiology. The supra-slice 

contrast targets have concentrations of 25%, 12.5% and 6.25% of the pure Imeron 400 

MCT solution, while each of the sub-slices have 2.5%, 1.25% and 0.625%. This 

corresponds to 100 mg/ml, 50 mg/ml, 25 mg/ml of iodine in the supra-slice targets, 

and 10 mg/ml, 5mg/ml and 2.5mg/ml for the sub-slices. All other areas of the 

phantom are constructed out of water. A sketch of the phantom can be seen in Figure 

4.16.  
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Figure 4.16: The phantom used in this study. The targets (regions-of-interest) consist of different iodine 

concentrations. 

 In this study, the projection data was generated from the Monte-Carlo 

simulation technique. The same simulation protocol was used as in the previous study 

in the previous section. The X-ray source was generated at tube voltage of 125 kV 

with Tungsten target and aluminum filter of thickness 2.7mm. A total of 3.10x1010 

photons were released at the source. The detector was operated in photon-counting 

mode with each photon discriminated according to its kinetic energy into 62 

individual bins of 2 keV width each. At completion of the simulation, these individual 

energy bins were summed together to obtain spectral CT projection data with six 

energy windows. The energy windows are chosen such that all photons at the k-edge 

energy of iodine are captured into a narrow energy window. All physical effects such 

as Rayleigh scattering, atomic relaxations and photoelectron angular sampling were 

taken into consideration. The detector was assumed to be ideal, thus effects such as 

charge sharing and pulse splitting can be neglected. 
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4.6.4 Results 

 

Figure 4.17: The decomposed iodine-only image and the zoom-in image reconstructed using FBP (A and D), 

MLIRPoiss (B and E), and MLIRGauss (C and F). The strong noise in the FBP image as seen in D overwhelms the 

signal from the iodine, affecting the appearance of iodine in the image. A reduction of noise can be achieved using 

advance algorithm such as MLIRPoiss as seen in E, but with the proposed MLIRGauss algorithm, most of the noise is 

suppressed; thus the SNR ratio of the iodine is significantly increased. All images are normalized to 1, with the 

images A, B, and C having WL of 0.5 and WW of 1.0, while images C, D, and E are windowed with WL of 0.05 

and WW of 0.1. 

The spectral data was first decomposed to three basis components: 

photoelectric effect, Compton effect, and the attenuation due to iodine. Then, the 

decomposed iodine-only projection data was reconstructed using three different 

methods: by using conventional FBP, the maximum-likelihood iterative 

reconstruction using Poisson distribution (MLIRPoiss), and the proposed maximum 

likelihood iterative reconstruction based on Gaussian distribution (MLIRGauss) 

algorithm. Figure 4.17 shows the reconstruction of the material decomposed data 

using all three algorithms. In general, one can see that the material decomposition 

technique was able to isolate the iodine solutions from other parts of the phantom. 

However, on closer inspection the MLIRGauss reconstruction algorithm delivered a 

notably improved contrast of the iodine: the lower concentrated iodine solutions are 

better seen in the MLIRGauss reconstructed image than in the FBP and MLIRPoiss 
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images. Additionally, a significant reduction of noise can be seen in the MLIRGauss 

reconstructed image, as seen in the plot profile in Figure 4.18. Quantitatively, the 

measured signal-noise-ratio (SNR) for FBP, MLIRPoiss, and MLIRGauss reconstructed 

iodine-only images are 1.05, 1.45 and 8.25 respectively.  

 

Figure 4.18: The line profile across the iodine target with the lowest concentration as specified in Figure 4.17. 

The plot of the line of interest shows that the pixel value in FBP has a huge deviation from the true value that can 

be attribute to the presence of noise. Using advance algorithm such as MLIRPoiss reduces the amount of noise, yet 

the pixel value deviates from the true value, On the other hand, the MLIRGauss has a more constant value along the 

line and better reflects the true value (2.5 mg/ml). 

Further, the concentration of iodine in the images were measured and 

compared to the true concentration value. The contrast targets of the same 

concentrations but different sizes were measured and the obtained values were 

averaged. Table 4.2 shows the result of the iodine concentration measurements. The 

measurement results show that the iodine concentrations in the MLIRGauss 

reconstructed image are closer to the true value in comparison to the ones measured in 

the FBP and MLIRPoiss image. This demonstrates the algorithm’s ability to detect low 

concentration of iodine with high accuracy. 
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Table 4.2: The concentration measurements from images reconstructed using FBP and MLIR. 

Target 
True Concentration 

(mg/ml) 

Measured Concentration (mg/ml) 

(mg/ml) FBP MLIRPoiss MLIRGauss 

Target 1 100.00 99.23 98.24 97.61 

Target 2 50.00 50.39 49.37 48.62 

Target 3 25.00 26.61 25.64 24.90 

Target 4 10.00 11.11 10.64 9.80 

Target 5 5.00 6.20 5.63 4.85 

Target 6 2.50 3.79 3.28 2.46 

 
Both MLIRPoiss and MLIRGauss images were reconstructed with 20 iterations for 

comparison reasons. Additionally, the same penalty function and strength were used 

for both algorithms. However, it has to be noted that no visual changes can be seen in 

the MLIRGauss image after 10 iterations, while the iodine concentrations remained 

constant after 15 iterations. Additionally, the same regularization function and penalty 

strength were used for both algorithms. 

4.7 Clinical Application (III) – Multi-material K-edge Imaging 

In addition to iodine, other examples of radiological CM are barium sulfate 

[109] and gadolinium [110]. Barium sulfate is usually used in CT examinations, while 

gadolinium is predominantly used to provide enhancement in MR imaging. Recently, 

new CM based on bismuth, gold, and ytterbium are developed for usage in CT [80, 

111]. These CM are disease-specific and have the advantage that they can remain in 

the blood circulation for a long period of time. The variety of CM serving different 

diagnostic purposes raises the question on the possibility of the simultaneous usage of 

the different CM in a single examination. Such examination protocol is desirable, as 

more diagnostic information can be obtained in a single scan, and thus eliminates the 

need for multiple scans that may increase radiation dose exposure to patients.  

