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Abstract

Many technical systems that were initially designed for serving one purpose now
offer a number of functions integrated side-by-side into one application or device. A
typical example for such a multifunctional system is the software system of an auto-
mobile, which provides functions ranging from multimedia applications over driver
assistance functions to diagnosis functions. Other examples are telecommunication
or avionic systems.

Specifications of multifunctional systems can grow large and therefore need to be
structured to support its development and evolution. Structuring large specifica-
tions into functions in a compositional way is highly desirable since functionality
can be specified independently from each other. Unfortunately, different functions
within a specification of a multifunctional system are often interconnected or influ-
ence each other, which makes it hard to describe them independently in a compo-
sitional way. Formal and model-based specification techniques have been proposed
by the research community to facilitate the specification of multifunctional systems.
However, these techniques are rarely applied in industry. In our experience, the
reason for this is a missing integration of the proposed formal specification tech-
niques for multifunctional systems into a comprehensive requirements engineering
(RE) methodology that describes the stepwise creation and analysis of specifications
based on the formal specification technique.

This thesis provides supporting evidence and solutions for the stated problem. First,
we present an empirical analysis of function dependencies in productive multifunc-
tional systems. The analysis reveals that functions are highly interdependent and
current engineering approaches address this issue only insufficiently. Furthermore,
the study reveals that developers are not aware of these dependencies in most cases.

Second, we present the integration of a formal specification model for multifunc-
tional systems into a comprehensive requirements engineering methodology. In the
formal specification model, a multifunctional system consists of functions, which can
have dependencies that are described by modes. We integrate these formal concepts
into a requirements engineering methodology by providing an artifact model that
relates the concepts to model types that we use to describe them. The semantic rela-
tions between the concepts are reflected and expressed by the model types. Further-
more, we describe the role of the resulting artifacts in a development process. Our
main contribution is the definition of this methodology that allows a stepwise devel-
opment of a formal and model-based specification for multifunctional systems. We
instantiate the methodology (1) in a scenario-driven RE context and (2) in a property-
driven RE context and demonstrate its effectiveness through two case studies, where
the methodology increased artifact consistency and detection of specification flaws.

Finally, we highlight two central artifacts, namely the function documentation and the
mode model, and provide detailed instructions on how to elicit and structure these ar-
tifacts. The proposed structure for function documentation is empirically grounded
by an exploratory qualitative study in the context of automotive systems. The elici-
tation of a mode model is demonstrated through an industrial case study, showing
its feasibility and discussing different elicitation approaches.
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"The structure of system functionality is more like colour separation
than it is like an assembly of parts.”

— Michael Jackson
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Chapter

Introduction

The topic of this thesis is a model-based requirements engineering and specification
methodology for multifunctional systems. In this chapter, we introduce and moti-
vate this topic by characterizing multifunctional systems (Section[1.1) and stating the
problems related to the specification of their functional requirements (Section[1.2). In
Section we summarize the major contributions of this thesis. In Section we
briefly present our basic approach to model-based specifications of multifunctional
systems, before we finally provide an outline of this thesis in Section [1.5]

1.1 Context: Multifunctional Systems

Systems that offer a variety of different functions to their environment are called mul-
tifunctional systems [Broy, 2010b]. A function describes the intent to use a system
for a specific purpose. Many technical systems that were initially designed for serv-
ing one purpose now have a number of functions integrated side-by-side into one
application or device serving a number of purposes. A typical example for a mul-
tifunctional system is the software system of an automobile, which provides func-
tions ranging from multimedia applications, driver assistance functions, to diagnosis
functions. Other examples are telecommunication or avionic systems. Within these
systems, the desired functions are realized by a set of (implementation) components
arranged in an architecture.

Different functions of a system serve different purposes and can be described and
realized independently to some extent. Therefore, function-oriented development,
where functions are mirrored by implementation components that are developed in-
dependently by different teams and even by different departments, is prevalent in
companies that build multifunctional systems [Broy et al.,[2007a]].

However, the functions of a multifunctional system can have subtle dependencies
and may affect each other in certain situations. For example in a car, the central lock-
ing function and the crash sensing function behave independently to a large extent,
however, in case of an accident, the crash sensing function forces the central locking
function to unlock all doors of the car. We call this a function dependency. Function
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dependencies can be considered as one form of feature interaction [Calder et al., 2003;
Zave, 2001]]: “A feature interaction is some way in which a feature or features modify or
influence another feature in defining overall system behavior|'|" [Zave, 1999]. Feature in-
teraction may result in desired or undesired behavior. This thesis focuses on the
specification of multifunctional systems and not on their implementation. Therefore,
the term function dependency, as used in this thesis, refers to interaction between
functions used to specify the desired behavior of a multifunctional system. Unde-
sired feature interaction often arises from function implementations that are integrated
into one system and then interact in an undesired way. This is another interpretation
of the term feature interaction, which we do not address with the term function de-
pendency. Moreover, the implementation of a system in terms of components may
follow a completely different structure than induced by the functions (cf. tyranny
of the dominant decomposition [larr et al., 1999]). This is especially true if the imple-
mentation contains shared components that contribute to the realization of several
functions (e.g., a sensor fusion component).

Specifications of multifunctional systems can grow large and therefore need to be
structured to support their development and evolution. Structuring large specifi-
cations into functions in a compositional way is highly desirable because the system
specification is then given by the composition of modular function specifications that
encapsulate behavior serving one purpose. The mentioned function dependencies
need to be considered in a compositional specification. The characteristics of multi-
functional systems challenge their specification due to the following reasons:

e Functions of a multifunctional system cannot be specified in isolation. They ex-
hibit subtle dependencies that need to be considered within their specification.

e Without the decomposition into functions, specifications of multifunctional
systems become over-complex, hard to maintain, and impossible to validate
modularly.

e The implementation of a multifunctional system may follow a completely dif-
ferent structuring paradigm than a structuring according to functions.

As a consequence, specifications for multifunctional systems are often structured into
functions. However, these functions are generally developed in isolation and their
behavior is often specified on an architectural/implementation level (e.g., by linking
function names to code artifacts). This leads to integration errors and unwanted
behavior due to function dependencies, and blurs the distinction between functional
and architectural dependencies.

1.2 Problem Statement

Due to these characteristics, different groups in the software and systems engineer-
ing community have recognized the importance of function-oriented specification
and development, and investigated its benefits and limitations. In the correspond-
ing work, dependencies between functions have been considered as a major factor
leading to integration failures in multifunctional systems [Benz, 2010; Cataldo and

!In this context, the term feature is a synonym for the term function.
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Herbsleb| 2011]. In an automotive context, Broy| [2006] states, “So far, the understand-
ing of these interactions between the different functions in the car is insufficient.”

Formal and model-based specification techniques have been proposed by the re-
search community to facilitate the specification of multifunctional systems (e.g.,[Broy
[2010b]|; Heitmeyer et al. [1997]; Jackson and Zave| [1998]]; Schitz| [2008]). Most of
them aim at a modular specification for multifunctional systems. The system is bro-
ken down into functions, which are described separately. Dependencies between
functions are modeled by different extensions to their interfaces.

Despite the stated challenges resulting from function dependencies and the pro-
posed specification techniques to address these, function specifications in industry
currently do not consider function dependencies. In our experience, the reason for
this is a missing integration of the proposed formal specification techniques for mul-
tifunctional systems into a comprehensive requirements engineering methodology.

Formal and model-based specification techniques for multifunctional systems need
to be integrated into a comprehensive requirements engineering methodology to be
applicable in industry. This includes the extension and adaption of RE artifacts and
analysis techniques applied to them. However, for the existing specification tech-
niques such an integration is missing. For the few techniques that come with tool
support, it is not clear how the tools can be integrated into an existing RE process,
and how the existing RE artifacts relate to those added by the specification technique.
Approaches that abstain from extending or adapting existing artifacts, such as UML
diagrams, lack of precision and are not expressive enough to describe the subtleties
of function dependencies. Thus, an integration of formal specification techniques for
multifunctional systems into a comprehensive requirements engineering methodol-
ogy is required, including the description of artifact types, their relations, associated
analysis procedures, and their role in a development process.

Problem Statement:

We need a comprehensive requirements engineering methodology for multi-
functional systems that integrates and supports the specification of function
dependencies.

1.3 Contributions of this Thesis

In this thesis, we provide supporting evidence and solutions for the stated problem.

Significance of Function Dependencies in Multifunctional Systems We present
an empirical study on two productive automotive systems with the goal to assess the
extent and characteristics of function dependencies as well as the developer’s aware-
ness of those. In the examined systems, the function dependencies were not part of
the function specifications. Therefore, we developed an approach to extract function
dependencies from a given component architecture (i.e., an implementation).

Through the analysis of the component architecture, we found function dependen-
cies for more than 69% of all functions. Single functions had dependencies to more
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than half of all functions of their system. As a follow up, we investigated the found
function dependencies in detail and discussed them with the developers. We as-
sessed that almost 50% of our findings were considered as plausible, although the
developers were unaware of them prior to the study. The study reveals that functions
in productive multifunctional systems are highly interdependent and that current
specification techniques address this issue only insufficiently. The study was carried
out with MAN Truck & Bus AG and the BMW Group.

Requirements Engineering for Multifunctional Systems We present a compre-
hensive requirements engineering (RE) methodology that is based on a formal mod-
eling theory for multifunctional systems.

We base our methodology on an artifact model that relates the semantic concepts
of the modeling theory to model types that we use to describe them. The seman-
tic relations between the concepts are reflected and expressed by the model types.
The artifact model supports the stepwise modeling and formalization of functional
requirements up to a system specification, which finally can be linked to the architec-
ture of a system. We illustrate the role of the artifacts in a development process and
the activities they enable and support. The methodology ensures the consistency of
artifacts and allows for a comprehensive requirements tracing from informal require-
ments to architectures on different levels of abstraction especially with respect to the
specification of function dependencies. Our main contribution is the definition of
this methodology that allows a stepwise development of a formal and model-based
specification for multifunctional systems. The methodology is evaluated in two case
studies in which it is instantiated (1) in a scenario-driven RE context and (2) in a
property-driven RE context. The first case study was conducted as part of a practical
master’s course at TU Miinchen and the second was carried out with Siemens in an
industrial setting.

Finally, we highlight two central artifacts of the methodology, namely the function
documentation and the mode model, and provide detailed instructions on how to sys-
tematically derive and structure these artifacts.

The proposed structure for function documentations is empirically grounded by an
exploratory qualitative study in the context of automotive systems conducted at
Robert Bosch GmbH. The conclusions of the study particularly address how func-
tion documentations should be structured and which information they should pro-
vide. We suggest documenting a function based on three levels of abstraction that
are structured by a set of modes. The resulting function documentation template
provides methodical guidance for the creation of a function documentation based on
our proposed RE methodology.

The central role of modes in function specifications and in our methodology in
general poses the question, how modes can be elicited systematically, and how
large these mode models can get. In this thesis, we introduce three elicitation ap-
proaches for mode models, which we examine in an industrial case study conducted
at MAN Truck & Bus AG, showing their feasibility and discussing differences be-
tween the elicited modes.

In the literature, approaches for a wide range of aspects and facets of multifunctional
system specifications are proposed, including the specification of functional, safety,
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security, reliability, or timing requirements. This set of all types of requirements to
be considered in a specification is large—beyond what can be covered in depth in
a dissertation. In this work, we thus focus on functional requirements of a system
as described by [Sommerville [2011]: “These are statements of services the system should
provide, how the system should react to particular inputs and how the system should behave
in particular situations.” Although the relevance of extra-functional requirements is
often stressed, functional requirements are a premise for a valid system specifica-
tion. Even more, most of the extra-functional requirements get a functional character
once they are sufficiently broken down and refined (e.g., timing requirements add
constraints to the functional requirements).

1.4 Approach: Model-based RE for Multifunctional
Systems based on Functions and Modes

In this thesis, we follow a specific view onto specifications for multifunctional sys-
tems that is supported by a formal modeling theory proposed by [Broy! [2010b].

The application of the RE methodology introduced in this thesis results in a speci-
fication of a multifunctional system by following an iterative process along the two
dimensions modeling and formalization. While modeling adds structure and provides
a specific way of thinking about a specification, formalization adds precision and
increases the potential for automation of development steps.

From a modeling point of view, requirements, in our approach, reflect a desired prop-
erty of the system as observable at the interface between the system and its environ-
ment. Requirements are related to functions, which capture a set of requirements
with a common purpose from a user’sﬂ point of view. The functions of a system are
composed to composite functions and finally to a system specification. We call this
the function architecture of a system. Functions may behave differently depending on
the current state of a system. We model the state of a system in a mode model, which
contains a (structured) set of modes. These modes can be referenced in the specifica-
tion of functions as inputs or outputs. By this, function dependencies are modeled as
interactions between functions via channels that transmit system modes.

From a formalization point of view, we embed the models used in the approach into a
formal system modeling theory that represents a system as a stream processing func-
tion, which maps streams of input values to streams of output values. A specification
is represented by a predicate over the set of stream processing functions.

1.5 Outline

Figure[L.1|gives an overview over the major contributions and structure of this thesis.
Each box in the figure represents a contribution except for the formal system model
described in Chapter |2, which is not a contribution of this thesis but serves as foun-
dation. The contributions are structured with respect to their role in this thesis and

2A user can also be an external system (cf. the notion of an actor in UML [Fowler and Scott, |2000]).
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Figure 1.1: Overview over the main contributions and structure of this thesis.

related to chapters in which they are described. The solid lines between the contri-
butions indicate how the contributions are related to each other. For example, the
investigation of extent, characteristics, and awareness of function dependencies in
Chapter {4 uses the formal system model as foundation to show the motivation for the
approaches of Chapters[5]to[7] which are validated in the corresponding case studies.

Chapter 2| (Background and Formal Foundations) discusses the used terminology of
this thesis and defines it with respect to a formal system model. Based on this system
model, the scope of this thesis is defined in detail.

Chapter 3| (State of the Art) describes the current state of the art structured along
the contributions of this thesis considering empirical work on function dependen-
cies, specification techniques for multifunctional systems, approaches for function
documentation, and elicitation approaches for mode models.

Chapter [ (Empirical Study on Function Dependencies in Multifunctional Systems)
presents an empirical study on the extent, characteristics, and awareness of function
dependencies in existing multifunctional systems. It illustrates the challenges and
motivates the approach of this thesis.

Chapter 5| (Integrating Functions and Modes into a Model-based RE Methodology)
introduces our model-based requirements engineering methodology for the specifi-
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cation of multifunctional systems. It is based on an artifact model that defines the
artifacts and modeling concepts used in the methodology. Furthermore, the method-
ology is instantiated and discussed in two case studies.

Chapter [¢] (Function Documentations for Multifunctional Systems) introduces a doc-
umentation structure for functions that is based on modes and abstraction levels. The
specific structure is grounded by a qualitative empirical study.

Chapter [7] (Systematic Elicitation of Mode Models for Multifunctional Systems) de-
scribes three approaches to elicit a mode model for a multifunctional system and
discusses the approaches in the context of an industrial case study.

Chapter 8] (Conclusions and Outlook) summarizes this thesis by presenting its con-
tributions, limitations and directions for future work.
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Chapter

Background and Formal
Foundations

In this chapter, we introduce and explain the basic notions that are necessary to com-
prehend the content of this thesis. We especially discuss the notion of a function,
which is essential for this thesis, and embed this notion into the context of multifunc-
tional systems. For a precise definition of the terminology, we introduce a formal
modeling theory and an architectural framework that is defined on top of that.

2.1 Terminology: What is a Function?

A central notion we use in this thesis is the notion of a function. The term function
is associated with a great variety of meanings and interpretations in academia and
industry. Additional terms that are often mentioned in this context are the terms
feature and service. In the following, we informally describe a selection of different
interpretations associated with these terms. In the remainder of this chapter, we will
introduce a formal system modeling theory that we use to give a precise definition of
the different interpretations and the interpretation we are going to use in this thesis.

As a major distinction between different definitions, we consider their focus on ex-
pressing requirements, functional specifications, or design/implementation. We list some
of the common definitions categorized by their focus (cf. [Classen et al., 2008]).

Focus on Requirements: Kang et al.| [1990] define a feature as “a prominent or dis-
tinctive user-visible aspect, quality, or characteristic of a software system or systems”.
This interpretation is prevalent in product line engineering approaches, where
requirements (of a product line) are expressed by feature diagrams [Chen et al.,
2005]. This definition also considers properties like color, a specific algorithm
used, or special technical devices as features of a system. In these approaches,
functions or features are generally not formalized any further and mainly serve
the purpose of characterizing a certain product within a family of products.

Focus on Functional Specifications: Some definitions focus on functional charac-
teristics of a system. Schatz [2008] defines, “functions are capsules of behavior,
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defined by their (external) interface in terms of data and control flow [...]” and Kang
et al. [1998] refine their former definition of a feature to “a distinctively identi-
fiable functional abstraction that must be implemented, tested, delivered, and main-
tained”. Similarly, Shaker et al. [2012] define a feature as “a coherent and identifi-
able bundle of system functionality”. These definitions aim at the use of the terms
function or feature to be used as elements of a functional specification for a
system. Broy [2010b] uses the term service for “structuring of the functionality of
multifunctional systems, with the emphasis on the specification phase of requirements
engineering”. All of these definitions are associated with a (partial) black-box
view onto the system. These approaches agree on structuring a specification
of a system into sub parts that contain extracts of the functionality, as it is per-
ceived by the user or any other environmental system.

Focus on Design/Implementation: Many definitions consider functions, features,
or services as elements of the design or implementation of a system. [Liu et al.
[2006] define a feature as “an increment in program functionality” and Apel et al.
[2010a] define a feature as “a structure that extends and modifies the structure of a
given program in order to satisfy a stakeholder’s requirement, to implement and encap-
sulate a design decision, and to offer a configuration option”. Both definitions refer to
elements of the implementing program. Some definitions specifically focus on
the design/architecture of the implementing system. [Jackson and Zave|[1998]
define a feature as “an incremental unit of functionality in a DFC [Distributed Fea-
ture Composition] network”. This definition is strongly influenced by the idea of
decomposing a function into sub-functions, which may be arranged in a data
flow or control flow network. This idea originates from classical functional
decomposition approaches and structured analysis [DeMarco, |1979]. Decom-
position is mainly influenced by steps of computation taken to fulfill desired
functionality. Thus, this notion describes a white-box view onto a system by
breaking it down into a network of functions (also known as function net or
functional flow diagram).

As these examples show, it is important to have a precise definition of what is consid-
ered as a function. In the remainder of this thesis, we will associate the term function
with an element that describes a black-box view onto a system to serve as (part of a)
functional system specification. That means, a function describes the intent to use a
system for a specific purpose, specified by a behavior that is observable at the bound-
ary between the system and its operational context. Table[2.1|gives an overview over
the most important terms used in this thesis and provides an informal description of
them. Additionally, we associate related terms used in other publications with them.

By relating the central terms to each other, we draw a big picture of our semantic model
of requirements engineering concepts for multifunctional systems, illustrated in Fig-
ure The elements of the semantic model do not refer to any specific description
technique. Instead, we use this semantic model to understand and relate the content
that is expressed by different description techniquesﬂ

!The differentiation between the semantics (content), the syntax (description technique), and the rep-
resentation of an artifact may sound hairsplitting or trivial. However, in the context of artifact orien-
tation, it is a relevant research topic [Bohm and Vogelsang} 2013} |Méndez Fernandez et al.,[2010].
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Table 2.1: Central terms of this thesis.

Term Description Related terms
Multifunctional A system that offers a variety of differ- Multifeatured system
system ent functions to its environment. [Batory et al., 2004]
(Functional) A (behavioral) property a multifunctional ~Feature [Kang et al.,[1990]
Requirement system must fulfill.

Function An intent of using a multifunctional sys- Use case [Cockburn, 2001],
tem in a specific usage context for a cer- Feature [Kang et al., 199§;
tain purpose. Zave,|1999|

Function A (set of) interaction patterns specifying Use case [Cockburn, 2001],

specification a function’s behavior. Feature [Shaker et al.,2012],

Usage
[Jackson and Zave,|[1998],
Service [Broy, 2010b]

Function A (structured) set of (dependent) func- Feature model

architecture tions specifying the behavior of a multi- [Kang et al.,{1998§],
functional system. Service hierarchy

[Broy, 2010b],

Service [Bouma and Velthui-
jsen, 1994],

Use case diagram

[OMG, 2011]

Function Behavioral interaction between functions Feature interaction

dependency specifying desired behavior of a multi- [Zave,|1999],
functional system. Lifter [Prehofer, 1997],

Derivative [Liu et al., 2006]

Mode An operational state of a multifunctional Mode
system or its environment. Function de- [Dietrich and Atlee, 2013]
pendencies are modeled via modes.

Mode model A (structured) set of modes specifying Statechart
the possible dependency interactions in [OMG, 2011]

a function architecture.

Component Part of a solution structure that realizes/ Feature box
implements functions of a multifunctional  [Jackson and Zave, 1998],
system. Feature module

[Batory et al., 2004],
Feature [Apel et al., 2010a]

Component A (structured) set of (communicat- Implementation model

architecture ing) components describing the solution [Késtner et al.,2009],

structure of a multifunctional system.

DFC network
[Jackson and Zave),|{1998]

11
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Figure 2.1: Semantic model of requirements engineering concepts for multifunctional sys-
tems.

One aspect of the model that may need some additional explanation is the differen-
tiation between a function and its specification. The rationale behind this separation
in our model is that a function can be seen as an intent to use a system for a spe-
cific purpose, independent of how to use the system. Consider the function “Cruise
Control” of a car. This function describes the intent to use the system “car” for hold-
ing the vehicle’s speed on a desired level. A function specification specifies how that
system is used in terms of interactions with its environment. For example, a func-
tion specification may state that the driver first has to activate the “Cruise Control”,
which is confirmed by a system response, and after that, the driver can increase or
decrease the desired speed based on the current speed at function activation. In gen-
eral, many function specifications, i.e., scenarios of use, are imaginable for one func-
tion. There are terms and concepts in literature that focus on the intent and purpose
(e.g., feature [Kang et al.} [1998; Zave, |1999]) and there are terms that focus on func-
tion specifications (e.g., usage [Jackson and Zave} 1998, feature [Shaker et al., 2012]).
Use cases, as introduced by Cockburn| [2001], are a mixture of both because, on the
one hand, they emphasize the purpose of a use case while, on the other hand, they
are supplemented by concrete usage scenarios. In our thesis, we aim at a functional
specification of multifunctional system. Therefore, we sometimes use the concepts
function and function specification interchangeably. For example, if we speak of the
interface of a function, we actually mean the interface that belongs to a function spec-
ification that specifies a function. However, we think that it is valuable to recognize
the difference between these notions.

In the following section, we provide formal definitions for all of the terms and their
relations by embedding them into a formal system modeling theory. In Chapter |5 of
this thesis, we introduce model types that we use to develop, document, and analyze
the concepts of this semantic model.

12



2.2. Formal Foundation

2.2 Formal Foundation

For the purpose of precise definitions, we ground the semantic concepts of this thesis
on the formal system modeling theory FOCUS [Broy and Stelen) 2001], which pro-
vides formal concepts to describe a system, and an architectural framework [Broy
et al., 2012], which defines viewpoints that describe a system in different phases of
a development process. In the following, we briefly introduce the system modeling
theory and the architectural framework. For more information on the modeling the-
ory, please refer to Broy’s earlier work [Broy, 2007, 2010a}b; Broy and Stelen, 2001].

2.2.1 System Modeling Theory

In the formal system modeling theory FOCUS, a system is described by its interface.
An interface description contains syntactic and behavioral information that charac-
terize a system. The theory provides formal notions of interface description, interface
composition, and interface specification.

Messages and Streams

To describe the interface of a system, we first need to introduce messages and
streams. A stream is an infinite sequence of elements of a given set. In interactive
systems, streams are built over sets of messages or actions. Streams are used that
way to represent communication histories. Let X be a given set of messages. X*° de-
notes the set of infinite sequences over X (represented by the total mappings N — X).
A stream s is an element of this set: s € X*°.

Interface Description

Types are useful concepts to describe system interfaces. We work with a simple no-
tion of types where each type is a set of data elements. These data elements are used
as messages. Let a set T" of types be given. Then, the universal set of messages X is
given by the union of all types:

xX=J¢

teT

In FOCUS, a typed channel is an identifier for a sequential directed communication link
for messages of that type. By C, we denote a set of typed channel names. We assume
that a type assignment for the channels in the set C' is given as follows:

type : C' =T

Given a set C of typed channels, a channel valuation is an element of the set C' that is
defined as follows:

C = {:C — X*:VeeC:x(c) € (type(c))™}

A channel valuation z € C associates a stream of elements of type type(c) with each
channel ¢ € C. This way the channel valuation = defines a channel history for the
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channels in the set C. If we are only interested in the channel valuation of a subset
C’" C C of channels, we use the restriction operator z|C” with:

z|C' =y suchthat Vee C':y(c)=z(c)

In our system modeling theory a (discrete) system consists of

A syntactic interface: The syntactic interface defines the input and output informa-
tion that the system is able to sense and produce, and structures them into a set
of (typed) input channels I and a set of (typed) output channels O. We denote
the syntactic interface of a system by the term (/ » O).

An interface behavior: The behavior of a system is described by means of relations
between streams associated to the syntactic interface. The interface behavior F of
a system is then represented by a mapping

F:T— p(0)

—

where ©(O) denotes the power set of all output channel histories. This de-
scribes the (nondeterministic) behavior of a system by relating streams of input
messages to streams of output messages.

Interface Composition

A fundamental operation in the system model is the composition of interfaces (e.g.,
to describe the composition of systems). Given two interfaces with disjoint sets of
output channels (O; N Oy = @) and interface behaviors

Fi: I = p(01),  Fy:ly— p(03)
we define the parallel composition with feedback by the interface behavior
FL@Fy: T — pO0)
where the syntactic interface is specified by the equations
I=(I1Ul)\ (0O1UOy), O=01U0,

In this definition of interface composition, the internal channels are also part of the
composite interface, i.e., no channel hidingﬂ

The composite interface behavior is specified by the following equation (y € C,
where the set of channels C'is given by C = I; U I, U O U Oy):
(F1 @ Fo)(z) = {y|O s yll = 2 Ay|O1 € Fi(yll) AylO2 € Fa(y|l2)}

Here, y denotes a valuation of all the channels in C' of I and F5. The formula essen-
tially says that all the streams on the output channels of the composite system F; ® F»
are feasible output streams of the systems F; and F5.

%A definition of interface composition with channel hiding can easily be derived by restricting the com-
posite output stream to the external channels O’ = O \ (11 U I2) [Broy, 2010a].
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Interface Specification

There are several ways and techniques of specifying interfaces. We relate the dif-
ferent specification techniques to three basic views onto a system, which all contain
information about the syntactic interface as well as the interface behavior of a system.

Interface view: Specification techniques of the interface view describe the system by
a set of input/output channels and a logic formula defined over these channels.
Specification techniques of this view resemble the basic system model most di-
rectly. Examples for specifications of this view are temporal logic specifications
such as LTL or CTL.

Architecture view: Specification techniques of the architecture view describe the
system by a network of communicating subsystems, which again are consid-
ered as systems themselves. The syntactic interface of a system as well as its
interface behavior in this view is derived from the composition of the subsys-
tems. Examples for specifications of this view are dataflow diagrams or process
algebras.

State view: Specification techniques of the state view describe the system by a set
of states and transitions between them. Transitions are triggered by events and
may produce actions. The syntactic interface of the system in this view is de-
termined by the events and actions of the transitions. The interface behavior
is defined by the set of possible event/action traces that result from traversing
the states by the transitions. An example for a specification of this view is a
state machine.

2.2.2 Architectural Framework

The formal system modeling theory can be used in different phases of the devel-
opment process to describe a system from different points of view, addressing dif-
ferent concerns. This follows the idea of separating concerns into different view-
points [ISO/IEC/IEEE, 2011a]. In the publicly funded research project SPES, we
developed an architectural framework that structures the system development into
four basic viewpoints: requirements, functional, logical, and technical [Broy et al.,
2012]. Each viewpoint contains a set of concepts, which are customized towards the
concerns of the different viewpoints. All concepts rely on the system modeling the-
ory and have the purpose to describe and specify system interfaces from a specific
point of view. In the context of this architectural framework, we can give precise
definitions of the different concepts we use in our semantic model (see Figure[2.T).

Requirements Viewpoint

The requirements viewpoint contains concepts that are used to model and formalize
single requirements. A requirement is a property the system must fulfill. With re-
spect to the system modeling theory, a requirement describes desired observations
of behavior between a system and its environment. Therefore, the specification of
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a requirement is expressed as a predicate p defined over the channel histories of a
system:

p:fxé—ﬂB%

While most requirements are initially expressed in natural language, the model types
of the requirements viewpoint allow a stepwise modeling and formalization of cer-
tain types of requirements to a point, where the requirement is expressed as formal
predicate. This provides a formal and model-based representation of requirements.

Functional Viewpoint

In the functional viewpoint, we perform the step from a formal and model-based
representation of requirements to a system specification. The functional viewpoint
is concerned with a purely functional view onto the system. In this viewpoint, (for-
malized) requirements are related to functions of a system, which group the require-
ments according to functional concerns.

Function and Function Specification A function describes the intent to use a sys-
tem in a specific usage context for a certain purpose. We distinguish functions by giving
them a unique name. The interactions that occur between a system and its environ-
ment during the usage of a function are specified by a function specification. A func-
tion specification describes a pattern or a set of patterns of using a system for a certain
purpose. These interaction patterns refer to events of sending and receiving mes-
sages. Thus, we can formally specify functions by their interfaces (see Section [2.2.1)):
A function has a unique name f and is specified by a syntactic interface (Iy » Oy)
and an interface behavior: - -
F f= 1 f— p(o f)

This interface behavior is, in general, a partial mapping. Partiality here means that a
function is specified only for a subset of its input histories, according to its syntactic
interface. This subset is called the function domain [Broy,2010b; Broy et al.,2007b]. We
aim at a functional specification of multifunctional system (cf. Section[2.T). Therefore,
we sometimes use the concepts function and function specification interchangeably. For
example, if we speak of the interface of a function, we actually mean the interface that
belongs to a function specification that specifies a function. A similar view is also taken
in the approaches of Shaker et al. [2012], Schétz [2008], and Broy! [2010b].

Function Architecture In the functional viewpoint, functions of a (multifunc-
tional) system are arranged in a function architecture, in which atomic functions are
composed to function groups and finally to the functional specification of the system
under development.

A function architecture is represented by a finite set of functions Fun, a mapping sub :
Fun — @(Fun) that represents a sub-function relation, and a mapping dep : Fun —
©(Fun) that represents a dependency relation. For a function f € Fun the set sub(f)
is called its sub-function family. The functions f in a function architecture without
sub-functions (i.e., sub(f) = 0) are called atomic functions of the architecture. All
other functions are composite functions. A dependency relation between functions
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is only allowed for functions that are not in an ancestral relation, i.e., Vf,g € Fun :
g € sub™(f) = g & dep(f), where sub™ is the transitive-reflexive closure of sub.

We apply the interface composition operator (see Section [2.2.1) to define the syntac-
tic interface and the interface behavior of a composite function. Thus, the interface
behavior of a composite function f with sub-function family sub(f) is defined by

Fr = ® Fy

g€sub(f)

The syntactic interface and the interface behavior of the entire function architecture
are defined by the root function f;, i.e., the function that is not contained in the sub-
function family of any function in the function architecture (Vf € Fun : f, & sub(f)).

The dependency relation dep represents functional dependencies. In the formal sys-
tem modeling theory, functional dependencies are specified by communication chan-
nels between interfaces. Therefore, the following must hold for functions f,g € Fun
with interfaces (Iy » Oy) and (I, » O,):

gedep(f)=0;NI;#0

The dependency relation is interpreted by communication channels between func-
tions. We call these internal communication channels mode channels, while we call
the other channels of a function interface primary channels.

Modes and Mode Model Internal channels between functions of a function archi-
tecture have a special role. They are called mode channels because the type that defines
the messages transmitted over these channels is called a mode. A mode describes (a
part of) the operational state of a multifunctional system or its environment. The mo-
tor of a car, for example, may be characterized by a mode Operation that has mode
values Off, Starting, and Running. A multifunctional system may be characterized
by a whole set of modes. The usage context of a function is characterized by modes
(e.g., “While driving, I want the vehicle to hold its speed on a desired level”). Modes
are structured in a mode model. We describe a mode model formally by adopting the
formal description of statecharts [Harel, [1987] as described by Eshuis|[2009]:

A mode model is represented by a pair MM = (M,T), where M is a set of modes
and 7" C M x M is a set of mode transitions. Function children : M — o(M) defines
for each mode m its immediate submodes. There are several kinds of modes. If m
has no children, so children(m) = (), then m is a BASIC mode. Otherwise, m is
composite. A composite mode is either an OR mode or an AND mode. Function
kind : M — {AND, OR, BASIC} assigns to each mode its kind. Function default :
M — M identifies for each OR mode m one of its children as the default mode:
default(m) € children(m).

