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Abstract

During differentiation, a stem cell and its progeny cascade through a number of lineage
decisions from a multipotent state over progenitor states to mature functional cells. Within
the current paradigm of cell fate choice, many decisions are assumed to be binary and
realized by a genetic toggle switch, a simple cellular memory device consisting of two genes
that inhibit each others expression. In each differentiating cell, one gene will eventually
win this biomolecular battle, inhibiting the other gene and subsequently activating its
lineage-determining downstream targets. In hematopoiesis, the generation of blood cells,
a series of gene switches has been found along the differentiation path of hematopoietic
stem cells, potentially directing the ratio of mature blood cells. The most prominent
example in this context is the mutual inhibition of Gatal and PU.1, two transcription
factors responsible for the development of erythroid and myeloid blood cells from common
myeloid progenitors.

While being an intriguing and simple mechanism of cell fate choice, no definite ex-
perimental proof of the toggle switch paradigm exists: It is still unclear whether a toggle
switch actively determines the cell fate choice through its dynamics or merely locks down
a previously chosen fate. With the advent of new single cell technology, which allows
to monitor cell fate decisions in single cells continuously over time, these questions are
now being addressed. However, when observing populations of dividing cells on a single
cell level, one is confronted with two challenges: cellular heterogeneity due to stochastic
fluctuations and inherent genealogical structure of the data due to cell division. In this
thesis, these two challenges will be addressed using stochastic, single cell models of stem
cell differentiation.

We start with a theoretical investigation of the toggle switch motif as a cell-intrinsic
mechanism of cell fate choice in the presence of stochastic fluctuations. Specifically, we
show how the dynamics of the system are altered compared to previous studies when
accounting for small mRNA numbers in the gene expression process. We find that the
switching process can be regarded as a point process with a fixed rate and provide an-
alytical expressions for the switching rates of the system. Using Approximate Bayesian
Computation we show that a stochastic toggle switch model is capable of explaining the
differentiation dynamics in the granulocyte/monocyte cell fate decision.

Next, we present a method based on generalized linear models to infer potential cell-
extrinsic features (e.g. local cell density) causing differentiation events observed in cellular
genealogies. We analyze the required sample sizes and the influence of cell tracking error
on the results. Furthermore, we utilize the genealogical information to validate our model,
i.e. to test whether the model is able to explain the correlation structure observed in sister
cells.

Finally, we combine the ideas of cell-intrinsic and cell-extrinsic processes impacting
on cell fate choice into a single model to explain correlated cell fate marker onsets in
genealogies. Motivated by our findings in the stochastic toggle switch, we assume that
differentiation is a point process potentially modulated by external factors while the onset
of the cell fate marker in response to differentiation is delayed due to an intrinsic stochastic
gene expression process. We develop an inference method tailored to this model which
allows us to predict the timepoint of differentiation from the observed correlations of
marker onsets in the genealogies. After testing the method on various synthetic datasets,
it is applied to the myeloid/erythroid fate choice in order to investigate the role of the
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PU.1/Gatal toggle switch. Utilizing available timecourse information on PU.1 expression
levels, we find that PU.1 dynamics at the predicted timepoints of differentiation deviate
significantly from the standard PU.1/Gatal toggle switch model.

Summarizing, in this thesis we develop methods and models to analyze differentiation
in cellular genealogies and give insight into cell fate choice in hematopoiesis.
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Zusammenfassung

Wahrend der Differenzierung durchlaufen eine Zelle und ihre Nachkommen eine Hierarchie
aus Zellzustédnden. An der Spitze dieser Hierarchie steht das Stammzellstadium, gefolgt
von diversen Vorlaufterzelltypen auf den darauf folgenden Ebenen bis hin zu final ausdif-
ferenzierten, funktionellen Zelltypen am unteren Ende der Hierarchie. Mit jedem Schritt
muss die Zelle sich fiir einen der typischerweise zwei moglichen nachfolgenden Zelltypen
entscheiden. Derzeit nimmt man an, dass diese bindren Differenzierungsentscheidungen
auf molekularer Ebene durch sogenannte genetische Schalter realisiert sind. Unter einem
genetischen Schalter versteht man ein Paar von Transkriptionsfaktoren, die gegenseitig
ihre Expression inhibieren. Weiterhin nimmt man an, dass in der sich entscheidenden Zelle
einer der beiden Transkriptionsfaktoren dieses molekulare Kraftemessen fiir sich entschei-
det, damit die fiir seinen Zelltyp charakteristischen Gene aktiviert und so die Zelle in einen
der beiden moglichen Zustande treibt.

Das meist untersuchte Beispiel fiir solch einen genetischen Schalter stammt aus der Ha-
matopoese: Hier glaubt man, dass ein genetischer Schalter aus den beiden Transkriptions-
faktoren PU.1 und Gatal die Entscheidung zwischen der myeloiden und der erythroiden
Linie der Blutzellen bestimmt. Diese Vermutung konnte bislang allerdings nicht experi-
mentell bestétigt werden: Es ist unbekannt ob die Dynamik dieser beiden Faktoren aktiv
die Entscheidung beeinflusst, oder ob der genetische Schalter aus PU.1 und Gatal lediglich
als Konsequenz einer Entscheidung, die an anderer Stelle getroffen wurde, umgelegt wird.

Durch die Entwicklung neuer Technologien, im Besonderen der “time-lapse” Mikrosko-
pie, ist es moglich Zellentscheidungen auf Einzelzellebene kontinuierlich iiber die Zeit zu
beobachten und somit dieses Fragen zu addressieren. Aus diesen Einzelzelldaten ergeben
sich jedoch neben zahlreichen technischen auch neue theoretische Herausforderungen: Zum
einen wird auf Einzelzellebene die Heterogenitit der individuellen Zellen sichtbar, die sich
z.B. aus den inhérent stochastischen Genexpressionsprozessen innerhalb der Zellen ergibt.
Zum anderen erhdlt man aufgrund der Zellteilungen Daten, denen eine Baumstruktur
zugrunde liegt, sogenannte zelluldre Genealogien. Im Verlauf dieser Arbeit werden wir
diese beiden Aspekte untersuchen.

Wir beginnen mit einer theoretischen Analyse der stochastischen Dynamik eines gene-
tischen Schalters. Im Unterschied zu vorherigen Arbeiten untersuchen wir den Einfluss von
kleinen mRNA Zahlen und finden, dass die Dynamik des Systems sich dadurch grundle-
gend verdandert. Weiterhin untersuchen wir Zustandsiibergdnge im System und kommen
zu dem Ergebnis, dass das Schalten des Systems zwischen zwei Zustdnden durch einen
Punktprozess angendhert werden kann, dessen Rate wir also Funktion der Systempara-
meter herleiten. Unter Anwendung von Approximate Bayesian Computation wird gezeigt,
dass die beobachtete Dynamik der Differenzierungsentscheidung zwischen Granulocyten

und Monocyten durch ein stochastisches Modell eines genetischen Schalters erklart werden
kann.

Im Anschluss entwickeln wir eine Methode basierend auf generalisierten linearen Mo-
dellen, um externe Einflussgréfien, wie z.B. lokale Zelldichte, auf Zelldifferenzierung zu
identifizieren. Die erforderliche Stichprobengréfie sowie der zuldssige Fehler im Tracking
der Zellen wird analysiert. Weiterhin zeigen wir, wie die Baumstruktur der Daten benutzt
werden kann um das gelernte Modell zu validieren.



Im letzten Teil dieser Arbeit werden die zuvor entwickelten zell-intrinsischen und zell-
extrinsischen Differenzierungsmodelle zu einem einzigen Modell kombiniert. Hier nehmen
wir an, dass die Zelldifferenzierung durch einen Punktprozess dargestellt werden kann, je-
doch die Beobachtung dieser Differenzierung verzogert erfolgt, wodurch sich Korrelations-
strukturen in den zelluldren Genealogien ergeben. Wir entwickeln eine Inferenzmethode,
welche die Parameter des Modells anhand der beobachteten Genealogien schatzt, und be-
nutzen dieses Modell um Differenzierungszeitpunkte in Genealogien vorherzusagen. Ange-
wandt auf zelluldre Genealogien der Hamatopoese finden wir signifikante Unterschiede
in der Dynamik von PU.1 an den vom Modell vorhergesagten Zeitpunkt der Differen-
zierung im Vergleich zu den Erwartungen unter Annahme eines genetischen Schalters.
Somit konnen wir eine aktive Rolle von PU.1 in der Differenzierungsentscheidung zwischen
myeloiden und erytroiden Zelltypen ausschlielen.
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Chapter 1

Introduction

Mathematical models are an integral part of science. It represents an abstraction and
approximation of a real world phenomenon and allows formal treatment thereof. The
model helps to explain and understand observations but can also be used to predict yet
unknown situations.

Mathematical models are particularly prominent in physics. Newton’s equations of
classical mechanics not only explain equally well the deterministic motion of baseballs,
planets and galaxies, but also allow to make predictions: For example, discrepancies be-
tween predicted and observed trajectories of Uranus led to the discovery of Neptune.
While it was long thought that Newton’s equations are universal, at the beginning of the
20th century two limitations were discovered. Newton’s equations must be augmented by
the laws of relativity when velocities approach the speed of light, and fail entirely when
looking at atomic levels, where the character of physics changes fundamentally due to the
quantum nature of matter: While in classical mechanics the world is deterministic and
perfectly predictable, on small scales, the world is inherently probabilistic. Predictions of
experimental outcomes can only be phrased in terms of probability distributions. On this
scale, classical mechanics is then replaced by the theory of quantum mechanics, which does
account for the inherent randomness on atomic and subatomic scales. However, it emerges
from quantum mechanics as the probabilistic behavior of individual atoms is averaged out
when considering large numbers of atoms. While quantum mechanical models, such as the
standard model of particle physics are highly abstract, their predictions are nonetheless
powerful (e.g. the prediction of the Higgs boson) and the insight these models gave is now
used to exploit the quantum nature of matter in every day life, e.g. in lasers or transistors.

Mathematical models are not constrained to describing inanimate matter only, but are
equally powerful when used to investigate living systems. In a seminal study, Luria and
Delbriick (1943) investigated the resistance of bacteria to virus infections and from their
mathematical model and experimental data could conclude that resistance in a bacterial
population arises due to random mutations instead of acquired immunity when exposed to
the virus. The prevalence of mathematical models in biology has increased tremendously
with the advent of Systems Biology during the last decade with the goal to gain quantita-
tive insight biological systems. Here, an interesting parallel to physics is found: Classical
mathematical models in biology, e.g. the Lotka-Voltera model of predator and prey pop-
ulations (Lotka, 1925), are deterministic as they describe large numbers of entities, e.g.
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cells or molecules. However it has been realized recently, that when looking at biological
systems on smaller scales, e.g. on single cells rather the populations, stochastic fluctua-
tions become significant and one has to treat these systems probabilistically. In analogy
to classical mechanics, the “classical” deterministic system is recovered when looking at
large numbers of entities. However, the source of randomness is not due to the quantum
nature of matter itself, but is rather a manifestation of the large number of degrees of
freedom (in the same way the movement of a heavy particle in a gas seems random, but
is the result of deterministic collisions) as well as the complex interactions within a cell.

While decades of research in physics have taught us how to cope and even exploit the
probabilistic nature of matter, e.g. resulting in the dawn of quantum computing, in biology
we have only started to understand the implications of stochasticity and resulting cellular
heterogeneity on organisms, e.g. in the context of development and cell differentiation.

1.1 Stem cell biology

Stem cells form the backbone of development, tissue homeostasis and regeneration in
higher organisms ranging from primitive flatworms (Wagner et al., 2011) and Hydra
(Boehm et al., 2012) to mice (Becker et al., 1963) and humans (Thomson et al., 1998).
A whole organism develops from a single stem cell, the zygote, giving rise to over 200
different cell types in the human body (Shevde, 2012). Homeostasis in the blood system
is maintained by hematopoietic stem cells which are able to sustain the rapid turnover
of 10'2 mature blood cells per day in an adult human (Kaushansky et al., 2010). Stem
cells in Axolotls, a Mexican salamander species, are capable of regenerating entire limbs
or parts of the spinal cord after injury (Roy and Lévesque, 2006; Sandoval-Guzman et al.,
2014). These amazing capabilities emerge from the two defining properties of stem cells:
1) Self-renewal, which is the ability to maintain their stem cell identity across infinitely
many cell division, and 2) pluripotency, the ability to give rise to multiple differentiated
cell types.

One distinguishes between embryonic stem cells and adult, somatic stem cells. Em-
bryonic stem cells are derived from the inner cell mass of a developing embryo and are
capable of differentiating into all three germ layers, endoderm, mesoderm and ectoderm
(Evans and Kaufman, 1981; Martin, 1981). Their pluripotency and the possibility to keep
them in culture indefinitely have made them an indispensable model system for stem cell
and developmental biology. However, the use of embryonic stem cells is controversial be-
cause they are derived by sacrificing a living embryo. During normal development, the
once pluripotent cells of the inner cell mass start to loose this property quickly there-
after. With gastrulation, each cell has assumed one of three germlayer identities and their
progeny will be restricted to this germlayer. With further development most cells in the
organism will at some point differentiate terminally into a mature cell type. Only a few
cells retain their stem cell property in the adult organism. These cells are called adult
or somatic stem cells and are responsible for tissue repair and homeostasis in the adult
organism. Opposed to embryonic stem cells, their potential is limited, i.e. they can give
rise only to certain cell types, a property called multipotency. A specific type of adult
stem cell has been identified for many tissue types, e.g. the brain (Temple, 1989), the
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blood system (Becker et al., 1963), skin (Alonso and Fuchs, 2003), and the small intestine
(Barker et al., 2007).

Whereas embryonic and somatic stem cells have been known since the 1960s, recently, a
third class of stem cells emerged: In 2006, Takahashi and Yamanaka discovered that mouse
fibroblasts can be reprogrammed by ectopic expression of four genes (Oct3/4, Sox2, c-Myc,
and Klf4) to an embryonic stem cell like state, which they termed induced pluripotent
stem (iPS) cells. Similar results were obtained in humans (Takahashi et al., 2007) and
recently the efficiency of reprogramming could be increased tremendously (Rais et al.,
2013), making them an attractive alternative to embryonic stem cells. While iPS cells are
less controversial than embryonic stem cells, their increased potential to form tumors due
to the forced expression of oncogenes (e.g. Klf4) and recent evidence of transcriptional
abnormalities (Ma et al., 2014) have precluded iPS cells from fully replacing embryonic
stem cells as a stem cell source.

All three stem cell types hold great promise for regenerative medicine due to their
self-renewal and lineage potential properties (Daley, 2012a; Shevde, 2012), especially for
diseases where no conventional drug treatment is available (Daley, 2012b). Bone marrow
transplantation, first performed by Thomas et al. in 1957 is oldest and currently most
successful form of stem cell therapy and can be used to treat e.g. leukemia or anemia. Most
recently, new stem cell therapies were tested in experimental studies: Human embryonic
stem cells were used to treat patients with retinal blindness (Schwartz et al., 2012) and
embryonic stem cells were suggested as a cell source to replace degenerate neurons in
the striatum of patients with Huntington’s disease (Nicoleau et al., 2011), for which no
effective drug treatment exists. Stem cells are also readily used in tissue engineering,
e.g. to form tracheae (Macchiarini et al., 2008), or to create kidney structures (Taguchi
et al., 2014), which eventually could provide a source for organ transplantation without the
complications of transplant rejection or graft-versus-host-disease. In another application,
patient derived stem cells are used as a realistic disease model that can be used for a more
efficient drug screening than the classical target-centric drug discovery (for a review, see
Grskovic et al., 2011).