The Medipix3RX detector can be operated with up to eight different threshold 

levels, making it possible to perform multi-material K-edge imaging. The thresholds 

can be set below and above the K-edge energy of the material of interest, and using 

simple processing steps such as subtraction, the material can be easily distinguished 

from the other materials in the scanned object. Figure 4.19 illustrates an example of 
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placing energy thresholds below and above the K-edge energy of iodine. Additionally, 

material decomposition method described in Section 4.4.1 can also be applied to the 

projection data to distinguish multiple materials in the scanned object. 

 

Figure 4.19: An example of the placement of thresholds in K-edge imaging. In this example, image of energy 

lower (B) and higher (C) than the K-edge of iodine are reconstructed and subtracted from each other. This results 

in the iodine only image, as shown in D.  

In this study, the feasibility of multi-material K-edge imaging was 

investigated. Two methods of material detection were used: first, by subtracting 

images below and above the K-edge energy of the material, and second, by applying 

the material decomposition method.  

4.7.1 Description of Experiment 

The Medipix3RX is operated in Spectroscopic mode with SPM mode enabled. 

A total of eight energy thresholds were set up, but two pairs were set at the same 

threshold in the higher-energy range in order to increase the photon statistics in this 

energy window. The energy thresholds were 20, 24, 27, 31, 35, 40, 35 and 40 keV. 
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The source-detector distance (SDD) was set to 164 cm, while the isocenter-detector 

distance  (IDD) was 19.3 cm. At the X-ray source, the tube voltage was set to 60kVp, 

while the tube was operated at 30 mA. 

The phantom used in this study consisted of bone and two tubes, one filled 

with silver, Ag (K-edge of 25.5 keV) and the other with iodine, I (32.2 keV). The 

bone and tubes where embedded in a soft tissue (muscle and fatty tissue). 

4.7.2 Results 

Figure 4.20 shows the reconstructed images of the different energy windows 

as well as the results of the subtraction between these images to detect the K-edge 

materials. The subtraction of image B from image A reveals the location of silver in 

the image, while the result of subtracting image C from image B displays the material 

iodine. The explicit detection of the materials shows not only the effectiveness of the 

technique in detecting K-edge materials in general, but also in particular the accurate 

positioning of the thresholds.  

 

Figure 4.20: The reconstructed images from three energy bins (A-C) and the result of subtraction between the 

images (D-E). The images on the top row are normalized to 1, with WL of 0.5 and WW of 1.0, while the 

images on the bottom row illustrated with WL of 0 and WW 0.8. 
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In the second step of this study, the material decomposition technique was 

applied to the projection data. Three materials were selected as the basis function: 

silver, iodine, and bone. Results from the material decomposition technique delivered 

inexact differentiation of materials, as shown in Figure 4.21. While iodine was 

accurately distinguished from other materials, silver and bone appeared in both the 

silver-only and bone-only images. One reason for the inaccuracy of the material 

decomposition technique is the lack of information provided into the decomposition 

algorithm. Vital information such as the spectral response of the detector and the X-

ray source were missing; and thus the detection process was not accurately modeled. 

Additionally, due to limitation in the detector configuration, the CSM mode could not 

be enabled; thus charge-sharing effect was not taken into consideration. It is believed 

that the decomposition results would be better if this vital information is included in 

the detection model or if the CSM could be used. 

 

Figure 4.21: The material-decomposed images. Iodine was perfectly distinguished from other materials in the 

image. In contrast, silver and bone appeared in both the silver-only and in the bone-only images. Imperfect 

modeling of the detection process is believed to be the cause of the inaccuracy. One positive point is that the 

contrast of silver is the highest in the silver-only image, in comparison to the one in bone-only image. All images 

are normalized to 1, with WL of 0.5 and WW of 1.0 

4.8 Discussions 

4.8.1 Data Acquisition 

Simulation 

Due to the lack of availability of clinical photon-counting detectors, there is a 

need for a fast yet reliable simulation package that can assist the development of 

various algorithms and applications that take advantage of the Spectral CT’s potential. 

In this work, two types of simulators were introduced: the Analytical Simulator (AS) 
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and Monte Carlo Simulator (MCS). AS has the advantage that it is fast and generates 

projection data that are comparable to MCS; however it is still not a proven reliable 

simulation tool. On the other hand, MCS has the capability to generate projection data 

from a PCD and to simulate results that closely resemble measurements from an 

actual CT system. Compared to currently available PCDs, MCS is able to simulate 

very small energy windows. This allows the adjustment of the window size to suit 

different K-edges or applications even after the simulation was done; hence avoids the 

need to re-run a time consuming MC simulation and is particularly advantageous 

when designing experiments and evaluating PCDs.  

Further, MCS has the capability to simulate the effect of scatter. This is 

important as the presence of scatter does not only degrade the image quality, but is 

also found to have an impact on the material decomposition technique [112]. This has 

several consequences: first the presence of scatter may restrict the effectiveness of the 

image decomposition technique, especially in finding small concentrations of contrast 

agents in the image. Secondly, the presence of scatter may cause false quantification 

of contrast agents and hence reduce the diagnostic quality. However, the presence of 

scatter may not necessarily be disadvantageous. As one can observe, in the difference 

images in Figure 4.4 that scatter radiation holds information about the imaged objects. 

Similar observations have been made in dark field [113] as well as small-angle X-ray 

scattering (SAXS) imaging [114].  

A drawback of the studies done using the MCS is that an ideal detector was 

simulated, which has maximum detective quantum efficiency. The spectral response 

of a detector has effects on the reconstructed images and the material decomposition 

technique, therefore constructing a real detector would be subject of interest in future 

studies. Another limitation is the missing comparison to real PCD systems. Currently 

PCDs are only very limited available and thus a direct comparison was not feasible. 

