
Technische Universität München
Fakultät für Maschinenwesen

Lehrstuhl für Leichtbau

Efficient Procedures for Structural Optimization

with Integer and Mixed-Integer Design Variables

Yang Zhang

Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technische Universität

München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

Genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Oskar J. Haidn

Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. Horst Baier

2. Univ.-Prof. Dr.-Ing. Kai-Uwe Bletzinger

Die Dissertation wurde am 08.01.2015 bei der Technische Universität München eingereicht

und durch die Fakultät für Maschinenwesen am 06.05.2015 angenommen.

i

Abstract

Structural optimization with pure integer and mixed-integer design variables are

important topics in structural design. General gradient-based mathematical

optimization algorithms fail to solve these problems because they usually do not

treat integer variables. Evolutionary methods or genetic algorithms handling such

problems may be computationally prohibitively expensive due to the

requirement of large number of time-consuming functions evaluations, which are

often carried out by finite element analysis with a large number of degrees of

freedom. To more efficiently solve such problems, several procedures are

developed and improved in this dissertation. A procedure to generate a high

quality starting point for the nonlinear assignment problem is developed. In

addition, traditional neighbor search algorithms then are investigated and

improved. A constraints-directed algorithm is developed for mixed-integer

nonlinear optimization. An enforced neighbor search strategy is also presented to

improve the quality of the solution. These procedures aim at obtaining a high

quality solution with significantly reduced number of function evaluations than

algorithms at hand. The efficiencies of the developed methods are demonstrated

through three practical engineering problems. These are optimal parts allocation

problem, the stacking sequence optimization in laminate design and the

simultaneous material selection and size optimization problem.

ii

Kurzfassung

Strukturoptimierungen mit reinen ganzzahligen und gemischt-ganzzahligen

Designvariablen sind wichtige Themen im Strukturentwurf. Mit allgemeinen

gradientenbasierten mathematischen Optimierungsalgorithmen, es gelingt nicht,

diese Probleme zu lösen, weil sie in der Regel nur kontinuerlige Variable

behandeln. Evolutionäre Methoden oder genetische Algorithmen sind in der

Handhabung solcher Probleme rechnerisch aufwendig infolge der erforderlichen

großen Anzahl von zeitraubenden Funktionsauswertungen, die häufig von

Finite-Elemente-Analyse mit einer großen Anzahl von Freiheitsgraden

durchgeführt werden müssen. Um derartige Probleme effizienter zu lösen,

werden verschiedene Verfahren untersuchte und entwickelt. Es wird ein

Verfahren entwickelt, um einen hochwertigen Startpunkt für die nichtlinearen

Zuordnungsprobleme zu erzeugen. Zusätzlich werden Suchalgorithmen für

dessen diskrete Nachbarschaft untersucht und verbessert. Für das

gemischt-ganzzahlige nichtlineare Optimierung Problem, es wird ein

Nebenbedingungen¬-gerichteter Algorithmus entwickelt. Eine erzwungene

Nachbar Suchstrategie wird auch dargestellt, um die Qualität der Lösung zu

verbessern. Diese Verfahren zielen auf den Erhalt eine hochwertige Lösung mit

deutlich reduzierten Anzahl von Funktionsauswertungen als Algorithmen zur

Hand. Die Effizienz der entwickelten Methoden werden über drei praktische

technische Probleme gezeigt. Dies sind die optimale Allokation von Komponenten,

die Reihenfolgeoptimierung von Laminatschichte der faserverstärkte Kunststoffe

sowie die gleichzeitige Materialauswahl und Geometrieoptimierung von

Fachwerken und versteiften Platten.

iii

Acknowledgements

I would like to express my gratitude to my supervisor Prof. Dr.-Ing. Horst Baier for
his support regarding my study and his consideration and help with my living in
Germany. I would like to acknowledge German Academic Exchange Service

(DAAD) for awarding the DAAD Scholarship to support me to carry out study at
Institute of Lightweight Structures, Technische Universität München. My thanks

go to all colleagues at the Institute not only for their help but also for their
friendship. Especially I would like to thank Mr. Erich Wehrle for academic
discussions and Mr. Tanut Ungwattanapanit for his close collaboration in the

research.

München, 01.01.2015

Yang Zhang

iv

Contents

Abstract .. i

Kurzfassung .. ii

Acknowledgements ... iii

Contents ... iv

List of Figures .. ix

List of Tables .. ix

Nomenclature ... xv

1. Introduction ... 1

1.1 Motivation.. 1

1.2 Scope and objective of thesis ... 1

1.3 Outline of thesis .. 2

2. State of the art ... 4

2.1 Structural optimization containing integer and mixed-integer variables 4

2.2 Pure Integer assignment problem ... 5

2.2.1 Mathematical formulation .. 5

2.2.2 Linear assignment problem (LAP) ... 7

2.2.3 Nonlinear assignment problem (NAP) .. 7

2.2.4 State-of-the-art algorithms for NAP ... 8

2.2.4.1 Local search or neighbor search based algorithms 8

2.2.4.2 Genetic algorithms (GA) .. 9

2.2.4.3 Permutation discrete particle swarm optimization algorithm (PDPSO)

 12

v

2.2.4.4 Other heuristic algorithms.. 15

2.2.4.5 Discussion on good starting points .. 15

2.2.5 Applications ... 16

2.3 Mixed-integer nonlinear programming (MINLP) ... 16

2.3.1 Mathematical formulation .. 16

2.3.2 State-of-the-art algorithms for MINLP .. 17

2.3.2.1 Branch and bound algorithm .. 18

2.3.2.2 Outer-approximation algorithm (OA) .. 20

2.3.2.3 OA based branch and cut algorithm ... 22

2.3.2.4 Trust region sequential quadratic programming algorithm (MISQP) 24

2.3.3 Applications ... 25

2.4 Criteria for evaluation and comparison of algorithms 26

3. An efficient procedure for solving nonlinear assignment problems 27

3.1 Linear assignment problem based starting point generation 27

3.2 Accelerated neighbor search algorithm .. 28

3.3 Computational complexity analysis ... 29

3.4 Test results on Quadratic Assignment Problem Library (QAPLIB) 29

3.4.1 Test suites and numerical results .. 30

3.4.2 Computational cost analysis ... 31

3.4.3 Effects of the developed acceleration technique through comparison

with a traditional neighbor-search algorithm ... 32

4. An efficient algorithm for MINLP with binary assignment 34

4.1 MINLP with binary assignment ... 34

4.2 Constraints-directed binary assignment algorithm 34

vi

4.3 Computational complexity analysis ... 37

4.4 Benchmark mathematical examples and comparison of several different

algorithms... 37

5. Optimal parts allocation for structural systems ... 40

5.1 Introduction to optimal parts allocation problem 40

5.2 Mathematical modeling into an assignment problem 41

5.3 Examples and numerical results of parts allocation w.r.t. coefficient of

thermal expansions ... 42

5.4 Examples of parts allocation w.r.t. CTE, E and area of cross-section and

comparison of different algorithms.. 46

5.4.1 A 10-bar truss structure (a small scale single group example) 46

5.4.2 A 25-bar truss structure with stress constraints (a medium scale

multiple groups example) ... 48

5.4.3 A 72-bar truss structure (a large scale multiple groups example) 51

6. Stacking sequence optimization (SSO) in fibre-reinforced laminate structure

design .. 54

6.1 Introduction to stacking sequence optimization .. 54

6.2 Theory of fibre-reinforced laminate analysis ... 55

6.2.1 Material properties matrices (A B D matrix) .. 55

6.2.2 Strain failure load factor ... 58

6.2.3 Tsai-Wu failure criterion load factor ... 58

6.2.4 Critical buckling load analysis .. 59

6.3 Mathematical formulation of stacking sequence optimization into a

nonlinear assignment problem ... 61

6.4 Improvements on the optimization procedure .. 63

6.4.1 Linear assignment based starting point generation 63

vii

6.4.1.1 Method with interpolation of material stiffness matrices 63

6.4.1.2 Method with quasi-homogenization concept .. 64

6.4.2 Repair operators for contiguity constraints .. 66

6.4.2.1 Introduction to Baldwinian repair operator ... 66

6.4.2.2 Maximum improvement repair operator .. 66

6.4.3 Optimization procedure .. 69

6.5 Demonstration through test problems and comparison of different

algorithms... 71

6.5.1 A thin panel design examples ... 71

6.5.1.1 Optimization without repair operators on the stacking sequence 72

6.5.1.2 Optimization with repair operators on the stacking sequence 74

6.5.2 Problems with large number of layers: thick composite panels design

 75

6.6 Application in engineering problems .. 77

6.6.1 Composite panel with stiffeners... 77

6.6.2 Hybrid-stiffness laminated fuselage panels with window cutouts 83

6.6.2.1 Introduction to hybrid-stiffness laminated fuselage panels with

window cutouts .. 83

6.6.2.2 Stacking sequence optimization with respect to compression buckling

 87

6.6.2.3 Stacking sequence optimization with respect to shear buckling 89

7. Simultaneous material selection and size optimization in structural design 91

7.1 Mathematical formulation into MINLP ... 91

7.2 Illustration with a single beam optimization problem 92

7.3 Demonstration with bar truss structures optimization through comparison

of algorithms at hand ... 94

viii

7.3.1 A small scale 3-bar truss example .. 94

7.3.2 A medium scale 25-bar truss examples ... 96

7.3.3 A large scale 72-bar truss example .. 99

7.4 Enforced neighbor-search strategy ... 102

7.4.1 Procedure with enforced neighbor-search strategy 102

7.4.2 Demonstration with the 72-bar truss example 103

7.5 Application in the design of a panel with stiffeners 104

7.5.1 Model description .. 104

7.5.2 Optimization problem and its solution .. 107

8. Conclusion and outlook .. 109

Bibliography ... 111

Appendix A. Full test results of QAPLIB problems .. 117

Appendix B. Optimal stacking sequence .. 125

B.1. Thin composite panel examples .. 125

B.2. Very thick composite panel examples ... 125

B.3. Composite panel with stiffeners .. 127

ix

List of Figures

Figure 2-1: Flowchart of traditional 2-exchange neighbour search algorithm 9

Figure 2-2: Flowchart of GA ... 10

Figure 2-3: An example to illustrate the work flow of partially mapped crossover 12

Figure 2-4: Flowchart of Particle swarm optimization algorithm 13

Figure 2-5: An example to illustrate the definition of addition between position and

velocity... 15

Figure 2-6: An example of branch in the Branch and Bound algorithm 18

Figure 2-7: Flowchart of Branch and bound algorithm ... 20

Figure 2-8: Flowchart of Outer-approximation algorithm ... 22

Figure 2-9: OA based Branch and Cut algorithm ... 23

Figure 2-10: Flowchart of MISQP algorithm .. 24

Figure 3-1: Procedure of initial solution generation ... 27

Figure 3-2: Accelerated neighbour search algorithm .. 28

Figure 3-3: Number of iteration V.S. size of problem .. 31

Figure 3-4: Linear regression of number of iteration with size of problem 33

Figure 4-1: Procedure to generate initial solution for the problem 36

Figure 5-1: A 10-bar truss structure ... 40

Figure 5-2: 10-bar truss under thermal load (L=1000mm, E=68.95Gpa, A=1000mm2)

