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Abstract

In this paper, we derive expressions for conditional expectations in terms of regular expectations
without conditioning but involving some weights. For this purpose we apply two approaches: the
conditional density method and the Malliavin method. We use these expressions for the numerical
estimation of the price of American options and their deltas in a Lévy and jump-diffusion setting.
Several examples of applications to financial and energy markets are given including numerical
examples.

Keywords: Conditional expectation, Monte Carlo methods, Conditional density method,
Malliavin calculus, Pricing, Lévy processes, American option, Reduction of variance

1. Introduction

In this paper we consider the problem of computing conditional expectations of functionals of
Lévy processes and jump-diffusions. We apply the developed theory to the numerical estimation
of American option prices and their deltas.

In general it is not possible to obtain analytical expressions for conditional expectations and
thus numerical methods are called for. Several approaches appeared in this field. [16] built up
a tree in order to obtain a discretisation of the underlying diffusion on a grid (see also [7]). [27]
use a regression method on a truncated basis of L2 and then choose a basis of polynomials for
the numerical estimation of conditional expectations. [20] derive expressions for the conditional
expectations in terms of regular expectations for diffusion models.

Considering a random variable F , a scalar random variable G, and a function f on R, [20]
provide the following representation for the conditional expectation

E[f(F )|G = 0] =
E[f(F )H(G)π]

E[H(G)π]
,

where π is a random variable called weight and H is the Heaviside step function increased with
some constant, H(x) = 1{x≥0}+c, c ∈ R. The authors use two approaches: the density method and
the Malliavin method. The density method requires that the couple (F,G) has a density p(x, y),
(x ∈ R, y ∈ R) such that its log is C1 in the first argument. In the Malliavin approach, they use
a Malliavin derivative of the Wiener process and provide expressions for conditional expectations,
where F and G are modelled by continuous diffusions. One of the goals in the present paper is
to relax the conditions imposed on the random variables F and G and in particular to allow for
random variables which do not necessarily have a known density and which might originate from
processes with jumps.

We recall that the density method introduced in [20] requires the knowledge of the density of
(F,G). However when F and G are random variables generated from jump processes, the density
of the couple (F,G) is in general not known or very hard to compute. This shortcoming can be
overcome by using the conditional density method introduced by [11]. For example, in the case of
a geometric Lévy process, we only need the knowledge of the joint density of the continuous parts,
which we do know. Thus to apply the conditional density method a separability assumption on
the random variables F and G will be required. F and G should consist of a part with known
density and another part with unknown density.

For the Malliavin method, we work with the Malliavin derivative for jump processes developed
by [30]. The idea is to use the Malliavin derivative in the direction of the Wiener term in the
jump-diffusion process. Using this approach there is no separability assumption imposed, since the
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Malliavin calculus as presented by [30] does not require any, as opposed to the Malliavin calculus
used in [17] or in [12].

Furthermore, we provide expressions for the derivative of conditional expectations using both
approaches and we illustrate our results with several examples of models which are commonly used
in financial and energy markets. Notice that we present our study in the one-dimensional case for
the ease of notation, although all results can be extended to a setting in higher dimensions.

The representations that we develop are interesting from a probabilistic point of view. Indeed
we derive expressions for the conditional expectations of functionals of random variables involving
only unconditional expectations of these functionals. Moreover, these representations are inter-
esting from a numerical point of view. In the present paper, we apply them to the numerical
estimation of American option prices and their deltas, the delta being the sensitivity of the option
price with respect to the state of the underlying asset. In complete markets the delta is known to
be the number of assets to hold in a self-financing portfolio replicating the option. It is also used
in incomplete markets as an imperfect hedge.

To perform the numerical experiments, American options are approximated, through a time
discretisation, by Bermudan options (see [3]). We make use of a localisation technique and a
control variable to minimise the variance. To reduce the memory capacity of the algorithm for the
estimation of the American option price and the delta, we suggest to simulate the underlying stock
price process backwards in time. This backward simulation technique turns out to be a specific
application of Lévy bridges, see [2].

To check the accuracy of the proposed algorithms, we first compute European option prices and
their deltas at time t > 0 where we assume a Merton model for the price process. We compare the
values obtained by our algorithm to the analytical solutions proposed by [29]. Then considering
the same model we estimate the prices and the deltas of American options, which we in turn
compare to estimates found in the literature.

The fundamental difference between the [27] approach and the (conditional) density or Malli-
avin approach is the way the conditional expectations are approximated. Furthermore, the [27]
method is unable to provide an ad hoc method for the computation of the delta. It has to be
combined with other methods such as the likelihood ratio method or pathwise sensitivities based
approaches in order to obtain an approximation of the delta. The approaches presented in this pa-
per lead to representation formulas for the derivative of conditional expectations and consequently
provide an estimation of the delta using its own specific method. For more about advantages and
drawbacks from considering the [27] algorithm or the Malliavin approach algorithm we refer to
[13]. In that paper the authors performed a numerical comparison and discussed the efficiency
and the level of complexity of both algorithms for continuous processes.

The paper is organised as follows. In Section 2 and 3 we develop a representation for conditional
expectations via the conditional density method and the Malliavin method, respectively. In Section
4, we present variance reduction techniques to obtain acceptable convergence results in numerical
applications. In Section 5, we present numerical examples to illustrate our results. Section 6
concludes the paper.

2. Conditional expectation via the conditional density method

Let (Ω,F ,P) be a complete probability space equipped with a filtration {Ft}t∈[0,T ] for time
horizon T > 0, satisfying the usual conditions (see [31]). We introduce the generic notation
L = {Lt}0≤t≤T , for a Lévy process on the given probability space. We set L0 = 0 by convention and
work with the right-continuous with left limits version of the Lévy process. Let ∆Lt := Lt − Lt−
indicate the jump of the Lévy process L at time t. Denote the Lévy measure of L by `(dz). Recall
that `(dz) is a σ-finite Borel measure on R0 := R\{0}.

In this paper, we express the realisation of a conditional expectation E[f(St)|Ss = α] in terms
of regular expectations. Here f is a Borel measurable function (think for instance of the payoff
function of a call option), S is an F-adapted price process which may have jumps, and α is a
real number. We also rewrite its differential w.r.t. α, i.e. the delta, by only using unconditional
expectations.
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First, we state a general result for the conditional expectation E[f(F )|G = α], where F and G
are two random variables satisfying the following separability assumptions.

Assumptions 2.1 (Separability). Let F and G be two random variables such that

F = g1(X,Y ) and G = g2(U, V ).

Herein the random variables X, Y , U , and V are FT -measurable and have bounded moments. The
couple (X,U) is independent of (Y, V ). Moreover

1. (X,U) has a density p(X,U) with respect to the Lebesgue measure,
2. log p(X,U)(x, ·) ∈ C1, for all x ∈ R, and
3. ∂

∂u log p(X,U)(x, ·) has at most polynomial growth at infinity, for all x ∈ R.

The functions g1 and g2 are Borel measurable and there exist a Borel measurable function g∗ and
a strictly increasing differentiable function h such that

g2(u, v) = h−1(u+ g∗(v)), (2.1)

om for all (u, v) ∈ Dom g2 ∩ (R×Dom g∗).

In this section, we require the following assumption for the function f .

Assumption 2.2. Let f be a Borel measurable function with at most polynomial growth at infin-
ity.

We apply the conditional density method as it is developed in [11]. This method does not
require the density of the couple (F,G) but only the density of a part, which we denote (X,U).
The density p(X,U) of (X,U) plays the most important role in this method. The results follow
from straightforward computations based on properties of (conditional) expectations.

We denote the Heaviside step function increased by an arbitrary number c ∈ R by H(x) :=
1{x≥0} + c. The distributional derivative of this function equals the Dirac delta function δ0. For
a function g ∈ C1 with a single root, the composition rule (see [32]) states that

δ0(g(x)) =
δ0(x− x1)
|g′(x1)|

, (2.2)

where x1 is such that g(x1) = 0 and g′(x1) 6= 0.

Theorem 2.3. Let F and G be as described in Assumptions 2.1 and let the function f satisfy
Assumption 2.2. Then it holds for any α in R that

E[f(F )|G = α] =
E[f(F )H(G− α)π(X,U)]

E[H(G− α)π(X,U)]
, (2.3)

where
π(X,U) = − ∂

∂u
log p(X,U)(X,U). (2.4)

Proof. Using the definition of the conditional expectation, we know that

E[f(F )|G = α] =
E[f(F )δ0(G− α)]

E[δ0(G− α)]
. (2.5)

Moreover we have that

E[f(F )δ0(G− α)] = E[f(g1(X,Y ))δ0(g2(U, V )− α)]

= E
[
E
[
f(g1(X,Y ))δ0(g2(U, V )− α)|σ(Y, V )

]]
, (2.6)
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where σ(Y, V ) is the filtration generated by Y and V . From Assumptions 2.1(1) we derive

E[f(F )δ0(G− α)] = E
[ ∫

R2
f(g1(x, Y ))δ0(g2(u, V )− α)p(X,U)(x, u)dxdu

]
.

By using the composition rule (2.2) for the Dirac delta function and relation (2.1), we obtain that∫
R
δ0(g2(u, V )− α)p(X,U)(x, u)du

=
∫

R

δ0(u+ g∗(V )− h(α))
∂
∂ug2(h(α)− g∗(V ), V )

p(X,U)(x, u)du

= h′(α)
∫

R
δ0(u+ g∗(V )− h(α))p(X,U)(x, u)du.

The Dirac delta function is the distributional derivative of the Heaviside step function. Hence by
integration by parts we find that∫

R
δ0(g2(u, V )− α)p(X,U)(x, u)du

= −h′(α)
∫

R
H(u+ g∗(V )− h(α))

∂

∂u
p(X,U)(x, u)du

= −h′(α)
∫

R
H(g2(u, V )− α)

( ∂
∂u

log p(X,U)(x, u)
)
p(X,U)(x, u)du.

Finally we conclude that

E[f(F )δ0(G− α)] = E
[
E
[
f(F )H(G− α)

{
− ∂

∂u
log p(X,U)(X,U)

}
h′(α)

∣∣σ(Y, V )
]]

= E
[
f(F )H(G− α)

{
− ∂

∂u
log p(X,U)(X,U)

}]
h′(α).

Applying the latter result with f ≡ 1 for the denominator of (2.5) we prove the statement.

Notice that in expression (2.5), the conditional expectation is written in terms of regular
expectations. However, when evaluating the Dirac delta function δ0, it will turn out to be zero for
many simulated values, which might result in a denominator equal to zero. This is not convenient
for numerical experiments such as Monte Carlo estimations. Therefore we proceeded in the proof
above by moving to the Heaviside step function. As a result we obtain representation (2.3).

