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Abstract 

Structural optimization with pure integer and mixed-integer design variables are 

important topics in structural design. General gradient-based mathematical 

optimization algorithms fail to solve these problems because they usually do not 

treat integer variables. Evolutionary methods or genetic algorithms handling such 

problems may be computationally prohibitively expensive due to the 

requirement of large number of time-consuming functions evaluations, which are 

often carried out by finite element analysis with a large number of degrees of 

freedom. To more efficiently solve such problems, several procedures are 

developed and improved in this dissertation. A procedure to generate a high 

quality starting point for the nonlinear assignment problem is developed. In 

addition, traditional neighbor search algorithms then are investigated and 

improved. A constraints-directed algorithm is developed for mixed-integer 

nonlinear optimization. An enforced neighbor search strategy is also presented to 

improve the quality of the solution. These procedures aim at obtaining a high 

quality solution with significantly reduced number of function evaluations than 

algorithms at hand. The efficiencies of the developed methods are demonstrated 

through three practical engineering problems. These are optimal parts allocation 

problem, the stacking sequence optimization in laminate design and the 

simultaneous material selection and size optimization problem. 
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Kurzfassung 

Strukturoptimierungen mit reinen ganzzahligen und gemischt-ganzzahligen 

Designvariablen sind wichtige Themen im Strukturentwurf. Mit allgemeinen 

gradientenbasierten mathematischen Optimierungsalgorithmen, es gelingt nicht, 

diese Probleme zu lösen, weil sie in der Regel nur kontinuerlige Variable 

behandeln. Evolutionäre Methoden oder genetische Algorithmen sind in der 

Handhabung solcher Probleme rechnerisch aufwendig infolge der erforderlichen 

großen Anzahl von zeitraubenden Funktionsauswertungen, die häufig von 

Finite-Elemente-Analyse mit einer großen Anzahl von Freiheitsgraden 

durchgeführt werden müssen. Um derartige Probleme effizienter zu lösen, 

werden verschiedene Verfahren untersuchte und entwickelt. Es wird ein 

Verfahren entwickelt, um einen hochwertigen Startpunkt für die nichtlinearen 

Zuordnungsprobleme zu erzeugen. Zusätzlich werden Suchalgorithmen für 

dessen diskrete Nachbarschaft untersucht und verbessert. Für das 

gemischt-ganzzahlige nichtlineare Optimierung Problem, es wird ein 

Nebenbedingungen¬-gerichteter Algorithmus entwickelt. Eine erzwungene 

Nachbar Suchstrategie wird auch dargestellt, um die Qualität der Lösung zu 

verbessern. Diese Verfahren zielen auf den Erhalt eine hochwertige Lösung mit 

deutlich reduzierten Anzahl von Funktionsauswertungen als Algorithmen zur 

Hand. Die Effizienz der entwickelten Methoden werden über drei praktische 

technische Probleme gezeigt. Dies sind die optimale Allokation von Komponenten, 

die Reihenfolgeoptimierung von Laminatschichte der faserverstärkte Kunststoffe 

sowie die gleichzeitige Materialauswahl und Geometrieoptimierung von 

Fachwerken und versteiften Platten. 
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1. Introduction 

1.1 Motivation 

The employment of integer variables provides a more straightforward way of 

describing many structural optimization problems in mechanical engineering 

world. It simplifies the efforts on both mathematical modelling of practical 

problems and explanation of optimization results. These problems can be 

formulated into the categories of either pure integer or mixed-integer 

optimizations in mathematics, which are widely studied theoretically in recent 

decades. 

Comparing to traditional optimization problems with continuous design variables, 

the algorithms for integer and mixed-integer optimization usually require much 

more computational efforts for a same problem size, especially in terms of 

number of function calls. This deficiency is magnified significantly and sometimes 

even hinders the application in structural optimization, due to the fact that 

structural performance evaluations are to be carried out by time-consuming 

finite element analysis. Therefore, efficient algorithms and procedures designed 

for pure integer and mixed-integer problems that often occur in the structural 

optimization are highly desired. 

1.2 Scope and objective of thesis 

The objective of this thesis is the development of procedures to efficiently solve 

integer and mixed-integer type optimization problems and the investigation of 

their applications in structural optimization. Specifically, solution methods for 

pure integer nonlinear assignment problem and mixed-integer nonlinear 

programming problems are of the interest of this thesis. With the developed 

tools, the solutions of three optimization problems in mechanical engineering 

world, namely optimal parts allocation problem, stacking sequence optimization 

problem in laminate design and simultaneous material selection and size 

optimization problem, are discussed.  
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The importance and the generation of a high quality staring point as the trigger of 

an optimization procedure are studied. Optimization algorithms to solve 

optimization problems are also investigated and improved. Their efficiencies, in 

terms of number of function evaluations, are demonstrated through comparisons 

with other algorithms with both mathematical and engineering problems. The 

presented procedures are also applied on large-scale problems in practice. 

1.3 Outline of thesis 

In Chapter 2, varieties of optimization problems with integer type design 

variables in engineering field are introduced. Literature surveys for the 

assignment problem (AP), especially the nonlinear assignment problem (NAP), 

mixed integer nonlinear programming problem (MINLP) are presented. Both the 

mathematical formulation for each problem and state-of-the-art deterministic 

and heuristic algorithms are summarised. 

To solve nonlinear assignment problems efficiently, accelerated neighbour search 

algorithm and quasi-homogenous linear assignment procedure for generation of 

a high quality initial solution are developed in Chapter 3. The effectiveness of the 

algorithms and the whole procedure are demonstrated by benchmark test suites. 

In Chapter 4, a constraints-directed binary assignment algorithm is developed for 

one type of MINLP problem. The performance of the algorithm is compared with 

several algorithms with small to medium scale problems.  

The developed algorithms are applied to three structural optimization problems 

in mechanical engineering. The optimal parts allocation problem for structure 

systems and its formulation into a NAP are presented in Chapter 5. The 

optimization procedure developed in Chapter 3 is applied to solve this problem. 

Comparison of different solution strategies is also discussed. 

Chapter 6 focuses on stacking sequence optimization in fibre-reinforced laminate 

structure design. The basic theories of composite laminate analysis are 

introduced at first. Then the formulation of the problem into a constrained 

nonlinear assignment problem is introduced. The optimization method 

developed in Chapter 3 is applied to this problem, and a new repair operator is 

integrated to accelerate the procedure. The reduction of computational cost is 
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presented by comparison with several heuristic algorithms on small to 

medium-scale problems. Finally, the procedure is applied on a large scale 

problem and a new concept hybrid-stiffness laminate design problem. 

Chapter 7 concentrates on the simultaneous material selection and size 

optimization problem in structural lightweight design. The problem is formulated 

into a MINLP with binary assignment. The algorithm developed in Chapter 4 is 

applied directly. The performance is compared with several algorithms with small 

to large scale problems. An application in panel structures design is also 

presented. 

The thesis is finally summarized in Chapter 8 together with an outlook on 

possible further research work. 
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2. State of the art 

In this chapter, structural optimization problems that contain integer type design 

variables are introduced. General mathematical formulations of the nonlinear 

assignment problem and mixed-integer nonlinear optimization problem that are 

mainly investigated in this thesis are introduced. Reviews of state-of-the-art 

algorithms are presented. 

2.1 Structural optimization containing integer and 

mixed-integer variables 

In a structural optimization formulation, design variables denote parameters that 

describe the design of a structure. The optimization problem is defined to find 

the optimal values of design variables so that the represented structure achieves 

the best performance i.e. the maximal or the minimal objective value under 

certain constraints. 

The constraints of an optimization problem are composed of two forms. One 

common form is the constraint functions, which are limitations that are applied 

on the system responses. The other form is constraints on the design variables. 

These constraints refer to not only ranges of design variables, but can also refer 

to the types of them. In a most general optimization formulation, types of design 

variables can be continuous, integer or mixed continuous and integer. The 

integer variables can be subdivided to pure integers, which take values of normal 

integers, binary integers, which take values of only zero or one, and 

quasi-integers, which take discrete sets of decimal values. 

The integer type variables provide convenient and straightforward descriptions of 

practical problems, and therefore are at least equally important as the 

continuous ones if not more. Discrete structural optimization is frequently the 

case in practical engineering designs, where the structure parameters are limited 

to choose from sets of several specific values [Gutkowski 1994]. Typical examples 

are optimization thicknesses of material sheets [Li 2000] and optimization the 

discrete plies angles of laminate composites [Gürdal 1999]. Binary encoding is 

widely adopted in topology optimization [Bendsoe 2003], where element 
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densities are either zero or one. The binary description is also employed to 

represent the selections of materials in the discrete material optimization 

[Stegmann 2005]. Normal integers are utilized to describe the quantities of 

physical parameters, such as the number of layers in laminate composite [Apalak 

2011] or number of reinforcing elements profile of metal matrix composites 

[Huber 2010]. In addition, the ordered integers provide natural representations 

of sequences and therefore are also utilized in the stacking sequence 

optimization of laminate composites [Riche 1993] and in the assembling 

procedure optimization [Graves 1983]. 

Although the advantages of employing integer variables are significant, the 

computational difficulties increase greatly after the integer variables are brought 

in. Therefore, many branches of mathematical optimization have emerged 

focusing on the solutions of specific types of integer optimization problems. 

Discrete optimization [Syslo 2006], integer programming [Li 2006], combinatorial 

optimizations [Papadimitriou 1998] and assignment problems [Pardalos 2000] are 

subsets that mainly investigate pure integer type optimization. Mixed integer 

nonlinear programming is another interesting topic [Floudas 1995, Lee 2012] 

investigating on solution algorithms for optimizations with both integer and 

continuous type design variables. 

In this dissertation, the efficient solution procedures for nonlinear assignment 

problem and the mixed-integer nonlinear programming problem are mainly 

investigated. These two types of problems have important applications in 

structural optimization. Three typical examples are optimal parts allocation 

problem for structural systems, stacking sequence optimization problem and 

simultaneous material selection and size optimization. 

2.2 Pure Integer assignment problem 

2.2.1 Mathematical formulation 

Assignment problem is a type of the most important problems in the field of 

combinatorial optimization. The most abstract description of this problem is that: 

given two sets of the same size, say set S and T both contain N elements. Find a 
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bijective mapping g: ST, such that the so-called cost function i.e. the objective 

function f(g(S)) reaches its minimum or maximum. 

For clarity, a small example is given here. Let set S={worker 1, worker 2, worker 3} 

and T={job 1, job 2, job3} both contain three elements. A bijective mapping g 

from S to T is a plan how to assign the jobs to workers, and here we assume that 

each job can be assigned only to one worker and each worker can only take one 

job. For example, g could be assign job 1 to worker 1, assign job 3 to worker 2 

and assign job 2 to worker 3. The objective function f is the time required to 

finish all the jobs under the assignment plan g. The assignment problem here is to 

find the best assignment plan g so that f is minimized. 

For each such mapping function g, it can be bijective mapped to a N by N binary 

square assignment matrix   (   )  *   +
   , where 

 x   {
      𝑖𝑓 𝑔(𝑠,𝑖-)  𝑡,𝑗-

                 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
 (2.1) 

Still takes the above assignment example, then the corresponding assignment 

matrix X would be: 

 X  [
   
   
   

] (2.2) 

Due to the bijective properties of g, the following two row-wise and column-wise 

assignment constraints must be satisfied: 

 ∑   

 

 = 

   (𝑖      …  𝑁) (2.3) 

 ∑   

 

 = 

   (𝑗      …  𝑁) (2.4) 

Therefore the problem is that, to find a binary assignemnt matrix X that satisfied 

Eq.(2.1), Eq.(2.3) and Eq.(2.4) so that the objective function f(X(S)) reaches its 

minimum or maximum. 
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It’s worth pointing out that, in a standard assignment problem formulation, there 

is no other constraints except the assignment constraints. Additional constraints 

are normally taken into consideration by the penalty method which adds a 

penalty term to the objective function if violations of the constraints occur. 

2.2.2 Linear assignment problem (LAP)  

The problem with a special type of the objective function, i.e. the linear 

assignment problem (LAP) has been completely solved mathematically. For this 

type of problem, the objective is expressed as: 

 𝑓  ∑∑𝑐  ∙    

 

 = 

 

 = 

 (2.5) 

where the cost coefficients {cij} are given and f is a linear function of entries in X. 

The most famous algorithm to solve this problem is the Hungarian algorithm 

[Kuhn 1955+ or called Munkres’ assignment algorithm *Munkres, Burkard 2009]. 

The computational complexity of this algorithm is of a low order polynomial 

time O(N3) in the worst case. 

2.2.3 Nonlinear assignment problem (NAP)  

Generally, the objective function is nonlinear functions of the assignment matrix , 

which is a straightforward extension of LAP. However, to design an algorithm to 

solve this type of problems in polynomial time is very difficult.  

Actually, it has been proved that the quadratic assignment problem (QAP) where 

the objective is a quadratic function of entries in X as shown in the following: 

 𝑓  ∑∑∑∑𝑎  ∙ 𝑏𝑘𝑙 ∙   𝑘 ∙   𝑙

 

𝑙= 

 

𝑘= 

 

 = 

 

 = 

 (2.6) 

and the 3-dimensional assignment problem (3AP) where the objective is a 

quadratic function of entries of two assignment matrices: 
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 𝑓  ∑∑∑𝑎  𝑘 ∙    ∙  ̃ 𝑘

 

𝑘= 

 

 = 

 

 = 

 (2.7) 

are both NP-hard problems [Sahni 1976, Frieze 1983]. It means that until now no 

algorithms could solve these problems or even guarantee of finding a good 

enough solution (with some given factor from the optimal solution) in polynomial 

time. 

2.2.4 State-of-the-art algorithms for NAP 

Although there is no proof for other types of nonlinear objective function, it is 

logic to think that for even more complicated nonlinear objective functions, the 

problems are also NP-hard problems. Since an algorithm to efficiently find the 

global optimum are not possible, many deterministic and heuristic algorithms 

have been presented to find good enough solutions for general NAPs. 

2.2.4.1 Local search or neighbor search based algorithms 

Local search or called neighbour search based algorithm is widely applied in 

combinatorial optimization problems [Aarts2003]. The flowchart of the 

traditional 2-exchange neighbour search algorithm for assignment problems is 

illustrated in the following figure. 

 

Xk+1=best of all neighbors 

Stop, return solution Xk 

F(Xk+1)< F(Xk)? 

Evaluate all 2-exchange neighbors 

Start from X0, k=0 

 

k=
k+

1
 

Yes 

u

m 

No 
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Figure 2-1: Flowchart of traditional 2-exchange neighbour search algorithm 

A 2-exchange neighbour of a current solution X is constructed through switching 

exactly two rows or two columns of the design matrix. The advantage of this 

algorithm is that it ensures the final solution is better than all of its neighbours, 

which is at least a local optimum.  

The main disadvantages of this algorithm lie in two points: firstly, the number of 

function calls of neighbourhood evaluations is quite large which is approximately 

N2; secondly, the improvement after each iteration is limited only to assignments 

of two elements. On one hand, this can cause that a lot of iterations is required 

until the stop criteria is met, on the other hand, it means that the algorithm may 

easily got stuck in a local optimal due to its restricted search area in each 

iteration. 

2.2.4.2 Genetic algorithms (GA) 

Genetic algorithms (GA) [Goldberg1989] have also been presented for the 

solution of assignment problems.  The flowchart of a general genetic algorithm 

is depicted in Figure 2-2. In each iteration, new individuals, the so-called children, 

are reproduced from the previous population, the so-called parents, through 

mutations and crossovers on the parents’ genes. The fitness evaluation refers to 

the function evaluations of individuals. The most commonly utilized selection 

strategies include Tournament Selection, Roulette Wheel Selction and Uniform 

Selection, with which a new generation of population will be chosen from the 

individuals. 
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Figure 2-2: Flowchart of GA 

To apply the GA to assignment problems, one assignment of size N is usually 

represented by a vector of integers from 1 to N (called chromosome) following 

the relation: 

    ∙ ,    …   -  (2.8) 

Generally, mutation operators and crossover operators are two ways of 

generating new children from parents. Mutation operators randomly change 

several genes of one chromosome, and crossover operators interchange the 

genes between two or more chromosomes. In assignment problems, both of 

these two operators are slightly different due to that the generated new 

chromosomes must still satisfy the assignment constraints. To ensure this 

limitation is respected, a mutation of the chromosome means swaps randomly 

selected two genes in one chromosome.  

There are two effective crossover operators that have been presented for 

assignment problems: the Gene-Rank Crossover (GR) and the partially mapped 

crossover (PMX) [Liu 2000]. The gene-rank crossover firstly calculates the 

weighted sum of each gene of the chromosomes that are involved in the 

crossover. Then sort the values in ascending order and assign an integer to each 

Initial population 

Fitness evaluation 

Individual selection 

Reproduction 

 (mutation & crossover) 

Stop ? 

Final solution 

Yes 

No 
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gene according to their sequences. An example of applying the GRX on two 

chromosomes of size 5 is presented in the following table. 

Table 2-1: An example to illustrate the GR 

Gene Chromosome1 Chromosome2 Weighted sum 
Children 

(=Ranking) 

1 5 1 2.6 3 

2 1 3 2.2 1 

3 4 4 4 5 

4 2 5 3.8 4 

5 3 2 2.4 2 

Weighting factor 0.4 0.6 ---- ---- 

The partially mapped crossover defines four steps to create a child from two 

parents by crossover. Firstly, randomly select two breaking position of both 

chromosomes of parents. Secondly, the child inherits the middle genes between 

two breaking points of the second parent. Thirdly, the child inherits the genes 

before the first breaking point and after the second breaking point from the first 

parent if no confliction with already inherited genes from the second parent. 

Lastly, if there are conflictions, defines mapping relations of conflicted genes and 

fill them in the corresponding position of the child utilizing this mapping.  

An example of applying the PMX on two chromosomes of size 5 is here described. 

The two chromosomes are [1,2,3,4,5] and [5,4,3,2,1]. Firstly, one breaking point 

is randomly selected between gene 1 and gene 2 and the other is between gene 

3 and gene 4. Secondly, the child inherit the middle part of chromosome 2 i.e. 

[*,4,3,*,*]. Thirdly, since the first gene of chromosome 1 is “1” which has no 

confliction with “4” and “3” that inherited from chromosome 2, it fills in the first 

gene of the child, i.e.[1,4,3,*,*]. In the same way, “5” is filled also in the child, i.e. 

[1,4,3,*,5]. Because “4” is already appears in the child, it has a confliction and 

therefore can’t be inherited to the child. Lastly, a mapping is defined for this 

confliction: “4” is at the second gene of the chromosome 2. The second gene of 

chromosome 1 is “2” which has no confliction of all already fixed genes of the 

child, therefore it is filled into the child, and the child generated by this crossover 

operator finally is [1,4,3,2,5]. The following flowchart depicts the entire 

procedure. 
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Figure 2-3: An example to illustrate the work flow of partially mapped crossover 

2.2.4.3 Permutation discrete particle swarm optimization 

algorithm (PDPSO) 

Particle swarm optimization algorithm imitates the swarm behaviour of birds or 

fish in searching for food. Permutation discrete particle swarm optimization 

(PDPSO) [Salman 2002] is a derivative of PSO, which has been modified to suit the 

nature of assignment problems. And it achieves success in the stacking sequence 

optimization problems that will be presented later.  

The following figure depicts the flow chart of a general PSO algorithm. Firstly, at 

starting positions of individuals among a swarm, the velocity of each individual 

(i.e. the direction of flying or swimming in the next step) is calculated. Then the 

positions of them are updated respectively. Finally, the fitness of each new 

position (i.e. the distance from food) is evaluated. The iterative procedure stops 

until one of the stopping criteria is met. 

Chromosome 1         Chromosome 2 

[1,2,3,4,5]             [5,4,3,2,1] 

Step 1: two break points 

[1|2,3|4,5]            [5|4,3|2,1] 

 

Step 2: inherits from chromosome 2: [*|4,3|*,*] 

Step 3: inherits from chromosome 1: [1|4,3|*,5] 

Step 4: mapping         Chromosome 1        [1,2,3,4,5] 

 

Chromosome 2        [5,4,3,2,1] 

Child                [1,4,3,2,5] 
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Figure 2-4: Flowchart of Particle swarm optimization algorithm 

The velocity vector of individual i in the iteration k can be defined as: 

   
       

    (     
      

 )    (    
         

 ) (2.2) 

Where         are acceleration factors,     
  is the velocity of individual i in 

the k-1 iteration,      
  is the best position vector that individual i has ever 

reached in the previous iterations, and     
     is the best position vector of all the 

individuals in the last iteration. 