Even though tremendous advancement and breakthroughs in stem cell biology have
been achieved in the last decades, our understanding of the mechanisms underlying self-
renewal, pluripotency, cell fate choice, differentiation and regeneration remains surprisingly
small and many questions remain unanswered: Why is the forced expression of only four
out of 20000 genes (the “Yamanaka genes”) enough to dedifferentiate fibroblasts into
pluripotent cells? How does a stem cell decide what cell type it will differentiate into?
Why do success rates for HSC transplantations remain low (50% survival after 5 years,
see Jenq and van den Brink, 2010; Passweg et al., 2012) that these are only administered
to the sickest patients, who lack other alternatives, even though hematopoiesis is the most
well studied stem cell system and HSC transplantations have been performed for more
than 50 years?

Here, a deeper understanding of the underlying mechanisms of cell fate choice is needed
(Roeder and Radtke, 2009). This will not only help to reduce the risk of clinical applica-
tions of stem cells (e.g. the formation of stem cell derived tumors, Amariglio et al., 2009),
but also increase our understanding about the origins of disease (Huang, 2013).
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Figure 1.1: Population averages can obscure heterogeneous cellular response. A)
A population of cells homogeneously expresses a protein of interest (mean and distribution
are shown). B) Upon stimulus, a small fraction of cells responses by strongly upregulating
the protein, while the other cells remain unchanged in their protein expression. The
population average (black line) changes only slightly. The pre-stimulus distribution is
indicated as dashed line.

1.2 Single cell experiments and cellular heterogeneity

A first step towards gaining more insight into the various phenomena of stem cell biology
is to focus on the analysis of single cells instead of population measurements.

Classical tools of molecular biology need to be fueled by huge amounts of cellular
material: To detect a specific proteins in a cell by western blotting, cells are lysed, and
the lysate is separated via gel-electrophoresis. To detect proteins of interest, the proteins
have to be transferred from the gel onto a membrane where they can then be detected
by antibodies. Due to its limited sensitivity!, typically 10° cells are required to perform
western blotting (Ciaccio et al., 2010). DNA-microarrays are used to quantify the mRNAs
contained in the cell by reverse transcribing mRNA into cDNA and amplifying the cDNA
via PCR. Finally, amplified material is put on oligonucleotide-chips where it hybridizes
with complementary oligonucleotides and is detected via fluorescence probes. To keep
the amplification step at a minimum and to reduce the amplification bias, one must start
with genetic material from several thousands of cells. As a consequence, only averages of
cell populations can be measured with these methods. Also, due to the large amounts of
material required, the analysis of rare cell types, such as adult stem cells, is challenging if
not impossible with those methods (Chattopadhyay et al., 2014).

Within the old but flawed paradigm of “genetic determinism” (Strohman, 1997), where
genotype maps linearly to phenotype (e.g. protein expression), the measurement of an av-
erage quantity seemed reasonable (in a clonal population): The average of the population
would be a good representative of the individual cells and not much variation is expected.
However, with new technology came new insight, showing that often the population aver-
age is not a good description of individual cells.

"Much of the material is already lost on the way to the final blot due to the various preprocessing steps.
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Let us consider a simple example where a population averaged measurement yields
misleading conclusion about the underlying phenomenon: A cell population is homoge-
neously expressing a certain marker protein (Fig. 1.1A) and is subjected to an external
stimulus. As a response to the stimulus, a small fraction of cells upregulates the protein
whereas the remaining cells does not respond and their protein levels remain unchanged
(Fig. 1.1B). When analyzed e.g. with western blotting, which reports the mean protein
expression in the population (black solid line in Fig. 1.1A,B), we observe a slight shift in
the mean protein expression level after the stimulus. From that, one might falsely con-
clude that the entire cell population responded by a small upregulation of the marker, as
the population mean obscures the underlying heterogeneous response.

This simple example illustrates the need for experimental techniques that allow to look
beyond the mean behavior of a population and analyze single cells individually. However,
note that also bulk experiments, when carefully designed and interpreted, harbor certain
benefits: They are cheaper and easier to perform, more established and hence widely
accepted. Intermediate approaches can also be beneficial: Instead of taking single cells,
Bajikar et al. (2014) performed transcriptional profiling on aggregates of up to ten cells,
reducing technical variability while single cell information was reconstructed by deconvo-
lution.

1.2.1 Single cell technology

Over the last decade, several single-cell techniques for molecular biology have been devel-
oped. The workhorse of modern single cell biology is arguably flow cytometry (fluores-
cence-activated cell sorting, FACS), which allows to quantify up to 18 different fluorescence
characteristics of single cells at the same time. Either by staining proteins of interest with
antibodies or utilizing fluorescent reporters and fusion proteins, which are excited by sev-
eral lasers inside the machine, FACS quantifies their fluorescence intensity and hence their
abundance in millions of individual cells. Thus, one can assess the full protein distribu-
tions across a cell population instead of only looking at their mean value (see Fig. 1.2).
Furthermore, FACS is routinely used as a purification step to sort cells according to their
surface marker expression profile in order to get more homogeneous cell populations. Flow
cytometry is not limited to measuring only fluorescence characteristics of single cells, but
can also be used to acquire digital images of cells passing through the instrument (imaging
cytometer, Basiji et al., 2007). This can for example be used to quantify the morphology
of the cells (Carpenter et al., 2006) and to predict cell cycle phase (Blasi et al., submitted).

Single-cell quantitative polymerase chain reaction (qPCR) was already performed in
the 1990s (Lambolez et al., 1992), but only the integration with microfluidics (Liu et al.,
2003) provided the degree of automation, which is required to study the expression of
many genes in several hundreds of single cells, e.g. analyzing expression changes in early
embryo development (Guo et al., 2010), or characterizing regulatory networks in blood
cells (Moignard et al., 2013). mRNA of selected genes are reverse transcribed into cDNA,
which is then amplified in PCR cycles. The number of cycles required to yield a detectable
amount of cDNA then informs about the abundance of the original mRNA template
(larger cycle times mean less mRNA). Whereas single-cell PCR yields relative transcript
abundance (in terms of cycles), a modification termed digital RT-PCR produces absolute
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Figure 1.2: Beyond the population average. Instead of measuring only the population
average protein expression over time (black line), single cell technology allows to observe
the evolution of the entire protein distribution, e.g. via FACS snapshots, (gray areas) and
the continuous observation of single-cell protein timecourses via time-lapse microscopy
(colored lines).

numbers of transcripts in single cells (Warren et al., 2006). Single-cell gPCR can currently
quantify the expression of 96 genes in parallel, but to quantify the whole transcriptome of
a single cell, different methods must be used.

DNA-Sequencing technology has improved greatly in terms of throughput and preci-
sion, but also reduced the amount of DNA-material needed for the analysis, enabling ap-
plication to single cells. Using reverse-transcriptase to create cDNA from mRNA, one can
cast the problem of quantifying the transcriptome of a single cell into a DNA-sequencing
problem, which can efficiently be solved with next-generation sequencing technology. Var-
ious protocols for single cell RNA-sequencing are available (Tang et al., 2009; Islam et al.,
2011; Ramskold et al., 2012; Sasagawa et al., 2013; Hashimshony et al., 2012), differing in
their ways of amplification, multiplexing and sequencing (for a review of current protocols,
see Shapiro et al., 2013). Again, these methods provide no absolute numbers of transcripts
in the cell per se, but only read counts which have to be mapped to absolute numbers.
Furthermore, technical noise is large (Brennecke et al., 2013) and only highly expressed
mRNA can reliably quantified. However, recently Islam et al. (2014) tagged each indi-
vidual mRNA molecule in a single cell with a different barcode before sequencing, which
allows to measure directly absolute numbers of mRNAs across the whole transcriptome
and reduces technical noise substantially allowing also reliable quantification of lowly ex-
pressed genes (on the order of ten mRNASs) in single cells.
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Figure 1.3: Heterogeneity revealed by time-lapse microscopy. A bimodal protein
distribution can be generated by two separated, stable subpopulations (A) or the rapid
transitions between the two modes of expression. Single-cell timecourses are shown in red
and orange. C) An experiment starting with four cells with low expression and stopping
with four cells with high expression can be interpreted in several ways, which can be
distinguished by time-lapse microscopy.

Time-lapse microscopy

All the above methods provide only a static snapshot of the system under investigation,
i.e. a measurement of the gene expression profile at a single timepoint?. Although being
much more informative than population averages, these methods cannot elucidate how the
individual cells within a population evolve over time. However this dynamic information
is crucial to ultimately understand the nature of cell population heterogeneity: A bimodal
distribution in a protein could result from two distinct and separated subpopulations of
cells or from rapid transitions between the two peaks (Fig. 1.3A,B). Additionally, one
has to consider the fact that cells can divide or die in the course of the experiment. For
example, an experiment that starts with 4 cells from one peak of the protein distribution
and stops with 4 cells in the the other peak of the distribution at some later timepoint
can be interpreted in several ways (Fig. 1.3C): i) Either all 4 cells switched from one peak
to the other, or ii) one cell switched, divided twice while the other three cells died, or iii)
two cells switched, divided once while the other two died, etc... This ambiguity makes
interpretation of snapshot data difficult (Schroeder, 2008).

Time-lapse microscopy is a powerful tool to dissect the ambiguities arising form snap-
shot data (Coutu and Schroeder, 2013; Schroeder, 2011). Here, cells are first purified by

2To some extent, FACS can be iteratively applied to the same set of cells, yielding snapshots of the same
cells at different times. However, cell identity is lost from one iteration to the next.



8 CHAPTER 1. INTRODUCTION

FACS, put under an optical microscope and continuously imaged for the desired period
of time ranging from a few hours to several days. Brightfield images provide information
about the position and morphology of the cells while fluorescence images can be used
to quantify surface marker expression (via in-culture-antibodies) or intracellular protein
expression (via reporter constructs or fusion proteins). Additionally, the spatial arrange-
ment of cells can be read out directly from the images, which is of interest when studying
e.g. cell-cell communication and cell-niche interaction (Wang and Wagers, 2011; Rompolas
et al., 2013).

In order to follow individual cells over time, single cell tracking has to be applied to the
microscopy data, i.e. each cell in the current image must be identified in the consecutive
image for all images of the experiment. Depending on the cell system analyzed, either
automatic tracking algorithms can be applied (for a comparison of current cell tracking
algorithms, see Maska et al., 2014) or cells have to be tracked manually (Rieger et al.,
2009; Schwarzfischer et al., submitted). Upon cell division, both daughter cells have to
be tracked, leading to entire genealogies of cells. Hence, time-lapse microscopy not only
allows to observe the time evolution of e.g. proteins in single cells, but it also reveals
how similar the offspring of the same common ancestor cell behaves. When combined
with quantification of fluorescence-tagged proteins (Schwarzfischer et al., 2011; Schwarz-
fischer et al., submitted), single-cell trajectories of protein expression can be obtained (see
Fig. 1.2).

Although powerful, time-lapse microscopy faces certain challenges. Imaging cells and
keeping them alive over long periods of time requires optimal experimental setup, often
at the expense of lower image quality (Schroeder, 2011). Tracking cells in experiments
where cell density grows fast (e.g. mouse embryonic stem cells) or cells move quickly (e.g.
hematopoietic stem cells) renders automatic tracking impossible and manual tracking be-
comes a major bottleneck in data analysis. The biggest challenge of time lapse microscopy
is, similar to FACS, its limitation to just a few factors that can simultaneously be quan-
tified. Even though the number of different fluorescence dyes is increasing, for each and
every protein of interest a new genetic modification has to be introduced into the cells, be
it a reporter construct or a fusion protein. While it is feasible to construct multicolored
bacterial strains or yeast, and to some extend mammalian cell lines, creating a two color
mouse strain is a long and costly endeavor. Hence, in the future time-lapse microscopy
has to be combined with other single cell technologies to unravel the full complexity of
cellular heterogeneities.

1.2.2 Examples of cellular heterogeneity

All of the mentioned single cell methods provide measurements of certain quantities
(mRNA or protein expression) not as a population mean, but show how it is distributed
across the entire population. Each of these methods showed that a long standing (Novick
and Weiner, 1957; Spudich and Koshland, 1976) but also long neglected idea is indeed
true: A supposedly homogeneous cellular population, e.g. a single cell type, is in fact
often heterogeneous. Heterogeneity of a quantity simply means that its average is not a
good description of the entire distribution.
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For example, using flow cytometry Chambers et al. (2007) established that the pluripo-
tency factor Nanog is heterogeneously expressed in mouse embryonic stem cells, that
Nanog-low cells are more prone to differentiation than Nanog-high cells, and that the
whole Nanog distribution can be reconstituted from subsets of cells. Using single-cell
qPCR, Guo et al. (2010) showed heterogeneity at early stages of embryo development and
Dalerba et al. (2011) analyzed heterogeneous expression profiles of colon cancer cells. Using
RNA-sequencing, it was demonstrated that after triggering immune cells with lipopolysac-
charide, they responded heterogeneously not only in their gene expression profile but even
in which splicing variants were used (Shalek et al., 2013).

Single-cell time-lapse microscopy was used to e.g. delineate the instruction of cell fate
via cytokines (Rieger et al., 2009), the origin of mammalian blood (Eilken et al., 2009), or
the influence of spatial organization on stem cell fate in the hair follicle (Rompolas et al.,
2013). By combining single cell tracking with fluorescence quantification (Schwarzfischer
et al., submitted) and cell segmentation (Buggenthin et al., 2013), one can shed light on
the transcription factor dynamics during cell differentiation (Hoppe et al., in revision).

1.2.3 Origins of heterogeneity

Single cell technology has revealed unprecedented heterogeneity in many different cell
systems ranging from bacteria to mammals. Where does this heterogeneity come from?

Heterogeneity could stem from genetic differences, e.g. somatic mutations (Fig. 1.4A).
In fact, in the past very often any heterogeneity has been attributed to genetic differences
as postulated by genetic determinism (for a critical review and argument against this idea,
see Strohman, 1994). While indeed relevant e.g. in cancer biology, where cancer cells can
acquire different traits due to somatic mutations (Diaz Jr et al., 2012), somatic mutations
are extremely rare in normal cell populations and cells are considered to be clonal. The
fact that all different cell types (with vastly different phenotype) within an organism share
identical genetic material already point out that other non-genetic mechanism must be at
work (Strohman, 1997). Even in cancer cells, it was shown that some acquired resistance
is not due to somatic mutations but caused by non-genetic heterogeneity (Pisco et al.,
2013).

Non-genetic heterogeneity could arise from non-observed, confounding factors (Snijder
and Pelkmans, 2011). An apparently heterogeneous distribution in protein expression
could originate from a difference in cell cycle progression (Buettner et al., 2014) or cell
growth (Blasi et al., in revision). Assuming that cells double their amount of the protein
during cell cycle, and if the population of interest is not synchronized with respect to cell
cycle, a protein distribution will look heterogeneous, even though originating mostly from
the difference in cell cycle progression (Fig. 1.4B). In several studies it was shown that
the apparent phenotypic heterogeneity can be reduced considerably when including other
predetermined factors: Snijder et al. (2009) show that the heterogeneity of virus infection
in E. coli, i.e. whether cells get infected or not, is largely determined by local cell density
and the cell’s position in the colony (termed population context). The upregulation of
the arabinose utilization system in response to an arabinose stimulus is heterogeneous due
to preexisting differences in the number of arabinose transporters (Megerle et al., 2008;
Fritz et al., 2014). Similarly, Spencer et al. (2009) showed that the response of a cell
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Figure 1.4: Origins of cellular heterogeneity. A) Genetic differences cause heterogene-
ity in protein expression. A somatic mutation in the promoter causes increased expression
in a fraction of cells. B) Non-genetic heterogeneity can arise from unaccounted confound-
ing factors that are different within the population. For example, cell growth causes
large differences in protein levels. C) Non-genetic heterogeneity results from intrinsically
stochastic gene expression, which can be observed from single-cell protein timecourses.

to TRAIL induced apoptosis is heterogeneous but can to a large extent be explained by
preexisting differences in protein expression. Whereas phenotypic heterogeneity due to
different population context (i.e. external signals) is sensible, phenotypic heterogeneity
due to heterogeneous protein expression (as found e.g. by Spencer et al., 2009) raises the
question where that internal variability originates from. Furthermore, confounding factors
often explain much but not all of the variability observed.