It is clear that the weight π(X,U) in expression (2.3) can be replaced by any weight π in the
set W defined as

W := {π : E[π|σ(F,G)] = π(X,U)}. (2.7)

However the weight π(X,U) remains the optimal weight in this set in the sense of minimal variance
as we state in the following proposition. For the proof we refer to [20].

Proposition 2.4. Let F and G be as described in Assumptions 2.1, let the function f satisfy
Assumption 2.2, and take α in R. For all the weights π in the set W, defined by (2.7), we know
that E[f(F )H(G− α)π] = E[f(F )H(G− α)π(X,U)] where π(X,U) is given by (2.4). The variance

V(π) := Var (f(F )H(G− α)π)

is minimised over this set W at π(X,U).

The random variable Y does not appear in the denominator of expression (2.5). Thus it is
more natural to condition on the filtration σ(V ) than on σ(Y, V ) in (2.6). Moreover the weight
should not depend on X. These points lead to the following theorem.
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Theorem 2.5. Let the function f satisfy Assumption 2.2. Let F and G be as described in As-
sumptions 2.1, moreover assume that

1. U has a density pU with respect to the Lebesgue measure,
2. log pU ∈ C1, and
3. ∂

∂u log pU has at most polynomial growth at infinity.

Then it holds for any α in R that

E[f(F )|G = α] =
E[f(F )H(G− α)π(X,U)]

E[H(G− α)πU ]
,

where π(X,U) is given by (2.4) and

πU = − ∂

∂u
log pU (U). (2.8)

Proof. This result can be obtained through similar computations as in the proof of Theorem 2.3.

Proposition 2.6. Let G be as described in Assumptions 2.1 such that conditions (1)-(3) from
Theorem 2.5 hold, and take α in R. For all the weights π in the set

W ′ := {π : E[π|σ(G)] = πU}

we know that E[H(G− α)π] = E[H(G− α)πU ] where πU is given by (2.8). The variance

V ′(π) := Var (H(G− α)π)

is minimised over this set W ′ at πU .

In case it holds that E[− ∂
∂u log p(X,U)(X,U)|σ(G)] = − ∂

∂u log pU (U), then π(X,U) ∈ W ′ and πU
turns out to be the optimal weight compared to π(X,U) for the denominator of the representation.
However, [13] noticed from numerical tests that the use of the same weight in the numerator and
denominator leads to numerical compensations which seem to stabilise the algorithm. Therefore
we decide to use the same weight in numerator and denominator in our numerical experiments in
Section 5.

In many applications in mathematical finance, one can make grateful use of Theorem 2.3. In
fact, we are able to express a realisation of the conditional expectation of the form E[f(St)|Ss = α]
in terms of regular expectations. Here f is a function e.g. a payoff function, (St)t∈[0,T ] represents
a Markovian stock price process, 0 < s < t < T , and α is a real number. The expressions with
unconditional expectations allow us to use Monte Carlo simulations to evaluate such conditional
expectations.

The next proposition considers such a representation of conditional expectations in terms of
unconditional expectations, where the price process S is an exponential jump-diffusion process.
This type of stock price model is common in finance and conditional expectations appear when
determining European option prices at times t > 0 or American option prices.

Proposition 2.7. Observe a price process S defined by St = eLt , ∀t ∈ [0, T ], where L is a Lévy
process with decomposition Lt = µt + βWt + Ñt. Here W is a standard Brownian motion, Ñ is
a compound Poisson process independent of W , and µ and β are constant parameters. Then, for
any function f fulfilling Assumption 2.2, any positive number α, and 0 < s < t < T , it holds that

E[f(St)|Ss = α] =
E[f(St)H(Ss − α)π]

E[H(Ss − α)π]
,

where
π =

tWs − sWt

βs(t− s)
. (2.9)

6



Proof. Following the notation of Theorem 2.3, we set F = St and G = Ss. The random variables
X = βWt, Y = µt+ Ñt, U = βWs and V = µs+ Ñs and the functions gi(x, y) = ex+y, i ∈ {1, 2},
g∗(v) = v and h(α) = logα satisfy Assumptions 2.1. The scaled Brownian motions X and U have
a joint normal distribution with density function

p(X,U)(x, u) =
1

2πβ2
√

(t− s)s
exp

(
−x

2s− 2xus+ u2t

2β2(t− s)s

)
. (2.10)

To determine the weight in (2.3) we calculate

− ∂

∂u
log p(X,U)(x, u) =

∂

∂u

x2s− 2xus+ u2t

2β2(t− s)s
=

ut− xs
β2(t− s)s

,

such that we obtain
π =

Ut−Xs
β2s(t− s)

=
tWs − sWt

βs(t− s)
.

According to Theorem 2.5, we can replace the weight in the denominator by π = Ws/(sβ).
Since it holds that

E
[ tWs − sWt

β(t− s)s
∣∣σ(Ss)

]
=
Ws

sβ
,

we conclude, by Proposition 2.6, that the weight Ws/(sβ) is preferred above π (2.9) for the
denominator in minimal variance sense.

In the sequel we observe a model which is often used to price energy products (see for example
[10]). The price process is given by an additive model

St = Xt + Yt, ∀t ∈ [0, T ] with S0 > 0. (2.11)

The process Y is adapted to the filtration F and does not have to be specified here. The process
X is a so called Γ(a, b)-Ornstein-Uhlenbeck process, see Section 17 in [33]. Namely, it is a process
following the dynamics

dXt = −λXtdt+ dLt, X0 = S0, (2.12)

where λ > 0 and L is a subordinator, admitting a stationary distribution for the process X which
is here Γ(a, b). Hence this means that Xt has a Γ(a, b)-distribution for all t > 0. The solution of
the stochastic differential equation (2.12) equals

Xt = e−λtS0 +
∫ t

0

eλ(r−t)dLr.

An interesting property of OU-processes is the fact that the autocorrelation is independent of the
stationary distribution, it equals

Corr(Xt, Xs) = eλ(s−t), ∀ 0 < s < t. (2.13)

Proposition 2.8. Let us observe the additive model described by (2.11) and (2.12). Then it holds
for any function f satisfying Assumption 2.2, 0 < s < t < T , and α ∈ R, that

E[f(St)|Ss = α] =
E[f(St)H(Ss − α)π]

E[H(Ss − α)π]
,

where

π =
1− a
Xs

+
b

1− ρ
−
Ia(v(Xt, Xs)) ∂v∂u (Xt, Xs)
Ia−1(v(Xt, Xs))

.

Herein, Ia is the modified Bessel function of the first kind with index a,

ρ = eλ(s−t) and v(x, u) =
2
√
ρb2xu

1− ρ
.
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Proof. As in Theorem 2.3, we put F = St = Xt+Yt, G = Ss = Xs+Ys, (X,U) = (Xt, Xs), and
h(α) = α to satisfy Assumptions 2.1. To obtain the weight we need the density function of the
vector (Xt, Xs). Since X is a Γ(a, b)-OU process we know Xt and Xs are both Γ(a, b) distributed
and by (2.13) we know Corr(Xt, Xs) = eλ(s−t) =: ρ. According to [15], the density function of
this bivariate gamma distribution with non-zero correlation equals

p(Xt,Xs)(x, u) =
(b2xu)(a−1)/2 exp

(
− (bx+ bu)/(1− ρ)

)
ρ(a−1)/2(1− ρ)Γ(a)

Ia−1

(2
√
ρb2xu

1− ρ

)
,

where Ia is the modified Bessel function of the first kind with index a. We compute

∂

∂u
log p(Xt,Xs)(x, u) =

a− 1
2u

− b

1− ρ
+

∂

∂u
log Ia−1

(2
√
ρb2xu

1− ρ

)
.

For the function v(x, u) = 2
√
ρb2xu/(1 − ρ), it holds that ∂v

∂u (x, u) =
√

(ρb2x/u)
/

(1 − ρ) and
∂v
∂u (x, u)

/
v(x, u) = 1/(2u). Using the recurrence formulas for modified Bessel functions (see [14]),

we get

∂

∂u
log(Ia−1(v(x, u)))

=
1

Ia−1(v(x, u))
I ′a−1(v(x, u))

∂v

∂u
(x, u)

=
1

Ia−1(v(x, u))
1
2
(
Ia−2(v(x, u)) + Ia(v(x, u))

)∂v
∂u

(x, u)

=
1

Ia−1(v(x, u))
1
2
(
{Ia−2(v(x, u))− Ia(v(x, u))}+ 2Ia(v(x, u))

)∂v
∂u

(x, u)

=
1

Ia−1(v(x, u))
1
2

(2(a− 1)
v(x, u)

Ia−1(v(x, u)) + 2Ia(v(x, u))
)∂v
∂u

(x, u)

=
( (a− 1)
v(x, u)

+
Ia(v(x, u))
Ia−1(v(x, u))

)∂v
∂u

(x, u)

=
a− 1

2u
+
Ia(v(x, u)) ∂v∂u (x, u)
Ia−1(v(x, u))

.

According to (2.3) we conclude the statement.

For a differentiable (payoff) function f , we deduce the following representation as a consequence
of Theorem 2.3. From now on we shorten the notation for the density of the couple (X,U) to the
function p.

Theorem 2.9. Let F and G be as described in Assumptions 2.1 and consider a differentiable
function f satisfying Assumption 2.2. Assume the existence of two functions q and r, with at
most polynomial growth at infinity, such that

q(x, u) +
1

p(x, u)
∂

∂x

(
r(x, u)p(x, u)

)
= − ∂

∂u
log p(x, u). (2.14)

Then it holds for any α ∈ R that

E[f(F )|G = α] =
E[f(F )H(G− α)π1 − f ′(F )H(G− α)π2]

E[H(G− α)π1]
, (2.15)

where π1 = q(X,U) and π2 = r(X,U) ∂
∂xg1(X,Y ).
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Proof. The following calculations are justified by equation (2.14), integration by parts and prop-
erties of conditional expectations:

E[f(F )H(G− α)π(X,U)] = E[E[f(F )H(G− α)π(X,U)|σ(Y, V )]]

= E
[ ∫

R2
f(g1(x, Y ))H(g2(u, V )− α)

{
− ∂

∂u
log p(x, u)

}
p(x, u)dxdu

]
= E

[ ∫
R2
f(g1(x, Y ))H(g2(u, V )− α)

{
q(x, u) +

1
p(x, u)

∂

∂x

(
r(x, u)p(x, u)

)}
p(x, u)dxdu

]
= E

[ ∫
R2

{
f(g1(x, Y ))H(g2(u, V )− α)q(x, u)

− f ′(g1(x, Y ))
∂

∂x
g1(x, Y )H(g2(u, V )− α)r(x, u)

}
p(x, u)dxdu

]
= E[E[f(g1(X,Y ))H(g2(U, V )− α)π1 − f ′(g1(X,Y ))H(g2(U, V )− α)π2|σ(Y, V )]]
= E[f(F )H(G− α)π1 − f ′(F )H(G− α)π2].