 ... 44

Figure 5-3: 10-bar truss under both mechanical forces and a uniform thermal load . 46

Figure 5-4: 25-bar truss structure .. 49

Figure 5-5: 72-bar truss structure .. 52

x

Figure 6-1: An individual fibre-reinforced ply (left) and a 8-layer fibre-reinforced

laminate stacking with plies in four different orientations (right) 54

Figure 6-2: Distance of the layer to the midplane ... 56

Figure 6-3: Composite laminated plate under in-plane loads 60

Figure 6-4: Quasi-homogenization of a composite laminate material 65

Figure 6-5: Modified quasi-homogenized material to evaluate cij 65

Figure 6-6: Flowchart of maximum improvement repair operator 67

Figure 6-7: Initial generation procedure with repair operator embedded 69

Figure 6-8: Deterministic algorithm with repair operator embedded 70

Figure 6-9: Layout of stacking sequence ... 71

Figure 6-10: Composite panel with stiffeners ... 78

Figure 6-11: Geometry of the cross-section .. 78

Figure 6-12: Boundary conditions and normal loads ... 79

Figure 6-13: First-order buckling mode of the structure with optimized stacking

sequence .. 79

Figure 6-14: Optimization history .. 80

Figure 6-15: Distribution of critical load factors for buckling case 81

Figure 6-16: Optimization history .. 82

Figure 6-17: A fuselage panel with window cutouts to be reinforced 84

Figure 6-18: Composition of layers for outer flange ... 85

Figure 6-19: Linearly varied fiber layer .. 85

Figure 6-20: Composition of plate layers ... 86

Figure 6-21: Compressive load and buckling mode ... 87

Figure 6-22: Distribution of load factor ... 88

xi

Figure 6-23: Histogram of load factors when the stacking sequence of only one

component changes .. 89

Figure 6-24: Shear load and buckling mode .. 90

Figure 7-1: Cantilever beam under axial force .. 93

Figure 7-2: Three bar truss structure and loads .. 94

Figure 7-3: 72-bar truss structure .. 100

Figure 7-4: Single layer of the 72-bar structure with group illustration 100

Figure 7-5: 72-bar truss structure and loads ... 101

Figure 7-6: Optimization procedure with enforced neighbour-search strategy 102

Figure 7-7: Optimization structure .. 104

Figure 7-8: Panel structure with stiffeners .. 105

Figure 7-9: Cross-section of the stiffeners ... 105

Figure 7-10: Load case 1: buckling under compression ... 106

Figure 7-11: Load case 2: buckling under compression and shear forces 106

Figure 7-12: Load case 3: static analysis under extension and shear forces 107

xii

List of Tables

Table 2-1: An example to illustrate the GR .. 11

Table 3-1: Results of the largest 11 problems in QAPLIB .. 30

Table 3-2: Problems that are solved with different error levels 30

Table 3-3: Results of the largest 11 problems in QAPLIB .. 32

Table 4-1: Results of the demonstration example at step 2 38

Table 4-2: Results of step 2 in new iteration ... 38

Table 4-3: Results of different algorithms ... 39

Table 5-1: CTEs of ten bars available ... 45

Table 5-2: Optimal allocation of bars .. 45

Table 5-3: Result with 5% properties deviation of 10-bar truss example 47

Table 5-4: Result with 10% properties deviation of 10-bar truss example 47

Table 5-5: Result with 50% properties deviation of 10-bar truss example 47

Table 5-6: Influence of deviations on the 10-bar truss structure 48

Table 5-7: Composition of groups .. 49

Table 5-8: Load cases for 25-bar structure .. 50

Table 5-9: Average results of 25-bar truss structure ... 51

Table 5-10: Load cases for 72-bar structure .. 52

Table 5-11: Average results of 72-bar truss structure without stress constraints 52

Table 5-12: Average results of 72-bar truss structure with stress constraints 53

Table 6-1: Empirical value of coefficient regarding shear buckling load factor 60

Table 6-2: Example of evaluation of degree of improvement (, N=7)

 ... 68

xiii

Table 6-3: Material properties ... 71

Table 6-4: Test cases .. 71

Table 6-5: Test results of different deterministic procedure 72

Table 6-6: Comparison of optimum and number of function evaluations with

heuristic algorithms ... 73

Table 6-7: Results with Baldwinian repair operator .. 74

Table 6-8: Results with repair considering maximum degree of improvement 74

Table 6-9: Test cases of a very thick composite panel .. 75

Table 6-10: Test cases with different repair operators ... 76

Table 6-11: Material properties ... 77

Table 6-12: Composition of layers ... 78

Table 6-13: Critical load factors results ... 80

Table 6-14: Relevant strain and stress limits ... 81

Table 6-15: Critical load factors results ... 82

Table 6-16: Stacking sequence optimization result with compression buckling 88

Table 6-17: Optimum stacking sequence .. 88

Table 6-18: Stacking sequence optimization result with shear buckling 90

Table 6-19: Optimum stacking sequence .. 90

Table 7-1: Available material and related properties for the beam example 93

Table 7-2: Load cases of three bar truss example ... 94

Table 7-3: Available material and related properties for three-bar truss example 95

Table 7-4: Results of different algorithms for three bar truss problem 95

Table 7-5: Loading conditions for 25-bar truss example ... 96

Table 7-6: Global optimal of test 1 .. 97

xiv

Table 7-7: Optimal found by developed algorithm of test 1 97

Table 7-8: Results of different algorithms for test 1 of 25-bar truss problem 97

Table 7-9: Global optimum of test 2 .. 98

Table 7-10: Optimum found by developed algorithm of test 2 98

Table 7-11: Results of different algorithms for test 2 of 25-bar truss problem 98

Table 7-12: Available material and related properties for 72-bar truss 100

Table 7-13: Loading conditions for 72-bar truss example ... 101

Table 7-14: Optimal found by developed algorithm ... 103

Table 7-15: Material properties of four kinds of aluminum alloys 107

Table 7-16: Optimal objective value (Cost in Euro) of different material combinations

 ... 108

Table A-1: Test results of developed procedure on QAPLIB 117

Table A-2: Test results of procedure without acceleration technique on QAPLIB 120

Table B-1: Optimal stacking sequence for the thin composite panel 125

Table B-2: Optimal stacking sequence for the very thick composite panel 125

Table B-3: Optimal stacking sequence considering only buckling 127

Table B-4: Optimal stacking sequence considering buckling, strain and stress 127

xv

 Nomenclature

E Young’s modulus

A Area of cross section

AP Assignment problem

MINLP Mixed integer nonlinear programming

MILP Mixed integer linear programming

LAP Linear assignment problem

NAP Nonlinear assignment problem

QAP Quadratic assignment problem

3-AP 3-dimensional assignment problem

GA Genetic algorithm

GR Gene-Rank Crossover

PMX Partially mapped crossover

PSO Particle swarm optimization algorithm

PDPSO Permutation discrete particle swarm optimization algorithm

OA Outer-approximation algorithm

B&B Branch and bound algorithm

B&C Branch and cut algorithm

MISQP Mixed integer sequential quadratic programming algorithm

QAPLIB A library of the quadratic assignment problem

NS Traditional neighbor search algorithm

ANS Accelerated neighbor search algorithm

K Stiffness matrix in finite element analysis

U Displacement vector in finite element analysis

xvi

F Force vector in finite element analysis

 or CTE Coefficient of thermal expansion

 Change of temperature

FM Mechanical force load

FT Thermal load

 Maximum stress in a structure

 Allowable stress

E1 In-plane Young’s modulus in longitudinal directions

E2 In-plane Young’s modulus in transverse directions

E3 Young’s modulus in vertical directions

 Poisson’s ratio between longitudinal and vertical direction

 Poisson’s ratio between transverse and vertical direction

Q, U, V Material invariants in laminate analysis

 Layer fibre direction

A, B, D Material stiffness matrices in laminate analysis

N Uniformly distributed load

 Critical buckling load factor under only normal loads

 Critical buckling load factor under only shear loads

Normal critical buckling load factor under both normal and shear

loads

 Critical buckling load factor

 Strains in the longitudinal direction

 Strains in the transverse direction

 Shear strains between longitudinal and transverse direction

 Allowable value of longitudinal strain

 Allowable value of transverse strain

xvii

 Allowable shear strain

 Longitudinal tensile strength

 Longitudinal compressive strength

 Transverse tensile strength

 Transverse compressive strength

 Shear strength

 Maximum load factor regarding Tsai-Wu criterion

SSO Stacking sequence optimization

G12 In-plane shear modulus

v12 In-plane Poisson’s ratio

 Maximum load factor regarding strain limits

 Density

 Maximum allowable stress

 Critical buckling stress

1

1. Introduction

1.1 Motivation

The employment of integer variables provides a more straightforward way of

describing many structural optimization problems in mechanical engineering

world. It simplifies the efforts on both mathematical modelling of practical

problems and explanation of optimization results. These problems can be

formulated into the categories of either pure integer or mixed-integer

optimizations in mathematics, which are widely studied theoretically in recent

decades.

Comparing to traditional optimization problems with continuous design variables,

the algorithms for integer and mixed-integer optimization usually require much

more computational efforts for a same problem size, especially in terms of

number of function calls. This deficiency is magnified significantly and sometimes

even hinders the application in structural optimization, due to the fact that

structural performance evaluations are to be carried out by time-consuming

finite element analysis. Therefore, efficient algorithms and procedures designed

for pure integer and mixed-integer problems that often occur in the structural

optimization are highly desired.

1.2 Scope and objective of thesis

The objective of this thesis is the development of procedures to efficiently solve

integer and mixed-integer type optimization problems and the investigation of

their applications in structural optimization. Specifically, solution methods for

pure integer nonlinear assignment problem and mixed-integer nonlinear

programming problems are of the interest of this thesis. With the developed

tools, the solutions of three optimization problems in mechanical engineering

world, namely optimal parts allocation problem, stacking sequence optimization

problem in laminate design and simultaneous material selection and size

optimization problem, are discussed.

2

The importance and the generation of a high quality staring point as the trigger of

an optimization procedure are studied. Optimization algorithms to solve

optimization problems are also investigated and improved. Their efficiencies, in

terms of number of function evaluations, are demonstrated through comparisons

with other algorithms with both mathematical and engineering problems. The

presented procedures are also applied on large-scale problems in practice.

1.3 Outline of thesis

In Chapter 2, varieties of optimization problems with integer type design

variables in engineering field are introduced. Literature surveys for the

assignment problem (AP), especially the nonlinear assignment problem (NAP),

mixed integer nonlinear programming problem (MINLP) are presented. Both the

mathematical formulation for each problem and state-of-the-art deterministic

and heuristic algorithms are summarised.