However, the results obtained in the studies are comparable to already published 

results of other investigators working with PCDs [43]. Lastly, if diagnostic multi-slice 

CT systems are to be simulated, it will be necessary to include several additional 

components such as a bowtie filter or a 3D anti-scatter grid. 
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Medipix3RX 

The first generation of the Medipix chip, the Medipix1, demonstrated the 

working principle of photon-counting detectors, while the second generation 

Medipix2 showed the ability to discriminate photons based on their incident energy. 

However, the energy spectrum detection of the Medipix2 is limited by the charge 

sharing between pixels in the chip [82]. The latest generation Medipix3RX was 

designed specifically to address this charge-sharing problem. The chip’s architecture 

comprises of additional arbitration logic and synchronization logic that enables the 

accurate detection of photons; while at the same time removes charge-sharing tail 

from the energy measurement.  

Nevertheless, photon-counting detector (PCD) based on the Medipix3RX chip 

is not yet ready for usage in clinical CT due to few reasons. First, the detector element 

made out of silicon will pose a problem to detect high-energy X-ray photons. Silicon 

is has poor detector efficiency at high energy levels [64]. In this study, the X-ray tube 

was operated at 60kVp; however typical scans in clinical radiology employ tube 

voltage in the range of 80kVp to 140kVp. One workaround to this problem is to use 

cadmium telluride (CdTe) as the detector element instead of silicon. CdTe is reported 

to have a high detector efficiency of about 88% at 100kVp (detector thickness ~ 2 

mm); thus is suitable for operation in the human diagnostic X-ray range [115, 116]. 

There exists Medipix3 assembly using CdTe as detector material, but it was not 

available for use in this work. Second, there is the high-flux problem, which is a 

common problem for PCDs. In modern CT system, flux rates are as high as 109 

photons s-1 mm-2 in the center beam. Most PCDs have electronics that may not cope 

with the high flux rate, resulting in pulse pileup that affect the count rate and 

ultimately leads to a degradation of the spectral measurements. For Medipix3RX, the 

effect would be worse especially if operated in the Charge Summing Mode (CSM) 

[117]. 

Despite all of the limitations, PCD based on the Medpix3RX chip has great 

potential. If these technical hurdles can be overcome and such detectors can be 

deployed clinically, one could foresee the integration of spectral information not only 

to improve the diagnostic image quality, but also to aid diagnostic procedures. 
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4.8.2 Applications 

Metal Artifact Reduction 

In this work, an algorithm that combines spectral information and statistical 

reconstruction to reduce metal artifacts caused by the presence of high Z-materials is 

proposed. It is demonstrated that the projection data generated from photon-counting 

detectors (PCD) can be accurately decomposed into several basis functions, providing 

additional knowledge on the components in the underlying scanned object. This 

information can be used as a prior into a penalized maximum log-likelihood iterative 

reconstruction, in which the true spatial location and density are enforced and 

corrected. The algorithm was tested with Monte Carlo simulated data of jaw 

phantoms that contain various shapes of dental implants. The results from the 

algorithm are promising, where a significant reduction of streaks in the image, 

elimination of bright and dark shadings, and the preservation of edges and anatomical 

details especially near the metal implant can be seen. 

Previous work has shown the advantages of model-based reconstruction [91], 

in which prior information is incorporated into a reconstruction process to reduce 

artifacts as a result of the presence of high-Z number materials. The KCR method 

yields a significant reduction of streaks as well as the dark shades near the metal, 

while preserving the anatomical information in the background. Nevertheless, CAD 

based reconstruction is very dependent on the exact information of the component in 

the image; an inaccurate prior may result in a less than optimal image as confirmed by 

the findings in Figure 4.15. This problem will be challenging in daily clinical routines 

as the metal components are often deformed due to rough surgical procedure or due to 

prostheses experiencing significant wear prior to imaging. The SPIR algorithm can 

overcome this difficulty by performing material decomposition on the projection data 

and consequently the location and shape of the metal component can be detected with 

minor discrepancies, as evident by the images in Figure 4.12. Further, the ability to 

accurately detect any shape of implant indicates that the proposed method can be 

generalized and extended to other part of the body such as extremity or spine. 

Another feature of the algorithm is the ability to generate pseudo-

monochromatic projection data from the decomposed sinogram. This is particularly 

advantageous as this minimizes errors during reconstruction, thus producing images 
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of high quality. In CT the attenuation of photons is material and energy dependent as 

shown in (4.1). Lower energy photons are more rapidly absorbed than higher energy 

photons. However, in most CT reconstruction algorithm the X-ray energy is averaged; 

thus the energy-dependency is neglected, causing the occurrence of beam hardening 

artifacts [15, 47, 90]. This error can be mitigated in multi energy CT or Spectral CT 

due to the more accurate modeling of the energy and material dependence of the X-

ray attenuation, which enables the calculation of a pseudo-monochromatic projection 

data at different energy levels.  

The successfulness of the material decomposition technique is limited to the 

information of chemical composition of the metal implant. In this work, metal implant 

made out of gold that has a distinctive k-edge property was used. Implants made out 

of a mixture of several unknown metal may pose a challenge to the decomposition 

technique.  However, this technique works well as long as the chemical composition 

of the metal is known beforehand so that accurate basis functions are chosen for 

decomposition. 

Low-Concentration Iodine Detection 

The ability to generate material-specific images via material decomposition 

technique is promising because it enables applications of low-concentration of 

contrast medium such as iodine in clinical CT. However, the imaging of low 

concentrations of contrast medium (CM) inherently leads to a low signal levels. 

Additionally, the decomposition method induces artificial noise in the image that 

further reduces the signal-noise-ratio (SNR) in the image. For these reasons, an 

algorithm is proposed to reduce the noise in the image; while at the same time 

improve the appearance of the CM in the image. Results in this study indicate that the 

algorithm is not only able to deliver better image quality, but also has the capability to 

preserve the contrast of the CM in the image. 