Replacing the numerator of (2.3) by this result and the denominator by putting f ≡ 1, we obtain
the statement.

The relation (2.14) and representation (2.15) are inspired by the result (4.25) - (4.26) from [20].
An important difference however should be noticed. The functions p, q, and r are now functions in
the part (X,U), not in the couple (F,G). It is assumed that the density function p of the couple
(X,U) is known. If one chooses a function q or r, then one can obtain the other function by (2.14),
thus there are infinitely many possibilities for the weights π1 and π2.

In the next proposition we consider the exponential jump-diffusion model presented in Propo-
sition 2.7 and we apply the previous result to compute conditional expectations in this setting.

Proposition 2.10. Assume the exponential Lévy model of Proposition 2.7. For any function f
fulfilling Assumption 2.2, any positive number α, and 0 < s < t < T , we have

E[f(St)|Ss = α] =
E
[
f(St)H(Ss − α)

Ws

sβ
− f ′(St)H(Ss − α)St

]
E
[
H(Ss − α)

Ws

sβ

] ,

and

E[f(St)|Ss = α] =
E
[
f(St)H(Ss − α)

Wt

sβ
− f ′(St)H(Ss − α)

tSt
s

]
E
[
H(Ss − α)

Wt

sβ

] ,

among many other possible representations for E[f(St)|Ss = α].

Proof. Based on Theorem 2.9 and the density function (2.10) we consider the following possi-
bilities for the weights. First, choose r(X,U) = 1, then we find that

q(x, u) = − ∂

∂u
log p(x, u)− ∂

∂x
log p(x, u) =

ut− xs
β2(t− s)s

+
x− u

β2(t− s)
=

u

β2s
.

This implies that π1 = Ws/(sβ). Since ∂
∂xg1(X,Y ) = eX+Y = St, we obtain that π2 = St.

Secondly, if we take r(X,U) = t/s, then it turns out that q(x, u) = x/(sβ2). Consequently
π1 = Wt/(sβ) and π2 = tSt/s.

The previous results and examples concern computations that appear in the pricing of Eu-
ropean options at times t > 0 and of American options. In the next theorem we deduce a
representation for the delta.
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Theorem 2.11. Let F and G be as described in Assumptions 2.1 and let the function f satisfy
Assumption 2.2. Then it holds for any α ∈ R that

∂

∂α
E[f(F )|G = α] =

BF,G[f ](α)AF,G[1](α)− AF,G[f ](α)BF,G[1](α)
AF,G[1](α)2

h′(α),

where

AF,G[·](α) = E[·(F )H(G− α)π(X,U)],

BF,G[·](α) = E[·(F )H(G− α)(−π2
(X,U) + π∗(X,U))],

π(X,U) = − ∂

∂u
log p(X,U)(X,U), and

π∗(X,U) = − ∂2

∂u2
log p(X,U)(X,U).

Proof. From Theorem 2.3 it follows immediately that

∂

∂α
E[f(F )|G = α] =

∂
∂α{AF,G[f ](α)}AF,G[1](α)− AF,G[f ](α) ∂

∂α{AF,G[1](α)}
AF,G[1](α)2

.

For the derivatives in the right hand side, it holds that

∂

∂α
E[f(F )H(G− α)π(X,U)] = −E[f(F )δ0(G− α)π(X,U)].

Along the lines of the proof of Theorem 2.3, we derive∫
R
δ0(g2(u, V )− α)

( ∂
∂u

log p(x, u)
)
p(x, u)du

=
∫

R
δ0(u+ g∗(V )− h(α))h′(α)

∂

∂u
p(x, u)du

= −
∫

R
H(u+ g∗(V )− h(α))h′(α)

∂2

∂u2
p(x, u)du

= −
∫

R
H(g2(u, V )− α)h′(α)

{( ∂
∂u

log p(x, u)
)2

+
∂2

∂u2
log p(x, u)

}
p(x, u)du,

which concludes the proof.

3. Conditional expectation via Malliavin method

[20] used the Malliavin method to obtain representations for the conditional expectations.
Their approach can be applied to continuous diffusions. This section extends this approach to
allow for the computation of conditional expectations in Lévy and jump-diffusion framework. For
this purpose we use a Malliavin derivative of the combination of Gaussian and pure jump Lévy
noises, see e.g. [18] and [34]. In our setting, we use the Malliavin derivative developed by [30].

Let (ΩW ,FW ,PW ) and (ΩJ ,FJ ,PJ) be the canonical spaces for the Brownian motion and pure
jump Lévy process, respectively. We can interpret

Ω = ΩW × ΩJ , F = FW ⊗FJ , P = PW ⊗ PJ ,

such that (Ω,F ,P) is again a complete probability space in which Lévy processes are well-defined.
We make use of the Malliavin calculus developed in [30]. The Malliavin derivative in the Brownian
direction is defined in a subspace of L2(Ω) and is essentially a derivative with respect to the
Brownian part of a Lévy process L. We denote it by D(0). Its dual, the Skorohod integral is
also defined in [30] and denoted by δ(0). In this section we make use of some computational
rules and properties which are summarised in Appendix A. We still denote the Heaviside step
function increased by an arbitrary number c ∈ R by H(x) := 1{x≥0}+ c. In the following theorem
we consider a representation for the conditional expectation E[f(F )|G = α], for a function f
satisfying the following assumption.
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Assumption 3.1. Let f be a Borel measurable function which is continuously differentiable (f ∈
C1) and has a bounded derivative.

Theorem 3.2. Observe a function f satisfying Assumption 3.1 and let F and G be in D(0). Let
u be in Dom δ(0) such that f(F )u is in L2(Ω× [0, T ]) and

E
[ ∫ T

0

utD
(0)
t Gdt|σ(F,G)

]
= 1. (3.1)

Then it holds for any α ∈ R that

E[f(F )|G = α] =
E[f(F )H(G− α)δ(0)(u)− f ′(F )H(G− α)

∫ T
0
utD

(0)
t Fdt]

E[H(G− α)δ(0)(u)]
. (3.2)

Proof. Recall expression (2.5) for the conditional expectation. By relation (3.1), the chain rule,
the duality formula, and integration by parts, we successively find

E[f(F )δ0(G− α)] = E[f(F )δ0(G− α)E[
∫ T

0

urD
(0)
r Gdr|σ(F,G)]]

= E[E[
∫ T

0

f(F )δ0(G− α)urD(0)
r Gdr|σ(F,G)]]

= E[
∫ T

0

f(F )urD(0)
r H(G− α)dr] = E[H(G− α)δ(0)(f(F )u)]

= E[H(G− α){f(F )δ(0)(u)−
∫ T

0

urD
(0)
r f(F )dr}]

= E[H(G− α){f(F )δ(0)(u)− f ′(F )
∫ T

0

urD
(0)
r Fdr}].

Thus we obtain the numerator in (3.2). Then applying the latter result to f ≡ 1 proves the
statement.

The latter theorem provides us with a representation formula for the conditional expectation
E[f(F )|G = α] for f being a continuously differentiable function. However in many applications
in finance, we often have to consider non smooth functions. Hence we consider the following
assumption.

Assumption 3.3. For a given random variable F with density pF , let f be a Borel measurable
function in L2(R, pF ).

In order to deal with the potential non-smoothness of f , we include an additional assumption on
the process u introduced in Theorem 3.2 leading to the following theorem.

Theorem 3.4. Let F and G be in D(0) and f a function as in Assumption 3.3. Consider a process
u in Dom δ(0), guaranteeing f(F )u is in L2(Ω× [0, T ]), satisfying (3.1) and, in addition,

E
[ ∫ T

0

utD
(0)
t Fdt|σ(F,G)

]
= 0. (3.3)

Then the following representation holds for α ∈ R

E[f(F )|G = α] =
E[f(F )H(G− α)δ(0)(u)]

E[H(G− α)δ(0)(u)]
. (3.4)
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Proof. i) First, let us consider a Borel measurable function f which is continuously differentiable
with bounded derivative, such that we can apply Theorem 3.2. Because of the properties of
conditional expectations and relation (3.3), we have in representation (3.2) that

E
[
f ′(F )H(G− α)

∫ T

0

utD
(0)
t Fdt

]
= E

[
E
[
f ′(F )H(G− α)

∫ T

0

utD
(0)
t Fdt|σ(F,G)

]]
= E

[
f ′(F )H(G− α)E

[ ∫ T

0

utD
(0)
t Fdt|σ(F,G)

]]
= 0.

Thus we obtain representation (3.4).
ii) Now we observe a Borel measurable function f in L2(R, pF ). Since C∞K (R) is dense in L2(R, pF )
there exists a row of functions fn in C∞K (R) converging to f in L2. In part i) we concluded that
for any function fn in this row representation (3.4) holds. By convergence arguments, we conclude
that expression (3.4) also holds for the limit function f . See Proposition 3.2 in [19] for a rigorous
proof in a similar setting concerning the computation of the Greeks.

Analogous to Proposition 2.4 in case of the conditional density method, we can also replace the
weight obtained by the Malliavin method with a more general weight π satisfying

E[π|σ(F,G)] = δ(0)(u).

Over the set of all weights for which this condition holds, the variance of f(F )H(G− α)π will be
minimised at π = δ(0)(u).

Now we assume S is modelled by the following stochastic differential equation{
dSt = µ(t, St−)dt+ β(t, St−)dWt +

∫
R0
γ(t, St−, z)Ñ(dt, dz),

S0 = s0 > 0,
(3.5)

where W is a Wiener process and Ñ is a compensated Poisson random measure with Lévy measure
`. We assume that β(t, x) > 0 for all (t, x) ∈ [0, T ]× R. The coefficient functions µ(t, x), β(t, x),
and γ(t, x, z) are continuously differentiable with bounded derivatives and Lipschitz continuous in
the second argument, for all (t, z) ∈ [0, T ] × R0. The coefficients also satisfy the following linear
growth condition

µ2(t, x) + β2(t, x) +
∫

R0

γ2(t, x, z)`(dz) ≤ C(1 + x2),

for all t ∈ [0, T ], where C is a positive constant. The existence and uniqueness of the solution S
is ensured by Theorem 9.1. Chap IV collected from [23].