Semantically, a mode model specifies sequences of mode configurations. A mode
configuration Cfg is a set of modes Cfg C M that represents a valid global state of
the mode model. If, for example, an OR mode is part of a mode configuration, then
exactly one of its children is also part of the configuration. Whereas, for each AND
mode in a mode configuration, all of its children are also part of the configuration.
The mode transitions specify the valid transitions between mode configurations. A
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detailed definition of mode configurations and transitions between those is given
by [Eshuis [2009]. We describe the set of (infinite) sequences of mode configurations
specified by a mode model by Cfg™.

The valid sequences of mode configurations defined by a mode model constrain the
possible mode channel histories in a function architecture. To describe this formally,
we need to define the set of mode types MT for a given mode model by MT =
{children(m) : kind(m) = OR}. The set of mode types is equivalent to a set of (data)
types as used for input/output channels of functions in a function architecture.

Let f be a function in a function architecture with a syntactic interface (I » O) that
consists of primary and mode channels, i.e.,

I=1,UL,, 0=0,U0,

and an associated interface behavior F : I — p(0). Let MM be a mode model that
specifies a set of mode types MT and sequences of valid mode configurations Cfg°.
Function f is called consistent with mode model MM if the following holds:

1. All mode channels of f have a mode type: Vm € I,,, U O,, : type(m) € MT.

2. The interface behavior of f does not violate the valid mode configurations spec-
ified by MM:
Yz € I : F§(x)|Om € Cfg™|Op,

Note that the composition of two function interfaces that are consistent with a mode
model does not necessarily result in a composite interface that is also consistent with
the mode model. That is, however, not surprising because the purpose of the mode
model is exactly to constrain the possible behavior that results from integrating func-
tions into one system. Therefore, a function architecture is consistent with a mode
model if its root function is consistent with the mode model ]

Function, function architecture, and mode model as concepts of the functional view-
point together serve as a functional specification for a system.

Logical Viewpoint

The concepts of the logical viewpoint describe a system with a focus on the logical
realization structure by means of communicating logical components. In contrast
to the function architecture, the component architecture that is defined in the logical
viewpoint is not solely structured with respect to functionality but in terms of archi-
tectural design. Here, also aspects like the organizational structure, dependability,
maintainability, and reusability play an important role.

With respect to the formal system modeling theory, logical components are described
similarly to functions. A logical component is described by a syntactic interface
(I. » O.) and an associated interface behavior F, = I — p(dc) A network of
logical components forms the component architecture of a system. The component
architecture itself forms a logical component with a syntactic interface and an inter-
face behavior that reflects the interface of the system to its environment. The interface

3This definition relies on the composition without channel hiding as introduced in Section
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and behavior of the component architecture results from the composition of its logi-
cal components as described in Section[2.2.1}

The difference between a function architecture and a component architecture is
purely methodological, i.e., we use the same formal concepts to describe functions
and components. The description of this methodological difference and how it is
reflected in a development process is part of this thesis and is described in Chapter|[5]

The composition of the logical components must refine the functionality specified by
the composition of the functions from the function architecture. Let F : I_} — (O t)
be the interface behavior of a function architecture composed of functions fi, ..., f,
and F,: I, — p((i) be the interface behavior of a component architecture composed
of logical components ¢y, . .., ¢, then the following proposition must hold:

Vo € I_} : Fo(z) C Fy(x)

The formula states that the component architecture is a refinement of the behavior
specified by the function architecture. In the remainder of this thesis, we will see
that, in some cases, it is necessary to “translate” the stream of a function to a stream
of a component due to different levels of abstraction for example (cf. interaction re-
finement [Broy), 2010al]).

The notions of the terms function or feature that focus on design/implementation
(cf. Section 2.T) can be defined and formalized in the context of the component archi-
tecture of a system. For example, what |Jackson and Zave| [1998] described as feature
box can be seen as an atomic logical component, i.e., a logical component that is not
further decomposed. A network of feature boxes (atomic logical components) may
describe the functional decomposition of a black-box function into processing steps.
In the course of architectural design, atomic logical components may be grouped or
even merged into more comprehensive logical components that finally build the ar-
chitecture of a system. Such a comprehensive logical component can be seen as “an
incremental unit of functionality”, which is the definition of feature as given by Zave
[2003].

Technical Viewpoint

The purpose of the technical viewpoint is to provide concepts of the system with a
focus on the target execution platform. In a deployment mapping, the logical compo-
nents of the component architecture are assigned to technical execution units, which
execute the specified behavior of the logical component.

The concepts of this viewpoint are not in the scope of this thesis, although also in the
context of technical execution platforms the term function is commonly used. For
example, when a technical component is used for one specific purpose, some people
give the function the name of the technical component.

2.3 Scope of this Thesis

The scope of this thesis is a methodology for the creation and analysis of models
residing in the requirements and functional viewpoint as well as its relation to the
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models of the component architecture (logical viewpoint). The thesis provides model
types to be used in the requirements and functional viewpoint along with analysis
techniques. The resulting models serve as functional specification of a multifunc-
tional system. How the functionality is realized in an implementation is not part
of this thesis. We focus on functional requirements and aim at the specification of
multifunctional systems.

2.4 Modeling vs. Formalization

The approach taken in this thesis utilizes modeling and formalization as means to
reduce complexity and increase precision in the specification of multifunctional sys-
tems. However, it is important to notice that these two dimensions are independent
from each other in general. While modeling structures the development artifacts and
applies a common terminology, formalization adds precision and reduces the room
for interpretation.

Although the methodology described in this thesis exploits both dimensions, it is
possible to apply the methodology by focusing only on one dimension. For example,
in an industrial context it might be interesting to follow only the modeling dimen-
sion of the methodology by structuring artifacts according to the model types of the
methodology but still describing the specific elements by natural language text.
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Chapter

State of the Art

This chapter summarizes existing work in the research area of specifications for (mul-
tifunctional) systems. More specifically, it summarizes work on extent and character-
istics of function dependencies and on approaches for the specification of multifunc-
tional systems. Each section summarizes existing work, outlines open issues, and
points to the chapters in this thesis that contribute to their resolution. The structure
of this chapter reflects the organization of this thesis.

Section outlines work on the extent, characteristics, and impact of function de-
pendencies. The presented work provides evidence that function dependencies (also
called feature interactions) are numerous in existing systems and that they are a ma-
jor source of failures. The contributions of our thesis presented in Chapter [ support
this evidence and additionally indicates that developers are unaware of function de-
pendencies in most cases.

Section outlines work on specification techniques for multifunctional systems
and, if existent, their integration in requirements engineering approaches. We show
that existing specification approaches lack an explicit specification of function de-
pendencies (especially with respect to behavior), do not rely on a seamless modeling
theory, or focus on implementation rather than on specification. In Chapter [5, we
present an approach that employs (behavioral) function dependencies as explicit el-
ements of a specification that is based on a formal modeling theory.

Section [3.3| outlines work on creating a comprehensive function documentation in-
cluding proposed artifact structures and templates. We show that existing work rec-
ognizes the need for structure and abstraction in function documentations, which is
also reflected by our study presented in Chapter [ However, currently proposed
templates and approaches do not consider both aspects at the same time.

Section [3.4|outlines work on the specification of systems based on states/modes. We
show that these approaches do not provide any guidance on how to elicit states/
modes. In Chapter [/} we present three systematic approaches to elicit a mode model
as a prerequisite for mode-based function specifications.
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3.1 Extent, Characteristics, and Impact of Function
Dependencies

In the following, we report on work related to the extent and characteristics of func-
tion dependencies and their impact on the development process. The contribution of
Chapter [ builds up on and extends this state of the art.

3.1.1 Extent and Characteristics of Function Dependencies

Function dependencies have been extensively investigated in the telecommunication
domain [Calder and Magill, 2000]. In this context, a function dependency is called
feature interaction and is defined by [Zave [1999] as “some way in which a feature or
features modify or influence another feature in defining overall system behavior.” A feature,
here, is “an increment of functionality, usually with a coherent purpose.” [Zave,|{1999]

Apel et al|[2013b] explored feature interactions in real-world systems and charac-
terized them by two dimensions: order and visibility. The order of a feature in-
teraction is defined as the minimum number of features (minus one) that need to
be activated to trigger the interaction. For the visibility, the authors distinguish be-
tween external and internal feature interactions. External feature interactions may
appear at the level of the externally-visible behavior. They are subdivided into func-
tional interactions, which address interactions violating the functional specification
of a system and non-functional interactions, which address interactions influencing
non-functional properties (e.g., performance, memory consumptions, or energy con-
sumption). Internal feature interactions, on the other hand, may appear at the level
of the internal properties of a system. They are subdivided into structural interac-
tions, which can be detected by static analysis of the syntactic program structure and
operational interactions, which can only be detected by more sophisticated analyses
(e.g., control or data flow analysis). In their article, |Apel et al. [2013b] give prelim-
inary results considering the detection and classification of feature interactions in
four real-world systems: LINUX, BUSYBOX, GCC, and APACHE. Feature interactions
occurred in all systems, and the authors found interactions of all kinds, including
structural, operational, functional, and non-functional interactions. The internal fea-
ture interactions outnumbered the external feature interactions found.

Késtner et al.| [2009] examined the extent of the optional feature problem in two case
studies from the domain of embedded database systems. The optional feature prob-
lem describes a common mismatch between variability intended in the domain and
dependencies in the implementation. The optional feature problem occurs if two (or
more) optional features are independent in a domain, but are not independent in
their implementation. For a closer analysis, the authors first distinguish between a
feature model and an implementation model in software product line development.
A feature model (also known as domain model or product line variability model) de-
scribes the features of a domain or software product line and their relationships. An
implementation model (also known as software variability model or family model)
describes implementation modules (such as components, plug-ins, aspects, or fea-
ture modules) and their relationships. Feature model and implementation model are
linked, so that for a given feature selection the according implementation modules
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can be composed. In both case studies, the authors found significantly more depen-
dencies in the implementation models than in the feature models. For the first case
study, they extracted 38 features with 16 domain dependencies but with 53 imple-
mentation dependencies. In the second case study, they extracted 24 features with
only 8 domain dependencies but with 78 implementation dependencies. These re-
sults show that there is a considerable difference in handling function dependencies
on an implementation/architectural level and on a level of functions.

Relation to our thesis In this thesis, we focus on external functional feature inter-
actions [Apel et al., 2013b] and call them function dependencies. The approach we
present in Chapter [5|aims at explicitly modeling these function dependencies as part
of a system specification. In Chapter [, we will report on a study, in which we inves-
tigate structural (i.e., internal) interactions in an automotive system to derive function
dependencies. The results support the presumption of Apel et al.|[2013b], who as-
sume a relation between internal and external feature interactions: “We [the authors]
believe that there may be systematic correlations between externally-visible and internally-
visible interactions, which is a major motivation for our endeavor to explore and understand
the nature of feature interactions.”

One conclusion of the study on the optional feature problem [Kastner et al., 2009]
is that dependencies on an implementation/architectural level should be separated
and handled differently from dependencies on a level of functions. We support this
conclusion from a different angle by the results of the study presented in Chapter
In this study, we show that specifying dependencies solely on an implementation/
architectural level leads to a high chance of missing dependencies on the level of
functions.

3.1.2 Impact of Function Dependencies on Integration Failures

Cataldo and Herbsleb| [2011] present a study on factors leading to integration fail-
ures in global feature-oriented development. They analyzed a large-scale project that
implemented 1195 features in a software system. Their analyses revealed that cross-
feature interactions, measured as the number of architectural dependencies between
two product features, are a major driver of integration failures (detected by failing
integration tests).

Figure 3.1|illustrates the relation between the number of cross-feature dependencies
and the probability of having integration failures. The figure additionally opposes
this relation for geographically distributed and collocated teams (GSD is a dichoto-
mous variable where 1 indicates that the feature team members were located in dif-
ferent development sites; otherwise, it is set to 0). As the number of cross-feature
dependencies increases (x-axis), we observe that there is a point (values > 4 in the
log-transformed measure on the x-axis) at which the probability of integration fail-
ures (y-axis) increases significantly faster when the teams that worked on a pair of
features are collocated than when feature teams are geographically distributed. It
is important to point out that for levels of the cross-feature dependencies measure
below 5.5, the probability of having integration failures is more than double for the
GSD case than for the collocated case. However, when features are highly interre-
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Figure 3.1: The interplay between the geographic distribution of the feature teams and cross-
feature dependencies [Cataldo and Herbsleb, [2011].
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Figure 3.2: Faults resulting from feature interaction 2010].

lated (value > 6), the results show that the impact of cross feature dependencies is
lower when feature teams are geographically distributed. One possible explanation
the authors give for this result is that the work practices developed by collocated
teams might allow them to handle certain levels of interdependence between fea-
tures very well. For example, dependencies might be handled more informally be-
cause the engineers are physically collocated. However, beyond a certain point, those
work practices fail to adequately identify and manage the dependencies between fea-
tures. On the other hand, distributed teams are always at a disadvantage and, by
recognizing such condition, they might develop different work practices to manage
dependencies that help them cope better with high levels of interdependence.

reports on feature interactions in infotainment systems of automobiles.
During the development of an infotainment system, he reports that a large fraction
of the faults resulted from feature interactions. Figure 3.2|shows the distribution of
severe faults that occurred during development with respect to whether they were
feature specific or the result of feature interactions. The figure shows that more than
40% of all severe faults occurred in feature interaction scenarios. The study has been
performed as part of a diploma thesis at BMW. During the study, the examined sys-
tem was divided into its different features. All faults that result from the interaction
between different features have been classified as feature interaction faults.
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Relation to our thesis The extraction of cross-feature dependencies as presented
by (Cataldo and Herbsleb, [2011] is comparable to our extraction of function depen-
dencies used in Chapter ] In their study, they could show with statistical signifi-
cance that the higher the number of function dependencies a pair of functions have,
the higher is the likelihood of integration failures to occur. In our study, we have not
investigated the relation between function dependencies and integration failures but
we observed a high number of function dependencies in productive multifunctional
systems and showed that developers are, in most cases, not aware of them. Together
with the results from the study of Cataldo and Herbsleb|[2011], this leads to the con-
clusion that many severe faults are due to function dependencies. This corresponds
to the observations presented by Benz|[2010].

3.2 Specification Techniques for Multifunctional Systems

In the following, we outline work on specification techniques for multifunctional
systems and, if existent, their integration into requirements engineering approaches.
The contributions of Chapter [5|build up on and extend this state of the art.

3.2.1 Requirements Modeling

Many requirements modeling approaches are based on the RE reference model pre-
sented by Jackson and Zave|[1995] and (Gunter et al. [2000]. Their model is a frame-
work for talking about key artifacts, their attributes, and relationships at a general
level. The model is based on five artifacts broadly classified into groups that pertain
mostly to the system versus those that pertain mostly to the environment. The arti-
facts are characterized by the phenomena they are talking about. The phenomena of a
specific artifact are called designations. Designations identify classes of phenomena,
typically states, events, and individuals, in the system and the environment and as-
sign formal terms (names) to them. Gunter et al.|[2000] illustrate the framework by
a small example of a warning system that notifies a nurse if the patient’s heartbeat
stops. The system has a sensor to detect sound in the patient’s chest and an actuator
that can be programmed to sound a buzzer based on data received from its sensor.
Additionally, we assume that there is always a nurse close enough to the nurse’s sta-
tion to hear the buzzer, and that if the patient’s heart has stopped, the sound from
the patient’s chest falls below a threshold for a certain time.

Designations are structured into the following categories:

en: Phenomena that are hidden from the system and controlled by the environment
(e.g., the nurse and the heartbeat of a patient)

ey: Phenomena that are visible to the system and controlled by the environment
(e.g., sounds from the patient’s chest)

syt Phenomena that are visible to the environment and controlled by the system
(e.g., the buzzer at the nurse’s station)

sp+ Phenomena that are hidden from the environment and controlled by the system
(e.g., internal representation of data from the sensor)
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These classes of phenomena characterize the five artifacts employed by the reference
model. The artifacts are:

World (W): Describes domain knowledge that provides presumed environment
facts. The world model describes domain assumptions that are indicative, i.e.,
they indicate facts. The world model is exclusively described by designations
that are visible to the environment (ey, e,, s,). For example, a world model may
state that there is always a nurse close enough to the nurse’s station to hear a
buzzer.

Requirements (R): Indicate what the customer needs from the system, described in
terms of its effect on the environment. They are optative descriptions, i.e., they
express how the world should be once the system is deployed. Requirements
are exclusively described by designations that are visible to the environment
(en, ey, sy). For example, a requirement may demand a warning system to
notify a nurse if the patient’s heartbeat stops.

Specification (S): Provides enough information for a programmer to build a system
that satisfies the requirements. The specification is exclusively described by
designations that are visible to the system and the environment (e,, s,). For
example, a specification may state that if the sound, the sensor detects, falls
below the appropriate threshold, then the system should sound the buzzer.

Program (P): Implements the specification using the programming platform. A pro-
gram is exclusively described by designations that are visible to the system (e,,
sy, sp). For example, a program may implement to sound a buzzer based on
data received from its sensor.

Machine (M): Provides the basis for programming a system that satisfies the require-
ments and specifications. A machine is exclusively described by designations
that are visible to the system (e,, s,, sx). For example, a machine may have a
sensor to detect sound in the patient’s chest and an actuator capable of sound-
ing a buzzer.

Figure |3.3|illustrates the five artifacts of the model and their corresponding designa-
tions. A central proof obligation of the reference model is the following relationship:

W,SF R

This means that the system satisfies the requirements if S combined with W entails R.
The specification S in this case is to stand proxy for the program with respect to the
requirements. If S properly takes W into account in saying what is needed to obtain
R, and P is an implementation of S for M, then P implements R as desired.

Relation to our thesis The approach presented in this thesis and its formal foun-
dations can be related to the RE reference model: Functions, function architecture
and mode model as introduced in Chapter 2] are parts of the specification artifact as
their purpose is to specify the relation between environmental stimuli and system
reactions. A function is specified by relating phenomena e, and s,. Both types of
phenomena may refer to a mode from the mode model. That means the mode model
captures phenomena that are visible to the system and the environment and may be
controlled by both.
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Environment System
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Figure 3.3: Five software artifacts with visibility and control for designated terms [Gunter
et al., 2000].

Besides the approach presented in this thesis, there are other requirements model-
ing approaches that follow the Jackson and Zave RE reference model. For example,
KAQOS [van Lamsweerde, 2009] is a requirements engineering methodology that cov-
ers identification of the business requirements, of the requirements, of the responsible
agents and, if needed, of the behaviors they need to conform to satisfy the require-
ments. KAOS proposes four related artifacts to model the requirements for a system
(see Figure 3.4). The goal model is a directed graph of goals that are decomposed into
subgoals that enumerate all the cases that must be covered to fulfill the parent goal.
Goals that are not further refined into subgoals (i.e., leafs of the goal model) must be
placed under the responsibility of an agent, which is part of the environment or the
system. The leaf goals represent either an expectation (when placed under respon-
sibility of an environment agent), a requirement (when placed under responsibility
of a system agent), or a domain property (descriptive assertion about objects in the
environment). Goal modeling is a common technique also used in other contexts to
justify requirements by linking them to higher-level goals. Besides the goal modeling
technique used in KAOS, there are also other goal modeling notations (e.g., iStar [Yu
et al., 2011] or GSN [Kelly and Weaver, 2004]). In KAOS, the agents that are linked
to goals are modeled in the responsibility model. The operation model describes all the
behaviors that agents need, in order to fulfill their requirements. Behaviors are ex-
pressed in terms of operations performed by agents. Operations work on objects
(defined in the object model): they can create objects, trigger object state transitions,
and activate other operations (by sending an event). Concerned objects are connected
to the operations by means of input and output links. Events can be external or pro-
duced by operations. They may start (cause) or stop operations. The notion of an op-
eration in KAOS comes closest to the notion of a function in our approach. However,
KAQOS does not support specification or analysis of function (operation) dependen-
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Figure 3.5: A feature model of a simple car [Apel and Késtner, 2009].

cies. Our main extension to the KAOS approach is to make function behavior and
their dependencies explicit.

3.2.2 Feature Modeling

Making functions and their dependencies explicit has also been considered in the
scope of product line engineering [Kang et al, [2002; Pohl et al., 2005]. In this con-
text, most authors speak of features and feature interaction. Kang et al.| [1990] in-
troduce Feature-Oriented Domain Analysis (FODA) as a method to identify functional
commonalities and differences of applications in a domain. FODA is best known for
introducing feature models but it also proposes describing requirements of a soft-
ware product line using a combination of an ER model and an integrated behavioral
model parameterized by features. Functional features are organized in a hierarchi-
cal model that distinguishes between optional, mandatory, and alternative features
and allows annotating features with a set of dependencies such as excludes or requires.
Figure 3.5{shows an example of a feature model. FODA does not prescribe a partic-
ular behavioral modeling language, but Kang et al.|[1990] give an example that uses
statecharts. However, the statechart and ER models in the mentioned work are not

"http://www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf
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interrelated. The focus of feature modeling approaches is on reasoning about config-
urations of features for different products rather than on specifying feature behavior
or interaction. Extended feature modeling approaches, such as FORM [Kang et al.,
1998] or FeatureRSEB [Griss et al., 1998], relate features with implementation artifacts
to synthesize products from a selection of features.

Relation to our thesis In contrast to feature modeling approaches, we do not fo-
cus on variability aspects or product families but on a precise model of functions and
especially their functional dependencies within a specification of a single multifunc-
tional system. Our approach is able to model more complex function dependencies
than just excludes or requires. Especially, we focus on describing dynamic function
dependencies, i.e., behavioral dependencies, and not just static dependencies. Addi-
tionally, we associate each function with a behavior specification to be able to reason
about the resulting functional specification of a system.

3.2.3 Feature-oriented Requirements Modeling

Feature-oriented requirements modeling is a requirements engineering paradigm
that advocates (functional) features as first class entities of requirements specification
and analysis. The approach we present in this thesis can be seen as a feature-oriented
requirements modeling approach. The notion of a feature has also been considered
in the context of the [Jackson and Zave| [1995] reference model. Classen et al. [2008]
define the notion of feature as a subset of correlated elements from the RE reference
model artifacts W (world), S (specification) and R (requirements). “A feature is a triplet,
f=(R,W,S), where R represents the requirements the feature satisfies, W the assumptions
the feature takes about its environment and S its specification.” Based on this definition, a
set of features are said to interact, if

1. they satisfy their individual requirements in isolation,
2. they do not satisfy the conjunction of these requirements when put together,

3. removing any feature from the set of features results in a set of features that do
not interact.

This definition relies on a very implicit notion of feature interactions. It is, for ex-
ample, unclear how intended interactions between features are represented (e.g., in
the requirements of one (or more) features?). Our approach relies on a much more
explicit notion of feature interaction. In fact, functions in our approach interact if and
only if an explicit interaction link, called a mode channel, is specified.

In the context of software product line (SPL) engineering, the feature-oriented re-
quirements modeling language (FORML) was introduced by Shaker et al.|[2012] for
modeling the behavioral requirements of a software product line. A FORML model
for an SPL is decomposed into two requirement views: A world model, which is an on-
tology of concepts that describes the problem world of the SPL; and a behavior model,
which is an extended finite state machine model that describes the (behavioral) re-
quirements for the SPL. The inputs of the behavior model are events and conditions
about world phenomena and its outputs are actions over world phenomena. A be-
havior model is decomposed into feature modules, which describe the requirements
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Figure 3.6: Example of a FORML world model [Shaker et al., 2012].

for features of the SPL. The world model contains a feature model defining the set
of possible feature configurations in an SPL. The feature model is described in the
original feature model notation FODA as introduced by Kang et al.|[1990]. The fea-
ture model references feature concepts that describe the interactions of the SPL with its
context implied by the feature. Figure[3.6|gives an example of a FORML world model
for the SPL AutoSoft. The behavioral requirements of an SPL with a specific feature
configuration are defined as the composition of the feature modules belonging to the
features present in the feature configuration. A feature module can either add, re-
move, or replace behaviors in existing features. In all three cases, such requirements
can be modeled as state machine fragments that extend existing feature modules at
specified locations (cf. [Prehofer|, 2013]).

Relation to our thesis The notion of a feature and its specification by a feature
module in FORML is very close to the notion of a function used in this thesis. The
function architecture presented in this thesis is similar to the behavior model in
FORML but also supports to structure feature modules (called function specifica-
tions in our approach) in an architecture. In contrast to the FORML composition
mechanism that is based on the addition of state machine fragments to an existing
state machine, our approach is based on the parallel composition of interfaces. This
has the advantage that the composition is defined by exactly one composition op-
erator, whereas for the addition of a state machine fragment several cases have to
be distinguished (e.g., transition priorities, transition overrides, strengthening and
weakening clauses, additional regions or transitions). The introduction of a mode
channel for a function can be compared to the addition of a weakening or strength-
ening clause fragment in FORML. The messages transmitted over a mode channel
can be used to weaken or strengthen the conditions of a state machine transition.
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Figure 3.7: Feature-oriented class refinement (dashed arrows) and object-oriented inher-
itance (solid arrows) are concepts for reuse that are orthogonal to each
other [Thim et al.,[2012].

3.2.4 Feature Implementation

Features have also been utilized to structure implementations on a programing lan-
guage level. Following Dijkstra’s separation of concerns, Prehofer| [1997] proposed to
structure code fragments with respect to features and calls that feature-oriented pro-
gramming (FOP). The implementation fragment that is associated with a feature is
called a feature module [Batory et al., 2004]. Prehofer [1997] advocates a shift from
the class hierarchy oriented view onto object-oriented programs to a feature repos-
itory oriented view. In classical object-oriented programs, specific functionality is
added by inheriting from a base class and adding or overwriting methods of the
base class. The result is a predefined hierarchy of classes exhibiting specific behav-
ior. Prehofer [1997] generalizes this mechanism to independent features that can be
added to any object. The concept of overwriting methods for changing an object’s
behavior in the presence of a specific feature is replaced by the definition of an ad-
ditional module called a lifter. A lifter depends on two features and is a separate
entity used for composition. The lifter contains the code that need to be changed in
one feature implementation in the presence of another feature. In a program with
n features, there is only a quadratic number of lifters but an exponential number
of possible feature combinations [Prehofer] 1997]. Batory et al. [2004] describe the
introduction of implementation modules for adding features to a program by a step-
wise refinement process (see Figure[3.7). Later, [Liu et al|[2006] formalize this idea of
implementation modules that refine some base modules in the presence of a feature
and call them derivative modules. All mentioned approaches rely on an object-oriented
programming paradigm.

Relation to our thesis Especially in the approaches that originate from a focus on
feature implementation, a feature is not necessarily declaratively complete and a de-
veloper may have to combine it with a base program or with other features. That
means features are often increments in program functionality [Batory et al., 2004]. In
the context of this thesis, a lifter/derivative can be seen as a specification increment
to a function that has a mode dependency to another function. Prehofer’s “A lifter
lifts an object to a feature” [Prehofer| [1997] can be translated to “A lifter lifts a func-
tion to a mode” in the context of this thesis. However, the concept of lifters or any
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Figure 3.8: Phases of the FOSD process [Apel et al.,[2013a].

equivalent does not explicitly exist in our approach since we leave it open how to
realize a function in an implementation. Additionally, in our approach, functions of
a system must not be composed in a specific order because they do not refine each
other. Function specifications are self-contained (modular) and their interaction is
solely coordinated via the mode model.

3.2.5 Feature-oriented Software Development

Feature-oriented software development (FOSD) is a paradigm for the construction,
customization, and synthesis of large-scale software systems [Apel et al., 2013a; Apel
and Kastner, 2009]. FOSD converged from work done in the fields of feature model-
ing, feature interaction, and feature implementation and aims at three properties: struc-
ture, reuse, and variation. FOSD integrates work from the mentioned fields into a
feature-oriented specification and design process. The phases of this process and the
corresponding methods and modeling languages are illustrated in Figure

The FOSD process is, to some extent, backed up by different theories. Most theo-
retical work originates from the field of feature implementation and formalizes the
composition of features. GenVoca [Batory et al.,2004] formalizes feature composition
by a structural composition of code artifacts related to the features. In this theory,
programs are described algebraically. Initial programs are constants and refinements
are functions that add features to programs. A multifeatured (multifunctional) sys-
tem is represented by an equation that is a named expression (e.g., system = i(j(f))
means system has features ¢, j, and f). In GenVoca, a function represents both a
feature and its implementation. A GenVoca constant represents a base program and
is a set of classes. A GenVoca function is a set of classes and class refinements. A
class refinement can introduce new data members, methods, and constructors to a
target class, as well as extend or override existing methods and constructors of that
class. The successor of GenVoca is called AHEAD [Batory et al.,[2004] and generalizes
the composition mechanism from the code level to arbitrary artifacts by representing
programs as nested sets of equations. Base artifacts are constants and artifact refine-
ments are functions. An artifact that results from a refinement chain is modeled as
a series of functions (refinements) applied to a constant (base artifact). A similar al-
gebraic formalization of feature-based program synthesis is described by |Apel et al.
[2010a]. In this foundation, a program p (which can itself be viewed as a feature) is
composed of a series of features p = f,, ® (f,—1 @ (--- o (f2 ® f1))). The composition of
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features is defined by superimposition of their implementations [Apel and Lengauer,
2008].

Relation to our thesis The approach presented in this thesis focuses partly on the
domain analysis but especially on the domain design and specification phase. However,
we do not consider variability in either of the phases. The scope of this thesis does
not include methods or techniques for the implementation of a multifunctional sys-
tem. The focus is on its specification. However, we provide a mechanism to relate
the specification with its abstract implementation, called its logical component archi-
tecture, based on the underlying modeling theory. The contributions made in this
thesis provide guidance on how to work out and derive the different artifacts of the
specific phases. On the other hand, the presented FOSD process could be applied as
a process model to the artifact model presented in Chapter|[5]

In all of the mentioned theories for FOSD, the order of feature composition is relevant
since the composition mechanism relies on the idea that one feature extends another.
In the modeling theory that is used in our thesis, the composition of functions is
commutative due to the parallel composition operator [Broy, 2010b].

While the FOSD theories focus on the characterization of features by its implementa-
tions, it is an open issue, whether they can be extended to the other phases of the
FOSD process. More generally, a unified theory that describes all structures and
mechanisms used in the FOSD process is missing [Apel and Kastner, 2009]. The
approach described in this thesis builds upon a unified modeling theory that is the
basis for all employed modeling artifacts starting from requirements to design and
implementation [Broy, 2010a,b].

3.2.6 Specification Notation Techniques

A specification model that comes very close to ours is the Software Cost Reduction
Method (SCR) introduced by |[Heitmeyer [1998]; Heitmeyer et al. [2005, |1997]. Based
on the four variable model of Parnas et al. [1994], SCR structures a specification into
a set of tabular descriptions of input/output relations. Similar to our approach, there
is also the notion of a mode, which can be used in the tabular descriptions to cut the
conditions of specific specifications short. The modes themselves and their transi-
tions are specified separately in mode transition tables. Similar to the table functions
in SCR, mode transitions are triggered by inputs to the system (monitored variables)
and their events. The SCR method has two drawbacks, which we try to overcome
with our approach. First, we consider it a major limitation of SCR that mode transi-
tions can only be triggered by conditions or events of the monitored variables. In our
approach, mode transition can also be triggered by an output of a system function.
This supports the definition of modes that reflect states of the controlling system it-
self. For example, a cruise control function in a vehicle may trigger a mode transition
from normal to follow-up. This would be difficult to express as a function of moni-
tored variables. Second, SCR provides no elaborated structuring or decomposition
mechanism for specifications. In SCR, each dependent variable (i.e., controlled vari-
able, term, or mode) is described by a separate table function. The composition of
all table functions yields the specification of the entire system. Thus, the structure of
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a specification is determined by the dependent variables of the system. This makes
it hard to modularize specifications, which is essential for multifunctional systems.
Our approach structures the specification according to system functions, which is a
powerful instrument to specify different parts of the specification independently.

Jackson and Zave [1998] introduced Distributed Feature Composition (DFC) as a modu-
lar, service-oriented architecture for applications in the telecommunication domain.
DEFC relies on the notion that a user service request can be composed of a set of
smaller features, which are arranged in a pipes-and-filters architectural style. This
architecture is especially designed for modeling interactions between different func-
tions. The filters in this architecture are called feature boxes that can, if active, generate,
absorb, or propagate signals as well processing or transmitting media streams [Zave
et al., 2004]. Every service request is realized by a certain chain of feature boxes that
are connected by internal calls. This chain, called a usage, describes the realization
of a user function in a process-like, sequential manner. As a consequence, the or-
der of feature composition in DFC plays an important role, in that the location of a
feature in a composition determines what features it overrides (cf. [Apel et al., 2008;
Shaker et al, 2012]). Feature interaction is an integral part of this architecture since
it describes control and data flow between functions. In contrast, our approach aims
at covering only functions that are directly observable by the environment and thus
completely abstracts from realization details. These functions are provided concur-
rently by the system and function dependencies are only used to steer the behavior
of a function. Therefore, the notion of a function used in this thesis is closer to the
notion of a usage in DFC. Feature boxes in DFC are already considered as a logical
description of a realization design (an architecture) in the context of this thesis.