Ultimately, cellular heterogeneity can be traced back to the process of gene expression
itself (Fig. 1.4C). Gene expression is an intrinsically stochastic process (for a review, see
Kaern et al., 2005). Transcription of a gene is initiated by factors that bind at or upstream
of the gene’s promoter, e.g. core transcription factors and activators. These factors then
facilitate the binding of the RNA-polymerase, which in turn synthesizes mRNA from the
DNA template. These binding events result from random collisions of these molecules,
and thus considered to be inherently stochastic. For the same reasons, the complex pro-
cesses of translation, mRNA and protein decay are stochastic. Due to the potentially low
number of molecules involved (e.g. two DNA molecules containing the gene) these stochas-
tic fluctuations, which often referred to as “gene expression noise”, have to be accounted
for (McAdams and Arkin, 1999). The importance of stochastic fluctuations in genetic
circuits was already appreciated in 1985 by Shea and Ackers in a model of the lysogenic-
lytic switch in the A-phage and was suggested to contribute to unexplained phenotypic
variation by McAdams and Arkin (1997). However, only the seminal study of Elowitz
et al. (2002) provided experimental prove of intrinsic fluctuations of proteins due to gene
expression in E. coli: Using two fluorescence reporters of different color but controlled by
identical regulatory sequences, the authors could show that within the same cell, the ex-
pression of these two genes was indeed intrinsically noisy. However, some variation in the
overall protein level could not be attributed to intrinsic noise, since it affected both genes
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in the same way. It was suggested to originate from upstream factors, such as the amount
of RNA-polymerase per cell and was termed extrinsic noise. Using the same two color
reporter assay, the similar results were obtained also for yeast (Raser and O’Shea, 2004).
Whereas these studies were limited to single genes, genome wide measurements of yeast
(Newman et al., 2006) and E. coli (Taniguchi et al., 2010) protein distributions showed
that gene expression noise is not an isolated incident but a genome-wide phenomenon.

With these experimental confirmations of gene expression noise, new theories of gene
expression were required that account for the inherent stochasticity as classical determin-
istic models could no longer describe the observed data (for an introduction to stochastic
systems, see chapter 2). For example, Thattai and van Oudenaarden (2001) showed that
the variance in protein expression of a single unregulated gene mainly depended on the
“translational burst size”, that is, the number of proteins translated per mRNA. Addi-
tionally, it was discovered that also “transcriptional bursts” contributed strongly to the
variance in protein expression (Raj et al., 2006). These studies showed how fluctuations
in low copy number species (DNA, mRNA) can propagate to the protein level and cause
large variability, even in the regime of large protein numbers.

To describe the observed distributions, analytic expressions for the protein distribution
were derived for many small gene expression circuits, for example a two or three stage
model of gene expression (Shahrezaei and Swain, 2008; Bokes et al., 2011; Elgart et al.,
2011; for a review of stochastic gene expression models, see Paulsson, 2005), a model
including cell division (Friedman et al., 2006), self-regulating genes (Ramos et al., 2011;
Hornos et al., 2005; Grima et al., 2012) and cascades (Walczak et al., 2009). However,
analytical expression for the distributions of more complicated gene expression networks
are not available. Here, one has to resort to Monte Carlo methods to approximate the
underlying distribution of the system (see chapter 2, section 2.2.3).

While the stochasticity of the process complicates theoretical analysis, it must be
stressed that the fluctuations also harbor additional information which can be exploited
(Munsky and Neuert, 2012). For example, one can identify additional parameters of the
gene expression model (Munsky et al., 2009), infer the transcriptional dynamics (Suter
et al., 2011; Harper et al., 2011), distinguish different promoter models (Neuert et al.,
2013), determine the influence of cytokines on the frequency and magnitude of transcrip-
tional bursts (Molina et al., 2013) and even use these fluctuations for network inference
(Dunlop et al., 2008).

Apart from being an interesting subject of study for the theoretician, however, one has
to raise the question how the cell handles these noisy signals. Does a cell merely cope with
the fluctuations, or does noise have a function that a cell benefits from (for a review, see
Eldar and Elowitz, 2010). Indeed, evidence was found that yeast cells utilize stochasticity
to coordinate the expression of many genes in response to calcium signaling (Cai et al.,
2008). In bacteria, random switching of cell fate caused by fluctuating protein levels can
provide a fitness advantage: due to random switching, a small portion of the population
remains in a persister state, which is not susceptible to antibiotic and can repopulate after
antibiotic treatment, a phenomenon called “bet hedging” (Lewis, 2007; Veening et al.,
2008). Furthermore, noise enables probabilistic differentiation, a simple mechanism to
determine cell fate: Identical cells choose their fate randomly due to the fluctuations in
important key regulators, as for example observed at the first differentiation decision in the
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inner cell mass (Morris et al., 2010; Dietrich and Hiiragi, 2007). Without noise, external
signals would be needed to instruct the otherwise identical cells into different fates.

Random cell fate choices at first seem to contradict the observed precise development
of an organism. Note however, that these fluctuations could simply be used to break the
symmetry and start differentiation in otherwise identical cells, whereas cell-cell communi-
cation creates feedback mechanisms to ensure precise development. For example, in the
Drosophila epidermis, one cell in a proneural cluster stochastically differentiates into a
neuroblast and in turn inhibits all other cells in the cluster from becoming neuroblasts via
Delta-Notch signaling, a mechanism called lateral inhibition (Skeath and Carroll, 1992;
Losick and Desplan, 2008).

In conclusion, there is strong evidence that noisy gene expression is not just an unavoid-
able physical phenomenon that has to be controlled, but it can be exploited by organism
to gain evolutionary benefits.

1.3 Stem cells in the epigenetic landscape

To gain a deeper understanding about the mechanisms of pluripotency, differentiation, self
renewal and cell state transitions in general in the presence of stochastic fluctuations, one
has to define what constitutes the “state of a cell”. Clearly, the state of the cell is not solely
determined by its nucleotide sequence, as all cells within a single organism carry the same
genetic material. It is rather determined by the composition of transcripts, proteins (most
importantly transcription factors), metabolites and also the state of the DNA itself such as
DNA-methylation, chromatin/histone modifications and transcription factor occupation.
This is called the epigenetic state of the cell, because it determines the cell’s identity (the
phenotype) beyond its genetic material (the genotype) and can be inherited from one cell
to its offspring®. In simpler words, in the epigenetic state of an enterocyte, an intestinal
cell type, certain genes e.g. important for the digestion and uptake of food are expressed,
whereas proteins required for the formation of neural synapses are repressed. The same
genes are of course present in neurons, but enterocyte-specific genes are suppressed in this
epigenetic state, whereas neuron-specific genes are upregulated.

However, a cell cannot reach all possible epigenetic states* simply because of the regula-
tory interactions encoded in the genome (Davidson and Erwin, 2006): Genes influence the
expression of other genes through an intricate network of molecular interactions, known as
the gene regulatory network (GRN, Kauffman, 1969). For example, a transcription factor
can bind to the promoter of another gene and repress its expression. Due to this interac-
tion, an epigenetic state where both the transcription factor and its target are expressed
is not reachable for the cells. The GRN not only imposes constraints on the epigenetic
states but also determines how the epigenetic state of a cell changes over time. Here it is
important to clarify that the network topology and hence the regulatory links are fixed on
the timescale of cell lifespan and only the state of the cell changes. The topology of the

3Note that there is an unfortunate redefinition of the term “epigenetics” in molecular biology, where it only
describes the recently discovered phenomena of DNA-methylation and covalent modifications of histones.

4 Assuming the epigenetic state is just composed of on/off states of 25000 genes in a human cell, this results
in 225990 possible states, far more than there are atoms in the observable universe.
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Figure 1.5: The epigenetic landscape as originally depicted by C. Waddington
(Waddington, 1957).

network only changes on much longer timescale due to mutations (for a detailed argument,
see Huang, 2012).

One can then analyze the dynamics of such GRN’s using mathematical tools (see
chapter 2, section 2.1.2) to find attractor states of the network, i.e. states towards which
the systems tends to move and returns to after small perturbations (Beuter, 2003). These
states are associated with stable cell types (Huang et al., 2005). One GRN can give rise
to multiple attractor states and cell state transitions, such as differentiation and apoptosis
occur if the state of the system moves from one attractor to another.

To gain a more intuitive understanding of this abstract concept, it is illustrative to
take a detour in history into the 1950’s, when Conrad Waddington put forward his idea
of the epigenetic landscape (Waddington, 1957). He describes cell differentiation during
embryogenesis as a marble rolling down a hilly landscape. Starting at high elevation,
the cell is pluripotent and as it starts to descend, it encounters several branching points,
where it has to decide its future path. After several of those branching points, the cell will
come to rest a one of several possible valleys, corresponding to different mature cell fates.
This is the famous picture of the epigenetic landscape (Fig. 1.5A) which has recently been
revived and is used as a metaphor in modern stem cell biology (Graf and Enver, 2009;
Fisher and Merkenschlager, 2010; Furusawa and Kaneko, 2011; Sisan et al., 2012; Wang
et al., 2011; Qiu et al., 2012; Wang et al., 2010). Waddington also gave a hint on what
determines the shape of this landscape in a less famous picture (Fig. 1.5B), showing the
bottom side of the landscape which is supported by a network of wires anchored by genes.
This is a surprisingly accurate description of our current understanding that the GRN
constrains the possible epigenetic states (hilltops in the landscapes are not reachable) and
the network determines how the cell’s state changes over time by shaping this landscape
(Huang, 2012). Attractor states correspond to local minima in the landscape, into which
the system will eventually settle. However, the motion is not a continuous downward flow
in the landscape until the cell reaches its final attractor as depicted by Waddington, but
the cell can temporarily get trapped in local minima (attractors) in the landscape, which
correspond to intermediate cell types.
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What is still missing to close the gap between the GRN and the epigenetic landscape,
is how to translate the wiring of the GRN into a landscape, such that state changes
allowed by the network correspond to downhill movements in the landscape. In physics
terminology: how to find a potential such that the forces acting on the system due to
the GRN correspond to the potential gradient? Note that this is not only useful for
visualization, but also defines the relative stability of the states (that is, which states
correspond to mature cells and which to stem cells) and allows to judge the height of
barriers between states. Unfortunately this construction is not possible in general®, but
several approximations were proposed (Zhou et al., 2012; Bhattacharya et al., 2011; Wang
et al., 2011), resulting in “quasi-potentials”, i.e. potentials whose gradient most accurately
reflects the dynamics of the GRN.

Here it is noteworthy that, even though these quasi-potential landscapes offer a in-
tuitive visual link to Waddington’s epigenetic landscape, interpretation can be difficult.
First, being only an approximation to a true potential, path independence in a quasi-
potential is not fulfilled, i.e. the action of a certain path does not only depend on the value
of the potential at the start and endpoint, but on the actual path. Second, the state of
the system (the marble in Waddington’s picture) does not have inertia. Third and most
important: The state does not strictly move down the gradient for two reasons: Addi-
tionally to the force along gradient, there is a remainder force in the system, which can
be for example perpendicular to the gradient (depending on the chosen approximation as
reviewed by Zhou et al., 2012). Apart from these deterministic components, there is also
a stochastic component to the time-evolution of the state due to gene expression noise.
Fluctuation in protein levels can move the system against the gradient and eventually lead
to barrier crossings, i.e. cell state transitions such as differentiation.

1.4 Toggle switches in binary cell fate choice

Since studying cell state transitions within the entire regulatory network is still difficult®,
it is useful to study smaller regulatory motifs of just a few genes.

A simple motif of cell fate choice was suggested by discoveries in the blood system
(for a review, see Graf and Enver, 2009): Forced expression of the myeloid-associated
transcription factor PU.1 in a erythroid-megakaryocytic cell lineage led to activation of
myeloid lineage markers and also downregulated erythroid genes, effectively converting
them into myeloid cells (Nerlov and Graf, 1998). On the other hand, myeloid cells could
also be converted into erythroid cells by forced expression of the erythroid transcription
factor Gatal (Kulessa et al., 1995; Visvader and Elefanty, 1992; Heyworth et al., 2002).
In combination with the finding that both factors mutually inhibit each other’s expression
(Zhang et al., 1999; Stopka et al., 2005) and autoactivate (Okuno et al., 2005; Yu et al.,
2002), this established the idea of transcription factor cross-antagonism in binary cell
fate choice (Graf and Enver, 2009; Zhou and Huang, 2011) (Fig. 1.6A): The cell fate
choice is implemented molecularly by two mutually inhibiting transcription factors and

5The driving force from the GRN can contain curl, which cannot be represented by a gradient, as it is
non-integrable.

5The epigenetic landscape is hard or impossible to obtain mathematically for large networks and the
network structure might not be known completely.
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Figure 1.6: Toggle switches implement binary lineage choice via cross antag-
onism. A) PU.1 and Gatal autoactivate their expression and mutually inhibit their
expression. Additionally, PU.1 (Gatal) activates myeloid (erythroid) genes and inhibits
erythroid (myeloid) genes. B) Hematopoietic differentiation hierarchy. Hematopoiesis
is currently viewed as a hierarchy of differentiation processes (Orkin and Zon, 2008).
From a hematopoietic stem cell (HSC), mature blood cells are replenished via a series
of progenitor cells with limited potential. Abbreviations: MPP, multipotent progenitor;
CMP, common myeloid progenitors; MEP, megakaryocyte-erythrocyte progenitor; GMP,
granulocyte-monocyte progenitor; CLP, common lymphoid progenitor.

their balance determines the outcome of the lineage choice. Initially, in a phase called
“priming”, both transcription factors are balanced, such that none overwhelms the other
and the cell is not yet committed to either lineage. If at some point the balance is tilted in
favor of PU.1, it will repress Gatal, activate the myeloid-specific genes and lead to myeloid
commitment. If the balance is shifted towards Gatal, erythroid genes are activated, PU.1
is repressed and the cell will commit to the erythroid lineage. Due to their switch like
behavior, these regulatory motifs are called genetic “toggle switches”.

Many other cross-antagonistic transcription factors and their involvement in binary
lineage decisions have been identified lately (Graf and Enver, 2009; Zhou and Huang,
2011), either in individual experiments (e.g. granulocytes against macrophages (Laslo
et al., 2006), or trophectoderm against inner cell mass (Niwa et al., 2005)) or compu-
tational studies (Heindniemi and Nykter, 2013). By combining multiple toggle switches,
one can recapitulate the hierarchical branching of different cell types (Foster et al., 2009).
For example, Krumsiek et al. (2011) showed how a network of 11 transcription factors,
including several toggle switches, can give rise to the experimentally observed hierarchy
of blood cell progenitors.

The PU.1/Gatal motif still serves as the leading paradigm of cross antagonism and
cell fate choice, also because of the multitude of theoretical work: To gain more in-
sight into the experimental findings, several theoretical studies analyzed the properties
of the PU.1/Gatal toggle switch in detail (Roeder and Glauche, 2006; Huang et al., 2007;
Chickarmane et al., 2009; Bokes et al., 2009; Duff et al., 2011; Foster et al., 2009), assum-
ing deterministic dynamics. Of main interest in those studies is if indeed two mutually
inhibiting transcription factors can generate multi-stable dynamics (in terms of the epige-
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netic landscape, multiple attractors) which give rise to the observed progenitor-, myeloid-
and erythroid-states. For example, Roeder and Glauche (2006) investigate different mecha-
nisms of mutual inhibition, apply bifurcation analysis to determine under which conditions
the system is multi-stable, and show in silico how the forced expression of one or the other
factor leads to lineage conversion, recovering experimental results. While this study does
not explain how the toggle switch actively carries out a lineage decision, but only how it
is stabilized, Huang et al. (2007) proposed that a change in autoactivation strength leads
to the loss of the progenitor state, thereby forcing cells to differentiate into either lineage.
Furthermore, the authors analyze the details of transition dynamics following the loss of
the progenitor state and conclude that the transition dynamics recapitulate microarray
measurements.