The first variation process V related to S equals
∂S

∂s0
and satisfies

{
dVt = µx(t, St−)Vt−dt+ βx(t, St−)Vt−dWt +

∫
R0
γx(t, St−, z)Vt−Ñ(dt, dz),

V0 = 1.

The stock price St is in D(0) for all t ∈ [0, T ], and its Malliavin derivative can be expressed in
terms of the first variation process (see Theorem 3 and Proposition 7 in [30])

D(0)
s St = Vt(Vs−)−1β(s, Ss−)1{s≤t}. (3.6)

The aim is to find a representation formula for the conditional expectation E[f(St)|Ss = α],
0 < s < t < T and α ∈ R, containing only regular expectations. First we mention the following
lemma. We do not present the proof since it is an adaptation of the proof of Lemma 4.1 in [20] to
our setting.
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Lemma 3.5. It holds that

D(0)
s Vt =

{
βx(s, Ss−)Vt −

β(s, Ss−)ζs−Vt
V 2
s−

+
β(s, Ss−)ζt

Vs−

}
1{s≤t},

where ζt :=
∂2St
∂s2

0

. In other words ζ is the solution of the SDE


dζt =

[
µxx(t, St−)V 2

t− + µx(t, St−)ζt
]
dt+

[
βxx(t, St−)V 2

t− + βx(t, St−)ζt
]
dWt

+
∫

R0
[γxx(t, St−, z)V 2

t− + γx(t, St−, z)ζt]Ñ(dt, dz),
ζ0 = 0.

Now we have all the ingredients to obtain a useful expression for the conditional expectation
E[f(St)|Ss = α], for α ∈ R. First we make use of Theorem 3.2 and later on we apply Theorem
3.4.

Proposition 3.6. Let f satisfy Assumption 3.1, 0 < s < t < T , and α ∈ R. In the setting
described by the stochastic differential equation (3.5) we assume that

E

[∫ T

0

(
Vr−

β(r, Sr−)

)2

dr

]
<∞ and E

[∫ T

0

(
1
sVs

Vr−
β(r, Sr−)

)2

dr

]
<∞. (3.7)

Then the following representation holds for the conditional expectation

E[f(St)|Ss = α] =
E[f(St)H(Ss − α)π1 − f ′(St)H(Ss − α)π2]

E[H(Ss − α)π1]
, (3.8)

where the Malliavin weights equal

π1 =
1
sVs

(∫ s

0

Vr−
β(r, Sr−)

dWr + s
ζs
Vs

+
∫ s

0

[βx(r, Sr−)
β(r, Sr−)

Vr− −
ζr−
Vr−

]
dr
)

and π2 =
Vt
Vs
. (3.9)

Proof. To fulfill condition (3.1) we define

ũr =
Vr−

Vsβ(r, Sr−)
1
s
1{r≤s}.

Note that the process V−/β( · , S−) is predictable. By the first condition in (3.7) it turns out that
this process is in Dom δ(0). Moreover by Lemma 3.5 and the chain rule it holds that 1/Vs is in
D(0). The second part of condition (3.7) allows us to conclude that ũ is in Dom δ(0).

The first weight we calculate is the Skorohod integral of ũ. Thereto we perform integration by
part,

δ(0)(ũ) =
1
Vs

∫ T

0

Vr−
β(r, Sr−)s

1{r≤s}dWr −
∫ T

0

Vr−
β(r, Sr−)s

1{r≤s}D(0)
r

1
Vs
dr.

Because of the chain rule we can rewrite this as

δ(0)(ũ) =
1
sVs

∫ s

0

Vr−
β(r, Sr−)

dWr +
1
s

∫ s

0

Vr−
β(r, Sr−)

D
(0)
r Vs
V 2
s

dr.

Now we make use of Lemma 3.5 and obtain that the latter equals

1
sVs

∫ s

0

Vr−
β(r, Sr−)

dWr +
1
s

∫ s

0

Vr−
β(r, Sr−)

1
V 2
s

[
βx(r, Sr−)Vs −

β(r, Sr−)ζr−Vs
V 2
r−

+
β(r, Sr−)ζs

Vr−

]
dr

=
1
sVs

(∫ s

0

Vr−
β(r, Sr−)

dWr +
∫ s

0

[βx(r, Sr−)
β(r, Sr−)

Vr− −
ζr−
Vr−

+
ζs
Vs

]
dr
)

13



=
1
sVs

(∫ s

0

Vr−
β(r, Sr−)

dWr + s
ζs
Vs

+
∫ s

0

[βx(r, Sr−)
β(r, Sr−)

Vr− −
ζr−
Vr−

]
dr
)
,

which is the mentioned expression for π1.
The second weight in (3.2) is∫ T

0

ũrD
(0)
r Stdr =

∫ T

0

1
Vs

Vr−
β(r, Sr−)s

1{r≤s}Vt(Vr−)−1β(r, Sr−)1{r≤t}dr =
∫ s

0

Vt
sVs

dr =
Vt
Vs
.

Theorem 3.4 can also be applied in this setting, which is interesting in case of non-differentiable
functions f .

Proposition 3.7. Consider again the setting defined by the stochastic differential equation (3.5).
For any function f as in Assumption 3.3 with F = St, 0 < s < t < T , and α ∈ R it holds, under
conditions (3.7), that

E[f(St)|Ss = α] =
E[f(St)H(Ss − α)π]

E[H(Ss − α)π]
,

where the Malliavin weight π differs from π1 in (3.9) as follows

π = π1 −
1

t− s
1
Vs

∫ t

s

Vr−
β(r, Sr−)

dWr. (3.10)

Proof. For the application of Theorem 3.4, we need the process

ûr =
Vr−

Vsβ(r, Sr−)

{1
s
1{r≤s} −

1
t− s

1{s≤r≤t}
}

= ũr −
Vr−

Vsβ(r, Sr−)
1

t− s
1{s≤r≤t}. (3.11)

By comparing this with the intermediate process used in the proof of Proposition 3.6, we conclude
that û is in Dom δ(0). Moreover by the integration by parts formula and the fact that V−/β( · , S−)
is predictable, we obtain

δ(0)(û) = π1 + δ(0)
(
− Vr−
Vsβ(r, Sr−)

1
t− s

1{s≤r≤t}
)

= π1 −
1
Vs

1
t− s

∫ T

0

Vr−
β(r, Sr−)

1{s≤r≤t}dWr +
1

t− s

∫ T

0

Vr−
β(r, Sr−)

1{s≤r≤t}D(0)
r

1
Vs
dr,

where π1 is defined in (3.9). The last term equals zero, since by Lemma 3.5 the Malliavin derivative
D

(0)
r (1/Vs) introduces a factor 1{r≤s}. This concludes the proof.

In the sequel we present two examples to illustrate our results from Propositions 3.6 and 3.7.
The first example considers a linear SDE and the second concerns stochastic volatility models.

Example 3.8. Linear SDE. We consider the following linear SDE{
dSt = µSt−dt+ βSt−dWt +

∫
R0

(ez − 1)St−Ñ(dt, dz),
S0 = s0 > 0,

where µ and β > 0 are constants. We assume that
∫

R0
(ez − 1)2`(dz) <∞, so that all assumptions

imposed on model (3.5) are satisfied. In this particular example, the first variation process V
equals V = S/s0 and ζ ≡ 0 and conditions (3.7) are fulfilled. From Proposition 3.6 we find that
the expression (3.8) holds with

π1 =
s0

sSs

(∫ s

0

1
s0β

dWr +
∫ s

0

1
s0
dr
)

=
s0

sSs

(Ws

s0β
+

s

s0

)
=

1
Ss

(Ws

sβ
+ 1
)
, (3.12)

and

π2 =
St/s0

Ss/s0
=
St
Ss
.
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Substitution of the expressions for π1 and π2 into (3.8) leads to

E[f(St)|Ss = α] =
E
[
f(St)H(Ss − α)

1
Ss

(Ws

sβ
+ 1
)
− f ′(St)H(Ss − α)

St
Ss

]
E
[
H(Ss − α)

1
Ss

(Ws

sβ
+ 1
)] ,

where f satisfies Assumption 3.1, 0 < s < t < T , and α ∈ R.
On the other hand we can apply Proposition 3.7 for the linear SDE we are observing now. The

weight π differs from the weight π1 in Proposition 3.6, when the intermediate process is of the
form (3.11), only by the second term in (3.10). In the present setting this term equals

s0

Ss

(
− 1
t− s

)∫ t

s

1
s0β

dWr = − 1
βSs

Wt −Ws

t− s
.

Hence combining this with (3.12) gives

π =
1
Ss

(Ws

sβ
− 1
β

Wt −Ws

t− s
+ 1
)

=
1
Ss

( tWs − sWt

s(t− s)β
+ 1
)
.

For any function f as in Assumption 3.3 with F = St, 0 < s < t < T , and α ∈ R the conditional
expectation can be rewritten as

E[f(St)|Ss = α] =
E
[
f(St)H(Ss − α)

1
Ss

( tWs − sWt

s(t− s)β
+ 1
)]

E
[
H(Ss − α)

1
Ss

( tWs − sWt

s(t− s)β
+ 1
)] .

Example 3.9. Stochastic volatility models. Let us consider the following model{
dSt = µSt−dt+ v(Yt−)St−dW

(1)
t +

∫
R0

(ez − 1)St−Ñ(dt, dz),
dYt = a(t, Yt−)dt+ b(t, Yt−)dW (2)

t +
∫

R0
ψ(z)Ñ(dt, dz),

(3.13)

with S0 = s0 > 0 and Y0 > 0. Herein Ñ is the jump measure of a compound Poisson process with
Lévy measure `, and W (1) and W (2) are two correlated standard Brownian motions with

dW
(1)
t dW

(2)
t = ρdt, ρ ∈ (−1, 1). (3.14)

Moreover µ ∈ R, the functions a and b on [0, T ]×R are Lipschitz continuous and differentiable in
the second argument for all t, v is a positive function which is Lipschitz continuous and differen-
tiable on R,

∫
R0

(ez − 1)2`(dz) <∞, and ψ is a function on R such that
∫

R0
ψ2(z)`(dz) <∞. The

process S may then perform the role of the stock price process, while v(Y ) can be interpreted as the
stochastic volatility process. In many stochastic volatility models, the volatility v(Y ) equals

√
Y

and some conditions should be included to guarantee the non-negativity of the process Y . Some
interesting examples are the Bates model (see [8]) and the Ornstein-Uhlenbeck stochastic volatility
model (see [5, 6]).