To solve nonlinear assignment problems efficiently, accelerated neighbour search

algorithm and quasi-homogenous linear assignment procedure for generation of

a high quality initial solution are developed in Chapter 3. The effectiveness of the

algorithms and the whole procedure are demonstrated by benchmark test suites.

In Chapter 4, a constraints-directed binary assignment algorithm is developed for

one type of MINLP problem. The performance of the algorithm is compared with

several algorithms with small to medium scale problems.

The developed algorithms are applied to three structural optimization problems

in mechanical engineering. The optimal parts allocation problem for structure

systems and its formulation into a NAP are presented in Chapter 5. The

optimization procedure developed in Chapter 3 is applied to solve this problem.

Comparison of different solution strategies is also discussed.

Chapter 6 focuses on stacking sequence optimization in fibre-reinforced laminate

structure design. The basic theories of composite laminate analysis are

introduced at first. Then the formulation of the problem into a constrained

nonlinear assignment problem is introduced. The optimization method

developed in Chapter 3 is applied to this problem, and a new repair operator is

integrated to accelerate the procedure. The reduction of computational cost is

3

presented by comparison with several heuristic algorithms on small to

medium-scale problems. Finally, the procedure is applied on a large scale

problem and a new concept hybrid-stiffness laminate design problem.

Chapter 7 concentrates on the simultaneous material selection and size

optimization problem in structural lightweight design. The problem is formulated

into a MINLP with binary assignment. The algorithm developed in Chapter 4 is

applied directly. The performance is compared with several algorithms with small

to large scale problems. An application in panel structures design is also

presented.

The thesis is finally summarized in Chapter 8 together with an outlook on

possible further research work.

4

2. State of the art

In this chapter, structural optimization problems that contain integer type design

variables are introduced. General mathematical formulations of the nonlinear

assignment problem and mixed-integer nonlinear optimization problem that are

mainly investigated in this thesis are introduced. Reviews of state-of-the-art

algorithms are presented.

2.1 Structural optimization containing integer and

mixed-integer variables

In a structural optimization formulation, design variables denote parameters that

describe the design of a structure. The optimization problem is defined to find

the optimal values of design variables so that the represented structure achieves

the best performance i.e. the maximal or the minimal objective value under

certain constraints.

The constraints of an optimization problem are composed of two forms. One

common form is the constraint functions, which are limitations that are applied

on the system responses. The other form is constraints on the design variables.

These constraints refer to not only ranges of design variables, but can also refer

to the types of them. In a most general optimization formulation, types of design

variables can be continuous, integer or mixed continuous and integer. The

integer variables can be subdivided to pure integers, which take values of normal

integers, binary integers, which take values of only zero or one, and

quasi-integers, which take discrete sets of decimal values.

The integer type variables provide convenient and straightforward descriptions of

practical problems, and therefore are at least equally important as the

continuous ones if not more. Discrete structural optimization is frequently the

case in practical engineering designs, where the structure parameters are limited

to choose from sets of several specific values [Gutkowski 1994]. Typical examples

are optimization thicknesses of material sheets [Li 2000] and optimization the

discrete plies angles of laminate composites [Gürdal 1999]. Binary encoding is

widely adopted in topology optimization [Bendsoe 2003], where element

5

densities are either zero or one. The binary description is also employed to

represent the selections of materials in the discrete material optimization

[Stegmann 2005]. Normal integers are utilized to describe the quantities of

physical parameters, such as the number of layers in laminate composite [Apalak

2011] or number of reinforcing elements profile of metal matrix composites

[Huber 2010]. In addition, the ordered integers provide natural representations

of sequences and therefore are also utilized in the stacking sequence

optimization of laminate composites [Riche 1993] and in the assembling

procedure optimization [Graves 1983].

Although the advantages of employing integer variables are significant, the

computational difficulties increase greatly after the integer variables are brought

in. Therefore, many branches of mathematical optimization have emerged

focusing on the solutions of specific types of integer optimization problems.

Discrete optimization [Syslo 2006], integer programming [Li 2006], combinatorial

optimizations [Papadimitriou 1998] and assignment problems [Pardalos 2000] are

subsets that mainly investigate pure integer type optimization. Mixed integer

nonlinear programming is another interesting topic [Floudas 1995, Lee 2012]

investigating on solution algorithms for optimizations with both integer and

continuous type design variables.

In this dissertation, the efficient solution procedures for nonlinear assignment

problem and the mixed-integer nonlinear programming problem are mainly

investigated. These two types of problems have important applications in

structural optimization. Three typical examples are optimal parts allocation

problem for structural systems, stacking sequence optimization problem and

simultaneous material selection and size optimization.

2.2 Pure Integer assignment problem

2.2.1 Mathematical formulation

Assignment problem is a type of the most important problems in the field of

combinatorial optimization. The most abstract description of this problem is that:

given two sets of the same size, say set S and T both contain N elements. Find a

6

bijective mapping g: ST, such that the so-called cost function i.e. the objective

function f(g(S)) reaches its minimum or maximum.

For clarity, a small example is given here. Let set S={worker 1, worker 2, worker 3}

and T={job 1, job 2, job3} both contain three elements. A bijective mapping g

from S to T is a plan how to assign the jobs to workers, and here we assume that

each job can be assigned only to one worker and each worker can only take one

job. For example, g could be assign job 1 to worker 1, assign job 3 to worker 2

and assign job 2 to worker 3. The objective function f is the time required to

finish all the jobs under the assignment plan g. The assignment problem here is to

find the best assignment plan g so that f is minimized.

For each such mapping function g, it can be bijective mapped to a N by N binary

square assignment matrix () * +
 , where

 x {
 𝑖𝑓 𝑔(𝑠,𝑖-) 𝑡,𝑗-

 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
 (2.1)

Still takes the above assignment example, then the corresponding assignment

matrix X would be:

 X [

] (2.2)

Due to the bijective properties of g, the following two row-wise and column-wise

assignment constraints must be satisfied:

 ∑

 =

 (𝑖 … 𝑁) (2.3)

 ∑

 =

 (𝑗 … 𝑁) (2.4)

Therefore the problem is that, to find a binary assignemnt matrix X that satisfied

Eq.(2.1), Eq.(2.3) and Eq.(2.4) so that the objective function f(X(S)) reaches its

minimum or maximum.

7

It’s worth pointing out that, in a standard assignment problem formulation, there

is no other constraints except the assignment constraints. Additional constraints

are normally taken into consideration by the penalty method which adds a

penalty term to the objective function if violations of the constraints occur.

2.2.2 Linear assignment problem (LAP)

The problem with a special type of the objective function, i.e. the linear

assignment problem (LAP) has been completely solved mathematically. For this

type of problem, the objective is expressed as:

 𝑓 ∑∑𝑐 ∙

 =

 =

 (2.5)

where the cost coefficients {cij} are given and f is a linear function of entries in X.

The most famous algorithm to solve this problem is the Hungarian algorithm

[Kuhn 1955+ or called Munkres’ assignment algorithm *Munkres, Burkard 2009].

The computational complexity of this algorithm is of a low order polynomial

time O(N3) in the worst case.

2.2.3 Nonlinear assignment problem (NAP)

Generally, the objective function is nonlinear functions of the assignment matrix ,

which is a straightforward extension of LAP. However, to design an algorithm to

solve this type of problems in polynomial time is very difficult.

Actually, it has been proved that the quadratic assignment problem (QAP) where

the objective is a quadratic function of entries in X as shown in the following:

 𝑓 ∑∑∑∑𝑎 ∙ 𝑏𝑘𝑙 ∙ 𝑘 ∙ 𝑙

𝑙=

𝑘=

 =

 =

 (2.6)

and the 3-dimensional assignment problem (3AP) where the objective is a

quadratic function of entries of two assignment matrices:

8

 𝑓 ∑∑∑𝑎 𝑘 ∙ ∙ ̃ 𝑘

𝑘=

 =

 =

 (2.7)

are both NP-hard problems [Sahni 1976, Frieze 1983]. It means that until now no

algorithms could solve these problems or even guarantee of finding a good

enough solution (with some given factor from the optimal solution) in polynomial

time.

2.2.4 State-of-the-art algorithms for NAP

Although there is no proof for other types of nonlinear objective function, it is

logic to think that for even more complicated nonlinear objective functions, the

problems are also NP-hard problems. Since an algorithm to efficiently find the

global optimum are not possible, many deterministic and heuristic algorithms

have been presented to find good enough solutions for general NAPs.

2.2.4.1 Local search or neighbor search based algorithms

Local search or called neighbour search based algorithm is widely applied in

combinatorial optimization problems [Aarts2003]. The flowchart of the

traditional 2-exchange neighbour search algorithm for assignment problems is

illustrated in the following figure.

Xk+1=best of all neighbors

Stop, return solution Xk

F(Xk+1)< F(Xk)?

Evaluate all 2-exchange neighbors

Start from X0, k=0

k=
k+

1

Yes

u

m

No

9

Figure 2-1: Flowchart of traditional 2-exchange neighbour search algorithm

A 2-exchange neighbour of a current solution X is constructed through switching

exactly two rows or two columns of the design matrix. The advantage of this

algorithm is that it ensures the final solution is better than all of its neighbours,

which is at least a local optimum.

The main disadvantages of this algorithm lie in two points: firstly, the number of

function calls of neighbourhood evaluations is quite large which is approximately

N2; secondly, the improvement after each iteration is limited only to assignments

of two elements. On one hand, this can cause that a lot of iterations is required

until the stop criteria is met, on the other hand, it means that the algorithm may

easily got stuck in a local optimal due to its restricted search area in each

iteration.

2.2.4.2 Genetic algorithms (GA)

Genetic algorithms (GA) [Goldberg1989] have also been presented for the

solution of assignment problems. The flowchart of a general genetic algorithm

is depicted in Figure 2-2. In each iteration, new individuals, the so-called children,

are reproduced from the previous population, the so-called parents, through

mutations and crossovers on the parents’ genes. The fitness evaluation refers to

the function evaluations of individuals. The most commonly utilized selection

strategies include Tournament Selection, Roulette Wheel Selction and Uniform

Selection, with which a new generation of population will be chosen from the

individuals.

10

Figure 2-2: Flowchart of GA

To apply the GA to assignment problems, one assignment of size N is usually

represented by a vector of integers from 1 to N (called chromosome) following

the relation:

 ∙ , … - (2.8)

Generally, mutation operators and crossover operators are two ways of

generating new children from parents. Mutation operators randomly change

several genes of one chromosome, and crossover operators interchange the

genes between two or more chromosomes. In assignment problems, both of

these two operators are slightly different due to that the generated new

chromosomes must still satisfy the assignment constraints. To ensure this

limitation is respected, a mutation of the chromosome means swaps randomly

selected two genes in one chromosome.