UML [OMG, 2011] and SysML [OMG, 2012] are commonly used languages to de-
scribe software and system designs. These languages are often also used to describe
the requirements of a system, for example by providing state charts, sequence charts
or even block or class diagrams for expressing some kind of structure within the
requirements. However, using UML or SysML has two major drawbacks in compar-
ison to our specification technique. First, UML and SysML are designed to describe
software and system architectures and not requirements or behavioral specifications.
This becomes obvious when considering the weak expressiveness of use case dia-
grams or requirements diagrams, which are supposed to cover the requirements and
the behavior specification in UML/SysML. A second drawback is that UML/SysML
is often used in practice without any fixed semantics and even widely used tools al-
low using the languages in any (probably incorrect) way. Our notion of a function
can roughly be related to the notion of a use case in UML [Booch and Rumbaugh,
1997]. Use Case Diagrams summarize and relate use cases to another, thus describ-
ing the family of functions of a multifunctional system. In contrast to Use Case Di-
agrams, our approach is more flexible and expressive, since Use Case Diagrams do
not support hierarchical structuring, and relations can only describe import or extend
relations between use cases. Additionally, behavior specifications for use cases in
UML are rather informal.

In the context of feature implementation, specification techniques have been pro-
posed that augment the elements of the implementation modules. Thiim et al.|[2012]
applied design by contract [Meyer, [1992] to feature-oriented programming [Batory
et al., 2004; |Prehofer, 1997] by introducing five approaches to define contracts for
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methods and their refinements in feature-oriented programming. They found that
feature-oriented method refinement often requires the refinement of contracts such
that the program specification depends on the actual selection of features. Instead
of annotating implementation modules of a feature with specifications, Apel et al.
[2010b]] propose to first develop a feature-oriented design from a feature model, which
defines valid feature combinations in a product family. The feature-oriented design
serves as an analyzable specification for the feature implementation. The authors
express this specification by an extension to the declarative specification language
Alloy [Jackson|, 2002] called FeatureAlloy. An Alloy specification model is composed
of several different kinds of statements: signatures, which define the vocabulary of
a model by creating new sets, facts which are constraints that are assumed to al-
ways hold, predicates, which are parameterized constraints that can be used to rep-
resent operations, functions, which are expressions that return results, and assertions,
which are assumptions about the model. In FeatureAlloy, a feature is represented
as a containment hierarchy, which encapsulates a collaboration of model elements
(signatures, facts, etc.) that belong to a feature. Furthermore, FeatureAlloy supports
the refinement of existing Alloy modules, signatures, facts, and so on by subsequent
features without the need to modify existing model elements. The resulting specifi-
cation can be checked for semantic dependencies and interactions between features.
Both specification notations of Thiim et al.|[2012] and |Apel et al.|[2010b] have a close
connection to the implementation of a feature and target an object-oriented program-
ming paradigm by specifying properties of objects or classes. In contrast, our formal
system modeling theory specifies functions by system interface observations.

Relation to our thesis Despite the (sometimes only small) differences between the
mentioned specification notation techniques and the specification technique used in
this thesis, the main contribution of this thesis is not the introduction of a superior
specification notation technique but rather the integration of a formal specification
technique into a requirements engineering methodology. That means we provide a
comprehensive description of model types and their relations that reach from general
requirements to a precise functional system specification. This methodology aims
at a specification that does not rely on any implementation paradigm but precisely
defines a system’s behavior.

3.3 Function Documentations

Function documentations summarize and document all relevant information for a
function and thus serve as central artifacts in the specification, development, testing,
and implementation of a function in an industrial context. In the following, we out-
line work related to the creation, structuring, and use of function documentations.
The contribution of Chapter [6|builds up on and extends this state of the art.

3.3.1 Empirical Investigations of Function Documentations

Considering empirical data and evidences with respect to the use of function docu-
mentations in industry, we have found only little related work. Adam et al.|[2009] re-
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port on lessons learned from several RE process improvement case studies with small
and medium sized enterprises applying the Fraunhofer IESE ReqMan approach. In
their paper, they experienced that 80% of their case study companies are challenged
with writing requirements for the developers in an appropriate manner. They ad-
ditionally define four hot topics, where the companies plan to make improvement,

which are “elicit functional requirements”, “elicit non-functional requirements”, “re-
view requirements”, and “document developer requirements”.

Relation to our thesis The results of the study on function documentations pre-
sented in Chapter@contribute to the exploration of the hot topics of|/Adam et al.|[2009]
by providing causes and explanations for the stated problems. More specifically, we
identified two major problems in the current documentation of functions, namely the
separation of the basic principle of operation from the technical implementation and
the inadequate specification of logical conditions, states, and phases of a function.
By addressing these challenges, we expect an improvement in the challenges faced
in the study of|Adam et al. [2009].

3.3.2 Structuring Function Documentations

Gross and Doerr| [2012] describe the vision and advantages of view-based require-
ments documentations. They argue that in order to create high-quality requirements
documentations that fit the specific demands of successive document stakeholders,
the research community needs to better understand the particular information needs
of downstream development roles.

Waldmann and Jones| [2009] report on a beneficial implementation of a feature-
oriented requirements engineering approach in the context of a Swiss hearing aid
manufacturer. They chose to segment requirements by features, with each feature de-
scribed in a separate, independently reviewed document, which typically contained
multiple use cases, business rules, and nonfunctional requirements. As lessons
learned from the process, they claim that a requirements meta-model is essential
to consistently maintain document content. They additionally report on competing
needs of developers for detailed design input information, and business stakehold-
ers to limit the amount of time needed to review these documents. In this context,
a strict separation of problem-space information from solution-space information
proved unsuccessful because reviewers were not willing to spend time reviewing
problem-space information alone. This corresponds to our experiences when dis-
cussing possible levels of abstraction with different roles.

Ferrari et al.| [2013] state that the quality of a natural language requirements doc-
ument strongly depends on its structure. A proper document structure improves
the understandability of the requirements, and eases the modifiability of the overall
requirements specification. In their work, they provide an automatic approach to
evaluate the relatedness of requirements in a document by means of clustering algo-
rithms.

Relation to our thesis The contributions presented in Chapter [6| provide answers
to the information needs mentioned by (Gross and Doerr [2012]. Our study reveals
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that for downstream development roles, a high-level description of a function is im-
portant specifying the basic principle of operation and abstracting from implemen-
tation details. Our results additionally show that, depending on the task to fulfill,
some information within the document is more relevant than others. This supports
the idea of view-based documentations that is suggested by |Gross and Doerr{[2012].
Similar to the claims of [Ferrari et al. [2013], our study also revealed that a proper
document structuring was considered crucial for the quality of function documenta-
tions. Our study results suggest structuring a function documentation with respect
to modes of a function.

3.3.3 Standards and Templates

Besides academic approaches, there exist a number of standards and templates for
the documentation of functions.

The IEEE has released standard 29148 for software requirements specifications (SRS)
and system requirements specifications (SyRS). The standard recommends specify-
ing system modes or states. “Some systems behave quite differently depending on the mode
of operation. For example, a control system may have different sets of functions depending
on its mode: training, normal, or emergency.” [ISO/IEC/IEEE, 2011b]]. The SRS annex
contains an alternative documentation structure for systems with modes.

Another well-known template for requirements documentation is the Volere Require-
ments Specification Templateﬂ System states or modes are not explicitly covered in
this template. Robertson and Robertson [1999] suggest to group functional require-
ments by use cases. “The advantage achieved by doing so is that it becomes easy to discover
related groups of requirements to test the completeness of the functionality.” Grouping re-
quirements according to use cases corresponds to grouping them according to func-
tions as performed in our approach. However, our study shows that solely applying
this criterion is too coarse-grained and a structuring according to modes should be
applied for each function/use case.

Relation to our thesis The function documentation structure provided by
IEEE 29148 is similar to the one we describe in Chapter @ However, the standard
does not consider describing requirements on different levels of abstraction. Our
study reveals that a high-level description and structuring of function requirements
is demanded by the stakeholders of function documentations for multifunctional sys-
tems as well as their refinement to more technical and fine-grained requirements. In
Chapter[6] we provide a function documentation template that integrates a structure
according to states with a description on different levels of abstraction.

3.4 Elicitation of Mode Models

In the following, we list work related to the specification of systems based on states/
modes and approaches to elicit mode models. The contribution of Chapter [7]builds
up on and extends this state of the art.

Zhttp://www.volere.co.uk/template.htm
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3.4.1 State-based Specifications

The idea of modeling requirements by means of states is described in many ap-
proaches (e.g., [Broy, 2010b; Dietrich and Atlee, 2013; Heitmeyer et al.,[1997]).

Broy| [2010b] provides the formal basis for the methodology we present in this the-
sis. He proposes to capture the requirements for a multifunctional system as services
and structure them in a service hierarchyE] He specifies the services based on a for-
mal system model, in which a service is described as an input processing and out-
put producing function. Functional dependencies between services are described by
inter-service communication, which the author calls mode channels. The hypothesis
behind this is that inter-service communication can always be described by a mode
(e.g., “If the car is driving faster than 20 km/h, the video player should be switched
off.”). However, a systematic elicitation approach for these modes is missing.

The situation is similar for the Software Cost Reduction Method (SCR) [Heitmeyer
et al., [1997]. In SCR, mode classes, whose values are called modes, are used as auxil-
iary variables for the concise specification of required system behavior. A systematic
approach for eliciting these mode classes is also not given for SCR.

Dietrich and Atlee [2013] provide a generic structure for a function, which they call
feature, into the three high-level states Inactive, Active, and Failed. In real examples,
this basic structure is too general in most cases. Almost all states need to be defined in
more detail to provide an expressive model of the general solution concept. During
an Active state, for example, a function may run through a number of additional
states or phases. Additionally, a function might have a number of different degraded
behaviors depending on the failure detected. The elicitation approaches presented in
Chapter [7]result in much more fine-grained models of system modes.

Relation to our thesis The major research deficit in all of the stated work is a miss-
ing systematic elicitation approach for modes of a system. This is critical because
an incomplete, inconsistent, or imprecise mode model may invalidate the results of
a state-based specification or analysis approach. Moreover, the stated specification
techniques refer to modes only as auxiliary means to provide a concise specification.
In our thesis, we will show that a mode model by itself is a valuable entity for under-
standing and specifying a system.

3.4.2 Requirements Formalization

Filipovikj et al. [2014] mention the use of high-level concepts, such as shutdown or
start-up, in textual requirements as an impediment to their formalization. In their
study, they report on the difficulties inherent to the process of transforming system
requirements from their traditional written form into semi-formal notations by ap-
plying specification patterns [Dwyer et al., 1999]. They observed two problems re-
lated to the mentioned high-level concepts. First, none of the predefined scopes of
the specification patterns capture the moment when the system is “in” some specific
state (e.g., start-up), and secondly, such states belong to a higher abstraction level and

*In other publications, Broy uses the same terminology as we do in this thesis (i.e., function instead of
service, and function architecture instead of service hierarchy).
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are not properly specified, so their meaning is ambiguous. The authors conclude that
such high-level concepts need to be disambiguated by an engineer. Post et al.| [2012]
performed a similar study. The examples of requirements they present as difficult/
impossible to formalize also contain references to states (e.g., “The drag torque and
the activation torque depend on the operating state”).

Relation to our thesis In the approach of this thesis, states or high-level concepts
as described by [Filipovikj et al.| [2014] are modeled in a mode model. This mode
model enables a precise definition of operational states of a system that can be ref-
erenced in requirements and specifications. Thus, the specification of a mode model
may contribute to the formalization of requirements by providing high-level con-
cepts with a precise meaning.

3.4.3 Safety Analysis Approaches

Well-known safety analyses also rely on the notion of system states. For example,
Fault-Tree Analysis (FTA) is a top-down deductive safety analysis technique. It is
primarily a means for analyzing causes of hazards [Leveson, 1995]. In an FTA, an
analyst assumes a particular system state and a top event and then writes down the
causal events related to the top event and the logical relations between them, using
logic symbols. The leafs of the tree often correspond to states of components of the
system. Thus, an FTA also results in a state model, however, only containing states
causing a hazard. Failure Modes and Effect Analysis (FMEA) is an inductive analysis
method, which allows studying the causes of components faults, their effects, and
means to cope with these faults systematically. FMEA is used to assess the effects of
each failure mode of a component on various functions of the system and to identify
the failure modes significantly affecting dependability of the system. FMEA supplies
information about failure modes of the individual components into the FTA. FTA and
FMEA are often conducted together to complement each other [Iroubitsynal 2008].

Relation to our thesis FTA and FMEA do not provide any systematic approach
for identifying failure modes [Leveson, 1995]. The elicitation approaches introduced
in Chapter [/|may support an FMEA by specifying a set of possible system states.
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Chapter

Empirical Study on Function
Dependencies in Multifunctional
Systems

In the problem statement of this thesis, we claimed that we need a comprehensive re-
quirements engineering methodology that integrates and supports the specification
of function dependencies. In this chapter, we present an empirical study conducted
in industry that provides supporting evidence for this claim. In the study, we an-
alyzed the component architecture of two productive automotive software systems
with the aim to assess the extent and characteristics of dependencies between func-
tions of the systems. Afterwards, we assessed whether the function developers were
aware of these dependencies.

Our results show that within the component architecture, a large ratio of the ana-
lyzed vehicle functions depend on each other. These dependencies stretch all over
the system and single functions have dependencies to half of all vehicle functions.
We furthermore examined that the developers are not aware of a large number of
these dependencies when they are modeled solely on an architectural level. There-
fore, the developers mention the need for a more precise specification of function
dependencies as part of functions specifications. These results challenge the current
development methods and emphasize the need for a comprehensive requirements
engineering methodology that integrates and supports the specification of function
dependencies.

This chapter is partly based on previous publications [Vogelsang and Fuhrmann,
2013; Vogelsang et al., 2012].

4.1 Research Objective

The purpose of our two-phase, sequential mixed methods study is to obtain quan-
titative results from a sample and then follow up with a few individuals to explore
those results in depth. In the first phase, a quantitative research question will address
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the extent, distribution, and characteristics of function dependencies in modern au-
tomotive software systems. In the second phase, qualitative interviews will be used
to assess how aware the function developers are of the found function dependencies.

4.2 Study Design

In this section, we formulate the research questions, characterize the study object,
and describe the data collection procedures. We then define the analysis procedures
before we conclude with a description of how we ensure the validity.

4.2.1 Research Questions

The study examines the amount of function dependencies in automotive software
systems and how dependencies are handled in the development process. We assess
the awareness of existing function dependencies to justify the need for function spec-
ifications that consider function dependencies explicitly. We structured our study by
four research questions.

RQ1: To what extent do dependencies between vehicle functions exist? We
focus on dependencies in the sense that the behavior of a vehicle function is not
solely dependent on its primary inputs but also on the state or data of another vehicle
function.

RQ2: How are dependencies distributed over all vehicle functions? We are
interested in the question whether dependencies are equally distributed over all ve-
hicle functions and whether there are vehicle functions that are more central with
respect to the dependencies.

RQ3: What categories of information characterize the dependencies? To de-
velop and assess suitable modeling techniques and theories we have to understand
the characteristics of the information that describes the dependencies. In this study,
we aim at extracting different semantic concepts that stand behind these dependen-
cies. That means we want to find out what the concepts and notions are that charac-
terize a dependency.

RQ4: To what extent are developers aware of function dependencies? Devel-
opers of automotive systems are not necessarily aware of existing dependencies and
interactions. We want to identify existing function dependencies that are unknown
to developers as well as known dependencies that are not represented within the
component architecture and assess them with regard to their plausibility.
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Table 4.1: Overview of the study objects.

MAN System | BMW System
Type: Compact Truck S10AY
Number of vehicle functions: 55 94
Number of logical components: 462 325

4.2.2 Study Object

In our study, we analyzed two automotive software systems of modern vehicles and
especially their component architectures. The first system we analyzed was a vehicle
system from MAN Truck & Bus AG, which describes the entire software architecture
of a compact truck. The system comprised 55 fully specifiedE] vehicle functions that
are realized by an overall of 462 logical components. Logical components may be
used for the realization of more than one vehicle function. The second system was
a vehicle system from the BMW Group. Within the component architecture, we fo-
cused on the driving dynamics and driver assistance domain. The system comprised
94 vehicle functions and 325 logical components. Table 4.1l summarizes the charac-
teristics of the two examined systems. Please note, MAN Truck & Bus AG, BMW, and
many other automotive companies denote logical components as (virtual) functions.
Since the term (virtual) function can easily be mixed up with the term vehicle func-
tion, which describes a different concept, we use the term logical component instead
(cf. [Broy, [2007]).

Logical components describe the realization/implementation of a vehicle function in
a purely logical fashion, i.e., without any information about the hardware the system
runs on. A network of logical components describes the steps that are necessary to
transform the input data into the desired output data. An example for a system that
consists of 3 vehicle functions, which are realized by a network of 6 logical compo-
nents, is illustrated in Figure The logical components are afterwards assigned
to specific software components, which execute the behavior of the logical compo-
nents. As a final step, these software components are deployed to a set of electronic
computing units.

The relation between a vehicle function and a logical component in the context of
this study is the following: A vehicle function is realized by a set of logical compo-
nents that are arranged in a dataflow network. A logical component can contribute
to the realization of a set of vehicle functions. Thus, there is an n : m relation be-
tween vehicle functions and logical components. The set of all logical components
and their connections form a logical component architecture of the entire system (see
Section 2.2.2). The vehicle functions crosscut this architecture by the set of logical
components that contribute to their realization (see Figure {.1).

!The overall vehicle system comprises 142 vehicle functions. However, at the time of the analysis the
system was not yet fully specified. Incompletely specified vehicle functions were excluded from the
study.
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Figure 4.1: The logical components (rectangles) are connected by data channels (black ar-
rows) and form a logical component architecture of the system (outer rectangle).
Vehicle functions crosscut this architecture by the set of logical components that
contribute to their realization (dashed forms).

4.2.3 Data Collection Procedures

For the reliable acquisition of data, we need a precise definition of what we consider
as a dependency between vehicle functions. Our initial informal definition states
that a vehicle function VF; depends on another vehicle function VFj if its behav-
ior is influenced not only by its primary inputs but also by the state or data of VFj.
Therefore, the vehicle functions have to communicate with each other. In our study,
we distinguish between two different ways of communication between vehicle func-
tions.

1. A logical component that is part of one vehicle function has a communication
channel to a logical component that is part of another vehicle function (see

Figure[4.2).

2. Alogical component is part of two vehicle functions, i.e., the vehicle functions
share a logical component (see Figure [4.3).

A dependency between vehicle functions in the second case, however, cannot be
ensured definitely without further knowledge about the behavior of the logical com-
ponents. In the example of Figure the influence of the data transmitted over
the channel LF; — LF3 on the data transmitted over the channel LFs — LF5 can
only be assessed with further knowledge about the behavior of LF3. As we had no
information about the precise behavior of logical components in the context of our
study, we focused on dependencies of the first type, where a logical component of
one vehicle function has a communication channel to a logical component of another
vehicle function. This, at least gives a lower bound for the dependencies. Our analy-
ses eventually showed that this restriction does not adulterate the results excessively.
Considering all dependencies of the second type as actually being dependencies, the
number of the dependencies in the system just increased by around 10%.
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Figure 4.2: The vehicle function VF, depends on the vehicle function VF;, since the logical

component LC; (part of VF;) sends values to the logical component LC; (part
of VFy). Thus, the behavior of VFy depends on data of VF.

Figure 4.3: Vehicle functions VF; and VFy share the logical component LC3. This might
indicate a dependency between the vehicle functions. However, this cannot be
verified without further knowledge about the behavior of LCs.
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Figure 4.4: The vehicle function graph extracted from the logical component architecture of

Figure[d.1]

Based on this definition of a dependency between vehicle functions, we extracted a
vehicle function graph from the logical component architecture, where each node is
a vehicle function and a directed edge indicates a dependency between two vehicle
functions. The resulting vehicle function graph for the example of Figure [4.1]is illus-
trated in Figure In our study, we extracted the vehicle function graph by means
of a simple tool, written in Java. The tool parses an exported data set from the com-
pany’s data backbone containing a list of vehicle functions associated with a set of
logical components. The tool transforms the data into a graph structure, extracts the
function dependencies according to the definition given in this section, and finally
outputs a .csv file with the found dependencies. The extraction was performed
fully automated and the complexity of the algorithm is quadratic in the number of
vehicle functions and logical components. For the observed system, the extraction
took around 3 seconds on a standard laptop.

The second part of our study is based on four interviews with function experts from
the BMW Group, who are involved in the design of the logical component architec-
ture. For RQ 4, we confronted the experts with a sample of function dependencies
from their area of responsibility found by our analysis. We let the experts classify
these dependencies into the following categories:

e plausible/implausible: A dependency is considered as plausible if the expert
finds a functional or physical explanation for this dependency. If the expert has
no functional or physical explanation for this dependency, it is considered as
implausible.

e known/unknown: A dependency is considered as known if the expert was
aware of this dependency prior to the interview. If the expert was not aware of
this dependency prior to the interview, it is considered as unknown.

Overall, we discussed 100 function dependencies in depth.

4.2.4 Analysis Procedures

To answer the research questions, we collected the following measures from the
study object:
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For RQ 1, we analyzed the vehicle function graph to assess the ratio of vehicle func-
tions that dependent on another vehicle function and to count the number of incom-
ing and outgoing dependencies between vehicle functions. This gives an impression
of the extent of function dependencies in realistic systems.

For RQ 2, we measured the dependency fan-in and fan-out as well as the PageR-
ank [Brin and Page, 1998] for all vehicle functions of the vehicle function graph to
see whether dependencies are distributed equally or if certain vehicle functions are
more central than others are. Thus, we obtain information about the distribution of
function dependencies in real automotive software systems.

For RQ 3, we classified the function dependencies of the MAN system by the type of
data that realize the dependencies. For this purpose, we examined the communica-
tion channels between two logical components that cause the corresponding vehicle
functions to be dependent and classify the data that is transmitted over the channels.
We group the data channels by their data type into three categories:

Value: A data type that expresses a value on a continuous scale (a physical unit in
most cases)

Enum: A data type that expresses a value on a discrete finite scale with more than
two values

Bool: A data type that expresses a value on a scale with two possible values

This categorization should provide additional information about the semantic con-
cepts that characterize the dependencies. We expect to get a better understanding of
the nature of such dependencies from this categorization.

For RQ 4, we counted the number and ratio of function dependencies in the BMW
system for each combination of category values, leading to a 2x2 matrix with the
two categories as dimensions. We especially investigated the ratio of plausible func-
tion dependencies as an indicator for the validity of our quantitative study and the
ratio of known function dependencies as an indicator for the awareness of function
dependencies in general.

4.2.5 Validity Procedures

To ensure internal validity for the MAN system, we analyzed the system under in-
vestigation at a stage where it was already subject to an architectural review. This
way, design flaws and misconceptions within the analyzed model should be reduced.
Additionally, we presented and discussed the results with the developers and the re-
sponsible persons at MAN, who ensured that our results are valid and reasonable.

For the BMW system, we analyzed the system under investigation at a final stage of
the development process where it was already subject to several architectural reviews
and testing procedures. Therefore, errors and misconceptions in the logical compo-
nent architecture can nearly be ruled out. However, our analyses show that vehicle
functions might differ in the way they are modeled within the logical component ar-
chitecture. To ensure validity we presented and discussed the results with function
experts at the BMW Group, who assessed the found dependencies concerning their
plausibility.
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Table 4.2: Extent of dependencies in the vehicle function graph.

MAN System BMW System
(n = 55=100%) (n =94=100%)

Vehicle functions... Number | Ratio | Number | Ratio
with incoming dependencies 36 65.5% 81 86.2%
with outgoing dependencies 29 52.7% 72 76.6%
with incoming and outgoing 27 49.1% 68 72.3%
dependencies

without dependencies 17 31.0% 9 9.6%

The evaluation of RQ 4 is based on interviews with function experts from the BMW
Group. In order to get representative results from the interview partners we selected
one expert from each area within the domain of driving dynamics and driver assis-
tance. These areas are lateral, longitudinal, and vertical dynamics as well as driver
assistance features. The experts were responsible for a number of 1246 vehicle func-
tions.

4.3 Study Results

In this section, the results of the study are presented. They are structured according
to the defined research questions.

4.3.1 Extent of Dependencies (RQ 1)

Table 4.2| summarizes the results of the analysis on the extent of dependencies in the
two analyzed systems. Analyzing the vehicle function graph of the MAN system, we
found 133 dependencies between the 55 vehicle functions. 17 out of the 55 vehicle
functions were completely independent from any other vehicle function and did not
have any influence on other vehicle functions. 36 vehicle functions were dependent
on another vehicle function (i.e., they had incoming dependencies) and 29 vehicle
functions had an influence on another vehicle function (i.e., they had outgoing de-
pendencies). 135 different data channels caused the dependencies.

Analyzing the vehicle function graph of the BMW system, we found 1,451 depen-
dencies between the 94 vehicle functions. Only 9 out of the 94 vehicle functions were
completely independent from any other vehicle function. 81 vehicle functions were
dependent on another vehicle function and 72 vehicle functions had an influence on
another vehicle function. 234 different data channels caused the dependencies.
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Table 4.3: Distribution of dependencies in the vehicle function graph.

MAN System (n=55) BMW System (n=94)
Incoming | Outgoing | PageRank | Incoming | Outgoing | PageRank
Maximum 10 23 6.47% 48 53 5.81%
Median 1 1.26% 11 0.72%
Minimum 0 0 0.72% 0 0.28%

Figure 4.5: Vehicle Functions and dependencies of the MAN system (left) and the BMW sys-
tem (right) visualized as an Edge Bundle View. The outer ring represents the hi-
erarchy of vehicle functions. Each dot on the inside of the outer ring is an atomic
vehicle function. The lines indicate a dependency between two functions.

4.3.2 Distribution of Dependencies (RQ 2)

The extent of the dependencies shows that dependencies between vehicle functions
are distributed all over the system. However, some vehicle functions are more cen-
tral in the sense that they have a number of dependencies to other vehicle functions.
Table illustrates this result. The table shows that for the MAN system vehicle
functions have a maximum of 23 other vehicle functions that they influence, whereas
one vehicle function depends on up to 10 other vehicle functions at maximum. For
the BMW system, these numbers are even higher. A vehicle function depends on up
to 48 other vehicle functions, whereas on the other side vehicle functions have a max-
imum of 53 other vehicle functions that they influence, which accounts for 56% of the
vehicle functions. Most of the functions have at least 3 functions they depend on and
have atleast 11 functions they influence. The computation of the PageRank
gives an idea about the “importance” of single vehicle functions and de-
viates by a factor of almost 9 for the MAN system and an even higher factor of almost
20 for the BMW system. This intermeshed structure of the functions becomes particu-
larly visible when illustrating the dependencies in an Edge Bundle View
(see Figure 4.5).
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Table 4.4: Categorization of dependency channels in the MAN system according to their

data type.
Overall Unique
Number | Ratio || Number | Ratio
Value 122 26% 35 25.9%
Enum 314 66.8% 85 63%
Bool 34 7.2% 15 11.1%
s | 40 | 100% | 135 | 100% |

Table 4.5: Plausibility and awareness of the analyzed function dependencies in the BMW
system (n=100).

known | unknown x

plausible 41.0% 48.0% 89.0%
implausible 1.0% 10.0% 11.0%

by 42.0% 58.0% 100%

4.3.3 Categories of Dependencies (RQ 3)

As mentioned before, 135 different data types were involved in one or more depen-
dencies between vehicle functions within the MAN system. To get a better idea of
the characteristics of these data, we categorized, for the MAN system, the data chan-
nels that modeled a dependency according to their data type and grouped them into
the three categories: Value, Enum, and Bool. The goal of this categorization is to get
information about the kinds of data that is associated with the dependency in order
to get a better understanding how to characterize the dependencies. Table 4.4|shows
the results of this categorization. On the left side of the table, multiple occurrences of
a data type are counted separately, whereas on the right side of the table every data
type that contributes to any dependency is counted exactly once, independent from
how often this data type contributes to any dependency. As the results show, this
distinction has no influence on the distribution to the three categories. We addition-
ally found that the channels of type Enum had 16 possible values at maximum. Our
results show that more than 74% of the channels had a discrete and finite data type.
One possibility to interpret these numbers is that a majority of the dependencies
represent a propagation of state information or control commands from one vehicle
function to another.

4.3.4 Awareness of Dependencies (RQ 4)

Table 4.5/ summarizes the results of the expert interviews that we conducted for the
BMW system in order to assess the plausibility and awareness of the analyzed func-
tion dependencies. The results indicate that our analysis produced reasonable results
as only 11% of the examined function dependencies were considered as implausible,
i.e., the dependencies were a result of our analysis but the experts considered them
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as not correct or at least they were not able to give account of them. Of the 100
function dependencies that we examined in the interviews, 42% were known to the
experts and 58% were unknown. Most of the function dependencies that we exam-
ined were considered as unknown but plausible, i.e., the experts were not aware of
the dependency between the functions but when examining the affected signals and
logical components they found reasonable explanations for them. One examined de-
pendency was considered as known and implausible as the expert was aware of it
but had no explanation why this dependency exists.

4.4 Threats to Validity

Despite the applied validity procedures, the study design poses some further threats
to the validity of the results. A threat to the internal validity is the fact that the an-
alyzed model is already a realization/implementation of the vehicle functions. De-
pendencies might thus be a consequence of a design decision made by a developer
and not an integral part of the system function itself. This effect can be seen as an
instance of the optional feature problem [Kastner et al., 2009], which addresses that
the implementation of features may be dependent, although the actual features are
independent in the problem domain. Another threat pertains to the definition of de-
pendency as given in this study. Besides the explicitly modeled dependencies that
are in the focus of this study, there may also be dependencies between vehicle func-
tions that occur when functions are implicitly connected by a feedback loop through
the environment. Considering also such dependencies may additionally increase the
number of detected function dependencies. The specification and detection of these
dependencies would even require considering a system together with a precise spec-
ification of its context.

4.5 Discussion

The conclusions we draw point at a number of problems that occur in today’s de-
velopment of automotive software systems. Current development processes handle
vehicle functions more or less as isolated units of functionality. To some extent, this
has historical reasons as the automotive industry managed to make their different
functionality as independent as possible such that vehicles could be developed and
produced in a modular way. With the coming up of software-based functions in the
vehicle this independence disappeared [Broy, 2006]. This is especially true for test-
ing activities, where each vehicle function is tested separately. Behavior that arises
from the complex interplay of vehicle functions due to its dependencies is not in the
focus of these testing activities [Benz, 2010]. The extent and distribution of complex
dependencies between vehicle functions also challenge the process and methods for
specifying the requirements of a system. Each dependency between vehicle functions
corresponds to a certain behavior that, in most cases, is observable by the user of a
system and thus should reflect a functional user requirement. Therefore, a method
for specifying system requirements should also account for dependencies between
vehicle functions. Some vehicle functions have a large number of dependencies to
other vehicle functions. They capture functionality that has an impact on many parts
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of the system, e.g., start-stop systems or energy management. Other vehicle func-
tions have dependencies only to a certain group of vehicle functions.

Furthermore, in our interviews, function developers considered the knowledge
about function dependencies as important. Reasoning about these dependencies on
an architectural level is hard because function dependencies and design decisions are
intermingled, which leads to the large number of unknown function dependencies
as reported in the last section. An interesting point is that the reasons for function
dependencies that were considered as implausible can also be related to architectural
concerns. Logical components are architectural elements, which are subject to reuse
and thus relate to a number of functions. Developers use and manipulate logical
components without considering other vehicle functions that might also affect or be
affected by this logical component. The emerging function dependencies were, in
most cases, considered as implausible. Therefore, we argue that these dependencies
need to be modeled precisely on the level of vehicle functions, still independent from
any architectural design decisions (cf. [Broy, 2010b]).

Our results back up the challenges mentioned by |Broy|[2006]; Pretschner et al.|[2007]],
where the authors state that “functions [of a vehicle] do not stand alone, but exhibit a high
dependency on each other, so that a vehicle becomes a complex system where all functions act
together”. The fact that most dependencies are represented by channels that have a
discrete finite data type supports approaches, which model vehicle function depen-
dencies by states of the vehicle (e.g., Broy [2010b]; Dietrich and Atlee|[2013]).

4.6 Summary

The results of this study show that dependencies between vehicle functions pose a
great challenge for the development of automotive software systems. Not only that
almost every vehicle function depends on and/or influences another vehicle func-
tion, we have also seen that modeling the dependencies on an architectural level is
insufficient for analyzing them, leading to a 50% chance that a developer is not aware
of a specific dependency. In our study, this was particularly striking when the func-
tion dependencies arose from architectural decisions. Considering these conclusions,
it becomes obvious that it is necessary to integrate the modeling of function depen-
dencies on the level of vehicle functions into a comprehensive specification approach
for such systems. In such an approach, functions have to be specified more precisely,
for example by annotating them with inputs and outputs, and function dependencies
have to be defined based on this notion of a vehicle functions (cf. [Broy, 2010b]]). In
such a structured specification approach, function dependencies are modeled inde-
pendent from architectural decisions and thus the approach facilitates the modeling
of feature interactions in requirements engineering.
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Chapter

Integrating Functions and Modes
into a Model-based RE Methodology

Model-based requirements engineering methodologies employ models to elicit, spec-
ify and analyze requirements. In this chapter, we introduce a model-based require-
ments engineering methodology that integrates the formal specification concepts for
multifunctional systems described in Section into model types and description
techniques, which are created in an iterative process. By this contribution, we claim
to enable an explicit and precise handling and specification of function dependencies
during the different stages of requirements engineering and system development.