However, these studies are based on deterministic models, neglecting low copy numbers
of e.g. PU.1 mRNA (Warren et al., 2006) and hence the possibility of stochastic cell fate
transitions. Furthermore population-averaged measurements were used, hindering clear
interpretation on the single cell level. Whereas is is undoubted that the transcription
factors PU.1 and Gatal are involved in the myeloid/erythroid lineage decision, no evidence
is yet available whether these two factors indeed actively “make” the decision or if they
just implement and lock down an upstream signal. Recent experiments using single cell
time-lapse microscopy have questioned the active decision making function of PU.1/Gatal
and provide the necessary data to study the stochastic dynamics of this switch (Hoppe et
al., in revision).

1.5 Research questions

The main goal of this thesis is to investigate cell fate decisions in time-lapse data at the
single cell level using mathematical models and to assess the role of stochasticity on cell
fate choice, with a focus on genetic toggle switches as a molecular implementation of cell
fate choice.

First, we ask how stochasticity impacts on cell fate choice and whether it is compatible
with observed data. As cell fate choice is implemented molecularly in the gene regulatory
network, e.g. via a toggle switches, which itself is subject to fluctuations from gene ex-
pression, the process of cell fate choice itself has a stochastic component. However, to
which extent this stochasticity plays a role in cell fate choice is still being discussed: Cell
differentiation might be entirely stochastic and cell intrinsic (Gomes et al., 2011; Till et al.,
1964; Roeder et al., 2005; Abkowitz et al., 1996), regulated by external stimuli (Rieger
et al., 2009; Moore and Lemischka, 2006), or even be predetermined to a large degree
(Miiller-Sieburg et al., 2002). In this thesis, we develop methods that allow to analyze the
mechanisms behind cell fate choice, show that simple stochastic models can recapitulate
seemingly complex phenomena such as lineage priming or lineage bias, and that these
models can explain observed data.

Second, we ask how one can incorporate and utilize the genealogical structure inher-
ently emerging from a growing and dividing cell population. On the one hand, these
cellular genealogies present an obstacle to standard statistical analysis, as related cells do
not qualify as independent samples. On the other hand, genealogies also provide valuable
information. This is for example utilized in “paired daughter cell assays” (Suda et al.,
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1984), where the two daughter cells arising from a cell division are separated via microma-
nipulation and individual experiments are performed on these cells, e.g. colony assays to
quantify how variable these daughter cells are in terms of their lineage potential (Takano
et al., 2004). However, it is yet unclear how to exploit this information systematically on
a larger scale, i.e. not only on pairs of daughter cells, but whole genealogies. Hence, new
methods and models have to be developed which account for, and utilize this genealogical
information.

Finally, we investigate the current paradigm of the PU.1/Gatal toggle switch governing
the hematopoietic cell fate decision between myeloid and erythroid lineages applying the
methods developed in this thesis to hematopoietic stem cell genealogies generated by
Hoppe et al., in revision. Specifically, we assess whether the PU.1/Gatal toggle switch
actively determines the cell fate choice via its dynamics, or if PU.1 and Gatal merely
serve as a memory device that is linked to an unobserved upstream decisions (e.g. via
mechanisms proposed by Fritz et al., 2007; Hillenbrand et al., 2013).

1.6 Overview of this thesis

In chapter 2 we briefly introduce the formalism of dynamical stochastic systems, show
how the deterministic reaction rate equations are derived from the stochastic system, and
review Approximate Bayesian Computation as a tool to perform inference for stochastic
systems.

In chapter 3, we study the dynamics of a two stage toggle switch as a potential inter-
nal mechanism of binary cell fate decisions. We investigate the system’s quasi-potential
landscape and find that using a two stage gene expression model induces four attractor
states as opposed to using a one stage expression model, where transcription and transla-
tion are lumped together. We analyze the dynamics of the system in the quasi-potential
and associate two attractors with differentiated cell types and two attractors with undiffer-
entiated cell types, which are however already biased in their lineage choice. Furthermore,
we provide analytical expressions of the attractors residence times. Finally, we fit a toggle
switch model to single cell data from GMP differentiation using Approximate Bayesian
Computation. The presented methods, figures and results have been published in Strasser
et al. (2012) and Marr et al. (2012). We thus contribute to the current understanding of
stochastic toggle switch models and their dynamics and furthermore show how stochastic,
mechanistic models can be linked to experimental observation of cell fate choice.

In chapter 4, we study different coarse grained models of cell fate decision, where the
cell fate decision does not depend on internal dynamics but is governed by global, exter-
nal influences, such as local cell density. We present an inference framework based on
regularized linear models, which identifies the relevant external influences impacting on
differentiation from cellular genealogies with annotated differentiation events. We use the
framework to predict the required sample size for the analysis and explore the impact of
tracking errors within the genealogies on our results. Here, our contribution is the adap-
tation of available statistical methods to tree-structured data.
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In chapter 5 we consider models where cell fate decisions depend both on external in-
fluences and cell internal dynamics and present an algorithm that estimates parameters
of this model from cellular genealogies. We show that the model can accurately detect
differentiation events when the underlying dynamics are governed by a toggle switch. Ap-
plying the method to genealogies of differentiating blood stem cells, we present evidence
against the long standing paradigm of the PU.1/Gatal toggle switch in hematopoietic
lineage decisions. We contribute a novel model and inference method for genealogies that
allows to infer unobserved state changes (e.g. cell differentiation) from correlated fate of
genealogically related cells.

In chapter 6, we summarize the thesis and present an outlook on future research directions.



Chapter 2

Methods

In this chapter, we introduce the basic mathematical methods used in chapters 3—5. The
first part revolves around chemical reaction networks and their associated deterministic
and stochastic dynamics. In the second part, we briefly review likelihood-based inference
in general and outline Approximate Bayesian Computation as a likelihood free inference
method. In the last part of this chapter, we introduce graphical models as well as inference
in graphical models via the sum-product algorithm.

2.1 Chemical reaction kinetics

Throughout this thesis, dynamical systems are modeled as chemical reaction networks and
in the following, we briefly introduce the basic notations and concepts.

Typically, biochemical processes are modeled as chemical reactions (Wilkinson, 2011;
Alon, 2006). Here, the model consists of N species Xi,..., Xy and a set of M reactions

W1, -, pupr- The reaction p can be written in stoichiometric form as
k
€M1X1 +6M2X2... —H>pN1X1 eruQXg... , (2.1)

where e,; € Ny (pui € Np) is the number of molecules X; consumed (produced) by reaction
(. Arranging these coefficients as matrices

(E)z'j = €5, NS NS/IXN
(P)ij = pijs P € N"N

we can obtain the stoichiometric matrix V' of the system as V = —FE + P. Each row vector
vy = [Vu1,...,Vun| corresponds to the change in species numbers upon one occurrence
of reaction p. The order of reaction p is defined as

N
Oy = E €ui -
i=1

The reaction rate constants £, quantify the reaction’s speed and are related to its activa-
tion energy via the Arrhenius equation

_ Eq_
k=A-e kBT |
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where E, is the activation energy, kp is Boltzmann’s constant, T is the temperature, and
A is a reaction specific prefactor. The units of the reaction rate constant depend on the
reaction’s order: For a reaction of order o, the rate constant k,, has units of [s‘lM 1_0“],

where M = ﬁgi is molarity. For example, for second order reactions (o, = 2), the reaction

rate has units of [M_ls_l].

2.1.1 Reaction rate equations

Up to now, for a given system we only have specified how reactions change the number of
molecules, but not the rules that determine the dynamics of the reactions. The traditional
method for modeling cellular dynamics is based on ordinary differential equations, which
are called reaction rate equations and describe macroscopic dynamics:

ox

=S (2.2)

with = € Rév and f : Rév xR — Rév . This equation describes the deterministic time
evolution of continuous species concentrations x(t). Typical choices for the function f
include mass action (Guldberg and Waage, 1879) or Michaelis-Menten kinetics (Michaelis
and Menten, 1913). Applying the law of mass action, one obtains:

N
filwt) = | vi k- [ 254 (2.3)
j=1

I

with ¢ = 1... N. The rate of change in concentration of species X; is the sum of contri-
butions from the individual reactions p, where each reaction changes the amount of X;
by v,;. The product over j derives from the mass action assumption, where one assumes
that the reaction rate is proportional to the possible number of educt molecule collisions,
and hence proportional to powers of the educt concentrations.

In section 2.2.4, we derive the macroscopic reaction rate equations from a more accu-
rate, microscopic and stochastic description of the dynamics and the required assumptions
are discussed.

2.1.2 Steady state solutions and stability analysis

Given the set of reaction rate equations of the underlying dynamical system, one is typi-
cally interested in the asymptotic behavior of the system, i.e. £t — oco. In the reaction rate
equations of the form shown in Eq. (2.2) one sets d,x(t) = 0 and solves for z, yielding
steady state solutions {z*|f(z*) = 0}.

Linear stability analysis can be applied to characterize the steady states further (Mur-
ray, 2002; Beuter, 2003). Here one studies how the system behaves upon infinitesimal
perturbations from the steady state and classifies the steady states as either “stable”,
“unstable”, or “saddle point”. In the following, this procedure is shortly reviewed.

We start by considering the time evolution of a small perturbation x —z* from a steady
state * and linearize f at z*:

O(x — %) = f(z — 2", 1)
~J-(zr—2x"),
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where
of1 of
oz te oxr N
J = : )
IfN ofn
ox1 Tt Oz

is the Jacobian of the system. Performing eigendecomposition of J one obtains

Oz —x*)~J (v —12")
= ADA™' . (2 —2%),

with D as a diagonal matrix of eigenvalues and A the matrix of eigenvectors. Multiplying
both sides by A~! from the left yields

HRA N (x—a*)=DA' (x—2¥)

Y Y
8ty:D'y.

Since D is diagonal, we obtain decoupled differential equations for each transformed vari-
able y; € Rg (j =1,...,N) with solution

y;(t) = e’ y;(0),

where ); is the j-th eigenvalue of the Jacobian. In general A\; = a; + b; is complex and
therefore

yj(t) = " [cos(bjt) + vsin(b;t)] -4;(0) .

ezbjt

The imaginary part of the eigenvalue induces oscillations (second term), whereas the real
part determines the stability of 2*: For ¢ — oo and if all a; < 0, we see that all y; — 0
and therefore also x — * — 0. The perturbation vanishes and the system returns to its
former steady state. The steady state x* is stable and often referred to as an attractor
since systems near that state evolve towards it. On the other hand, if any a; > 0, the
perturbation will not vanish for ¢ — oo and the system will leave the former steady state
x*. The steady state z* is called unstable (or saddle point if its eigenvalues have both
positive and negative real parts). If all a; = 0 and any b; # 0, the system will oscillate
around the center z* (Murray, 2002).

To conclude the analysis, one classifies the dynamical system (Eq. 2.2), depending on
the number of distinct stable steady states z* as “monostable”, “bistable”, etc... Note
that the number of stable states in general depends on the parameters of the system (e.g.
the reaction rates), which is studied in the field of bifurcation theory. Furthermore, for
each stable state z*, one can determine the set of states A(z*) which evolve towards z*
as t — oo:

A(z*) = {zo € RY |2(0) = 2o A lim z(t) = z*}
t—o0

This set A(z*) is called the basin of attraction of stable state (or attractor) x*.
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2.2 Stochastic systems

As discussed in section 1.2.3, the dynamics of gene expression processes have to be consid-
ered stochastic rather than deterministic owing to small molecule numbers of e.g. mRNAs.
In the following, we recapitulate the formalism to describe these stochastic dynamical sys-
tems.

2.2.1 Stochastic chemical kinetics

We assume a well stirred system in a volume 2, such that positions and velocities of
individual molecules can be considered random. This allows to represent the entire state
of the system at time ¢ by the vector

x(t) = [z1(t),...,zNn(1)],

where z;(t) denotes the number of molecules of species X; at time t. The vector z(t) € S
is called the state vector of the system where S C Név is called the state space of the
system. Note that the state x(t) of the system is discrete as opposed to the reaction rate
equations considered in section 2.1.1.

Next, we define the propensity function a, of a reaction u as

a,(x)dt :=Probability that reaction p occurs in the infinitesimal (2.4)

interval [t, ¢ + dt] given the system is in state z at time ¢

The form of the function a,, is derived from molecular physics taking into account collision
probabilities and reaction probabilities (Gillespie, 1992):

a,(z) = ¢y - ﬁ (3”) : (2.5)

where ¢, is a constant. For unimolecular reactions (o, = 1), ¢, is the probability per unit
time of a spontaneous quantum-mechanical transition from educt to product. The second
term in Eq. (2.5) accounts for the number of molecules that can undergo this conversion.
In case of bimolecular reactions (o, = 2), ¢, is the probability per unit time that a collision
of educt molecules results in a successful reaction. The potential number of educt collisions
is specified by the second term of Eq. (2.5).

Note that in general ¢, # k,, where the latter is the familiar chemical reaction rate
constant. In fact they are related via (Gillespie, 2007)

k, for unimolecular reactions
Cy = kuQ_l for bimolecular reactions with different educts

2/€“Q*1 for bimolecular reactions with same educts .

Higher order (e.g. trimolecular) reactions are neglected because these are approximations
to sequences of bimolecular reactions. In section 2.2.4 we will see the connection between
the propensities and the mass-action rates from Eq (2.3).
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Ultimately, one is interested in the time evolution of the state vector z(t) through
a series of reactions. However, as the timing and order of reaction firings is inherently
stochastic (the propensities are formulated as probabilities and z(t) is a Markov Jump
process), one can only derive an equation that describes the time evolution of the proba-
bility distribution of the state vector z(¢) (Gillespie, 1992). This equation is known as the
Chemical Master Equation (CME):

M
ap{'(;’t) - Z [ap(z — v, )P(x — vy, ) — ap(z, t)P(x, t)] . (2.6)

p=1

It describes how the probability P(z,t) of being in a certain state x at time ¢ changes in
an infinitesimal time interval due to reactions into and out of the state x. The first term
accounts for reactions leading into x from adjacent states (states that are one reaction
away from x), which therefore increase the probability of state x. Similarly, the second
term accounts for reactions leading away from the current state x, thereby decreasing the
probability to be in x.

Let us briefly characterize Eq. (2.6). First, we find that it is not a single ordinary
differential equation, but a system of coupled differential equations, one for each possible
state = of the system. Even if our system comprises only a single species, the state space
S is potentially infinite, e.g. if the number of molecules is unbounded (S = Ny). If the
number of molecules is bounded, the size of the statespace is growing exponentially in the
number of species. Second, we observe that Eq. (2.6) is linear in P(x,t). Note that the
propensities can nevertheless be nonlinear in z. If we choose some arbitrary enumeration
X of the state space, one can rewrite Eq. (2.6) as

OP(X, 1)
— o =@ P, (2.7)

where the matrix ) is defined via its elements as

Yl au(x) x=y
(Q)ay = au(x) y=x+v,
0 otherwise .

x and y are elements of the state space, thus the dimension of () is equal to the size of the
possibly infinite state space.

We conclude that the CME is a system of coupled linear differential equations and the
size of the equation system corresponds to the size of the state space.