One drawback of this study is that the phantom used contains only iodine and 

water. In reality, a human body is more complex as it is made out of various other 

materials such as adipose tissues, soft tissues and bones. The presence of these 

different materials may pose problems for the material decomposition technique due 

to low K-edge energy of iodine (33.2 keV), which also lies in the energy range where 

photoelectric absorption and Compton scattering are dominant. A more suitable 
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choice of contrast medium should have K-edge energy high enough (>50 keV) that 

produces high signal even at low concentrations. One contrast medium that has 

recently been seen as attractive for use as contrast agent is ytterbium [118]. Ytterbium 

has shown to have low toxicity, is highly available, and more importantly has the K-

edge of 61.3 keV that produces high signal levels [111].  

Nevertheless, this study has shown that the application of low iodine 

concentration is feasible with the combination of material decomposition technique 

and the statistical iterative reconstruction of the decomposed image.  

Multi-material K-edge Imaging 

The K-edge imaging technique based on the accurate positioning of the 

threshold is a simple method of detecting different materials in the scanned object. 

Results shown in Figure 4.20 shows that silver and iodine can be distinguished from 

each other and other materials by simply subtracting the reconstructed images before 

and after the K-edge of each material. This technique, while simple, is impractical for 

several reasons. First, the materials to be distinguished need to be known beforehand. 

Second, the successfulness of the technique is highly dependent on the accurate 

positioning of the thresholds, which need to be set before the acquisition. This means, 

once the acquisition is done, there is no possibility of adjusting the energy windows to 

suit the K-edge energy of the materials of interest. 

A more realistic approach is to decompose the projection data into several 

basis materials of choice. Although the choice of material must also be known 

beforehand, the placement of the thresholds (or the energy window) has only a 

minimal impact in decomposition process [10]; thus the material decomposition can 

be applied even after the acquisition is done regardless of the energy window. 

Nevertheless, this approach has several weaknesses too in that the accurate modeling 

of the detection process is vital for the accuracy of the decomposition. Information on 

the spectrum generated by the tube and the spectral response of the detector need to 

be characterized for a successful decomposition. For Medipix3RX, this information is 

not readily available and need to be measured, but the characterization of the detector 

is a complex matter. In order to characterize the spectral response of the detector, 

monochromatic beam is needed, which can be only generated by a synchrotron [119], 

which itself is not widely available. 
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 Nonetheless, the successfulness of multi-material imaging will spur the 

developments of new novel contrast agents, which are more targeted and disease-

specific. Ytterbium and gold for example have high K-edge energies, 61.1keV and 

80.1keV respectively, and have shown to enhance the appearance of diseased tissue in 

the image [120]. A ‘cocktail’ of contrast media containing these two materials and 

iodine can be administered in a patient; thus a different level of tissue enhancement 

and the detection of the various diseases can be obtained in a single scan. This will 

result to a significant reduction of radiation dose exposure. Of course the creation of 

this ‘cocktail’ must be first subjected to vigorous toxicity and biological compatibility 

test, that make take years before such scan is possible. 

4.9 Summary 

This chapter describes the principle of photon counting detector (PCD) based 

spectral CT (SCT) and outlines the various benefits of this CT imaging technique. 

The additional information provided by SCT can be used in many clinical 

applications that aid diagnostic procedures. Further, the quantum efficiency of PCD 

produces images of high quality; while at the same time enables low-radiation dose 

acquisition protocols. However, the unavailability of a clinical scanner with PCD 

hampers the development of new clinical application based on SCT. Due to this 

reason, simulation tools were developed to assist research and development of new 

clinical applications. The simulation tools have shown to be able to generate 

projection data from PCD, as shown as in Section 4.3.1. Besides simulation, a PCD 

detector based on the Medipix3RX chip was also employed to test the practicality of 

the algorithm and applications developed in this work. 

Three possible applications based on SCT were presented, the first of which is 

to use the additional spectral information to correct for metal artifacts in images. The 

proposed algorithm utilizes the spectral information to detect the spatial location of 

the metal and further uses the knowledge of the metal as a prior to a maximum-

likelihood iterative reconstruction. Results in Section 4.5.4 show the robustness of the 

algorithm and the promising prospect of this method for use in clinical routine. The 

next proposed application is to detect low concentrated iodine. It is shown that this 

technique is able to distinguish iodine from other materials, while the iodine 

concentration measurements in Table 4.2 demonstrate the accurateness of the 
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detection process. The feasibility of the algorithm will lead to a possible reduction of 

iodinated contrast agent usage in CT; hence reduce the incidence of CIN.  

Finally, the realization of multi-material k-edge imaging was tested. In this 

method, the thresholds of the PCD were optimized by placing them before and after 

the K-edge of a chosen material. The results from this approach demonstrate the 

possibility of distinguishing k-edge materials; hence open new prospect to the usage 

of a mixture of contrast agents in a single scan. 
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Chapter 5 

Beyond Medical Purposes 

5.1 Introduction 

Outside the domain of medical diagnostics, X-ray CT is used for pre-clinical 

imaging and non-biomedical purposes. Advancements in micro-CT technology with 

fine spatial resolution up to sub-micrometer has enable imaging of biological 

specimens and in-vivo small animals. Current pre-clinical imaging researches in small 

animals includes the development of gating strategies in cardiothoracic imaging 

[121], characterization of blood pool contrast media [122], visualization of fracture 

healing [123], and characterization of the phenotype of animal models [124] . Other 

interesting studies in the molecular imaging domain include the development of novel 

contrast agents [125] and in the imaging of specimens in molecular level with the help 

of staining materials. The effectiveness of pre-clinical research is of great interest, as 

the techniques developed would eventually translate into clinical purposes.  