There are two effective crossover operators that have been presented for

assignment problems: the Gene-Rank Crossover (GR) and the partially mapped

crossover (PMX) [Liu 2000]. The gene-rank crossover firstly calculates the

weighted sum of each gene of the chromosomes that are involved in the

crossover. Then sort the values in ascending order and assign an integer to each

Initial population

Fitness evaluation

Individual selection

Reproduction

 (mutation & crossover)

Stop ?

Final solution

Yes

No

11

gene according to their sequences. An example of applying the GRX on two

chromosomes of size 5 is presented in the following table.

Table 2-1: An example to illustrate the GR

Gene Chromosome1 Chromosome2 Weighted sum
Children

(=Ranking)

1 5 1 2.6 3

2 1 3 2.2 1

3 4 4 4 5

4 2 5 3.8 4

5 3 2 2.4 2

Weighting factor 0.4 0.6 ---- ----

The partially mapped crossover defines four steps to create a child from two

parents by crossover. Firstly, randomly select two breaking position of both

chromosomes of parents. Secondly, the child inherits the middle genes between

two breaking points of the second parent. Thirdly, the child inherits the genes

before the first breaking point and after the second breaking point from the first

parent if no confliction with already inherited genes from the second parent.

Lastly, if there are conflictions, defines mapping relations of conflicted genes and

fill them in the corresponding position of the child utilizing this mapping.

An example of applying the PMX on two chromosomes of size 5 is here described.

The two chromosomes are [1,2,3,4,5] and [5,4,3,2,1]. Firstly, one breaking point

is randomly selected between gene 1 and gene 2 and the other is between gene

3 and gene 4. Secondly, the child inherit the middle part of chromosome 2 i.e.

[*,4,3,*,*]. Thirdly, since the first gene of chromosome 1 is “1” which has no

confliction with “4” and “3” that inherited from chromosome 2, it fills in the first

gene of the child, i.e.[1,4,3,*,*]. In the same way, “5” is filled also in the child, i.e.

[1,4,3,*,5]. Because “4” is already appears in the child, it has a confliction and

therefore can’t be inherited to the child. Lastly, a mapping is defined for this

confliction: “4” is at the second gene of the chromosome 2. The second gene of

chromosome 1 is “2” which has no confliction of all already fixed genes of the

child, therefore it is filled into the child, and the child generated by this crossover

operator finally is [1,4,3,2,5]. The following flowchart depicts the entire

procedure.

12

Figure 2-3: An example to illustrate the work flow of partially mapped crossover

2.2.4.3 Permutation discrete particle swarm optimization

algorithm (PDPSO)

Particle swarm optimization algorithm imitates the swarm behaviour of birds or

fish in searching for food. Permutation discrete particle swarm optimization

(PDPSO) [Salman 2002] is a derivative of PSO, which has been modified to suit the

nature of assignment problems. And it achieves success in the stacking sequence

optimization problems that will be presented later.

The following figure depicts the flow chart of a general PSO algorithm. Firstly, at

starting positions of individuals among a swarm, the velocity of each individual

(i.e. the direction of flying or swimming in the next step) is calculated. Then the

positions of them are updated respectively. Finally, the fitness of each new

position (i.e. the distance from food) is evaluated. The iterative procedure stops

until one of the stopping criteria is met.

Chromosome 1 Chromosome 2

[1,2,3,4,5] [5,4,3,2,1]

Step 1: two break points

[1|2,3|4,5] [5|4,3|2,1]

Step 2: inherits from chromosome 2: [*|4,3|*,*]

Step 3: inherits from chromosome 1: [1|4,3|*,5]

Step 4: mapping Chromosome 1 [1,2,3,4,5]

Chromosome 2 [5,4,3,2,1]

Child [1,4,3,2,5]

13

Figure 2-4: Flowchart of Particle swarm optimization algorithm

The velocity vector of individual i in the iteration k can be defined as:

 (

) (

) (2.2)

Where are acceleration factors,
 is the velocity of individual i in

the k-1 iteration,
 is the best position vector that individual i has ever

reached in the previous iterations, and
 is the best position vector of all the

individuals in the last iteration.

The positions update straightforwardly following the relation:

 (2.3)

To apply in the assignment problems, there are several limitations similar as

those met in GA. Firstly, the entries of the velocity vector must be all integers.

Secondly, the addition operator must be properly defined so that the updated

position vectors satisfy the assignment constraints. For this purpose, the subtract

Final solution

Initial position of swarm

Position update

Fitness evaluation

Velocity calculation

Stop?

Yes

No

14

operator, the scalar product operator and the addition operator are redefined in

PDPSO [Chang 2010]. The subtract operator is defined as:

 {
 x

 x

 x

(2.4)

The scalar product operator is defined as:

 ∙

 {
 ()

(2.5)

In which rand1(j) is a uniformly distributed random number for element j.

The addition operator for velocity vectors is defined as:

 ∑

 =

 𝑟𝑎𝑛𝑑 (𝑗)

(2.6)

In which rand2(j) is another uniformly distributed random number in the range of

(0,1) for element j.

The addition operator for velocity vector and the position vector is defined as:

 (2.7)

In which, x
 x

 if . And otherwise, search k such that x
 ,

and swap x
 and x

 to get . This operator is illustrated with an

example in the following.

15

Figure 2-5: An example to illustrate the definition of addition between position

and velocity

2.2.4.4 Other heuristic algorithms

Several heuristic algorithms, such as greedy randomized adaptive search (GRASP)

[Feo1991], simulated annealing [Dowsland 1993, Kirkpatrick1983], ant systems

[Tsutsui 2007] and Tabu search [Glover 1997] have been developed based on the

traditional neighbour search strategy to improve the quality of its solution. They

have been applied to practical problems such as travelling salesman problems.

One of the most important characteristics of these algorithms is that the price of

the improvement of the solution quality always comes along with more number

of function calls. As the size of the problem increases, the design space for

assignment problems i.e. the total number of combinations increases in a

factorial way. Therefore, it becomes much more difficult to generate

representative high quality individuals heuristically. Hence they are shown to be

limited in solving assignment problems with time-consuming function evaluations

like finite element analysis.

2.2.4.5 Discussion on good starting points

The starting points or a starting point has significant influence on the efficiency of
above mentioned algorithms. A higher quality trigger will reduce the number of

Xold=[1,3,2,4,5] V=[5,4,0,0,1]

X=[5,3,2,4,1]

X=[5,4,2,3,1]

X=[5,4,2,3,1]

X=[5,4,2,3,1]

X=[5,4,2,3,1]

(Step1: swap “1” and “5”)

Step2: swap “3” and “4”

+

Step3: +0, nothing

change

Step4: +0, nothing

change

Step5: swap “1” and “1”

http://link.springer.com/search?facet-author=%22Shigeyoshi+Tsutsui%22

16

iterations, thus will significantly reduce overall computational costs. There are

several ways to construct a starting point, for instance, by taking the identity
permutation, a randomly generated permutation, or a heuristically determined

starting point [Pardalos2000+. For the first two methods, they don’t include any
consideration of a specific problem, so there is no reason to take them as a good
starting point. To heuristically determine a high quality starting point, additional

information is needed. This information comes from either sophisticated
engineering experience, which will not be discussed in this thesis, or delicately

designed procedure for direction to a good point. The efficiency of these
different strategies in selection of the starting point will be compared through
examples in later chapters.

2.2.5 Applications

The assignment problems are most presented in the field of operation research.

Travelling salesman, scheduling are typical applications that are widely studied.
The application of the assignment problem in engineering is found in turbine fan

balancing problems. The optimal parts allocation problem and the stacking
sequence optimization of laminate material design which will be discussed in this

thesis are several important application examples.

2.3 Mixed-integer nonlinear programming (MINLP)

2.3.1 Mathematical formulation

Different to the problems discussed in section 2.2, where all the design variables

are integers, the mixed-integer optimization problems where design variables

contain both integer and continuous types are introduced in this section. The

most general formulation of this kind of problem is:

 𝑓(𝒙 𝒚)

(2.8)

 . .: 𝑕 (𝒙 𝒚) 𝑖 … P

 𝑔 (𝒙 𝒚) j=1,2,…,Q

 𝒙 𝑿 ⊆ 𝓩

 𝒚 𝒀 ⊆ 𝓡𝑀

The type of integer variables could be categorized as: binary integer, pure integer,

pseudo-integer and categorial integer. Binary integers take the value of 0 or 1,

17

which are often used to represent answers for “yes” or “no” questions, like “Is

the component is to be made out of steel?” Pure integers represent the number

of physical quantities, like “how many layers does the composite material

contain?” Pseudo-integers take the same as pure integers, but the value doesn’t

have direct meaning and need to be physically explained according to real

problems. For example, a pseudo-integer takes value of 1 to 3 may mean that the

thickness of a panel sheet is 1.5mm, 2mm or 2.5 mm. Categorial integers are

introduced to represent different situations. For example, the shape of the

cross-section area of a tube could be represented by 1-circular, 2-square,

3-triangular. The change of the value leads to a completely different category and

thus may lead to significantly different responses.

Integer variables could provide a straightforward way of mathematical modelling

of practical optimization problems. However, on the other hand, the existence of

integer variables makes the solution procedure much more complicated. Most of

the gradient-based algorithms can’t be directly employed unless the gradients

with respect to integer variables are properly defined. What’s more, optimality

criteria for continuous optimization often fail at the optimum for mixed-integer

problems. The lack of optimality criteria makes the design of optimization

algorithms more difficult. Actually, it has been proved that the mixed-integer

linear programming problem (MILP), where the objective function and the

constraints in Eq.(2.14) are all linear functions with respect to both continuous

and integer variables, is NP-complete problems [Vavasis 1991], which means that

there is no polynomial time algorithms for this type of problem. It is even more

complicated when the system responses are nonlinear.

2.3.2 State-of-the-art algorithms for MINLP

The scientific endeavour of developing algorithms for general MINLP problems

have been and is being made. An excellent overview of the algorithms has been

presented by Floudas [Floudas 1995, Bonami 2008]. In this section, four most

important algorithms i.e. Branch and Bound algorithm [Gupta 1985],

Outer-Approximation algorithm [Duran 1986], OA-based Branch and Cut

algorithm [Quesada 1992] and MISQP algorithm [Schittkowski 2006] will be

detailed introduced.

18

2.3.2.1 Branch and bound algorithm

The idea of branch and bound algorithm is to utilize the sophisticated

optimization tools in continuous optimization to find the lower bound of the

optimization problem. At the same time, find feasible solutions to reduce the

upper bound of the problem. As the algorithm proceeds, the lower bound is

increased and the upper bound is decreased. The procedure continues until the

lower bound is equal to the upper bound and thus the corresponding feasible

solution is the optimum of the problem.

In detail, the branch and bound algorithm first relax the integrality restrictions on

integer variables to form a continuous-relaxed nonlinear programming problem

(RNLP). The optimal solution to this problem forms a lower bound of the original

problem.

And then, a branch regarding one of the integer variables is carried out. It breaks

the RNLP further into two RNLPs with an additional constraint on the design

domain of the selected integer variable. An example is illustrated in Figure 2-6.