The positions update straightforwardly following the relation: 

     
    

      
  (2.3) 

To apply in the assignment problems, there are several limitations similar as 

those met in GA. Firstly, the entries of the velocity vector must be all integers. 

Secondly, the addition operator must be properly defined so that the updated 

position vectors satisfy the assignment constraints. For this purpose, the subtract 

Final solution 
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Stop? 
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operator, the scalar product operator and the addition operator are redefined in 

PDPSO [Chang 2010]. The subtract operator is defined as: 

 

        

   {
         x 

  x 
 

   x 
           

 
(2.4) 

The scalar product operator is defined as: 

 
   ∙   

   {
          ( )   
           

 
(2.5) 

In which rand1(j) is a uniformly distributed random number for element j. 

The addition operator for velocity vectors is defined as: 

 
  ∑   

 

 = 
 

     
    

   

 
 𝑟𝑎𝑛𝑑 (𝑗)  

 

 
 

(2.6) 

In which rand2(j) is another uniformly distributed random number in the range of 

(0,1) for element j. 

The addition operator for velocity vector and the position vector is defined as: 

             (2.7) 

In which, x 
    x 

    if     . And otherwise, search k such that x 
      , 

and swap x 
    and x 

    to get     . This operator is illustrated with an 

example in the following. 
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Figure 2-5: An example to illustrate the definition of addition between position 

and velocity 

2.2.4.4 Other heuristic algorithms 

Several heuristic algorithms, such as greedy randomized adaptive search (GRASP) 

[Feo1991], simulated annealing [Dowsland 1993, Kirkpatrick1983], ant systems 

[Tsutsui 2007] and Tabu search [Glover 1997] have been developed based on the 

traditional neighbour search strategy to improve the quality of its solution. They 

have been applied to practical problems such as travelling salesman problems. 

One of the most important characteristics of these algorithms is that the price of 

the improvement of the solution quality always comes along with more number 

of function calls. As the size of the problem increases, the design space for 

assignment problems i.e. the total number of combinations increases in a 

factorial way. Therefore, it becomes much more difficult to generate 

representative high quality individuals heuristically. Hence they are shown to be 

limited in solving assignment problems with time-consuming function evaluations 

like finite element analysis. 

2.2.4.5 Discussion on good starting points 

The starting points or a starting point has significant influence on the efficiency of 
above mentioned algorithms. A higher quality trigger will reduce the number of 

Xold=[1,3,2,4,5] V=[5,4,0,0,1] 

X=[5,3,2,4,1] 

X=[5,4,2,3,1] 

X=[5,4,2,3,1] 

X=[5,4,2,3,1] 

X=[5,4,2,3,1] 

(Step1: swap “1” and “5”) 

Step2: swap “3” and “4” 

+ 

Step3:  +0, nothing 

change 

Step4:  +0, nothing 

change 

Step5: swap “1” and “1” 

http://link.springer.com/search?facet-author=%22Shigeyoshi+Tsutsui%22
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iterations, thus will significantly reduce overall computational costs. There are 

several ways to construct a starting point, for instance, by taking the identity 
permutation, a randomly generated permutation, or a heuristically determined 

starting point [Pardalos2000+. For the first two methods, they don’t include any 
consideration of a specific problem, so there is no reason to take them as a good 
starting point. To heuristically determine a high quality starting point, additional 

information is needed. This information comes from either sophisticated 
engineering experience, which will not be discussed in this thesis, or delicately 

designed procedure for direction to a good point. The efficiency of these 
different strategies in selection of the starting point will be compared through 
examples in later chapters. 

2.2.5 Applications 

The assignment problems are most presented in the field of operation research. 

Travelling salesman, scheduling are typical applications that are widely studied. 
The application of the assignment problem in engineering is found in turbine fan 

balancing problems. The optimal parts allocation problem and the stacking 
sequence optimization of laminate material design which will be discussed in this 

thesis are several important application examples. 

2.3 Mixed-integer nonlinear programming (MINLP) 

2.3.1 Mathematical formulation 

Different to the problems discussed in section 2.2, where all the design variables 

are integers, the mixed-integer optimization problems where design variables 

contain both integer and continuous types are introduced in this section. The 

most general formulation of this kind of problem is: 

     𝑓(𝒙 𝒚) 

(2.8) 

  .  .: 𝑕 (𝒙 𝒚)      𝑖      … P 

 𝑔 (𝒙 𝒚)     j=1,2,…,Q 

 𝒙  𝑿 ⊆ 𝓩  

 𝒚  𝒀 ⊆ 𝓡𝑀 

The type of integer variables could be categorized as: binary integer, pure integer, 

pseudo-integer and categorial integer. Binary integers take the value of 0 or 1, 
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which are often used to represent answers for “yes” or “no” questions, like “Is 

the component is to be made out of steel?” Pure integers represent the number 

of physical quantities, like “how many layers does the composite material 

contain?” Pseudo-integers take the same as pure integers, but the value doesn’t 

have direct meaning and need to be physically explained according to real 

problems. For example, a pseudo-integer takes value of 1 to 3 may mean that the 

thickness of a panel sheet is 1.5mm, 2mm or 2.5 mm. Categorial integers are 

introduced to represent different situations. For example, the shape of the 

cross-section area of a tube could be represented by 1-circular, 2-square, 

3-triangular. The change of the value leads to a completely different category and 

thus may lead to significantly different responses. 

Integer variables could provide a straightforward way of mathematical modelling 

of practical optimization problems. However, on the other hand, the existence of 

integer variables makes the solution procedure much more complicated. Most of 

the gradient-based algorithms can’t be directly employed unless the gradients 

with respect to integer variables are properly defined. What’s more, optimality 

criteria for continuous optimization often fail at the optimum for mixed-integer 

problems. The lack of optimality criteria makes the design of optimization 

algorithms more difficult. Actually, it has been proved that the mixed-integer 

linear programming problem (MILP), where the objective function and the 

constraints in Eq.(2.14) are all linear functions with respect to both continuous 

and integer variables, is NP-complete problems [Vavasis 1991], which means that 

there is no polynomial time algorithms for this type of problem. It is even more 

complicated when the system responses are nonlinear. 

2.3.2 State-of-the-art algorithms for MINLP 

The scientific endeavour of developing algorithms for general MINLP problems 

have been and is being made. An excellent overview of the algorithms has been 

presented by Floudas [Floudas 1995, Bonami 2008]. In this section, four most 

important algorithms i.e. Branch and Bound algorithm [Gupta 1985], 

Outer-Approximation algorithm [Duran 1986], OA-based Branch and Cut 

algorithm [Quesada 1992] and MISQP algorithm [Schittkowski 2006] will be 

detailed introduced. 
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2.3.2.1 Branch and bound algorithm 

The idea of branch and bound algorithm is to utilize the sophisticated 

optimization tools in continuous optimization to find the lower bound of the 

optimization problem. At the same time, find feasible solutions to reduce the 

upper bound of the problem. As the algorithm proceeds, the lower bound is 

increased and the upper bound is decreased. The procedure continues until the 

lower bound is equal to the upper bound and thus the corresponding feasible 

solution is the optimum of the problem. 

In detail, the branch and bound algorithm first relax the integrality restrictions on 

integer variables to form a continuous-relaxed nonlinear programming problem 

(RNLP). The optimal solution to this problem forms a lower bound of the original 

problem.  

And then, a branch regarding one of the integer variables is carried out. It breaks 

the RNLP further into two RNLPs with an additional constraint on the design 

domain of the selected integer variable. An example is illustrated in Figure 2-6.  

There are different strategies to select the branching variables. A basic rule is that 

the selected variable should take non-integer values in the continuous optimizer. 

 

Figure 2-6: An example of branch in the Branch and Bound algorithm 

By solving the two new RNLPs, better lower bound may be obtained. The 

iterative procedure will generate a binary tree structure from the 

continuous-relaxation of the original problem without any additional constraints. 

For each node in the tree, it is a RNLP with additional design domain constraints. 

As the depth of the nodes in the tree gets deeper, more and more additional 

constraints will be added. 

RNLP with integer x1, x2 and continuous y 

Optimizer x1
*=0.5, x2

*=1.0, y*=0.9 

RNLP with integer x1, x2 and 

continuous y 

And an additional constraint: 

x1<=0 

RNLP with integer x1, x2 and 

continuous y 

And an additional constraint: 

x1>=1 

branch w.r.t. x1 



 

19 

 

A node will stop branch if any of the following three conditions is met, which is 

called pruning conditions or fathoming criteria: 

(1) Pruning by integrality: the optimal solution of the RNLP is a feasible solution 

which satisfies all the constraints and integrality limitations on design 

variables. In this case, the objective value is a upper bound of the original 

problem. 

(2) Pruning by bounds: The objective value of the optimal solution is larger than 

the upper bound of the original problem. 

(3) Pruning by infeasibility: The RNLP is infeasible. 

A flowchart of the general branch and bound algorithm is depicted in the 

following figure.  

The computational cost for branch and bound algorithm is large from the two 

points of view: firstly, for each RNLP, it needs a full solution of the nonlinear 

programming problem of the same size as the original problem. Secondly, at each 

branching, two RNLP will be generated with respect to one integer variables. 

Therefore, the number of nodes, i.e. the number of RNLP to be solved, could 

grow exponentially as the depth of the branching tree grows. This is a significant 

disadvantage for a problem with large number of integer design variables. 
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Figure 2-7: Flowchart of Branch and bound algorithm 

2.3.2.2 Outer-approximation algorithm (OA) 

Outer-approximation algorithm is a method based on linearization of the 

nonlinear objective and inequality constraints to assist the solution of MINLP 

problem through a series of mixed-integer linear programming problems 

[Fletcher 1994, Akrotirianakis 2001].  

An outer-approximation of the MINLP problem stated in Eq.(2.16) without 

equality constraints at point (𝒙̅ 𝒚̅) is: 

Go to a RNLPk node 

(𝒙̅𝑘, 𝒚̅𝑘) be the optimal, and  𝑘   (𝒙̅𝑘, 𝒚̅𝑘) 

 

RNLPk feasible? 

 𝑘   UB ? 

 𝒙̅𝑘  𝑿 ⊆ 𝓩  

LB=max {      𝑘  }, and branch:  

RNLPk+1
1: RNLPk +    x  ⌊x̅ 

 ⌋ 

RNLPk+1
2: RNLPk +    x  ⌈x̅ 

 ⌉ 

k=k+1 

UB =  𝑘, UB-LB <   ? 

Stop, optimizer = (𝒙̅𝑘, 𝒚̅𝑘) 

UB=+ ; LB=- ; k=0; 

convergence tolerance   

 

Yes 

Yes 

Yes 

No 

Yes 

No 

No 
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(2.9) 

  .  . : ∇  (
𝒙  𝒙̅
𝒚  𝒚̅

)  𝑓(𝒙̅ 𝒚̅)    

 ∇  
 (
𝒙  𝒙̅
𝒚  𝒚̅

)    (𝒙̅ 𝒚̅)   , j=1,2,…,Q 

 𝒙  𝑿 ⊆ 𝓩  

 𝒚  𝒀 ⊆ 𝓡𝑀 

The left sides of both equations are called linearization of the nonlinear problem. 

They are obtained through the first order Taylor expansion of multivariable 

functions, and are linear functions of design variables. Thus the above problem is 

a MILP problem and could be solved by branch and bound algorithm.  

The solution of the outer-approximation problem is quite efficient from the 

number of system responses evaluations point of view. To establish the OA, 

gradients of the objective and constraints functions are needed to be evaluated, 

which requires (1+Q)(N+M) number of function calls when finite differencing 

method is employed, or 1+Q number of function calls if efficient semi-analytical 

techniques are employed. Once the OA is generated, the problem is expressed as 

a pure mathematical problem and there is no need for further system evaluation 

like finite element analysis. Therefore, this method is more appropriate to apply 

on structural optimization problems.  

A flowchart of the outer-approximation algorithm is depicted in Figure 2-8. The 

algorithm first attempts to find the integer part from solving the 

outer-approximation MILP problem, whose solution is a lower bound the original 

problem. And then, by fixing the integer part, a NLP problem is solved to 

generate a feasible solution of the original problem as a upper bound. When the 

lower bound and upper bound come together, an optimum is found.  

It should be noted that, the algorithm is named outer-approximation because if 

the objective and constraints are all convex function, then the feasible region of 

the linearized problem is an outer hull and thus contains the entire feasible 

domain of the original problem. Therefore, this algorithm is designed to solve 

convex optimization problems. For non-convex problems, which is always the 

case in structural optimization, the performance of the algorithm is not 

guaranteed. 

The computational cost of this algorithm is dominated by the gradient evaluation 

to generate OA and the solution of NLP problem with only continuous design 
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variables. As the points set increases, the generated OA is closer to the original 

problem. And thus the optimal solution of the OA will also be close enough to the 

solution of the original problem. Therefore, the problem of this algorithm is that 

it often requires many iterations to establish a large enough point set, on which 

the OA will be generated. 

 

Figure 2-8: Flowchart of Outer-approximation algorithm 

2.3.2.3 OA based branch and cut algorithm 

As discussed earlier, the computational cost for branch and bound comes from 

the solution of NLP at a large number of nodes. The NLP problem could be 

mitigated by outer-approximation method which utilizes the linearization 

technique to transfer the nonlinear problems into successive linear problems.  

If the feasible region of the relaxed problems could further be reduced, then 

there will be more nodes be pruned due to infeasibility, which means that 

Solve the RNLP of original problem, (𝒙 𝑘, 𝒚 𝑘) 
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T=T  (𝒙 𝑘, 𝒚 𝑘), k=k+1 

Generate OA at point set T, (𝒙̅𝑘, 𝒚̅𝑘) be the 

optimal, and  𝑘   (𝒙̅𝑘, 𝒚̅𝑘), LB= 𝑘 
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number of nodes to be solved will be reduced. Cutting plane method is one of 

such methods that have been investigated since 1958 [Gomory 1958, Westerlund 

1995, Stubbs 1999]. It gradually introduces additional constraints called cuts on 

to the continuous relaxation problem to help exclude the integer solutions that 

lead to infeasibility.  

Therefore, a combination of the B&B, OA and cutting planes would lead to a 

better way of solution. The flowchart of the OA based branch and cut algorithm is 

presented in the following [Quesada 1992]. 

 

Figure 2-9: OA based Branch and Cut algorithm 
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𝒙̅𝑘 

(𝒙 𝑘, 𝒚 𝑘) be the optimal,    𝑘   (𝒙 𝑘  𝒚 𝑘), 

UB=min {UB,   𝑘} 

 𝒙̅𝑘  𝑿 ⊆ 𝓩  
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It is worth to mention that, the relaxed outer-approximation problem is actually a 

linear programming problem. Therefore, it is fairly easy to solve. 

2.3.2.4 Trust region sequential quadratic programming 

algorithm (MISQP) 

Schittkowski has proposed a trust region sequential quadratic programming 

algorithm  [Schittkowski 2006]. The algorithm iteratively establishes a quadratic 

optimization problem, to approximate the original general nonlinear problem. 

The objective function of the quadratic programming is a convex and quadratic 

function of the design variables, and is built up based on the Hessian matrix and 

gradient vector at the solution point of the previous iteration. The increment of 

the solution in each iteration is restricted within a trust region which centered at 

current solution to improve the stability of the algorithm and to enforce 

convergence. The Flowchart of the algorithm is depicted in the following. 

 

Figure 2-10: Flowchart of MISQP algorithm 

Form and solve quadratic programming 

(QP) to get ( 𝒙,  𝒚) 

Choose step size   according to trust 

region strategies 

 𝒚𝑘    𝒚𝑘    𝒚 

Update solution:  𝒙𝑘    𝒙𝑘    𝒙 

Update hessian matrix  𝑘   

Convergence? 

Return solution (𝒙𝑘, 𝒚𝑘) 

Yes 

Given (𝒙 , 𝒚 ), k=0,    

 

No 

k=k+1 
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The quadratic approximation of the original mixed integer problem is formulated 

as : 

              
 

 
(
 𝒙
 𝒚
)
 

 𝑘 (
 𝒙
 𝒚
)  ∇𝑓( 𝒙𝑘  𝒚𝑘) (

 𝒙
 𝒚
)      

(2.10) 
  .  . : |∇  

 (
 𝒙
 𝒚
)    ( 𝒙

𝑘  𝒚𝑘)|   , i=1,2,…,P 

 ∇  
 (
 𝒙
 𝒚
)    ( 𝒙

𝑘  𝒚𝑘)   , j=1,2,…,Q 

   x(𝒙     𝑘
 )   𝒙     (𝒙    𝑘

 ) 

   x(𝒚     𝑘
 )   𝒚     (𝒚    𝑘

 ) 

     
 

, where  𝑘
   𝑘

 and   are trust region parameters.  

The gradients respect to integer variables are approximated with finite 

differencing at grid point. The inequality constraints with absolute value is 

derived from the equality constraint of the original problem, and the inequality 

constraints without absolute value come from original inequality constraints and 

the region parameters. 

The algorithm requires no requirement on the relaxability of integer variables. 

Since it approximate the gradient with finite differencing, therefore, it is assumed 

that responses values do not change drastically when an integer value changes. 

The algorithm has been compared with several other MINLP solvers and shows a 

lot success in solving general MINLP benchmark test suites [Schittkowski 2013] 

and a lot reduction on the computational costs. But the applicability of this 

algorithm into mechanical engineering optimization, where the change of integer 

value may lead to significant change in system responses, is still need to be 

investigated. 

2.3.3 Applications 

Several applications of MINLP programming in structural engineering have been 

presented, including the discrete material optimization and free material 

optimization [Stegmann 2005, Lehmann 2013]. A genetic algorithm has been 

applied on the material selection optimizations with data mining [Huber 2010]. 
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2.4 Criteria for evaluation and comparison of algorithms 

In the mathematical optimization world, the focuses of evaluation of algorithms 

for solving above problems are mostly on the ability to find the global optimum 

with as few number of function calls as possible.  

In the structural engineering world, the system responses are usually evaluated 

through finite element analysis and thus function evaluations are much more 

time-consuming. It is reasonable to assume that the function evaluations 

dominate the computational cost in the whole optimization procedures. 

Therefore, the number of function evaluations should be practically come first as 

the most important criterion before the quality of the solution when algorithms 

are compared. An applicable algorithm should be able to find an improved 

solution within acceptable function calls. 

 



 

27 

 

3. An efficient procedure for solving nonlinear 

assignment problems 

In this section, a procedure for solving nonlinear assignment problems is 
developed. Firstly, a linear assignment problem based starting point generation 

procedure is presented. Then an accelerated neighbor search algorithm is 
defined. The effective of the procedure is demonstrated through the solution of 

benchmark QAPLIB problems. 

3.1 Linear assignment problem based starting point 

generation 

In this section, a linear assignment problem (LAP) based deterministic procedure 

to generate a starting point is developed in the following. Staring from the 

nondiscriminatory assignment matrix Xs, where all the entries are equal to 1/N, 

where N is the size of the assignment problem, partial derivatives of objective 

function to {xij} are evaluated. A linear assignment problem is then established 
with these derivatives as the coefficient matrix. The solution of the LAP problem 

is then taken as the initial solution. 

 

Figure 3-1: Procedure of initial solution generation 

Start from XS, where    
    𝑁 

Initial solution:     {   
 }
   

 

𝑐    𝑓       𝑓      

For i,j=1,2,…,N, evaluate: 

   ∑ ∑ 𝑐     
 

  
 

Solve linear assignment problem: 
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Clearly, if the problem is actually a linear assignment type problem as in Section 

5.3, the initial solution is just the global optimal as desired. 

3.2 Accelerated neighbor search algorithm 

As stated in Section 2.2.4.1, the traditional neighbor search algorithm suffers 
from the problem of low speed on the improvement of design variables, and also 
suffers from the large computational costs of neighborhood evaluations. How to 

fully utilize the information obtained in neighborhood evaluation so as to create 
solutions that may change multiple design variables at the same time is a 

potential direction of improving the performance of the neighbor search 

algorithm. 

Following this idea, an accelerated neighbor search algorithm is developed. The 
flowchart of the algorithm is depicted in Figure 3-2. 