X-ray CT is widely used in medical diagnostic, as it is non-invasive, accurate, 

and fast, yet provides information of the internal structure of the scanned object. The 

same objective is strived in industrial inspections, which is to non-destructively 

visualize and inspect the internal structure in an object [126, 127].  Most of this 

industrial examination, known as non-destructive testing (NDT), utilizes conventional 

methods such as radiography and acoustic illumination [128], while the usage of X-

ray CT is not as widespread as in medical CT. Nevertheless, the basic principle 

behind medical CT imaging is the same as in industrial CT imaging; thus in theory, 

algorithms developed for general medical CT purposes can also be use for industrial 

purposes. In fact, algorithms designed for medical CT can be specifically optimized to 

industrial applications because industrial objects have more detailed information 

available in the form of mathematical models and mechanical drawings [128]. This 

information can be utilized as a priori in many of these algorithms to improve image 

quality as well as material detection. 

This work tries to exploit the similarities between micro-CT, industrial CT and 

medical CT by examining the applicability of the multi-energy CT algorithms and 
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techniques developed in the previous chapter in solving pre-clinical and industrial 

problems. In particular, is to analyze the capability of the material decomposition 

technique to distinguish different types of materials in the scanned object.  

5.2 Xradia Versa XRM-500 Imaging System 

The VersaXRM-500 (Carl Zeiss X-ray Microscopy, Pleasanton, CA, USA) is 

a state-of-the-art 3D X-ray imaging system designed for non-destructive micro 

tomography. It has a fine spatial resolution up to sub-micrometers and enables 

imaging of wide range of sample sizes for various applications such as in material 

science, geo sciences, and life sciences. 

 

Figure 5.1: The X-Radia VersaXRM-500 setup. It consists of the X-ray source, the sample holder, the detector, 

and a turret of objectives. Picture courtesy of Jolanda Schwarz, E17 TUM. 

Similar to other micro-CT system, the Versa XRM-500 consists of a source, a 

sample holder, and a detector equipped with of a turret of objective for magnification. 

The system uses a special type of transmission target at the source that produces X-

ray beam with small focal size. Small focal size is desirable in micro-CT as it enables 

high-resolution tomography. In between the source and the detector is the sample 

holder. The sample holder has high-precision motors that allow an exact positioning 

of the sample in the sub-micron range. 'In contrast to most micro-CT systems, the 

setup provides a movable detector and a movable source, which facilitates 

measurements of samples of different sizes and to adapt the FOV of the detector to 
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different image sizes. The turret of objective is able to produce variable magnification 

(0.39x, 4x and 20x). After the conversion of X-ray into photon lights, the objectives 

magnify the converted lights via conventional optical microscope methods. Finally, 

the CCD camera collects the signal and produces an image of the object.  

5.2.1 System Characterization 

The knowledge of the source spectrum and detector response is essential for 

many multi-energy imaging analyses. In this work, the source spectrum was 

characterized by means of measuring the spectrum as well as using an open source 

simulation tool pyPENELOPE. Figure 5.2 shows the plot of the measured and 

simulated X-ray spectrum at 80kVp. One can see that the simulated spectrum has a 

relatively similar spectrum shape as the measured, but with a slightly higher mean 

energy. A calibration factor has to be introduced for every energy spectrum to correct 

for this discrepancy, but this process is time consuming and in unusable if the 

spectrum is then filtered. Additionally, a special detector is needed to measure the 

higher-energy spectra. Due to this reasons, the spectrum used in the analysis is 

simulated with pyPENELOPE.  

 

Figure 5.2: The simulated and measured X-ray spectrum at 80kVp for the X-Radia VersaXRM-500 system. Both 

have approximately similar spectrum shape, but the measured spectrum has low mean spectrum energy. 

While the source spectrum can be measured, the characterization of the 

detector response is not as straightforward. As the VersaXRM is a commercial 
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product, the scintillator materials and thicknesses are not exactly known. Details on 

the scintillator material and thickness would allow simulations of the detector to 

estimate the detector response.  

5.3 Applications 

5.3.1 Staining of Biological Specimens 

The staining of biological samples is a widely used method in biology and 

medicine. The main purpose of this method is to enhance contrast in microscopic 

image and to highlight fine structures in tissues and in cells. Examples of types of 

staining media and their purpose are iodine for starch indicator [129], methylene blue 

for enhancement of cell nuclei [130], ethidium bromide for staining of unhealthy cells 

[131], and phosphotungstic acid (PTA) for connective tissues [132]. Staining media 

such as iodine and PTA have high effective Z-numbers relative to biological tissue, 

thus is suitable for multi-energy imaging.  

In this study, a sample of mouse testicles was stained with iodine solution and 

PTA. Both of the solutions were diluted with ethanol to have concentration of 5% for 

iodine and 10% for PTA. The mouse testicle was first stained with iodine and then 

was left in the PTA solution overnight. Then, dual-energy acquisitions were done 

with a tube voltage of 60kVp filtered with 1.46 mm of SiO2 for the low energy 

spectrum and 160kVp filtered 3.5mm aluminum (Al), 2mm Teflon and 0.4mm tin 

(Sn). The reason for the application of the filters was to increase the spectral 

separation between the two spectra. In addition to the mouse testicle, two tubes of the 

solutions were also included in the scanned phantom. After acquisition, the projection 

data and the reconstructed images were subjected to the projection-based and image-

based material decomposition techniques, respectively. 

Results 

The reconstructed images from the two spectra are shown in Figure 5.3. 

Comparing the two images, one can see that in the low-energy image, iodine has 

better contrast than in the high-energy image. This can be attributed to the effective 

energy of the low-energy spectrum being closer to the K-edge of iodine.  
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Figure 5.3: The low- (A) and high-energy (B) images of the mouse testicle and the iodine and PTA tubes of the 

low- and high-energy. Both images are normalized to 1, with WL of 0.5 and WW of 1.0 

Figure 5.4 illustrates the results for both image-based and projection-based 

material decomposition techniques. In general, both techniques were able to 

distinguish iodine from other components in the image, but the PTA solution could 

not be differentiated from other materials. One reason for this is the low concentration 

of PTA in the falcon tube and in the sample, which makes it difficult for the algorithm 

to distinguish PTA. Another further observation is that the biological specimen almost 

contains iodine with only traces of PTA can be seen at the peripherals of the 

specimen. This can be explained by the fact that PTA has big molecules and cannot 

be easily absorbed by the sample, whereas iodine can easily diffuse into the sample. 