From (3.14) we know there exists a Brownian motion W̃ , independent of W (2), such that we
can express W (1) in terms of W̃ and W (2) by

W
(1)
t = ρW

(2)
t +

√
1− ρ2 W̃t.

Using the notations of Propositions 3.6 and 3.7, where we consider the Malliavin derivative in the
direction of the Brownian motion W̃ , we have

Vt =
St
s0
, β(t, St−) = v(Yt−)St−

√
1− ρ2, and ζt = 0. (3.15)
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Applying Proposition 3.6, we find for the weights in representation (3.8)

π1 =
s0

sSs

(∫ s

0

Sr−/s0

v(Yr−)Sr−
√

1− ρ2
dW̃r +

∫ s

0

v(Yr−)
√

1− ρ2

v(Yr−)Sr−
√

1− ρ2

Sr−
s0

dr
)

=
s0

sSs

( 1

s0

√
1− ρ2

∫ s

0

dW̃r

v(Yr−)
+

s

s0

)
=

1
Ss

( 1

s
√

1− ρ2

∫ s

0

dW̃r

v(Yr−)
+ 1
)

=
1
Ss

( 1
s(1− ρ2)

{∫ s

0

dW
(1)
r

v(Yr−)
− ρ

∫ s

0

dW
(2)
r

v(Yr−)

}
+ 1
)

and π2 =
St/s0

Ss/s0
=
St
Ss

. When we prefer not to use the derivative of the function f , we can apply

Proposition 3.7. The weight is then given by

π = π1 −
1
Ss

1

(t− s)
√

1− ρ2

∫ t

s

dW̃r

v(Yr−)

= π1 −
1
Ss

1
(t− s)(1− ρ2)

{∫ t

s

dW
(1)
r

v(Yr−)
− ρ

∫ t

s

dW
(2)
r

v(Yr−)

}
.

Considering the model (3.13), we derived a representation for E[f(St)|Ss = α]. In the sequel
we observe the conditional expectation

E[w(YT )|ST = α], (3.16)

for a certain function w : R 7→ R0. Our motivation to consider the latter expression comes from
a paper by [28], where the authors are interested in the computation of conditional moments of
Y . Thus they consider (3.16) for w(x) = x and w(x) = x2. Moreover, in [35] the authors consider
(3.16) for w(x) = v2(x), which is interesting for the study of stochastic local volatility.

We consider model (3.13) and a function w. It is clear that D(0)
r Yt = 0 since Y only depends on

W (2), which is independent of W̃ . Thus condition (3.3) is satisfied for any process u in Dom δ(0).
Thus when condition (3.1) is fulfilled, the conditional expectation can be written in the form (3.4).
From expression (3.6) and previous derivations (3.15) we deduce that

D(0)
r (ST − α) = ST v(Yr−)

√
1− ρ2, for r ≤ T.

Therefore the process satisfying condition (3.1) is given by

ur =
(
TST v(Yr−)

√
1− ρ2

)−1
.

The Skorohod integral of this process is computed similarly as in the proof of Proposition 3.6 and
it equals

δ(0)(u) =
1

TST
√

1− ρ2

∫ T

0

dW̃r

v(Yr−)
−
∫ T

0

1

Tv(Yr−)
√

1− ρ2
D(0)
r

( 1
ST

)
dr.

By the chain rule, the second term in the last equation equals∫ T

0

1

Tv(Yr−)
√

1− ρ2

D
(0)
r ST
S2
T

dr =
∫ T

0

1
TST

dr =
1
ST

.

Finally we conclude that

E[w(YT )|ST = α] =
E
[
w(YT )H(ST − α)

1
ST

( 1

T
√

1− ρ2

∫ T

0

dW̃r

v(Yr−)
+ 1
)]

E
[
H(ST − α)

1
ST

( 1

T
√

1− ρ2

∫ T

0

dW̃r

v(Yr−)
+ 1
)] .
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Via the Malliavin method we can also deduce a representation for the delta in terms of uncon-
ditional expectations.

Theorem 3.10. Consider the same setting as in Theorem 3.4 and assume that the Skorohod
integral δ(0)(u) is σ(F,G)-measurable. Then the delta is given by

∂

∂α
E[f(F )|G = α] =

BF,G[f ](α)AF,G[1](α)− AF,G[f ](α)BF,G[1](α)
AF,G[1](α)2

, (3.17)

where

AF,G[·](α) = E[·(F )H(G− α)δ(0)(u)],

BF,G[·](α) = E[·(F )H(G− α){−δ(0)(u)2 +
∫ T

0

urD
(0)
r δ(0)(u)dr}].

Proof. The structure of formula (3.17) follows clearly from the derivation of representation (3.4).
Now we focus on the derivative

BF,G[f ](α) =
∂

∂α
E[f(F )H(G− α)δ(0)(u)] = −E[f(F )δ0(G− α)δ(0)(u)].

By relation (3.1), the chain rule, the duality formula, and the integration by parts formula, we
obtain

E[f(F )δ0(G− α)δ(0)(u)]

= E
[
f(F )δ0(G− α)δ(0)(u)E

[ ∫ T

0

urD
(0)
r Gdr|σ(F,G)

]]
= E

[
E
[
f(F )δ0(G− α)δ(0)(u)

∫ T

0

urD
(0)
r Gdr|σ(F,G)

]]
= E

[
f(F )δ0(G− α)δ(0)(u)

∫ T

0

urD
(0)
r Gdr

]
= E

[ ∫ T

0

f(F )δ(0)(u)urD(0)
r H(G− α)dr

]
= E

[
H(G− α)δ(0)

(
f(F )δ(0)(u)u

)]
= E

[
H(G− α)

{
f(F )δ(0)

(
δ(0)(u)u

)
−
∫ T

0

δ(0)(u)urD(0)
r

(
f(F )

)
dr
}]

= E
[
H(G− α)

{
f(F )

{
δ(0)(u)δ(0)(u)−

∫ T

0

urD
(0)
r δ(0)(u)dr

}
− δ(0)(u)f ′(F )

∫ T

0

urD
(0)
r Fdr

}]
= E

[
f(F )H(G− α)

{
δ(0)(u)2 −

∫ T

0

urD
(0)
r δ(0)(u)dr

}]
− E

[
f ′(F )H(G− α)δ(0)(u)

∫ T

0

urD
(0)
r Fdr

]
.

By expression (3.3), the latter expectation equals

E
[
f ′(F )H(G− α)δ(0)(u)

∫ T

0

urD
(0)
r Fdr

]
= E

[
E
[
f ′(F )H(G− α)δ(0)(u)

∫ T

0

urD
(0)
r Fdr|σ(F,G)

]]
= E

[
f ′(F )H(G− α)δ(0)(u)E

[ ∫ T

0

urD
(0)
r Fdr|σ(F,G)

]]
= 0.
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Hence we conclude that

E[f(F )δ0(G− α)δ(0)(u)] = E
[
f(F )H(G− α)

{
δ(0)(u)2 −

∫ T

0

urD
(0)
r δ(0)(u)dr

}]
.

Similar to the results in the conditional density method case, we obtained several useful repre-
sentations for conditional expectations and their derivatives in terms of unconditional expectations
via the Malliavin method.

4. Variance reduction

In the representations considered in the previous sections the random variables whose expecta-
tion should be estimated can have a large variance. To obtain a smaller variance and satisfactory
convergence results in the context of Monte Carlo simulations, one might include variance reduc-
tion techniques. In subsection 4.1 we study the localisation technique. This technique was used in
[4]. We adapt it here to our conditional expectation representations. Moreover control variables
may be included to reduce the variance. We handle this approach in subsection 4.2.

4.1. Localisation
We adapt the localisation technique of [4] for both methods; the conditional density method

and the Malliavin method.

Proposition 4.1. Assume the setting of Theorem 2.3. Then for any function ψ : R 7→ [0,∞)
satisfying

∫
R ψ(t)dt = 1 and for all α ∈ R, we have

E[f(F )|G = α] =
J ψF,G[f ](α)

J ψF,G[1](α)
,

where J ψF,G[·](α) is given by

J ψF,G[·](α) = E
[
· (F )

(
ψ(G− α)

∂

∂u
g2(U, V ) + π(X,U)

[
H(G− α)−Ψ(G− α)

])]
where Ψ(x) =

∫ x
−∞ ψ(t)dt.

Proof. For the numerator of representation (2.3) it holds that

E[f(F )H(G− α)π(X,U)] = E[f(F )ψ(G− α)
∂

∂u
g2(U, V )] + E[f(F )H(G− α)π(X,U)]

− E[f(F )Ψ′(G− α)
∂

∂u
g2(U, V )].

The last term equals

E[f(F )Ψ′(G− α)
∂

∂u
g2(U, V )] = E

[ ∫
R2
f(g1(x, Y ))Ψ′(g2(u, V )− α)

∂

∂u
g2(u, V )p(x, u)dxdu

]
.

Using the integration by parts formula, we get

E[f(F )Ψ′(G− α)
∂

∂u
g2(U, V )]

= E
[
−
∫

R2
f(g1(x, Y ))Ψ(g2(u, V )− α)

∂

∂u
p(x, u)dxdu

]
= E

[ ∫
R2
f(g1(x, Y ))Ψ(g2(u, V )− α)

(
− ∂

∂u
log p(x, u)

)
p(x, u)dxdu

]
= E[E[f(F )Ψ(G− α)π(X,U)|σ(Y, V )]] = E[f(F )Ψ(G− α)π(X,U)],

and the result follows.
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Proposition 4.2. Assume the setting of Theorem 3.4, then for any function ψ : R 7→ [0,∞)
satisfying

∫
R ψ(t)dt = 1 and for all α ∈ R, we have

E[f(F )|G = α] =
J ψF,G[f ](α)

J ψF,G[1](α)
,

where J ψF,G[·](α) is given by

J ψF,G[·](α) = E
[
· (F )

(
ψ(G− α) + δ(0)(u)

[
H(G− α)−Ψ(G− α)

])]
where Ψ(x) =

∫ x
−∞ ψ(t)dt.

Proof. For the numerator of representation (3.4) it holds that

E[f(F )H(G− α)δ(0)(u)] = E[f(F )ψ(G− α)] + E[f(F )H(G− α)δ(0)(u)]
− E[f(F )Ψ′(G− α)].