 

Figure 3-2: Accelerated neighbour search algorithm 

Different to the traditional 2-exchange local search algorithm, a LAP problem is 

established after all neighbors are evaluated, where the coefficient matrix *   + 

of the LAP is calculated as follows: 

Xk+1=best{neighbors, XLAP} 

Stop, return solution Xk 

F(Xk+1)< F(Xk)? 
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coefficient matrix C  XLAP 
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Start from X0, k=0 
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k+

1
 

Yes 

No 



 

29 

 

      (   ( ))   ( ) (3.1) 

 where    (∙) is 2-exchange transformation function by which the (i,j) entry of 

the new design matrix    ( ) is equal to 1 through one time two entries 

exchange of X.  

The solution of LAP is compared with all the neighbors, and the best one is 

selected as the result of the current iteration. This improvement provides a 

possibility to change more than two entries of the assignment matrix in a single 

iteration, while the increasing of number of function evaluation is only 1. 

3.3 Computational complexity analysis 

In generating the initial solution, one time function evaluation is required to 

calculate each partial derivate by finite difference method. The solution of LAP 

problem requires no objective evaluation. Therefore, 𝑁    function 
evaluation is needed in this step, where 1 refers to the evaluation of the obtained 

initial solution. 

In each iteration, every 2-exchange neighbor requires one time function 

evaluation, which means   
  𝑁(𝑁   )   function evaluations are needed. 

The evaluation of LAP result needs an additional one time evaluation. Therefore, 

the number of function evaluation is 𝑁(𝑁   )  +1. 

It concludes that the total number of function evaluation of the procedure is: 

           𝑁
    [

𝑁(𝑁   )

 
  ] ∙ 𝑛       𝑜𝑛    (3.2) 

3.4 Test results on Quadratic Assignment Problem Library 

(QAPLIB) 

In this section, the presented optimization procedure is applied on a library of the 

quadratic assignment problems to demonstrate its applicability and limitations in 
solving NAP problems. Meanwhile, the computational cost and the effects of the 

acceleration technique are discussed. 
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3.4.1 Test suites and numerical results 

QAPLIB is a library of the quadratic assignment problems that is firstly published 

in 1991 [Burkard 1997], which provides a unified test suite for QAP. It contains 
133 mathematical QAP problems of size from 10 to 256. To demonstrate the 
developed optimization procedure is applicable to solve nonlinear assignment 

problems, it is applied onto this test suite. The objective of the found solution is 
compared with the global optimum or the best solution so far reported in QAPLIB.  

The largest 11 problems that of size above 100 are listed in the following table, 
and the detailed results of all the problems are presented in Appendix A.1  

Table 3-1: Results of the largest 11 problems in QAPLIB 

Problem Size QAPLIB_opt Found_opt Error(%) Ite FuncEva 

tai100b 100 1185996137 1200605210 1.23 34 178336 

wil100 100 273038 274946 0.70 35 183287 

sko100a 100 152002 155898 2.56 33 173385 

sko100b 100 153890 156136 1.46 40 208042 

sko100c 100 147862 150234 1.60 34 178336 

sko100d 100 149576 151860 1.53 34 178336 

sko100e 100 149150 153048 2.61 27 143679 

sko100f 100 149036 151062 1.36 30 158532 

tai150b 150 498896643 509220418 2.07 54 626006 

tho150 150 8133398 8293640 1.97 52 603654 

tai256c 256 44759294 44879440 0.27 72 2415690 

In the following table, the number of problems that can be solved with a relative 

objective difference less than the specific error levels is presented. 

Table 3-2: Problems that are solved with different error levels 

Error level (%) Solved Problem (accumulated) 

0 17 

<1 57 

<5 82 

<10 106 

<20 117 

It shows that the developed procedure is not able to find the global optimal of 
the nonlinear assignment problems for most of the problems. But it is able to find 

a high quality solution which is close to the global or best found ones in the 
measure of relative error for 82 problems which is over 62% of the total 

problems. 
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3.4.2 Computational cost analysis 

In Section 3.3, the computational complexity of the procedure has been 

discussed. The only vague point in Eq.(3.2) is the number of iterations. It is 
common sense to say more iteration will be needed for a larger size of problem.  

To quantify the relation, pairs of the size of problems (N) and the number of 

iterations needed (Ite) are scattered by circled dot in 错误!未找到引用源。. A 
linear regression in the least-squares sense results in a relation: 

      .  ∙    .   (3.3) 

While a second degree polynomial curve fitting results in: 

       .    ∙     .    ∙    .     (3.4) 

The coefficient of the second-order term is approximately zero, which shows a 

linear relation between the number of iteration and the size of a problem as in 

Eq.(3.3) is proper. The relation is depicted also in 错误!未找到引用源。 with a 

straight red line.  

 

Figure 3-3: Number of iteration V.S. size of problem 

Thus the total number of function evaluations is: 

           𝑁
    [

𝑁(𝑁   )

 
  ] ∙ 𝑁 ∙ ( .  𝑁   .  )       (𝑁 )   (3.5) 
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It proves that the developed procedure of third-order polynomial time 

complexity. 

3.4.3 Effects of the developed acceleration technique through 

comparison with a traditional neighbor-search algorithm 

To demonstrate the advantage of the acceleration technique that developed in 
Section 3.2, a comparison is made between the results of traditional 

neighbor-search and the accelerated neighbor-search method. They both start 
from the starting points generated in Section 3.1. 

Table 3-3: Results of the largest 11 problems in QAPLIB 

Problem 
ANS NS 

Error(%) Ite FuncEva Error(%) Ite FuncEva 

tai100b 1.23 34 178336 4.04 121 608952 

wil100 0.70 35 183287 1.14 103 519852 

sko100a 2.56 33 173385 2.71 94 475302 

sko100b 1.46 40 208042 1.91 132 663402 

sko100c 1.60 34 178336 1.99 106 534702 

sko100d 1.53 34 178336 1.64 131 658452 

sko100e 2.61 27 143679 2.47 96 485202 

sko100f 1.36 30 158532 1.49 119 599052 

tai150b 2.07 54 626006 3.23 208 2346902 

tho150 1.97 52 603654 2.58 166 1877552 

tai256c 0.27 72 2415690 0.45 69 2317698 

From the quality of solution point of view, the table shows that the ANS is able to 
reduce the relative error of the final solutions. It means that the solution of LAP 
which is formed by the linear approximation of the neighborhood structure helps 
to jump out of local optima. 

From the computational cost point of view, it is obvious to see that the 

acceleration technique can largely reduce the number of iterations required and 

converge to a final solution much quicker. 

In the following figure, the number of iterations for both NS and ANS methods for 
each test problem is depicted. The linear fitting lines are also presented. For the 
traditional NS method, the number of iterations approximately following the 

equation: 

      .  ∙    .   (3.6) 
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Figure 3-4: Linear regression of number of iteration with size of problem 

Therefore, roughly speaking, the number of iteration could be reduced by over 

60% with the acceleration technique. 
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4. An efficient algorithm for MINLP with binary 

assignment 

In this chapter, an algorithm is developed for MINLP problem with binary 
assignment. The general formulation of this type of problem is introduced at first, 
and then the algorithm is presented followed by computational cost analysis and 

demonstration with small-scale examples. 

4.1 MINLP with binary assignment 

The binary assignment here refers to a MINLP problem with only binary-type 

integer variables and as the same time, there are assignment constraints on 

these binaries. The general formulation of such problems is: 

    𝑓(  𝒙) 

(4.1) 
  .  . : 𝑔 (  𝒙)     i=1,2,…,P 

  ⊆ *   +𝑀1 𝑀2 ⋯ 𝑀𝑁 

 𝒙  𝑿 ⊆ 𝓡𝑆 

where the binary variables are organized into N groups, and for each group, a 
binary assignment constraint should be satisfied:  

 ∑𝑏  

𝑀𝑖

 = 

   (𝑖      …  𝑁) (4.2) 

The formulation of the integer part of this problem is somehow similar to 
previously discussed assignment problems. However, it differs in two points: 
firstly, the number of binary variables in each group may be different. Secondly, 

there is only row-wise assignment constraints (i.e. constraints on variables of the 
same group), and no column-wise assignment constraints (i.e. constraints on 

variables across different groups). 

4.2 Constraints-directed binary assignment algorithm 

To solve the MINLP problems, a constraints-directed binary assignment algorithm 
as depicted in Figure 4-1 is developed. The algorithm aims at reducing the 

number of function evaluations while obtaining a good quality result.  
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Initially, the algorithm starts from the point where binaries occur in the same 

equality constraints are equal. At the first step, the binary part is fixed, and a 
nonlinear programming problem is solved to get a continuous part solution.  

Then at step 2, a series of new problems are solved. In each of these new 
problems, one and only one of the binary variables is changed either from 0 to 1 
or from a fractional number to 1. The other binary variables are properly 

adjusted so that the assignment constraints still hold. The “corresponding” 
continuous variables to these binaries whose value are changed are also adjusted 

correspondingly so that the objective value doesn’t change. The constraints 
violation of each solution of these new problems is measured. 

The word “corresponding” here refers to the continuous variables that occur in 

the same terms with the binary variables in the objective function. For instance, 

in the objective function, if the terms f1(b1)f2(x1)+f3(b2)f4(x2) exist, where f1~f4 are 
general functions, then x1 is a corresponding continuous variable of b1 and so is x2 

to b2. If the term f1(b1)f2(x1,x2) exists, then both x1 and x2 are corresponding 
variables to b1. Normally, if there is only one corresponding continuous variables, 

then the solution for each of the new problem in step 2 is unique, and the 
constraints violation is defined as the maximum value of all the inequality 

constraints at the solution point. If there is more than one corresponding 

variables, then the solutions would be numerous on a super surface, and the 

constraints violation is defined as the least constraints violation among all 

solutions. 

At step 3, one binary variable among the variables in a same equality constraints 

is selected to be set to 1 with the others are set to 0. This variable is chosen as it 
has the minimum constraints violations in step 2 comparing to others binaries 

belong to the same group. 

If the integer part is unchanged after step 2 and step 3, then the procedure will 

stop. Otherwise, a nonlinear programming will be solved with the fixed new 
binary values. If the objective of the new optimal solution is larger than previous 
iteration, the procedure also stops. In a straightforward way to speak, the 
procedure moves to the next iteration only when the integer variables are 

changed and lead to a better solution. 
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Figure 4-1: Procedure to generate initial solution for the problem 

It should be noted that, this algorithm requires the objective and constraints are 

continuous functions of both continuous and binary design variables. Under the 
continuity of objective and constraints functions, the evaluation with 
continuous-relaxed binary variables is mathematically meaningful in Step 1. 
Without this condition, the evaluation of design points with fractional value may 
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not be possible. Although this restriction limits the applicability of developed 

algorithms, most of practical problems in the real world are fit into this category 
actually. 

4.3 Computational complexity analysis 

In step 1, the procedure requires one time solution of a nonlinear programming 
problem. In step 2 of each iteration, one time constraints evaluation is required 

for each pair of (i,j), therefore ∑   function evaluations are needed. And in 
step 4, one time solution of a nonlinear programming problem is carried out. The 

total number of computational cost of the procedure is                 
solution of nonlinear programming problem with N continuous variables plus 
∑  ∙              constraints evaluations.  

4.4 Benchmark mathematical examples and comparison of 

several different algorithms 

The performance of the designed algorithm is evaluated firstly with mathematical 

examples in this section. 

In the first example, N=1, M=5, B=(b1j)   {0,1}1×5,        . The objective 

function is: 

   min  (  x)  ( .      .       .      .      .    ) ∙ x (4.3) 

The row-wise assignment constraint: 

 ∑   

 

 = 

   (4.4) 

And an inequality constraint:  

      x ∙ (                                  )    (4.5) 

The global optimal of the problem could be obtained by enumerate all possible 

value of   where only one entry equals to 1 and others equals to 0. The global 
optimal is reached at b13=1 , x=3.7106, with the objective of 16.70. 

By applying developed procedure on this problem, firstly a linear programming 
problem is to be solved: 

 min  (  x)   .  x (4.6) 
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 s.t.         . x    (4.7) 

, where the optimal is     .     with 𝑓    .  . In step 2, the binary 
variables are changed with their results listed in following Table 4-1.  

Table 4-1: Results of the demonstration example at step 2 

 b11=1 b12=1 b13=1 b14=1 b15=1 

xadjusted 13.42 4.62 8.05 4.07 20.13 

f0 36.24 36.24 36.24 36.24 36.24 

d1i 80.51 915 -2341 803 -2228 

d11, d12 and d14 is larger than zero. It means that if the objective is kept unchanged, 
the corresponding solutions violate the constraint. The third and the fifth results 

show that while keeping the objective the same, feasible solutions could be 

found by adjusting the continuous variable. In addition, since d13<d15, which could 
be imagined as an evidence that the third result lies farther away from the 
boundary of the feasible domain, and thus it has larger potential to improve the 

objective than the fifth one. Therefore in Step 3, b13=1 is obtained. With this 
binary assignment, in step 4, the following linear programming problem is to be 

solved: 

 min  (   )   . x (4.8) 

 s.t.         x    (4.9) 

The optimal is x≈3.7106 with objective 16.70. Since it is less than f0, the 

algorithm returns to Step 2 to start a new iteration. And the results are listed in 

Table 4-2.  

Table 4-2: Results of step 2 in new iteration 

 b11=1 b12=1 b13=1 b14=1 b15=1 

xadjusted 6.18 2.13 3.71 1.88 9.28 

f0 16.70 16.70 16.70 16.70 16.70 

d1i 1116 1500 0 1448 51.95 

Since the all the other selection of binary variables lead to infeasible solutions, 
the result of obtained in step 3 is still b13=1 which equals to the previous iteration. 

Thus one of the stopping criteria is met and returns the final solution with b13=1, 

x=3.7106. This result is just the global optimal of the problem.  

In a second example, the other conditions are the same as the first one, except 

that the inequality constraint is more highly nonlinear:  

 
    

  ∙ ( x   
   x    

   x    
   x    

  x      )
     (4.10) 
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The global optimal of the problem could be also obtained by enumerate all 

possible value of B. The global optimal is b15=1, x=2.675 with the objective of 
4.814. 

The solution of nonlinear programming problem is carried out SQP algorithm 
provided by MATLAB. The comparison with state of the art deterministic mixed 
integer sequential quadratic programming algorithm (MISQP), OA based branch 

and cut algorithm, branch and bound algorithm is presented in Table 4-3. 

Table 4-3: Results of different algorithms 

Algorithm Optimal point Objective error(%) numfunc 

Constr.-directed 
b15=1 

x=2.675 
4.814 0 53 

MISQP 
b15=1 

x=2.675 
4.814 0 26 

OA based 

Branch&Cut 

b15=1 

x=2.675 
4.814 0 333 

Branch&Bound 
b15=1 

x=2.675 
4.814 0 646 

It could be seen that the developed algorithm requires much less total number of 
function evaluations than the branch and bound and QA based branch and cut 

algorithm. 

It should be noted that, although in above two examples the developed 

algorithm reaches global optimal by all the algorithms, this should not be 

expected in much more complicated cases due to the nonlinear properties of the 

problem. Therefore, the comparison should still focus on the computational cost 

to find a good enough solution.  
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5. Optimal parts allocation for structural systems 

In this chapter, the mathematical formulation of optimal parts allocation problem 

for structural systems is established. The optimization procedure developed in 
section 3 is applied. The efficiency of the procedure is demonstrated with 
small-scale to large-scale examples. 

5.1 Introduction to optimal parts allocation problem 

In a mechanical structure, it is often the case that many of the parts are 
nominally identical. As shown in Figure 5-1 of a 10-bar truss structure, all of the 

ten bars are designed to have the same length, the same cross-section area, 
made of the same material and thus mutually exchangeable.  

 

Figure 5-1: A 10-bar truss structure 

However, in reality, there are always slight differences in physical and 
geometrical properties due to variation of material and manufacturing errors in 

real manufactured bars. The problem of optimal parts allocation for a structural 
system is to optimize performance of the structure to be manufactured, for 

example to minimize deformation or stress under certain loads, by assigning 
parts at hand to their most proper positions in the structure during the 

assembling period. In this way, the best structure performance is achieved 
without demanding any extra work in manufacture process, and thus is of great 

value in practice [Zhang 2011]. 
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5.2 Mathematical modeling into an assignment problem 

In a static structural system, taking bar truss structures as an example, the 

displacements of all degrees of freedom under certain external loads is the 
solution of the master equations of a finite element system: 

  ∙     (5.1) 

, where   is the system stiffness matrix, which is dependent on area of 
cross-section (A) and material properties such as Elastic Modulus (E) of each bar. 

  is the unknown displacements vector of all degrees of freedom to be solved. 
  is the external loading vector, which could also be related to properties of each 

bar, for example related to the coefficient of thermal expansion ( ) of each bar if 
the structure is under thermal loads. 

Assume there are N mutually exchangeable bars are to be assembled into N 
different positions of a structure system. Number the N parts at hand from 1 to N, 

and each with properties   ,   ,    (      …   ). Also, number the N position 

in the structure from 1 to N, and denote properties of the bar allocated at each 

position by  ( ),  ( ),  ( ). A binary matrix   (x  )  *   +    is employed 

to represent the allocation of the N parts, where 

 x   2
                                             

                                                                         
 (5.2) 

Clearly   should satisfy the so-called assignment constraints: 

 ∑   

 

 = 

   (𝑖      …  𝑁) (5.3) 

 ∑   

 

 = 

   (𝑗      …  𝑁) (5.4) 

Since  ( )     if and only if jth bar is allocated to position i, therefore, areas of 

cross-section at each position follows the interpolation equation: 
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  (𝑖)  ∑        

 

 = 

(𝑖      …  𝑁) (5.5) 

The same schemes are also applied for other properties like Young’s modulus E 
and coefficient of thermal expansion. With these equations, the stiffness matrix 

  and the load vector   are both expressed as a function of  , and the 
unknown displacement components are 

  ( )     ( ) ∙  ( ) (5.6) 

, which is usually a highly nonlinear functions of *x  +. Other system responses 

such as stresses in the structure that could further be derived from U, and thus 

are also nonlinear functions of *x  +. Therefore, the parts allocation problem is 

formulated as a nonlinear assignment problem. 

For a dynamic structural system, there is no essential difference with the static 
case. The only differences lie in the velocity and acceleration terms in the master 

equation and corresponding increase in the time of each finite element analysis. 

5.3 Examples and numerical results of parts allocation w.r.t. 

coefficient of thermal expansions  

Firstly, a special case of the problem is investigated, where two assumptions to 

simplify the problem are made: the first one is that, all properties of bars are 
assumed to be the same except CTEs; the second one is that the objective is a 
linear function of the displacement vector of the finite element system. 

For a single bar element with area of cross-section A, elastic modulus E, 

coefficient of thermal expansion  , the thermal force load along the bar due to a 

change of temperature    is: 

         (5.7) 

which is a linear function of  . And thus the thermal force vector    could be 
assembled as:  
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   ( )   ∙ [

 ( )
 ( )
 

 ( )

]   ∙  ∙ [

  
  
 
  

] (5.8) 

, where T={tij} is a transformation matrix which depends only on the configuration 
and field of temperature of the structure. The total load vector, which is 

composed of mechanical force load FM that is independent on the allocation of 
parts and thermal load FT is: 

  ( )    ( )     (5.9) 

According to the first assumption, the stiffness matrix K is independent on the 
design variables. And due to the second assumption objective function f is in 

form of: 

 𝑓( ( ))   ∙  ( ) (5.10) 

where L is a linear operator. According to Eq.(5.6), the objective function f could 

be formulated as: 

 𝑓( )  𝑓𝑚   ̃ ∙  ∙ [

  
  
 
  

] (5.11) 

where 

 𝑓𝑚   ∙  
  ∙    (5.12) 

is irrelevant to X. And 

  ̃  * ̃ +   ∙  
  ∙   (5.13) 

Therefore,  

 𝑓( )  𝑓𝑚  ∑ ̃ ∑x    

 

 = 

 𝑓𝑚  ∑∑( ̃   )x  

 

 = 

 

 = 

 

 = 

 (5.14) 

Denote: 

      ̃    (5.15) 
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Then:  

 𝑓( )  ∑∑   x  

 

 = 

 

 = 

 (5.16) 

which falls into a linear assignment problem with respect to design variables *x  +, 

and could be directly solved by algorithms mentioned in Section 2.2.2. 

The difficulty remains to be solved is how to calculate coefficients cim. In 

structural systems, the inverse of stiffness matrix K-1, and transformation matrix T 
is usually hard to achieve explicitly. Therefore, a direct evaluation of cij is not 
possible. Notice that the linearity of objective with respect to {xij}, combinatorial 

coefficient {cij} could be derived accurately with the finite differencing scheme: 

     
  ( )

 x  
 
𝑓(     )  𝑓( )

   
 (5.17) 

, where     is a small increment only at the (i,j) entry of X. Due to the continuity 

of objective function with respect to design variables, the evaluation of objective 

function at       is mathematically meaningful, though it does mean anything 

physically. 