This finding is in line with results from other studies [133]. One way of increasing the 

absorption of PTA is to cut open the sample before the staining process to allow better 

diffusion.  
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Figure 5.4: The decomposed images from both the image-based (A, B) and projection-based (C, D) material 

decomposition technique. One can see that while iodine can be accurately distinguished from other components in 

the image, PTA could not be differentiated. This may be due to the low concentration of PTA in the tube. All 

images are normalized to 1, with WL of 0.5 and WW of 1.0 

5.3.2 Quantification of Concentration in Solution 

 For the quantification experiment, a phantom consisting of three falcon tubes 

filled with 15% concentration of sodium chloride (NaCl) was used. The falcon tubes 

were held using a placeholder made out of polyoxymethylene (POM). The phantom 

was scanned twice with two X-ray energies – the first with tube voltage of 60kVp 

filtered with 1.46 mm of SiO2, while the second with 160kVp with 5.0 mm of CaF 

filter. After the dual-energy acquisitions, the projection data and reconstructed images 

were decomposed to two basis functions – NaCl and POM. The concentration of the 

NaCl and iodine in each phantom was quantitatively measured. 
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Results 

Both the image-based and the projection-based material decomposition 

techniques were able to correctly distinguish NaCl from POM. Figure 5.5 illustrates 

the decomposed images from the image-based technique. While both techniques were 

able to accurately detect NaCl, the results from the concentration measurements show 

that the image-based decomposition technique delivers better result in comparison to 

the projection-based. The measured NaCL concentration is more accurate, with only a 

relative difference of 6 – 8% from the true value, as can be seen in Table 5.1. 

 

Figure 5.5: The result from the image-based material decomposition technique. It can be seen that NaCl is 

accurately detected and distinguished from the POM placeholder. The projection-based technique also delivers the 

same decomposed images; thus is not shown. Both images were normalized to 1.0 and are shown with WL 0.5 and 

WW 1.0. 

The inaccuracy of the projection-based technique can be attributed to the 

inaccurate modeling of the acquisition process. In the data analysis, the source 

spectrum was simulated, while the details on the detector were not known.  

Table 5.1: The results of the iodine concentration quantification. The image-based technique delivers more 

accurate iodine concentration measurements, in comparison to the projection-based technique 

Target 
True 

Concentration 

(%) 

Measured Concentration 

Image-Based Projection-Based 

Mean (%) Difference 

(%) 

Mean (%) Difference 

(%) 1 15 13.8 8.0 11.22 25.2 

2 15 14.1 6.0 11.14 25.7 

3 15 13.7 8.7 11.00 26.7 
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5.3.3 Non-Destructive Testing 

Non-Destructive Testing (NDT) is one of the most widely use technique in 

industrial inspections. NDT techniques are of particular interest due to its ability to 

visualize the internal structure of a sample without causing any damage; thus is cost-

efficient and less time consuming. Common NDT techniques include ultrasonic 

illumination, magnetic-particle, and radiographic. Until recently, X-ray CT technique 

was not widely used in NDT due to technical limitations of CT scanners such as small 

detector area relative to normal industrial objects and the limited spatial resolution of 

the detector. However, with new detector technology, acquisition techniques, and 

reconstruction algorithm, industrial CT has begin to attract more interest among 

researchers in the field [134, 135].  

The additional spectral information obtained from multi-energy CT can be 

exploited for examining the internal structure for industrial or construction objects. In 

this work, the applicability of the material decomposition techniques in detecting the 

constituents of a concrete block is investigated. The sample was first subjected to 

dual-energy acquisitions with a tube voltage of 60kVp filtered with 1.46 mm of SiO2 

for the low-energy scan and 160kVp filtered with 5.0 mm of CaF for the high-energy 

scan. Subsequently, the reconstructed images from the low-energy and high-energy 

scans were decomposed into three basis materials. The components of the material 

and their ratios are given in Table 5.2  

Table 5.2: The components of the sample and their ratios. 

Name Formula Density (g/cm3) Ratio 

Lime CaO 3.37 53.4 

Silicon Dioxide SiO2 2.65 32.8 

Water H2O 1.0 13.8 

Results 

The reconstructed images from the projection data are illustrated in Figure 5.6. 

One can see that the VersaXRM-500 micro-CT system is able to deliver high-

resolution axial images of the concrete sample. Fine details of the structures in the 

image can be seen, while at the same time the different materials inside the sample is 

clearly shown.  
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Figure 5.6: The axial slice of the concrete sample. Details of the structure and the constituent materials can be 

clearly seen in the images. Image A is shown with WL 0.25 and WW 0.5, while image B has WL 0.5 and WW 1.0. 

 Dead pixels in the detector contribute to the appearance of ring artifacts in the 

image. In order to avoid the occurrence of ring artifacts, the sample holder was 

constantly moved during the whole period of acquisition. The shifting of the sample 

holder, also known as the typewriter concept, is recorded by the system and can be 

corrected during the image reconstruction process. However, additional vibration can 

occur from the system but this is not recorded. The combination of the deliberate 

shifting and the internal vibration aggravates the misalignment between the low-

energy and high-energy images. Due to this reasons, both images were registered 

prior to the material decomposition technique. Figure 5.7 shows the decomposed 

images of the concrete sample. The components in the sample have effective Z-

numbers that are quite low and close to each other. As a result, the only small 

differences of attenuation coefficients between the materials would pose problems for 

the decomposition technique.  
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Figure 5.7: The decomposed images of the concrete sample using the image-based technique. Image A shows the 

component CaO, image B the material SiO2, and image C water. Image A has WL 0.05 and WW 0.1, while image 

B and C have WL 0.5 and WW 1.0. 