Applying the same arguments as in Theorem 3.4, we can show that the last term equals

E[f(F )Ψ′(G− α)] = E[f(F )Ψ(G− α)δ(0)(u)]

and the result follows.

Once we have introduced the localised versions of the representation formulas for the conditional
expectation, one natural question arises, namely what is the optimal choice of the localising
function ψ. To find this optimal function, we assume that the additional constant c in the function
H is zero, i.e. H(x) = 1{x≥0}. Let Z represent either the factor ∂

∂ug2(U, V ) in case of the
conditional density method or the factor 1 when the Malliavin method is considered. Then,
practically speaking, an expectation of the form

J ψF,G[·](α) = E
[
· (F )

(
ψ(G− α)Z + π

[
H(G− α)−Ψ(G− α)

])]
is estimated via Monte Carlo simulation. More precisely if we denote by N the number of simulated
values of F and G, we have the following estimation

J ψF,G[·](α) ≈ 1
N

N∑
q=1

·(F q)
(
ψ(Gq − α)Zq + πq

[
H(Gq − α)−Ψ(Gq − α)

])
.

In order to reduce the variance, the idea is to minimise the integrated mean squared error with
respect to the localising function ψ. Thus we have to solve the following optimisation problem
(this criterion has been introduced by [25])

inf
ψ∈L1

I(ψ), (4.1)

where L1 = {ψ : R 7→ [0,∞) : ψ ∈ C1(R), ψ(+∞) = 0,
∫

R ψ(t)dt = 1} and I equals the integrated
variance up to a constant (in terms of ψ)

I(ψ) =
∫

R
E[·2(F )

(
ψ(G− α)Z + π

[
H(G− α)−Ψ(G− α)

])2

]dα. (4.2)

The choice of the optimal localising function ψ is given in the following proposition. It is obvious
that the optimal localisation function will be different for the numerator and denominator since
the optimisation problem is different. (The proof in [4] can easily be extended to the current
setting.)
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Proposition 4.3. The infimum of the optimisation problem (4.1) with I(ψ) given by (4.2) and
H(x) = 1{x≥0}, is reached at ψ?, where ψ? is the probability density of the Laplace distribution
with parameter λ?, i.e. for all t ∈ R, ψ?(t) = λ?

2 e−λ
?|t|, where

λ? =
(E[·2(F )π2]

E[·2(F )Z2]

) 1
2
. (4.3)

The localising function defined in the previous proposition is optimal in the sense of minimal
variance, however it is not optimal in numerical experiments when it comes to the computational
effort. Therefore [13] considered the exponential localising function

ψ(x) = λ∗e−λ
∗x1{x≥0}, (4.4)

where λ∗ is given by (4.3). In paragraph 5.2.5 we show how the use of this function reduces the
computational effort. We perform numerical experiments for both localising functions in Section
5.

The representations for the derivatives in Theorems 2.11 and 3.10 have a localised version
too. We state the localised versions as well as the choice of the optimal localising function ψ in
the following propositions. We do not present the proofs since they follow along similar lines as
Propositions 4.1, 4.2, and 4.3.

Proposition 4.4. Assume the setting of Theorem 2.11, then for any function ψ : R 7→ [0,∞)
satisfying

∫
R ψ(t)dt = 1 and for all α ∈ R, we have

BF,G[·](α) = E
[
· (F )

(
ψ(G− α)(−π)Z + (−π2 + π∗)

[
H(G− α)−Ψ(G− α)

])]
where Ψ(x) =

∫ x
−∞ ψ(t)dt,

Z =
∂

∂u
g2(U, V ), π = π(X,U), and π∗ = π∗(X,U).

Proposition 4.5. Assume the setting of Theorem 3.10, then for any function ψ : R 7→ [0,∞)
satisfying

∫
R ψ(t)dt = 1 and for all α ∈ R, we have

BF,G[·](α) = E
[
· (F )

(
ψ(G− α)(−π)Z + (−π2 + π∗)

[
H(G− α)−Ψ(G− α)

])]
where Ψ(x) =

∫ x
−∞ ψ(t)dt,

Z = 1, π = δ(0)(u), and π∗ =
∫ T

0

urD
(0)
r δ(0)(u)dr.

The optimal localising functions minimise the integrated variance

Ĩ(ψ) =
∫

R
E[·2(F )

(
ψ(G− α)(−π)Z + (−π2 + π∗)

[
H(G− α)−Ψ(G− α)

])2

]dα. (4.5)

Proposition 4.6. The infimum of the optimisation problem infψ∈L1 Ĩ(ψ), with Ĩ(ψ) given by
(4.5), where H(x) = 1{x≥0}, is reached at ψ̃, where ψ̃ is the probability density of the Laplace

distribution with parameter λ̃, i.e. for all t ∈ R, ψ̃(t) = eλ
2 e−eλ|t|, where

λ̃ =
(E[·2(F )(−π2 + π∗)2]

E[·2(F )π2Z2]

) 1
2
.
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4.2. Control variable
Another approach to obtain variance reduction (besides localisation) is to include a control

variable, see e.g. Section 4.1 in [21]. The advantage of adding a control variable is to use the
observed error in estimating a known quantity to adjust an estimator for an unknown quantity. In
case of American option pricing, the control variable can be the corresponding European option
price. The price of the American and respectively the European option with maturity T and
payoff function Φ, on an asset with value α at time t is denoted by P (t, α), respectively P Eu(t, α).
Let us define the function Pγ(t, α) := P (t, α) − γP Eu(t, α), for a real number γ close to 1. Then
it holds that

Pγ(t, α) = sup
τ∈Tt,T

Et,α
[
e−

R τ
t
rudu

{
Φ(Sτ )− γP Eu(τ, Sτ )

}]
,

where Tt,T denotes the set of all stopping times in [t, T ]. The price of the American option at time 0
is given by P (0, s0) = Pγ(0, s0)+γP Eu(0, s0) and its delta equals ∆(0, s0) = ∆γ(0, s0)+γ∆Eu(0, s0).
We can rewrite this formula for the American option price as

P (0, s0) = sup
τ∈T0,T

E
[
e−

R τ
0 ruduΦ(Sτ )− γ

{
e−

R τ
0 ruduP Eu(τ, Sτ )− P Eu(0, s0)

}]
.

From this expression, the advantage of adding a control variable is clear. Indeed, the error between
P Eu(0, s0) and an estimation of E[e−

R τ
0 ruduP Eu(τ, Sτ )] for each τ ∈ T0,T is used to adjust the

estimation of the American option price P (0, s0) = supτ∈T0,T E[e−
R τ
0 ruduΦ(Sτ )].

5. Numerical experiments

In this section we apply our results to estimate the price and delta of European options at times
t > 0 and of American options at time zero. Then we illustrate our methods with numerical results
in a specified jump-diffusion model. European options are considered to evaluate the accuracy of
our representations since there are analytic formulas at hand in the Merton model, whereas there
are non for American options.

5.1. General approach to determine European and American option prices and deltas
5.1.1. Prices and deltas of European options

European options may only be executed at time of maturity T . However they can be traded
at any moment between time 0 and T . Consider the risk-free interest rate r and the underlying
stock price process S, then the price at time t > 0 of a European option with payoff function Φ
equals

P Eu(t, St) = e−r(T−t)E[Φ(ST )|St]. (5.1)

The delta at time t equals

∆Eu(t, St) = e−r(T−t)
∂

∂S
E[Φ(ST )|St = S]

∣∣∣
S=St

. (5.2)

5.1.2. Algorithm to estimate prices and deltas of American options
American options can be executed at any time prior to maturity. Since it is practically impos-

sible to observe the possibility to execute the option at infinitely many times, an American option
is often approximated by a Bermudan option with the same maturity and payoff function. To
obtain this approximation, the time interval [0, T ] is discretised into n time periods with step size
ε = T/n. The Bermudan option can then be executed at the n discrete times iT/n, i = 1, . . . , n.
When the number of time periods increases, the Bermudan option converges to the American
option (see [3]). Bermudan options can be priced through a Bellman dynamic programming prin-
ciple, see [9] and [4]. Let Φ denote the payoff function and S the underlying stock price process
with initial value s0. Then the price of the Bermudan option P (0, s0) follows from the recursive
computations

P (nε, Snε) = Φ(Snε) = Φ(ST ),
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P (kε, Skε) = max
{

Φ(Skε), e−rεE
[
P ((k + 1)ε, S(k+1)ε)

∣∣Skε]}, k = n− 1, . . . , 1, 0. (5.3)

The sensitivity of the option price with respect to the initial value of the underlying asset, i.e. the
delta of the option ∆(0, s0) := ∂s0P (0, s0), can be derived as follows

∆(ε, Sε) =

e−rε∂αE[P (2ε, S2ε)|Sε = α]
∣∣∣
α=Sε

if P (ε, Sε) > Φ(Sε),

∂αΦ(α)
∣∣∣
α=Sε

if P (ε, Sε) = Φ(Sε),
(5.4)

∆(0, s0) = e−rεEs0 [∆(ε, Sε)].

Hence to obtain a numerical estimation of the price and the delta at time zero, we proceed by
estimating the prices and the deltas recursively and backwards in time. For estimations based on
simulated values for the underlying stock price one can simulate the number of required paths N
at the discrete time points and store them all before performing the recursive computations. On
the other hand, since the pricing program and computations of the deltas go backwards in time, it
is more convenient to simulate the stock price process simultaneously. Simulating the stock price
process backwards in time too leads to more efficiency concerning memory capacity.

5.2. Implementations for put options in a Merton model
5.2.1. The setting

We consider European and American put options on a stock price process S defined by a
Merton model. The put payoff function equals Φ(x) = (K − x)+. The stock price process S is
modelled as

St = s0 exp

((
r − β2

2

)
t+ βWt +

Nt∑
i=1

Yi

)
, (5.5)

where r > 0 is the risk-free interest rate, β is a positive constant, and W is a Wiener process. The
jump part is determined by a Poisson process N with jump intensity µ and the random variables
Yi are i.i.d. with distribution N(−δ2/2, δ2). Since we want to compare our results to the analysis
in [1], we use the parameter setting as in his paper. That explains our choice of this specific
connection between the jump mean and jump variance. This simplifies the Merton formula (5.8).