A numerical example with the 10-bar truss structure is presented as follows.  

 

Figure 5-2: 10-bar truss under thermal load (L=1000mm, E=68.95Gpa, 

A=1000mm2) 
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As depicted in Figure 5-2, a thermal load of        is applied on the 10-bar 
truss structure, under which the structure would deform to expand. There are 
ten bars with the same length, the same Young’s modulus, and the same areas of 

cross-section. But their coefficients of thermal expansion are different as shown 
in Table 5-1 . The problem is to find the optimal allocation of these ten bars so as 
to minimize the horizontal displacement at node 1. 

Table 5-1: CTEs of ten bars available 

Bar No. 1 2 3 4 5 

CTE (       ) 1.475 1.116 1.303 1.243 1.446 

Bar No. 6 7 8 9 10 

CTE(       ) 1.381 1.228 1.009 1.411 1.222 

To derive *   +, let  =*    +     , and       
  . The coefficient matrix then is 

calculated following Eq.(5.17).  

*𝑐  +  

[
 
 
 
 
 
 
 
 
 
  .     .     .     .     .     .     .     .     .     .   
  .     .     .     .     .     .     .     .     .     .   
  .     .     .     .     .     .     .     .     .     .   
  .     .     .     .     .     .     .     .     .     .   
  .     .     .     .     .     .     .     .     .     .   
  .     .     .     .     .     .     .     .     .     .   
  .     .     .     .     .     .     .     .     .     .   
  .     .     .     .     .     .     .     .     .     .   
  .     .     .     .     .     .     .     .     .     .   
  .     .     .     .     .     .     .     .     .     .   ]

 
 
 
 
 
 
 
 
 

 

And the optimal result return by Hungarian algorithm is 

*   +  

[
 
 
 
 
 
 
 
 
 
          
          
          
          
          
          
          
          
          
          ]

 
 
 
 
 
 
 
 
 

 

which corresponds to the allocation of ten bars as shown in Table 5-2. The 

optimum objective value is 0.1096mm. 

Table 5-2: Optimal allocation of bars 

Position No. 1 2 3 4 5 

Allocated bar No. 7 2 1 3 4 

CTE (       ) 1.228 1.116 1.475 1.303 1.243 

Position No. 6 7 8 9 10 
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Allocated bar No. 6 5 8 10 9 

CTE (       ) 1.381 1.446 1.009 1.222 1.411 

By enumerating all the possible combinations which has a total number of 
10!=3628800, it proves that the result obtained by above procedure is the global 

optimum of the problem. The total number of function evaluations required is 
just 102+1=101, which is significantly fewer than the factorial number. 

5.4 Examples of parts allocation w.r.t. CTE, E and area of 

cross-section and comparison of different algorithms 

Three representative parts allocation problems are presented in this section, with 

which the performance of previous established procedure is evaluated.  

5.4.1 A 10-bar truss structure (a small scale single group 

example) 

In this case, both a mechanical force FM= 29.4kN and a thermal load    
  .    are applied on the 10-bar structure. The properties of all the bars are 

design to be the same with E=68.95Gpa, A=1000mm2, and CTE=23.6       . 
But actually, all three properties of the bars are different to each other slightly. 

The displacement of node 1 is to be minimized under the loading condition. 

 

Figure 5-3: 10-bar truss under both mechanical forces and a uniform thermal 

load 
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Three different strategies are compared to solve the problems: “Random start + 

NS” stands for the method of 2-exchange neighbor search algorithm starting 
from randomly generated initial solutions; “LAP start + NS” stands for the method 

of 2-exchange neighbor search algorithm starting from the point that is 
generated by procedure in Section 3.1; and “LAP start + ANS” stands for the 
method of accelerated neighbor search algorithm and starting from the point 

that is generated in Section 3.1.  

To well demonstrate the performance of developed procedures, results of three 

different levels of deviation: 5%, 10%, 50% are separately presented. For each of 
these deviation levels, 10 instances are generated, and their average results are 
shown in Table 5-3 to Table 5-5. 

The following notations are used in tables: errorinitial is the average relative error 

of the objective of the initial solution with respect to that of the global optimum; 
errorfinal is the average relative error of the objective of the final solution; Psuccess 

is the percentage of successful runs, in which the relative error of the final 
solution is less than 0.5%; numite is the average number of iterations and numfunc 

is the average total number of function evaluations. For comparison, the global 
optimum of the problem is found by enumeration of all the possible 

combinations. 

Table 5-3: Result with 5% properties deviation of 10-bar truss example 

Method errorinitial errorfinal Psuccess numite numfunc 

Random start + NS 6.69% 0.04% 95.9% 8.1 365 

LAP start + NS 
0.00% 

0.00% 100% 3.1 241 

LAP start + ANS 0.00% 100% 2.6 221 

 

Table 5-4: Result with 10% properties deviation of 10-bar truss example 

Method errorinitial errorfinal Psuccess numite numfunc 

Random start + NS 11.6% 0.06% 97.9% 8.3 376 

LAP start + NS 
0.00% 

0.00% 100% 3.3 250 

LAP start + ANS 0.00% 100% 2.7 225 

 

Table 5-5: Result with 50% properties deviation of 10-bar truss example 

Method errorinitial errorfinal Psuccess numite numfunc 

Random start + NS 122.5% 0.56% 84.1% 7.7 347 

LAP start + NS 
0.98% 

0.00% 100% 2.8 227 

LAP start + ANS 0.00% 100% 2.9 234 
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The results show that the initial solution generated by presented procedure is of 

very high quality in all three deviation levels. With the deviation level increases, 
the initial error also increases, but is still much smaller than random generated 

ones. The reduction on number of iteration and number of function evaluations 
of the accelerated neighbor search procedure could slightly be seen from these 
small scale problems. 

The necessities of parts allocation optimization when deviations or imperfections 
exist are worth to be mentioned here with this example. Assume all the bars in 

the structure is perfect, which means that they have the exactly the same 
modulus, area of cross-section and CTE as they are designed to be. The structure 
analysis result shows that the displacement at node 1 is 9.77mm under the given 

loads. It means that the structure is design to have a maximum 9.77mm 

displacement when the loads are applied. If deviations exist, the optimal 
allocation of the parts with the best objective (the lease displacement in this 

example) can be obtained. The worst allocation (with the largest displacement in 
this example) could also be obtained by minimizing the negative objective 

function with the developed optimization procedure.  

The average best objective and the worst objective values of 10 instances with 

5%, 10%, 50% deviations are listed in Table 5-6. It could be seen that with the 

large level of deviation, the performance of the worst allocation deteriorate 

significantly. With a 50% deviation, the performance of the structure may fail the 

design by as large as 126% if the manufactured parts are unluckily 

inappropriately allocated. Therefore, the parts allocation optimization is 

suggested to be taken into consideration during the assembly especially when 
the manufacturing error is lack of control. 

Table 5-6: Influence of deviations on the 10-bar truss structure  

Deviation level Obj. best/mm Obj. worst/mm 

5% 9.15 (-6.37%) 10.4 (+6.4%) 

10% 8.87 (-9.23%) 11.1 (+13.6%) 

50% 6.20 (-36.6%) 22.1 (+126%) 

5.4.2 A 25-bar truss structure with stress constraints (a 

medium scale multiple groups example) 

Further, a parts allocation problem of a 3D 25-bar truss structure is presented 

here. The 25 bars are divided into 8 groups, and each group has 1, 4, 4, 2, 2, 4, 4, 
4 bars respectively as colored in Figure 5-4, the members of each group is listed 

in Table 5-7. Bars of the same group could be exchanged with each other and 



 

49 

 

they differ in E, CTE and A. The idea values of these properties are designed to be 

identical as in Section 5.4.1.  

 

Figure 5-4: 25-bar truss structure 

Table 5-7: Composition of groups 

Group No. Bar No. 

1 1 

2 2,3,4,5 

3 6,7,8,9 

4 10,11 

5 12,13 

6 14,15,16,17 

7 18,19,20,21 

8 22,23,24,25 

Together with a uniform thermal load of      .   , three different load 
cases are applied onto the structure respectively, where mechanical forces are 

different as listed in Table 5-8. The objective is to minimize the displacement of 
node 1 under each loading condition, while maximum allowable stress 

constraints are taken into consideration. The stress limit of each load case is 
artificially set to be equal to the maximal stress of the structure when all 

components are prefect.  
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Table 5-8: Load cases for 25-bar structure  

Load case Nodes 
Mechanical forces Allowable Stress 

/Mpa Fx/kN Fy/kN Fz/kN 

1 

1 4.45 -44.5 -44.5 

117 
2 0 -44.5 -44.5 

3 2.22 0 0 

6 2.67 0 0 

2 
1 0 89.0 -22.2 

135 
2 0 -89.0 -22.2 

3 

1 4.45 44.5 -22.2 

125 
2 0 44.5 -22.2 

3 2.22 0 0 

6 2.22 0 0 

The penalty method is applied to take constraints into consideration, where the 
objective function is modified as: 

           𝑑𝑖𝑠𝑝𝑛𝑜     ∙   x (  
    

          
  ) (5.18) 

p is the penalty factor and equals to 104 in this example. 

For a multiple-group problem, where total parts are divided into several groups 
and parts among each group are mutually exchangeable, the developed starting 

point generation procedure is applied on each group separately, while keeping 

the assignment of other group nondiscriminatory. 

Due to the formulation of the problem and properties of interpolation scheme, 

the objective function is continuous with respect to the entries of assignment 

matrix. The partial derivatives of objective function could be approximated by 
finite difference method or other sensitivity analysis technique, which make the 

procedure mathematical meaningful. 

After obtaining a starting point, the accelerated local search algorithm is 
employed to solve the problems. Still, for a multiple-group problem, the 

LAP-improvement is applied on each group separately. 

The total number of function evaluations required by above procedure is the 
same as in Section 3.3. And for a multiple groups problem, where total N parts 

are divided into M groups with each have *  + parts. (i=1,2,…,M, ∑    ), 

total number of function evaluations is expressed: 
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𝑁 (𝑁   )

 

𝑀

 = 

  ] ∙ 𝑛       𝑜𝑛  (𝑁
 ) (5.19) 

10 instances are generated with maximum properties deviation of 10% for each 
load case. The global optimal is still found by enumerating all the possible 

combinations with total number of                            . Average 
results of all three cases are presented in Table 5-9, where vioinitial is the average 
of stress violation of initial solutions. 

Table 5-9: Average results of 25-bar truss structure  

Method errorinitial vioinitial errorfinal Psuccess numite numfunc 

Random start + NS 4.73% 1.07% 0.22% 88.5% 14.3 460 

LAP start + NS 
1.82% 0.27% 

0.03% 100% 5.5 265 

LAP start + ANS 0.03% 100% 3.4 202 

It could be seen, the procedure could return a starting point with both better 

objective and less violation of the stress constraint. The quality of final solution is 
also higher with a reduction in total number of function evaluations. The 

LAP-improvement strategy could well reduce the number of iterations needed, 

and thus less total number of function evaluations is required. 

5.4.3 A 72-bar truss structure (a large scale multiple groups 

example) 

Finally, a large scale 72-bar truss allocation problem is employed to demonstrate 

the procedures. The 72-bar truss structure is shown in Figure 5-5, where bars are 

divided into 4 groups with 8, 16, 16, 32 exchangeable bars respectively and 

makes total number of combinations of              .      . 
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Figure 5-5: 72-bar truss structure 

Together with a uniform thermal load of      .   , two different mechanical 
load cases are applied onto the structure respectively as listed in Table 5-10. The 

objective is to minimize the displacement of node 20. Cases both with and 

without stress constraints are discussed. 

Table 5-10: Load cases for 72-bar structure  

Load 

case 
Nodes 

Mechanical forces Allowable Stress 

/Mpa Fx/kN Fy/kN Fz/kN 

1 17 22241 22241 -22241 109 

2 

17 0 0 -22241 

81 
18 0 0 -22241 

19 0 0 -22241 

20 0 0 -22241 

10 instances are generated with maximum properties deviation of 5% for each 
load case. The average results are presented in Table 5-11 and  

Table 5-12 respectively. Due to innumerous total combinations, there is no way 

to find the global optimum in this problem. So for each instance, the best 
solution obtained by all the three methods is taken as the reference solution and 

the relative error are calculated with respect to it. 

Table 5-11: Average results of 72-bar truss structure without stress constraints 

Method errorinitial errorfinal Psuccess numite numfunc 

Random start + NS 11.6% 0.03% 100% 122.5 93571 

0
2000

0
2000

0

1000

2000

3000

4000

5000

6000

22

66

1010

1414

1818

X position

33

77

1111

1515

1919

72 bar truss

11

55

99

1313

1717

Y position

44

88

1212

1616

2020

Z
 p

o
s
it
io

n



 

53 

 

LAP start + NS 
0.16% 

0.01% 100% 26.9 22114 

LAP start + ANS 0.01% 100% 10.7 9748 

 

Table 5-12: Average results of 72-bar truss structure with stress constraints 

Method errorinitial vioinitial errorfinal Psuccess numite numfunc 

Random start + NS 11.5% 2.62% 0.20% 84.8% 131.6 100546 

LAP start + NS 
4.79% 

0.36% 0.03% 100% 72.9 57258 

LAP start + ANS 0.36% 0.02% 100% 18.8 15945 

Numerical results show that presented procedures could create a high quality 
starting point from both view of objective and constraints. Although the 

procedure requires larger number of function evaluations at the beginning 
compared with other initial solution generation methods, the reduction of total 

computational cost could more than compensate for it in the whole optimization 
process.  

The results also show that accelerated neighbor search algorithm could reduce 

the relative error of final solution with respect to the global optimum. It 

significantly increases the speed of improvement of the intermediate step 

solutions and thus largely reduces number of iterations it needed. From small 
scale to large scale problems, it could be seen that, the larger the scale of 

problem is, the more significant the reduction will be. 
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6. Stacking sequence optimization (SSO) in 

fibre-reinforced laminate structure design 

In this section, stacking sequence optimization in fibre-reinforced laminate 

structure design is investigated. The problem is formulated as a nonlinear 
assignment problem. The developed optimization procedure presented in 

Chapter 3 is transplanted to solve this problem, where necessary adjustments are 
made regarding the starting point generation. To improve the feasibility of 
solutions with respect to the stacking sequence constraints, a so-called repair 

operator is developed. It adjusts the design of the stacking sequence properly so 

as to reduce the degree of constraints violations. The operator is proven to be 
able to obtain high quality feasible solutions with much less computational cost.  

6.1 Introduction to stacking sequence optimization 

Fibre-reinforced laminates are composite materials constructed by stacking 

multiple fiber-reinforced layers in a specific sequence. Each layer or ply consists 
of parallel fibers embedded in a matrix (Figure 6-1 left). The orientation of fibers 

of different layers could be varied with respect to a common reference axes 

(Figure 6-1 right).  

  

Figure 6-1: An individual fibre-reinforced ply (left) and a 8-layer 

fibre-reinforced laminate stacking with plies in four different orientations 

(right) 

There are mainly three aspects in designing a laminate composite material: ply 
material selection, ply thickness and orientation optimization, and finally the 

stacking sequence optimization. In the first two steps, the composition of each 
ply and the number of plies in each direction are to be determined. The stacking 
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sequence optimization determines in which order all these plies should be 

combined together in the end so that mechanical properties are optimized.  

6.2 Theory of fibre-reinforced laminate analysis  

For better understanding the optimization approach, the theory of classical 
fibre-reinforced laminate analysis is briefly introduced here as background 
knowledge. 

Given the properties of layers and the stacking sequence of the layers, the 
properties of a laminate material are determined through classical laminate 

theory. Further, the mechanical performance of the structure could be evaluated 

by closed-formed formula for simple supported 2D panel or by finite element 
analysis for more complicated structure. 

6.2.1 Material properties matrices (A B D matrix) 

Given the layer material properties: two in-plane Young’s modulus E1, E2 in 

longitudinal and transverse directions, Poisson’s ratio   ,    and modulus E3 in 
vertical direction, they have the following relations: 

    
    
  

 (6.1) 

Then material invariants Q, U and V are calculated as [Tsai1968]: 
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(6.4) 

In these formulas, the variable hk represents the coordinate of the layer to the 

midplane of the laminate.  

 

Figure 6-2: Distance of the layer to the midplane 
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(6.5) 

Then, stiffnesses Aij are obtained by: 

 

                      

                      

                

                

      . ∙ (            ) 

      . ∙ (            ) 

(6.6) 

flexural stiffnesses Dij 

 

                      

                      

                

                

      . ∙ (            ) 

      . ∙ (            ) 

(6.7) 

The coupling stiffnesses Bij are equal to zero when the laminate is symmetric. The 
symmetry of a composite material is defined as layers are distributed 

symmetrically to the midplane. The symmetry assumption ensures a balanced 

distribution of layer directions and usually provides a better load bearing abilities 
under complicated cases. Therefore it is usually true and practical in real world 
manufacturing and design. 

The material stiffness matrices are assembled as: 
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] (6.8) 

        (6.9) 
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] (6.10) 

With these stiffness matrices, plate constitutive equation can be established: 

 

[
 
 
 
 
 
 
  
  
   
  
  
   ]

 
 
 
 
 
 

 0
  
  

1 ∙

[
 
 
 
 
 
  
  
   
  
  
   ]
 
 
 
 
 

 (6.11) 

6.2.2 Strain failure load factor 

The maximum strain theory states that if any of strains in the principal material 

directions exceeds allowable values, then the material will fail. The relation of 

strains in the longitudinal direction   , transverse direction    and shear strain 

    and that in common-reference coordinate system are: 

 {
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] {

  
  
 

 
   

} (6.12) 

the strain failure load factor is: 

             *
   
  
 
   
  
 
    
   

+ (6.13) 

6.2.3 Tsai-Wu failure criterion load factor 

There are several material failure theories regarding stresses. Tsai–Wu failure 
criterion is commonly employed for anisotropic composite material due to 
different strengths in tension and compression. The criterion states that the 

stresses of any point in a plane stress should satisfy: 

      
                 

        
              (6.14) 
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where     
 

      
,     
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.     and     are longitudinal tensile and compressive strengths 

respectively,     and     are transverse tensile and compressive strengths 
respectively,    is shear strength. The stresses components in principal material 
axes are given: 
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} (6.15) 

Given a load condition  , the strength load factor is defined as  

                (6.16) 

For a linear structure system, the stresses under the critical load and given load 
have following relations: 

   
               (6.17) 

Replace equation (6.17) into (6.14) and get: 

   
             (6.18) 

where         
                

        
 ,             . 

By solving the inequality, the maximum load factor regarding Tsai-Wu criterion 

could be obtained. 

6.2.4 Critical buckling load analysis 

Laminate composites are widely used in the manufacturing of structural parts in 
the aerospace industries. They are often operated under compression loadings 

and thus buckling behavior has to be taken into consideration during the design. 
Critical buckling load analysis is a method used to determine critical loads at 
which structural parts become unstable and their corresponding buckling modal 

shapes. 

Finite element method is used for the analysis of complex composite laminate 
structures. However, for simple composite plate under simple boundary 

conditions, there are strict theoretical analyses or approximations to predict the 
instabilities. These closed-form predictions provide ways of highly efficient 
structural evaluation for practice. In the following, an approximation of the 

critical buckling load factors for orthotropic composite laminated plates subject 
to uniformly distributed in-plane loads are introduced as an example. The 
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structure is depicted in Figure 6-3. It will be further employed in the 

demonstration of the developed optimization procedure.  

 

Figure 6-3: Composite laminated plate under in-plane loads 

Theoretical critical buckling load factor of the plate under only normal loads Nx 
and Ny is  
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 (6.19) 

where (m, n) is the pair of number of half-waves that minimizes    . 

If the plate is under only shear loads, a finite element analysis is normally 

required to get the buckling load factor. When the plate is assumed to have an 
infinite length in x direction, an analytical solution is given: 
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  (      
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 (6.20) 

where  

   
√      
        

 (6.21) 

and   is given in Table 6-1. 