This chapter defines the RE methodology by introducing a set of model types and
description techniques and their relations (Section 5.1)), the role of these artifacts in a
development process (Section , and two case studies, for which we instantiated
the methodology and assesses its applicability, benefits and limitations (Sections
and 5.4). At the end of this chapter, we discuss the RE methodology by the lessons
we learnt from the application in the case studies.

This chapter is partly based on previous publications [Bohm et al., 2014; Vogelsang
et al.,[2014].

5.1 Artifact Model

In Section[2.2) we described a system modeling theory that provides a formal charac-
terization of semantic concepts, suitable for specifying multifunctional systems. The
artifact model, as part of our RE methodology, relates these semantic concepts to
model types that we use to describe them. The relations between the semantic con-
cepts, as shown in Figure 2.1| of Chapter [2, must be reflected and expressed by the
model types. We define these model types to systematically develop, capture, and
analyze the semantic content of the system modeling theory.

Figure [5.1| gives an overview over the artifact model. The larger rounded boxes in
the figure relate to the requirements engineering concepts of our semantic model
(see Figure 2.1 in Chapter [2). Within the boxes, we depict the model types that we
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Figure 5.1: The artifact model of our model-based RE methodology associates the concepts
of the semantic model with model types that we use to describe them.

use to describe the respective content. For some semantic concepts, there are model
types that describe the semantic concepts in a more formal or structured way than
another model type (indicated by dashed arrows). Table[5.1|provides a short descrip-
tion of the model types used in the artifact model. In the remainder of this section,
we describe the model types in detail and especially focus on how they reflect the
relations between the semantic concepts.

Our artifact model provides a set of model types and relations between them that
specify the functionality of a system with regard to different views and on different
levels of formalization. In a concrete development project, this artifact model needs
to be instantiated. In the instantiation process, a project manager decides, which
model types should be created and in which order. This decision depends on the
specifics of the development context (e.g., a certain level of formalization is needed
for certification). In the case studies we present in Sections 5.3|and we describe
two examples of instantiating this artifact model in a concrete development scenario
and discuss the implications.

In the following subsections, the constituents of the artifact model are described in
detail. Section[5.1.1]describes the model types used to list and structure the functions
of a system (function modeling), Section describes the artifacts used to list and
structure the operational modes of a system (mode modeling), Section[5.1.3|describes
the artifacts used to specify desired behavior of the system (behavior modeling), and
Section[5.1.4describes the artifacts used to relate the resulting system specification to
a logical description of the system implementation.
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5.1. Artifact Model

Table 5.1: Overview and short description of the model types used in the artifact model.

Activity Semantic Model Type Description
Concept
Function Use case table Informal description of a function includ-
ing its name, purpose, actor(s), and us-
age context.
Functifm Function list A list of textual elements, each describ-
modf:hn ing a function of the system by its name,
(Section ' Function a description, and its purpose.
hitect . . . . .
AFCEC®  punction hierarchy A hierarchical structure of function
names with dependencies to each other
representing the function architecture.

Mode list A list of variables that represent the

Mode mode types of the mode model.

modeling Mode model

(Section [5.1.2) Mode chart A hierarchical structure of mode names
with transitions describing valid mode
configurations of the mode model.

Scenario description ~ Sequence of informally described inter-
action steps between the system and its
environment.

Message sequence Formalization of a scenario expressed by

(Functional)  chart a trace language based on message inter-
Requirement change.
Behavior Textual property Textual statement about desired behav-
modeling description ior, typically expressed in natural lan-
(Section[5.1.3) guage.

Interface assertion Formalization of a textual property by a
syntactic interface and an interface be-
havior expressed by a logic formula.

Function State machine Specifies the behavior of a function by a
specification state transition relation defining a syn-
tactic interface and an interface behavior.

Component diagram A hierarchical structure of component
names connected via channels represent-

Component ing the component architecture.
Arcéu;ecture architecture Functional white-box A projection of the component architecture
rrslo f 1n diagram showing only components relevant for the
(Section[5.1.4) realization of one function specification.

Component  State machine Specifies a syntactic interface and an in-

terface behavior of a component by a state
transition relation.
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Name Identifying name
g Description Brief description of the function
g. { Purpose Rationale and relation to general goals
>
o Actors Names of the involved actors
p
Trigger An event/mode that starts the function
5 Precondition Any prerequisites before the function can
= be started
o
o Y |Guarantee Minimal What is considered an end to the
? function under all exits
> Success What is considered a successful end to
the function
~

Figure 5.2: Schematic representation of the model type use case table describing the semantic
concept function with its purpose and usage context.

5.1.1 Function Modeling

As described in Section[2.2.2} a function is the intent to use a system in a specific usage
context for a certain purpose. We represent these characteristics of a function by a use
case table. A multifunctional system is a composition of such functions. We summa-
rize the functions of a multifunctional system in a function list that is structured and
formalized by a function hierarchy. Both model types are description techniques for
representing the function architecture of a multifunctional system.

Use Case Table

Use cases tables informally describe a function with its purpose and usage context
from a user’s perspective (cf. [Cockburn, 2001]). A use case table consists of a name, a
description, a purpose, a set of actors, a trigger, a precondition, success and minimal guar-
antees. Figure|5.2|shows a schematic representation of a use case table. The entries of
a use case table are described in natural language.

The name entry specifies the identifying name of the function that we also use as
reference in other model types if we refer to that function.

The purpose entry specifies the intent of a user to use the system and originates from
a user’s goals. A more formal representation of the purpose of a function and its
relation to intent and goals of stakeholders is not part of our methodology.

The actor entry specifies entities of the operational context of the system that are
relevant for the use of the function. In general, this means that, while using the
function it is necessary to get information from or provide information to the context
entity. Context entities may be users or external systems. Usually, there is one main
actor that has the intent to use the system for a certain purpose.

The trigger, precondition, success, and minimal guarantee entries of the use case table
specify the usage context of a function. These entries characterize the intent of the
main actor in more detail by providing information about situations, in which the
main actor intents to use the system, or which situations the user intents to achieve.
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Figure 5.3: Schematic representation of the model type function list.

The specification of the usage context is closely related to the mode model, which we
describe later in more detail.

Function List

A function architecture as semantic concept is the composition of all functions of a
multifunctional system. A function list represents the function architecture without
information about the subfunction and dependency relation between functions (cf.
Section 2.2.2). It provides a brief overview over the functions of a multifunctional
system and can be used, for example, in an early stage of the development process.

A function list is an enumeration of distinct elements, each representing a function
the system should provide. An item in this list refers to a function by its name and ex-
hibits a short description, and the purpose of the function. Figure[5.3]shows a schematic
representation of a function list.

A function list is comparable to a list of User Stories, as applied in agile development
methodologies, such as SCRUM [Schwaber and Beedle, 2001], where a user story
captures desired functionality by templates (e.g., “As an <actor>, I want <function>
so that <goal>").

The elements of the function list may reference a corresponding use case table by the
identifying name of the function. In that case, the description and purpose entries are
identical in both model types.

Function Hierarchy

A more complete and formal representation of the function architecture is given by a
function hierarchy. In our methodology, a function hierarchy structures and formal-
izes the content of a function list. In a concrete development process, structuring
and formalizing may be carried out in different stages of the process. Structuring the
functions of a function list in a function hierarchy may be possible at an early stage,
while the formalization may only be possible at a later stage when more information
about the precise behavior of functions is present.

Structuring the function list: In a function hierarchy, the functions contained in
the function list are structured in a hierarchy, where the root node represents the
functionality of the whole system and the inner nodes represent a functional decom-
position of this functionality into functions. Figure 5.4/ shows a schematic represen-
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Function List

Function Name | Description Purpose

F31

F32

Figure 5.4: Schematic representation of the model type function hierarchy and the corre-
sponding function list. Solid lines in the function hierarchy indicate the subfunc-
tion relation (e.g., F is a subfunction of Fg) and dashed arrows indicate function
dependencies (e.g., F» is influenced by F7).

tation of a function hierarchy. In the figure, the system functionality (Fs) is broken
down into subfunctions Fi, Fy, and F3, of which F; and F3 are further broken down
to two subfunctions each. Each node in the function hierarchy (except for the root
node) corresponds to one item of the function list.

Structuring the functions into a function hierarchy is a design decision that is based
on a set of decomposition criteria, such as functional cohesion or organizational di-
vision. It is important to note that the decomposition of a function into subfunctions
does not aim at providing a “solution” for this function (e.g., by a decomposition
into sequential subfunctions). The decomposition rather aims at separating different
“projections” of the system interface (e.g., by only considering a subset of the input/
output channels). [Penzenstadler [2011] gives a list of additional decomposition cri-
teria. This list suggests, as one criterion, to summarize functions that a user of the
system considers as associated (e.g., speed limiter and speed control as subfunctions of
driving assistance in a vehicle). Still, this decomposition is a creative design process,
which is not uniquely defined for a given system.

The figure also shows annotated dependencies between the functions F; and F3, and
between F3; and Fi9 (dashed arrows). These dependencies have a direction and indi-
cate that the behavior of one function “influences” the behavior of the other function.
Later, we will give this “influence” a precise meaning.
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According to Penzenstadler [2011], function dependencies should also be considered
when structuring the function list in a function hierarchy. On the one hand, function
dependencies should be kept to a minimum; on the other hand, dependencies be-
tween functions that a user perceives as distinct should be made explicit (cf. coupling
vs. cohesion).

In summary, the function hierarchy provides a structured view onto the function list
by defining a subfunction relation and a dependency relation between the functions
of the function list. Aside from that, the semantic concept of a function architecture as
introduced in Section[2.2.2]also incorporates a formal interpretation of these relations,
which is subject to the next paragraph.

Formalizing the function list: A function hierarchy can also be interpreted more
formally, i.e., the structure that is established by the subfunction and the dependency
relation between functions is equipped with semantics and thus becomes a precise
specification.

For this purpose, we relate a function node in the function hierarchy to a function
specification. Function specifications and their mode types, as introduced later in Sec-
tion in more detail, define an input/output behavior that is associated with
the function in the function hierarchy. This input/output behavior is defined over a
syntactic interface (cf. Section[2.2.1). The dependency relation between functions of
a function hierarchy is interpreted as an exchange of messages via typed channels.
The behavior of a function in the function hierarchy results from the parallel compo-
sition of all its subfunctions, as defined in Section The behavior specification
of an entire system results from the parallel composition of all its functions along the
function hierarchy.

Figure shows the function hierarchy from the previous example and adds
schematic representations of function specifications for the functions F, F», and F3.
By this interpretation, we derive the system specification Fg by parallel composition:

Fs=F1®FH®F;

Note, that from the point of view of the modeling theory, there is no difference be-
tween a leaf function, a function cluster (inner node), or the system specification
(root node). The specification of each of these is a result of the parallel composition
of specifications of their children in the function hierarchy.

5.1.2 Mode Modeling

A mode model as semantic concept is the model of operational states of a multifunc-
tional system, which are called modes. We summarize the modes of a multifunctional
system in a mode list that is structured and formalized in a mode chart. Both model
types are description techniques for representing the mode model of a multifunctional
system.

59



5.1. Artifact Model
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Figure 5.5: A function hierarchy is interpreted formally by relating the functions of the func-
tion hierarchy to formal function specifications. The formal behavior specification
of the entire system results from the parallel composition of the function specifi-
cations related to the functions in the function hierarchy.

Mode Name | Description Mode Values
Identifying Brief description | A set of possible
name of the mode values of the mode
M, mvy, mv,, ...

MZ

Figure 5.6: Schematic representation of the model type mode list.

Mode List

A mode list is an enumeration of variables that characterize the state space of the sys-
tem and its operational context. An item in this list refers to a mode and is described
by a name, a short description, and a set of mode values that characterizes possible val-
ues of the mode.

A mode list represents only the modes of a mode model that are also mode types, i.e., only
modes with kind = OR (see Section 2.2.2), without information about the submode
relation and transitions between modes. Therefore, the mode list provides a brief
overview over the modes of a multifunctional system that can be used to characterize
the interaction between functions of a multifunctional system.

Figure [5.6| shows a schematic representation of a mode list. The mode list is moti-
vated by the characteristics of the domain in which a system is applied and especially
by its operational context.
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Figure 5.7: The modes contained in the mode list are referenced by the function dependencies
in the function hierarchy (e.g., F» depends on the mode M, that is influence by F}).

Modes play a special role for the description of dependencies between functions in
the function architecture. A dependency between functions is characterized by one
function that causes a change of a mode value (the mode master) and another that is
influenced by this change (the mode slave) (cf. 2010Db]). Figure [5.7]shows how
the mode list is referenced in the function hierarchy, which represents the function
architecture by annotating a mode to each function dependency.

In the formal interpretation of the function hierarchy, as described in the previous
section, the dependencies between functions are interpreted as behavior interactions
between functions. These interactions are modeled by input/output channels be-
tween the functions. Since we annotate these dependencies with modes, we call the
resulting channels mode channels (e.g., channel m; between the functions F; and F3
in Figure[5.5]is a mode channel).

The mode model does not only play a role for the dependencies between functions of
a function architecture but is also referenced in the description of the usage context
of a function. The usage context of a function describes situations, in which an actor
intents to use the system, or situations that the user intents to achieve. We model
these situations by means of the mode model. Figure exemplifies this by the
relation between a use case table, the function list, and the mode list.

Mode Chart

A more complete and formal representation of the mode model is given by a mode chart.
In our methodology, a mode chart structures and formalizes the content of a mode
list.

In a mode chart, the modes of the mode list and their mode values are structured
by defining the children and kind relation described in Section We transfer a
mode list to a mode chart by creating a mode with kind = OR for each item of the
mode list and defining the mode values as children. Additional mode categories that
summarize a set of modes may be added to the mode chart as modes with kind =
AND. Figure[5.9]shows a schematic representation of a mode chart. In the figure, the
mode chart is structured into two parallel modes M1 and M2. M2 has three mode
values, of which one mode value (M 3) is a mode itself with mode values mv6 and
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- Use Case Name Fy 3
Description The system shall... 3
Purpose 3
Actors }
Trigger M2 switches to mv3 = 3
Precondition M1 isin mvil i 3
Guarantee | Minimal | M1 is in mv1 E i
Success | M1isin mviand M2isinmv4 |~ 1

Figure 5.8: The functions of a function list are detailed by use case tables. The usage context of
a function is described in the use case table by referencing modes from the mode
list.

mv7. The mode model that is represented by the mode chart defines a set of valid
configurations of mode values that characterize the operational state of the system.

As a second step, we extend the mode chart by adding transitions between the modes
in the mode chart. These transitions define the possible sequences of mode configu-
rations during the execution of a system. Additionally, an initial mode value for each
mode needs to be provided.

Figure shows a mode chart with transitions and initial mode values for each
mode.

5.1.3 Behavior Modeling

In our approach, a function is associated with a behavior. Associating a function with
a behavior changes the character of the term function. In the former sections, we
characterized a function by its purpose and usage context. Associating a function
with behavior specifies a concrete instantiation of using this function in terms of in-
teractions between the system and its environment. Consider the function “Cruise
Control” of a car. This function describes the intent to use the system “car” for hold-
ing the vehicle’s speed on a desired level. An associated behavior may state that the
driver first has to activate the “Cruise Control”, which is confirmed by a system re-
sponse, and after that, the driver can increase or decrease the desired speed based on
the current speed at function activation. In general, many behaviors, i.e., scenarios of
use, are imaginable for one function. In our semantic model, the behavior associated
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Figure 5.9: The modes contained in the mode list are structured in a mode chart.
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Figure 5.10: A mode chart with transitions and initial mode values for each mode.
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Use Case Table Mode List
Use Case Name F, Mode Name | Description Mode Values
Description The system shall... M1 mv1l, mv2
Purpose M2 mv3, mv4, M3
Actors M3 mv6, mv7
Trigger M2 switches to mv3
Precondition M1 is in mv1
Guarantee | Minimal | M1 isin mvi

Success | M1isin mvland M2isin mv4

Alternative Scenario Description

Success Scenario Description -
Step Action
Ste Action
d 3a The user confirmation is missing.
1 The user sends a request.
- 3a1 The system switches M2 back to mv3.
2 The system responds and switches
M2 to mv4.
3 The user confirms the response.

Figure 5.11: A scenario description supplements a use case table by a sequence of interaction
steps that may reference modes from the mode list.

with a function is the function specification (see Section[2.2.2). In our methodology, we
introduce I/O state machines as model type to represent the function specification.

Specifying the behavior of a function is related to desired properties that the function
should fulfill, i.e., to (functional) requirements. The idea is that a function specification
fulfills a set of properties, which represent (functional) requirements. We introduce
scenario descriptions, message sequence charts, textual properties, and interface assertions
as model types to represent functional requirements of different character and on
different levels of formalization.

Scenario Descriptions

The idea of describing functional requirements by specifying exemplary executions
of the system, called scenarios, has attracted considerable attention in RE [Sutclitfe
et al.,[1998]. For example, Cockburn! [2001], associates a use case with a set of scenar-
ios in his RE methodology. In our methodology, a scenario description is a model type
that defines a sequence of interaction steps between the system and its environment.
The individual steps are still described in natural language.

Scenario descriptions can be used to advance from a purpose-based function descrip-
tion to a function specification by expressing exemplary executions that are associ-
ated with a function. The distinct steps in a scenario description are informal state-
ments about information that is transmitted from a context entity to the system (i.e.,
input), from the system to a context entity (i.e., output), about a current operational
state (mode condition), or about changes of an operational state (mode switch). The
latter two types of steps, thereby, reference modes of the mode model.

Figure shows a schematic representation of two scenario descriptions (success
and alternative) with relations to the corresponding use case table and references to
the mode list.

64



5.1. Artifact Model
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Figure 5.12: Formalization of a scenario description by a message sequence chart (MSC).

Message Sequence Charts (MSCs)

Our formal model characterizes (functional) requirements as properties defined over
an interface (see Section[2.2.2). To be able to express scenarios as properties defined
over an interface, we need a more formal representation of the steps given in a sce-
nario description. A message sequence chart (MSC) represents a formalization of a
scenario description by an interaction diagram providing a trace language based on
message interchange [ITU-T), 2011]. Each scenario description is formalized by ex-
actly one MSC. Figure shows the formalization of a scenario description by an
MSC. In the MSC, single steps of the corresponding scenario description are repre-
sented by the exchange of one or more messages between the system and its environ-
ment. Those messages, as opposed to the steps of a scenario description expressed
in natural language, are already defined in terms of the underlying system model-
ing theory. That means a message is defined by a source port, a target port, and a
value that is transmitted between the ports. A message either describes a stimulus
(target port belongs to the system) or a reaction (source port belongs to the system).
References to modes within the scenario description are expressed as conditions (rep-
resented by a hexagon).

An MSC that references a mode as a condition must be consistent with the mode
model. That means, conditions that specify mode configurations that are not part of
any valid configuration of the mode model are not allowed. Similarly, mode switches
specified in an MSC must be reflected by transitions between valid mode configura-
tions in the mode model.

Textual Properties Description

Textual property descriptions are another way of documenting desired behavior for a
function. For some requirements, such as safety requirements, it might be easier to
model them as statements to be valid in every situation of the system. This is contrary
to the idea of a scenario description, where requirements are formulated with respect
to a specific usage scenario. For some types of functions, it is even unintuitive to
describe them as a set of scenarios (e.g., the speedometer function of a vehicle).
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Textual Property If the system is in mv2, the system must never send a
Description response message.

. M1 uo
Interface Assertion EE— AG(M1 = mv2 = UO # res) —

Figure 5.13: Formalization of a textual property description by an interface assertion consisting
of a syntactic interface description and an interface behavior expressed as CTL
expression (temporal logic).

Textual property descriptions are natural language statements about desired behav-
ior. In the course of the early requirements engineering phases, abstract and vague
textual property descriptions need to be refined to properties that are more concrete.
This helps explaining the origin and rationale of requirements to stakeholders. Fur-
thermore, textual property descriptions may reference modes of the mode model.
An example for a textual property description that references the mode value mv2 of
mode M1 is “If the system is in mv2, the system must never send a response”.

Interface Assertions

We introduce interface assertions as model type to formalize textual property descriptions
by specifying a syntactic interface and an associated interface behavior expressed
by temporal logic formulas. The syntactic interface specifies the stimuli and reac-
tions that the textual property description refers to as input and output ports. It is
important to note that these ports do not need to correspond to actual ports of the
implemented system. Its purpose is rather to capture the events a textual property
description speaks about. It is also important to note that it might not be possible
to formalize a textual property description right from the beginning, especially if it
is very vague (e.g., the system shall be safe). In such cases, the properties need to be
concretized on the informal level, for example, by means of goal decomposition ap-
proaches (cf. [van Lamsweerde, 2001]]). A formalization is possible as soon as the
textual property description speaks about observable stimuli and reactions.

The referenced modes from the informal textual property description are formalized
as inputs or outputs of the interface assertion. Figure shows the formalization
of a textual property description by specifying the stated events and conditions as
inputs and outputs of the interface assertion. The behavior is captured by a CTL
expression (temporal logic)ﬂ The textual property description states a stimulus that
references the mode value mv2 of mode M 1. This stimulus is modeled as an input of
the interface assertion. As a reaction, the textual property description states to “never
send a response message”, which is modeled as an output of the interface assertion.

'In the case studies we will show that more user-friendly specification patterns can also be used to
formalize the interface behavior.
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Figure 5.14: An1/0 state machine describes a function specification with a syntactic interface
(top) and an interface behavior (bottom) by a state transition relation.

An interface assertion is additionally constrained by the valid mode configurations
specified in the mode model. An interface assertion is consistent with the mode
model if its specified behavior only assumes and produces valid configurations of the
mode model. If, for example, an interface assertion formalizes a property with M2 =
mv3 A M3 = muv6 as a condition, this interface assertion is not consistent with the
mode model of Figure 5.10|because the mode model has no valid configuration that
includes both mwv3 and mv6. Interface assertions that also specify or assume mode
switches must additionally conform to the mode transitions defined in the mode
model. Similar constraints must hold if an interface assertion references a mode as
an output.

Function Specifications by State Machines

A function specification associates a function with a behavior that includes and ful-
fills all desired functional requirements related to that function. We introduce I/0O state
machines as model type to represent the full formal characterization of a function
specification as introduced in Section That means, a state machine describes
a syntactic interface and an associated interface behavior. While functional require-
ments and the model types we introduced to represent them only provide extracts
of desired behavior, we introduce function specifications to progress towards a more
complete functional system specification. Figure shows a schematic representa-
tion of a function specification that is related to the interface assertion of Figure
and the MSC of Figure

A function specification defines an interface behavior that needs to fulfill all associ-
ated interface assertions and MSCs. For an associated interface assertion this means
that there is no execution of the function specification behavior that violates the logic
property stated by the interface assertion. In other words, the state machine specifi-
cation is a model for the logic formula. Fulfilling an associated MSC means that the
MSC specifies a valid execution trace of the function specification. To match the exe-
cution trace defined by an MSC with the function specification, ingoing and outgoing
messages of the system role in the MSC are mapped to input and output messages of

67



5.1. Artifact Model

the function specification. Conditions, expressed in the MSC by a hexagon, reference
modes and are mapped to input or output ports of the function specification depend-
ing on whether they are conditions of the environment or the system. The MSC in
Figure for example, induces a function specification interface with one input
port (UI) and two output ports (UO and M2). Additionally, the function specification
must specify behavior that is consistent with the mode model, i.e., only relies on and
produces sequences of valid mode configurations. Figure[5.15 provides an overview
over the behavior modeling artifacts and their relations.

Function specifications are also used to interpret a function hierarchy formally. As
described in Section a function hierarchy is a structure of functions from the
function list with additional dependencies between them. Function specifications
provide the possibility to interpret this structure formally by associating a function
specification to each function of the function hierarchy. The dependency relation in
the function hierarchy is interpreted as communication between functions via mode
channels. The subfunction relation in the function hierarchy is interpreted as compo-
sition of function specifications (composition as introduced in Section [2.2.T).

5.1.4 Relating RE Artifacts to System Architecture

The function architecture and the associated function specifications serve as system
specification. The functionality described in the specification must be realized by the
implemented system. An implemented system is a solution for the system specifica-
tion. This solution contains an architecture that describes the design of the implemen-
tation. We differentiate between a component architecture (see Section [2.2.2), which
describes the internal logical structure of a solution and a technical architecture (see
Section [2.2.2), which describes the technical structure of the solution in terms of the
target execution platform. In the following, we show how the RE model types are
related the component architecture. The connection between the component archi-
tecture and its deployment to a technical execution platform is not in the scope of
this thesis/]

We represent the component architecture of a system by a component diagram. After-
wards, we connect the function specifications to the component architecture by a refine-
ment specification, which is introduced later.

Component Diagram We model the component architecture of a system by a hi-
erarchy of communicating components. Components have typed ports, which de-
scribe the syntactic interface of the component. Ports can be connected by channels
to specify a message transmission between components. We represent a component
architecture by a component diagram. Figure shows a schematic representation
of a component diagram. In the figure, the system architecture consists of compo-
nents C'y, Cy, and Cs. For each component in the component diagram, we need to
provide a component specification that, similar to a function specification, describes the
interface behavior of a component by an executable specification technique, such as
state machines, specification tables, or code specifications.

Details on the relation between component and technical architecture are, for example, given
by Kugele|[2012] and |Voss and Schétz|[2013].

68



5.1. Artifact Model
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Figure 5.15: Function specifications incorporate the behavior defined by textual property
descriptions, scenario descriptions, and their formalizations.
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Figure 5.16: Schematic representation of the model type component diagram representing the
component architecture.

Side Note: On the Difference between Function and Component

A fact that is sometimes confusing is that we use the same modeling technique to
describe functions and components. Both are described by a syntactic interface and
an interface behavior that is modeled, for example, by a state machine. Functions are
part of a function architecture and components are part of a component architecture.
Both structures are constructed by parallel composition of function specifications or
component specifications respectively. Both structures address the same scope (the
current system under development). However, methodically there is a huge difference
between a function and a component. A function describes distinct behavior from
a user’s point of view. That means a function behavior is defined, in general, over
interactions between the system and its environment. A component, on the contrary,
is a part of a solution structure that realizes/implements the functions. That means
a component may have a system-internal interface that does not correspond to in-
teractions between the system and its environment at all. For example, we consider
the airbag function as a function of a car control system because it describes a set of
interactions between the control system of the car and its environment. If, for the
realization of the airbag function, it is necessary to aggregate a set of computed val-
ues at some point, we may model this aggregation as a solution component. This
component however, has no direct interactions with the environment. It is purely
system-internal and describes a part of the solution concept. A user would never
consider this value aggregation component as a function of the system. An extreme
case of this differentiation can be observed when considering a multifunctional sys-
tem that is implemented by a layered architecture (cf. [Taylor et al., 2009]). In such a
system, each function crosscuts the whole component architecture. Functions and
components are in an n:m relation (see Figure[5.17).

Relating Function Specifications and Component Architecture

As both, the components in the component architecture and the function specifica-
tions in the function architecture rely on the same modeling techniques it is possible
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Figure 5.17: In a layered architecture, functions crosscut the whole architecture. Functions and
components are in an #n:m relation.

to relate them to each other by their interface specification. However, since the syn-
tactic interface of a function specification and the component architecture may not
match exactly, for example due to different levels of abstraction, they possibly need
to be translated. For this purpose, we create a refinement specification that defines the
relation between the interface behavior of the component architecture and that of a
function specification.

Refinement Specification A refinement specification translates between interac-
tions of a function specification and interactions of a component architecture. There-
fore, the input/output channels of the component architecture are related to input/
output channels of a function specification. Typically, beyond simple channel map-
pings, a conversion of data types has to be carried out to compensate for different
levels of abstraction (cf. [Mou and Ratiu, 2012]).

To relate a function specification to the component architecture, we map the inputs
of the function specification to the inputs of the component architecture (represen-
tation function) and the outputs of the component architecture to the outputs of the
function specification (interpretation function). Figure illustrates this mapping.
In model-based testing these refinement functions are also known as abstraction and
concretization functions [Prenninger and Pretschner| 2005].

Relating Modes and Architecture A special case of refinement is the refinement
of mode inputs or mode outputs of a function specification. These ports of a func-
tion specification do not have a direct counterpart at the interface of the component
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Figure 5.18: A refinement specification translates inputs of a function specification F to inputs
of a component C' by a representation function R, and outputs of the component
to outputs of the function specification by an interpretation function I.

architecture because they model the interaction between functions and are thus not
part of the black-box interface of the composed system specification. To be able to
map the mode channels of a function specification to the component architecture, we
need the concept of a functional white-box diagram.

Functional White-Box Diagram A functional white-box diagram is a projection of
the component diagram to a subset of components that contribute to the realization
of one function. For the creation of a functional white-box diagram, this relation
between functions and contributing components needs to be defined or computed
beforehand. Figure gives an example of a functional white-box diagram. In
the figure, the channels are arranged in a way that channels of the original black-
box interface of the system are denoted on the left and right border of the functional
white-box diagram. We call these primary channels. Channels that are internal chan-
nels in the original component diagram are denoted on the top and at the bottom
of the functional white-box diagram. This notation helps us to explain the mapping
between a function and its functional white-box diagram in the following.

A functional white-box diagram itself is again a component diagram specifying an
interface and an associated interface behavior. Thus, we can define a refinement
relation between a function specification and its functional white-box diagram by
mapping primary inputs and outputs of the function specification to primary inputs
and outputs of the functional white-box diagram and mode inputs and outputs of
the function specification to internal inputs and outputs of the functional white-box
diagram. Figure[5.20]shows the refinement of modes for the example of Figure[5.19]

It is important to note that the functional white-box diagram of a function specifica-
tion is not uniquely determined by the function specification. It is rather a design
decision to determine the logical components that contribute to the realization of a
function.
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Figure 5.19: Example of a functional white-box diagram as a projection on the component
diagram to the function F.
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Figure 5.20: Mode refinement relation of function specification F' with mode channels M;
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5.1.5 Summary: Artifact Model

In this section, we introduced an artifact model that relates the concepts of our se-
mantic model to model types that we use to describe them. The relations between the
semantic concepts are reflected and expressed by the model types. We defined these
model types to systematically develop, capture, and analyze the semantic content of
the system modeling theory. This artifact model integrates a formal framework for
the specification of multifunctional systems into model types that are used in our
model-based requirements engineering methodology. The artifact model is indepen-
dent of the development process by which the models are created. The following
section of this chapter details the role of these artifacts in a development process.

5.2 Process Integration

In this section, we focus on the role of the presented artifacts in a development pro-
cess and the benefits for different development activities. We illustrate the role of
the artifacts and the activities associated with them by relating them to the V-Model
development lifecycle. We consider the function architecture with associated func-
tion specifications together with the mode model as system specification and call this
the functional architecture. Figure shows a V-Model including this functional ar-
chitecture that serves as system specification, and development activities related to
it. The presented artifact model supports these activities, for example, by enabling
(semi)automated analysis of them. We show how the presented artifacts support
the validation of the system specification (Section[5.2.1), the assurance of consistency
within the system specification (Section[5.2.2), the verification of the system architec-
ture against the system specification (Section , the verification of the integrated
system against the system specification (Section 5.2.4), and the possibility of integrat-

ing system specification and safety analysis (Section[5.2.5).

5.2.1 System Specification Validation

Validating a system specification means assuring that the specified requirements cor-
respond to the actual needs of the stakeholders. The presented artifact model sup-
ports this activity by enabling a validation of the system specification by simulation.

The purpose of simulating the system specification is to ensure that the specified
requirements are complete and correct with regard to user intentions [Davis, [1982].
Specification simulation requires an executable model of requirements (i.e., a pro-
totypical representation) and embeds this executable model into a simulation envi-
ronment. In the literature, there are two notions of simulation: Simulation and an-
imation. Simulation is an execution of the software model, whereas animation is a
visualization, in a suggestive form, of the simulated model in its environment [van
Lamsweerde} 2009]. Davis| [1982] compares a simulation with an interactive termi-
nal (or console) that presents some textual output and accepts inputs by the user.
However, in some cases, this type of simulation is also referred to as requirements
animation [Kazmierczak et al., [1998; West and Eaglestone, [1992]. On the other hand,
Pohl|[2010] presents what the author refers to as requirements animation or prototyp-
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Figure 5.21: The role of the functional architecture serving as system specification in the
development process.

ing. This approach is akin to the graphical simulation model presented by |Acosta
et al][1994]. Hence, the animation approaches taken by Pohl [2010] and [Acosta et al.

1994] mainly describe an approach to visualize the system behavior.

According to Jones, requirements validation by specification simulation is the most
effective method to reveal errors in specifications 11998]. For specification sim-
ulation, an executable representation of the system specification and its environment
is required. We therefore need a formal specification of what we want to check for
adequacy. This specification must be executable or transformable into an equivalent
executable form (cf. [van Lamsweerde, 2009]). In our methodology, this means that
the function specifications have to be defined in terms of an executable description
technique such as state machines, code specifications, or tabular expressions.

The application of our RE artifact model allows performing specification simulations
under the stated preconditions. Scenario descriptions and MSCs are used to specify
validation scenarios, which can be discussed with the stakeholders. Scenario enact-
ment tools can execute these validation scenarios and show the results of interactions
along timelines in a visual form.