5.4 Discussions 

5.4.1 Xradia VersaXRM-500 

The Xradia VersaXRM-500 has shown to be capable of acquiring high 

resolution scans of samples. Fine structures can be clearly visualized, while details of 

the different components can also be seen, as shown in Figure 5.6. The system is able 

to perform multi-energy scans at different tube voltage settings, while the use of 

filters can further increase the spectral separation between two spectra. In most of the 

studies done in this work, the material decomposition techniques were able to 

decompose the projection data or the reconstructed images to several basis functions. 

However, the projection-based decomposition performed worse than the image-based 

technique. This can be attributed to the lack of accurate input for the modeling of the 

acquisition process. Detail such as the detector efficiency was absent, while the 

source spectrum could only be simulated, especially for the higher energy spectrum. 

Therefore, there is a need to characterize the system further.  

One particular problem with the system is the source instability. During 

acquisitions, a drop of tube current may occur after a certain period of measurements. 

This phenomenon can be seen in Figure 5.8 and may result in artifacts in the 

reconstructed volume. One way of addressing this issue is by calibrating the 

projections with the reference projection taken at the corresponding source power and 

by adjusting the gray values between the projections. However, the downside of this 

method is that the comparability to another measurement with the same tube voltage 

is reduced. 
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Figure 5.8: The illustration of the tube current drop. In this acquisition, there is a change in intensity as 
shown in box A, due to the drop in tube current. This lasted for several projections before the condition 

normalized again, as can be seen in B 

Another type of instability is mechanical instability of the system. A typical 

scan may take long period of time to complete, during which slight vibration from the 

system and unintentional movement of sample may occur. While the VersaXRM-500 

system does record any sample holder movement during the acquisition process and 

correct this during the reconstruction of the projection data, misalignment can still 

occur between two sets of dual-energy scans due to these reasons. The misalignment 

poses problem for both the image-based and projection-based material decomposition 

technique. In the image-based technique, this problem can be overcome by registering 

low-energy images to the high-energy image prior to decomposition; however, the 

process is not as straightforward in the projection space.   

5.4.2 Pre-Clinical Applications 

In the biological specimen staining experiment, it has been demonstrated that 

the multi-energy projection data and reconstructed images acquired using micro-CT 

system can be subjected to the material decomposition techniques. In this work, it has 

been shown that two different staining solutions PTA and iodine can be distinguished. 

Additionally, the micro-CT data can also be subjected to material decomposition 

techniques in order to quantify the concentration NaCl.  

In the detection and quantification studies, both the projection-based and 

image-based material decomposition techniques were tested. Both methods have been 

shown to be able to detect and distinguish materials. However, in the quantification, 
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the image-based technique delivers superior results in comparison to the projection-

based technique. The poor performance of the projection-based technique proves that 

this technique works best if the details on the accurate source spectrum input and 

detector efficiency information are available.  

5.4.3 Non-Destructive Testing 

The high resolution of the Xradia VersaXRM-500 micro-CT machine enables 

the detail visualization of the internal structure of the concrete sample. From the 

reconstructed images, one can not only see the shape of the constituent materials, but 

also see the air bubbles in between the materials. Such detail visualization is 

important, especially in analyzing the ratio of materials and determining the strength 

of the sample.  

In this study, only the image-based material decomposition technique was 

used. The misalignment between the acquired projection data (see Figure 5.9) 

prevents the projection-based algorithm to accurately decompose the sample. The 

registration of two data in the projection domain is very complicated. On the other 

hand, it is easier in the image domain; thus this problem can be overcome in the 

image-based method. This difficulty implies that although in theory the projection-

based technique should deliver superior decomposition results as the modeling of the 

acquisition process, it is sensitive to the quality of the data input.  

 

Figure 5.9: The images of the concrete sample for (A) low-energy, (B) high-energy image, and (C) the difference 

of both. The arrows in C points to the artifacts due to the misalignment between the low- and high-energy images. 

The micro-CT’s ability to image fine structures as well as the combination of 

multi-energy CT has much potential, especially in detecting valuable materials in 

huge chunk of stones. For instance, goldsmith can know which part of the stone has 

gold or diamond, thus optimize the method of extracting the stones. 
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5.5 Summary 

This chapter demonstrates the prospect of expanding applications and 

algorithms developed for clinical CT beyond clinical purposes such as for pre-clinical 

studies and industrial applications.  The results from experiments shown in this work 

show the potential benefit of multi-energy CT for pre-clinical and industrial purposes. 

The Xradia Versa XRM-500 machine has the capability to assist the research and 

development of application-specific algorithms, but more work has to be done to 

characterize the system. The availability of detailed information on the source and 

detector response, for instance, can lead to more advance studies on material sciences 

using the system.  
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Chapter 6 

Discussions and Future Outlook 

6.1 Dual-Energy CT 

Dual-energy CT has been around in the clinical arena for some time and is 

widely used in diagnostics. Although there are already various applications available 

for medical purposes that can aid the diagnostic processes in clinical routines, there 

are still more applications that can be developed to take advantage of the additional 

spectral information provided. For instance is the reduction of beam-artifacts in CT 

images that leads to the improvement of automated detection of polyps and lesions in 

CT colonoscopy.  

Another potential application is the detection of low-concentration iodine in 

patients. The ability to detect and subsequently enhance low-concentration iodine 

signal in image is clinically desirable as it may lead to the reduced usage of iodinated 

contrast agent, which in turn reduces the incidence of CIN, especially among older 

patients. The detection of low-concentration iodine is challenging, as the signal can be 

too weak to be detected, resulting in poor SNR of the contrast medium. One approach 

is to increase the radiation dose in order to increase the signal of iodine, while at the 

same time reduce the appearance of noise in the image. This approach can be done, 

especially in older patients due to the fact the probability that this group of patients 

suffering from fatal CIN far outweighs the harm of the extra radiation received.  