Table 6-1: Empirical value of coefficient   regarding shear buckling load factor 

    

0.0 11.71 
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0.2 11.80 

0.5 12.20 

1.0 13.17 

2.0 10.80 

3.0 9.95 

5.0 9.25 

10.0 8.70 

20.0 8.40 

40.0 8.25 

  8.13 

When normal and shear loads are applied at the same time to the plate, their 

interaction should be considered. And the normal buckling load factor is modified 
by: 

 
 

  
 
 

   
 

 

   
  (6.22) 

To prevent the buckling under both shear and normal loads, both    and     
should be larger than one. Therefore the critical buckling load factor is: 

        *|   |   + (6.23) 

6.3 Mathematical formulation of stacking sequence 

optimization into a nonlinear assignment problem 

In stacking sequence optimization problem, all the plies are given, and the 
number of plies in each orientation is fixed. Assume total number of N plies in M 

different orientations   ,   ,…,    are given, and in direction   there are    

plies (m=1, 2,..., M). A binary matrix X  *x  +  *   +
    could be used to 

represent the sequence order from top surface to bottom, where x     means 

that the ith layer counting from the top is arranged with the jth ply. If j≤  , then 
it means a ply in orientation    should be arranged in layer i. In general, if 

      ⋯      𝑗        ⋯   , then it means a ply in direction 
   should be arranged. Denote: 

 
  ,      …    ⏟        

 1

       …    ⏟        
 2

 …        …   ⏟        
  

-  
(6.24) 
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 Then ply direction could be expressed: 

  ( )  ∑x    

 

 = 

  (6.25) 

Taking entries of X as design variables, it is obvious that they should satisfy the 
assignment constraints: 

 ∑   

 

 = 

   (𝑖      …  𝑁) (6.26) 

 ∑   

 

 = 

   (𝑗      …  𝑁) (6.27) 

Once a stacking sequence is chosen, mechanical performance of the structure 
that is made of this material could be usually calculated through finite element 

codes for a complex structure or by classical laminate composites theory for a 
laminate plate. These results then go into the objective or constraint function 

evaluations. 

In practice, there is always a contiguity constraint which helps to prevent cracks 

going through many layers. This constraint requests that contiguous plies of the 

same orientation should not exceed a specific number. A function named 

violation number (Vnum for short) is defined to measure in which degree the 

sequence violates the contiguity condition. Assume the number of maximal 

allowable consecutive layers in the same direction is Nc, the value of Vnum is 

calculated as follows: initially, set Vnum equals to zero. Then check from the 
topmost layer till the bottom layer, if more than Nc layers of the same orientation 

are detected, the violation number is added by the number of consecutive layers 

of same direction minus Nc. So the contiguity constraint could be formulated as: 

     ( )    (6.28) 

A penalty is added to the objective if this constraint is violated. Thus the optimal 
stacking sequence problem is formulated into a constrained nonlinear 
assignment problem. The total number of possible combinations equal to  

𝑁  (∏ 𝑁  
𝑀
 ) , which is always a huge number due to the existence of the 

factorial operator. 
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6.4 Improvements on the optimization procedure 

6.4.1 Linear assignment based starting point generation 

Since the problem is also formulated into a nonlinear assignment problem, the 
procedure depicted in Figure.3-1 is employed here to generate the starting point. 

The key point to apply the procedure lies in how to define the “partial derivatives” 
of objective with respect to {xij} and evaluate with fraction in the assignment 

matrix. 

Two methods are presented in the following to tackle this problem. When the 

structural evaluation codes allows for external input of A, B, D matrices, the first 
method is suitable. Otherwise, the second technique could be used instead. The 

ideas of these methods are identical: firstly, “homogenized” the laminate 
structure, secondly, assign one and only one layer to a specific angle while 

keeping other layers under homogenized state, and then the objective function 

value of the “perturbed” structure is defined as the corresponding entry in the C 

matrix of a linear assignment problem. 

6.4.1.1 Method with interpolation of material stiffness 

matrices 

There are finite element analysis codes such as ANSYS that allow input of 

material stiffness matrices A, B, D as material properties, with which the 

structural performance could be evaluated.  

To evaluate the objective function at continuous-relaxed design points, an 
interpolation scheme is defined:  

 𝑓( ( ))  ∑x  ∙ 𝑓(  )

 

 = 

  (6.29) 

where 𝑓(∙) is a general function of ply angle. Apply this scheme to trigonometric 
function in Eq.4.4 and Eq.4.5. Then the A, B, D matrices are as follows: 

 

    ∑(       )

 

 

    ∑(       )

 

∑x        
 

 

(6.30) 
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(6.31) 

The A, B, D matrices are presented as continuous functions of design matrix X, 

thus the structural evaluations at continuous-relaxed design points is 

mathematical meaningful and the procedure developed in Section 3.1 could be 

directly applied here. 

6.4.1.2 Method with quasi-homogenization concept 

In many composite laminate finite element analysis codes, such as MSC.Nastran, 

only the stacking sequence and layer material properties are accepted as inputs 

to the finite element model. Therefore, interpolations of A, B, D are not useful in 

this case. To overcome this difficulty, a method with quasi-homogenization 

concept is presented, with which the initial solution generation procedure could 
be carried out. 

Homogenization is a process to make a mixture of the composite so that the 

mechanical properties are the same throughout the material. In the first step of 
the algorithm presented in Section 3.1, an evaluation of X with all entries are 

equal is required. It could be seen as the material is “homogenized”. Therefore, a 
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procedure to “homogenize” a laminate material so that it is able to be analysed 

by finite element laminate analysis code, and at the same time its performance is 
influenced as little as possible by assigned stacking sequence is required. 

Given a composite laminate with N layers, the thickness t of each layer is t and 

stacking sequence is   ~    as shown in the left of Figure 6-4. A corresponding 
quasi-homogenized laminate is created as depicted in the right of Figure 6-4. 

 

Figure 6-4: Quasi-homogenization of a composite laminate material 

The quasi-homogenized laminate is composed of N homogenized layers, where 

each layer is composed of m sub-layers with thickness of t/(mN). Here m is a 

preselected integer, the larger the m is, the more close the laminate properties 

approximate that of the real homogenized laminate. 

Each sub-layer is composed again with N ply with thickness t/mN/N, where the 

stacking sequence of the plies keeps the same as the original laminate. To 

evaluate the “partial derivative” of design variables, assume it is cij, the 

quasi-homogenized material is modified as depicted in Figure 6-5 to reflect the 

influence of a layer in direction  j locates in the ith position: replace the ith 

homogenized layer with a layer in direction  j, while keep the other layers still 

homogenized.  

 

Figure 6-5: Modified quasi-homogenized material to evaluate cij 
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6.4.2 Repair operators for contiguity constraints 

To improve the efficiency of stacking sequence optimization, so called repair 

operators are presented in literature, which repair the stacking sequence to force 

it satisfy the contiguity constraint. A state of the art repair operator is firstly 

introduced in this section, and then a new repair operator with consideration of 

maximize degree of improvement on violations is presented. Their efficiencies 

are compared with numerical examples thereafter. 

6.4.2.1 Introduction to Baldwinian repair operator 

Todoroki & Haftka [TH1998] introduced a Baldwinian repair strategy for dealing 

with contiguity constraints for standard GA. The idea of the operator is based on 
repairing stacking sequence with the nearest different one. The operator checks 

from the outermost layer to innermost layer, and once a contiguity violation is 

found in the sequence, the inner ply will be changed with the nearest layer in 

other directions in the inner side. Then it checks further violation and repair any 
violation it meets. The advantage of this operator is that it only changes the 

nearest possible layer each time, which minimize the change of stacking 

sequence and thus minimize the influence on the material properties. However, 

the disadvantage of the operator is that it focuses on one violation with each 

exchange, and thus requires many times of repair work. 

6.4.2.2 Maximum improvement repair operator 

Applying repair operator to found solutions will change the stacking sequence 

and thus the objective function value. To limit this influence on system responses 

as much as possible, one natural idea is to reduce the changes on stacking 

sequences. Based on the idea to repair as many as possible contiguity violations 

with the least number of changes of stacking sequence, the following repair 

operator is developed. 

Firstly, a function to measure the degree of improvement is defined as follows: 

           ∙ (                     )  |          | (6.32) 
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where N is total number of stacks, viooriginal is number of violation before repair,  

viorepair is number of violation after the repair, and distrepair is the difference of 

positions of interchanged stacks in the repair. 

The maximum improvement repair operator works as shown in Figure 6-6. When 

the stacking sequence violates the contiguity constraint, it checks each pairwise 

exchange of the sequence and carries out the exchange that has the largest 

degree of improvement. Then the operator applies on the new stacking sequence 

again until exchanged sequence fulfils the contiguity condition. 

 

Figure 6-6: Flowchart of maximum improvement repair operator 

From the definition of degree of improvement, it is easily seen it has the 

following properties: 

1. If a 2-exchange of sequence repairs at least one contiguity violation, then 

         is positive; 

2. The 2-exchange that repairs the most number of violations has the largest 

degree of improvement, no matter what the distance between the exchanged 

two layers is; 

3. If two 2-exchange repairs the same number of violations, the exchange that 

involve closer layers has larger degree of improvement. 

Violation of contiguity 

constraint? 

Evaluate dimprove of all 2-exchange neighbours  

Carry out the pair wise exchange that has 

the largest dimprove value 

Stop, return a feasible design 

No 

Yes 
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Therefore, on one hand, this repair operator focuses on reducing the number of 

violations as many as possible within one 2-exchange. And on the other hand, it 

succeeds the advantage of Baldwinian operator which chooses exchange that 

involves layers as near as possible. 

The difference of above two repair strategies is better presented with the 

following example. Given a stacking sequence of [   /   /   /      /  /  ], 

and contiguity constraint equals to 4. Therefore, the given sequence violation the 

constraints twice with 3 successive     and    layer respectively.  

The Baldwinian operator will first repair the violation caused by     stacks by 

exchanging the third     with     next to it. And then it repairs the violation 

due to    stacks by exchanging the first    with     next to it. The repair 

procedure is depicted in the following: 

[   /   /          /  /  ][   /   /          /  /  ][   /   /          /  /  ] 

Evaluating all possible 2-exchange of stacks with respect to degree of 

improvement, the results are shown in Table 6-2. 

Table 6-2: Example of evaluation of degree of improvement (             , N=7) 

Pair to exchange Resulted stacking sequence Viorepair disprepair dimprove 

[   /   /   /   /  /  /  ] [       /   /   /  /  /  ] 2 3 -3 

[   /   /   /   /  /  /  ] [  /   /   /   /   /  /  ] 0 4 10 

[   /   /   /   /  /  /  ] [  /   /   /   /  /   /  ] 0 5 9 

[   /   /   /   /  /  /  ] [  /   /   /   /  /  /   ] 0 6 8 

[   /   /   /   /  /  /  ] [   /   /   /   /  /  /  ] 1 2 5 

[   /   /   /   /  /  /  ] [   /  /   /   /   /  /  ] 0 3 11 

[   /   /   /   /  /  /  ] [   /  /   /   /  /   /  ] 0 4 10 

[   /   /   /   /  /  /  ] [   /  /   /   /  /  /   ] 0 5 9 

[   /   /   /   /  /  /  ] [   /   /   /      /  /  ] 1 1 6 

[   /   /   /   /  /  /  ] [   /   /  /   /   /  /  ] 0 2 12 

[   /   /   /   /  /  /  ] [   /   /  /   /  /   /  ] 0 3 11 

[   /   /   /   /  /  /  ] [   /   /  /   /  /  /   ] 0 4 10 

[   /   /   /   /  /  /  ] [   /   /   /  /      /  ] 1 1 6 

[   /   /   /   /  /  /  ] [   /   /   /  /  /      ] 1 2 5 

[   /   /   /   /  /  /  ] [   /   /   /  /  /      /] 2 3 11 
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Therefore, the 2-exchange of the third     and the first   is selected. It could 

also be seen, that Baldwinian operator leads to a result that is different to 

original one in three bits (the third, the fourth and the fifth), while the result of 

developed operator differs in only two bits (the third and the fifth) with less 

number of change of stacking sequences.  

6.4.3 Optimization procedure 

The accelerated neighbor search algorithm presented in Section 3.2 can be 

directly applied to solve this problem. Integrating the repair operator, the 

following initial solution generation procedure in Figure 6-7 and accelerated 

neighbor-search algorithm depicted in Figure 6-8 are employed. 

 

Figure 6-7: Initial generation procedure with repair operator embedded  

 

Start from SX , 1/S

ijx N  

 
For i,j=1,2,...,N, compute:  

/ij ijc f x    

Solve linear assignment problem: 

0

1 1

min
N N

ij ij

j i

c x
 

  

Initial solution: 
0 0{ }ij N Nx X  

Contiguity repair  X0_feasible 
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Figure 6-8: Deterministic algorithm with repair operator 

embedded 

In generating the starting point, it requires NM+1 function evaluations. In each 

iteration, it needs only to evaluate the pairwise exchange between two plies in 

different directions, and thus calls for ∑
  (∑      )

 
   ∑ ∑     

 
 =   

 
 = 

 
 =  

 function evaluations. Therefore, total number of function evaluation is:  

 Totalfunc=      + [∑ ∑     
 
 =   

 
 =   ] ∙            (6.33) 

It can be derived that Totalfunc 𝑁        , which means number of 

function evaluations of the approach is in order of  (  ). 

Evaluate all repaired 2-exchange 

neighbours  

Form a LAP by value of objective 

of all the neighbours 

Solve the LAP  XLAP 

Contiguity repair  XLAP_Feasible 
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6.5 Demonstration through test problems and comparison 

of different algorithms 

6.5.1 A thin panel design examples 

The procedure is tested with a simply supported 0.61m square laminar plate as in 
Figure 6-3, which is widely employed in literature. All the plies are in 

direction   ,     , 9  . The laminate is assumed to be in symmetry.  

To simplify the problem, the laminate is further assume to be made up of stacks 

that has two plies of the same orientation, i.e. plies in    and 9   always show 
up with two together, and each      ply is followed by a      ply (as shown 
in Figure 6-9). This assumption is adopted in practice to reduce the complexity in 
manufacturing. 

The material property is listed in Table 6-3. The maximum number of consecutive 

layers in a same direction is 4. The objective is to maximize the critical buckling 

load factors under given loads and give number of layers in each direction. 

 

Figure 6-9: Layout of stacking sequence 

Table 6-3: Material properties 

E1/Gpa E2/Gpa G12/Gpa v12 

128 13.0 6.4 0.3 

With reference to literature, 11 cases shown in  

Table 6-4 are employed, where both the composition of plies and total number of 

stacks are different.  

Table 6-4: Test cases 
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case 
Loading(N/mm) Number of stacks Total 

combinations Nx Ny Nxy (0°)2 (±45°) (90°)2 Total 

1 -3500 -350 175 9 18 9 36 4.4×1014 

2 -2625 -350 175 8 17 8 33 1.5×1013 

3 -1750 -350 175 7 15 7 29 2.7×1011 

4 -875 -350 175 6 12 6 24 2.5×109 

5 0 -350 175 4 8 4 16 9.0×105 

6 0 -2800 1400 8 16 8 32 7.7×1012 

7 2797 -2584 1778 9 8 13 30 2.9×1012 

8 -2915 344 145 13 7 15 35 2.5×1014 

9 1865 -2599 1750 14 10 15 39 4.9×1016 

10 1865 -2599 1750 14 8 17 39 1.6×1016 

11 1973 -3318 1400 10 8 12 30 3.8×1012 

6.5.1.1 Optimization without repair operators on the stacking 

sequence 

Firstly, the focus is on comparing different optimization algorithms. Therefore, 
the repair operators are not involved, and the penalty method is employed to 

deal with the contiguity constraint. 

Results are listed in Table 6-5, where Error is the relative error of objective with 

respect to that of the known optimal so far. For random start, it is evaluated by 

the average performance of 100 runs.  

Table 6-5: Test results of different deterministic procedure 

case 
Random start + NS Random start+ ANS LAP start + ANS 

numfunc Error (%) numfunc Error (%) numfunc Error (%) 

1 7178 0.00 5640 0.00 1433 0.00 

2 5162 0.01 3823 0.01 1448 0.00 

3 3795 0.01 2455 0.01 868 0.00 

4 2093 0.00 1386 0.00 616 0.00 

5 577 0.00 331 0.00 211 0.00 

6 4635 0.06 3307 0.06 1381 0.12 

7 3810 0.00 2844 0.00 1561 0.00 

8 7973 0.10 5458 0.10 2458 0.00 

9 5976 0.94 5672 0.94 7132 0.35 

10 5882 1.20 5309 1.20 4501 2.02 
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case 
Random start + NS Random start+ ANS LAP start + ANS 

numfunc Error (%) numfunc Error (%) numfunc Error (%) 

11 5104 0.13 3859 0.13 2764 0.00 

average 4744 0.22 3644 0.22 2216 0.23 

It can be seen that, the accelerated neighbor search procedure significantly 
outperforms the traditional local-search strategy with a random start in all the 
cases. Starting from generated high quality initial solution, the procedure 

requires less function evaluations to reach the final solution. 

In addition, a genetic algorithm (GA) and a permutation discrete particle swarm 

optimization algorithm (PDPSO) which are used to solve these problems in 
literature [Chen 2008, Chang 2010] are also implemented. The stopping criteria 

of the heuristic algorithms are set as relative error of the objective with respect 
to that of the optimal known so far is smaller than 0.5%. And results are 

compared in Table 6-6. 

Table 6-6: Comparison of optimum and number of function evaluations with 

heuristic algorithms 

Case 
GA with GR1 GA with PMX1 PDPSO2 LAP start + ANS 

numfunc Error (%) numfunc Error (%) numfunc Error (%) numfunc Error (%) 

1 1777 0.42 3950 0.37 1081 0.33 1433 0.00 

2 1617 0.43 3281 0.38 836 0.32 1448 0.00 

3 1283 0.33 2881 0.29 686 0.29 868 0.00 

4 1038 0.33 2462 0.28 457 0.28 616 0.00 

5 621 0.37 1148 0.37 301 0.29 211 0.00 

6 1626 0.48 3735 0.45 1290 0.41 1381 0.12 

7 2487 0.37 3436 0.36 1470 0.39 1561 0.00 

8 2429 0.29 15597 0.41 3281 0.31 2458 0.00 

9 15684 0.36 22452 0.41 9995 0.36 7132 0.35 

10 21024 0.41 23942 0.46 10474 0.38 4501 2.02 

11 4196 0.48 9814 0.48 6634 0.47 2764 0.00 

average 4889 0.39 8427 0.39 3319 0.35 2216 0.23 

1. GA with GR refers to genetic algorithm using gene-rank crossover, GA with PMX refers to genetic algorithm using partially 

mapped crossover, which are presented in literature. The results are evaluated by taking the average of 100 runs.  

2. The results are evaluated also by taking the average of 100 runs. 

It shows that the developed deterministic approach can still greatly reduce the 
computational cost comparing with the genetic algorithm and particle swarm 

optimization method.  
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6.5.1.2 Optimization with repair operators on the stacking 

sequence 

The performance of above two repair operators are then evaluated again with 

test cases presented in  

Table 6-4. The repair operators are embedded into all the four algorithms to be 

compared. For heuristic algorithms, the repair operator is invoked for each 

generated solution before evaluation. For accelerated neighbor search algorithm, 

the repair operator is invoked in three different steps as shown in Figure 6-7 and 

Figure 6-8. The results of Baldwinian operator and operator with maximum 

degree of improvement (MI) are listed in Table 6-7 and Table 6-8 separately. 