The function specifications of the function hierarchy can be simulated if they are de-
scribed by executable specification techniques. Due to the specified composition op-
erator for function specifications, it is possible to simulate only parts of the function
hierarchy, showing also the results of the interplay between different functions.

5.2.2 System Specification Consistency

One advantage of the introduced artifact model is that it explicitly defines the rela-
tionship between model types and description techniques. In some cases, the con-
sistency of these relationships can be assured by precise analysis techniques. Espe-
cially, if these analyses can be performed (semi)automated, we expect a great impact
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on artifact consistency over the whole development lifecycle. In the following, we
introduce a set of activities to ensure a consistent system specification.

Manual Review of Use Case Tables, Scenario Descriptions, and MSCs As de-
scribed in the artifact model, use case tables and scenario descriptions are structured
but still informal artifacts. That means the ability to check consistency between
use case tables, scenarios descriptions, and their transformation to MSCs automat-
ically is limited. Therefore, manual reviews are necessary to check the consistency of
these three artifacts. The properties that need to be assessed in the reviews directly
result from the artifact relations defined in the artifact model, for example:

Between a use case table and a scenario description:

e Does every scenario description start with the same precondition and trigger
as stated in the use case table?

e Does every scenario description end with the minimal guarantee as stated in
the use case table?

e Are the actors of a scenario description step mentioned in the use case table?
Between a scenario description and its MSC:

e Is every step of the scenario description translated to at least one message in
the MSC?

e Are all actors of the scenario description translated to roles in the MSC?
e Is the source of an MSC message the actor of the associated scenario step?

Note that each change in a use case table, a scenario description, or an MSC has
to undergo a (regression) review. The process of deriving formalized requirements
models from use cases tables may also be assisted by automated approaches. Sawant;
et al|[2014], for example, introduce an approach to derive process diagrams and an
ontology from textual use case descriptions using methods based on computational
linguistics. The derived process diagrams are very close to scenario descriptions and
thus may be translated into MSCs. However, these approaches rely on a consistent
use of natural language and may even restrict its use. Therefore, we advise to per-
form manual reviews of this step even if (semi)automated approaches are used for
deriving formalized requirements models.

Manual Review of Textual Property Descriptions and Interface Assertions
Similar to the validation of use cases and scenarios against their formalization as
MSCs, informal textual property descriptions have to be validated against their for-
malization as interface assertions. This process can also only be automated to a lim-
ited degree, which is why manual reviews are necessary to check the validity of the
formalization. The properties that need to be checked in the reviews directly result
from the relations defined in the artifact model, for example:

e Is every predicate (i.e., atomic assertion) of the formalization also mentioned in
the informal textual property description?
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e Is every assertion that is mentioned in the textual property description trans-
lated to a predicate (i.e., atomic assertion) of the formalization?

e Is every execution sequence implied by the temporal logic formula intended by
the informal textual property description?

e Is every intended execution sequence of the informal textual property descrip-
tion implied by the temporal logic formula?

Especially the last two properties are hard to check without a structured procedure
that may be supported by an appropriate tooling. Kof and Penzenstadler| [2011], for
example, propose a tool-supported validation of formalizations based on feedback.
A tool generates exemplary execution sequences implied by the formalization and
an analyst assesses whether these are intended or not.

Automated MSC Feasibility Checks between MSCs and Function Specifications
As described in the artifact model, a function specification must fulfill all MSCs re-
lated to that function specification. More precisely, an MSC provides a sequence of
messages that are exchanged between the system and its environment. The function
specification must reflect this sequence of messages, i.e., it must be a valid execution
trace of the function specification. We automatically check this property by an MSC
Feasibility Check. This check transforms the sequence of messages specified by the
MSC into a logical proposition and uses a model checker to evaluate whether the
function specification is a model for the logical proposition. If so, the model checker
provides an execution of the function specification as evidence. The transformation
of MSCs to logical propositions is described, for example, by Broy, [2005].

Automated Model Checking between Interface Assertions and Function Speci-
fications To check whether a function fulfills all interface assertions related to it, we
apply model checking techniques (cf. [Clarke et al., 2005]). This is possible since tem-
poral logic formulas are used to describe the behavior of an interface assertion, and
function specifications can be transformed into a labeled transition system [Keller,
1976]. Similar to the MSC feasibility check, the model checker evaluates whether the
function specification is a model for the temporal logic formula. If this is the case,
the function specification is consistent with the interface assertion. If not, either the
function specification or the interface assertion is incorrect and must be changed.

5.2.3 System Architecture Verification

Given a refinement relation specification between a function specification and the
component architecture, we can automatically verify that the behavior of the compo-
nent architecture is a refinement of the function specification.

Automated Refinement Test between Function Specification and Component
Architecture The function specifications serve as partial specifications for the sys-
tem behavior. In Section we showed how this specification is connected to
the component architecture of the system by a refinement specification. A refinement
test ensures that the system behavior actually refines the specification (cf. [Mou and
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Ratiu, 2012]). In a refinement test, test cases are automatically generated from the
function specification. Each test case provides a valid input/output relation given
by the function specification. The test cases are then automatically translated to test
cases for the component architecture by means of the refinement specification as de-
scribed in Section The test cases are executed on the component architecture
and the output results are afterwards translated back to the function specification
level and compared to the output results of the original test case. If the results of the
test case execution deviate from the function specification, the component architec-
ture is not correct with respect to the function specification.

5.2.4 System Implementation Verification

The test cases derived from the function specifications are not only used to test
whether the component architecture is a correct refinement of the system specifica-
tion, but they are also used to test the actual implemented system. This resembles the
idea of model-based testing, which is to use explicit behavior models to describe the
intended behavior. Traces of these models are interpreted as test cases for the imple-
mentation: input and expected output. The input part is fed into an implementation
(the system under test), and the implementation’s output is compared to that of the
model, as reflected in the output of the test case [Prenninger and Pretschner, 2005].

Our artifact model supports model-based testing in several ways. First of all, we use
test cases derived from function specifications to test the correct implementation of
single functions in an integrated system. The test case generation and execution can
be performed completely automated based on the executable function specifications
and a refinement relation to the implemented system.

In addition to those function tests, also function integration and dependency tests
can be performed. These tests ensure that the integration of a set of functions in one
system yields the desired properties and behavior. Due to the explicit modeling of
function dependencies by means of mode channels, the test case inputs trigger also
possible mode switches that may influence the other functions, which then react ac-
cording to the switched mode. The resulting outputs reflect specified behavior that
results from the integration of a set of functions. The specified function dependen-
cies can also be exploited to create test cases, which employ a specific set of mode
switches or affect a large set of different functions.

In our methodology, test cases are derived directly from the specification of require-
ments and thus can be traced back to specific properties or use cases. A change in
the requirements accounts for a change in the specifications. In a process, where test
cases are derived from the specification models, the test cases can be updated auto-
matically. Thus, specification and tests are always consistent. A third point is that
test coverage metrics can be applied to the coverage of specification models. Thus, it
is possible to assess the amount of requirements that are assured by a test case.

5.2.5 Safety Analysis Integration

Functional safety assurance is the process of proving that the system under develop-
ment can do no harm to its environment. Many embedded systems are safety-critical
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as they directly influence physical objects that may exhibit hazardous behavior to
their environment. There are several applicable standards for developing safety-
critical electronic systems, such as the IEC 61508-3 [IEC, |1998] or the ISO 26262 for
the automotive sector [ISO, 2011]. They prescribe activities and techniques that have
to be used to build a safety-critical system. By this, the process aims at a clear argu-
mentation, why a system cannot harm its environment. A safety case, for example,
is a structured line of arguments, which shows that the system under consideration
is safe. It addresses the difficulty of combining a large variety of information needed
to form this argument [Wagner et al.,[2010].

A difficult task during the functional safety assurance procedure is to assess the con-
sequences of a failure (both sporadic hardware failures and systematic software fail-
ures) to the behavior of the software and the resulting behavior of the system. There-
fore, it is necessary to have a clear understanding of system behavior in the presence
of failures.

The model types and artifacts presented in this thesis can be extended by modeling
failures explicitly as part of the behavior. A safety requirements, such as “event a and
event b must never occur simultaneously”, is formalized as an interface assertion and
needs to be fulfilled by a function specification. Thus, function specifications not only
capture the desired functionality but also describe conditions and constraints that
have to be fulfilled to prove that the overall system is safe. Furthermore, it is possible
to enrich function specifications to also model and specify the behavior under the
influence of failures as illustrated in the following example: A safety goal describes
the desired behavior of a system in the presence of a failure. This safety goal is
specified by a set of observations between the system and its environment. To specify
this safety goal, it is necessary to extend the interface description of the system by
additional failure stimuli. We get an interface description that expresses relations
between operational inputs and outputs as well as information about failures and
their consequences for the behavior.

The introduction of a mode model supports the specification and elicitation of haz-
ardous situations, especially when these arise from the interplay of different func-
tions of a system. Based on a mode model, safety goals, such as the mutual exclusion
of two modes, can be formulated and it can be checked whether these conditions are
tulfilled by the composition of all functions in a system.

Enriching a purely functional specification model with information about failures
leads to the notion of rich specifications [Damm et al., 2005]. In rich specifications,
extra-functional aspects, such as failures, timing conditions, or availability informa-
tion (cf. [Junker and Neubeck, 2012]]), are added to the function specification. This
makes analyses, such as functional safety assessments, more precise and expressive.

5.2.6 Summary: Process Integration

In this section, we integrated the artifact model that was introduced in Section
into the V-Model development lifecycle. This integration illustrates the role of the ar-
tifacts in development activities that profit from the application of the artifact model.
More specifically, we showed how the artifacts enable the assurance of a valid and
consistent system specification, the verification of the system architecture against this
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specification, and the support for safety analyses. By this contribution, we ensure
that our artifact model has clearly defined relations to subsequent activities in a de-
velopment process. In the problem statement of this thesis (see Section[I.2), we stated
this integration as an important property for the adoption of the artifact model in in-
dustrial practices. The artifact model and its process integration together form our
RE methodology.

In a concrete development process, the RE methodology needs to be instantiated
based on the system to be developed and its development context. This instantiation
has an impact on the artifact construction and analysis procedures that are necessary
and possible. In the following, we present two case studies that show and evalu-
ate two instantiations of our RE methodology (1) in a scenario-driven requirements
engineering context and (2) in a property-driven requirements engineering context.
These case studies explore the possibility to apply our artifact model for different
styles of eliciting and documenting requirements. We will see that, depending on the
style, the artifact construction and analysis procedures differ, but for both styles, we
were able to end up with a formal and model-based functional system specification.

5.3 Case Study: Scenario-driven Requirements
Engineering

In a concrete development process, our proposed RE methodology needs to be in-
stantiated to fit the characteristics of the system under development and the demands
of the development context. In a first case study, we instantiate our methodology in a
scenario-driven RE context and assess its applicability, benefits, and limitations. In a
scenario-driven RE approach, requirements are mainly specified by eliciting desired
usage scenarios. We decided to take a scenario-driven RE approach for the study
object based on the available information about the system.

5.3.1 Study Context: Scenario-driven Requirements Engineering

Scenarios have attracted considerable attention in RE. As discussed by Sutclitfe
[2003], scenarios play an important role to stimulate the imagination of the designers.
Thus, they help in guiding thoughts, and supporting reasoning in the design process.
Scenarios cannot explicitly guide a designer towards a correct model of the desired
system. However, they play a key role to start all modeling and design [Misra et al.,
2005]. The main purpose of developing scenarios is to stimulate thinking about pos-
sible occurrences of these, assumptions relating these occurrences, possible opportu-
nities and risks of a scenario, and courses of action [Jarke et al.,|1998].

The advantage of a requirements engineering approach based on scenarios lies in the
way the scenarios ground argument and reasoning in specific detail or examples, but
the disadvantage is that being specific loses generality. Scenarios in the real world
sense are specific examples. The act of analysis and modeling is to look for patterns in
real world detail, then extract the essence, thereby creating a model [Sutcliffe, 2003]].

For a scenario-driven requirements engineering, we instantiate our model-based RE
methodology in a way that, starting from functions described by use case tables,
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a stepwise formalization of functional requirements via scenario descriptions and
MSCs is enabled, which are summarized in function specifications that are finally
linked to the component architecture of the system.

5.3.2 Goal

This case study follows the goal of evaluating the applicability, benefits, and limita-
tions of instantiating our model-based RE methodology in a scenario-driven require-
ments engineering context.

5.3.3 Study Object

We applied the methodology during two consecutive master-level practical courses
on model-based engineering for students at our university. The task of the stu-
dents was to develop the control software for a canal monitoring and control sys-
tem (CMCS). We took the requirements description of this system from a public case
study that was used in the 2011 Workshop on Model-Driven Requirements Engineering
(MODRE The only available source of requirements was a requirements specifica-
tion document that consisted of a system overview, two descriptions of desired usage
scenarios, and a domain model. We classified this as a scenario-driven RE context.

The Canal Monitoring and Control System

The system’s purpose is to control a system of canals on which ships are cruising. To
surmount a difference in water level, a canal is equipped with a lock. A lock consists
of two lock gates and two valves that are used to balance the water level. A second
component in the canal system is a low bridge. In order for a ship to pass the bridge,
it needs to be opened.

The CMCS tracks the ships that cruise on the canals and controls bridges and locks
such that ships can pass. In the original requirements document, the system was
meant to handle a flexible canal topology. However, to simplify the development
task, we fixed a canal topology with only one lock and one bridge. Furthermore, we
included only two ships into the case study. The topology is depicted in Figure

5.3.4 Study Execution

The overall 15 students that participated in the two courses were divided into two
groups in both courses. The first group took the role of the requirements engineers,
while the second group was responsible for the system architecture (the architects).
The task of the requirements engineers was to document functional requirements and
to formalize them as use case tables with scenarios descriptions, MSCs, and function
specifications. They additionally created the system specification in terms of a func-
tion architecture and a mode model. The architects developed the component archi-
tecture and created the refinement specifications between the functions and the com-

Shttp://csergl.site.uottawa.ca/modre2011/
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Figure 5.22: The topology of the canal system includes a lock with two lock gates (bottom of
the figure) and a low bridge (top of the figure). The low bridge and the lock are
equipped with traffic lights, motors, and valves.

ponent architecture as described in Section Both groups together performed
the refinement tests and, in case of test failures, decided on the actions to be taken.
The created artifacts were continuously reviewed by the course supervisors.

The system was developed incrementally. As two main functions, we identified con-
trolling the bridge and controlling the lock. The requirements engineers and the
architects worked in parallel. While the requirements engineers documented and
formalized the requirements, the architects came up with a first rough architecture.

5.3.5 Instantiation of the RE Methodology

To apply the artifact model in a scenario-driven requirements engineering context,
we instantiated and tailored the artifact model, and provided a concrete represen-
tation. Based on the requirements document given as input for the case study, we
used only a subset of model types from the artifact model described in Section
The process we took in this case study to create and verify artifacts is depicted in
Figure The figure shows the order in which we created artifacts of the artifact
model (solid arrows) and checked their consistency (dashed arrows). A detailed de-
scription of this study execution process is given in the following.

Step 1: To set the scope of the project, the course supervisors defined a function
list that contained the functions Pass Bridge and Pass Lock. We extracted those as
functions because they were stated as “use cases” of the system in the original re-
quirements document.
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Figure 5.23: Study execution process taken in the scenario-driven case study.
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Use Case
~ General « Detail
General information Detail infermation
1D | (02) Scope (c]
Type  UseCase w
Title  Pass Bridge
Description | A watercraft wants to pass a bridge. CMCS is aware of that and Actor(s] | Captain 2
raises the bridge (if needed). Transponder
CMS signals the watercraft to pass the bridge. . Shi t the entry/exit it of a low bridge.
The watercraft passes the bridge and CMCS lowers the bridge. Trigger(s) |Ship armves st the entry/et point of a low bridge @
If there are a lot of watercrafts, they will be queued up (with FIFO O Watercraft]Position
approach) and the bridge closes after the last one.
Precondition | Low Eridge is currently lowered o
Rationale | There might be a low bridge (or more) on the way, so the
watercraft needs to pass it.
Input(s) =]
O Watercraft1Pasition
O Watercraft2Position
Author  Miroslav, Linnea, Alex
Source Qutput(s) <]
Status [In Analysis v @ MotorControlBridge
@ TrafficLightControlBridgeRight
Pricrity | High - Must-be © @ TrafficLightControlBridgel ft
Todo
Minimal guarantees | The bridge is lowered and traffic light is set to red. o
Success guarantees Ship passed bridge, bridge is lowered, lights are red. ')

Figure 5.24: Use case table for the function Pass Bridge.

Step 2: The first step that the students performed was to define a mode list from the
given input document. For this purpose, the students examined the input document
and searched for information that characterize operational states of the system or its
environment. They transformed this information to items of the mode list defining
modes and their mode values.

Step 3: As next step, the students transferred the information given in the input
document with respect to the two functions into use case tables and documented them
in the tool we used. Figure shows the use case table for function Pass Bridge.

Step 4: From the use case tables, the students started to define scenario descrip-
tions that describe exemplary usage scenarios related to the functions. Usually, this
included one success scenario description and a set of alternative scenario descrip-
tions. Figure shows an example of a success scenario description for the function
Pass Bridge.

Step 5: At this point in the process, the students performed a first consistency
check between the artifacts they created. They compared the use case tables and
scenario descriptions with the mode list they created in step 2 to find references be-
tween them. For the use case tables, this includes a relation of the statements in the
trigger, precondition, and guarantee fields to the modes of the mode list. In the scenario
descriptions, each step was investigated for conditions or actions related to a mode
of the mode list. If necessary, the students extended the mode list and aligned the
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 Qverview

Mame | Success scenario - Pass low bridge

Success scenaric

« Steps
Step  Action
1 The transponder sends that the watercraft wants to pass the bridge (segment C).
2 CMCS fully raises the low bridge taking the traffic on it into account.
3 CMCS switches the traffic light on the low bridge to green.
4 The transponder sends that the watercraft has passed the bridge (segment E).
5 CMCS switches the traffic light on the low bridge to red.
G CMCS fully lowers the low bridge.

Figure 5.25: Success scenario description for the function Pass Bridge.

use case tables and scenario descriptions with the mode list. The tool we used was
able to store and highlight these references in the textual descriptions.

Step 6: As a first step towards a more precise description of the desired system
behavior, the students formalized the informal scenario descriptions by MSCs. Fig-
ure shows the MSC that formalizes the success scenario description of the func-
tion Pass Bridge. In an MSC, the interactions between the system (CMCS) and its
environment are modeled by messages. The referenced modes are modeled by con-
ditions (hexagons) in the MSC.

Step 7: In addition to the scenario modeling and formalization, the students cre-
ated function specifications for each function based on the use case tables. The purpose
of the function specifications is to associate the functions with an executable behav-
ior that reflects the intended purpose stated in the use case table. The students spec-
ified the behavior of functions by executable specification techniques such as state
machines, table specifications, or code specifications. The syntactic interface of the
function specification is predetermined by the MSCs associated to the original func-
tion. That means the students derived the input and output ports of the function
specification by combining the input and output ports associated with the CMCS
system in the MSCs. In cases, where it was too difficult or complex to specify the be-
havior of an entire function by one state machine, the students had the possibility to
break the function down to smaller functional units that were then described by state
machines. Figure shows the function specification of the Pass Bridge function.

Step 8: To check whether the executable function specification actually fulfills the
behavior of all message sequence charts associated with the function specification,
the students applied an MSC feasibility check to verify the consistency between the
function specification and the MSC. The compatibility of the syntactic interfaces of
MSC and function specification that is necessary to perform the feasibility check was
ensured by the construction approach described in the previous step.
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Figure 5.26: Formalization of the success scenario description by a message sequence chart
(MSC).
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Figure 5.27: Example of a function specification with syntactic interface (top) and an associ-
ated interface behavior specified by an additional decomposition into subfunc-
tions (mid) and finally state machines (bottom).

87



5.3. Case Study: Scenario-driven Requirements Engineering

Pass Bridge

Watercraftl Watercraft2 Watercraft > < Lock
Tracking Tracking LockTracking Protection

Figure 5.28: Function hierarchy of the CMCS system.

Step 9: From the function specifications and the mode list, the students created
a function hierarchy by associating a function specification with each function of the
function list. In case a function was broken down to subfunctions during the creation
of the function specification, these subfunctions were added to the function hierarchy.
The function dependencies between the functions were related to modes of the mode
list. The resulting function hierarchy is shown in Figure 5.28|

Step 10: During the construction of the function hierarchy, the students extended
the model list and then started to structure and formalize the modes of the mode list
in a mode chart. This was performed based on the information given in the original
requirements document and the student’s decisions. The resulting mode chart is
shown in Figure[5.29

Step 11: The mode chart defines a set of valid sequences of mode configurations
that must not be violated by the function specifications. Otherwise, the function spec-
ifications are not consistent with the underlying mode model, i.e., either a function
specification or the mode model contains an error. To check the consistency, the stu-
dents compared the possible execution sequences of the mode channels in the func-
tion specification with the valid sequences of mode configurations from the mode
chart.

Work of the Architects: Concurrent to the specification of requirements and func-
tion related artifacts, the architects modeled the component architecture by a compo-
nent diagram (step A: 1.) and provided a behavior specification for each component
(step A: 2.). The architects started working on the basic design (i.e., a high-level com-
ponent diagram) when the first scenarios were specified. As soon as the requirements
engineers had established the first function specifications in step 7, the architects be-
gan to define refinement specifications between the function specifications and the com-
ponent architecture (step A: 3.). Figure provides an extract of the component
diagram. A continuous comparison between function specifications and component
architecture by means of refinement tests was performed from that point on through
all following changes in function specifications or component architecture.
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Figure 5.29: Mode chart of the CMCS system.
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Figure 5.30: Extract of the component architecture represented by a component diagram.

5.3.6 Study Results

Reflecting the goal of this study to assess the applicability, benefits, and limitations
of integrating the model-based RE methodology in a scenario-driven RE context, we
describe our findings structured according to these three subgoals.

Applicability

Overall, the methodology worked well and the system was successfully developed
by the students. Due to the high amount of cross checks between the different arti-
facts of requirements, specification and architecture, we have high confidence in the
correctness of the developed system.

Reoccurring Specification Patterns. During the application of the artifact model to
the study object, we observed some general patterns that were applied several times
to specify reoccurring situations.

One specification pattern was applied in situations, in which a set of function specifi-
cations influence a common output in a mutually exclusive way. In our case study;, for
example, the Lock Control subfunction of function passLock requires the lock door to
be opened when a ship is approaching, whereas the Lock Protection function required
the lock doors to be closed if the water level in the lock is currently changing. Thus,
the corresponding function specifications influence a common output LockDoorCom-
mand. This is a problem since the artifact model and the underlying modeling theory
require that the set of outputs are disjoint for each function specificationﬁ The stu-

“The use of the same output in two different function specification may lead to inconsistent specifi-
cations since functions always run in parallel and therefore may produce conflicting values for a
given output (see [Broy, 2010a]]). This is a constraint of the modeling theory compared with other
theories that, for example, allow functions to deactivate or interrupt each other (e.g., DFC [Jackson
and Zave,|1998], Activity Diagrams [Fowler and Scott, 2000]).
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Figure 5.31: A specification pattern describing two function specifications influencing a
common output in a mutually exclusive way.

dents modeled these situations using a specification pattern shown in Figure In
this pattern, the set of concurrent function specifications are supplemented by addi-
tional Merge function specifications (one for each shared output). Instead of directly
influencing the shared output, the single function specifications forward their spec-
ified value for output to the Merge function specification (via channels fIOutput and
f20utput). The Merge function specification is equipped with a formal assumption
that requires that at most one of the function specifications at a time forward a value,
while the others do not specify a value. In the figure, this is expressed by the special
value NoVal resulting in the formal assumption depicted in the figure. The func-
tions and their interactions have to be specified in a way that this assumption holds
globally. In general, this requires the introduction of mode channels (e.g., priority-
Mode in Figure [5.31). In our case study, the students integrated the mode channel
Lock between Lock Control and Lock Protection to express a higher priority of the Lock
Protection function (see Figure[5.28).

The application of this pattern can easily be extended to more than two concurrent
function specifications and multiple shared outputs. The advantage of this pattern is
that all requirements of a function, including priority over other functions, are cap-
tured in that function specification. The Merge functions, for which it is arguable
whether these actually resemble the original idea of a function as introduced in Sec-
tion are reduced to technical entities that carry no functionality that is not al-
ready contained in the function specifications themselves. The assumption of the
Merge function specification enforces that the concurrent function specifications can-
not specify inconsistent behavior with respect to the shared output.

Benefits

Correctness of Requirements. The formalization and modeling of usage scenarios
as MSCs provided precision and demanded decisions in an early stage of the devel-
opment process. Therefore, the requirement engineers uncovered several misconcep-
tions regarding the behavior of the environment very early. For example, among the
requirement engineers there was a different understanding what kind of information
the watercraft sends to the system (current GPS position or current canal segment),
which was then decided during the creation of the MSCs.

Concurrent Development of Requirements and Architecture. Due to the precise
definition of the artifact relations and their continuous assessment, concurrent de-
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velopment of requirements and architecture was supported by our RE methodology.
Changes and refinements within the requirements or the architecture were immedi-
ately checked for consistency with the related artifacts. Requirements and architec-
tural elements were linked right from the beginning. The first correctness checks be-
tween specification and architecture were applied after one fifth of the project time.
In the course of the development, the requirements and the architecture were fur-
ther refined and formalized allowing more expressive analyses to ensure the correct
relation between requirements and architecture. All artifacts were continuously up-
dated and consistent with each other. A typical situation, where our methodology
proved beneficial compared with simple informal tracing links, occurred, when the
architects had to change the component architecture due to a change in the require-
ments of one function. In many cases, the changed component architecture fulfilled
the altered requirements, however, also introduced bugs with respect to some other
function. These bugs were revealed by the refinements tests and led to the revision
of other requirements in many cases, showing that information flows not only from
requirements to architecture but also in the other direction.

Explicit Design Decisions. Another aspect of the artifact relations is that they ex-
plicitly express the design decisions taken during development. Each artifact carries
information that originates from information of another artifact. The relation links
between the models document the design decisions made at the transition between
artifacts and make them explicit. For example, the transition from the function spec-
ification to the component architecture is captured by the refinement specification.
Rather abstract signals like “a ship approaches a bridge” are translated to concrete
logical signals like “BridgeSensor sends a signal”. The design decision, to express the
event of the requirement by this specific sensor input, is explicitly documented in the
refinement specification between the function specification and the component archi-
tecture. This was especially helpful for assessing whether a specific requirement is
fulfilled by the chosen architecture. The same applies for the transition of an informal
step in a scenario description to a formalized sequence of messages in an MSC.

Limitations

Scalability. Our approach aims at a modular specification that allows breaking down
the functionality of a system into smaller parts and assessing them individually. It is
still an open question whether analysis procedures and checks can be performed in a
reasonable amount of time. The previously described system consisted of two func-
tions with an overall of 10 scenario descriptions that were refined into MSCs. Our
students were able to model all requirements related to the functions in the original
specification by means of our methodology. We additionally elicited 17 further re-
quirements that were first formalized separately by means of temporal logic expres-
sions and then mapped to the two functions. 3 out of the 17 additional requirements
could not be formalized as an interface assertion because they were too abstract (i.e.,
an additional clarification step with the stakeholder is necessary). The most com-
plex function specification of the system had an overall state space of 10,976 states.
However, the ability to decompose this function specification to a set of subfunctions
made it possible to model this function specification by a set of subfunctions with
state machines having a maximum of seven states. The most time consuming auto-
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mated analyses were the MSC Feasibility Checks that lasted up to 100 seconds for an
MSC with 36 messages.

Missed Reuse Opportunities. A problem was that the function specifications got
very complex. Therefore, the requirements engineers started to structure them hi-
erarchically, which resulted in the above-mentioned subfunction hierarchies. This
seemed to be problematic at first, as apparently the work for structuring the func-
tionality was done twice, in the function specification and in the component archi-
tecture. However, we noticed the rationales behind the structuring were quite differ-
ent between requirement engineers and architects. Where the requirement engineers
mainly strove for ease of understanding, the architects had goals such as high reuse
or an efficient deployment in mind. Whether parts of the function architecture can be
(re)used for the component architecture is a question that needs further investigation.

5.3.7 Threats to Validity

A threat to the internal validity is that the notion of correctness in the end was deter-
mined by the course supervisors. We had no opportunity to assess the validity of the
developed system with the actual stakeholders. We tried to mitigate this threat by
focusing on the given requirements document and trying to be as close to the given
requirements document as possible. Another threat to the internal validity is that
the used requirements document was designed to be used as a basis for discussion
in an international workshop. It therefore might not describe a real system and the
document might be created with the goal to facilitate discussion rather than resem-
bling real requirements. We have not discussed this threat with the authors of the
requirements document; however, we have not found any evidence or suspicious
requirements that support this threat.

5.4 Case Study: Property-driven Requirements
Engineering

To broaden our experience in applying the proposed RE methodology, we instanti-
ated the methodology in a second case study in a property-driven RE context and
assessed its applicability, benefits, and limitations. In a property-driven RE context,
requirements are mainly specified by independent statements about desired system
behavior. Sometimes, these statements are structured with respect to some criteria.
We classified this second case study as having a property-driven RE context due to
the characteristics of the available information about the study object.

5.4.1 Study Context: Property-driven Requirements Engineering

Specifying requirements by independent properties has positive impacts on the RE
process [van Lamsweerde, 2001]:

e Attaining completeness of the requirements. Properties can support the right
criterion for the sufficiency of the completeness.
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e A property refinement tree can provide links to trace technical requirements
from strategic concerns. This helps to explain the requirements to stakeholders.

e At the time of requirement elaboration, requirements engineers are confronted
with various alternatives to be considered. In such situations, property refine-
ments can help in exploring alternative proposals and thereby providing the
most appropriate abstraction.

For a property-driven requirements engineering, we instantiate our RE methodol-
ogy in a way that, starting from functional properties described by textual property
descriptions, a stepwise formalization of functional requirements via interface as-
sertions is enabled, which are summarized in function specifications. Developing
a component architecture and linking the function specifications to this architecture
was not part of this case study.

5.4.2 Goal

This case study follows the goal of evaluating the applicability, benefits, and limita-
tions of integrating our model-based RE methodology in a property-driven require-
ments engineering context.

5.4.3 Study Object

We applied the RE methodology in a one year industrial collaboration with Siemens
Rail Automation. The goal of the project was to apply and evaluate a seamless
model-based development approach in the context of rail automation. Therefore,
we modeled and formalized an extract of a train control system starting from in-
formal natural language requirements to implementation code in a stepwise process
and assessed the benefits and efforts with Siemens. The Trainguard MTE] is a mod-
ern modular automatic train control (ATC) system that offers many features, such as
train supervision and execution and control of the entire range of railway operations.
It furthermore supports different levels of train control automation depending on the
characteristics of the train and the track segment. From this system, we decided to
develop the platform screen doors function.

The Platform Screen Doors Function The Platform Screen Doors Function (PSD)
is one feature of the Trainguard MT system. Its purpose is to supervise passenger
exchange at platforms. The supervision of train doors is provided by the feature
on each level of automation, such that, for example, it is not possible to activate
the propulsion if the train doors are still open. Some platforms are equipped with
additional doors mounted at the platform, which only open if there is a train in the
station. The purpose of the feature is to monitor and control these platform screen
doors (PSDs) to synchronize the opening and closing of train and platform screen
doors. Figure shows a typical scenario, in which a train enters a station and the
train and platform screen doors open and close simultaneously.

5http: //www.siemens.com/press/pool/de/feature/2013/infrastructure-cities/
mobility-logistics/2013-02-trainguardmt/broschuere-trainguard-mt-e.pdf
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Figure 5.32: Scenario of platform screen door (PSD) control and monitoring. OPD, WMA
and OPR are specific data telegrams for communication between train and plat-
form. RAUZ is short for run authorization zone. The functionality is executed
on four controllers (WCU_ATP and PSDC1-3).
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5.4.4 Study Execution

As an input for the execution of the case study, Siemens provided two documents:
A System Requirements Specification (SRS) and a System Architecture Specification (SAS).
Both documents contained requirements with the difference that the requirements
in the SAS were already structured according to a set of subsystems and the inter-
face descriptions were more concrete and closer to the technical signals used in the
implementation.

We applied our RE methodology to the requirements specified in both documents
and proceeded to a system specification consisting of a function architecture with
associated function specifications and a mode model. The project was conducted
over a duration of six months with four researchers working on the modelﬁ Within
the six months, we had three extensive full-day workshops with experts of Siemens
Rail Automation. In the three workshops, we discussed and assessed the quality and
correctness of the resulting specification.