6.2 Spectral CT 

Spectral CT using photon-counting detectors (PCD) has great potential and 

offers many advantages, especially in delivering higher quality images and more 

diagnostic information in comparison to conventional X-ray CT. In a conventional 

detector, incident photons are converted to optical photons at the scintillator and these 

signals are further amplified by the photomultiplier. These analog signals are then 

integrated and converted to digital signals. The whole detecting and amplification 

processes are inefficient, while the digitization may induce some noise in the signal 

sampling. On the other hand, PCD counts single photons, thus is already discrete in 

nature. The concept of electron holes avoids amplification and conversion process, 



Pre-Clinical Purposes 
 

   90 

making photon-counting detectors efficient and ‘noise-free’. This has several 

advantages. Firstly, due to the ‘absence’ of electronic noise at the detector, low dose 

acquisition protocols are possible without compromising the quality of the CT image. 

Secondly, low energy photons that contain valuable contrast information can be 

correctly detected. In an energy-integrating detector, low-energy photons may get 

‘mixed’ with electronic noise. However, in energy resolving single photon-counting 

detector such problem does not arise, thus valuable information contain in the low-

energy photons can be preserved.  

 The additional information provided by SCT is valuable for a variety of 

clinical applications - for example quantitative K-edge imaging [58], the usage of 

high-Z contrast agents [136, 137] and plaque detection and characterization [137, 

138]. Nevertheless, photon-counting spectral CT scanners are still unavailable in the 

clinical arena due to several technical limitations. The slow read-out rate restricts the 

ability of PCD in coping with high X-ray flux, causing in pulse pile-up and photons 

wrongly discriminated at the detector. Currently, photon-counting detectors are able 

to measure photon flux levels up to 50Mcps/mm2 [59, 138]. In comparison, photon 

flux up to 10Gcps/mm-2 is common in conventional CT. In addition, pulse splitting 

due to K-fluorescence from Cd (26.7 keV) or Te (37.8 keV) atoms of the detector 

elements will also contribute to inaccurate photon counting and discrimination. Many 

techniques and methods are in development to overcome these technical limitations 

[59]. If these technical hurdles can be overcome and such detectors can be deployed 

clinically, one could foresee the integration of spectral information to improve the 

diagnostic image quality while possibly reducing the radiation dose to the general 

patient population. 

6.3 Pre-Clinical Purposes 

The combination of micro-CT and multi-energy CT has huge prospect for pre-

clinical purposes. In this work, two examples were shown, which is the differentiating 

of two staining solutions and the quantification of the concentration of contrast 

medium. The development of these applications can provide an alternative to the 

conventional histological staining of biological specimens.  

Further applications for pre-clinical purposes are visualization of tumor 

growth and metastasis and the assessment of cardiac function in small animals. 
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Especially for the assessment of cardiac function, the usage of X-ray CT with the 

appropriate gating is beneficial, as it provides fast, yet accurate and reliable 

measurements. And with the combination of multi-energy CT, the distribution of 

contrast medium in the body can be visualized and characterized. 

6.4 Industrial Purposes 

X-ray CT is used in various industrial purposes such as for component 

inspection, structural analysis, and metallurgy. It is a great tool, especially for 

inspecting objects non-destructively. However, most applications are limited to 

single-energy acquisitions, while spectral analysis is not widespread. It has been 

shown that algorithm mainly developed for medical CT can also be used for industrial 

purposes, especially with regards to multi-energy CT. In comparison to medical CT, 

industrial CT has the advantage that radiation dose is not an issue; thus X-ray 

projection measurements can be repeatedly done on the same sample. The only 

drawback to repeat acquisitions is the potential movement of the sample in between 

scans that may cause misalignment in the projection datasets. 

The usage of multi-energy CT in the industrial domain has many advantages 

and bright prospects. In addition for structural analysis or material inspection, multi-

energy CT can be used for detecting and distinguishing materials in a sample. This 

has benefits, especially for the mining industry. An example of potential application is 

the detection and quantification of gold in a gold ore or to establish the purity of 

diamond. Multi-energy CT is advantageous for such purposes as it provides fast and 

accurate yet cost-efficient solutions to industrial inspections.  
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Chapter 7 

Conclusions 

The idea of dual-energy CT (DECT) was first proposed in the late 70s, but it 

was not until three decades later that CT scanners with dual-energy capabilities were 

finally deployed in the clinical settings. The introduction of the DECT scanners has 

spurred many investigations on possible clinical applications that take advantage of 

the additional spectral information. Although there are already many DECT 

applications that assist clinicians in diagnosis process, there are still more to be 

explored. This work has introduced two more promising applications that have proved 

to be able to improve image quality and aid diagnostics decision in CT colonoscopy.  

The development of energy-resolving photon counting detector (PCD) has 

seen the emergence of Spectral CT as the next big invention in medical imaging. The 

exciting prospect of SCT using PCD will lead to new techniques in clinical CT that 

take advantage of the additional spectral information provided. In addition, the high 

efficiency of PCD enables the reduction of radiation exposure to patients, without 

compromising the image quality. This work has investigated several aspects of SCT, 

such as ability to simulate SCT system and decompose scanned object, as well as 

introduce possible clinical applications. It has been shown that the combination of 

spectral information and statistical reconstruction can significantly reduce the 

appearance of metal artifacts in CT image, as well as to detect and enhance the signal 

from low-concentrated contrast medium in the image. Further, the ability to 

distinguish more than two materials in an image may lead to the introduction of 

mixture of contrast agents that can be provide contrast enhancement and detection of 

diseased tissues in a single scan; thus reducing the need for unnecessary radiation 

exposure to patients.  

In conclusion, multi-energy CT provides many advantages in clinical 

diagnostics. One could foresee that the impending introduction of SCT will improve 

the diagnostic image quality while possibly reducing the radiation dose to the general 

patient population. 
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