There are different strategies to select the branching variables. A basic rule is that

the selected variable should take non-integer values in the continuous optimizer.

Figure 2-6: An example of branch in the Branch and Bound algorithm

By solving the two new RNLPs, better lower bound may be obtained. The

iterative procedure will generate a binary tree structure from the

continuous-relaxation of the original problem without any additional constraints.

For each node in the tree, it is a RNLP with additional design domain constraints.

As the depth of the nodes in the tree gets deeper, more and more additional

constraints will be added.

RNLP with integer x1, x2 and continuous y

Optimizer x1
*=0.5, x2

=1.0, y=0.9

RNLP with integer x1, x2 and

continuous y

And an additional constraint:

x1<=0

RNLP with integer x1, x2 and

continuous y

And an additional constraint:

x1>=1

branch w.r.t. x1

19

A node will stop branch if any of the following three conditions is met, which is

called pruning conditions or fathoming criteria:

(1) Pruning by integrality: the optimal solution of the RNLP is a feasible solution

which satisfies all the constraints and integrality limitations on design

variables. In this case, the objective value is a upper bound of the original

problem.

(2) Pruning by bounds: The objective value of the optimal solution is larger than

the upper bound of the original problem.

(3) Pruning by infeasibility: The RNLP is infeasible.

A flowchart of the general branch and bound algorithm is depicted in the

following figure.

The computational cost for branch and bound algorithm is large from the two

points of view: firstly, for each RNLP, it needs a full solution of the nonlinear

programming problem of the same size as the original problem. Secondly, at each

branching, two RNLP will be generated with respect to one integer variables.

Therefore, the number of nodes, i.e. the number of RNLP to be solved, could

grow exponentially as the depth of the branching tree grows. This is a significant

disadvantage for a problem with large number of integer design variables.

20

Figure 2-7: Flowchart of Branch and bound algorithm

2.3.2.2 Outer-approximation algorithm (OA)

Outer-approximation algorithm is a method based on linearization of the

nonlinear objective and inequality constraints to assist the solution of MINLP

problem through a series of mixed-integer linear programming problems

[Fletcher 1994, Akrotirianakis 2001].

An outer-approximation of the MINLP problem stated in Eq.(2.16) without

equality constraints at point (𝒙̅ 𝒚̅) is:

Go to a RNLPk node

(𝒙̅𝑘, 𝒚̅𝑘) be the optimal, and 𝑘 (𝒙̅𝑘, 𝒚̅𝑘)

RNLPk feasible?

 𝑘 UB ?

 𝒙̅𝑘 𝑿 ⊆ 𝓩

LB=max { 𝑘 }, and branch:

RNLPk+1
1: RNLPk + x ⌊x̅

 ⌋

RNLPk+1
2: RNLPk + x ⌈x̅

 ⌉

k=k+1

UB = 𝑘, UB-LB < ?

Stop, optimizer = (𝒙̅𝑘, 𝒚̅𝑘)

UB=+ ; LB=- ; k=0;

convergence tolerance

Yes

Yes

Yes

No

Yes

No

No

No

21

(2.9)

 . . : ∇ (
𝒙 𝒙̅
𝒚 𝒚̅

) 𝑓(𝒙̅ 𝒚̅)

 ∇
 (
𝒙 𝒙̅
𝒚 𝒚̅

) (𝒙̅ 𝒚̅) , j=1,2,…,Q

 𝒙 𝑿 ⊆ 𝓩

 𝒚 𝒀 ⊆ 𝓡𝑀

The left sides of both equations are called linearization of the nonlinear problem.

They are obtained through the first order Taylor expansion of multivariable

functions, and are linear functions of design variables. Thus the above problem is

a MILP problem and could be solved by branch and bound algorithm.

The solution of the outer-approximation problem is quite efficient from the

number of system responses evaluations point of view. To establish the OA,

gradients of the objective and constraints functions are needed to be evaluated,

which requires (1+Q)(N+M) number of function calls when finite differencing

method is employed, or 1+Q number of function calls if efficient semi-analytical

techniques are employed. Once the OA is generated, the problem is expressed as

a pure mathematical problem and there is no need for further system evaluation

like finite element analysis. Therefore, this method is more appropriate to apply

on structural optimization problems.

A flowchart of the outer-approximation algorithm is depicted in Figure 2-8. The

algorithm first attempts to find the integer part from solving the

outer-approximation MILP problem, whose solution is a lower bound the original

problem. And then, by fixing the integer part, a NLP problem is solved to

generate a feasible solution of the original problem as a upper bound. When the

lower bound and upper bound come together, an optimum is found.

It should be noted that, the algorithm is named outer-approximation because if

the objective and constraints are all convex function, then the feasible region of

the linearized problem is an outer hull and thus contains the entire feasible

domain of the original problem. Therefore, this algorithm is designed to solve

convex optimization problems. For non-convex problems, which is always the

case in structural optimization, the performance of the algorithm is not

guaranteed.

The computational cost of this algorithm is dominated by the gradient evaluation

to generate OA and the solution of NLP problem with only continuous design

22

variables. As the points set increases, the generated OA is closer to the original

problem. And thus the optimal solution of the OA will also be close enough to the

solution of the original problem. Therefore, the problem of this algorithm is that

it often requires many iterations to establish a large enough point set, on which

the OA will be generated.

Figure 2-8: Flowchart of Outer-approximation algorithm

2.3.2.3 OA based branch and cut algorithm

As discussed earlier, the computational cost for branch and bound comes from

the solution of NLP at a large number of nodes. The NLP problem could be

mitigated by outer-approximation method which utilizes the linearization

technique to transfer the nonlinear problems into successive linear problems.

If the feasible region of the relaxed problems could further be reduced, then

there will be more nodes be pruned due to infeasibility, which means that

Solve the RNLP of original problem, (𝒙 𝑘, 𝒚 𝑘)

be the optimal, LB=f(𝒙 𝑘, 𝒚 𝑘)

T=T (𝒙 𝑘, 𝒚 𝑘), k=k+1

Generate OA at point set T, (𝒙̅𝑘, 𝒚̅𝑘) be the

optimal, and 𝑘 (𝒙̅𝑘, 𝒚̅𝑘), LB= 𝑘

Solve original problem with integers fixed to 𝒙̅𝑘

(𝒙 𝑘, 𝒚 𝑘) be the optimum, 𝑘 (𝒙 𝑘 𝒚 𝑘),

UB=min {UB, 𝑘}

Stop, optimizer = (𝒙 𝑘, 𝒚 𝑘)

UB=+ ; LB=- ; k=0; point set T= ;

convergence tolerance

Yes

UB-LB < ?
No

23

number of nodes to be solved will be reduced. Cutting plane method is one of

such methods that have been investigated since 1958 [Gomory 1958, Westerlund

1995, Stubbs 1999]. It gradually introduces additional constraints called cuts on

to the continuous relaxation problem to help exclude the integer solutions that

lead to infeasibility.

Therefore, a combination of the B&B, OA and cutting planes would lead to a

better way of solution. The flowchart of the OA based branch and cut algorithm is

presented in the following [Quesada 1992].

Figure 2-9: OA based Branch and Cut algorithm

 𝑘 UB ?

LB=max { 𝑘 }, and branch:

ROAk+1
1: ROAk + x ⌊x̅

 ⌋

ROAk+1
2: ROAk + x ⌈x̅

 ⌉

k=k+1

UB = 𝑘, UB-LB < ?

Stop, optimizer = (𝒙̅𝑘, 𝒚̅𝑘)

UB=+ ; LB=- ; k=0; point set T= ;

convergence tolerance

Yes

No

Yes

Solve the RNLP of original problem, (𝒙 𝑘, 𝒚 𝑘)

be the optimal, LB=f(𝒙 𝑘, 𝒚 𝑘)

T=T (𝒙 𝑘, 𝒚 𝑘), k=k+1

OA at point set T with continuous relaxation

and cutting planes, (𝒙̅𝑘, 𝒚̅𝑘) be the optimal, and

 𝑘 (𝒙̅𝑘, 𝒚̅𝑘), LB= 𝑘

Solve original problem with integers fixed to

𝒙̅𝑘

(𝒙 𝑘, 𝒚 𝑘) be the optimal, 𝑘 (𝒙 𝑘 𝒚 𝑘),

UB=min {UB, 𝑘}

 𝒙̅𝑘 𝑿 ⊆ 𝓩

Yes No

No

24

It is worth to mention that, the relaxed outer-approximation problem is actually a

linear programming problem. Therefore, it is fairly easy to solve.

2.3.2.4 Trust region sequential quadratic programming

algorithm (MISQP)

Schittkowski has proposed a trust region sequential quadratic programming

algorithm [Schittkowski 2006]. The algorithm iteratively establishes a quadratic

optimization problem, to approximate the original general nonlinear problem.

The objective function of the quadratic programming is a convex and quadratic

function of the design variables, and is built up based on the Hessian matrix and

gradient vector at the solution point of the previous iteration. The increment of

the solution in each iteration is restricted within a trust region which centered at

current solution to improve the stability of the algorithm and to enforce

convergence. The Flowchart of the algorithm is depicted in the following.

Figure 2-10: Flowchart of MISQP algorithm

Form and solve quadratic programming

(QP) to get (𝒙, 𝒚)

Choose step size according to trust

region strategies

 𝒚𝑘 𝒚𝑘 𝒚

Update solution: 𝒙𝑘 𝒙𝑘 𝒙

Update hessian matrix 𝑘

Convergence?

Return solution (𝒙𝑘, 𝒚𝑘)

Yes

Given (𝒙 , 𝒚), k=0,

No

k=k+1

25

The quadratic approximation of the original mixed integer problem is formulated

as :

(
 𝒙
 𝒚
)

 𝑘 (
 𝒙
 𝒚
) ∇𝑓(𝒙𝑘 𝒚𝑘) (

 𝒙
 𝒚
)

(2.10)
 . . : |∇

 (
 𝒙
 𝒚
) (𝒙

𝑘 𝒚𝑘)| , i=1,2,…,P

 ∇
 (
 𝒙
 𝒚
) (𝒙

𝑘 𝒚𝑘) , j=1,2,…,Q

 x(𝒙 𝑘
) 𝒙 (𝒙 𝑘

)

 x(𝒚 𝑘
) 𝒚 (𝒚 𝑘

)

, where 𝑘
 𝑘

 and are trust region parameters.

The gradients respect to integer variables are approximated with finite

differencing at grid point. The inequality constraints with absolute value is

derived from the equality constraint of the original problem, and the inequality

constraints without absolute value come from original inequality constraints and

the region parameters.

The algorithm requires no requirement on the relaxability of integer variables.

Since it approximate the gradient with finite differencing, therefore, it is assumed

that responses values do not change drastically when an integer value changes.

The algorithm has been compared with several other MINLP solvers and shows a

lot success in solving general MINLP benchmark test suites [Schittkowski 2013]

and a lot reduction on the computational costs. But the applicability of this

algorithm into mechanical engineering optimization, where the change of integer

value may lead to significant change in system responses, is still need to be

investigated.