5.4.5 Instantiation of the RE Methodology

To apply the artifact model in a property-driven requirements engineering context,
we instantiated and tailored the artifact model, and provided a concrete representa-
tion. Although the study object description contained one scenario for illustration
(Figure [5.32), the requirements given in the input documents were primarily for-
mulated as functional properties the system shall fulfill. In contrast to the scenario-
driven approach taken in the last section, the requirements were not given by use case
descriptions or possible usage scenarios of the system. Instead, the requirements
were structured according to functions the system shall fulfill and stated as indepen-
dent assertions that correspond to reactions the system shall show, assuming some
situation and stimuli given by its environment. The requirements are thus indepen-
dent from each other to some extent and cannot be connected to a specific usage
scenariol]

Based on the requirements documents given as input for the case study, we used only
a subset of model types from the artifact model described in Section[5.1} The process
we took in this case study to create and verify artifacts, is depicted in Figure
The figure shows the order in which we created artifacts of the artifact model (solid
arrows) and checked their consistency (dashed arrows). A detailed description of
this study execution process is given in the following.

Steps 1 and 2:  We started by deriving an initial function list from the input doc-
uments that defined the scope of our case study. This initial list contained, for ex-
ample, the functions Door Supervision and Control and Train Departure Control. We
extracted all functional requirements related to these functions from the SRS and
SAS documents and documented them as textual property descriptions as depicted in

Figure[5.34]

The four researchers were not working full time. The effort spent was roughly 4 PM.
"For Siemens, the independence of requirements is a quality criterion.
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Figure 5.33: Study execution process taken in the property-driven case study.

Requirement 2

|~ General
General information

D | #REQ-5YS_RS-standstill_protection-03# |

Type | Requirement s |

Title |Propu|swon release |

Description | During passengers exchange propulsion release shall be deactivated. ~

For safety . the train must not start moving while passengers may leave or enter the train. ~

Author | Andreas |

Source | Systern Requirement Specification TGMT |

Figure 5.34: Example of a textual property description.
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) passengerExchange @ propulsion
(® #REQ-SYS_RS-standstill_protection-03#

If 'P" then 'Q' after at most 'N' ticks.

P: passengerExchange == true
Q:  propulsion == REQ_Propulsion_PropulsionCutOff( )
N: 1

Figure 5.35: Interface assertion with syntactic interface (top) and an associated interface be-
havior (bottom) formalizing the textual property description shown in Fig-

ure

Step 3: As third step, we formalized the textual property descriptions by interface
assertions (see Figure . In this case study, we adopted the specification patterns
of Dwyer et al.| [1999] to specify the behavior related to an interface assertion. The
result of this process is a set of interface assertions, each having a syntactic interface
and an associated behavior.

Step 4: We created function specifications by examining the syntactic interfaces of the
interface assertions and composing those in one function specification that referenced
the same or similar outputs. This integration of interface assertions into function
specifications was a design decision made by us and discussed with Siemens. For
example, we integrated all interface assertions with outputs related to the opening,
closing, and release of train doors to a Train Door Function specification. As already
described before, a function specification itself is specified by a syntactic interface and
an interface behavior. The syntactic interface of the function specification is the result
of the composition of the syntactic interfaces of all interface assertions integrated in
this function specification. Figure illustrates this integration of interface asser-
tions into one function specification. Some of the syntactic interfaces of the interface
assertions had inputs that correspond to outputs of other interface assertions. In
such cases, the models reflected a situation, where the original textual property de-
scriptions referred to each other (e.g., “If the door mode is automatic, the doors shall
be opened”). These internal references between interface assertions mapped to one
function specification represent structural information. We utilized these references
to structure the function specifications. Interface assertions that were integrated into
one function specification but referenced each other by their syntactic interface, de-
fine two separate subfunctions within the function specification. Figure shows
the decomposition of the Train Door Function into three subfunctions as a result of the
interface assertions integrated in this function specification. The interface assertions,
in this example, reference each other in three cases (doorMode, doorReleaseStatus and
releaseForced). These references represent modes of the function specification. As a
consequence of this construction approach, we are able to trace and relate each in-
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Interface Assertions Function Specification

1
1
1
1
! trainControlLevel
trainOperationMode 1
trainOperationMode
? #REQ-SYS_AS-doors_opening_train_side-01# doorReleaseCommand : g
platformSide | | platformSide
1 cabDoorOperatinghode
1 cabPermissiveDoorButton
1 .
trainOperationMode ‘ 1 Eicpping Windon Sl
r e P @ dcorhel d
#REQ-SYS_AS-doors_opening_train_side-01# dootReleaseCommand
plm‘urmsig EQSYS.AS S Bl 1
1 (3 Train Door Function
1 stoppingWindowMinus
P @ doorOpenCommand
I doorStatus
1 S
trainControlLevel 1 FEnEEi
1 movingStatus
releaseForcedByPermissiveDoorButton doorOpenCommand 1 -+
© #REQ.SYS_AS.automatic_door_opening-01# r erdlimie
doorReleaseStatus 1 stoppingPoint
dooriMode : platformPSDStatus
1
1

Figure 5.36: Integration of interface assertions into a function specification by composing
interface assertions with equal or similar outputs.

Interface Assertions

trainControlLevel

trainControlLevel trainControlL evel
trainOperationMode releaseForcedByPermissiveDoorButton
doorOpenCommand| | () releaseForcedByPermissiveDoorButton doorOpenCommand
© #REQ-SYS_AS-doors_mode-01# dootMode: p— 9 #REQ-SYS_AS-automatic_door_closing-01# #REQ-SYS_AS-automatic_door_opening-01#
corhode
cabDoorOperatingMode doorReleaseStatus

dwellTimeElapsed
doorMode

Function
. Train Door
Hierarchy Function

Door Mode Door Open Door Release
Function Function Function

doorMode doorReleaseStatus
releaseEnforced

Figure 5.37: Decomposition of the Train Door Function into three subfunctions. The three in-
ternal signals doorMode, doorReleaseStatus and releaseForced represent modes of
the function specification. They originate from the interface assertions (formal-
ized textual property descriptions).
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dwellTimeElapsed
doorMode
doorReleaseStatus

(® Door Open Function @ doorOpenCommand

trainControlLevel

releaseForcedByPermissiveDoorButton

Code Specification

if (trainControllLevel == REQ TrainControllevel ITC( ) || trainControlLevel == REQ TrainControllevel CTC({ )) {
if (releaseForcedByPermissiveDoorButton != true) {
if (doorMode == REQ DoorMode AutOpenAutClose( )) {
if (doorReleaseStatus == REQ DoorReleaseStatus Released( ) && dwellTimeElapsed == false) {
doorOpenCommand = REQ DoorCommand Open( );

¥
if (dwellTimeElapsed == true) {
doorOpenCommand = REQ DoorCommand Close( );

¥
T
else {
if (doorMode == REQ DoorMode_AutOpenManClose( )) {
if (doorReleaseStatus == REQ DoorReleaseStaotus_Released( )) {
doorOpenCommand = REQ DoorCommand_Open( );
¥
¥
¥
¥
¥

Figure 5.38: Example of a function specification with syntactic interface (top) and an associ-
ated interface behavior described by a code specification (bottom).

terface assertion to exactly one (sub)function specification as depicted in Figure[5.37
The behavior of a function specification was, in the end, modeled by an executable
specification technique, such as state machines, table specifications, or code specifi-

cations (see Figure [5.38).

Step 5: To check whether the executable function specifications do not violate any
of the interface assertions associated with it, we applied model checking to verify
the consistency between the function specification and the interface assertions. The
compatibility of the syntactic interfaces of interface assertions and function specifi-
cation that is necessary to perform model checking was ensured by the construction
approach described in the previous step.

Step 6: As described in step 4, the function specifications themselves exhibit a sub-
function structure that was induced by the interface assertions associated with that
function specification. We integrated this structure in a function hierarchy. We com-
pared the function specifications with the initial functions from the function list and
created a function hierarchy that associated the functions from the function list with
the function specifications (and added functions not considered in the initial creation
of the function list).

Steps 7 and 8: We investigated the function dependencies between the function
specifications associated with the functions of the function hierarchy to derive a
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mode list for the system. That means, we looked at each mode channel between two
function specifications and defined the type of the channel as a mode. The values
that were transmitted over this mode channel served as mode values. The result is a
mode list. From this list, we created a mode chart in which we structured the modes as
AND or OR modes and added transitions for valid mode switches based on common
sense and discussion with the domain experts from Siemens.

Step 9: The mode chart defines a set of valid sequences of mode configurations
that must not be violated by the function specifications. Otherwise, the function
specifications are not consistent with the underlying mode model, i.e., either a func-
tion specification or the mode model contains an error. To check the consistency,
the students compared the possible execution sequences of the mode channels in
the function specification with the valid sequences of mode configurations from the
mode chart.

Missing Model Types: The creation of a component architecture for the system
was not in the scope of this case study. Therefore, the model types related to the
component architecture are not part of the study execution process. Another inter-
esting aspect of this study execution process is that we did not create any artifacts
that describe the purpose and usage context of a function in detail (e.g., by provid-
ing a use case table for each function). We did not create these artifacts because the
input documents provided no explicit information on this. This was not crucial for
the execution of this case study; however, in the next chapter of this thesis, we will
discuss the relevance of such high-level descriptions for a comprehensive function
documentation.

5.4.6 Study Results

Reflecting the goal of this study to assess the applicability, benefits, and limitations
of integrating our model-based RE methodology in a property-driven RE context, we
describe our findings structured according to these three subgoals.

Applicability

System Structure Constraints. The methodology and its instantiation as described
so far is agnostic with respect to a specific scope chosen to specity, i.e., the methodol-
ogy is suitable for specifying an entire system (e.g., the whole TGMT system) as well
as for specifying a single subsystem of it (e.g., the control system of a single platform
screen door).

In this case study, we initially planned to apply the methodology to the scope of the
platform screen door function. That means, the scope of the system to be specified
is defined by the scope of the TGMT system but only the parts relevant to the PSD
function were modeled. However, during the study execution, a specific architecture
constraint became so prevalent that we integrated this constraint into the methodol-
ogy as described in the following.
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The essence of the TGMT system lies in the interaction and coordination between
the onboard system of a train and the wayside system of the track. This distinction is
so prevalent due to its physical distinction that it can be considered as an architec-
tural constraint rather than a design decision. Thus, we started breaking down the
requirements with a scope of the TGMT system to requirements with a scope of the
onboard or the wayside subsystem. These requirements were formalized by interface
assertions and two function architectures were created, one for the onboard and one
for the wayside subsystem.

Granularity of Functional Requirements. System level requirements (from the sys-
tem requirements specification) and subsystem level requirements (from the system
architecture specification) resided on different levels of abstraction. More specifically,
they differed in terms of the scope that they address and the granularity in which they
were described F]

With respect to the scope, the system level requirements describe requirements of the
entire TGMT system, whereas the subsystem level requirements refine these system
level requirements by breaking them down to requirements for the onboard and way-
side subsystems. Thus, subsystem level requirements exhibit a different scope and
introduce additional requirements considering the internal communication between
the subsystems.

With respect to the granularity, the system level requirements describe events more
coarse grained than the subsystem level requirements. For example, a system level
requirement may refer to the event Door Open, while on the subsystem requirements
level, this event is described by two events, Door Release and Door Opening, which
describe the abstract event in more detail. This refinement relation can be considered
as interaction refinement [Broy, 2010a].

We were able to apply the artifact model on both levels of granularity.

Formalization of Textual Property Descriptions. For the scope of the project, we
extracted 49 relevant textual property descriptions from the documents. From these,
we were able to formalize 39. In case we were not able to formalize a textual property
description, this was because either the requirement did not describe system behav-
ior or the requirement described real-time behavior, which was not in the scope of
the case study:.

Derivation of Function Specifications from Interface Assertions. The 39 interface
assertions were integrated into 9 function specifications (5 for the onboard and 4
for the wayside subsystem). These function specifications were further decomposed
into an overall of 13 subfunctions that were specified by behavior specifications (state
machines and table specifications).

To a large degree, the function hierarchy could be derived from the interface asser-
tions in a schematic manner as described in Section (step 4). By grouping in-
terface assertions and identifying internal communication (mode channels), we were
able to easily create the structure of the function hierarchy. The resulting function
hierarchies for the onboard and wayside subsystems are depicted in Figures [5.39
and The function hierarchy of the onboard subsystem shows seven function de-

8Teufl et al/|[2014] provide an interesting discussion about the implications of this gap (scope and
granularity) between requirements.
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Onboard
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PSD Door
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Function
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Mode
Function
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Control
Function

PSD Control
Function

Door Mode
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doorMode doorReleaseStatus trainSupervision
releaseEnforced

Figure 5.39: Function hierarchy of the onboard subsystem.

Door Strategy RAUZ Control PSD Control ATS Status
Function Function Function Function

currentDoorStrategy

Figure 5.40: Function hierarchy of the wayside subsystem.

pendencies between the functions, whereas the functions of the wayside subsystem
only exhibit one function dependency.

Figure5.41|shows the mode chart of the onboard subsystem that we derived from the
function dependencies in the function hierarchy. This representation was well suited
due to its concepts of hierarchically nested states and orthogonal regions. Hierarchi-
cally nested states are used to keep the diagram comprehensible by grouping a set
of substates to a more abstract superstate (e.g., in the figure, the superstate Operation
Modes actually contains five sub states structured in two orthogonal regions Release
Options and Door Mode). Orthogonal regions are used to model independent modes.
Independent modes exhibit an AND-semantics, which means that for each region,
exactly one state is active at a time (e.g., in the figure, the status of the Train Doors is
independent from the status of the Train Supervision mode).

Formal Verification. Out of the 39 interface assertions, we were able to verify for 31
(ca. 80%) that they are not violated by the associated function specification. In cases,
in which the verification failed, this was due to incompleteness or inconsistency of
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Figure 5.41: Mode chart of the onboard subsystem.
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the original requirements provided by Siemens, or due to disability of the tool we
used for this case studyﬂ

Benefits

Resolved Inconsistencies. Through the formalization and verification of require-
ments, we revealed requirements that, at least, needed further discussion with the
different stakeholders. We found that some requirements lacked information or as-
sumed certain properties of the context. For example, conflicting requirements of one
function were revealed when in the verification process either one interface assertion
was fulfilled or the other but never both. In these cases, additional information or
conditions must be added to the requirements such that the verification process con-
firms that a function fulfills both interface assertions.

Requirements Tracing. As mentioned before, we applied the artifact model to re-
quirements on different levels of granularity and scope (system level requirements
vs. subsystem level requirements). The formalization of the requirements as de-
scribed in the artifact model enabled defining a (formal) refinement relation between
these requirements. Therefore, we were able to verify that the function hierarchies,
which were specified on the subsystem level, are consistent with the subsystem level
interface assertions and afterwards verify that the subsystem level interface asser-
tions imply the system level interface assertions.

Limitations

Modeling Efforts. In the context of this case study, we were not able to obtain real-
istic effort estimations. This was because in the project the modeling work was done
by the tooling and method experts (academic partner) and not by the domain experts
(industrial partner). On the other hand, letting the domain experts do the modeling
would also not have produced realistic assessments about modeling efforts because,
in a realistic context, developers would have been trained beforehand in using the
tools and methodology.

Missing Guidance for Appropriate Levels of Granularity. As described in Sec-
tion[5.4.6] the requirements of the documents provided by Siemens were on different
levels of granularity. This is often the case in development projects, where there is a
requirements specification and a system- or architecture specification. The artifact model
of our methodology does not prescribe any level of granularity on which require-
ments or functions should be described. It was, for example, not clear whether we
should specify the syntactic interface and the associated interface behavior of a func-
tion specification with very technical input and output messages resembling the ar-
chitecture specification (e.g., TCL_O_Door_Release) or on a more abstract and intuitive
level resembling the requirements specification (e.g., doorReleaseCommand).

°Tool support is discussed separately at the end of this chapter.
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5.4.7 Threats to Validity

Since the study object of this case study is a system that is already implemented and
introduced in several markets, the requirements specification provided by Siemens
evolved and was influenced by the implementation and its architecture. This poses
a threat to the internal validity of this case study since the high applicability of our
methodology may be based on the requirements documents being already aligned to
a specific architecture. Additionally, the modeling of the system was not done by the
domain experts but by the experts of the methodology. This may affect the results
with respect to the applicability of the methodology. We tried to mitigate this threat
by demonstrating and assessing our proceeding with the domain experts in regular
workshops.

As this was a first exploratory feasibility study in the context of a property-driven RE
context applied in the rail automation domain, we cannot guarantee that the results
are generalizable to other systems from the automation domain or even property-
driven RE context in general.

5.5 Tool Support

In both case studies, we used the tool AutoFocus3 (AFBH to implement the entire
methodology. Requirements, function hierarchies, mode models, architecture, and
even code generation of both case studies were modeled in AF3. The figures used in
Sections[5.3land 5.4l show screenshots from the tool.

AF3 is originally a CASE tool for the model-based development of embedded sys-
tems. It supports the creation of hierarchical, component-based software and hard-
ware architectures. Components in the architecture hierarchy can be equipped with
behavior specifications, for example, using state machines, I/O tables, or code speci-
fications.

Recently, AF3 has been extended by a requirements module called MIRA [Teufl et al.,
2013]. With MIRA, requirements engineers can document and formalize require-
ments directly in AF3 and link them in various ways to the architecture. One form of
requirements that is supported by MIRA is use case tables with scenario descriptions.
The scenario descriptions can be formalized using MSCs. Furthermore, formal spec-
ifications for requirements can be developed using the same modeling techniques as
for the architecture.

Furthermore, AF3 supports all types of analyses mentioned in the case study sections
out of the box (e.g., MSC feasibility checks, refinement tests, and model checking of
temporal logic assertions).

5.6 Discussion

In the two exploratory case studies, we have seen that the proposed artifact model
is applicable to different RE approaches and application domains. The results in-

©Ohttp://af3.fortiss.org
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dicate that the application of the artifact model facilitates the revelation of implicit
function dependencies within the requirements and the explicit documentation of
them. However, the results also indicate that further work is necessary to address
the mentioned limitations experienced in the case studies, which are discussed in the
following.

One issue that occurred in the case studies was the choice of an appropriate level of
granularity on which the artifact model should be applied. Actually, in the property-
driven RE context, we applied the artifact model on two different levels of granular-
ity (see Section[5.4.6). This decision was motivated by the different levels of require-
ments granularity handled in the two input documents provided by Siemens. How-
ever, it remains an open question whether these two levels are appropriate to sup-
port development activities, and what these development activities actually are. This
calls for a study on development activities that a function specification should sup-
port and the appropriate level(s) of granularity on which the artifact model should
be applied.

A second point for discussion is the missing guidance for designing a function, which
includes the decomposition of functions into subfunctions and the specification of
their behavior by means of behavior specification techniques (e.g., state machines).
The artifact model itself does not give any guidance for that. In the case studies, we
decided case by case whether and how a function is decomposed into subfunctions
and which specification technique to apply. An open question is whether this process
can be guided to a certain extent, assuming that there are reoccurring types of func-
tional intent that can be handled in a similar way. This resembles the idea of design
patterns [Gamma et al.,1994] for function specifications.

The two issues mentioned above lead to the question, whether we can provide a
template for a comprehensive function documentation that integrates all relevant in-
formation about a function, and what these information are. In the following chapter
of this thesis, we pick up this question and provide a solution.

Another point that needs further examination is the elicitation and derivation of a
mode model. In the two case studies, the modes were defined in an ad hoc man-
ner. That means, in the first case study, we defined modes based on a document
inspection and then added modes, whenever we needed them for the modeling of a
function dependency. In the second case study, we derived the modes by their im-
plicit use in the textual requirements of the input documents. These procedures were
sufficient for describing the function dependencies in the case studies; however, we
think that a complete and consistent mode model has a positive impact also on the
development of new functions and the evolution of existing ones. Systematic elicita-
tion approaches are necessary to reach these goals. In Chapter [7} we introduce and
assess three systematic elicitation approaches for mode models.

5.7 Summary

In this chapter, we presented the integration of a formal specification framework for
multifunctional systems into a model-based requirements engineering methodology.
We defined the methodology by describing an artifact model that relates the semantic
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concepts of the formal specification framework to model types that we use to describe
them. The relations between the semantic concepts are reflected and expressed by
the model types. We highlighted the role of the resulting system specification in a
development process and showed its potential for automation.

We presented two case studies, where we applied the methodology in a scenario-
driven requirements engineering context and in a property-driven requirements en-
gineering context. The case studies showed that the methodology is feasible and al-
lows detecting inconsistencies in requirements early, especially with respect to func-
tion dependencies.

The discussion of the case study results revealed the need for additional methodi-
cal guidance especially with respect to the level of granularity on which the artifact
model should be applied and the decomposition and specification of functions. Ad-
ditionally, more work is needed on a systematic elicitation of mode models. Both
issues are subject to the following chapters of this thesis.
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Chapter

Function Documentations for
Multifunctional Systems

The application of the artifact model as described in the previous chapter revealed
missing methodical guidance when it comes to the selection of an appropriate level
of abstraction for describing functions as well as the design of a proper function spec-
ification. In the case studies presented in the last chapter, we decided case by case
whether and how a function is decomposed into subfunctions and which specifi-
cation technique to apply. If we want to introduce a comprehensive integration of
our specification approach into the requirements engineering for multifunctional sys-
tems, we must provide additional guidance on how to specify and document func-
tions. This leads to the question, whether we can provide a template for a compre-
hensive function documentation that provides all relevant information about a func-
tion, and what these information are.

Giving specific advice on how to create a function documentation calls for an in-
depth study on working practices and impediments in a community of people work-
ing with function documentations. In this chapter, we present such a study reveal-
ing activities performed on the basis of function documentations, challenges faced
when working with them and relations between these challenges. The conclusions of
this study particularly address the way in which function documentations should be
structured and which information they should contain. From the results of the study,
we develop a new structure for function documentations that describes a function on
three levels of abstraction and structures it by modes of operation. The resulting function
documentation template provides methodical guidance for the creation of a function
documentation in the context of our RE methodology.

This chapter is partly based on a previous publication [Vogelsang, 2014].
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6.1 Study Context: Function Documentations for
Automotive Systems

Function documentations are central artifacts in the development of automotive sys-
tems. They describe the requirements and the basic design of a function, which sum-
marizes a specific part of functionality a vehicle exhibits. Function documentations
are used for several purposes, e.g., documenting requirements, communication be-
tween OEM and supplier, calibration of system parameters in a specific product, or
testing and implementing a function. This function documentation artifact in the au-
tomotive industry incorporates information that can be linked to several model types
introduced in the artifact model of our RE methodology (see Section5.1).

Over the last 25 years, the number of functions (and thus the number of function
documentation artifacts) in a vehicle increased and the interaction and logical de-
pendencies between functions became more relevant for their specification and doc-
umentation [Vogelsang and Fuhrmann, 2013].

As a consequence, developers and testers have difficulties to comprehend the com-
plex function documentations, to distinguish between requirements, which need to
be fulfilled and design decisions, which can be altered, and to assess the impact of
changes [Broy, 2006]. However, it is unclear, what the reasons for these difficul-
ties are. What are the challenges the developers and testers face? How are these
challenges related? How can we improve function documentations and which in-
formation must they contain to support development activities in a situation, where
function complexity and coupling increases?

In different contexts and companies, function documentation artifacts are called furnc-
tion definition, function specification, functional specification, function requirements docu-
mentation, or software and calibration documentation. This artifact is a written docu-
mentation of a function’s requirements and its abstract design. In many automotive
companies, models such as dataflow specifications are used to augment textual de-
scriptions (cf. [Robinson-Mallett, 2012]). These dataflow specifications may be either
used to generate code for the function (e.g., by using Matlab Simulink or ASCET
models) or the models just serve as an overview and the function is implemented
separately (e.g., as plain C code).

The special role of function documentations in the automotive sector originates from
the fact that function documentations are not solely a documentation for function
developers. They are the basis for a number of activities and they are read by function
developers, system integrators, functions testers, and calibration engineers.

We conducted the study that we will present in this chapter at Robert Bosch GmbH,
a worldwide supplier of hardware and software for automotive systems. At Bosch,
function documentation artifacts are textual documents that are structured into four
main sections described in the following. The structure and content is similar to
function documentations we have seen in other automotive companies. The names
of the sections are taken from the original documents and their appropriateness may
be subject to discussion. In the context of our study, the actual section names are not
important.
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Sections Content

[ Function Definition Function

specifies
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realizes/
implements

Component
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[ Diagnosis Information

[ Parameters/Variables/Constants } Component

Figure 6.1: Sections of current function documentations related to the content they describe.

Function Definition: The function definition section contains an abstract description
of the task that the function is supposed to realize. This description is often
given textually. In addition to this textual high-level description, the section
also contains a graphical representation of the black-box interface of the func-
tion. This black-box interface contains the input signals that the function uses
and the output signals that the function produces without giving any details
on its internal structure.

Function Description: In the function description section, the internal structure and
realization of the function is described by hierarchical dataflow specifica-
tions and accompanying textual descriptions. The function description sec-
tion is structured according to the hierarchy of the dataflow specification
(cf. [Robinson-Mallett, 2012]).

Diagnosis Information: The diagnosis information section contains information
about the monitoring of erroneous situations within the function. The repre-
sentation is similar to that of the function description.

Parameters/Variables/Constants: The Parameters/variables/constants section con-
tains tables for parameters, variables, and constants that are used in the func-
tion documentation. The section summarizes them and provides additional
information such as a detailed description of a signal and its type.

We can classify the information provided in these sections with respect to our seman-
tic model introduced in Chapter[2] Figure[6.1shows the relation between the sections
and the content they express. We see that a large part of the function documentation
is concerned with the realization of the function. Functional requirements do not
have a dedicated (sub)section. They are, if at all, documented as textual explanations
attached to the function specification. The function specification content focuses on
the description of the syntactic interface in terms of input and output signals.
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From a series of collaborative projects with a number of automotive companies in
the last years, we made the following observations concerning the current state of
function documentations in practice:

e Function documentations are merely a documentation of the implementation
and do not describe the requirements explicitly.

e Function documentations are hard to comprehend for people who are not in-
volved in the development of these functions.

e Function documentations are not complete, in the sense that some details that
are necessary to understand the function are only present in the source code.

We are interested in exploring and understanding the reasons for these observations.
From this understanding, we expect to get insights that help us to provide methodical
guidance and best practices for structuring function documentations and to under-
stand which content may be missing or obsolete.

6.2 Research Objective

The purpose of this study is to analyze function documentations for the purpose of
identifying and relating challenges with respect to comprehensibility from the point of
view of function developers, system integrators, function testers, and calibration engineers
in the context of an automotive software company.

6.3 Study Design

We performed an exploratory study using a grounded theory approach [Adolph
et al., 2011] to conduct and analyze semistructured interviews (lasting 1-2 hours)
with nine practitioners from Bosch regarding their working practices and experi-
ences with function documentations. The study was led by the following research
questions.

6.3.1 Research Questions

RQ1: Which activities are performed on the basis of function documentations?
We are interested in process steps and activities that use the function documentation
as input or output artifact. We additionally want to assess, which parts of a func-
tion documentation are of special interest for which activities. This research question
contributes to the goal of exploring the usage and requirements for function docu-
mentations.

RQ2: What are the main challenges experienced when working with func-
tion documentations? Where are problems and shortcomings when working with
function documentations? What might be reasons for them? This research question

contributes to the goal of improving function documentations for different stake-
holders.
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RQ3: How are the challenges related? Can the challenges be related in a way
that they result in a comprehensive problem description? This research question
contributes to the goal of understanding the reasons for problems in comprehending
and documenting a function.

6.3.2 Research Method

To answer the research questions, we followed a grounded theory (GT) approach, an
exploratory research method originating from the social sciences, becoming increas-
ingly popular in software engineering research [Adolph et al., 2011]. GT is an induc-
tive approach, in which interviews are analyzed in order to derive a theory. It aims
at discovering new perspectives and insights, rather than confirming existing ones.
As part of GT, each interview transcript was analyzed through a process of coding:
breaking up the interviews into smaller coherent units (sentences or paragraphs), and
adding codes (representing key characteristics) to these units. We organized codes
into categories. To develop codes, we applied memoing: the process of writing down
narratives explaining the ideas of the evolving theory. When interviewees progres-
sively provided answers similar to earlier ones, a state of saturation was reached, and
we adjusted the interview guidelines to elaborate on other topics (cf. [Greiler et al.,
2012]).

We applied this research method at a department of Bosch that is responsible for the
research and development of software-intensive vehicle systems. The department
has longtime experiences in the development of automotive systems and continu-
ously improves its development methods and techniques. The development pro-
cesses and techniques within Bosch vary depending on the application domain and
range from full-fledged model-based approaches with code generation to conven-
tional code-based development. Requirements and specifications for all systems are
documented in function documentation artifacts. Systems are integrated based on a
signal database, which consists of all signals exchanged over a bus system or within
an electronic control unit (ECU). Bosch is responsible for the entire development pro-
cess of single systems and functions starting from specifying requirements over sys-
tem design, implementation, testing, and calibration for existing vehicles.

6.3.3 Participant Selection

For the interviews, we selected professionals with experience in working with func-
tion documentations between 5 and 10 years. We selected the participants based on
their availability and experience and with the goal to cover as many roles as pos-
sible in order to explore the whole spectrum of activities performed with function
documentations. Table|6.1|lists the participants and their roles.

System integrators are responsible for the integration of several functions into a sys-
tem. Function testers check the correctness of function implementations according to
the function specification. Function developers develop a solution concept for a func-
tion based on its high-level requirements and implement this concept. Calibration
engineers configure a function for a specific product by fixing its parameters.
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Table 6.1: List of roles and corresponding participants.

Role Participants

System integrator P1, P9

Function tester P2, P3

Function developer P4, P5, P7

Calibration engineer P6, P8
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Start Interviews and theory development Evaluation

Figure 6.2: Phases of the study [Greiler et al., 2011].

6.3.4 Study Execution

We conducted the study in three phases that are illustrated in Figure and de-
scribed in the following.

Start To familiarize ourselves with the development process and terminology used
at Bosch, we analyzed two exemplary function documentations from the engine con-
trol domain. To discuss relevant aspects in a more concrete way, we additionally
handed out these examples of function documentations in the conducted interviews.

Interviews and theory development In the second phase of the study we con-
ducted five interviews following a rough interview guideline with seven participants
overall (one of the interviews had three participants). After each interview, the inter-
view transcript was subject to a coding and categorization process. The codes were
afterwards integrated and related to an emerging theory describing how developers
work with function documentation and which impediments they experience. If nec-
essary, the guideline was adapted for the next interview with respect to the evolving
theory and possible new insights. In the following, the different steps of this phase
are described in detail.
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Data collection interview: The interviews followed an interview guideline to cover
all relevant aspects. The interview guideline contained open questions about
activities performed with function documentations and their role in the devel-
opment process, used terminology, importance of specific content for an ac-
tivity, related artifacts, missing information, and comprehensibility of function
documentations. The interviews lasted between 1 and 2 hours and a written
transcript was created for each interview.

Coding and Categorization: We broke up the interview transcript into smaller co-
herent units (sentences or paragraphs), and added codes (representing key char-
acteristics) to these units (open coding). We afterwards grouped the codes into
categories. We created the categories such that they reflect activities that are
performed on the basis of a function documentation.

Theory development: Based on the codes and categories, we started looking for
relationship between them by connecting them (axial coding). A relationship
can, for example, be a causal condition (what influences a code or category),
a strategy (for addressing a code), or a consequence (result from a strategy)
(cf. [Corbin and Strauss| 2008]). We annotated these relations with narrative
explanations (memos), which we discussed and evaluated with the practition-
ers in the following interviews. The emerging theory consists of a set of codes
grouped into categories representing activities and relations between the codes.

Guideline adaptation: As the theory emerged during the interviews, we adapted
the guidelines to explore and validate new insights and hypotheses originating
from the theory.

The data analysis process consisted of a constant comparison of text units, codes, and
categories, i.e., data was collected and analyzed simultaneously [Adolph et al., 2011]].

Evaluation The theory development process of the second phase resulted in a set
of hypotheses and explanations about which content of function documentations is
important for which activity, where the developers encounter impediments and how
these relate to each other. In the third phase of the study, we focused on the most fre-
quent codes and categories and explored them in more detail to refine and evaluate
related hypotheses and to derive implications for improvements. In the following,
the different steps of this phase are described in detail.

Evaluation interviews: In the third phase, we conducted two interviews, where we
presented the theory developed in the second study phase together with the
hypotheses concerning the most prevalent codes and categories. We asked the
interviewees to assess the validity of our theory and hypotheses and explain the
relations between the core concepts in more detail (selective coding). A written
transcript was created for each interview.

Application: Besides the qualitative evaluation of the theory in the phase 3 inter-
views, we additionally developed an improved function documentation struc-
ture based on the results of the developed theory. This improved documenta-
tion structure will be introduced later in this chapter. We applied the new doc-
umentation structure to the functions explored in the first phase of the study
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and assessed it with respect to feasibility and improvements. The resulting new
documentations were also discussed in the interviews of the third phase.

6.3.5 Data Analysis

The result of our study is a theory that is based on a set of codes grouped into cate-
gories representing activities and relations between the codes. Codes represent key
characteristics of one or more coherent units (sentences or paragraphs) of an inter-
view transcript. From the codes, we created categories that reflect activities or pro-
cess steps, and grouped the codes in these categories. Additionally, we connected
codes to each other if we found a relationship between them (e.g., one is a causal
condition for, a strategy for, or a consequence of the other).