5.2.2. Representations
The conditional expectations and their derivatives in (5.1) - (5.4) can be estimated based

on the representations we developed in the previous sections. In the present Merton setting, the
representations obtained through Theorems 2.3, 3.4, 2.11, and 3.10 are as follows, for 0 < s < t < T
and α ∈ R,

E[f(St)|Ss = α] =
E[f(St)H(Ss − α)πs,t]

E[H(Ss − α)πs,t]
=

At,s[f ](α)
At,s[1](α)

, and (5.6)

∂

∂α
E[f(St)|Ss = α] =

Bt,s[f ](α)At,s[1](α)− At,s[f ](α)Bt,s[1](α)
At,s[1](α)2

k(α),

where
Bt,s[·](α) = E[·(St)H(Ss − α){−π2

s,t + π∗s,t}].

Throughout this section we consider H(x) = 1{x≥0}. Applying the conditional density method
(CDM), it holds that k(α) = 1/α,

πs,t =
tWs − sWt

βs(t− s)
, and π∗s,t =

t

β2s(t− s)
.

For the Malliavin method (MM), we have k(α) = 1,

πs,t =
1
Ss

(
tWs − sWt

βs(t− s)
+ 1
)
, and π∗s,t = − 1

S2
s

(
β(tWs − sWt)− t

β2s(t− s)
+ 1
)
.
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The regular expectations appearing in the representations (5.6) can easily be estimated by a
Monte Carlo simulation. For example consider the estimation of the numerator of representation
(5.6). We require N simulated values of St, Ss, and πs,t, belonging to the same path. If we denote
the j-th simulated values by Sjt , Sjs , and πjs,t, then we approximate

E[·(St)H(Ss − α)πs,t] ≈
1
N

N∑
j=1

·(Sjt )H(Sjs − α)πjs,t. (5.7)

5.2.3. Variance reduction techniques
As discussed in paragraph 4.1 we can include the localising technique. The estimation (5.7) is

then replaced by

E[·(St)H(Ss − α)πs,t] ≈
1
N

N∑
j=1

·(Sjt )
(
ψ(Sjs − α)Zjs + πjs,t

[
H(Sjs − α)−Ψ(Sjs − α)

])
,

where Zs equals Ss in case of the CDM and 1 in case of the MM. The functions ψ and Ψ are
defined by Proposition 4.3.

On the other hand we can include a control variable, see paragraph 4.2. For the estimation
of the American option price P (0, s0) and delta ∆(0, s0), we include the European option as a
control variable. In the current setting, the European option price and delta can be obtained
through Merton’s approach. Consider the algorithm for the price of Bermudan options (5.3). To
introduce the control variable we proceed in two steps. First we replace the put payoff function
at each time kε, k = 1, . . . , n, by

Φγ(kε, Skε) = Φ(Skε)− γPMe(kε, Skε),

where γ is a real number close to one and PMe(kε, Skε) denotes the European option price, obtained
through Merton’s approach, at time kε. Secondly, in the last step (k = 0) we add γPMe(0, s0)
(respectively γ∆Me(0, s0)) to obtain the American option price P (0, s0) (respectively the American
option delta ∆(0, s0)).

The European option price in a Merton model is derived in [29] and is in our setting (5.5) for
a put option given by the series

PMe(t, St) =
∞∑
n=0

e−µ(T−t)(µ(T − t))n

n!
PBS
n (t, St). (5.8)

Herein PBS
n (t, St) is the Black-Scholes price of the European put option with the same maturity,

strike, and interest rate r, and where the underlying stock price process has variance v2
n = β2 +

nδ2/2. The first 20 terms in the series are sufficient for a good approximation for the put option
price.

5.2.4. Backward simulation
As remarked at the end of paragraph 5.1.2 the algorithm for the pricing of a Bermudan option

goes backwards in time and we can simulate the different stochastic variables backwards in time
too. For the Brownian motion we base the backward simulation on a Brownian bridge (see [4]).
To simulate the compound Poisson process backwards in time, we base our method on results
of [24] and [2]. We split the simulation of a compound Poisson process in the simulation of a
Poisson process and in the simulation of the sum of the jump sizes. First we mention the following
proposition implying a backward simulation algorithm for a Poisson process. This is covered by
Lemma 3.1 in [2].

Proposition 5.1. Let N be a Poisson process with intensity µ. For any time t > 0 it holds that
Nt has a Poisson(µt) distribution. Moreover for any 0 < s < t it holds that Ns, conditioned on
Nt = z, follows a Binomial(z, s/t) distribution.
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Secondly we present the following proposition considering the (conditional) distribution of sums of
independent and identically normal distributed variables. This result is a consequence of Brownian
bridges, [24].

Proposition 5.2. Consider the following sum

C(k) =
k∑
i=1

Yi,

where Yi are i.i.d. N(η, ν). For any k > 0 it holds that C(k) has a N(kη, kν) distribution. Moreover
for any 0 < j < k it holds that C(j), given that C(k) = z, has a N

(
(j/k)z, (j/k)(k − j)ν

)
distribution.

The backward simulation technique is interesting in numerical applications and following [2],
this technique can also be derived for the Kou model, see [26].

5.2.5. Reduction of computational effort
[13] observed that the computational effort to estimate the American option prices by a Malli-

avin method can be reduced by sorting the estimated stock prices. Consider the Bermudan
dynamic programming algorithm (5.3). For a fixed k in {n− 1, . . . , 1} we estimate the conditional
expectations for q = 1, . . . , N by our representations, including localisation, as follows

E
[
P ((k + 1)ε, S(k+1)ε)

∣∣Skε = S
(q)
kε

]
≈

J[P(k+1)ε](S
(q)
kε )

J[1](S(q)
kε )

,

where

J[·](α) =
1
N

N∑
j=1

·(j)(ψ(S(j)
kε − S

(q)
kε )Z(j)

k + π
(j)
k (H(S(j)

kε − S
(q)
kε )−Ψ(S(j)

kε − S
(q)
kε ))). (5.9)

If we consider the exponential localising function (4.4), then it holds that

J[·](α) =
1
N

N∑
j=1

·(j)H(S(j)
kε − S

(q)
kε )eλ

∗S
(q)
kε e−λ

∗S
(j)
kε (λ∗Z(j)

k + π
(j)
k ). (5.10)

Now let us sort the simulated paths such that the values S(q)
kε increase for q going from 1 to N and

let us indicate this by the superscript s, say Ss,(q)kε . Then we write for each q

E
[
P ((k + 1)ε, S(k+1)ε)

∣∣Skε = S
s,(q)
kε

]
=

eλ
∗
PS

s,(q)
kε

∑N
j=q P ((k + 1)ε, Ss,(j)(k+1)ε)e

−λ∗PS
s,(j)
kε (λ∗PZ

s,(j)
k + π

s,(j)
k )

eλ∗1S
s,(q)
kε

∑N
j=q e−λ∗1S

s,(j)
kε (λ∗1Z

s,(j)
k + π

s,(j)
k )

.

Thus for q going from N to 1, the sums in the numerator and denominator get only one additional
term. Hence to estimate E

[
P ((k + 1)ε, S(k+1)ε)

∣∣Skε = S
s,(q)
kε

]
for each q, we can make use of the

previously performed computations for q + 1.

5.3. Numerical results for the Merton model
In this subsection we present the numerical results obtained via our representations in the

context of European and American options. We compare our results to those reported by [1]. For
this purpose we use the following parameter set for a put option on the underlying stock price
process S,

S modelled by (5.5): s0 = 40, r = 0.08, β2 = 0.05, µ = 5, δ2 = 0.05,
put option: T = 1,K ∈ {30, 35, 40, 45, 50}. (5.11)

Computations are performed in Matlab by a 2.80 GHz processor with 8GB.
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5.3.1. Results for European option prices and deltas
From the point of risk management one might study the value of European options at times

t > 0. For example one might have the intention to sell the option when the underlying stock
price value has increased from the initial value s0 = 40 to 42. Then the owner wants to know at
which price the option will be sold. Since it is not known at which time this will happen, one has
to price the option at several future times under the assumption that the underlying has changed
to 42 at those times.

As an example we estimate the prices

P Eu(s, α) = e−r(T−s)E[Φ(ST )|Ss = α], (5.12)

and deltas
∆Eu(s, α) = e−r(T−s)

∂

∂α
E[Φ(ST )|Ss = α], (5.13)

of a European put option with maturity T = 1 and strike K = 45 on the underlying S described in
(5.11), at times s ∈ {0.1, 0.2, . . . , 0.9} and for α ∈ {35, 36, . . . , 45}. We do not consider European
option prices or deltas at time zero since they do not involve conditional expectations. The
estimation of the prices or deltas based on the CDM or MM approach includes the localising
technique. Each estimate results from the same set of N = 5 000 000 simulated paths. In Table
1 we present the CDM and the MM estimates for the option prices for α ∈ {35, 40, 42}. We also
report the relative errors in percentages to the Merton option prices, see paragraph 5.2.3. Similar
results were obtained for the other values of α ∈ {35, 36, . . . , 45}. Table 2 shows the corresponding
results for the deltas. It turns out that the relative errors when comparing our approach to the
approach of [29] are very small. Hence the algorithm we developed is accurate.
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α = 35 α = 40 α = 42
time CDM (r.e. %) MM (r.e. %) CDM (r.e. %) MM (r.e. %) CDM (r.e. %) MM (r.e. %)

0.1 11.6447 ( 0.10) 11.6438 ( 0.09) 9.1820 (-0.02) 9.1816 (-0.03) 8.3520 ( 0.02) 8.3520 ( 0.01)

0.2 11.4615 (-0.04) 11.4597 (-0.05) 8.9133 (-0.07) 8.9133 (-0.07) 8.0584 ( 0.01) 8.0589 ( 0.02)

0.3 11.2838 ( 0.02) 11.2820 ( 0.01) 8.6180 (-0.05) 8.6181 (-0.05) 7.7308 ( 0.03) 7.7307 ( 0.03)

0.4 11.0765 (-0.03) 11.0730 (-0.06) 8.2936 ( 0.08) 8.2946 ( 0.09) 7.3569 ( 0.02) 7.3573 ( 0.03)

0.5 10.8633 ( 0.02) 10.8615 ( 0.01) 7.9014 (-0.04) 7.9011 (-0.04) 6.9254 (-0.02) 6.9243 (-0.03)

0.6 10.6319 ( 0.03) 10.6272 (-0.01) 7.4534 (-0.13) 7.4576 (-0.07) 6.4253 ( 0.00) 6.4269 ( 0.03)

0.7 10.3970 ( 0.05) 10.3894 (-0.02) 6.9561 ( 0.14) 6.9576 ( 0.16) 5.8288 ( 0.08) 5.8305 ( 0.10)

0.8 10.1765 ( 0.02) 10.1730 (-0.02) 6.3418 ( 0.07) 6.3398 ( 0.03) 5.0875 ( 0.15) 5.0906 ( 0.21)

0.9 10.0221 (-0.00) 10.0198 (-0.03) 5.6409 ( 0.05) 5.6392 ( 0.02) 4.1176 (-0.04) 4.1161 (-0.07)

Table 1: Estimates of European put option prices PEu(s, α) (5.12) via the CDM and MM approach, with relative errors to the Merton prices in percentages. Parameters are
given in (5.11), we fix K = 45.