2.3.3 Applications

Several applications of MINLP programming in structural engineering have been

presented, including the discrete material optimization and free material

optimization [Stegmann 2005, Lehmann 2013]. A genetic algorithm has been

applied on the material selection optimizations with data mining [Huber 2010].

26

2.4 Criteria for evaluation and comparison of algorithms

In the mathematical optimization world, the focuses of evaluation of algorithms

for solving above problems are mostly on the ability to find the global optimum

with as few number of function calls as possible.

In the structural engineering world, the system responses are usually evaluated

through finite element analysis and thus function evaluations are much more

time-consuming. It is reasonable to assume that the function evaluations

dominate the computational cost in the whole optimization procedures.

Therefore, the number of function evaluations should be practically come first as

the most important criterion before the quality of the solution when algorithms

are compared. An applicable algorithm should be able to find an improved

solution within acceptable function calls.

27

3. An efficient procedure for solving nonlinear

assignment problems

In this section, a procedure for solving nonlinear assignment problems is
developed. Firstly, a linear assignment problem based starting point generation

procedure is presented. Then an accelerated neighbor search algorithm is
defined. The effective of the procedure is demonstrated through the solution of

benchmark QAPLIB problems.

3.1 Linear assignment problem based starting point

generation

In this section, a linear assignment problem (LAP) based deterministic procedure

to generate a starting point is developed in the following. Staring from the

nondiscriminatory assignment matrix Xs, where all the entries are equal to 1/N,

where N is the size of the assignment problem, partial derivatives of objective

function to {xij} are evaluated. A linear assignment problem is then established
with these derivatives as the coefficient matrix. The solution of the LAP problem

is then taken as the initial solution.

Figure 3-1: Procedure of initial solution generation

Start from XS, where
 𝑁

Initial solution: {
 }

𝑐 𝑓 𝑓

For i,j=1,2,…,N, evaluate:

 ∑ ∑ 𝑐

Solve linear assignment problem:

28

Clearly, if the problem is actually a linear assignment type problem as in Section

5.3, the initial solution is just the global optimal as desired.

3.2 Accelerated neighbor search algorithm

As stated in Section 2.2.4.1, the traditional neighbor search algorithm suffers
from the problem of low speed on the improvement of design variables, and also
suffers from the large computational costs of neighborhood evaluations. How to

fully utilize the information obtained in neighborhood evaluation so as to create
solutions that may change multiple design variables at the same time is a

potential direction of improving the performance of the neighbor search

algorithm.

Following this idea, an accelerated neighbor search algorithm is developed. The
flowchart of the algorithm is depicted in Figure 3-2.

Figure 3-2: Accelerated neighbour search algorithm

Different to the traditional 2-exchange local search algorithm, a LAP problem is

established after all neighbors are evaluated, where the coefficient matrix * +

of the LAP is calculated as follows:

Xk+1=best{neighbors, XLAP}

Stop, return solution Xk

F(Xk+1)< F(Xk)?

Solve the LAP problem with

coefficient matrix C  XLAP

Evaluate all 2-exchange neighbors

to get C={cij}N×N

Start from X0, k=0

k=
k+

1

Yes

No

29

 (()) () (3.1)

 where (∙) is 2-exchange transformation function by which the (i,j) entry of

the new design matrix () is equal to 1 through one time two entries

exchange of X.

The solution of LAP is compared with all the neighbors, and the best one is

selected as the result of the current iteration. This improvement provides a

possibility to change more than two entries of the assignment matrix in a single

iteration, while the increasing of number of function evaluation is only 1.

3.3 Computational complexity analysis

In generating the initial solution, one time function evaluation is required to

calculate each partial derivate by finite difference method. The solution of LAP

problem requires no objective evaluation. Therefore, 𝑁 function
evaluation is needed in this step, where 1 refers to the evaluation of the obtained

initial solution.

In each iteration, every 2-exchange neighbor requires one time function

evaluation, which means
 𝑁(𝑁) function evaluations are needed.

The evaluation of LAP result needs an additional one time evaluation. Therefore,

the number of function evaluation is 𝑁(𝑁) +1.

It concludes that the total number of function evaluation of the procedure is:

 𝑁
 [

𝑁(𝑁)

] ∙ 𝑛 𝑜𝑛 (3.2)

3.4 Test results on Quadratic Assignment Problem Library

(QAPLIB)

In this section, the presented optimization procedure is applied on a library of the

quadratic assignment problems to demonstrate its applicability and limitations in
solving NAP problems. Meanwhile, the computational cost and the effects of the

acceleration technique are discussed.

30

3.4.1 Test suites and numerical results

QAPLIB is a library of the quadratic assignment problems that is firstly published

in 1991 [Burkard 1997], which provides a unified test suite for QAP. It contains
133 mathematical QAP problems of size from 10 to 256. To demonstrate the
developed optimization procedure is applicable to solve nonlinear assignment

problems, it is applied onto this test suite. The objective of the found solution is
compared with the global optimum or the best solution so far reported in QAPLIB.

The largest 11 problems that of size above 100 are listed in the following table,
and the detailed results of all the problems are presented in Appendix A.1

Table 3-1: Results of the largest 11 problems in QAPLIB

Problem Size QAPLIB_opt Found_opt Error(%) Ite FuncEva

tai100b 100 1185996137 1200605210 1.23 34 178336

wil100 100 273038 274946 0.70 35 183287

sko100a 100 152002 155898 2.56 33 173385

sko100b 100 153890 156136 1.46 40 208042

sko100c 100 147862 150234 1.60 34 178336

sko100d 100 149576 151860 1.53 34 178336

sko100e 100 149150 153048 2.61 27 143679

sko100f 100 149036 151062 1.36 30 158532

tai150b 150 498896643 509220418 2.07 54 626006

tho150 150 8133398 8293640 1.97 52 603654

tai256c 256 44759294 44879440 0.27 72 2415690

In the following table, the number of problems that can be solved with a relative

objective difference less than the specific error levels is presented.

Table 3-2: Problems that are solved with different error levels

Error level (%) Solved Problem (accumulated)

0 17

<1 57

<5 82

<10 106

<20 117

It shows that the developed procedure is not able to find the global optimal of
the nonlinear assignment problems for most of the problems. But it is able to find

a high quality solution which is close to the global or best found ones in the
measure of relative error for 82 problems which is over 62% of the total

problems.

31

3.4.2 Computational cost analysis

In Section 3.3, the computational complexity of the procedure has been

discussed. The only vague point in Eq.(3.2) is the number of iterations. It is
common sense to say more iteration will be needed for a larger size of problem.

To quantify the relation, pairs of the size of problems (N) and the number of

iterations needed (Ite) are scattered by circled dot in 错误!未找到引用源。. A
linear regression in the least-squares sense results in a relation:

 . ∙ . (3.3)

While a second degree polynomial curve fitting results in:

 . ∙ . ∙ . (3.4)

The coefficient of the second-order term is approximately zero, which shows a

linear relation between the number of iteration and the size of a problem as in

Eq.(3.3) is proper. The relation is depicted also in 错误!未找到引用源。 with a

straight red line.

Figure 3-3: Number of iteration V.S. size of problem

Thus the total number of function evaluations is:

 𝑁
 [

𝑁(𝑁)

] ∙ 𝑁 ∙ (. 𝑁 .) (𝑁) (3.5)

0 50 100 150 200 250 300
0

20

40

60

80

100

size of problem

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n

32

It proves that the developed procedure of third-order polynomial time

complexity.

3.4.3 Effects of the developed acceleration technique through

comparison with a traditional neighbor-search algorithm

To demonstrate the advantage of the acceleration technique that developed in
Section 3.2, a comparison is made between the results of traditional

neighbor-search and the accelerated neighbor-search method. They both start
from the starting points generated in Section 3.1.

Table 3-3: Results of the largest 11 problems in QAPLIB

Problem
ANS NS

Error(%) Ite FuncEva Error(%) Ite FuncEva

tai100b 1.23 34 178336 4.04 121 608952

wil100 0.70 35 183287 1.14 103 519852

sko100a 2.56 33 173385 2.71 94 475302

sko100b 1.46 40 208042 1.91 132 663402

sko100c 1.60 34 178336 1.99 106 534702

sko100d 1.53 34 178336 1.64 131 658452

sko100e 2.61 27 143679 2.47 96 485202

sko100f 1.36 30 158532 1.49 119 599052

tai150b 2.07 54 626006 3.23 208 2346902

tho150 1.97 52 603654 2.58 166 1877552

tai256c 0.27 72 2415690 0.45 69 2317698

From the quality of solution point of view, the table shows that the ANS is able to
reduce the relative error of the final solutions. It means that the solution of LAP
which is formed by the linear approximation of the neighborhood structure helps
to jump out of local optima.

From the computational cost point of view, it is obvious to see that the

acceleration technique can largely reduce the number of iterations required and

converge to a final solution much quicker.

In the following figure, the number of iterations for both NS and ANS methods for
each test problem is depicted. The linear fitting lines are also presented. For the
traditional NS method, the number of iterations approximately following the

equation:

 . ∙ . (3.6)

33

Figure 3-4: Linear regression of number of iteration with size of problem

Therefore, roughly speaking, the number of iteration could be reduced by over

60% with the acceleration technique.

0 50 100 150 200 250 300
0

50

100

150

200

250

size of problem

n
u

m
b

e
r

 o
f

 I
te

ra
ti
o

n

scatter NS

scatter ANS

Regression line NS

Regression line ANS

slope=0.31

slope=0.80

34

4. An efficient algorithm for MINLP with binary

assignment

In this chapter, an algorithm is developed for MINLP problem with binary
assignment. The general formulation of this type of problem is introduced at first,
and then the algorithm is presented followed by computational cost analysis and

demonstration with small-scale examples.

4.1 MINLP with binary assignment

The binary assignment here refers to a MINLP problem with only binary-type

integer variables and as the same time, there are assignment constraints on

these binaries. The general formulation of such problems is:

 𝑓(𝒙)

(4.1)
 . . : 𝑔 (𝒙) i=1,2,…,P

 ⊆ * +𝑀1 𝑀2 ⋯ 𝑀𝑁

 𝒙 𝑿 ⊆ 𝓡𝑆

where the binary variables are organized into N groups, and for each group, a
binary assignment constraint should be satisfied:

 ∑𝑏

𝑀𝑖

 =

 (𝑖 … 𝑁) (4.2)

The formulation of the integer part of this problem is somehow similar to
previously discussed assignment problems. However, it differs in two points:
firstly, the number of binary variables in each group may be different. Secondly,

there is only row-wise assignment constraints (i.e. constraints on variables of the
same group), and no column-wise assignment constraints (i.e. constraints on

variables across different groups).

4.2 Constraints-directed binary assignment algorithm

To solve the MINLP problems, a constraints-directed binary assignment algorithm
as depicted in Figure 4-1 is developed. The algorithm aims at reducing the

number of function evaluations while obtaining a good quality result.