2.2.2 Analytic solutions to the CME

Analytic solutions to the CME are only available for certain simple systems (Jahnke and
Huisinga, 2007; Ramos et al., 2011; Pendar et al., 2013) restricted to steady state distribu-
tions (Raj et al., 2006; Friedman et al., 2006; Paulsson and Ehrenberg, 2000; Bokes et al.,
2011; Hornos et al., 2005) or are valid only in certain regimes (Shahrezaei and Swain,
2008).
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Instead, numerical methods have been applied. Finite state projection (Munsky and
Khammash, 2006) tries to find suitable small truncations of the statespace S, allowing for
a direct numerical solution of Eq. (2.7). Spectral methods (Walczak et al., 2009; Mugler
et al., 2009) exploit the linearity of Eq. (2.7) by solving it in terms of its eigenfunctions
without state space truncation. Moment equations methods consider not the time evo-
lution of the whole distribution but of its moments (Lee et al., 2009; Engblom, 2006;
Hasenauer et al., 2013).

2.2.3 Stochastic simulation

The above methods cannot be applied if either the relevant state space of the system
is to large or if the system itself is too complicated (e.g. because of multiple feedback
loops), eluding any sophisticated mathematical treatment. However, one can apply a
simple algorithm to draw samples from the stochastic process x(t) governed by the CME,
which is known as Gillespie’s algorithm or stochastic simulation algorithm (Kendall, 1950;
Gillespie, 1976). Drawing sufficiently many samples, one can then approximate P(z,t),
the solution of the CME.

The core algorithm is based on the “reaction probability density function” (Gillespie,
1976):

p(T, u|x, t)dT :=Probability at time t that the next reaction to happen is of type (2.8)
p and it occurs in the infinitesimal interval [t + 7, ¢ + 7 4 d7]

given the system is in state z at time ¢.

Note the difference to the definition of the propensity in Eq. (2.4): The propensity is the
instantaneous probability of a certain reaction, whereas p(7, u|z, t) informs also about the
waiting time.

One can easily derive the form of Eq. (2.8) (Gillespie, 1976, 1992): It is the product
of the probability pi(7|t,z) that no reaction happens in [t,¢ + 7] and the probability
p2(T|t, x)dT of reaction p happening in [t 4+ 7, + 7 + d7]:

P(ﬂﬂ’xat)dT = p1<7"t,(13) 'p2<7"t,[13)d7'
ST g (1) | (2.9)

The first factor is derived from the density of a Poisson distribution with rate ), a;(z)7
evaluated at 0, and the second factor follows from the definition of the propensity (Eq. 2.4).
Defining a(x) = ), a;(x) and rewriting the above as

p(T, plx, t)dr = {e*“(x)Ta(x)] : [a(lm)au(a;)} ,

it is apparent that p(7, u|x, t)d7 is the joint density of two independent random variables:
An exponential random variable with mean a~!(x) (first bracket) and a categorical random

variable with probability vector [a;(%), A aé”ég(cg)g)} (second bracket).
Hence, one can easily draw samples from Eq. (2.9) and thereby determine the timing

and type of the next reaction given the current state x. With that, we can construct the
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Algorithm 1: The stochastic simulation algorithm (SSA).
Input: Initial condition xg, maximal simulation time ¢,,,,, propensity functions a;
and stoichiometric matrix V'
Output: Timecourse of species abundances z(t)
J=0
to = 0;
while ¢ < ¢4, do
a=73,au(z;);

T ~ Ezp(a) ; // Exponential random variable

w~ Cat ([al(x) aM(I)D ; // Categorical random variable

a(z)?" "7 alx)
tjiv1=1;+T;
Tj41 =X + Vs
j=Jj+1
end

stochastic simulation algorithm (Algorithm 1), which starts from an initial state zp and
initial time ¢y and iteratively updates time and state by executing reactions in accordance
to Eq. (2.9). This extremely simple algorithm allows one to obtain samples (i.e. time-
courses) and hence to approximate the solution of the CME even if it is infeasible to solve
the CME directly.

However, two complications arise: Being a Monte Carlo method, the rate of conver-
gence of this sampling approximation to the solution of the CME is only of order 1/ VN,
where N is the number of samples!. Hence, a huge number of samples (typically > 10%) is
required to achieve acceptable accuracy. Furthermore, the computation of a single sample
becomes time-consuming if the number of reactions taking place in the desired time inter-
val [to, tmax] 18 large, as each reaction is simulated individually. This happens, for example,
if overall molecule numbers in the system or reaction constants are large. Therefore, the
reaction propensities a,(x) and the factor a(x) become large. This in turn leads to small
time steps 7 by which the algorithm advances, thereby requiring much more iterations to
completely simulate the desired time interval [to, tmax]-

Various exact variations the stochastic simulation algorithm have been developed in
the last decades, which are devoted to improve the algorithm’s scaling in terms of species
number N and number of reactions (Ramaswamy et al., 2009; McCollum et al., 2006;
Gibson and Bruck, 2000; Slepoy et al., 2008; Cao et al., 2004). However, all these methods
are still subject to the above mentioned problems, as they create exact samples of the
underlying stochastic process.

To overcome the issue of computational complexity, numerous approximate algorithms
have been developed. They all evolve around the idea that under certain circumstances,
it is valid to simulate not every reaction, but lump together many individual reactions
into a single simulation step. The idea of 7-leaping (Gillespie, 2001) was proposed first,

!Suppose you want to estimate u = E[f(Y)] where Y is a random variable and f is some function. Drawing
samples y1,...,Yn, we find 4 = n~' Y, f(y;). The variance of the estimator is o*() = n™2 - n - o*(Y)
and the standard deviation o(fi) = n"'/? . o(Y)
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where one assumes that within a certain time interval the propensities a;(z) are effectively
constant. Therefore the numbers of reactions of each type happening in this interval can
be approximated as Poisson random variables and all these reaction are executed in a
single simulation step simultaneously. Based on this idea, many modifications of 7-leaping
have been derived (Mjolsness et al., 2009; Cai and Xu, 2007; Auger et al., 2006; Peng
and Wang, 2007). The state space simulated by 7-leaping methods is still discrete. If the
state space is approximated by continuous variables (e.g. because the molecule numbers are
large) one naturally arrives at a stochastic differential equation approximation of the CME
(Gillespie, 2000). With any of these approximations, one trades accuracy for speed: For
example, by leaping over larger time intervals and executing many reactions in parallel,
T-leaping can considerably reduce computational time compared to standard stochastic
simulation. However, the larger these intervals, the more the assumption of constant
propensity will be violated, resulting in a larger error of T-leaping compared to the exact
stochastic simulation algorithm. In general, these methods perform well if species numbers
in the system are large, but can introduce large errors if some species numbers are close
to zero. Unfortunately it is often these low species numbers that induce the characteristic
behavior of the system (for an example, see Schultz et al., 2008).

Another class of approximations is based on the idea of time scale separation (Cao
et al., 2005; Haseltine and Rawlings, 2002), where ones partitions the dynamics of the
system into a fast and a slow set and only simulates the slow set explicitly via stochastic
simulation, but approximates the evolution of the fast set (for example) deterministically.
Huge speedups can be achieved if there is a clear time-scale separation in the system.
However, the degree of time scale separation often changes dynamically with the state of
the system itself (some regions in state space satisfy time scale separation, whereas others
do not) and with the parameters of the system. This renders an automated treatment
of the problem difficult and requires some user-specified prior knowledge of the system.
Often, a separation of time scales is simply not possible, even tough some reactions are
much faster then others (termed the “weakly” adiabatic regime by Walczak et al., 2005a).

2.2.4 Derivation of the reaction rate equation from the CME

In the following, we show how and under what assumptions the classical reaction rate
equations emerge as a limit of the stochastic dynamics described by the CME. Note that
there are different ways of deriving the reaction rate equations from the CME and for
brevity only the approach by Gillespie (2000) will be discussed here (for overviews see e.g.
Grima et al., 2011; Grima, 2010a; Gardiner, 2004).

One starts from the stochastic simulation algorithm, which generates exact samples
and apply the 7-leaping approximation, where the number of reaction per simulation step
follows a Poisson distribution. If this number is large on average it is suitable to approx-
imate the Poisson by a Gaussian distribution. Casting the resulting difference equation
into a differential equation, we obtain the following stochastic differential equation known
as the Chemical Langevin Equation (Gillespie, 2000)

O 3 @) + Y v a0 (2.10)

-~

Drift Diffusion
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for the time evolution of the continuous state vector x(t) € RY. v,, denotes the row of
the stoichiometric matrix corresponding to reaction u. The right-hand side of Eq. (2.10)
consists of a deterministic drift term and a stochastic diffusion term driven by indepen-
dent white noise terms I',(t). The classical reaction rate equation is recovered in the
thermodynamic limit (i.e. system volume and species numbers approach infinity) where
the propensities a,(x) become so large that the diffusion term can be neglected due to the
square root scaling:

i;f = Zyﬂa#(m) +0(a'?).
m

Using the definition of the propensities Eq. (2.5) and approximating the numerator of the
binomial coefficient? we find

Comparing to Eq. (2.3), we find that, in the thermodynamic limit, we recover the reaction
rate equations and see that the propensities correspond to the mass-action rates.

However, one must keep in mind that this derivation and therefore the reaction rate
equations itself only holds if the system of interest fulfills all the assumptions of the
Langevin Equation and the system size approaches infinity. As most processes of interest
happen within a cell’s volume or a sub-compartment thereof, the validity of the reaction
rate equations in the realm of cell biology is questionable. Several studies indicated the
breakdown of classical reaction rate equations at volumes comparable to cells (Grima,
2009b,a; Ramaswamy et al., 2012). To account for these small volume effects, the effective
mesoscopic rate equations have been proposed, which augment the classical reaction rate
equation by a volume correction (Grima, 2010b).

2.2.5 Stability of states in deterministic and stochastic systems

In section 2.1.2 we calculated the stable states and their stability in the deterministic
system (the reaction rate equations), whereas in section 2.2.1 we applied the CME, which
describes the stochastic dynamics in terms of probability distributions over state space.
What can be concluded from stability analysis of the deterministic system about the
underlying stochastic system from which it was derived?

First, one has to note that there are generally no stable states (attractors) in a stochas-
tic system: Due to the inherent probabilistic nature of the process, no single state x will
be stable. There is always non-zero probability of leaving the state3. Hence, the system
will not converge to a single state in the long term limit, even though its distribution

2For example, (g) = % ~ % if n is large.

3Exceptions are absorbing states where no reaction leads out of the state, i.e. V,, a, (%) = 0 for the absorbing
state .
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converges under mild assumptions (Van Kampen, 1992) and one has to come up with a
different definition of stable states in a stochastic system. An intuitive choice for an analog
of a deterministic stable state is a mode of the probability distribution of the stochastic
process. Note that there can be multiple modes, e.g. in the protein number distribution
of a self-activating gene (Hornos et al., 2005). The idea is that a single trajectory will
fluctuate near a mode of the distribution for a long time and a transition to another mode
will happen on a much longer timescale. The region around the mode, the analog to
the deterministic basin of attraction, is at least approximately stable on timescales much
shorter then the escape time. Note that the escape time can be much longer than the
average lifetime of a cell.

Second, the question arises how deterministic stable states and the modes of the
stochastic system relate. Unfortunately, no general correspondence exists: Existence of a
deterministic stable state does not imply that the solution of the master equation has a
mode at this location*. On the other hand, the existence of a mode does not imply the
existence of a stable state in the deterministic system.

An example discussed in this thesis (see chapter 3 and Strasser et al., 2012) is a model
of a two-stage toggle switch without cooperative binding. Stability analysis predicts one
stable state (see supplements of Strasser et al., 2012) whereas the distribution of the
stochastic model shows four distinct peaks (Fig. 3 of Strasser et al., 2012). Additionally,
the deterministic stable state is located in a region of state space where the distribution has
negligible probability mass. Therefore, conclusions drawn from the deterministic systems
can be arbitrarily wrong in context of the (more accurate) stochastic counterpart.

Finally, it has to be noted that these discrepancies are not due to an inherent flaw of the
reaction rate equations. Such discrepancies simply arise because the assumptions needed
to derived the reaction rate equations from the Chemical Master Equation are violated for
the system of interest. Therefore, one should either study the stochastic system directly,
or if complexity does not allow this, one should rigorously check if the assumptions of the
reaction rate equations hold.

2.3 Parameter inference

Having set up a (stochastic or deterministic) model of the system of interest, one has to
fit the model to observed data to infer the unknown parameters of the system, e.g. the
reaction rates. Here, one has to derive the likelihood function £(X|€) of the system, which
gives the probability of observing the data X given a set of parameters 6.

2.3.1 Likelihood-based inference

To fit the system to the data in a frequentist approach (Sivia and Skilling, 2006), the
maximum likelihood estimate 6 is obtained by optimizing the likelihood with respect to
the parameters:

0 = argmax L(X|6) (2.11)
0

4Note that there are certainly systems where this correspondence holds, for example a simple birth death
process.
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Consider the following example: We observe n independent and identically distributed
data points X = (x1,...,z,) from a Gaussian distribution, whose mean y and variance o
are unknown and have to be inferred. The likelihood of a single datum z; given parameters
, 0% is a Gaussian density:

1 (@i—w)?
L(zi|p, o) = e 202
( 1|M ) \/%0_
Due to the independence and identical distribution of the z;, the likelihood of the whole
dataset X is the product of individual likelihoods:

L(X|p,0? (2|, 0

(% u)

-1
gie=

To obtain e.g. the maximum likelihood estimate [ via Eq. (2.11) we have to find the
maximum of £(X|u,o?) with respect to u. Here, it is more convenient to use the log-
likelihood, which has the same maxima as the likelihood, as the logarithm is a monotone
function, but is easier to handle mathematically:

w?

202

NE
£}

log(L(X |, 02)) = nlog(v2r0) —
=1

To find the maxima, we calculate the derivate with respect to p and, set it to 0 and solve
for p:

o
=1 X|p,0%) =
5y B (£ (X|p1,0%)) =0

Here, we found the maximum of the log-likelihood (since 8822 log(L(X|u,0?)) = —n/o? <

0) at the sample mean = Zl 1 ¥; as expected by intuition. As similar calculation for 62
yields

which is the sample variance.

Although in this example, the maximum likelihood estimators of the parameters can be
calculated in closed form, this is not possible in general. Then, the maximum likelihood
estimate has to be obtained by numerically minimizing the log-likelihood function via
optimization algorithms (e.g. gradient descend).
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In a Bayesian approach (as reviewed by Bishop, 2006), one is not only interested
in a point estimate, such as the maximum likelihood estimate, but in the full posterior
distribution P(0|X) of the parameters 6, which is obtained using Bayes’ rule:

L0 ()
POX) = T a0rix10)=(0) (2.12)

Here, 7(0) is a prior distribution over parameters, which can be used to include prior
knowledge about the parameters (e.g. from previous experiments). Except for the simplest
models, the posterior distribution is analytically intractable and Markov Chain Monte
Carlo methods are used to draw samples from the posterior instead (Metropolis et al.,
1953). In analogy to the maximum likelihood estimate, one can use the mode, mean or
median of the posterior as a point estimate of the parameters.

Parameter uncertainty

However, apart from point estimates, one is also interested in their uncertainty, i.e. how
much one can trust the estimate. This uncertainty should then be propagated into e.g.
model predictions.

In the frequentist approach it is assumed that the parameters 6 of the model are
unknown but fixed, while the observed data X is considered random sample, and one
reports the maximum likelihood estimate 0 as the point estimate of 8. However, this point
estimate will vary depending on the particular sample of data X: If we observe another
dataset X’ (generated with the same unknown parameters), the estimate 6 will now be
different. To account for this uncertainty, one constructs confidence intervals around
the maximum likelihood estimate. These intervals are constructed from the sampling
distribution of é, i.e. the distribution of § across an infinite number of future datasets.
The sampling distribution can be derived analytically in some cases (e.g. the t-distribution
for the estimator of the mean of a Gaussian) or has to be obtained via bootstrap. The
interpretation of a 95% confidence intervals is as follows: If we happen to obtain new
datasets (but from the same underlying model and the same parameters) and we calculate
the maximum likelihood for each dataset separately, in 95 % of cases the new estimate
will be contained in the confidence interval.