From this network of codes, categories, and relations, we derive hypotheses by which
we try to answer the research questions. We answered RQ1 (Which activities are per-
formed?) by listing and ordering the created categories by the number of interview
appearances of codes related to them. This shall give an overview and a prioritiza-
tion of activities that need to be supported by a function documentation. For RQ2
(What are the main challenges?), we list and investigate the five most frequently as-
signed codes that appeared in at least half of the interviews. This shall point to the
hot spots of challenges that need methodical guidance. For RQ3 (How are the chal-
lenges related?), we traverse the three longest paths in our network of related codes.
Together with the memos, we added to a connection of two codes, we derive three
sequences of related codes and memos that represent conclusive arguments (stories)
of the theory. These stories shall serve as rationales for the methodical guidance and
improvements, which we derive from the study results and which we describe at the
end of this chapter.

6.4 Study Results

In the seven interviews, we applied 47 different codes in total. From these codes, we
created eight categories and grouped the codes according to them.

6.4.1 Performed Activities (RQ1)

As mentioned before, we created the categories according to activities or processes
that are performed on the basis of function documentations. Table shows the
eight categories and ranks them by the total number of appearances of codes related
to the category. Each code was related to exactly one category.

Comprehending a function According to this ranking, the comprehension of a func-
tion was the activity that is addressed most in the interviews. 13 codes are assigned
to this category, which were added 46 times to units of the interviews. Especially in
the interviews with function developers and calibration engineers, the comprehen-
sion of a function accounted for a large part of the codes applied to the units of the
interviews. P4 states, “I have to comprehend what a function does” and “The demand is to
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Table 6.2: Categories of the theory ranked by the total number of appearances of codes re-
lated to the category. The middle column indicates the number of codes related to

a category.
Category # codes # code appearances
Comprehending a function 13 46
[lustrating the principle of operation 6 29
Documenting requirements 4 22
Structuring a function 5 21
Tracing requirements 3 14
Testing a function 7 13
Calibrating a function 4 13
Creating a specification 5 8

describe what a function does and not how”. P7 says, “I first look at the textual description
of what the function does, and then at the overview diagram (basic interface, input/output).
Then you have to go into details, depending on what you're looking for.”

lllustrating the principle of operation The second most frequently mentioned ac-
tivity is illustrating the principle of operation of a function with 29 appearances of codes
related to this category. By this activity, the interviewees referred to the necessity to
illustrate a function at a high level of abstraction without any details of the imple-
mentation. P4 says, “A physical description of a function is more useful in the beginning.”
and P6 states, “For an initial understanding, I refer to keywords or names of components.
For technical details I might as well just read the code.” Some interviewees also said that
they try to figure out what the primary physical inputs and outputs of the functions
are and how they are related to each other. P2 proposes, “I want to describe patterns of
behavior for the primary input and output measures of a function.”

Documenting requirements 22 codes were assigned to the activity documenting re-
quirements. This activity shows the importance of the function documentation artifact
as a communication means for changing requirements. P5 explains, “Change requests
addressing the function documentation are the real requirements. If these are incorrectly doc-
umented, something wrong gets implemented.” Function documentations are also used
for clarifying abstract requirements with the customer. P1 says, “In the beginning,
requirements are very abstract. The function developer writes a first draft of the function
specification that is discussed with the customer.”

Structuring a function To support the comprehension of a function, structuring a
function was considered important. In the interviews, two main structuring princi-
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ples were mentioned for functions: hierarchies and modes. P5 mentions, “Function
specifications are hierarchically structured and may also be embedded in a system specifica-
tion containing also other function specifications.” Modes were mentioned as suitable
structuring principle for functions running through a set of phases. P4 explains, “If
there are logically independent parts within a function, a mode-based structure is better than
a purely dataflow-oriented model of the function.”

Others Tracing requirements, Testing a function and Calibrating a function are addi-
tional activities that are performed on the basis of the function documentation arti-
fact. Codes related to the creation of a function documentation were only assigned to 6
units in the interviews.

Use of Information in Function Documentations

In addition to the activities that are performed on the basis of the function documen-
tation artifact, we were interested in the information that is used to perform these
activities. Therefore, we asked the participants of the interviews, which parts of the
function documentation they use to perform the activities.

Figure [6.3|illustrates the mean value that the participants selected on a Likert scale
with five possible values from “I use this section very intensely” to “I don’t use this
section at all”. The sections relate to the structure as introduced in Section The
results show that for all activities the content of the Function Description section is
used most intensively. For the comprehension of a function and the illustration of
the basic principle of operation, the high-level description in the Function Definition
section is also very important, whereas, when it comes to more concrete tasks, such
as tracing, testing, and calibration, the content from the Diagnosis Information section
becomes more important. This section contains detailed information especially about
exceptional situations and border cases.

As a side question, we additionally assessed the use of textual and graphical repre-
sentations within the document. Figure [6.4]illustrates the mean value that the par-
ticipants selected on a Likert scale with five possible values from “I use content with
this representation very intensely” to “I do not use content with this representation
at all”. The results show that graphical representations are preferred for all activities,
especially for the tracing of requirements.

6.4.2 Main Challenges (RQ2)

In order to name the main challenges faced, when working with function documen-
tations, we list the five most frequently assigned codes that appeared in at least half
of the interviews. Table[6.3]shows the results of this list.

Highlight the basic principle of operation The most frequently assigned code is
highlight the basic principle of operation. It describes the necessity to understand the
(physical) concept that the software function needs to support (P2, P4, P6, P7, P8).
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Activity

Comprehending a function

Illustrating the basic principle of

operation

Tracing of requirements

Testing a function

Calibrating a function

not at all very intensely

Degree of consideration

B Chapter 1: Function Definition
M Chapter 2: Function Description
Chapter 3: Diagnosis Information

B Chapter 4: Parameters/Variables/Constants

Figure 6.3: Use of document chapters for different activities.
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Figure 6.4: Use of content representation for different activities.
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Table 6.3: Top 5 codes with appearances in at least half of the interviews. The second column
indicates the total number of appearances over all interviews.

Code Category #
Highlight the basic principle of operation [lustrating the principle of operation 15
High-level description of a function Comprehending a function 8

Deriving requirements from change requests Documenting requirements

Hierarchical structures Structuring a function

Structuring modes and phases Structuring a function 5

P4 says, “At first, we focus on the physical aspects of the function and the impact to its
operational context. States and implementation details of the software come later.”

High-level description of a function A high-level description of a function was men-
tioned eight times (P2, P3, P4, P5, P6). This code was applied mainly in the context
of comprehending a function, especially in the context of comprehending a function
someone is not familiar with. P2 claims, “It is possible to concisely describe the purpose
of any function in five sentences.”

Deriving requirements from change requests Third follows deriving requirements
from change requests (P1, P3, P4, P5, P7). This code addresses the fact that most func-
tionality is not developed from scratch but is driven by change requests applied to
older versions of a function. P3 explains, “We come from initially assuming that there is
already an existing solution related to this kind of problem. In many cases we then employ
the code of the existing version as the specification for the new version.” Additionally, due
to the tight collaboration between car manufacturers and suppliers in the automo-
tive industry, the customers (i.e., the car manufacturers) are very familiar with the
implementations of a supplier and vice versa. A consequence of this is that change
requests may be formulated on very different levels of abstraction. P7 says, “Some-
times, the requirements are already an exact solution, sometimes they are just a rough idea on
some desired functionality.”

Hierarchical structures Hierarchical structures were mentioned six times in the in-
terviews as means to cope with complexity (P1, P5, P6, P7, P9). P6 explains, “Es-
pecially, if there are long and complex relations between an input and an output signal, a
hierarchical structure facilitates the calibration of a function.”

Structuring modes and phases Another issue that was mentioned in the inter-
views (P3, P4, P7, P8, P9) was structuring modes and phases of a function. Describing
the lifecycle of a function in terms of abstract states was considered to have a pos-
itive impact on the understandability. P3 says, “In most cases an abstract state-based
view onto a function is sufficient to understand the general purpose of it.” Another aspect
mentioned in the interviews was to define dependencies to other functions based on
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modes. P7 explains, “A state-based representation of dependencies between functions is
more suitable than a description solely based on data exchange.”

6.4.3 Relations between Challenges (RQ3)

We related the codes to each other and annotated the relations with explanations. We
will present the most relevant results of this process by describing three stories that
summarize a set of codes and their relations. In the stories, codes are written in bold
letters. Each story contains a hypothesis (the heading of the story) that is backed up
by the relation of codes within the story that follows the hypothesis.

Story 1: Comprehending a function is supported by documenting the basic
principle of operation and its logical modes of operation To comprehend a
function, a high-level description of the function is needed. This description should
highlight the basic principle of operation. A pure documentation of the code is not
sufficient as it hides the underlying physical principles. However, the basic princi-
ple of operation describes, in many cases, only the behavior of a function, when all
enabling conditions are already fulfilled. The logic that is embedded in the nu-
merous enabling conditions is often neglected in the function documentations. For
the comprehension of a function, these logical conditions must be part of the func-
tion documentation. The description of these logical conditions can be supported by
structuring the functionality according to modes of operation.

Story 2: Calibration of a function is supported by a clear description of the
black-box interface of a function For the calibration of a function, the function
parameters have a strong influence on the behavior. The logic and logical condi-
tions of a function are also highly parameterized and the logic constitutes a large
part in many functions. Logical conditions hamper the traceability of signal flow
through a function design. However, tracing signal flow is an important activity
for calibration engineers. Understanding the black box interface of a function is an-
other way of tracing signals that are passed through a function. Therefore, the black
box interface description of a function should contain the most relevant signals for
the physical principle of operation as well as the signals influencing the logical con-
ditions of the function.

Story 3: Logical conditions should be integrated into function documentations
The code of a function contains more details than it is documented in the function
documentation. In particular, logical conditions are often only contained in the code.
These information about enabling conditions and logical interactions need to be inte-
grated into the function documentation because a pure documentation of the code
is not sufficient. The logic constitutes for a large part in many functions and thus
it is even more necessary to integrate this part conveniently into function documen-
tations.
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6.5 Threats to Validity

A potential threat to the credibility of our findings is that we misinterpreted the data
we collected and thus derived a theory that does not fit the data. To mitigate this
threat, we performed data triangulation by reflecting our findings with two of exist-
ing function documentations and member checking by presenting and discussing our
findings and interpretations with the interview participants. We conducted the study
over a period of eight months, in which findings and interpretations were constantly
discussed and applied to existing data. Another threat is a possible bias of the re-
searcher. We tried to mitigate this threat by making the researchers’ intentions clear and
co-opting two additional researchers from the automotive company who participated
in the interviews and the discussions of findings [Onwuegbuzie and Leech,[2007]]. We
used the frequency of code occurrences as an indicator for importance. This might
be wrong since “challenge x is not important” might contribute to the importance of
a code related to challenge x. We tried to mitigate this threat by separating negative
quotations related to a code into another code (e.g., code documentation is not suffi-
cient). The interviews and the coding and categorization process were conducted in
German and translated only for the presentation in this thesis. To mitigate the threat
of incorrect/improper translations by the researchers, the translations were checked
by experts of the domain.

We conducted the interviews only in one company, which poses a threat to the gen-
eralizability of our findings. A replication study in other automotive companies has
not yet been conducted. The relatively small group of only 9 interview participants
might not be representative. Further participants may add new challenges and as-
pects. However, we are confident that our data base is saturated to a certain extent as
we purposely selected participants with different roles and the ratio of codes that first
appeared in one of the two last interviews was below 5%, i.e., not much additional
data was added in the last interviews. We validated our findings by examining two
exemplary function documentations from the engine control domain. While these, at
least, cover two different types of functions (a feedback control function and a learn-
ing adaptation function), the general applicability of the conclusions to all types of
functions cannot be assured.

6.6 Discussion and Implications

From the results of the study, we draw two conclusions:

Conclusion 1: A high-level description of the basic principle of operation of a func-
tion is necessary to comprehend a function. This high-level description should
also incorporate the logical conditions that influence the function behavior (re-
lated codes: Highlight the basic principle of operation, High-level description of a
function).

Conclusion 2: In the past, the complexity of a function was mainly driven by its
control engineering part. Nowadays, the logical part of a function, i.e., its en-
abling conditions, its modes of operation, etc., accounts for an increasing part
of the complexity. There are even functions that are trivial in the controlling
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of some values but highly complex in the situations, in which this controlling
should be applied. This logical complexity should be considered in the function
documentations (related code: Structuring modes and phases).

Especially the latter conclusion is well illustrated by an anecdotal example: In auto-
mobiles, there is a number of software functions, which, over time, learn an adaption
factor and apply it to the measured value of a specific sensor to compensate for in-
correct measurements for example due to dirt accumulation. Specifying this learning
and application process is relatively easy in terms of control engineering theory (e.g.,
by giving a differential equation). However, for this function additional complexity
is added, when it comes to specifying the conditions that need to be fulfilled before
the learning process can be started. Furthermore, these conditions may also require
interactions with other functions (e.g., requesting the permission of a scheduler). Be-
fore applying the actual control cycle, the function needs to pass several phases and
conditions that account for a large part of the complexity. We speak of the logic of a
function. In many function documentations, this logical part is just somehow added
to the initial control engineering model, which does not really cater for such kinds of
specifications The phases and states of the function are no longer comprehensible
in the resulting function documentation.

6.7 Methodical Guidance for Function Documentations

The conclusions particularly address the way in which function documentations
should be structured and which information they should contain. We extracted best
practices and solutions for the mentioned challenges from the study results and de-
veloped a new artifact structure for function documentations. We applied this new
function documentation structure to two exemplary functions from the engine con-
trol domain covering a feedback control function and a learning adaptation function.
The resulting new function documentations were used to evaluate the findings and
implications of our study (see the study execution process in Section [6.3.4).

The improved documentation structure introduces two new structuring means that
were not part of the function documentation before: A function description on three
levels of abstraction and modes of operations that structure the specification according to
states or phases of a function. The structuring means and their integration into an
improved documentation template are described in the following.

6.7.1 Three Levels of Abstraction

The idea of abstraction levels addresses the hypothesis of conclusion 1 by describing
a function on different levels of abstraction to provide a function description without
any technical or implementation details. Along these levels, high-level descriptions
can be traced down to lower level requirements. Based on the interviews, we pro-
pose to specify requirements of a function according to the following three levels of
abstraction.

"We have seen, for example, how logical conditions are integrated in dataflow models by a sequence
of logical operator blocks like AND, OR, NOT.
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Goals and High-Level Requirements: Describe the purpose of a function without
any details of its realization. These requirements are the input for a function de-
veloper, who designs a general solution concept (basic principle of operation)
based on these requirements.

Function Requirements: Requirements that are derived from the general solution
concept the function developer creates. Function requirements are independent
from the realization within the software architecture.

Software Implementation Requirements: Requirements that are derived from the
function requirements. They describe the realization of the function require-
ments within the software architecture.

In current documentations, functions were only considered on one (very technical)
level of abstraction, which lead to the above-mentioned problems (especially for
comprehending a function).

6.7.2 Modes of Operation

The modes of operation address the hypothesis of conclusion 2. They reflect states or
phases of the solution concept. These modes are a structural element that is used to
structure the function requirements and the software implementation requirements.
In addition to the modes, mode transitions are defined that specify the conditions
that account for a mode change (cf. [Broy, 2010bj |Dietrich and Atlee, [2013]]). Struc-
turing a function according to its phases or states is currently not part of the function
documentations at Bosch (see Section [6.1). An interesting point for discussion is the
relation between these modes of operation of a function and the modes in our artifact
model (see Section[5.1.2). The modes of operation considered in this study primarily
describe states or phases of one specific function, while we introduced the modes in
our artifact model as modes characterizing a system. However, as also stated by Diet-
rich and Atlee [2013], function-specific modes may serve as an interface for describ-
ing function dependencies (e.g., “If the electronic brake function is deactivated, the
cruise control function should also be deactivated”). In such cases, function-specific
modes become relevant for specifying the behavior of the integrated system and,
thus, should be added to the mode model of our RE methodology. In the study that
we will present in the next chapter of the thesis, we elicited a mode model for a pro-
ductive system and discovered that 37% of all elicited modes were function-specific.

6.7.3 Function Documentation Template

Figure shows how we integrated the three levels of abstraction and the modes
of operation into a function documentation template. We illustrate this integration
by a simplified example of a sensor heating function, i.e., a function that, when ac-
tive, heats a sensor device to a constant temperature and maintains this temperature
on the desired level. The template presents the corresponding function documenta-
tion with 7 chapters. The content of Chapters 1 and 6-7 is similar to the content of
current function documentations in automotive companies (see Section [6.1). They
contain basic information such as authoring information (Function Description), the
documentation of the actual realization (Software Structure Documentation), and a tab-
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1  Function Description
2 Goals and High-Level Requirements

——3  Modes of Operation

4 Function Requirements

4.1 Function Interface

4.2 Function Requirements for Mode Inactive

4.3 Function Requirements for Mode Active

uolloellsqy JO S|aAa7

Modes

4.4 Function Requirements for Mode Failed

5  Software Implementation Requirements

5.1 Software Implementation Interface

5.2 Software Implementation Requirements for Mode Inactive

5.3 Software Implementation Requirements for Mode Active

5.4 Software Implementation Requirements for Mode Failed
6  Software Structure Documentation

7 Constants - Parameters - Variables — Structures

Figure 6.5: Table of content of the function documentation template. Chapters 2, 4 and 5
represent the function on different levels of abstraction. Chapters 3, 4.2, 4.3, 4.4
and 5.2, 5.3, 5.4 structure the levels of abstraction by modes of operations.

ular representation of all signals used (Parameters/Variables/Constants). Chapters 2-5
are new and describe the requirements and interfaces of the function on the three dif-
ferent levels of abstraction and structured according to the modes of operation. In our
example, the function has three modes of operation (Inactive, Active, and Failed). The
three levels of abstraction each account for one chapter in the documentation tem-
plate. The modes of operation structure each level in a similar way and thus relate
the different levels of abstraction with each other.

We can classify the information provided in these chapters with respect to our seman-
tic model introduced in Chapter 2| Figure |6.6|shows the relation between the chap-
ters and the content they express. We see that the improved function documentation
emphasizes the requirements of a function on different levels of abstraction explic-
itly. Compared to the initial documentation structure, as illustrated in Figure we
additionally document content of the mode model that describes the usage context
of a function and structures the requirements. Via the mode model, it is also easier
to comprehend the documented function as part of a function architecture because
possible dependencies to other functions are made explicit by referencing the mode
model in the requirements.

While the additional chapters may give the impression that the size of function doc-
umentations strongly increases, we observed only a moderate increase of 18% re-
spectively 25% more pages in the improved documentations for two examples we
considered in our study. Yet, these numbers are only first indicators and additional
work is necessary to investigate the increase in size and effort, for example, with
respect to the number of modes.
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Figure 6.6: Sections of the improved function documentation template related to the content

they describe.
ID: | 2.1 Title: | Regulation of sensor temperature
Description: The heating control of the sensor regulates
the sensor temperature to a constant value.
Rationale: The sensors only work effectively when
heated to a specific temperature.

Figure 6.7: High-level requirement for a sensor heating function.

Please note, that the documentation structure is not restricted to be used in paper-
based documentations. The introduced template could also be used as a schema for a
model repository, a product lifecycle management (PLM) system, or as requirements
structure in a requirements management system such as DOOR

Goals and High-Level Requirements

Goals and high-level requirements capture the purpose of the function. These re-
quirements are the input for a function developer. High-level requirements can have
a rationale attached to it, which serves as an explanation for the requirement’s origin.
The requirements can be documented by a table as shown in Figure The example
shows the requirement’s id, its title, and a description that covers the content of the
requirement. The requirement states, as a high-level goal for a function, to regulate

Zhttp://www.ibm.com/software/products/us/en/ratidoor/
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sensor errokresolved
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Figure 6.8: Modes of operation for a sensor heating function.

the temperature of a sensor to a constant value. The rationale justifies this goal by
giving a reason for it. A function can have several goals, which might also contradict
or influence each other (cf. [van Lamsweerde| 2001]]). An alternative/additional de-
scription technique that can be used in this section is a use case table, as suggested in

Section

Modes of Operation

The modes of operation are determined by the general solution concept, which is
created by the function developer. The modes of operation can be represented, for
example, by a state machine that illustrates the modes and the transitions between
them. Figure |6.8|shows the modes of operation for the sensor heating function. In
the example, the function is structured into three modes, which represent different
phases and situations of the function. In this example, we followed the approach to
structure a function into three high-level states Inactive, Active, and Failed as proposed
by Dietrich and Atlee [2013]. In real examples, this basic structure was too general
in most cases. Almost all states had to be defined in more detail to provide an ex-
pressive model of the general solution concept. During the Active state, for example,
a function might run through a number of additional states or phases. Additionally,
a function might have a number of different degraded behaviors depending on the
failure detected. However, in the examples we considered in our study, we were able
to describe a function with no more than ten states. The function and software im-
plementation requirements are structured according to these modes. The transitions
between the modes of operation are described only informally in the figure. Details
on the exact conditions for taking these transitions are specified in the function re-
quirements.

Function Requirements

Function requirements document the general solution concept created by a func-
tion developer. They describe the solution concept independent from any hardware
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ID: 338.1 Title: Hold Temperature Conditions

Description: Heater control is active when the enabling conditions
are satisfied

Mode: Active

Refines: Regulation of sensor temperature

ID: 3.8.2 Title: Hold Temperature Output

Description: The current temperature of the sensor should be
maintained on a desired constant level.
Mode: Active
Refines: Regulation of sensor temperature
Formalization: | heating value = x
such that

sensor temperature = desired temperature +/— €

Figure 6.9: Function requirements for a sensor heating function.
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Figure 6.10: Function interface of the sensor heating function.

specifics and especially independent from the realization within the software archi-
tecture. Each function requirement refines a high-level requirement, which is indi-
cated by a Refines attribute of the function requirement. Additionally, a Formaliza-
tion attribute may contain a formalization, which relates inputs and outputs of the
black-box interface of the function. In Section we proposed interface assertions
as a model type for formalizing such textual property descriptions. A function re-
quirement may also have a Mode attribute, which indicates that this requirement is
only valid when the function is in a certain mode of operation. Figure 6.9/ gives two
examples for function requirements of the sensor heating function. Both function re-
quirements relate to the Active mode and refine the high-level requirement Regulation
of sensor temperature.

Function Interface The function interface section is a subsection of the function
requirements chapter and contains all inputs and outputs of the function that are
referenced in the function requirements. Figure shows the function interface
for the sensor heating function. The main input and output quantities the function
processes are denoted to the left and to the right of the function block. On top of
the function block, the conditions that influence a mode transition of the function are
denoted. Mode transitions of other functions that are affected by this function are
denoted as outputs at the bottom of the function block. The inputs and outputs of
the function interface can be used to formalize function requirements.
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ID: 4.7.1 Title: Hold Temperature Conditions

Description: Closed loop control of the heater is active when
e Heater is enabled (Sensor_htrOff = FALSE)
AND
e There is no sensor error (Sensor_error = FALSE)
Mode: Active
Refines: Hold Temperature Conditions

ID: 4.7.2 Title: Duty cycle

Description: The value of Sensor_dutyCycle is calculated by a PID
governor.

Mode: Active

Refines: Hold Temperature Output

Formalization: | Sensor_dutyCycle
= PID(|Sensor_resistance
— SETPOINT|)

Figure 6.11: Software implementation requirements for a sensor heating function.

Software Implementation Requirements

Software implementation requirements are derived from the function requirements.
They describe the realization of the function requirements within the software archi-
tecture and under the condition of a specific hardware/software design, i.e., which
specific hardware is used. Each software implementation requirement refines a func-
tion requirement, which is indicated by the Refines attribute of the software imple-
mentation requirement. Software implementation requirements are also structured
by modes, indicated by the Mode attribute. Figure gives two examples for soft-
ware implementation requirements of the sensor heating function.

Software Implementation Interface Similar to the function interface, there is also
a black-box interface description on the software implementation level. The software
implementation interface contains inputs and outputs of the function on the level of
the software architecture, i.e., the names and types of the main quantities and the
logical signals that reflect the mode transitions as they are processed in the software
architecture. Figure shows the software implementation interface for the sensor
heating function. As shown in the example, the signals of the function interface are
mapped to signals of the software implementation interface. These mappings can
be simple 1:1 mappings of abstract signals to concrete signals within the software
architecture, or they can be more complex mappings. In the example shown here, the
abstract output signal heating value of the function interface is mapped to the output
value SensU_dcycHt, which controls the duty cycle of a heating device. This mapping
encodes the decision/constraint that this specific heating device is controlled via a
pulse-width modulation. If this sensor is replaced by another sensor with a different
controlling mechanism, only the software implementation interface and the mapping
has to be adjusted but the function interface and all function requirements are still
valid.
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Figure 6.12: Software implementation interface of the sensor heating function.

6.8 Summary

In this chapter, we reported on an interview-based study we conducted to explore
and expose challenges and shortcomings in the current documentation of automo-
tive functions with the goal to derive methodical guidance and best practices for
the documentation of functions. As a result of this study, we identified two major
problems in function documentations, namely the separation of the basic principle
of operation from the technical implementation and the inadequate specification of
logical conditions, states, and phases of a function. To overcome these problems,
we propose an improved documentation structure for functions and exemplify this
structure by a function documentation template that describes a function on three
levels of abstraction (goals, function requirements, and software implementation re-
quirements) and structures its requirements according to modes of operation. This
documentation structure provides guidance for a systematic documentation of func-
tions, which are central artifacts of our RE methodology (see Section[5.1).

The central role of the concept of modes in the proposed documentation template
and in our methodology in general poses the question, where these modes come
from, how they are elicited and even if it is possible to specify them in a systematic
manner. A method is needed to support the elicitation and specification of modes
and we need to show that this method is feasible for realistic systems and delivers
reasonable and manageable modes and mode models. Such a method and study will
be described in the following chapter.
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Chapter

Systematic Elicitation of Mode
Models for Multifunctional Systems

The mode model has a central role in our RE methodology. In the presented case
studies, we presented examples of modes and mode models. However, these modes
were mainly defined in an ad hoc manner (e.g., by adding a mode when needed for
modeling a function dependency). These procedures were sufficient for describing
the function dependencies in the case studies; however, we think that a complete
and consistent mode model has a positive impact also on the development of new
functions and the evolution of existing ones. Systematic elicitation approaches are
necessary to reach these goals. A second question that arises from the limited size of
the presented case studies and examples of this thesis is how large a mode model for
a realistic system can get. This has an impact on the scalability of our RE method-
ology. A third issue that has not been investigated in depth is the question what
characterizes a mode and if there is an elicitation approach that is more likely to pro-
duce a mode model that fits our RE methodology.

This chapter presents three approaches for a systematic elicitation of mode models
for a multifunctional system. The approaches are described in Section We ap-
plied the three approaches in a case study to a productive automotive system to as-
sess the approaches with respect to feasibility and differences between the resulting
mode models. The results of this case study are presented and discussed in Sec-

tion[Z.2
This chapter is partly based on a previous publication [Vogelsang et al., 2015].

7.1 Mode Models and Elicitation Approaches

The IEEE standard 29148 for software requirements specifications (SRS) notes: “Some
systems behave quite differently depending on the mode of operation. For example, a con-
trol system may have different sets of features depending on its mode: training, normal, or
emergency.” [ISO/IEC/IEEE, 2011b]. The SRS proposes a specification structure for
systems with modes in its annex. The use of statecharts [Harel, (1987] or other state-
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Figure 7.1: Mode chart representation of an exemplary mode model.

based specification techniques inherently relies on the advantages of structuring a
system or a problem domain according to (observable) states. Use cases or scenarios
may reference states or modes as trigger, pre- or postcondition (see Section [5.1.3).

We call the set of all modes that are used to formulate requirements the mode model
of a system or a problem domain in general. Modes can be used explicitly (e.g.,
the mode Engine Off in a statechart) or implicitly (e.g., the term engine is running
in the informal requirement “While the engine is running, the cooling control must
maintain the motor temperature to a constant level”).

While many specification techniques, including the RE methodology proposed in this
thesis, rely on the notion of modes or states, there are no systematic approaches on
how to elicit a set (a model) of modes/states for a system. Especially multifunctional
systems may have a large number of states to consider.

As described in Sections and we represent a mode by a name and a set of
mode values (e.g., Operation = {Off, Starting, Running}). These modes are summa-
rized in a mode list. A mode model structures and formalizes the mode list. In a mode
model, the modes of the mode list and their mode values are structured by defining
the children and kind relation described in Section[2.2.2] Figure[7.1|shows an excerpt
of an exemplary mode model. Note that in a mode model, we do not distinguish
between modes and mode values anymore because by the hierarchical structure, a
mode value may be a mode for itself with mode values (e.g., Running is a mode
value of Operation but also a mode for itself with mode values Idle Running active and
Idle Running not active). Instead, we call each element of a mode model a mode and
distinguish them by their kind. Modes with kind = AND are called mode categories
because these modes just summarize a set of modes by a specific name/topic (e.g.,
Engine is a mode category in the example). Modes with kind = BASIC correspond
to mode values of the mode list, while modes with kind = OR correspond to original
modes of the mode list. These are the mode types defined by a mode model (see

Section [2.2.2).
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We aim at exploring different approaches for eliciting modes of a multifunctional
system. In this chapter, we will investigate three approaches: (1) a deductive top-
down approach, where modes are defined based on the domain knowledge of ex-
perts, (2) an inductive bottom-up approach, where modes are extracted from a given
architecture of logical components and an analysis of dependencies between func-
tions within this architecture, and (3) an analytical approach, where requirements
are manually inspected for implicit or explicit references to modes.

7.1.1 Elicitation by Interviews with Domain Experts

We assume that domain experts have a good intuition what should be considered as
a mode for a system based on their experience in the development of functions of a
specific domain. Therefore, in this first elicitation approach, we obtain a mode model
from interviewing domain experts. In the interviews, the interviewees are asked to
enumerate what they consider as modes or states of the system under consideration.
The result is a mode model that contains all modes mentioned in the interviews.

7.1.2 Elicitation by Function Dependency Analysis

Recent work of Broy| [2010b] and |Dietrich and Atlee| [2013] postulate a relation be-
tween function dependencies and modes of a system. Therefore, this second ap-
proach is based on the results of a function dependency analysis. In Chapter 4 we
presented the results of a feature dependency analysis performed on a productive au-
tomotive system. The analysis is based on a specific architecture of a system. In this
architecture, logical components describe the realization/implementation of a func-
tion in a purely logical fashion, i.e., without any information about the hardware the
system runs on. A network of logical components describes the steps that are nec-
essary to transform the input data into the desired output data. An example for a
system that consists of 3 functions (VF) that are realized by a network of 6 logical
components is illustrated in Figure The logical components are afterwards de-
ployed to a set of electronic computing units that execute the behavior of the logical
components.

In the dependency analysis, a function dependency is extracted from the function
architecture if there is a logical component associated to one function exchanging
data with a logical component associated to another function (e.g., communication
between LC3 and LC4). From this dependency analysis, we obtain a list of depen-
dencies between functions. Every item in this list contains two functions (source and
target) and the data signal that is responsible for the dependency.

Now, for this study, we assume all of these dependencies to be candidates for modes:
Each data signal represents a mode with the possible values of the data signal as
mode values. A mode model is elicited by considering all dependency signals as
modes and structuring them into mode categories.
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Figure 7.2: The logical components (rectangles) are connected by data channels (black ar-
rows) and form a component architecture of the system (outer rectangle). Func-
tions (VF) crosscut this architecture by the set of logical components that con-
tribute to their realization (dashed forms).

7.1.3 Elicitation by Requirements Inspection

The third approach is based on natural language requirements, which are docu-
mented in requirements specifications. These specifications often implicitly contain
statements about modes or states of a system. For example, the requirement “The air
conditioning must maintain the desired temperature if the engine is running”, refers
to a mode of the engine, namely that the engine is in mode running. If a requirement
refers to a mode value, we extracted this mode value in this elicitation approach.
Afterwards, the extracted mode values are grouped into modes (e.g., mode values
running and off are grouped to mode engine state). For the sake of clarity, the modes
are finally structured into mode categories.

7.2 Case Study: A Mode Model for an Automotive System

7.2.1 Research Objective

Our study aims at exploring the different elicitation approaches for mode models of
a multifunctional system and assessing the resulting models in terms of feasibility
and differences to each other in the context of multifunctional systems.

7.2.2 Research Questions

RQ1: Are the introduced elicitation approaches feasible in practice?
We are interested whether the proposed elicitation approaches are capable of extract-
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ing modes for multifunctional systems in practice. The results of this research ques-
tion have an impact on the process of eliciting modes.

RQ2: Are the resulting mode models manageable?

It is an open question, how large a mode model can get for a realistic system. In
this study, we want to assess the resulting mode models with respect to its size and
manageability. The results of this research question have an impact on the scalability
of mode-based specification approaches.

RQ3: How do the resulting mode models differ?

Different elicitation approaches may result in different modes and mode models. In
this study, we want to assess the impact of the elicitation approach on the character-
istics of the resulting modes. The results of this research question have an impact on
the generalizability of a mode model and the selection of the appropriate elicitation
approach.