α = 35 α = 40 α = 42
time CDM (r.e. %) MM (r.e. %) CDM (r.e. %) MM (r.e. %) CDM (r.e. %) MM (r.e. %)

0.1 -0.5473 ( 0.36) -0.5469 ( 0.29) -0.4372 (0.15) -0.4368 ( 0.03) -0.3959 (-0.36) -0.3955 (-0.44)

0.2 -0.5703 ( 0.35) -0.5703 ( 0.35) -0.4525 (0.06) -0.4534 ( 0.24) -0.4095 (-0.08) -0.4098 (-0.03)

0.3 -0.5936 (-0.21) -0.5943 (-0.10) -0.4715 (0.24) -0.4703 (-0.01) -0.4266 ( 0.59) -0.4260 ( 0.45)

0.4 -0.6243 (-0.28) -0.6233 (-0.45) -0.4927 (0.21) -0.4933 ( 0.33) -0.4423 ( 0.40) -0.4417 ( 0.26)

0.5 -0.6662 ( 0.38) -0.6660 ( 0.35) -0.5194 (0.29) -0.5173 (-0.12) -0.4603 (-0.02) -0.4588 (-0.34)

0.6 -0.7147 ( 0.65) -0.7137 ( 0.51) -0.5538 (0.29) -0.5546 ( 0.44) -0.4863 ( 0.11) -0.4841 (-0.34)

0.7 -0.7749 ( 0.90) -0.7766 ( 1.12) -0.6028 (0.36) -0.6038 ( 0.53) -0.5227 ( 0.28) -0.5211 (-0.01)

0.8 -0.8403 ( 0.11) -0.8355 (-0.46) -0.6782 (0.24) -0.6793 ( 0.40) -0.5801 ( 0.26) -0.5797 ( 0.19)

0.9 -0.9156 (-0.44) -0.9171 (-0.27) -0.8123 (0.11) -0.8141 ( 0.33) -0.7012 ( 0.57) -0.7006 ( 0.48)

Table 2: Estimates of European put option deltas ∆Eu(s, α) (5.13) via the CDM and MM approach, with relative errors to the Merton deltas in percentages. Parameters are
given in (5.11), we fix K = 45.
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5.3.2. Results for American option prices and deltas
We consider an American put option on the stock price process S with parameters given in

(5.11), the strike is fixed at K = 45. [1] and [22] developed a tree method to estimate the
American option price. In the current setting their estimate for the option price equals 9.954. The
Merton European option price at time zero equals 9.422. As mentioned before we approximate
an American option by a Bermudan option using a time discretisation, we choose n = 10. The
dynamic programming algorithm presented in paragraph 5.1.2 and our representations are used
to estimate P (0, s0) and ∆(0, s0).

Figures 1-4 illustrate the influence of the variance reduction techniques on the estimates for
the price. The graphs on the right hand side are obtained by zooming in on the left graphs. For
N = 250i, i = 1, . . . , 30, we simulated N paths of the underlying at the discrete time points jT/n,
j = 1, . . . , n, and we estimated the option price at time zero through the CDM and the MM, with
and without control variable and with and without the optimal localisation technique. In case the
European option is included as a control variable, we put γ = 0.9.

The variance reduction techniques have a remarkable improvement on the results obtained via
the CDM and MM approaches. It appears that the CDM results show some more variation than
the MM results.

Figure 1: Estimates for the American put option price obtained through the CDM and MM representations without
control variable and without localisation technique, against the number of simulated paths. In the right graph the
vertical axis is restricted to [0, 100].

Figure 2: Estimates for the American put option price obtained through the CDM and MM representations with
control variable and without localisation technique, against the number of simulated paths. In the right graph the
vertical axis is restricted to [8, 20].
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Figure 3: Estimates for the American put option price obtained through the CDM and MM representations without
control variable and with localisation technique, against the number of simulated paths. In the right graph the
vertical axis is restricted to [8, 20].

Figure 4: Estimates for the American put option price obtained through the CDM and MM representations with
control variable and with localisation technique, against the number of simulated paths. In the right graph the
vertical axis is restricted to [9.5, 12].

Figure 5 presents the required time to estimate the American option price and delta at time
zero through the backward dynamic programming algorithm combined with our Malliavin method
including a control variable and the optimal localising technique. The paths are simulated back-
wards in time and the option prices and deltas are estimated simultaneously. The CPU time is
given in terms of the number of simulated paths N , for discretisation parameter n ∈ {10, 20}. The
conditional density method performs more or less at the same rate as the Malliavin method. The
CPU time is in the line of [4] and is quadratic in terms of the number of simulated paths. In [1]
and [22] there is no clear indication about how long their algorithms take.

As described in paragraph 5.2.5 the computational effort is reduced when we consider an
exponential localising function and perform a sorted algorithm. For example for n = 10 this
method only needs 18 seconds for N = 10 000 and 41 seconds for N = 20 000.

Table 3 presents the estimated prices and deltas of the American put option with strikes
30, 35, 40, 45, and 50, obtained through the sorted CDM and MM approach including the control
variable and the exponential localisation function. For these estimates a time discretisation is
performed for n = 10 and 500 000 paths where simulated. We include the estimates for the prices
and deltas obtained by [1] and [22] respectively.
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Figure 5: CPU time in seconds to estimate American option price and delta against the number of simulated paths.
Malliavin method including a control variable and localisation.

Price Delta
Strike European Amin CDM MM European H-S CDM MM

30 2.621 2.720 2.729 2.708 -0.1645 -0.1744 -0.1772 -0.1745
35 4.412 4.603 4.601 4.585 -0.2474 -0.2654 -0.2670 -0.2652
40 6.696 7.030 7.013 7.001 -0.3357 -0.3644 -0.3651 -0.3644
45 9.422 9.954 9.921 9.913 -0.4227 -0.4656 -0.4656 -0.4653
50 12.524 13.318 13.270 13.265 -0.5035 -0.5626 -0.5626 -0.5625

Table 3: Estimates of American put option prices and deltas for parameter set (5.11), obtained through the sorted
CDM and MM approach with control variable and exponential localisation. n = 10 and N = 500 000. European
prices and deltas computed via the Merton approach. American option price estimates from [1] (Amin) and delta
estimates from [22] (H-S).

We conclude that the extension that we provided to the geometric Brownian motion model
observed in Bally et al. (2005) by adding normally distributed jumps to the driving process leads
to numerical results which are in line with those found in the literature.

6. Conclusion

Conditional expectations play an important role in the pricing and hedging of financial deriva-
tives. In the literature there exist several methods for the numerical computations of conditional
expectations. One of the methods is to use Monte Carlo by rewriting conditional expectations
in terms of expectations without conditioning but involving weights. This was first discussed in
[20] in a continuous framework. In this paper we extended this latter approach to include Lévy
and jump-diffusion processes. For this purpose we used two approaches: the conditional density
method and the Malliavin method. We applied the developed theory to the estimation of Amer-
ican option prices and their deltas. We used a localisation technique and a control variable to
improve the estimation of the involved expectations. Moreover, we illustrated our results with
different examples and found accurate numerical results.

As far as further investigations are concerned, one may study other choices of the weights in the
representation of the conditional expectations. Notice that there are infinitely many possibilities
for the weights and thus infinitely many representations of the conditional expectations, see e.g.
Proposition 2.6.
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Appendix A. Malliavin Calculus

In this paper we make use of the Malliavin calculus as defined in [30]. The following properties
and definitions concerning the Malliavin derivative in the direction of the Wiener process are
applied.

• The Malliavin derivative in the direction of the Brownian motion is denoted by D(0). The
space D(0) contains all the random variables in L2(Ω) that are differentiable in the Wiener
direction.

• Chain rule
Let F ∈ D(0) and f be a continuously differentiable function with bounded derivative. Then
it holds that f(F ) ∈ D(0) and

D(0)f(F ) = f ′(F )D(0)F.

• Skorohod integral δ(0)

Let δ(0) be the adjoint operator of the directional derivative D(0). The operator δ(0) maps
L2(Ω× [0, T ]) to L2(Ω). The set of processes u ∈ L2(Ω× [0, T ]) such that∣∣∣E[ ∫ T

0

utD
(0)
t Fdt

]∣∣∣ ≤ C ‖F‖L2(Ω)

for all F ∈ D(0), is the domain of δ(0), denoted by Dom δ(0). For every u ∈ Dom δ(0) we
define δ(0)(u) as the Skorohod integral in the Wiener direction of u by

E[Fδ(0)(u)] = E[
∫ T

0

utD
(0)
t Fdt],

for any F ∈ D(0). The equation above is called the duality formula.

• Integration by parts
Let Fu ∈ L2(Ω× [0, T ]), where F ∈ D(0), and u ∈ Dom δ(0). Then Fu ∈ Dom δ(0) and

δ(0)(Fu) = Fδ(0)(u)−
∫ T

0

utD
(0)
t Fdt

if and only if the second part of the equation is in L2(Ω).

• Predictable processes
Let u be a predictable process such that E[

∫ T
0
u2
tdt] < ∞. Then u ∈ Dom δ(0) and the

Skorohod integral coincides with the Ito-integral

δ(0)(u) =
∫ T

0

utdWt.
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rics. In O.E. Barndorff-Nielsen, T. Mikosch, and S. Resnick, editors, Lévy processes: Theory
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Processes and their Applications, 117:165–187, 2007.

[35] A.W. van der Stoep, L.A. Grzelak, and C.W. Oosterlee. The Heston stochastic-local volatility
model: efficient Monte Carlo simulation. International Journal of Theoretical and Applied
Finance, 17(7), 2014.

32


	Introduction
	Conditional expectation via the conditional density method
	Conditional expectation via Malliavin method
	Variance reduction
	Localisation
	Control variable

	Numerical experiments
	General approach to determine European and American option prices and deltas
	Prices and deltas of European options
	Algorithm to estimate prices and deltas of American options

	Implementations for put options in a Merton model
	The setting
	Representations
	Variance reduction techniques
	Backward simulation
	Reduction of computational effort

	Numerical results for the Merton model
	Results for European option prices and deltas
	Results for American option prices and deltas


	Conclusion
	Malliavin Calculus