In the Bayesian approach, quantifying the uncertainty of the parameters 6 is much
more intuitive. Having obtained the posterior p(6|X), one can report the posterior mode
as a point estimate (analogous to the frequentist é), and can quantify the uncertainty
in the parameters by calculating credibility intervals (regions) that measure the width
of the posterior distribution, where a small width indicates low uncertainty in 6. Often
the credibility intervals are constructed such that 95% of the posterior mass is contained
within and that equal mass is located in each tail (central intervals). Interpretation of
credibility intervals is simple: They represent our degree of belief given the data X that
the parameter lies within the constructed region.
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Despite their similar usage in quantifying the uncertainty of a parameter, frequentist
confidence intervals and Bayesian credibility intervals are different conceptually and also
numerically®.

2.3.2 Approximate Bayesian Computation

Unfortunately, the exact likelihood function is intractable for most stochastic systems, as
it requires the solution of the underlying CME. Instead, one can approximate the system of
interest, such that the approximate system has a tractable likelihood function. Examples
include moment equations (Lee et al., 2009; Engblom, 2006; Hasenauer et al., 2013; Zechner
et al., 2012), the Linear Noise Approximation (Elf and Ehrenberg, 2003; Komorowski
et al., 2009; Van Kampen, 1992) and diffusion approximations (Fuchs, 2013; Golightly and
Wilkinson, 2005). However, these approximations are not valid in general (e.g. for multi-
stable models) or require additional ad hoc assumptions (e.g. moment closure). Hence,
exact likelihood based inference is not applicable for many stochastic models.

However, as we can easily generate samples from the CME using Gillespie’s algorithm,
we can perform simulation based (likelihood free) inference using Approximate Bayesian
Computation (ABC, Marjoram et al., 2003; Sisson et al., 2007; Toni et al., 2009), which
casts likelihood-free inference into a Bayesian framework. In ABC, the evaluation of the
likelihood is replaced by forward simulation of the model and a comparison of simulated
and observed data via a distance function d : D x D — RS’ , where D is the domain of the
data. Instead of optimizing the analytical likelihood, one instead minimizes the distance
between observed and simulated data with respect to parameters.

ABC rejection sampling

A simple algorithm reminiscent of rejection sampling (Pritchard et al., 1999) can be formu-
lated (Algorithm 2), which generates a sample 6* ~ 7(#) from the prior distribution 7 (8),
simulates data z* € D from this parameter, and accepts sample #* based on a distance
function d between x* and the observed data xg € D with a given threshold e. Thereby,
we obtain an approximation of the posterior distribution w(é|d(xg,z*) < €). The smaller €
the better the approximation to the true posterior. However, this procedure is ineffective if
the prior distribution and the posterior are very different as most samples will be rejected.

ABC sequential Monte Carlo sampling

Therefore, one typically performs a sequential Monte Carlo (particle filtering) variant of
ABC (Toni et al., 2009). Sequential Monte Carlo applies multiple rounds of rejection
sampling with decreasing tolerance levels €1, ..., e) and proper reweighing of parameters.
The posterior from the last iteration is used as a prior for the next iteration, after applying
small perturbations via a kernel K (Algorithm 3). The algorithm yields a sample from the
approximate posterior 7(6|d(xg, x*) < €pr), but is more efficient than rejection sampling

SHowever, a notable exception is the estimation of the mean of a Gaussian. Here, both sampling distribution
and posterior are identical t-distributions, hence giving the same results for confidence and credibility
intervals.
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Algorithm 2: ABC rejection sampling

Input: Prior 7(0), observed data x,, tolerance level €, distance function d, number
of samples N

Output: Sample 0 from the approximate Posterior 7(6|d(zo,z*) < €)

0=10; // set of accepted parameters

1= 0;

while 7 < N do

0* ~ 7(6) ; // sample from prior

Simulate data z* from 6*;

d* =d(z*, x,);

if d* < e then
0=0U06%; // Accept 6*
1 =141

else

‘ Reject 6%,
end

end

due to its lower rejection rate. For a detailed derivation and analysis of the algorithm, see
Toni et al. (2009).

To achieve optimal performance several parameters of the algorithm need to be tuned:
First, the number of accepted particles per iterations has to be set so large that the
accepted particles give a good approximation of the distribution, but on the other hand,
so small that it is computationally still tractable. Typical choices are in the order of 103
(Toni et al., 2009). Second, a perturbation kernel K has to be selected. Here, usually a
uniform or Gaussian kernel is selected whose width decreases with decreasing tolerance
level (Lillacci and Khammash, 2013). Last, the number of iterations and the associated
tolerance schedule [ey, ..., €ps] has to be defined. Optimally, one chooses a schedule where
the distances between consecutive distributions 6,, is minimal (high acceptance rates)
but at the same time keeping the number of iterations to a minimum (computational
efficiency). Several methods of automatically determining the tolerance schedule have
been proposed recently (Beaumont et al., 2009; Silk et al., 2012; Moral et al., 2011).

Note that for a stochastic model, it is not enough to create a single simulation from a
parameter set which is compared to the observed data. Due to the inherent randomness
the distance between a single realization of the model and the observed data can be large
even if the true parameters were used. Hence, one has to simulate many realizations for
given parameters, making the method computationally challenging.

Distance function

For applications, it is most crucial to design an appropriate distance function d that deter-
mines if the simulated and observed data are similar. Often it is difficult (and ineffective
due to the curse of dimensionality) to design a distance function between the complete
datasets xg and x*. Therefore, the distance function is typically computed on summary
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Algorithm 3: ABC sequential Monte Carlo sampling

Input: Prior 7(0), observed data z,, tolerance levels €1, ..., ey, distance function
d, number of samples N, kernel K
Output: Sample 0/ from the approximate Posterior m(0|d(xo, z*) < €nr)

m = 0;
while m < M do
n = 0;
O, =10 ; // set of accepted parameters
while n < N ; // iterate until N particles accepted
do
if m == 0 then
‘ 0** ~ () ; // sample from prior
else
Sample 0* from population 6, 1 with weights w,_1;
0 ~ K(6**|0*) ; // perturb 0" with kernel K
end

Simulate data x** from 6**;
d** — d(x**jx());
if d** <, then

O = O, U O™ // Accept 0**
(n) 1 m=20
W' = m(0*%) 0 // Calculate weight for 6**
T w? K@l ) T
7 Tm—1 m—1
n=n+1;
end
end
m=m + 1;

end

statistics of the datasets, e.g. d(S(xg), S(z*)), where S(z) € R” is a vector of k summary
statistics of the data x. Hence, one has to carefully choose these summary statistics to en-
sure that they capture the relevant features of the system. Usually one chooses a distance
function based on the L,-norm (p > 1)

k 1/p
dr,(S(z0),5(x%)) = [15(x0) = S(27)|lp = <Z |Si(20) — 5i($*)|p> ;
=1

with e.g. p = 2 (“Euclidean distance”) or p = 1 (“Manhattan distance”). However, it has
been shown that the infinity norm L. (x) = max(|z1],...,|xk|) is beneficial under certain
circumstances as it allows to derive an upper bound on the number of simulations per
parameter required (Lillacci and Khammash, 2013).
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2.4 Graphical models

In this section, we will briefly introduce graphical models as a concept to represent the
joint probability distribution of various variables, e.g. observed quantities, hidden variables
and unknown parameter. We also discuss inference in tree-structured graphical models via
the sum-product algorithm, which is applied in context of cellular genealogies in chapter 5.
For a comprehensive treatment of graphical models, we refer to Murphy (2012) or Bishop
(2006).

Consider a set of variables X = {X1,...,X,} (sets of variables are denoted in bold).
Generally, any joint probability distribution p(X) of the n variables can be decomposed
into

p(X) :p(X17'~-7X77«)
:p(Xl) 'Z)(XQ‘Xl) -p(X3’X2,X1) e -p(Xn’Xl, NN ,Xn_l) . (213)

Note that the factorization is not unique, because one can simply relabel the variables.
This representation of the joint distribution is however not very useful, as every variable
depends on all the previous variables.

2.4.1 Conditional independence

The key idea to represent this joint density more compactly is to make some problem-
specific conditional independence assumptions. Two variables X,Y are conditionally in-
dependent given a third variable Z, written as (X L Y')|Z if and only if

p(X,Y|2) = p(X|2) -p(Y|Z) ,

or equivalently
p(X]Y, Z) = p(X|Z) .

These conditional independence assumptions then simplify the right hand side of Eq. (2.13).
For example, consider a Markov chain (X7, X, X3, X4) of length four, i.e. we assumed
(Xi—1 L Xit+1)|X; such that “past and future are independent given the present”. Instead
of the general factorization in Eq. (2.13), we obtain the much simpler expression

(X1, Xo, X3, X4) = p(X4|X3) - p(X3]X2) - p(X2| X1) - p(X1) ,

where every variable is just conditioned on its immediate predecessor.

2.4.2 Directed graphical models

Any given factorization of the joint probability density can be visualized as a directed
acyclic graph G = (V, E) where the set of nodes V' = {X1,..., X,,} are the variables in
joint distribution and there exists a directed edge (X;, X;) from X; to X if any term of
the factorization has X; conditioned on X;. These models are termed directed graphical
models, Bayesian networks or belief networks.

In case of the general factorization of Eq. (2.13), the resulting graph will be fully con-
nected. By applying conditional independence assumptions, some edges will be removed
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Figure 2.1: Directed graphical models. A) A directed graphical model representing
the general factorization of the joint distribution p(Xi, X9, X3, X4) = p(X1) - p(X2|X1) -
p(X3| X2, X1) - p(X4| X3, X2, X1) of Eq. (2.13). The graph is fully connected. B) Ap-
plying particular conditional independence assumptions (in this case the Markov prop-
erty (X;—1 L X;4+1)|X;) simplifies the factorization into p(Xi, Xo, X3, X4) = p(X4|X3) -
p(X3|X2) - p(X2|X1) - p(X1) and yields a simpler graphical model.

from the graph (see Fig. 2.1). For a given directed graphical model G = (V, E) we can
read off the factorization that it encodes via

p(X1,. ., X,) = HP(XApa(XZ-)) : (2.14)

where pa(X;) = {X; € V|(X;, X;) € E} denotes the parents of node X;. To derive the
conditional independence assumptions a directed graphical model encodes, the concept of
d-separation is used (Geiger et al., 1990).

2.4.3 Inference

Given a graphical model G = (V, E) and observations of a subset of nodes X, C V', one
can now perform inference on G, that is, estimate the hidden variables X, = V'\ X, given
the observed variables X ,%. The task is to calculate the posterior of the hidden variables
via Bayes’ theorem:

PXXm(Xn) _ p(XXn)w(Xn)
p(Xy) Zx;L p<XU‘X;z)7T(X/h) '

p(Xh|Xv) =

Here, we will introduce the “sum-product” algorithm (also known as belief propagation)
which performs exact inference on trees, i.e. connected graphs where there exists only a
single path between any two nodes. For more general graphs, the “junction tree” algorithm
is an alternative for exact inference, but will not be discussed here (see e.g. Murphy, 2012).

5Unknown parameters can simply be included into X and inferred from the observed data together with
the hidden variables.
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Figure 2.2: Factor graph representation. A) A directed graphical model representing
the joint distribution p(Xl, X9, X3, X4) = p(Xl)'p(X2|X1)-p(Xg’Xg)'p(X4|X2). B) Factor
graph representing the same joint distribution as the model in A), with f1(X1) = p(X1),
fa(X1, X2) = p(X2| X1), f3(X2, X3) = p(X3]|X2), and fi(X35, X4) = p(X4[X2). C) Another
factor graph for the model in A) is less explicit about the factorization, with fi(X;) =
p(X1) - p(X2|X1) and fo(Xa, X3, X4) = p(X3]X2) - p(X4|X2).

Factor graphs

To derive the sum-product algorithm in a simple form, we first introduce the idea of a factor
graph. Suppose we decompose the joint distribution of over the variables X = {X;,... X,,}
into a product of factors fs, such that

p(X):p(Xlauan):Hfs(Xs) > (2'15)

where each Xy C X is a subset of variables (the sets can overlap). Comparing to
Eq. (2.14), we see that the factors fs correspond to the conditional probability distri-
butions P(X;|pa(X;)) in directed graphical models.

Eq. (2.15) can be represented as a bipartite graph, which is a graph with two kinds
of nodes and edges exist only between nodes of different kind. In a factor graph, one
set of nodes represents the variables X, the other set of nodes represents the factors fs.
Undirected edges link a factor fs(Xs) to its associated variables X 3. One can now convert
a directed graphical model into a factor graph (see Fig. 2.2). However, multiple factor
graphs correspond to the same directed graphical model, depending how explicit we are
about the factorization (see Fig. 2.2B,C). Note that any tree-structured directed graphical
model will result in a tree-structured factor graph (Bishop, 2006).

The sum-product algorithm

To goal of the sum-product algorithm is to calculate marginal distributions p(X;) of a single
variable X; in the model. Note that from now on, we consider only discrete variables X;
for simplicity. Naively, one can invoke the definition of the marginal distribution,

PX) =D D (X, X)) (2.16)
X1

Xic1 Xita Xn



2.4. GRAPHICAL MODELS 37

i.e. summing the joint distribution over all other variables. However, the amount of op-
erations required to evaluate the right hand side scales exponentially with the number of
nodes. If the graph has n nodes, each having K possible discrete states, the memory re-
quired to store the joint distribution is K™. The key idea is to substitute the factorization
of the joint distribution from Eq. (2.15) into Eq. (2.16),

pX)=> Y D (X, (2.17)
X1 s

Xic1 X5 Xn

and to rearrange summations and multiplications, since some factors are independent
of certain summation variables. This leads to a more efficient calculation as sums are
performed locally, operating only on functions f; of a subset of variables X . While
this algebraic manipulations could be done manually in principle, one can formulate this
calculation more abstractly on the factor graph in terms of message passing, i.e. local
messages being sent between nodes. We refer the interested reader to Bishop (2006) for a
derivation and here present only the resulting algorithm.

The main result is that the calculation of the marginal distribution of a variable X;
can be expressed in terms of two types of messages: messages being sent from variable
nodes to factor nodes and messages being sent from factor nodes to variable nodes.

First, messages originating at an unobserved variable node X; € X} and being sent to
an adjacent factor node f; are defined as

gene(Xi)\fs

where ne(X;) refers to all factor nodes connected to X;. The message of sent from X; to
fs is just the product of messages 4 x, received from all neighboring factors g except fs.
If X; is observed (X; € X,) and has value a the message is

HX;—fs (Xl) = 6Xi7(1 H Hg—X; (XZ) ; (219)
g€ne(X;)\fs

where we “clamp” the observed variable to its value via the Kronecker-§. Second, a
message from a factor node fs to a variable node X; is defined as

pron (X0 =303 fX) [T mren (), (2.20)

X, X YEX\X;

where we have labeled the neighbors of node fs as X, = {X],..., X],, X;}. The message
sent from factor f,; to variable X; is calculated by multiplying incoming messages, and
marginalizing this product together with fs over all associated variables except X;.

Consider two special cases of Egs. (2.18) and (2.20): if a variable node X; is a leaf of
the factor graph, the message sent from this node via its only edge is px,—¢(X;) = 1. If a
factor node is a leaf, the message sent by this factor to its variable node is s x, = f(X;).