Table 6-7: Results with Baldwinian repair operator 

 GA+GR GA+PMX PDPSO LAP start + ANS 

 numfunc 
Error 

(%) 
numfunc 

Error 

(%) 
numfunc 

Error 

(%) 
numfunc 

Error 

(%) 

1 1247 0.34 2984 0.33 580 0.31 504 0.00 

2 1112 0.33 2148 0.32 511 0.30 429 0.00 

3 958 0.34 2146 0.29 392 0.30 336 0.00 

4 760 0.32 1708 0.27 299 0.28 245 0.00 

5 425 0.35 592 0.25 187 0.25 206 0.00 

6 1086 0.38 1619 0.32 485 0.32 721 0.12 

7 1126 0.37 2089 0.34 470 0.39 607 0.00 

8 1164 0.33 3008 0.28 785 0.27 460 0.00 

9 1494 0.39 3710 0.34 382 0.38 1000 0.30 

10 2301 0.39 7852 0.37 550 0.39 1848 0.12 

11 677 0.32 954 0.28 249 0.37 617 0.00 

average 1123 0.35 2619 0.31 445 0.32 633 0.05 

 

Table 6-8: Results with repair considering maximum degree of improvement 

 GA+GR GA+PMX PDPSO LAP start + ANS 

 numfunc 
Error 

(%) 
numfunc 

Error 

(%) 
numfunc 

Error 

(%) 
numfunc 

Error 

(%) 

1 1255 0.34 2838 0.27 596 0.31 499 0.00 

2 1061 0.34 2574 0.27 554 0.29 417 0.00 
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 GA+GR GA+PMX PDPSO LAP start + ANS 

 numfunc 
Error 

(%) 
numfunc 

Error 

(%) 
numfunc 

Error 

(%) 
numfunc 

Error 

(%) 

3 933 0.36 2487 0.27 445 0.26 334 0.00 

4 732 0.30 1585 0.25 307 0.28 249 0.00 

5 487 0.36 684 0.29 191 0.26 126 0.00 

6 1201 0.38 1948 0.35 555 0.40 698 0.12 

7 1106 0.39 1961 0.31 568 0.38 583 0.00 

8 965 0.30 4279 0.25 751 0.28 419 0.18 

9 4704 0.44 12439 0.41 2287 0.45 1402 0.93 

10 7879 0.44 17990 0.45 3059 0.48 1720 0.00 

11 1545 0.38 4346 0.35 1392 0.42 1330 0.00 

average 1988 0.37 4830 0.32 973 0.35 707 0.12 

In comparison with results in Table 6-6, both repair operators could significantly 

reduce the number of function evaluations needed. Applying on the developed 

algorithm, repair operator with maximum degree of improvement could achieve 

comparable performance as Baldwinian operator, although its performance is 

worse in collaboration with heuristic algorithms. And still, LAP based 

deterministic procedure well outperform heuristic ones with both repair 

strategies. 

6.5.2 Problems with large number of layers: thick composite 

panels design 

Further, one large scale example is employed to demonstrate the whole 

procedure. The composite panel structure is the same as in Figure 6-3. However, 

two more angles of ply direction      and      are taken into account. At the 

same time, total number of stacks increases to 150~200, and contiguity 

constraint is 10 instead of 4. 11 test cases with different composition of stacks 

are generated and employed as listed in Table 6-9. 

Table 6-9: Test cases of a very thick composite panel 

case 
Number of stacks Total 

combinations   2                   2 Total 

1 36 72 36 24 24 192 1.1×10122 
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case 
Number of stacks Total 

combinations   2                   2 Total 

2 32 68 32 22 22 176 9.1×10110 

3 28 60 28 20 18 154 2.6×1096 

4 24 48 24 16 16 128 1.8×1080 

5 16 32 16 12 10 86 1.2×1053 

6 32 64 32 22 20 170 3.0×10107 

7 36 32 52 20 20 160 1.0×10103 

8 52 28 60 24 22 186 5.4×10118 

9 56 40 60 26 26 208 3.1×10135 

10 56 32 68 26 26 208 3.2×10133 

11 40 32 48 20 20 160 3.0×10103 

The same loading conditions as in  

Table 6-4 are applied on corresponding case. And still the critical buckling load 

factor is taken as the objective to be maximized. Since it has been proved that 

the accelerated neighbor search algorithm outperforms the heuristic algorithms 

largely, therefore, only results with this algorithm are discussed here. Results of 

the two different repair operators are compared in Table 6-10. 

Table 6-10: Test cases with different repair operators 

 Baldwinian repair Maximum improvement repair 

 numfunc Load factor numfunc Load factor 

1 41521 4.04 14727 4.04 

2 34590 4.03 12365 4.04 

3 26592 3.83 9568 3.83 

4 18599 3.75 6780 3.75 

5 8510 3.83 3216 3.83 

6 32382 3.69 11603 3.69 

7 103950 4.83 97062 4.83 

8 63723 5.01 13561 5.03 

9 48557 14.17 98728 14.17 

10 173427 14.16 80918 14.03 

11 106010 5.07 145307 5.10 

average 59806 ---- 44894 ---- 



 

77 

 

It shows that, for most of test cases, the repair operator with maximum degree of 

improvement requires fewer number of function evaluations than using 

Baldwinian repair operator. Comparing with results of small scale problems in 

Section 6.5.1.1 and 6.5.1.2, the reduction on computational cost is much more 

significant for larger scale problem. This is because the number of changes 

required by Baldwinian repair operator is usually larger than that by maximum 

improvement repair strategy in a large scale problem. 

6.6 Application in engineering problems 

6.6.1 Composite panel with stiffeners 

In this section, the stacking sequence optimizing of a composite panel with 

stiffeners is presented. The finite element model of the structure and the 

cross-section of the stiffener are shown in Figure 6-10 and Figure 6-11. Both 

panel and stiffeners are made of fiber-reinforced composite laminate layers. Each 

layer is of thickness 0.132mm, the material properties of each layer are listed in 

Table 6-11, and the composition of layers for stiffener and panel are the same as 

shown in Table 6-12.  

Table 6-11: Material properties 

E1/GPa E2/GPa G12/GPa v12 

128 11.3 6.0 0.3 
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Figure 6-10: Composite panel with stiffeners 

 

Figure 6-11: Geometry of the cross-section 

Table 6-12: Composition of layers 

 
  Number of stacks Total 

combinations   2                   2 Total 

Panel 16 10 10 10 16 62 
2.6×1078 

Stiffener 16 10 10 10 16 62 

Firstly, only the critical buckling load factor     𝑘𝑙 𝑛  is taken into account and 

to be maximized. This factor is calculated directly by finite element analysis. The 

boundary and loading conditions are presented in Figure 6-12. The plate is simply 

supported and a uniformly distributed normal load Nx of total 2.45×105N is 

applied on edges that are vertical to the stiffener direction. And the contiguity 

constraint is 10. 

2.439m 

2.286m 
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Figure 6-12: Boundary conditions and normal loads 

The optimization procedure terminates after 10 iterations with total 30548 

number of finite element analyses. The critical load factor of the optimal is 

1.8579. The first-order buckling mode of the structure is depicted in Figure 6-13. 

 

Figure 6-13: First-order buckling mode of the structure with optimized 

stacking sequence 

For comparison, 20000 feasible solutions are generated randomly, where the 

largest critical load factors obtained is 1.805. In Figure 6-14, the optimization 

history is depicted, where the best objective value from random enumeration is 

also presented as reference. 
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Figure 6-14: Optimization history 

It could be seen that, the procedure is able to find an extremely high quality 

initial solutions while the number of function calls to generate the initial solution 

in this problem is just 621. In the following table, the relevant optimization result 

is summarized. 

Table 6-13: Critical load factors results 

 Load factor Number of function calls 

Average random 1.721 ---- 

Best random 1.805 20000 

Initial solution 1.843 621 

Found solution 1.858  30548 

The histogram of the critical load factors of random solutions are depicted in the 

following histogram. It shows that the distribution of the load factor is 

bell-shaped and it is very difficult to obtain a good solution with random 

enumeration. 
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Figure 6-15: Distribution of critical load factors for buckling case 

In the second case, the critical load factors with respect to critical buckling, stress 

failure criteria and strain failure criteria are considered simultaneously. The 

structure is under two load cases. The first load case is the same as the above 

example. And in the second load case, a pressure of one standard atmosphere is 

applied on top surface of the simply supported panel. Stress failure load factor 

        and strain failure load factor       𝑛 are calculated according to Section 

6.2.2 and 6.2.3 based on the results from static finite element analysis. 

Corresponding strain and stress limit of the material employed are stated in Table 

6-14.  

Table 6-14: Relevant strain and stress limits 

strain      .   ,      .   ,       .    

Stress 
           ,            ,        .    ,     

      ,      .  𝑝𝑎 

The critical load factor   of the problem which is to be maximized is defined as 

follows, 

       *         + (6.34) 
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The optimization procedure terminates after 7 iterations, with 21449 number of 

function evaluations. The critical load factor of the solution is 1.833. The 20000 

randomly generated feasible solutions are evaluated where the largest load 

factor obtained is 1.793. In the following figure, the optimization history is 

depicted. 

 

Figure 6-16: Optimization history 

In Table 6-15, the relevant optimization result is summarized. 

Table 6-15: Critical load factors results 

 Load factor Number of function calls 

Average random 1.712 ---- 

Best random 1.793 20000 

Initial solution 1.757  621 

After Iteration 2 1.810  6687 

Found solution 1.833  21449 

It could be seen that, the algorithm is also able to find a very high quality initial 

solution. After two iterations, the algorithm is able to find a solution that better 

than all the random ones. 
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6.6.2 Hybrid-stiffness laminated fuselage panels with window 

cutouts  

6.6.2.1 Introduction to hybrid-stiffness laminated fuselage 

panels with window cutouts 

Hybrid-stiffness laminates consists of both straight and curvilinear fiber layers. As 

the name stated, the composite fibers direction in a curvilinear fiber layers varies 

with respect to their spatial position. The advantage of hybrid-stiffness laminates 

has been investigated in recent years. It has been demonstrated that it is capable 

to increase both the structure’s buckling load and tensile strength by applying the 

hybrid-stiffness laminated in plate with cut-outs. The application of this concept 

in the design of aircraft structures has been carried out at the Institute of 

Lightweight Structures of TU München [Ungwattanapanit 2012, 2013]. 

Figure 6-17 depicts the geometry of a hybrid-stiffness laminated fuselage panels 

with window cutouts that is being developed. The panel is composed of four 

segments: the plate, the outer flange which is overlapped with the plate, the 

vertical flange and the inner flange. All the four segments are manufactured with 

carbon fiber reinforced polymers (CFRP), among which the outer flange and the 

plate contains curvilinear fiber layers to improve the performance of the 

structure. 
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Figure 6-17: A fuselage panel with window cutouts to be reinforced 

The compositions of the outer flange layers and plate layers have both been 

optimized. The outer flange contains eight circular layers in which the fibre 

direction is parallel to the outline of the window cut-out, four   -layers, four pair 

of      layers as depicted in Figure 6-18. The stacking sequence is required to 

be symmetric. 

 

 

(a) Circular layer ×8 (b)    layer ×4 

Vertical flange 

Inner flange 

Outer flange 

plate 
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(c)      layer ×4 

Figure 6-18: Composition of layers for outer flange 

The plate is composed of linearly varied fibre layers, where the fibre direction 

varies along y-axis according to Eq.(4.35). The layer is denoted ⟨ ( )| .
 

 
/⟩ to 

show its angle at y=0 and y=b/2. An illustration of the layer is depicted in Figure 

6-19. 

  ( )   ( )  
 | |

𝑏
∙ [ (

𝑏

 
)   ( )] (6.35) 

 

Figure 6-19: Linearly varied fiber layer  
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The plate is composed of twelve pairs of linearly varied fibre layers as shown in 

Figure 6-20. 

  

(a)  ⟨ .  |  .  ⟩ ×4 

  

(b)  ⟨  .  |  .  ⟩ ×4 

  

(d)  ⟨ .  |  .  ⟩ ×4 

Figure 6-20: Composition of plate layers 
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The thickness of each layer is 0.125mm, and the material is CFRP IM7/E8550. The 

stacking sequence of the structure is symmetric and the positive and negative 

angle layers are arranged consecutively. The total number of possible stacking 

sequence combination is .
 
 
/ ∙ .

 
 
/ ∙ .

 
 
/ ∙ .

 
 
/       . 

The finite element analysis is carried out through Msc.Nastran, which doesn’t 

accept interpolation of A, B, D matrix. Therefore, the initial solution generation 

method presented in Section 6.4.1.2 is employed here. 

6.6.2.2 Stacking sequence optimization with respect to 

compression buckling 

Firstly, the structure is under a compressive load of F=72822.5N as depicted in 

Figure 6-21. The compression critical buckling load factor is to be maximized.  

 

Figure 6-21: Compressive load and buckling mode 

The optimization result is listed in Table 6-16. All the feasible solutions are 

evaluated and their average is listed in the table as reference. The optimized 

stacking sequence presented in Table 6-17. 

F 

F F 
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Table 6-16: Stacking sequence optimization result with compression buckling 

numFuncEva Initial_obj. Optimized obj. Average Global 

175 1.01 1.07 0.991 1.07 

Table 6-17: Optimum stacking sequence 

 Outer flange Plate 

global [(±45)2/(Circular)4/02]S [( ⟨  .  |  .  ⟩/ ⟨ .  |  .  ⟩)2 /( ⟨ .  |  .  ⟩)2]S 

Found [(±45)2/(Circular)4/02]S [( ⟨  .  |  .  ⟩/ ⟨ .  |  .  ⟩)2 /( ⟨ .  |  .  ⟩)2]S 

In Figure 4-21, the histogram of the objective of all possible stacking sequences is 

presented. Different to a single bell-shaped distribution as in Figure 4-15, it is 

composed of many separated smaller bell-shaped histograms.  

 

Figure 6-22: Distribution of load factor 

Further looking into the distribution of the result, it turns out that this 

phenomenon is caused by the hybrid-stiffness layers: fixing the stacking 

sequence of the plate, the histogram of the load factor with changing the 

sequence of the outer flange is continuous. And the other way around, the 

histogram of the load factor with changing only the sequence of the plate is still 

separated.  
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(a) Fix flange, change plate (b) Fix plate, change flange 

Figure 6-23: Histogram of load factors when the stacking sequence of only one 

component changes 

The range of load factor of changing the stacking sequence of the plate is much 

larger than that when change only the flange. This fact demonstrates that the 

stacking sequence of the structure, especially the components that contain 

hybrid-stiffness laminates, should be properly arranged in order to obtain a 

satisfying structural performance.  

6.6.2.3 Stacking sequence optimization with respect to shear 

buckling 

In this case, the structure is under a uniformly shear load as presented in Figure 

6-24, and the shear critical buckling load factor is the objective to be maximized. 
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Figure 6-24: Shear load and buckling mode 

The optimization result is listed in Table 6-18. The total combination of feasible 

stacking sequences is 37800. All the feasible solutions are evaluated and their 

average is listed in the table as reference. The optimized stacking sequence is 

presented in Table 6-19. 

Table 6-18: Stacking sequence optimization result with shear buckling 

numFuncEva Initial_obj Optimized obj. Average Global 

131 1.271 1.273 1.224 1.274 

Table 6-19: Optimum stacking sequence 

 Outer flange Plate 

global [(Circular)4/02/(±45)2]s [( ⟨ .  |  .  ⟩)2/( ⟨  .  |  .  ⟩)2/( ⟨ .  |  .  ⟩)2]s 

Found [(Circular)4/02/(±45)2]s [ ⟨ .  |  .  ⟩/ ⟨  .  |  .  ⟩/ ⟨ .  |  .  ⟩/( ⟨ .  |  .  ⟩)2/ ⟨  .  |  .  ⟩]s 
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7. Simultaneous material selection and size 

optimization in structural design 

Optimal materials selection and materials combination are important topics in 

modern structural design, when more and more new types of material are 

developed and available. In this chapter, the optimal material selection is taken 

into account together with traditional size optimization. The problem is 

formulated into a mixed-integer nonlinear programming (MINLP) problem, the 

algorithm developed in section 4.2 is applied to find a good solution for problems 

with specific characteristics. A strategy to improve the quality of solutions is also 

presented. Several numerical examples are employed to demonstrate the 

procedure. 

7.1 Mathematical formulation into MINLP 

Assume there are M types of material available for a structure which is composed 

of N components. Each of the components is made of one type of material, and 

different components could use different kinds of material. Additionally, there is 

one continuous size parameters that needs to be optimized for each component. 

The objective and constraints are functions related to the structural performance, 

such as buckling load factor, stresses and deflections. 

Number the M material by 1 to M, and N components by 1 to N. The geometric 

configuration of a structure is determined by vector X=[x1, x2 ,.., xM], where xi is 

the size parameter for component i (i=1,2,…,N). 

A binary matrix   (𝑏  )  *   +  𝑀 is employed to represent the selection of 

materials, where: 

 𝑏   {
  𝑖𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑗 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖 
  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑒𝑠𝑒

 (7.1) 

According to assumption that each component is made of one material, the 

row-wise assignment constraints should be satisfied: 
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 ∑𝑏  

𝑀

 = 

   (𝑖      …  𝑁) (7.2) 

Denote   the density of material j (j=1,2,….,M), then the density of component i 

could be interpolated by: 

  (𝑖)  ∑  𝑏  

𝑀

 = 

 (7.3) 

This interpolation scheme is applied also to other material properties, with which 

properties of each component are expressed as functions of  .  

Therefore, general structural performance and further constraints, which are 

fully determined by structural configuration and material properties, could be 

formulated implicitly as functions of   and  :  

 𝑔𝑘(   )    (      … ) (7.4) 

Normally objective and constraints are highly nonlinear functions in a structural 

system. Thus, the simultaneous geometric and material optimization problem is 

formulated into a mixed-integer nonlinear programming problem. 

7.2 Illustration with a single beam optimization problem 

To illustrate the formulation procedure, a cantilever beam example as depicted in 

Figure 7-1 is employed. The cantilever beam, which is of circular cross-section 

with length L=1m, is under an axial load of F=2000N. The beam is to be light 

weighted with a constraint on stress that should not be larger than the maximum 

allowable stress.  
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Figure 7-1: Cantilever beam under axial force 

There are five kinds of material available for manufacturing the beam with their 

properties listed in Table 7-1. 

Table 7-1: Available material and related properties for the beam example 

 Aluminum Steel Titanium Copper Magnesium 

Density   (103kg/m3) 2.7 7.85 4.5 8.9 1.8 

Maximum allowable stress  

   (MPa) 
143 235 539 294 210 

The area of cross-section of the beam is the size variable to be optimized, and 

five binary variables 𝑏   𝑏   represent the selection of the five materials. Then 

the density of the beam through the interpolation scheme is formulated as: 

   ∑  𝑏  

 

 = 

 (7.5) 

The maximum allowable stress    is interpolated as  

    ∑   𝑏  

 

 = 

 (7.6) 

The weight of structure to be minimized is: 

 𝑓      ∑    𝑏  

 

 = 

 (7.7) 

With the row-wise assignment constraint: 

 ∑𝑏  

 

 = 

    (7.8) 
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The stress of beam is calculated by force divided by area of cross-section, and 

thus the constraint related to structure performance is: 

 
 

 
    (7.9) 

i.e.: 

 
 

 ∙ ∑    𝑏  
 
 = 

     (7.10) 

Equation (7.7), (7.8) and (7.10) is the mathematical formulation of the problem. 

The solution procedure of this problem has been presented in section 4.4. 

7.3 Demonstration with bar truss structures optimization 

through comparison of algorithms at hand 

7.3.1 A small scale 3-bar truss example  

In this section, performance of the algorithm is evaluated through a three bar 

truss example. The structure is presented in Figure 7-2, with two load cases listed 

in Table 7-2, lengths of bar 1 to bar 3 are equal to 1732mm, 1000mm, and 

1000mm respectively. 

 

Figure 7-2: Three bar truss structure and loads 

Table 7-2: Load cases of three bar truss example 

Load case Force (kN) Direction 

1 25 Vertical downwards 
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2 150 15o to horizontal downward 

Seven kinds of material are available with their properties listed in Table 7-3.  

Table 7-3: Available material and related properties for three-bar truss example 

 Al Steel Ti Cu Ni Zn Mg 

Density   (103kg/m3) 2.7 7.85 4.5 8.9 8.8 7.14 1.8 

Young’s modulus  E(GPa) 70 210 102 119 207 70 45 

Maximum allowable stress 

  (MPa) 
143 235 539 294 450 30 210 

The size variables are area of cross-section of each bar in the range of 0.01 to 

2000 mm2. Under each load case, all three bars are under constraints of 

maximum stress and buckling conditions:  

 
  
  𝑖

     (       )  (7.11) 

 
  
   𝑖

     (       ) (7.12) 

, where the critical buckling stress is calculated as: 

     
   

  
 (7.13) 

The mathematical formulation of this problem has 21 binary variables, 3 bounded 

continuous variables, 3 linear equality constraints and 12 inequality constraints. 

The global optimal of the problem could be obtained by enumerate all possible 

binary combinations, which is total 73=343 under assignment constraints. The 

best material for bar 1 to bar 3 is [Mg, Ti, Mg], area of cross-section is [153.8, 
222.5, 1175.6] mm2 respectively, with objective equals to 3.437kg. The results of 
developed algorithm and state of the art algorithms are compared in Table 7-4. 