35

Initially, the algorithm starts from the point where binaries occur in the same

equality constraints are equal. At the first step, the binary part is fixed, and a
nonlinear programming problem is solved to get a continuous part solution.

Then at step 2, a series of new problems are solved. In each of these new
problems, one and only one of the binary variables is changed either from 0 to 1
or from a fractional number to 1. The other binary variables are properly

adjusted so that the assignment constraints still hold. The “corresponding”
continuous variables to these binaries whose value are changed are also adjusted

correspondingly so that the objective value doesn’t change. The constraints
violation of each solution of these new problems is measured.

The word “corresponding” here refers to the continuous variables that occur in

the same terms with the binary variables in the objective function. For instance,

in the objective function, if the terms f1(b1)f2(x1)+f3(b2)f4(x2) exist, where f1~f4 are
general functions, then x1 is a corresponding continuous variable of b1 and so is x2

to b2. If the term f1(b1)f2(x1,x2) exists, then both x1 and x2 are corresponding
variables to b1. Normally, if there is only one corresponding continuous variables,

then the solution for each of the new problem in step 2 is unique, and the
constraints violation is defined as the maximum value of all the inequality

constraints at the solution point. If there is more than one corresponding

variables, then the solutions would be numerous on a super surface, and the

constraints violation is defined as the least constraints violation among all

solutions.

At step 3, one binary variable among the variables in a same equality constraints

is selected to be set to 1 with the others are set to 0. This variable is chosen as it
has the minimum constraints violations in step 2 comparing to others binaries

belong to the same group.

If the integer part is unchanged after step 2 and step 3, then the procedure will

stop. Otherwise, a nonlinear programming will be solved with the fixed new
binary values. If the objective of the new optimal solution is larger than previous
iteration, the procedure also stops. In a straightforward way to speak, the
procedure moves to the next iteration only when the integer variables are

changed and lead to a better solution.

36

Figure 4-1: Procedure to generate initial solution for the problem

It should be noted that, this algorithm requires the objective and constraints are

continuous functions of both continuous and binary design variables. Under the
continuity of objective and constraints functions, the evaluation with
continuous-relaxed binary variables is mathematically meaningful in Step 1.
Without this condition, the evaluation of design points with fractional value may

Step 0: k=0

Assign Bk with bij=1/Mi for binary variables, xc=(Lc+Uc)/2 for continuous ones

Step 1: fix Bk, and solve the nonlinear programming problem:

Min: fB
k(x) (Li≤xi≤Ui)

S.t.: gB
k (x)≤0

Denote the solution by xk, and fk=f(Bk,xk)

Step 2:

For i=1 to N

 For j=1 to Mi

 assign bij=1 and bir=0 for r≠j, while keeps other binary variables unchanged

 adjust corresponding continuous variables, such that f(B,x)=f0

denote dij=minx{maxp{gp(B,x)}}

Step 3:

For i=1 to N

 find j such that dij=min{diq}q=1:Mi

 assign bij=1 and biq=0 for q≠j

Denote Bk+1= {bij}

Bk+1=Bk?

Step 4 : fix Bk+1, and solve the nonlinear programming problem:

Min: fB
k+1(x) (Li≤xi≤Ui)

S.t.: gB
k+1 (x)≤0

Denote the solution by xk+1, and fk+1=f(Bk+1,xk+1)

fk+1<fk?

Return (Bk,xk) as solution

Yes

e

Yes

e

No

e

No

e

37

not be possible. Although this restriction limits the applicability of developed

algorithms, most of practical problems in the real world are fit into this category
actually.

4.3 Computational complexity analysis

In step 1, the procedure requires one time solution of a nonlinear programming
problem. In step 2 of each iteration, one time constraints evaluation is required

for each pair of (i,j), therefore ∑ function evaluations are needed. And in
step 4, one time solution of a nonlinear programming problem is carried out. The

total number of computational cost of the procedure is
solution of nonlinear programming problem with N continuous variables plus
∑ ∙ constraints evaluations.

4.4 Benchmark mathematical examples and comparison of

several different algorithms

The performance of the designed algorithm is evaluated firstly with mathematical

examples in this section.

In the first example, N=1, M=5, B=(b1j) {0,1}1×5, . The objective

function is:

 min (x) (. ) ∙ x (4.3)

The row-wise assignment constraint:

 ∑

 =

 (4.4)

And an inequality constraint:

 x ∙ () (4.5)

The global optimal of the problem could be obtained by enumerate all possible

value of where only one entry equals to 1 and others equals to 0. The global
optimal is reached at b13=1 , x=3.7106, with the objective of 16.70.

By applying developed procedure on this problem, firstly a linear programming
problem is to be solved:

 min (x) . x (4.6)

38

 s.t. . x (4.7)

, where the optimal is . with 𝑓 . . In step 2, the binary
variables are changed with their results listed in following Table 4-1.

Table 4-1: Results of the demonstration example at step 2

 b11=1 b12=1 b13=1 b14=1 b15=1

xadjusted 13.42 4.62 8.05 4.07 20.13

f0 36.24 36.24 36.24 36.24 36.24

d1i 80.51 915 -2341 803 -2228

d11, d12 and d14 is larger than zero. It means that if the objective is kept unchanged,
the corresponding solutions violate the constraint. The third and the fifth results

show that while keeping the objective the same, feasible solutions could be

found by adjusting the continuous variable. In addition, since d13<d15, which could
be imagined as an evidence that the third result lies farther away from the
boundary of the feasible domain, and thus it has larger potential to improve the

objective than the fifth one. Therefore in Step 3, b13=1 is obtained. With this
binary assignment, in step 4, the following linear programming problem is to be

solved:

 min () . x (4.8)

 s.t. x (4.9)

The optimal is x≈3.7106 with objective 16.70. Since it is less than f0, the

algorithm returns to Step 2 to start a new iteration. And the results are listed in

Table 4-2.

Table 4-2: Results of step 2 in new iteration

 b11=1 b12=1 b13=1 b14=1 b15=1

xadjusted 6.18 2.13 3.71 1.88 9.28

f0 16.70 16.70 16.70 16.70 16.70

d1i 1116 1500 0 1448 51.95

Since the all the other selection of binary variables lead to infeasible solutions,
the result of obtained in step 3 is still b13=1 which equals to the previous iteration.

Thus one of the stopping criteria is met and returns the final solution with b13=1,

x=3.7106. This result is just the global optimal of the problem.

In a second example, the other conditions are the same as the first one, except

that the inequality constraint is more highly nonlinear:

 ∙ (x
 x

 x
 x

 x)
 (4.10)

39

The global optimal of the problem could be also obtained by enumerate all

possible value of B. The global optimal is b15=1, x=2.675 with the objective of
4.814.

The solution of nonlinear programming problem is carried out SQP algorithm
provided by MATLAB. The comparison with state of the art deterministic mixed
integer sequential quadratic programming algorithm (MISQP), OA based branch

and cut algorithm, branch and bound algorithm is presented in Table 4-3.

Table 4-3: Results of different algorithms

Algorithm Optimal point Objective error(%) numfunc

Constr.-directed
b15=1

x=2.675
4.814 0 53

MISQP
b15=1

x=2.675
4.814 0 26

OA based

Branch&Cut

b15=1

x=2.675
4.814 0 333

Branch&Bound
b15=1

x=2.675
4.814 0 646

It could be seen that the developed algorithm requires much less total number of
function evaluations than the branch and bound and QA based branch and cut

algorithm.

It should be noted that, although in above two examples the developed

algorithm reaches global optimal by all the algorithms, this should not be

expected in much more complicated cases due to the nonlinear properties of the

problem. Therefore, the comparison should still focus on the computational cost

to find a good enough solution.

40

5. Optimal parts allocation for structural systems

In this chapter, the mathematical formulation of optimal parts allocation problem

for structural systems is established. The optimization procedure developed in
section 3 is applied. The efficiency of the procedure is demonstrated with
small-scale to large-scale examples.

5.1 Introduction to optimal parts allocation problem

In a mechanical structure, it is often the case that many of the parts are
nominally identical. As shown in Figure 5-1 of a 10-bar truss structure, all of the

ten bars are designed to have the same length, the same cross-section area,
made of the same material and thus mutually exchangeable.

Figure 5-1: A 10-bar truss structure

However, in reality, there are always slight differences in physical and
geometrical properties due to variation of material and manufacturing errors in

real manufactured bars. The problem of optimal parts allocation for a structural
system is to optimize performance of the structure to be manufactured, for

example to minimize deformation or stress under certain loads, by assigning
parts at hand to their most proper positions in the structure during the

assembling period. In this way, the best structure performance is achieved
without demanding any extra work in manufacture process, and thus is of great

value in practice [Zhang 2011].

0 500 1000 1500 2000 2500 3000 3500

0

500

1000

1500

2000

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

10-bar truss

X position/mm

Y
 p

o
s
it
io

n
/m

m

41

5.2 Mathematical modeling into an assignment problem

In a static structural system, taking bar truss structures as an example, the

displacements of all degrees of freedom under certain external loads is the
solution of the master equations of a finite element system:

 ∙ (5.1)

, where is the system stiffness matrix, which is dependent on area of
cross-section (A) and material properties such as Elastic Modulus (E) of each bar.

 is the unknown displacements vector of all degrees of freedom to be solved.
 is the external loading vector, which could also be related to properties of each

bar, for example related to the coefficient of thermal expansion () of each bar if
the structure is under thermal loads.

Assume there are N mutually exchangeable bars are to be assembled into N
different positions of a structure system. Number the N parts at hand from 1 to N,

and each with properties , , (…). Also, number the N position

in the structure from 1 to N, and denote properties of the bar allocated at each

position by (), (), (). A binary matrix (x) * + is employed

to represent the allocation of the N parts, where

 x 2

 (5.2)

Clearly should satisfy the so-called assignment constraints:

 ∑

 =

 (𝑖 … 𝑁) (5.3)

 ∑

 =

 (𝑗 … 𝑁) (5.4)

Since () if and only if jth bar is allocated to position i, therefore, areas of

cross-section at each position follows the interpolation equation:

42

 (𝑖) ∑

 =

(𝑖 … 𝑁) (5.5)

The same schemes are also applied for other properties like Young’s modulus E
and coefficient of thermal expansion. With these equations, the stiffness matrix

 and the load vector are both expressed as a function of , and the
unknown displacement components are

 () () ∙ () (5.6)

, which is usually a highly nonlinear functions of *x +. Other system responses

such as stresses in the structure that could further be derived from U, and thus

are also nonlinear functions of *x +. Therefore, the parts allocation problem is

formulated as a nonlinear assignment problem.

For a dynamic structural system, there is no essential difference with the static
case. The only differences lie in the velocity and acceleration terms in the master

equation and corresponding increase in the time of each finite element analysis.