With these definitions the calculation of the marginal distribution of variable X; re-
duces to a multiplication of incoming messages at node X; in the factor graph

pX)= [ mrox(X), (2.21)
fene(X;)
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which is the main result of the sum-product algorithm. Note that in the presence of
observed variables, the algorithm calculates the joint distribution p(X;, X,) between a
single unobserved variable X; € X} and the set of observed variables X,) and we obtain
the evidence of the observed data as p(X,) = > . p(Xi, Xy). In order to calculate the
marginal distribution p(X;), we proceeds as follows: (i) Consider the node X; as the root
of the factor graph tree. (ii) Find all leave nodes, which are either factors or variables.
(iii) Propagate messages from the leaves up towards the roots. Nodes can send outgoing
messages once they received incoming messages from all their children in the tree. (iv)
When the root has received all incoming messages from its children, evaluate Eq. (2.21)
to obtain the marginal distribution.

Let us illustrate the procedure with an example shown in Fig. 2.3. We want to calculate
the marginal distribution of X; and have observed X4 = a. We root the factor graph in
X1 and start propagating messages from the leaves X4, X5.

KXy fa (X4> = 5X4,a
NX5—)f3(X5) = 1 9

where we clamped the value of the observed variable via the Kronecker-d and used the
definition of a message sent by leaf variables. Next, we propagate a message from fo to
X according to Eq. (2.20)

fysxo (X2) = Zfz Xo, Xa)px,—f,(Xa)
X4

=" fo( X2, X4)0x,a

X4
- fQ(X27 CL) )

where we collapsed the sum over X4 due to the clamping. Similarly for pg,_,x,(X3) we
have

Nf3~>X3 (X3) = ZfS X37X5)MX5%f3(X5)
X5

= f3(X3, X5) .
X5

Sending messages towards f; is simple as variable nodes with only two factors associated
just pass through incoming messages according to Eq. (2.18):

HXo—f1 (Xo) = Hfa—Xo (X2)
= f2(X2,a)
HX3—f1 (X3) = Hf3—X3 (X3)
= f3(X3, Xs) .
X5
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Figure 2.3: Message passing on a factor graph. To calculate the marginal distribution
p(X1) via the sum-product algorithm, the tree-structured factor graph is rooted in X; and
messages are passed from the leaf nodes X, (observed) and X5 along the factor graph until
they reach the root node X;. Once the root has received messages from all its children
(in this case only f1) the marginal distribution is calculated via Eq. (2.21).

These messages now converge on f; which sends to X; the message (Eq. 2.20)

fopy—x (X1) ZZf X1, Xo, X3) - pixy sy (X2) - pixg— gy (X3)
X2 X3

= ZZf(Xl,XQ,Xg) . f2(X27a) : /LX3—>f1(X3)

X9 X3

S A X X)) | )

X X3 X5

As X only has one neighboring node (f1) we find via Eq. (2.21) that the marginal evaluates
to

p(X1) = pf—x, (X1)

— ZZf (X1, X2, X3) - f2(X2,a) ZfS (X3, X5)| ,

X2 X3

where we see how the algorithm pushed the sum over X5 into the product over factors
and clamped X, to its observed value.

If we wanted to calculate the marginal distribution of another node X, we could repeat
the above procedure. However, a more efficient way to calculate all marginal distributions
at once is the following: Choosing an arbitrary node as the root, propagate messages from
leaves to root as before. Once all messages have arrived at the root, send out messages
from the root down towards the leaves. After those two passes, every node will have
received messages from all its neighbors, and one can efficiently evaluate the marginal
distribution of every node in terms of messages via Eq. (2.21). We only have to store
the messages that were generated during the passes. Overall, we have to compute 2 - m
messages with m the number of edges in the graph, as opposed to m - n when running the
sum-product algorithm for each of the n nodes individually.
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Variants of the sum-product algorithm

Although only the sum-product algorithm for discrete variables is used in this thesis, for
the sake of completeness, we mention some variants of the sum product algorithm.

A common variant of the sum-product algorithm is the max-product algorithm (for
details, see Bishop, 2006), which allows to calculate the most probable configuration of the
graphical model, or equivalently the mode of the joint distribution p(X). Here, one simply
replaced the sums within the sum-product algorithm with max()-operations. A numeri-
cally stable version replaces probabilities by log-probabilities and is called the max-sum
algorithm. When one departs from discrete to continues variables, summations become
integrals, and generally, no exact algorithms exist for inference, since most integrals cannot
be solved analytically. An important exception are directed Gaussian graphical models’.
While the sum-product and max-product algorithms are exact for tree-structured mod-
els, for general graphs containing cycles, different strategies have to be used. Variable
elimination and the junction tree algorithm (for details, see Murphy, 2012) provide exact
inference, however the computational complexity of both is exponential in the number of
nodes in the worst case. Instead one can resort approximate algorithms, e.g. loopy belief
propagation (standard sum-product applied to non tree-structured graphs), variational
mean field, or Gibbs sampling (all discussed in e.g. Murphy, 2012).

"Each single variable has a Gaussian distribution whose mean is a linear combination of the parent nodes.
Consequently, also the joint distribution is Gaussian.



Chapter 3

Mechanistic models of binary cell
fate choice: genetic toggle switches

As discussed in chapter 1, toggle switches serve as current paradigm of how binary fate de-
cisions are implemented molecularly. In this chapter, we study the dynamics of a stochastic
two stage toggle switch model, which explicitly accounts for mRNA synthesis and degra-
dation. We find that, contrary to the expectation from a deterministic description, this
switch shows complex multi-attractor dynamics even without autoactivation and cooper-
ativity. Other stochastic models of toggle switches studied so far (Lipshtat et al., 2006;
Kepler and Elston, 2001; Schultz et al., 2008; Warren and ten Wolde, 2004) focused on a
one stage model of gene expression without explicitly considering mRNA as an intermedi-
ate stage. Here, we discover that when accounting for mRNA the toggle switch shows novel
attractors which can be identified with committed and primed states in cell differentiation.
Notably, we present a system with high protein abundance that nevertheless requires a
probabilistic description to exhibit multistability and complex switching dynamics. In the
second part of this chapter, we show how a toggle switch model can account for observed
differentiation dynamics in granulocyte/monocyte progenitors by fitting the model using
Approximate Bayesian Computation. Here, the fitted model predicts different timescales
in the dynamics of granulocyte and monocyte differentiation.

Methods, results and figures of this chapter are based on Strasser et al. (2012) and
Marr et al. (2012).

3.1 Dynamics of a genetic toggle switch based on a two-
stage model of gene expression

Probabilistic models of the toggle switch account for low copy numbers and intrinsic fluc-
tuations. Kepler and Elston (2001) discussed the dynamics of an exclusive switch, where
two genes share the same promoter within a probabilistic framework. A comparison of
simple switch circuitries is given by Warren and ten Wolde (2004). Contrary to determin-
istic models, transitions between the two macroscopic regimes where one of the two genes
dominates are possible due to the inherently noisy gene transcription (Schultz et al., 2008;
Walczak et al., 2005a), even without cooperative binding of transcription factors (Lipshtat
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Figure 3.1: Scheme of the two-stage switch. Species associated with gene A are shown
in gray, species associated with B are shown in white. Solid arrows indicate synthesis and
binding, jagged arrows indicate degradation. mRNAj is transcribed from DNA with
rate aa. It decays with rate 4 and is translated into Proteing with rate Sa. Proteina
decays with rate d and can bind (unbind) DNAp with rate 7§ (7). Protein-bound DNA
leads to transcriptional arrest. The topology is symmetric with respect to the genes A
and B, thus, the same reactions exist for B.

O(B\/_\

DNAg

et al., 2006). More recent contributions focused on analytic descriptions (Walczak et al.,
2005b; Schultz et al., 2007), the switching time between macroscopic regimes for different
regulatory realizations (Loinger et al., 2007; Barzel and Biham, 2008; Schultz et al., 2008)
or parameter regimes (Walczak et al., 2005a), boundaries for the switching time (Bialek,
2001), or delay effects (Zhu et al., 2007). Notably, all of these approaches are based on a
one-stage model of gene expression, where DNA is directly processed into functional pro-
teins. However, it has been shown that the characteristics of protein noise strongly depend
on the underlying expression model (Thattai and van Oudenaarden, 2001; Shahrezaei and
Swain, 2008).

In this section, we abstract the regulatory details of the prominent myeloid PU.1/Gatal
mutual inhibition. Contrary to common belief, which advocates the lumping of the two
stages of expression, we show that the inclusion of both mRNA and protein leads to an
interesting change in system dynamics. The probabilistic two-stage description exhibits
complex multi-attractor dynamics without autoactivation and cooperativity.

Remarkably, a recent study reported low numbers of mRNAs in single murine blood
cells: Warren et al. (2006) found around 10 transcripts of the PU.1 gene per cell in
common myeloid progenitors. Furthermore, Schwanh&usser et al. (2011) measured mRNA
abundances for 5000 genes in mouse fibroblasts and showed that the median number of
mRNAs per gene per cell is 17. Filtering these 5000 genes for transcription factors (Gene
ontology ID GO:0006355, Ashburner et al., 2000) results in 722 candidate genes and a
median of 17 mRNAs per transcription factor per cell.

Based on these findings we study a probabilistic description of a toggle switch with
low mRNA numbers, high protein abundance and in accordance with the known role of
PU.1, monomeric transcription factor binding. We deliberately choose the simplest toggle
switch model and neglect autoactivation due to our ignorance of the logic of activation and
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inhibition at the promoter. However our results can easily be extended and are discussed
for the case of dimeric regulation and exclusive autoactivation.

3.1.1 A toggle switch based on a two-stage model of gene expression

We describe the mutual inhibition of two genes, further on called A and B, using a two-
stage model of gene expression (Thattai and van Oudenaarden, 2001; Shahrezaei and
Swain, 2008) with mutual inhibition being realized as DNA-protein binding (see Fig. 3.1).
This kind of switch has been implemented in vivo by Gardner et al. (2000). The model
can be represented as a set of biochemical reactions for A and B, respectively, and a set
of reaction rates «, (3, etc. (see chapter 2):

DNA4 =% DNAj + mRNAy DNAp % DNAp +mRNAp  (3.1)
mRNA, 22 () mRNAp 22 () (3.2)
mRNA ﬁ—A> mRNA, + Proteing mRNAg LN mRNAg + Proteing (3.3)
Proteiny 29 Proteing LN (3.4)
Protein + DNAg A DN Appund Proteing + DNA4 55 DN Abound (3 59
DNABRound A, Protein A + DNAp DN ARound i Proteing + DNAA (3.6)

Reactions (3.1) and (3.2) correspond to mRNA transcription from an unbound promoter
and mRNA degradation, respectively. Reactions (3.3) and (3.4) resemble protein transla-
tion and degradation. The reactions (3.5) and (3.6) describe the binding and unbinding of
a protein to the antagonistic gene and thereby the transition from an active to an inactive
promoter and vice versa. Bound DNA lacks the ability to be transcribed. These two
reactions subsume a more intricate mechanism of transcription-factor-DNA interaction
(Gerland et al., 2002). Note that we assume monomeric transcription factor binding as
the simplest of regulatory interaction (which can induce bimodal gene expression, Lipshtat
et al., 2006). Our system’s topology is symmetric with regard to the two genes, and so
are the two columns of reactions (3.1)—(3.6) upon the exchange of gene labels A and B.
This model of gene expression is a highly simplified abstraction of the complex processes
in the cell. Condensing transcription into a single biochemical reaction does not account
for the various steps required to transcribe a gene, e.g. the assembly of the transcription
initiation complex, unwinding of DNA or transition of the polymerase to elongation phase.
Postprocessing and transport mechanisms are also neglected. However, simplified models
of gene expression have successfully been applied to experimental data, supporting the
validity of these simplifications (Harper et al., 2011; Raj et al., 2006; Huang et al., 2007).

3.1.2 Deterministic model

Most commonly one will study the properties of the system in a deterministic framework
using ordinary differential equations (ODEs) that describe the time-evolution of species
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Figure 3.2: Phase portrait of the deterministic two-stage toggle switch model
projected onto the Np and N dimensions. The same parameters were used as in
the probabilistic model of Fig. 3.3 and Fig. 3.4. The ODE was solved for different initial
protein concentrations na,ng and the mRNA concentrations where set to ma = 0.01 - na
and mp = 0.01 - ng, resembling the fact that for the given parameters each mRNA will
correspond to approximately 100 proteins. Trajectories are arbitrarily colored to improve
readability. Note that trajectories can intersect as this in only a projection of the full
system. Inspection of the phase portrait reveals the single steady state (red dot) as
predicted by Egs. (3.19)—(3.20). No limit cycles are visible in the phase portrait.

concentrations (Roeder and Glauche, 2006; Huang et al., 2007; Chickarmane et al., 2009;
Cherry and Adler, 2000). The ODEs can directly be inferred from reactions (3.1)—(3.6)
assuming mass action kinetics:

d

%d’* =75 - (1 —da)— Tg -da - nB (3.7)
%dB:TX-(lde)fTZ-dB~nA (3.8)
%mA = -da — YA -MmA (3.9)
%mg =ap-dg — B - mp (3.10)
%nA:BA-mA—éA-nA+TX-(1—dB)—TZ-dB-nA (3.11)
%HB:BB'mB—dB'TLB—f—Tg'(1—dA)—T§'dA'TLB, (3.12)

where d, is the abundance of unbound DNA.,,, m, is the abundance of mRNA, and n, is
the abundance of Protein, for x € {A, B}. Bound DNA is expressed in terms of unbound
DNA due to mass conservation. Note that these quantities are now continuous and have
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to be interpreted as an average over a population of cells, i.e. with dy = 0.5, in half of the
cells in the population, DNA , is unbound.

We now solve Egs. (3.7)-(3.12) at steady state by setting all time derivatives to zero.
Using symmetric parameters for simplicity! we obtain the two following steady state so-
lutions of Egs. (3.7)—(3.12):

ma® = mp® = _2‘;7; (1—n) (3.13)
na® = ng) — _2% (1-n) (3.14)
Ay V) = gy — 117 (3.15)
mA® = mp® _266; (1+4n) (3.16)
na® = pp® = _2% (1+7) (3.17)
ds® = gy @ — lfn (3.18)

with n = \/% + 1. The first solution is positive, the second is negative (given all

parameters are positive). Only the positive solution is of interest in biological systems,
and given non-negative initial conditions the system will always converge towards the
positive steady state solution (Miiller-Herold, 1975).

Note that for small 7, Egs. (3.13) and (3.14) reduce to the steady state solution of a
simple two stage expression model (Thattai and van Oudenaarden, 2001)

na® = pp® = 0
¥d
ma® = mg® = &
v
because N
2
n~1+ QBT_
~¥oT

for small 7+ through the Taylor approximation
(14+2)"~1+4nx for x| < 1.

This is expected since setting 77 to 0 removes the interaction between both players, which
will then evolve independently according to a two-stage expression model.
For decreasing 7~ the solution of the system approaches the origin
na® =ng® =0

ma® = mp® = 0

1 +

a=ar=oas, B=PFa=Ps,Y=7A=78,0=0A=05, 7 =7 =7} and 7" =7, =75
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because 1 ~ %/:if and therefore the right hand sides of Eqs. (3.13) and (3.14) reduce to

T

const - For decreasing 7~ this term will approach 0. Hence, if proteins never unbind

the pronqoter, the system will be locked forever yielding 0 protein and mRNA levels in
steady state.