Table 7-4: Results of different algorithms for three bar truss problem 

Algorithm obj (kg) Error numfunc 

Constr.-directed 3.437 0.00% 325 

MISQP* 3.89 13.12% 252 

Branch&Cut* 3.450 0.38% 4063 

Branch&Bound* 3.437 0.00% 14884 

*Since the performance of algorithms relies on the choice of the initial 

solution, average 343 results where initial binary variables enumerate 

all possible combinations is presented. 
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It could be seen that the developed algorithm is significantly outperform the 

branch and bound and branch and cut algorithm from both quality of solution 
and number of function evaluations. The computational cost is larger but within 

the same magnitude as the MISQP algorithm. However, the quality of solutions is 
largely improved. Since the quality of the solution is also an important 
consideration, therefore, in the following the performance of MISQP algorithm is 

omitted. It should also be noted that, the branch and bound algorithm requires 
much larger computational efforts than the other three algorithms. 

7.3.2 A medium scale 25-bar truss examples 

The same 25-bar truss structure as in Figure 5-4 is taken as examples here. All of 

the bars are divided into eight groups, and bars of each group are made of the 

same material and with the same area of cross-section. The problem is to select 
proper material and cross-section area of each group to minimize the weight of 

the structure under stress and displacement constraints. Five kinds of material (Al, 
Steel, Ti, Cu, Mg) as stated in Table 7-3 are available. The total number of binary 

variables is 40, together with 8 continuous variables. The total combination of 
binary variables under assignment constraints is 58≈3.9×105. 

Two tests are carried out with this example, where in test 1 only a single load 

case is considered. In test 2, two load cases are applied on the structure 

respectively. The loading conditions are listed in Table 7-5. 

Table 7-5: Loading conditions for 25-bar truss example 

Test Load case Node Fx/N Fy/N Fz/N 

1 1 

1 4448 44482 44482 

2 0 44482 44482 

3 2224 0 0 

6 2669 0 0 

2 

2 
1 0 88964 -22241 

2 0 88964 22241 

3 

1 4448 44482 -22241 

2 0 44482 -22241 

3 2224 0 0 

6 2224 0 0 

In the first test example, the structure is under single load case which applied 
forces on node 1,2,3,6 at the same time. The displacement of each degree of 

freedom is limited to 8.89mm, and compression and tension stresses of each bar 
are constrained with respect to buckling and maximum allowable stress. There 

are 80 nonlinear constraints and 8 linear equality constraints in all. The global 
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optimal obtained by enumerating all feasible binary combinations is listed in 

Table 7-6, with minimum weight of 196.2kg. 

Table 7-6: Global optimal of test 1 

Group Material Area of cross section (mm2) 

1 Mg 11.72 

2 Mg 37.88 

3 Steel 770.99 

4 Mg 0.01 

5 Steel 422.36 

6 Steel 164.64 

7 Steel 33.90 

8 Steel 829.64 

The developed algorithm stops after 1801 function evaluations, the result is listed 

in Table 7-7, with the objective of 210.8kg, which is larger than that of global 

optimal by 7.4%. 

Table 7-7: Optimal found by developed algorithm of test 1 

Group Material Area of cross section (mm2) 

1 Steel 0.01 

2 Steel 9.44 

3 Ti 1503 

4 Mg 0.01 

5 Steel 436.7 

6 Steel 169.6 

7 Mg 149.2 

8 Steel 856.2 

Results of different algorithms are compared in Table 7-8.  

Table 7-8: Results of different algorithms for test 1 of 25-bar truss problem 

Algorithm obj (kg) error(%) numfunc 

Constr.-directed 210.8 7.4 1801 

Branch&Cut* 223.9 14.2 3408 

Branch&Bound* no comparable returned in 50000 function calls  

*Since the performance of algorithms relies on the choice of the initial 

solution, average results where initial binary variables enumerate all 

possible combinations is presented. 
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In the second example, the problem is the same with above example except that 

two load cases needs to be considered. The total number of constraints therefore 
increases to 160 nonlinear inequality constraints with 8 linear equality 

constraints.  

The global optimal obtained by enumerating all feasible binary combinations is 
listed in Table 7-9, with minimum weight of 230.05kg. 

Table 7-9: Global optimum of test 2 

Group Material Area of cross section (mm2) 

1 Mg 0.01 

2 Steel 432.6 

3 Steel 635.5 

4 Mg 0.01 

5 Mg 0.01 

6 Steel 144.9 

7 Steel 344.1 

8 Steel 566.0 

The developed algorithm stops after 1235 function evaluations, the result is listed 

in Table 7-10, with the objective of 230.05kg, which is only slightly larger than 

that of global optimum. 

Table 7-10: Optimum found by developed algorithm of test 2 

Group Material Area of cross section (mm2) 

1 Al 0.01 

2 Steel 432.6 

3 Steel 635.6 

4 Steel 0.01 

5 Steel 0.01 

6 Steel 144.9 

7 Steel 344.0 

8 Steel 566.0 

Results of different algorithms are compared in Table 7-11.  

Table 7-11: Results of different algorithms for test 2 of 25-bar truss problem 

Algorithm obj (kg) error(%) numfunc 

Constr.-directed 230.05 0.00 1705 

Branch&Cut* 232.76 1.18 9032 

Branch&Bound* no comparable returned in 50000 function calls  
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*Since the performance of algorithms relies on the choice of the initial 

solution, average results where initial binary variables enumerate all 

possible combinations is presented. 

From the above two examples, it could be seen that the Branch-and-bound 

algorithm is not proper in solving the material selection problem due to its large 

and significantly increasing computational efforts with respect to the growth of 

problem size. The Branch-and-cut algorithm is comparable but underperforms 

the developed constraint-directed algorithm in all of the cases. 

7.3.3 A large scale 72-bar truss example 

Finally the procedure is demonstrated with a large scale 72-bar truss structure. 

All the bars are divided into 16 groups as depicted in different color in  Figure 

7-3. It is constructed by overlaying the same structure four times from the bottom 

to top. The composition of each group is illustrated in Figure 7-4 with a single 

layer of the structure. 

The structure is under a uniform thermal load with a temperature change of 40℃. 

Besides that, three load cases as in Table 7-13 is applied separately, where stress 

and deflection constraints as discussed in Section 7.3.2 are applied. Five materials 

listed in Table 7-12 are available. There are 80 binary variables, 16 continuous 

variables, 16 linear equality constraints, 612 nonlinear inequality constraints in all. 

The total number of feasible binary combinations is 716≈3.32×1013. 
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 Figure 7-3: 72-bar truss structure   

 

Figure 7-4: Single layer of the 72-bar structure with group illustration 

Table 7-12: Available material and related properties for 72-bar truss 

 Aluminum Steel titanium Copper Magnesium 

Density (103kg/m3) 2.768 7.85 4.5 8.9 1.8 

Allowable stress (MPa) 143 216 539 294 210 

E (GPa) 68.95 210 102 119 45 

CTE (10-6/℃) 23.6 11.8 8.6 17 26 
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Table 7-13: Loading conditions for 72-bar truss example 

Load case Node Fx/N Fy/N Fz/N 

1 17 22241 22241 -22241 

2 

17 0 0 -22241 

18 0 0 -22241 

19 0 0 -22241 

20 0 0 -22241 

3 
10 -22241 -22241 0 

12 22241 22241 0 

Since the total number of combinations of material is innumerous, there is no 

way to know the global optimal for this problem. Instead, 1000 random 

combinations of material selection are generated, with which pure continuous 

nonlinear optimization with respect to the size variables are carried out with SQP 

algorithm of MATLAB optimization toolbox. The distribution of the objective of 

optimums for these problems is depicted in Figure 7-5. The objective of the best 

result achieved is 119.3kg. 

 

Figure 7-5: 72-bar truss structure and loads 

The developed algorithm solves this problem in total 940 function evaluations 

with the objective of 147.3kg which is larger than the best result by 23.4%. The 

reason that the algorithm behaves not ideally in this case is investigated in the 

following and a method to cure this shortcoming is suggested. 
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7.4 Enforced neighbor-search strategy 

7.4.1 Procedure with enforced neighbor-search strategy 

Looking into the optimization procedure of the 72 bar truss example, it shows 

that the algorithm stops after only 2 iterations due to the same material selection 

in successive iterations is detected. The reason for this is that with the increasing 

of number of constraints, it is difficult to improvement the design by adjusting 

the material selection and the size of only one component. Therefore, the 

possibility of wrongly rejecting a better neighbor material selection (i.e. a 

combination of material selection that differs to the current selection in one 

component) increases.  

To overcome this problem, an enforced neighbor-search strategy is developed 

and embedded into the optimization procedure as depicted in red in Figure 7-6.  

 

Figure 7-6: Optimization procedure with enforced neighbour-search strategy 

Bk+1=Bk? 

 

fk+1<fk? 

 

Step 4 

Return (Bk,xk) as solution 

 

Step 4’ (Enforced neighbour-search): 

For i=1 to N 

B’k+1= Bk+1 

find j that dij is the second least among {diq}q=1:M, 

and assign bij=1 and biq=0 for q≠j 

Solve the nonlinear programming problem:  

Min:  fB‘
k+1(x)  (Li≤xi≤Ui) 

S.t.:  gB’
k+1 (x)≤0 

Denote the best solution over i by xk+1, and 

fk+1=f(Bk+1,xk+1) 

No

e 

No

e 

Yes 

Yes 



 

103 

 

It should be noted that, when Bk+1=Bk, it must be the case that all {dij} are 

nonnegative. And for the pair (i,j) that bij=1, it must be dij=0. Therefore the 

smallest row-wise dij corresponds to the current material selection, and the best 

neighbor selection must have the second smallest value of {dij} in a same row.  

This strategy enforces the search for a better solution in a neighbor material 

selection for each component, which will increase the quality of found solutions. 

On the other hand, however, it will increase the computational costs greatly. 

During the enforced neighbor-search procedure, N nonlinear optimization 

problems needs to be solved. Comparison to the Step 4 where only one nonlinear 

optimization problem is to be solved, the number of function evaluations could 

be estimated as roughly N times as before. At the same time, the number of 

function calls will grow also due to the increase number of iterations. 

7.4.2 Demonstration with the 72-bar truss example 

The large-scale 72-bar truss problem is again employed here for the 

demonstration of the improved procedure. Now, the procedure stops after 5 

iterations with total function evaluations of 26571. The objective of the solution 

found is 114.2kg, which is smaller than all the 1000 optimization solutions with 

random generated material selections. The material and the value of size 

variables of the solution are listed in Table 7-14. 

Table 7-14: Optimal found by developed algorithm 

Group Material 
Area of cross-section 

/mm2 
Group Material 

Area of cross-section 

/mm2 

1 Steel 280.7 9 Al 0.01 

2 Steel 188.0 10 Al 112.9 

3 Al 221.4 11 Ti 21.4 

4 Al 269.2 12 Al 109.1 

5 Al 260.1 13 Copper 0.01 

6 Al 233.5 14 Al 0.01 

7 Al 227.0 15 Copper 0.01 

8 Steel 75.3 16 Al 181.0 

The bars with area of cross-section equals to the lower bound of 0.01mm2 are 

seen that these bars could be removed from the structure, and the total number 

of these kinds of bars is 10. By using different colors to represent the material 
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selection, the optimized structure is depicted in Figure 7-7, which contains 62 

bars in all. 

 

Figure 7-7: Optimization structure 

This example demonstrates that with the enforced neighbour-search strategy, 

the quality of the solution is greatly improved. The computational cost could be 

estimated by N times the algorithm without this strategy. This estimation could 

be used to decide whether the strategy is embedded into the procedure in 

practice when the quality of solution and computational cost need to be 

compromised. 

7.5 Application in the design of a panel with stiffeners 

In this section, optimization the design of a panel structure with stiffeners is 

presented. 

7.5.1 Model description 

The panel structure is shown in the following figure. It contains two parts, the 

stiffener and the panel. The cross-section of the stiffener is depicted as below. 

0
2000

0
2000

0

1000

2000

3000

4000

5000

6000

2

6

10

14

18

X position

3

7

11

15

19

Optimized structure

1

5

9

13

17

Y position

4

8

12

16

20

Z
 p

o
s
it
io

n

steel 

Aluminum 

Titanium 



 

105 

 

The thickness t is the continuous parameter that determines the geometry of the 

stiffeners as in Eq. 7.14.  

 

 

Figure 7-8: Panel structure with stiffeners 

 

Figure 7-9: Cross-section of the stiffeners 

 𝑕    𝑡     (7.14) 

Three load cases are under consideration, which are taken from typical working 

conditions of a fuselage panel. In the first load case, the panel is under a pure 

compression force 33742N, which is uniformly distributed on edges and along the 

h 

h 

t 

586.7mm 

314.16mm 
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direction of the stiffener. The loading condition with the buckling mode is 

depicted in Figure 7-10. 

 

Figure 7-10: Load case 1: buckling under compression 

In the second load case, the panel is under both a compression force 24994N and 

a shear force 12720N. They are uniformly distributed on edges. The loading 

condition with the buckling mode is depicted in Figure 7-11. 

 

Figure 7-11: Load case 2: buckling under compression and shear forces 
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The third load case is a static case. The structure is under both an extensional 

force 60650N and a shear force 7500N on one edge.  

  

(a) extension and shear forces (b) contour of in plane displacement 

Figure 7-12: Load case 3: static analysis under extension and shear forces 

7.5.2 Optimization problem and its solution 

There are four kinds of aluminium alloys are available for the manufacturing of 

stiffeners and the panel. Some of the properties of these materials are listed in 

Table 7-15 [ASM 2014].  

Table 7-15: Material properties of four kinds of aluminum alloys 

 Al-2024 T3 Al-2014-T6 Al-6061-T6 Al-7075-T6 

Density (kg/m3) 2780 2800 2700 2810 

Young’s modulus (GPa) 73.1 73.1 68.9 71.7 

Poisson’s ratio 0.33 0.33 0.33 0.33 

Fatigue Strength (MPa) 138 124 96.5 159 

Cost (Euro/kg) 2.016 2.010 1.836 1.893 

The design variables of optimization problem are the material selections of the 

stiffeners and the panel from these four materials, the height of the stiffeners 

and the thickness of the panel. The objective is to minimize the manufacturing 

cost of the structure. There are four constraints in all: the lower bounds of the 

buckling load factor in load case 1 and load case 2, the upper bounds of the 

maximum von Mises stress of both the stiffeners and the panel with respect to 

fatigue strength under a safety factor of 1.1. 

Applying the developed algorithm, an optimum is found after 2 iterations and 

with 62 function evaluations. The solution shows the panel is manufactured with 

Al-6061 and the stiffeners are made of Al-7075. The corresponding optimal 
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thickness of the panel is 2.63mm and the height of the stiffener is 20.90mm. The 

total cost of the structure is 2.67Euro. 

To verify the quality of the solution, continuous optimizations under all 16 

material combinations are carried out. The optimal objective values are listed in 

Table 7-16. It demonstrates that the algorithm successfully found the global 

optimum in this case.  

Table 7-16: Optimal objective value (Cost in Euro) of different material combinations 

 
Panel 

Al-2024 T3 Al-2014-T6 Al-6061-T6 Al-7075-T6 

Stiffener 

Al-2024 T3 2.95 2.96 2.70 2.83 

Al-2014-T6 3.18 3.20 3.00 3.09 

Al-6061-T6 3.83 3.85 3.61 3.71 

Al-7075-T6 2.93 2.95 2.67 2.81 
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8. Conclusion and outlook 

In this thesis, an accelerated neighbor-search algorithm and a constraint-directed 

algorithm are designed for pure integer nonlinear assignment problem and the 

mixed-integer nonlinear programming with binary assignment problem 

respectively. Initial solution generation procedures for both problems are also 

developed, with which high quality of starting points for further optimization 

algorithm can be generated. 

The performance of these procedures are evaluated from the point of view of 

both the solution quality and number of function evaluations which dominates 

the computational cost in structural optimization with finite element analysis. 

Mathematical formulations of three types of structural optimization problems 

with pure integer and mixed-integer design variables are established. The parts 

allocation problem is formulated into nonlinear assignment problem, which is a 

type of pure combinatorial optimization. Proper interpolation schemes is 

established so that the function evaluation at fraction points is mathematical 

meaningful. Based on this property, the developed initial solution generation 

method and the accelerated neighbor-search algorithm is applied. It 

demonstrates that the whole procedure is able to reduce the number of 

iterations and thus the number of function evaluations effectively.  

The stacking sequence optimization in laminate structure design is also 

formulated into nonlinear assignment problem. The same procedure as in solving 

the parts allocation problem is transplanted to deal with this problem. The initial 

solution generation method is modified in two ways: when the material stiffness 

quantities are acceptable by finite element solvers, an interpolation scheme is 

utilized. Otherwise, a quasi-homogenous technique is developed and employed. 

To fit the contiguity constraint, a repair operator aims at repairing as many as 

possible contiguity violations with the least number of changes of stacking 

sequence is developed. The performance of the operator is proved through 

large-scale examples. The developed procedure is applied on practical 

straight-fiber laminate sequence optimization and also achieved success in 

variable-stiffness laminate structure optimization. 

The simultaneous material selection and size optimization problem is formulated 

into a mixed-integer nonlinear optimization problem, with both binary and 
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continuous type design variables. The developed constraint-directed binary 

assignment algorithm is directly applied. The efficiency of the algorithm is 

demonstrated with small-scale to large-scaled bar truss structures and a panel 

design problem. A strategy to improve the quality of final solutions is also 

presented.  

The accelerated neighbor-search algorithm shows great application potential in 

structure optimization with pure integer variables. The idea of fully utilizing 

neighbor-search information is important in the design of neighbor-search based 

algorithms to solve assignment problems. The acceleration technique presented 

here is just an example. It could be properly adjusted to fit further assignment 

type problems. The constraint-directed approach shows its capability in solving 

mixed-integer optimization with binary assignment. Extension of this algorithm to 

adapt to more general types of MINLP problems, for example problems with 

natural integers, and improvement on the quality of the solutions by developing 

and integrating more advanced nonlinear optimization solvers are interesting 

points in future study. From the point of view of an entire solution procedure of 

structural optimization problems, surrogate models can be combined with the 

solution algorithm to further improve the efficiency. 
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Appendix A. Full test results of QAPLIB problems 

Table A-1: Test results of developed procedure on QAPLIB 

Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva 

bur26a 26 5426670 5432907 0.114932 11 4264 

bur26b 26 3817852 3836581 0.490564 11 4264 

bur26c 26 5426795 5427739 0.017395 12 4590 

bur26d 26 3821225 3865437 1.157011 14 5242 

bur26e 26 5386879 5411820 0.462995 15 5568 

bur26f 26 3782044 3823154 1.086978 11 4264 

bur26g 26 10117172 10244156 1.255133 10 3938 

bur26h 26 7098658 7191733 1.311163 11 4264 

chr12a 12 9552 13194 38.12814 5 481 

chr12b 12 9742 14378 47.58776 7 615 

chr12c 12 11156 13974 25.25995 5 481 

chr15a 15 9896 13376 35.16572 6 863 

chr15b 15 7990 10956 37.1214 7 969 

chr15c 15 9504 16826 77.04125 4 651 

chr18a 18 11098 17948 61.72283 8 1558 

chr18b 18 1534 1938 26.33638 8 1558 

chr20a 20 2192 2806 28.01095 9 2121 

chr20b 20 2298 3236 40.8181 8 1930 

chr20c 20 14142 23758 67.99604 6 1548 

chr22a 22 6156 7266 18.03119 8 2342 

chr22b 22 6194 7360 18.82467 8 2342 

chr25a 25 3796 5196 36.88093 12 4239 

els19 19 17212548 20508428 19.14812 10 2083 

esc16a 16 68 68 0 6 984 

esc16b 16 292 292 0 4 742 

esc16c 16 160 168 5 4 742 

esc16d 16 16 18 12.5 7 1105 

esc16e 16 28 30 7.142857 3 621 

esc16f 16 0 0 0 1 379 

esc16g 16 26 26 0 2 500 

esc16h 16 996 996 0 5 863 

esc16i 16 14 14 0 3 621 



 

118 

 

Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva 

esc16j 16 8 12 50 3 621 

esc32a 32  ---- 152  ---- 10 5996 

esc32b 32  ---- 212  ---- 10 5996 

esc32c 32  ---- 646  ---- 6 4008 

esc32d 32  ---- 210  ---- 9 5499 

esc32e 32 2 2 0 3 2517 

esc32f 32 2 2 0 3 2517 

esc32g 32 6 8 33.33333 3 2517 

esc128 128 64 64 0 15 138321 

had12 12 1652 1676 1.452785 5 481 

had14 14 2724 2724 0 5 658 

had16 16 3720 3750 0.806452 6 984 

had18 18 5358 5414 1.045166 9 1712 

had20 20 6922 7044 1.762496 8 1930 

kra30a 30 88900 93700 5.399325 13 6570 

kra30b 30 91420 94110 2.942463 9 4826 

kra32 32 17740 18664 5.208568 12 6990 

lipa20a 20 3683 3782 2.688026 12 2694 

lipa20b 20 27076 27076 0 6 1548 

lipa30a 30 13178 13431 1.919866 9 4826 

lipa30b 30 151426 151426 0 11 5698 

lipa40a 40 31583 31995 1.304499 18 15660 

lipa40b 40 476581 476581 0 9 8631 

lipa50a 50 62093 62832 1.19015 14 19666 

lipa50b 50 1210244 1210244 0 7 11084 

lipa60a 60 107218 108407 1.108956 26 49648 

lipa60b 60 2520135 2520135 0 7 15999 

lipa70a 70 169755 171046 0.760508 39 99126 

lipa70b 70 4603200 4603200 0 10 29062 

lipa80a 80 253195 255388 0.866131 35 117037 

lipa80b 80 7763962 9369127 20.67456 45 148647 

lipa90a 90 360630 363362 0.757563 45 188372 

lipa90b 90 12490441 12490441 0 8 40150 

nug12 12 578 616 6.574394 7 615 

nug14 14 1014 1018 0.394477 6 750 

nug15 15 1150 1260 9.565217 4 651 
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Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva 

nug16a 16 1610 1686 4.720497 6 984 

nug16b 16 1240 1262 1.774194 10 1468 

nug17 17 1732 1758 1.501155 7 1250 

nug18 18 1930 1968 1.968912 5 1096 

nug20 20 2570 2664 3.657588 5 1357 

nug21 21 2438 2510 2.95324 5 1498 

nug22 22 3596 3628 0.889878 8 2342 

nug24 24 3488 3646 4.529817 8 2794 

nug25 25 3744 3898 4.113248 8 3035 

nug27 27 5234 5448 4.088651 10 4251 

nug28 28 5166 5330 3.174603 9 4197 

nug30 30 6124 6358 3.821032 14 7006 

rou12 12 235528 255614 8.528073 5 481 

rou15 15 354210 367966 3.883572 4 651 

rou20 20 725522 751674 3.604577 8 1930 

scr12 12 31410 35002 11.43585 5 481 

scr15 15 51140 56124 9.745796 7 969 

scr20 20 110030 116536 5.912933 8 1930 

sko81 81 90998 92676 1.843997 29 100552 

sko90 90 115534 117010 1.277546 33 140300 

sko100a 100 152002 155898 2.563124 33 173385 

sko100b 100 153890 156136 1.459484 40 208042 

sko100c 100 147862 150234 1.604199 34 178336 

sko100d 100 149576 151860 1.526983 34 178336 

sko100e 100 149150 153048 2.613476 27 143679 

sko100f 100 149036 151062 1.359403 30 158532 

ste36a 36 9526 10254 7.642242 11 8239 

ste36b 36 15852 19052 20.18673 15 10763 

ste36c 36 8239110 9648150 17.10185 8 6346 

tai12a 12 224416 244672 9.026094 3 347 

tai12b 12 39464925 43975950 11.43047 4 414 

tai15a 15 388214 393178 1.278676 7 969 

tai15b 15 51765268 51999162 0.451836 7 969 

tai17a 17 491812 506346 2.955194 9 1524 

tai20a 20 703482 743604 5.703344 9 2121 

tai20b 20 1.22E+08 1.37E+08 12.22154 11 2503 
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Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva 

tai25b 25 3.44E+08 3.71E+08 7.646 7 2734 

tai30b 30 6.37E+08 7.3E+08 14.56366 13 6570 

tai35b 35 2.83E+08 3.25E+08 14.8207 14 9571 

tai40b 40 6.37E+08 6.68E+08 4.801161 25 21127 

tai50b 50 4.59E+08 4.77E+08 3.920445 25 33152 

tai60a 60 7208572 7539198 4.586567 26 49648 

tai60b 60 6.08E+08 6.77E+08 11.2575 26 49648 

tai64c 64 1855928 1865494 0.515429 13 30319 

tai80a 80 13557864 13959286 2.960806 47 154969 

tai80b 80 8.18E+08 8.46E+08 3.416145 32 107554 

tai100b 100 1.19E+09 1.2E+09 1.231798 34 178336 

tai150b 150 4.99E+08 5.09E+08 2.069321 54 626006 

tai256c 256 44759294 44879440 0.268427 72 2415690 

tho30 30 149936 157712 5.186213 12 6134 

tho150 150 8133398 8293640 1.970173 52 603654 

wil100 100 273038 274946 0.698804 35 183287 

esc32h ----  ---- 446  ---- 11 6493 

esc64a ----  ---- 118  ---- 6 16200 

sko42 42 15812 16406 3.756641 16 15558 

sko49 49 23386 23864 2.043958 20 25943 

sko56 56 34458 34846 1.126008 32 52450 

sko64 64 48498 49252 1.554703 22 48472 

sko72 72 66256 67476 1.841343 23 63997 

tai10a 10  ---- 135828  ---- 3 240 

tai10b 10  ---- 1221121  ---- 5 332 

tai25a 25 1167256 1242244 6.424298 9 3336 

tai30a 30 1818146 1950320 7.269713 7 3954 

tai40a 40 3139370 3285000 4.638829 18 15660 

tai50a 50 4938796 5138448 4.042524 21 28248 

 

Table A-2: Test results of procedure without acceleration technique on QAPLIB 

Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva 

bur26a 26 5426670 5435663 0.165719 18 6528 

bur26b 26 3817852 3836672 0.492947 12 4578 

bur26c 26 5426795 5429054 0.041627 19 6853 
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Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva 

bur26d 26 3821225 3865472 1.157927 16 5878 

bur26e 26 5386879 5412611 0.477679 27 9453 

bur26f 26 3782044 3827490 1.201625 16 5878 

bur26g 26 10117172 10231402 1.12907 21 7503 

bur26h 26 7098658 7203633 1.478801 13 4903 

chr12a 12 9552 13194 38.12814 5 476 

chr12b 12 9742 14378 47.58776 8 674 

chr12c 12 11156 13974 25.25995 6 542 

chr15a 15 9896 13376 35.16572 6 857 

chr15b 15 7990 10082 26.18273 8 1067 

chr15c 15 9504 13228 39.1835 6 857 

chr18a 18 11098 17948 61.72283 10 1856 

chr18b 18 1534 1938 26.33638 8 1550 

chr20a 20 2192 3210 46.44161 8 1922 

chr20b 20 2298 3108 35.24804 12 2682 

chr20c 20 14142 27510 94.52694 16 3442 

chr22a 22 6156 7118 15.62703 12 3258 

chr22b 22 6194 7360 18.82467 8 2334 

chr25a 25 3796 5196 36.88093 19 6327 

els19 19 17212548 20508428 19.14812 16 3099 

esc16a 16 68 70 2.941176 5 858 

esc16b 16 292 292 0 4 738 

esc16c 16 160 160 0 5 858 

esc16d 16 16 18 12.5 7 1098 

esc16e 16 28 30 7.142857 3 618 

esc16f 16 0 0 0 1 378 

esc16g 16 26 26 0 3 618 

esc16h 16 996 996 0 5 858 

esc16i 16 14 14 0 3 618 

esc16j 16 8 12 50 3 618 

esc32a 32  ---- 158  ---- 14 7970 

esc32b 32  ---- 192  ---- 19 10450 

esc32c 32  ---- 646  ---- 9 5490 

esc32d 32  ---- 204  ---- 12 6978 

esc32e 32 2 2 0 3 2514 

esc32f 32 2 2 0 3 2514 
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Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva 

esc32g 32 6 8 33.33333 3 2514 

esc128 128 64 66 3.125 17 154562 

had12 12 1652 1676 1.452785 6 542 

had14 14 2724 2724 0 5 653 

had16 16 3720 3750 0.806452 9 1338 

had18 18 5358 5444 1.605077 7 1397 

had20 20 6922 7056 1.935857 12 2682 

kra30a 30 88900 97780 9.988751 16 7862 

kra30b 30 91420 94240 3.084664 20 9602 

kra32 32 17740 19494 9.88726 16 8962 

lipa20a 20 3683 3782 2.688026 12 2682 

lipa20b 20 27076 30957 14.33373 5 1352 

lipa30a 30 13178 13443 2.010927 17 8297 

lipa30b 30 151426 151426 0 22 10472 

lipa40a 40 31583 31951 1.165184 25 21102 

lipa40b 40 476581 476581 0 25 21102 

lipa50a 50 62093 62894 1.29 26 34352 

lipa50b 50 1210244 1210244 0 33 42927 

lipa60a 60 107218 108363 1.067918 32 60242 

lipa60b 60 2520135 2520135 0 39 72632 

lipa70a 70 169755 171258 0.885394 40 101502 

lipa70b 70 4603200 4603200 0 58 144972 

lipa80a 80 253195 255219 0.799384 45 148602 

lipa80b 80 7763962 9435946 21.53519 39 129642 

lipa90a 90 360630 363458 0.784183 47 196337 

lipa90b 90 12490441 12490441 0 61 252407 

nug12 12 578 616 6.574394 8 674 

nug14 14 1014 1018 0.394477 9 1017 

nug15 15 1150 1260 9.565217 4 647 

nug16a 16 1610 1686 4.720497 6 978 

nug16b 16 1240 1298 4.677419 8 1218 

nug17 17 1732 1752 1.154734 9 1515 

nug18 18 1930 1998 3.523316 7 1397 

nug20 20 2570 2636 2.568093 7 1732 

nug21 21 2438 2480 1.722724 15 3593 

nug22 22 3596 3690 2.614016 14 3720 



 

123 

 

Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva 

nug24 24 3488 3694 5.905963 13 4166 

nug25 25 3744 3822 2.083333 18 6027 

nug27 27 5234 5446 4.050439 16 6347 

nug28 28 5166 5340 3.368177 16 6834 

nug30 30 6124 6388 4.310908 20 9602 

rou12 12 235528 255614 8.528073 5 476 

rou15 15 354210 367966 3.883572 6 857 

rou20 20 725522 744514 2.617701 12 2682 

scr12 12 31410 35002 11.43585 5 476 

scr15 15 51140 56124 9.745796 9 1172 

scr20 20 110030 115094 4.602381 17 3632 

sko81 81 90998 93652 2.916548 76 252803 

sko90 90 115534 117792 1.954403 75 308477 

sko100a 100 152002 156120 2.709175 94 475302 

sko100b 100 153890 156836 1.914354 132 663402 

sko100c 100 147862 150798 1.985635 106 534702 

sko100d 100 149576 152028 1.6393 131 658452 

sko100e 100 149150 152838 2.472679 96 485202 

sko100f 100 149036 151260 1.492257 119 599052 

ste36a 36 9526 10382 8.985933 24 16418 

ste36b 36 15852 18872 19.05122 23 15788 

ste36c 36 8239110 9648150 17.10185 13 9488 

tai12a 12 224416 244672 9.026094 3 344 

tai12b 12 39464925 43975950 11.43047 7 608 

tai15a 15 388214 393178 1.278676 10 1277 

tai15b 15 51765268 51999162 0.451836 11 1382 

tai17a 17 491812 506346 2.955194 10 1651 

tai20a 20 703482 732262 4.091078 13 2872 

tai20b 20 1.22E+08 1.38E+08 12.49783 11 2492 

tai25b 25 3.44E+08 3.66E+08 6.252887 20 6627 

tai30b 30 6.37E+08 7.3E+08 14.64143 21 10037 

tai35b 35 2.83E+08 3.25E+08 14.63668 36 22647 

tai40b 40 6.37E+08 6.68E+08 4.785443 41 33582 

tai50b 50 4.59E+08 4.79E+08 4.42153 55 69877 

tai60a 60 7208572 7496622 3.995937 44 81482 

tai60b 60 6.08E+08 6.82E+08 12.17491 68 123962 
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Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva 

tai64c 64 1855928 1865494 0.515429 13 30306 

tai80a 80 13557864 14020750 3.414151 47 154922 

tai80b 80 8.18E+08 8.48E+08 3.55567 126 404562 

tai100b 100 1.19E+09 1.23E+09 4.04011 121 608952 

tai150b 150 4.99E+08 5.15E+08 3.225353 208 2346902 

tai256c 256 44759294 44961636 0.452067 69 2317698 

tho30 30 149936 157954 5.347615 21 10037 

tho150 150 8133398 8343436 2.582414 166 1877552 

wil100 100 273038 276140 1.136106 103 519852 

esc32h ----  ---- 476  ---- 10 5986 

esc64a ----  ---- 116  ---- 13 30306 

sko42 42 15812 16370 3.528965 32 29318 

sko49 49 23386 23910 2.240657 35 43563 

sko56 56 34458 34958 1.451042 46 73978 

sko64 64 48498 49792 2.668151 49 102882 

sko72 72 66256 67164 1.370442 77 201998 

tai10a 10  ---- 135828  ---- 3 237 

tai10b 10  ---- 1228910  ---- 4 282 

tai25a 25 1167256 1242244 6.424298 9 3327 

tai30a 30 1818146 1950320 7.269713 7 3947 

tai40a 40 3139370 3284656 4.627871 26 21882 

tai50a 50 4938796 5158174 4.441933 21 28227 
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Appendix B. Optimal stacking sequence 

B.1. Thin composite panel examples 

Table B-1: Optimal stacking sequence for the thin composite panel 

Load 

case 
Obj. Stacking sequence 

1 0.9485 [(   )  /(   ) /  /(   ) /  /(   ) /(  ) /   /(  ) /   /(  ) /   /  ] 

2 0.9486 [(   )  /(   ) /  /(   ) /  /   /  /   /(  ) /   /(   ) /   /  ] 

3 0.9101 [(   )  /(   ) /  /(   ) /  /   /(  ) /   /(  ) /   /  ] 

4 0.8710 [(   )  /(   ) /  /(   ) /(  ) /   /(  ) /   /  ] 

5 0.7763 [(   ) /(   ) /  /   /(  ) /   /  ] 

6 0.7756 [(   )  /(   ) /   /(   ) /  /   /(  ) /   /(  ) /   /(  ) /   /  ] 

7 0.7820 
[(   ) /   /(  ) /(   ) /  /(   ) /  /(   ) /  /   /  /   /  /(   ) /

  /   /  /   ] 

8 1.1042 
[(   ) /(   ) /  /(   ) /  /(   ) /  /(   ) /  /(   ) /  /   /  /   /

(  ) /   /(  ) /   /(  ) /   /  ] 

9 2.7967 

[   /   /(   ) /   /(   ) /   /   /   /   /   /(   ) /   /(   ) 

/   /  /   /(  ) /   /(  ) /   /(  ) /   /(  ) /   /(  ) /   /(  ) 

/   /  ] 

10 2.7951 

[   /(   ) /(   ) /   /(   ) /   /(   ) /   /(   ) /   /(   ) /

   /  /   /(  ) /   /(  ) /   /(  ) /   /(  ) /   /(  ) /   /(  ) /

   /  /] 

11 0.9584 
[(   ) /   /   /   /   /(   ) /(   ) /(   ) /   /(   ) /  /   /

(  ) /   /(  ) /   /(  ) /   /(  ) /   /  ] 

B.2. Very thick composite panel examples 

Table B-2: Optimal stacking sequence for the very thick composite panel 

Load 

case 
Obj. Stacking sequence 

1 4.0401 [(±45)72/(±60)24/(±30)24/(902)5/(02)2/(902)5/02/(902)5/02/(902)5/02/ 
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Load 

case 
Obj. Stacking sequence 

(902)5/02/(902)5/(02)5/902/(02)5/902/(02)5/902/(02)5/902/(02)5/902/  

(02)3/902/(02)2] 

2 4.0370 

[(±45)68/(±60)22/(±30)22/(902)5/02/(902)2/02/(902)5/02/(902)5/02/ 

(902)5/02/(902)5/(02)5/902/(02)5/902/(02)5/902/(02)5/902/(02)5/902/ 

(02)2] 

3 3.8301 
[(±45)60/(±60)18/(±30)20/(902)5/02/(902)4/02/(902)5/02/(902)5/02/ 

(902)3/02/902/(02)5/902/(02)5/902/(02)5/902/(02)5/902/02/902/(02)2] 

4 3.7497 
[(±45)48/(±60)16/(±30)16/(902)5/(02)2/(902)5/02/(902)5/02/(902)5/ 

(02)5/902/(02)5/902/(02)5/902/(02)3/902/(02)2] 

5 3.8307 
[(±45)32/(±60)10/(±30)12/(902)5/02/(902)4/02/(902)3/02/902/(02)5/ 

902/(02)5/902/02/902/(02)2] 

6 3.6937 

[(±45)64/(±60)20/(±30)22/(902)5/02/(902)2/02/(902)5/02/(902)5/02/ 

(902)5/02/(902)5/(02)5/902/(02)5/902/(02)5/902/(02)5/902/(02)5/ 

902/(02)2] 

7 4.8251 

[(902)5/±30/(902)5/02/902/(02)5/902/(02)5/902/(02)5/902/(02)5/ 

(±30)20/(±45)32/(±60)16/(902)3/602/(902)5/02/(902)5/02/(902)5/02/ 

(902)5/02/(902)5/02/(902)5/02/(902)5/602/(02)5/602/02/602/(02)2] 

8 5.0305 

[(±45)28/(±60)22/(±30)23/902/302/(902)5/02/(902)5/02/(902)5/02/ 

(902)5/02/(902)5/02/(902)5/02/(902)5/02/(902)5/02/(902)5/02/(902)5/ 

(02)5/902/(02)5/902/(02)5/902/(02)5/902/(02)5/902/(02)5/902/(02)5/ 

902/(02)5/902/02/902/(02)2] 

9 14.171 

[02/(902)2/302/902/602/02/(902)5/02/(902)5/02/(902)5/02/(902)5/02/ 

(902)5/02/902/602/(902)5/02/(902)5/02/(902)5/02/(902)5/(±60)24/ 

(±45)40/(±30)26/(02)5/902/(02)5/902/(02)5/902/(02)5/902/(02)5/902/ 

(02)5/902/(02)5/902/(02)5/902/(02)5/902/02/902] 

10 14.034 

[(02)3/(902)2/602/(902)2/602/(902)4/(02)2/(902)5/02/(902)5/02/(902)5/

02/(902)5/02/(902)5/02/(902)5/02/(902)5/02/(902)5/02/(902)5/602/ 

(902)2/(±60)23/(±45)32/(±30)26/(02)5/902/(02)5/902/(02)5/902/(02)5/ 

902/(02)4/(902)2/(02)5/902/(02)5/902/(02)5/902/(02)3/(902)2/02/(902)] 

11 5.1018 

[(±45)5/(±60)2/(902)5/±45/(902)5/±45/(902)5/±45/(902)5/±45/(902)5

/±45/(902)4/±60/±45/(902)4/±60/902/±60/(902)2/(±60)14/(±45)2/ 

902/±60/(±45)19/±30/902/(±30)5/(902)2/(±30)2/902/(±30)11/(02)5/ 

±30/(02)5/902/(02)4/902/(02)4/902/(02)5/902/(02)5/902/(02)5/902/ 

(02)5/902/(02)2] 

 



127 

B.3. Composite panel with stiffeners 

Table B-3: Optimal stacking sequence considering only buckling 

Panel 
[(010/±30)2/(06/±30)2/(±30)5/±45/±30/(±45)9/(±60)7/908/±60/(9010/±60)2/

904]s 

Stiffener 

[±45/902/±60/02/902/±45/02/±60/±45/04/±30/04/±30/902/±30/02/±45/ 

902/(±60)2/904/02/±30/(±45)2/(±30)2/902/02/±45/02/902/±45/±60/902/02/

(±60)2/±30/±60/02/±45/02/902/04/906/±60/(±30)2/902/±30/±60/02/904/ 

±45]s 

Table B-4: Optimal stacking sequence considering buckling, strain and stress 

Panel 
[(±45)10/(±30)10/010/±60/06/±60/08/(±60)7/02/908/02/904/02/9010/02/906/ 

±60/904]s 

Stiffener 

[±45/±60/04/±60/902/02/±30/02/(±60)2/02/902/(±30/02)2/904/±60/02/±45/

06/(±60)2/±45/02/±30/902/±60/02/±45/902/(±45)2/±30/902/±30/±45/±30/ 

±60/908/02/±45/904/±45/±30/904/±30/±45/902/02/±30/±60/02]s 