7.2.3 Study Object

To answer the research questions, we applied the elicitation approaches in the context
of the development of a truck at MAN Truck & Bus AG. Although the study objects
for the three elicitation approaches were similar, they were not exactly the same. For
the elicitation by interviews, we asked for modes relevant to the developer’s daily
work in general and not for a specific vehicle. For the elicitation by function depen-
dency analysis, we analyzed a compact truck with a restricted set of 55 functions,
while for the elicitation by requirements inspection, we examined requirements of a
fully equipped heavy truck. This difference in the study objects was due to the avail-
ability of data at the time of the study execution. The threats that this poses to the
validity of the results are discussed later.

7.2.4 Data Collection Procedures

As required for answering RQ1, we elicited a mode model for the analyzed vehicle
systems through the three elicitation approaches described in Section Each of
the elicitation approaches results in a mode model that was afterwards analyzed to
answer RQ2 and RQ3.

Elicitation by Interviews with Domain Experts

We conducted interviews with four developers of MAN Truck & Bus AG from the
domains cabin & lights, base software, energy management, and driver assistance.
These interview partners were selected by the head of the company’s architecture
group with the expectation to provide the maximum number of modes. Each inter-
view lasted one hour. The stated modes were simultaneously written down by the
interviewers and afterwards validated with the interviewees. The interviews were
not structured by any questionnaire or guideline. However, we sometimes tried to
guide the interviewee by asking open questions regarding specific classes of modes
(e.g., “Are there any modes characterizing the vehicle’s surroundings?”). After the
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four interviews, we documented the recorded modes in one integrated mode model
containing all modes mentioned in the interviews.

Elicitation by Function Dependency Analysis

In Chapter 4, we already presented the results of a function dependency analysis for
the study object at hand. From this dependency analysis, we extracted an overall of
91 different data signals responsible for all function dependencies. Each data signal
is additionally characterized by a data type within the company’s data backbone.
Based on these data types, we derived a mode model from this list of data signals in
the following way. For each signal, we checked the data type:

Boolean Signals: If the data signal had a Boolean data type, we defined a
mode with the name of the signal and associated mode values yes and no (e.g.,
BrakePedalPressed = {yes, no}).

Enumeration Signals: If the data signal had an enumeration as data type, we defined
a mode with the name of the signal and the enumeration members as associated
mode values (e.g., TransmissionMode = { Park, Neutral, Drive, Reverse}).

Value Signals: If the data signal had a numeric data type such as km/h, we scanned
the requirements specification of the corresponding vehicle function in order to find
a discretization of the data signal. For example, in the requirement specification of
one function, the signal vehicle speed was only used to distinguish between low speed
and high speed. This is what we call a discretization. If we found a discretization
of a numerical signal in the requirement specification, we defined a mode with the
name of the signal and the extracted discrete values as associated mode values (e.g.,
VehicleSpeed = {low, high}).

If we were not able to transform a data signal to a mode by one of the three ways, we
excluded this signal from the study. Similar to the proceeding for the modes of the
interviews, we documented the resulting modes of the function dependency analysis
in one mode model.

Elicitation by Requirements Inspection

For eliciting modes from their implicit usage within requirements, we inspected 223
requirements from a randomly picked sample of 11 vehicle functions. A requirement
in our study is a textual statement consisting of 1-2 sentences in general. Similar to
the proceeding for the modes of the other two elicitation approaches, we documented
the resulting modes of the requirements inspection in one mode model.

7.2.5 Data Analysis Procedures

To answer the research questions RQ1 and RQ2, we analyzed the resulting mode
models from the three elicitation approaches individually. For each mode model, we
collected three measures: As a first measure, we counted the number of mode types,
i.e.,, modes m with kind(m) = OR. The mode model shown in Figure for exam-
ple, has three mode types (Ignition, Operation, and Running). As a second measure,
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we determined, for each mode model, the number of mode values per mode type
m, i.e., the number of elements in the set children(m) . In the example, the mode
types Ignition and Running each have two mode values, while Operation has three.
As a third measure, we determined the nesting depth of each mode type in a mode
model. The nesting depth is determined by the length of the path through the hierar-
chical mode model to the mode type. In the example, mode type Ignition has nesting
depth 2 (there is an additional root node in the mode model). These measures serve
as indicators for the size and complexity of the resulting mode models. For both
number of mode values and nesting depth, we show the distribution by a box plot
diagram including median, maximum, and minimum values.

For the comparison of the resulting mode models (RQ3), we assess the three mode
models with respect to equal mode types. We consider two mode types from different
mode models to be equal if they have a similar name and at least one similar mode
value. If, for example, in one mode model, there is a mode type Ignition = {On, Off }
and in another mode model there is a mode IgnitionState = {On, Initializing, Off },
we consider them as one mode type occurring in both mode models. The purpose
behind this is that we are interested in classes of modes that are only elicited by a
specific elicitation approach. We report on the number and ratio of modes elicited by
just one elicitation approach and modes that were elicited by more than one elicita-
tion approach (or even by all).

7.2.6 Validity Procedures

To ensure the validity of our results, we performed several validity procedures to
mitigate mainly threats to the internal validity of the study.

The elicitation of a mode model by interviews poses the threat that the mentioned
modes were incorrectly documented by the researchers. This could be due to im-
precise or incorrect interpretation of what was being said or even by a bias of the
researcher in any direction. To mitigate this threat, we took notes in the presence
of the interviewees letting them intervene in case they found something was noted
incorrectly or imprecise.

The extraction of a mode model based on a static analysis of function dependencies
poses the threat that this automated analysis delivers incorrect or incomplete results
that may then corrupt the resulting mode model. To mitigate this threat we selected
the same study object that was subject to a former project that especially focused on
this automated dependency analysis. In the context of this former project, the depen-
dency analysis results were extensively reviewed and published [Vogelsang et al.,
2012]. The extraction of the mode values for the dependency signals as described in
Section were taken from the company’s database and are thus not subject to a
researcher bias or interpretation.

The elicitation of a mode model by requirements inspection poses the threat that the
extraction of modes is subject to the researcher’s subjectivity. To mitigate this threat,
we inspected a set of 50 requirements independently by two researchers classifying
whether or not a requirement contains a mode. For this set, we observed an inter-
rater agreement in terms of Cohen’s kappa of 0.63 (substantial agreement) [Landis and
Koch, |[1977]. From this, we conclude that the extracted mode model is fairly reliable
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considering researcher’s subjectivity. In addition, based on this double classification,
we formulated a set of strict criteria that defined what is considered as mode in this
study. These criteria were: A mode may change its mode value during runtime of
the system (this excludes, for example, configurable parameters), a mode has a dis-
crete set of mode values (this excludes continuous signals), a mode must be observ-
able from outside the system (this excludes internal states), and a mode’s granularity
must maintain a specific notion of importance for the entire system (this excludes,
for example, specific failure states that are only relevant to one specific function).

7.3 Threats to Validity

Despite the applied validity procedures, the study design poses some further threats
to the validity of the results: The structure of the mode models, especially the sum-
mary of modes in mode categories was determined by the researchers and thus not
strictly determined by the elicitation approach itself. However, this fact may only
influence the measured nesting depth.

The low ratio of common modes for the elicited modes in the four interviews may
suggest that additional interviews might lead to additional modes and thus the
elicited mode model might not be complete. However, the interviewees were se-
lected externally according to the head of the company’s architecture department
with the goal to cover a broad range of modes.

As described before, the study objects used for the elicitation approaches were not
exactly the same. A consequence of this is that the absolute numbers of the elicited
modes are not comparable between the different elicitation approaches. We will
therefore not discuss differences of the elicitation approaches in terms of number
of elicited modes.

For all of the three elicited mode models we cannot guarantee completeness of the
elicited mode models because we only conducted four interviews, only inspected re-
quirements from 11 functions, and only analyzed fully specified parts of the systems.
Future work should investigate the completeness of the created models.

7.4 Study Results

In the first part of this section, we report on the elicited mode models for the three
elicitation approaches (RQ1 and RQ2). In the second part, we will compare the re-
sulting models and describe their similarities and differences (RQ3).

7.4.1 Elicited Mode Models

We were able to elicit reasonable mode models by all of the three elicitation ap-
proaches, i.e., none of the approaches was a dead end.
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Table 7.1: Number of modes elicited in the interviews and ratio of modes mentioned in more
than one interview (common modes).

Domain Modes Common Modes
cabin & lights 24 12 (50%)
base software 13 5 (38%)
driver assistance 11 3(27%)
energy management 7 5 (71%)
Summary 42 12 (28%)

Mode Model from Interviews

Table lists the number of elicited modes for each interview and the ratio of modes
mentioned in at least one of the other interviews (common modes).

As shown in the table, the number of modes elicited from the interviews range from
7 to 24 and the ratio of modes that were also mentioned in another interview ranged
from 27% to 71%. No single mode was mentioned in all of the interviews. The mode
Ignition = {On, Off } was the only mode that was mentioned in three of the four in-
terviews. The final mode model that we assembled from all modes of the interviews
contained 42 modes. 12/42 modes (28%) were mentioned in more than one interview.
The 42 modes elicited from the interviews have 2 mode values on average (median)
with a maximum of 6 mode values for one mode. The average (median) nesting
depth of the modes in the resulting mode model is 2 with a maximum nesting depth
of 4.

Mode Model from Function Dependency Analysis

We were able to transform 35/91 (38%) of the dependency signals from the analysis
into an overall of 20 modes. The fact that there are less modes than transformed
signals is due to signals that carried redundant information with respect to the mode
(e.g., the signals pedal pressed and pedal position are both determined by the same
mode pedal state). The dependency signals that could not be transformed into modes
were numeric data signals for which we have not found any discretization in the
requirements documents. The 20 extracted modes from the dependency analysis
have 3 mode values on average (median) with a maximum of 15 mode values for
one mode. The average (median) nesting depth of the modes in the resulting mode
model is 2 with a maximum nesting depth of 3.

Mode Model from Requirements Inspection

In the inspection of requirements, we observed that 165/223 (74%) of the require-
ments contained information regarding at least one mode. From the analyzed re-
quirements, we extracted 39 modes.

139



7.4. Study Results

8

Dependency
Analysis

Y

Requirements
Inspection

24

Figure 7.3: Proportionally correct distribution of modes with respect to the three elicitation
approaches.

The extracted modes from the requirements inspection have 2 mode values on aver-
age (median) with a maximum of 7 mode values for one mode. The average (median)
nesting depth of the modes in the resulting mode model is 2 with a maximum nesting
depth of 3.

7.4.2 Comparison of Mode Models

The Venn diagram in Figure shows the distribution of modes for the different
elicitation approaches. The figure shows that 4 modes (5%) were elicited by all of
the elicitation approaches. These modes are (1) the operation status of the engine,
(2) the information whether the drive train is released, (3) the information whether
the acceleration pedal is pressed, and (4) the current cruising range. An overall of 57
(74%) of all modes were elicited by only one elicitation approach.

The box plots in Figures[/.4/and [7.5 show a comparison of the number of mode val-
ues elicited for each mode and its nesting depth in the mode model of the different
elicitation approachesﬂ The figure shows that the number of mode values for each
mode is higher for the modes elicited by the dependency analysis, whereas for the
other two approaches the number is similar. There is not much difference in the nest-
ing depth of the models. There is only a slight tendency for the interview model that
the nesting depth is 2 at minimum.

'The additional Reference plot can be ignored for now and will be discussed in Section
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Figure 7.5: Box plot for distribution of nesting depth.

141



7.5. Discussion

7.5 Discussion

In this section, we interpret the study results and discuss them with respect to the
characteristics of the elicitation approaches, and the size of the mode models. Moti-
vated by the diversity of the elicited mode models we also discuss a possible integra-
tion of the three mode models in a reference mode model.

7.5.1 Characteristics of the Elicitation Approaches

The goal of the study presented in this paper is to explore and assess different ways
of eliciting a mode model for a multifunctional system. Based on the results, we
discuss characteristics of the different approaches with respect to the type of modes
that result from them. Therefore, we focus on the modes elicited by just one of the
approaches and not by the others (see Figure[7.3).

The elicitation of modes based on interviews showed the highest number of modes
elicited by just one approach (25). A reason for this may be that, in the interviews,
we did not ask for a specific vehicle but for relevant modes in general. These modes
were widely distributed over all kinds of mode categories. Interestingly, modes of
the electronic infrastructure, such as the state of an electronic control unit or the acti-
vation of a bus system, were only elicited in the interviews but not in any of the other
approaches. Many of the modes specific to the interview elicitation described rather
abstract and general states, e.g., bad weather condition or presence of oncoming vehicle.
Such modes seem to be important for the understanding of functionality by humans
but may never appear as signals in the implementation. It might be interesting to
manifest such abstract information also as explicit signals in the final implementa-
tion. The slightly higher nesting depth of the mode model elicited from the inter-
views compared with the other may indicate that it might be easier in this approach
to determine structural relations between modes. This may be due to the fact that
this approach is the only approach that exploits domain knowledge of experts, who
can also share knowledge about structural relations between modes (e.g., one mode
is a submode of another).

The mode model resulting from the dependency analysis is the smallest in terms of
the number of elicited modes. One reason for this may be that we performed the
dependency analysis on a compact truck with a restricted set of functions. Addition-
ally, the number of elicited modes is influenced by the fact that, with this approach,
only modes are elicited that originate from a dependency between functions of a
system. Modes that are only relevant in one function cannot be elicited with this ap-
proach since they are not detected by the dependency analysis. The high number of
dependency signals that could not be transferred into a mode (see Section are
an indicator that a large portion of function dependencies on an implementation/
architecture level are due to architectural or technical decisions and do not reflect
dependencies on the level of functions, for which we assume that they correspond to
modes. The dependency analysis, for example, also contained priority signals for the
order of computation of functional blocks. This mismatch between dependencies on
an implementation and function level is also addressed by the optional feature prob-
lem [Kastner et al.,2009]. The mode model resulting from the dependency analysis
had the smallest number and portion of modes specific to that approach (8). What is
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striking for these modes is their detailed character. These modes described, for exam-
ple, specific pressing scenarios for a pedal (e.g., long-press vs. short-press). Together
with the fact that the number of mode values per mode in this approach is higher
than in the other approaches, we conclude that this elicitation approach results in
more detailed and more fine-grained modes.

The elicitation of modes based on requirements inspection resulted in 24 modes.
Some of them described rather abstract and general conditions. This is similar to the
modes of the elicitation by interviews and reflects that the requirements are written in
the language of the domain experts. Another interesting aspect of the elicited modes
is that they also cover modes specific to a certain function (e.g., ABS active). These
function-oriented modes were not as extensively mentioned in the other approaches
as in this approach.

In summary, we were surprised by the diversity of the modes resulting from the
different elicitation approaches. Despite the quite different levels of abstraction, all
modes have merit for describing a system’s current state of operation.

7.5.2 Size of the Mode Models

A central aspect that we wanted to answer by this study is the question whether the
elicitation of a mode model for an entire productive system results in a model consist-
ing of hundreds or even thousands of modes that, in the end, is not understandable,
usable, or maintainable anymore. By the results of our study, we are convinced that
this is not the case. The mode models we elicited had 20 to 42 modes and even a com-
bination of all mode models, which will be discussed in the next subsection, does not
exceed 75 modes. An interesting question, which we have not addressed yet, would
be to investigate the progression of the number of modes with respect to the number
of functions.

An assessment of the elicitation approaches must also consider the necessary effort.
Conducting interviews is time and person intensive; however, their analysis and the
extraction of a mode model can be performed rather quickly. The extraction of modes
from requirements is similarly time intensive but can be performed by a single (or a
smaller group of) person(s). The extraction of modes by the dependency analysis can
be performed automatically to a large extent.

7.5.3 Reference Mode Model

Motivated by the diversity of the elicited mode models (40-60% of the modes of one
approach were specific to that approach), we created a referenice mode model by merg-
ing the modes of all elicitation approaches. In the end, the reference model contained
75 modes that we structured into mode categories similar to our proceeding for the
three elicitation approaches. Figures|7.4/and |7.5/show the distribution of mode val-
ues and nesting depth for the reference model. The nesting depth tends to be higher
than in the original models. This is not surprising, assuming that a larger number
of modes suggest additional mode categories to maintain the understandability. The
number of mode values per mode is similar to those of the original models; however,
there are a larger number of outliers with significantly more mode values than in
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Table 7.2: Categorization of modes from the reference mode model with respect to their
scope and if they relate to a function dependency.

Dependency
yes no %
o  context 0 11 11 14.7
& system | 8 28 |36 480
®  function | 9 19 |28 373
by 17 o8 75
% 22.7 77.3 100

the original models. We consider this reference model as a comprehensive model of
operational modes for the development of a truck at MAN Truck & Bus AG since it
considers and contains all viewpoints addressed by the three elicitation approaches.

7.5.4 Scopes of Modes

While assessing the elicited modes, we also noticed that modes can be classified with
respect to the scope they address. The scope of a mode denotes the object of which
a mode describes a property. To investigate and quantify this characterization in
more detail, we classified the elicited modes of the reference mode model into the
following three scopes:

context: Modes with this scope describe states of the operational environment of
the system under consideration (e.g., Ambient Temperature = {low, high}).

system: Modes with this scope describe states of the system under consideration
(e.g., DrivingDirection = {forward, backward}).

function: Modes with this scope describe states of specific functions of the system
under consideration (e.g., CruiseControl = { Off, Standby, Active}).

With this classification, we can assess the quantitative relationship between function-
specific modes, as discussed in Chapter [f] as part of the function specification, and
system-wide modes, as originally introduced in our artifact model (see Section [5.1).
More fine-grained or other classifications of mode scopes are also possible (e.g., scope
with respect a domain of a car).

We performed the classification by two researchers. A first round of independent
classification resulted in an inter rater agreement in terms of Cohen’s Kappa of 0.54
(moderate agreement) [Landis and Koch,|1977]. Deviations in the classification only ap-
peared between the system and the function scope. We resolved these deviations in a
discussion. Table[7.2]shows the resulting distribution of modes of the reference mode
model with respect to their scopes. Additionally, we correlated this distribution with
the property whether the mode describes a function dependency. We assigned this
property to the modes that originated from the dependency analysis. As discussed
in the threats to validity, the absolute numbers may not be comparable but we can
discuss the distribution with respect to the scope.
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The table shows that system-specific modes account for the largest part of modes
in the reference mode model. A slightly smaller number of modes have a function-
wide scope. In our study, we elicited most of these modes by the requirements in-
spection approach. Only a small, but still considerable, number of modes have a
context scope. When considering the function dependencies, none of the context
modes relates to a function dependency. However, as we discussed before, this may
result from the fact that these modes are not (yet) captured by signals within the
implementation and therefore cannot be detected by our dependency analysis. The
dependencies that we found in our analysis were almost equally distributed over
modes with a system or function scope. This, additionally, provides a strong moti-
vation for explicitly specifying states or modes of a function in their specification as
we proposed in Chapter 6] These results coincide with the results of Dietrich and
Atlee [2013] who also assessed a correlation between function-specific modes and
behavioral function dependencies.

7.6 Summary

In this chapter, we presented three approaches for eliciting a mode model for a mul-
tifunctional system. The purpose of a mode model is to describe a system in terms
of states. Such a mode model may serve as a basis for the proposed specification
approach presented in this thesis or any other state-based specification of system
functionality.

We applied the three elicitation approaches in the context of the development of a
truck at MAN Truck & Bus AG. By application in this context, we answered our
research questions in the following way:

RQ1: Are the introduced elicitation approaches feasible in practice?
Yes, in our study we were able to elicit modes through all three elicitation approaches.
All approaches resulted in a mode model and are thus feasible.

RQ2: Are the resulting mode models manageable?
Yes, the size of the elicited mode models ranged from 20 to 42 modes and even a
combination of all mode models (reference mode model) did not exceed 75 modes.

RQ3: How do the resulting mode models differ?

With all three approaches, we elicited modes that were solely elicited by one ap-
proach. We thereby conclude that none of the approaches was superfluous (e.g., if
most of its modes were also elicited by another approach).

The aim of this study was to explore different elicitation approaches for mode mod-
els and assessing the resulting models. The RE methodology presented in this thesis
shows how the resulting mode models can be integrated in a requirements engineer-
ing process. We see this as a major contribution to the modeling and formalization
of requirements. Filipovikj et al|[2014], for example, mention the use of high-level
concepts, such as shutdown or start-up, in textual requirements as an impediment to
their formalization because these concepts are too abstract and ambiguous. A mode
model may contribute to this formalization by providing high-level concepts with a
precise meaning.
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The results of this study provide further empirical evidence that explicitly specify-
ing the modes of a function, as suggested by our function specification template de-
scribed in Chapter [6} supports the specification of function dependencies.

In Section we introduced mode models including mode transitions, which have
not been tackled so far in our study. Adding mode transitions increases the expres-
siveness of a mode model but requires additional information that is not elicited by
our approaches. More general, it might also be interesting to state invariants over
the mode model (e.g., a specific mode combination must never occur). Starting the
requirements engineering activities with a specification of a mode model for an en-
tire multifunctional system may also lead to a completely new way of describing,
specifying, and developing functionality.
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Chapter

Conclusions and Outlook

In this final chapter, we summarize the contributions of this thesis and describe pos-
sible directions for further research.

8.1 Conclusions

This thesis is based on the problem statement “We need a comprehensive requirements
engineering methodology for multifunctional systems that integrates and supports the speci-
fication of function dependencies” (see Section[1.2). We claimed that this thesis provides
supporting evidence and solutions for the stated problem. In the following, we con-
clude that these claims are supported by the contributions provided in this thesis.

8.1.1 Significance of Function Dependencies

From the results presented in Chapter[d} we can answer the stated research questions:

RQ1: To what extent do dependencies between functions exist? Function de-
pendencies are numerous and pervade the whole system. Our analysis of the func-
tion architecture of two productive automotive systems in industry shows that at
least 69% of the analyzed vehicle functions depend on other vehicle functions or in-
fluence other vehicle functions.

RQ2: How are dependencies distributed over all functions? Function depen-
dencies are distributed over the whole system. However, some functions are more
central than others are. In our study, single vehicle functions had dependencies to up
to 56% of all vehicle functions.

RQ3: What categories of data characterize the dependencies? The informa-
tion that represents a function dependency is, in most cases, a value from a discrete
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finite set of possible fixed values. In our analysis, around 74% of the channels that
represented a dependency had an enumeration or Boolean data type.

RQ4: To what extent are developers aware of function dependencies? In our
study, we have seen that modeling the dependencies on an architectural level is insuf-
ficient for analyzing them, leading to a 50% chance that a developer was not aware of
a specific dependency in the analyzed system. In our analysis, this was particularly
striking when the function dependencies arose from architectural decisions.

Conclusion

The results of our study presented in Chapter f] show that function dependencies
pose a great challenge for the development of multifunctional systems. The ex-
tent and distribution of them are not reflected by the awareness of the developers.
This explains why function dependencies are a major source of unintended and erro-
neous behavior and proves their significance for the specification of multifunctional
systems. Considering these conclusions, it becomes obvious that it is necessary to
integrate the modeling of function dependencies on the level of functions into a com-
prehensive specification methodology for such systems.

8.1.2 Requirements Engineering for Multifunctional Systems

Our empirical results show that function dependencies are numerous in productive
multifunctional systems but are not considered in their specification. In Chapters
to [/} we presented an integration of a formal specification technique for multifunc-
tional systems into a comprehensive requirements engineering methodology.

Integrating Functions and Modes into a Model-based RE Methodology

As a first step, we described an artifact model in Chapter 5| that introduces the arti-
facts and modeling concepts used in our methodology followed by a description of
the role of these artifacts in a development process.

We presented two case studies, where the artifact model was instantiated and applied
in a scenario-driven requirements engineering context and in a property-driven re-
quirements engineering context. The case studies showed that the methodology is
feasible and allows detecting inconsistencies in requirements early, especially with
respect to function dependencies.

However, the case study evaluation also revealed the need for additional methodi-
cal guidance especially with respect to the level of granularity on which the artifact
model should be applied and the decomposition and documentation of functions.
Additionally, methodical guidance is needed for a systematic elicitation of mode
models.
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Function Documentations for Multifunctional Systems

Based on the results of the study presented in Chapter [6| we suggest documenting
functions by applying the artifact model of our methodology on three different lev-
els of abstraction: Goals and high-level requirements, which describe the purpose of a
function without any details of its realization, function requirements, which are inde-
pendent from the realization within the actual software architecture, and software im-
plementation requirements, which describe the realization of the function requirements
within the software architecture. The requirements within these levels of abstraction
are structured with respect to modes of operation, which break a function down to a
set of states or phases. These suggestions for documenting functions in a multifunc-
tional system are derived from an exploratory qualitative study that revealed (1) a
lack of separation of the basic principle of operation from the technical implemen-
tation of a function, and (2) an inadequate specification of logical conditions, states,
and phases of a function in current function documentations.

Elicitation of Mode Models

We presented three approaches for eliciting a mode model for a multifunctional sys-
tem. Mode models play an important role in the methodology of this thesis. The
results presented in Chapter [/|show that we were able to elicit modes for an exist-
ing automotive system by means of all elicitation approaches. The resulting mode
models contained 20 to 42 modes and even a combination of all mode models (ref-
erence mode model) did not exceed 75 modes. From these results, we conclude that
it is possible to elicit manageable mode models for an entire system. Moreover, the
results of the study provide further empirical evidence that explicitly specifying the
modes of a function, as suggested by our function documentation template described
in Chapter|[6} supports the specification of function dependencies.

Conclusion

With the presented RE methodology and its evaluation in four case studies, we have
shown that an integration of a formal specification technique into a comprehensive
RE methodology is necessary to handle the challenge of specifying multifunctional
systems. In the center of this methodology is the specification of functions, their
structuring in a function architecture, and the explicit specification of function de-
pendencies by means of a mode model. The contributions of this thesis provide an
artifact model and analysis procedures that operationalize the formal specification
approach presented by Broy|[2010b]]. Furthermore, we provide methodical guidance
in the application of the artifact model for documenting functions of a multifunc-
tional system. Lastly, we provide empirical evidence for the feasibility and useful-
ness of explicitly specifying a mode model for a multifunctional system and assess
three elicitation approaches for such a mode model.
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8.2 Outlook

This section discusses possible improvements of the presented work and illustrates
directions for further research.

8.2.1 Nonfunctional Requirements

While the contributions of this thesis only consider functional requirements, an in-
teresting research direction would be to extend the approach to nonfunctional prop-
erties of a system, which may influence the behavior of a system.

The basic assumption behind this idea is that so-called nonfunctional requirements,
in fact, are always reflected in any kind of system behavior. This misconception of
the term nonfunctional requirements is, for example, also criticized and discussed
by [Glinz [2007]. The approach of this thesis may serve as a blueprint for refining
and formalizing also nonfunctional requirements by interpreting them as behavioral
properties. High-level nonfunctional goals as they are stated, for example, in the
ISO/IEC 9126 [ISO/IEC, 2001] (e.g., usability, reliability, efficiency), are refined to
observations that can be defined in terms of observable system behavior. For some
of these properties an extension of the used system modeling theory is necessary.
Properties concerning the availability of a system are often defined by the use of sta-
tistical measures (e.g., the system must be available 99.9% of the time). Specifying
such properties needs an extension of the modeling theory as proposed, for example,
by Neubeck [2012]. How such an extended theory can be used to formalize availabil-
ity properties is described by Junker and Neubeck|[2012].

We think it is promising to examine also other nonfunctional properties and to assess
whether and how they can be specified by means of our formal modeling theory.
This way, the approach described in this thesis would also capture the specification
of nonfunctional properties. An interesting, and not yet extensively discussed re-
search question is: What is the relation between nonfunctional properties, functions,
and function dependencies? It sounds reasonable to specify a nonfunctional prop-
erty with respect to a function (e.g., “The airbag function should be available 99.9%
of the time”); but how is this availability affected by the availability of other func-
tions to which the airbag function has dependencies? In the work of Siegmund et al.
[2012], the authors present an approach to predict program performance based on
selected features. What is special about this approach is that it also takes the impact
of feature interactions into account. The performance of a system is thus determined
by performance measures of the single features and those of their interaction. In their
work, the authors also provide a feature interaction detection approach that is based
on performance measurements, i.e., nonfunctional behavior might be used to detect
interactions between features. It is an interesting question how such an approach
relates to the mode model that is introduced in this thesis. For example, is it possible
to associate a mode with a performance measurement? Can mode observations be
used to detect function dependencies? Such considerations may lead to a notion of
nonfunctional feature interactions.
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8.2.2 Natural Language Requirements

The approaches presented in this thesis propose to use appropriate models to cap-
ture and specify requirements. However, in practice, a large portion of requirements
and system descriptions are captured as natural language text [Luisa et al., 2004].
In fact, we have seen in the studies that have been conducted as part of this thesis
that a lot of important information is documented implicitly in natural language ar-
tifacts. This bears the risk that ambiguities or incomplete requirements specifications
remain undiscovered because natural language has no formal semantics, and thus
these issues are hard to detect.

An interesting topic for future research is the question how the proposed models of
this thesis can be related to natural language representations. In the research com-
munity, there are different approaches that may contribute to this question. Natural
language patterns, as for example proposed by |Denger et al. [2003], restrict the use
of natural language to a subset that allows a transformation to (semi)formal mod-
els. In Chapter [, we introduced a documentation template for functions. Future
research may investigate the use of natural language patterns as part of this function
documentation template.

Especially in the presence of legacy systems and its documentation (if existent), it is
also interesting to consider information retrieval techniques to (automatically) extract
implicit knowledge from natural language artifacts and to transform it into models
proposed in this thesis. In the context of the study presented in Chapter[7], we saw
that natural language requirements were a fertile source of eliciting modes of a sys-
tem. Kof and Penzenstadler [2011] propose a semi-automated approach to detect
states in natural language requirements. It would be interesting to investigate this
approach to extract system modes from natural language requirements.

8.2.3 Variability and Product Families

The focus of this thesis is on the specification of a single system. However, multifunc-
tional systems are often part of a whole family of products that consists of a set of
similar products. These products of a product family may differ, for example, in the
set of functions they offer. A good example for this is a product line of an automotive
company that contains a set of varying vehicle models (e.g., for different markets and
in different luxury classes).

The close relation between function or feature modeling and modeling of variability
is reflected by many approaches from the field of feature modeling (e.g., [Kang et al.,
1990; Pohl et al., 2005; Shaker et al., 2012]]). The whole field of feature-oriented soft-
ware development considers features as the primary units of reuse, and the variants
of a software system vary in the features they provide [Apel et al., 2013a].

The approach presented in this thesis may contribute to and extend these approaches
by considering the variability of features/functions in a more differentiated way. Our
approach, for example, allows differentiating variability in the set of functions, vari-
ability in the behavior of functions, variability in the influence of functions to each
other, and, maybe most interestingly, variability in the set of modes. Variability of
modes may be worth investigating in more detail in the future. For example, an ad-
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ditional safety mode that is required when operating a system in a specific country
may have an influence on all functions of the system. For modeling this variability
of modes in a mode model it might be interesting to investigate variability extension
mechanisms for statecharts (e.g., as parameterized statechart models [Gomaa) 2005]).
Shaker et al.| [2012], for example, already use this technique in their feature-oriented
requirements modeling language (FORML) to annotate statechart elements, such as
states, labels, or transitions, with feature dependent parameters.

8.2.4 Software Product Management

Software product management of multifunctional systems is a challenging issue not
least because of the need to handle short iterative lifecycles and families of these
systems [Ebert and Brinkkemper, 2014]. After collecting experience in control engi-
neering from a three-year collaboration in the automotive domain, we conclude that
software product management is only weakly aligned with feature and platform de-
velopment. This claim is also supported, for example, by a study of Lucassen et al.
[2014], who report that software program managers and software architects collabo-
rate in requirements gathering and refinement but do not use any structured models
for this purpose. This situation makes it difficult to assure feasibility of innovations
and to identify potentials for innovations.

For innovation management, which is part of product management, we already pro-
posed a first step towards the integration of a model-based RE methodology as
introduced in this thesis into the activities of innovation and technology manage-
ment [Gleirscher et al}2014]. We present how function architectures can be extended
to represent also functional evolution over time. Technology roadmaps can be de-
rived from this model. A central idea of this approach is to separate functional evo-
lution from technological evolution. This separation is described by three models:
the function architecture, which describes the evolution of functions offered to the
customer, the platform service architecture, which describes the capabilities of the
technology platform, and the platform component model, which describes the con-
stituents of the technology platform. In our work, we illustrate how these models
support two innovation scenarios (requirements-based and technology-based inno-
vation). While we consider this approach promising for the connection of model-
based development to earlier development phases from product and innovation
management, the approach still needs to be refined and evaluated in more detail.
Especially, the relation between evolution (of functions or platform capabilities) and
variation is something that is not properly captured in current working practices.

Tran and Massacci|[2014] present an approach for reasoning about feature model evo-
lution. In their approach, they present two kinds of models: an evolution possibility
model that describes possibilities for a feature model to evolve, and an evolutionary
feature model that describes the feature model with all changes due to incorporated
evolutions. Based on these models, they present, besides others, a survivability analy-
sis that assesses whether a configuration (i.e., a set of features) could survive during
the expected evolution. However, in their models and analyses, behavioral interac-
tions between features are not considered. We are convinced that feature interactions
are as important for the introduction of innovative functionality as the evolution of
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the isolated features. A large portion of innovative functionality comes from a smart
interplay of existing features.
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