We now assess the stability of the positive solution Egs. (3.13)-(3.15) using stan-
dard linear stability analysis (see chapter 2). To reduce the complexity of our system
for the stability analysis, we apply a quasi steady state approximation to the DNA bind-
ing/dissociation process (dp = dg = 0), reducing the dimensionality of our system to four
equations:

%mA = ap(np) — yma
%mB = a(ny) —ymp
S = Bma = b + 7 (1= 9(na)) = ()
%nB = Bmp —dng +7 (1 —¢(n)) — 7 ¢ (nB)nz ,

with ¢(x) = T_jrﬁ The reduced system has the positive steady state solution

0T~
(s3) — py(s9) — _ _
ma ¥ =mp'® = = (1-mn) (3.19)
(s8) — ,,(88) — T 1— 3.20
ma®) = np) = T (1) (3.20)
with n = 470‘66 ™" + 1. Notice that this is the same as the solution for mRNA and protein

of the full system (Eqgs. 3.13 and 3.14). We calculate the Jacobian matrix of the reduced
system as

-y 0 0 O‘TT% - )% (np)
J=1 0 — o y?(ny) 0
B0 —6+7r2(nA)[1+7Tna — v (na)] 0
0 g 0 —§+ 7% (np)[1 + 7 ng — ¥~ (ng)]

We evaluate the Jacobian at the steady state solution of the reduced system (Egs. 3.19-
3.20) and use the Hurwitz criterion to verify that all its eigenvalues have negative real
part. We conclude that the system has one stable positive fixed point but we cannot
analytically exclude the existence of limit cycles. However, inspection of the system’s
phase portrait (see Fig. 3.2) indicates that no limit cycles exist. Summarizing, we showed
that the deterministic model has only one steady state solution and is thus monostable.

3.1.3 Stochastic model

Since the deterministic approach is only valid in the limit of large numbers, small molecule
numbers of DNA, mRNA, and possibly proteins advocate a discrete probabilistic descrip-
tion of the toggle switch. We define the state of the system at time t as a vector z(t),
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where z;(t) € Ny is the abundance of species i at time t. Note that the state space is
discrete as opposed to the deterministic model. To emphasize this difference we use the
uppercase notation Da, Dy, Ma, Mg, Na, Np for the number of molecules of the re-
spective species. In particular, there is only one copy of DNA present which is either
bound or unbound, such that Dy € {0,1} and Dy € {0,1} and the DNA state changes
via reactions (3.5)—(3.6).

We can describe how the probability P(x,t) of being in a certain state = changes over
time by using the Chemical Master Equation of the system (see chapter 2). We define
Pij(Ma, Mg, N, Ng,t) as the probability at time ¢ to have My copies of mRNA,, My
copies of mRNApg, Na copies of Proteins, Ng copies of Proteing, and the correspond-
ing promoter configuration ij where 0 (1) means an unbound (bound) promoter. The
master equation of the reaction system (3.1)—(3.6) splits up into four coupled equations
corresponding to the four promoter states and takes the explicit form:

%POO(MA, Mg, Na, Np,t) = 75 Ey, Po1(Ma, Mg, Na, Np, 1)
+ 75 En, Pio(Ma, Mg, Na, Ng, t)
+ [~ N — 74 Na + aa(Ey, — 1)
+ag(Ey, — 1) +a(Ef, —1)- Ma+s(Ef, —1) Mz
+Ba(Ey, —1)- Ma + Bp(Ey, —1)- Mg
+0a(EY, —1)- Na+6s(Ef, —1)- Np]
- Poo(Ma, Mg, Na, N, t)
%PH(M&MB’NAWBJ) = 74 Ef; NAP1o(Ma, Mg, N, Ng, t)
+T§LE]J\F/BNB7701(MA,MB,NA,NB,t)]
+ -7 =75 +A(Ef, —1)- Ma+8(Ef, — 1) Mg
+ Ba(Ey, —1)  Ma +Be(Ey, —1)- Mp
+0a(EY, —1)- Na+6s(Ef, —1)- Np]

- P11(Ma, Mg, N, N, t)
%7310(MA,MB,NA,NB775) =Ty By, Pu(Ma, My, N, Np, 1)

+T]—;E]—GBNB,POO(MA,MBaNAvNBat)

+ [-75 — TA Na +ap(Ey, — 1)
+ya(Ef, — 1) - Ma+8(Ej, —1)- Mg
+Ba(Ey, — 1) Ma+Bp(Ey, — 1) Mg
+0a(Ef, —1)- Na+0(Ef, —1)- Ng]

- Pro(Ma, Mg, Na, N, 1)
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%POl(MA’MBvNAaNth) = 74 EX, NaPoo(Ma, Mg, Na, Ng, t)
+ 75 En, P11(Ma, Mp, N, Ng, t)
+ [~ Np — 75 +aa(Ey, — 1)
+a(Ef, — 1) Ma+s(Ef;, —1)- Mg
+Ba(Ey, — 1) Ma + Bp(Ey, —1)- Mp
+0a(EY, —1)- Na+6s(EY, —1)- Np]
- Po1(Mp, Mg, Na, Ng, t) .

The shift operators E;f and E increase or decrease the function argument x by one, i.e.
Eff(x) = f(z £1). To our knowledge no results have yet been published on the solution
of stochastic two-stage switches.

Since the master equation for the switch is analytically solvable only for a number
of approximations (see e.g. Walczak et al., 2010) and not integrable for large molecule
abundances, we simulate the system trajectories using Gillespie’s algorithm (see chapter 2
and Gillespie, 1976). Each trajectory follows the master equation, and the set of infinite
trajectories constitutes the distribution that solves the master equation.

3.1.4 Choice of parameters

To obtain appropriate parameters values for stochastic simulation, we delineate upper
bounds for synthesis parameters from biophysical arguments and adapt degradation pa-
rameters to fit desired molecular levels. Table 3.1 lists the set of used parameter values.

First we derive upper boundaries for the transcription and translation rates. Tran-
scription of DNA into mRNA is accomplished by the RNA-polymerase. One polymerase
can process about 10-20 nucleotides (nt) per second in eukaryotes (Alberts et al., 2002;
Dahlberg and Benkovic, 1991; Singh et al., 2007). As described by Alberts et al. (2002)
the newly elongated RNA fragment is immediately released from the DNA, which enables
other polymerases to follow up even before the first mRNA has been completed. The
distance d between polymerases is estimated to be around 100 nt (Kennell and Riezman,
1977). The rate of transcription is independent of the sequence length [, since the longer
the gene, the more polymerases can process it in parallel. Altogether we find the maximal
transcription rate a by dividing the speed of transcription v with the sequence length [,
multiplied with the number of transcribing polymerases,

v n
a=--—-r
d

h

10 nt/s l

. =0.1s"!
I 100 nt 5

required that enough polymerases and nucleotides are present.

The maximal translation rate can be inferred in a similar way: Ribosomes, large
complexes of proteins and rRNAs that translate mRNA into polypeptides, proceed with
a speed v of 2 codons (= 6 nt = 2 amino acids) per second in eucaryotes (Alberts et al.,
2002). One mRNA can be processed by many ribosomes (polyribosomes) at the same time
(Alberts et al., 2002). The average space between two ribosomes is 80 nt or ~ 27 amino
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acids (AA) (Alberts et al., 2002). Therefore the overall translation rate for an mRNA of

length n is

2AA/s 1 _

again independent of the mRNA length [. This corresponds to the maximally possible
translation rate. The actual rate will be smaller when not enough ribosomes or other
involved molecules (tRNA, amino acids) are present. We estimate the minimal translation
time as 1/0.074s~! = 13.5s, which is in good agreement with literature, where the time
needed for one translation is said to be between 20 seconds and several minutes (Alberts
et al., 2002). Notably, these transcription and translation rates only provide rough esti-
mates of the relevant timescale. Throughout the manuscript, we use a transcription and
translation rate of & = 8 = 0.05 s~ !, corresponding to an average time of 20 seconds per
product, which seems to be reasonable in the context of the above considerations. The
fact that both rates are equal is not expected to have influences on the results.

0~

Interactions between proteins and DNA are mediated by specific regions of the pro-
teins, called DNA-binding domains, which on the one hand can recognize specific DNA
sequences and on the other hand maintain the interaction between DNA and protein.
Zinc Fingers, Leucine Zippers or Helix-Turn-Helix motifs are prominent examples of DNA
binding domains (Alberts et al., 2002). The binding between DNA and protein is main-
tained by hydrogen bonds, ionic bonds, and hydrophobic interactions. Single interactions
are weak, but as many bonds are formed, the binding between DNA and protein becomes
stronger. The binding rates are very fast compared to transcription and translation pro-
cesses and according to Alon (2006) in the range of 1s~'Protein~! in Eschericia coli. The
unbinding rate depends on the strength of the interaction and is assumed to be 10 times
smaller (0.1s7!) in our model, leading to strong binding of the protein to the DNA. All
reaction rates of the models used in this work are summarized in Table 3.1.

As we showed above, the transcription and translation rates have upper bounds. The
only way for a cellular system to further increase the abundance of proteins is to modulate
the degradation rates of mRNA or proteins, giving longer lifetimes to mRNA and proteins.
Thus, during this work we manipulate the degradations rates to adjust the system’s protein
level to a desired steady state. Notably, following the report of Warren et al. (2006), mRNA
levels are set to 10 by adjusting the decay rate.

Reaction Parameter value
Transcription « 0.05s~!

Translation S 0.05 s 'mRNA~!
mRNA degradation ~ 0.005 s~ 1

Protein degradation § 5103 to 51076571
DNA binding 7 1 s~ 'Protein—!

DNA dissociation 7~ 0.1 571

Table 3.1: Parameters of the switch model used throughout this work. Protein degrada-
tion is chosen according to the desired protein level n. If not mentioned otherwise, all
simulations and plots are based on this set of parameters.
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Figure 3.3: Dynamics and quasi-potential of the switch showing the different
attractors of the system. A) The timecourse of Na(t) — Np(t) clearly shows the
dominating attractors, which can be separated in state space via the thresholds ya and
xB. Either A dominates (attractor Sp), or B dominates (attractor Sg), or the system is
temporarily locked by two bound promoters with only marginal protein expression of A
or B (attractors S} and Sj). A histogram of Na(t) — Ng(t) is shown on the right. B)
The quasi-potential, defined as U(z) = —logP**)(z), includes the mRNA dimension of
the system. It shows the four possible attractors as basins in a probability landscape. S
and Sp are visible as basins at the lower left and upper right corners, whereas S} and Sj
are located around the origin ( No — Ng = Ma — Mp = 0) of the landscape. Additionally,
the outflux J(x) acting on the system at the state x in state space are indicated as lines
(circles correspond the the origin of the vector). Note that the outflux is different from
concept of deterministic field lines. These vectors show that there are different paths for
entering and leaving the dominating attractors. Parameters for the simulation are given
in Table 3.1.

3.1.5 Quasi-potential

In this section we discuss the main features of the switch dynamics. Contrary to the
deterministic model, time courses of the stochastic toggle switch model show multistable
behavior (Fig. 3.3A). Given the parameters in Table 3.1 our toggle switch can adopt
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different attractors (for an informal definition of a stochastic attractor, see section 2.2.5):
The two attractors where one player dominates the other (called Sy and Sp depending
on which player dominates) are clearly visible in Fig. 3.3A. A careful inspection of the
timecourse and the probability distribution in Fig. 3.3A shows that there also exist two
intermediate attractors where protein numbers are similar (N —Np ~ 0). These attractors
are called S} and S§; from now on. In the timecourses of the system (Fig. 3.3A) one
observes that the system frequently switches between the dominating and the intermediate
attractors.

To get a deeper understanding of the complex dynamics of the system the notion of
a quasi-potential can be used. Usually, one defines a potential U(x) such that the forces
F(z) acting on the system correspond to the gradient of U(x):

F=-VU.

However, such a potential does not exist in general (if the curl V x F' is non-zero) and
hence, one has to approximate it by a quasi-potential U(x) such that

F=-VU+F,, (3.21)

where F' has been decomposed into a gradient of a potential and a remainder force F).. De-
pending on the choice of F}., different quasi-potentials can be constructed (for an overview,
see Zhou et al., 2012). In the following, we pursue the construction proposed by Wang
et al. (2011) such that U(z) = —log P(*)(z), where P(9)(z) is the steady state distri-
bution of the system. Note that for our purpose, the particular choice of quasi-potential
is not important as it is used only as a visualization and no quantitative arguments are
made.

The number of dimensions of the state space where the quasi-potential is defined
equals the number of species in the system. Here the probability P(%)(z) of a state x in
steady state is estimated from 15000 stochastic simulation runs obtained by the Stochkit
software toolkit (Sanft et al., 2011). In Fig. 3.3B the projection of the quasi-potential on
the Ny — N, M — Mg plane is shown. The four attractors Sa, Sg, S} and S can be
seen clearly in the quasi-potential of the system. The two attractors Sy and Sp appear
as basins at the lower left and upper right corner of Fig. 3.3 whereas the intermediate
attractors S, and Sf are located at the center and are not well separated.

The dominating attractors can easily be distinguished from the intermediate attractors
via parameter dependent thresholds xa, xg in the protein dimension, which we derive in
the following: We approximate the protein number distribution in the attractors Sa and
Sp using results from Thattai and van Oudenaarden (2001), who showed that for a simple
two-state expression model, the mean and variance of protein numbers obey

op 2__Plo
o) Y26 + 62y’
respectively. Thereby, we assume that in the dominating attractors, the presence of the

antagonist can be neglected due to its marginal transcription. We define the boundary .
of attractor S, using a normal approximation of the dominating protein’s distribution as

Xo =Ny —Zy 04, (3.22)
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where Z, is the ¢% quantile of the standard normal distribution of the protein number
with mean (n), and standard deviation o,. Using ¢ = 0.1 throughout our study assures
that 99.9% percent probability mass of the distribution lies beyond the lower boundary.
Therefore we are certain to capture all relevant protein numbers belonging to Sa and Sg.
Using these boundaries, we can define the attractors Sa and Sp accordingly:

SA:{SES‘NA>XA/\NB<XB}
Sp={s € S|Nan < xaANp>xB}.

Importantly, one has to keep in mind that the system considered is out of equilibrium
and that the dynamics of a non-equilibrium system are not entirely determined by the
gradient of the quasi-potential U but by the additional remainder force F, stemming from
the non-integrability of the system (see Eq. 3.21 and Wang et al., 2008). As a consequence
barrier heights in the quasi-potential do not necessarily correlate with the probability of
crossing the barrier.

To understand the dynamics of the switch in more detail we therefore consider for each
state x in the state space the outflux J(z) acting on the the system at this point (Schultz
et al., 2008). We calculate the outflux as:

J(z) = PU(2) Y Plyle)(y — =) ,
Yy

where the probability P(y|z) of state y succeeding state = and the probability P(%) () are
calculated from stochastic simulations. Note that the outflux is different from the concept
of field lines used in phase portraits of ordinary differential equations. The outflux J(x)
is plotted as small arrows in Fig. 3.3 (vectors are normalized and circles correspond the
origin of the vectors) for all states = with P(**)(z) > 2.5-107. This indicates where
the system will move from the current state on average. Due to this outflux the system
enters and leaves the attractors Sa and Sg through different paths. This phenomenon has
been described by Wang et al. (2010) and linked to the emergence of time directionality
in non-equilibrium systems. In order to move from high (Sx or Sg) to low (Sp) protein
numbers, at first the corresponding mRNA number has to drop. On the contrary, moving
from low to high protein numbers requires the rise of mRNA numbers first.

A different view on the system’s dynamics is provided by the quasi-potential landscape
and outflux in the Nt Nfotal plane (Fig. 3.4), where Ni°%al = (1 — Dg) + N, is the total
number of Proteina in the system, bound to DNA (first term) or free (second term).
Choosing N}t\Otal and Ng’tal as projected dimensions shows four distinct basins in the
quasi-potential landscape. Two basins correspond to the attractors Sa and Sg. These are
characterized by high amounts of the dominating protein and zero proteins of the repressed
species. The attractors S} and S are now clearly separated. In these two basins a single
protein of one species is present and only a moderate protein number of the other species.
In the following we show why these basins emerge and how the system moves between the
attractors.

3.1.6 Dynamics in the quasi-potential

We explain the dynamics of the system with a typical trajectory of the system: Let us start
with the trajectory in the attractor Sy (lower right) where Pr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>