5.3 Examples and numerical results of parts allocation w.r.t.

coefficient of thermal expansions

Firstly, a special case of the problem is investigated, where two assumptions to

simplify the problem are made: the first one is that, all properties of bars are
assumed to be the same except CTEs; the second one is that the objective is a
linear function of the displacement vector of the finite element system.

For a single bar element with area of cross-section A, elastic modulus E,

coefficient of thermal expansion , the thermal force load along the bar due to a

change of temperature is:

 (5.7)

which is a linear function of . And thus the thermal force vector could be
assembled as:

43

 () ∙ [

 ()
 ()

 ()

] ∙ ∙ [

] (5.8)

, where T={tij} is a transformation matrix which depends only on the configuration
and field of temperature of the structure. The total load vector, which is

composed of mechanical force load FM that is independent on the allocation of
parts and thermal load FT is:

 () () (5.9)

According to the first assumption, the stiffness matrix K is independent on the
design variables. And due to the second assumption objective function f is in

form of:

 𝑓(()) ∙ () (5.10)

where L is a linear operator. According to Eq.(5.6), the objective function f could

be formulated as:

 𝑓() 𝑓𝑚 ̃ ∙ ∙ [

] (5.11)

where

 𝑓𝑚 ∙
 ∙ (5.12)

is irrelevant to X. And

 ̃ * ̃ + ∙
 ∙ (5.13)

Therefore,

 𝑓() 𝑓𝑚 ∑ ̃ ∑x

 =

 𝑓𝑚 ∑∑(̃)x

 =

 =

 =

 (5.14)

Denote:

 ̃ (5.15)

44

Then:

 𝑓() ∑∑ x

 =

 =

 (5.16)

which falls into a linear assignment problem with respect to design variables *x +,

and could be directly solved by algorithms mentioned in Section 2.2.2.

The difficulty remains to be solved is how to calculate coefficients cim. In

structural systems, the inverse of stiffness matrix K-1, and transformation matrix T
is usually hard to achieve explicitly. Therefore, a direct evaluation of cij is not
possible. Notice that the linearity of objective with respect to {xij}, combinatorial

coefficient {cij} could be derived accurately with the finite differencing scheme:

 ()

 x

𝑓() 𝑓()

 (5.17)

, where is a small increment only at the (i,j) entry of X. Due to the continuity

of objective function with respect to design variables, the evaluation of objective

function at is mathematically meaningful, though it does mean anything

physically.

A numerical example with the 10-bar truss structure is presented as follows.

Figure 5-2: 10-bar truss under thermal load (L=1000mm, E=68.95Gpa,

A=1000mm2)

0 500 1000 1500 2000 2500 3000 3500

0

500

1000

1500

2000

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

u
1

10-bar truss

X position/mm

Y
 p

o
s
it
io

n
/m

m

T=50
o
C

45

As depicted in Figure 5-2, a thermal load of is applied on the 10-bar
truss structure, under which the structure would deform to expand. There are
ten bars with the same length, the same Young’s modulus, and the same areas of

cross-section. But their coefficients of thermal expansion are different as shown
in Table 5-1 . The problem is to find the optimal allocation of these ten bars so as
to minimize the horizontal displacement at node 1.

Table 5-1: CTEs of ten bars available

Bar No. 1 2 3 4 5

CTE () 1.475 1.116 1.303 1.243 1.446

Bar No. 6 7 8 9 10

CTE() 1.381 1.228 1.009 1.411 1.222

To derive * +, let =* + , and
 . The coefficient matrix then is

calculated following Eq.(5.17).

*𝑐 +

[

 ]

And the optimal result return by Hungarian algorithm is

* +

[

]

which corresponds to the allocation of ten bars as shown in Table 5-2. The

optimum objective value is 0.1096mm.

Table 5-2: Optimal allocation of bars

Position No. 1 2 3 4 5

Allocated bar No. 7 2 1 3 4

CTE () 1.228 1.116 1.475 1.303 1.243

Position No. 6 7 8 9 10

46

Allocated bar No. 6 5 8 10 9

CTE () 1.381 1.446 1.009 1.222 1.411

By enumerating all the possible combinations which has a total number of
10!=3628800, it proves that the result obtained by above procedure is the global

optimum of the problem. The total number of function evaluations required is
just 102+1=101, which is significantly fewer than the factorial number.

5.4 Examples of parts allocation w.r.t. CTE, E and area of

cross-section and comparison of different algorithms

Three representative parts allocation problems are presented in this section, with

which the performance of previous established procedure is evaluated.

5.4.1 A 10-bar truss structure (a small scale single group

example)

In this case, both a mechanical force FM= 29.4kN and a thermal load
 . are applied on the 10-bar structure. The properties of all the bars are

design to be the same with E=68.95Gpa, A=1000mm2, and CTE=23.6 .
But actually, all three properties of the bars are different to each other slightly.

The displacement of node 1 is to be minimized under the loading condition.

Figure 5-3: 10-bar truss under both mechanical forces and a uniform thermal

load

47

Three different strategies are compared to solve the problems: “Random start +

NS” stands for the method of 2-exchange neighbor search algorithm starting
from randomly generated initial solutions; “LAP start + NS” stands for the method

of 2-exchange neighbor search algorithm starting from the point that is
generated by procedure in Section 3.1; and “LAP start + ANS” stands for the
method of accelerated neighbor search algorithm and starting from the point

that is generated in Section 3.1.

To well demonstrate the performance of developed procedures, results of three

different levels of deviation: 5%, 10%, 50% are separately presented. For each of
these deviation levels, 10 instances are generated, and their average results are
shown in Table 5-3 to Table 5-5.

The following notations are used in tables: errorinitial is the average relative error

of the objective of the initial solution with respect to that of the global optimum;
errorfinal is the average relative error of the objective of the final solution; Psuccess

is the percentage of successful runs, in which the relative error of the final
solution is less than 0.5%; numite is the average number of iterations and numfunc

is the average total number of function evaluations. For comparison, the global
optimum of the problem is found by enumeration of all the possible

combinations.

Table 5-3: Result with 5% properties deviation of 10-bar truss example

Method errorinitial errorfinal Psuccess numite numfunc

Random start + NS 6.69% 0.04% 95.9% 8.1 365

LAP start + NS
0.00%

0.00% 100% 3.1 241

LAP start + ANS 0.00% 100% 2.6 221

Table 5-4: Result with 10% properties deviation of 10-bar truss example

Method errorinitial errorfinal Psuccess numite numfunc

Random start + NS 11.6% 0.06% 97.9% 8.3 376

LAP start + NS
0.00%

0.00% 100% 3.3 250

LAP start + ANS 0.00% 100% 2.7 225

Table 5-5: Result with 50% properties deviation of 10-bar truss example

Method errorinitial errorfinal Psuccess numite numfunc

Random start + NS 122.5% 0.56% 84.1% 7.7 347

LAP start + NS
0.98%

0.00% 100% 2.8 227

LAP start + ANS 0.00% 100% 2.9 234

48

The results show that the initial solution generated by presented procedure is of

very high quality in all three deviation levels. With the deviation level increases,
the initial error also increases, but is still much smaller than random generated

ones. The reduction on number of iteration and number of function evaluations
of the accelerated neighbor search procedure could slightly be seen from these
small scale problems.

The necessities of parts allocation optimization when deviations or imperfections
exist are worth to be mentioned here with this example. Assume all the bars in

the structure is perfect, which means that they have the exactly the same
modulus, area of cross-section and CTE as they are designed to be. The structure
analysis result shows that the displacement at node 1 is 9.77mm under the given

loads. It means that the structure is design to have a maximum 9.77mm

displacement when the loads are applied. If deviations exist, the optimal
allocation of the parts with the best objective (the lease displacement in this

example) can be obtained. The worst allocation (with the largest displacement in
this example) could also be obtained by minimizing the negative objective

function with the developed optimization procedure.

The average best objective and the worst objective values of 10 instances with

5%, 10%, 50% deviations are listed in Table 5-6. It could be seen that with the

large level of deviation, the performance of the worst allocation deteriorate

significantly. With a 50% deviation, the performance of the structure may fail the

design by as large as 126% if the manufactured parts are unluckily

inappropriately allocated. Therefore, the parts allocation optimization is

suggested to be taken into consideration during the assembly especially when
the manufacturing error is lack of control.

Table 5-6: Influence of deviations on the 10-bar truss structure

Deviation level Obj. best/mm Obj. worst/mm

5% 9.15 (-6.37%) 10.4 (+6.4%)

10% 8.87 (-9.23%) 11.1 (+13.6%)

50% 6.20 (-36.6%) 22.1 (+126%)

5.4.2 A 25-bar truss structure with stress constraints (a

medium scale multiple groups example)

Further, a parts allocation problem of a 3D 25-bar truss structure is presented

here. The 25 bars are divided into 8 groups, and each group has 1, 4, 4, 2, 2, 4, 4,
4 bars respectively as colored in Figure 5-4, the members of each group is listed

in Table 5-7. Bars of the same group could be exchanged with each other and

49

they differ in E, CTE and A. The idea values of these properties are designed to be

identical as in Section 5.4.1.

Figure 5-4: 25-bar truss structure

Table 5-7: Composition of groups

Group No. Bar No.

1 1

2 2,3,4,5

3 6,7,8,9

4 10,11

5 12,13

6 14,15,16,17

7 18,19,20,21

8 22,23,24,25

Together with a uniform thermal load of . , three different load
cases are applied onto the structure respectively, where mechanical forces are

different as listed in Table 5-8. The objective is to minimize the displacement of
node 1 under each loading condition, while maximum allowable stress

constraints are taken into consideration. The stress limit of each load case is
artificially set to be equal to the maximal stress of the structure when all

components are prefect.

-2000
0

2000 -2000

0

20000

1000

2000

3000

4000

5000

8

Y position

23

4

1716

19

7

11

2

18

9

6
3

12

24

5

5

25-bar truss

2

3

1

22
13

4

7

8

10

1

20

9

21

15

X position

6

14

25

10

Z
 p

o
s
it
io

n

50

Table 5-8: Load cases for 25-bar structure

Load case Nodes
Mechanical forces Allowable Stress

/Mpa Fx/kN Fy/kN Fz/kN

1

1 4.45 -44.5 -44.5

117
2 0 -44.5 -44.5

3 2.22 0 0

6 2.67 0 0

2
1 0 89.0 -22.2

135
2 0 -89.0 -22.2

3

1 4.45 44.5 -22.2

125
2 0 44.5 -22.2

3 2.22 0 0

6 2.22 0 0

The penalty method is applied to take constraints into consideration, where the
objective function is modified as:

 𝑑𝑖𝑠𝑝𝑛𝑜 ∙ x (

) (5.18)

p is the penalty factor and equals to 104 in this example.

For a multiple-group problem, where total parts are divided into several groups
and parts among each group are mutually exchangeable, the developed starting

point generation procedure is applied on each group separately, while keeping

the assignment of other group nondiscriminatory.

Due to the formulation of the problem and properties of interpolation scheme,

the objective function is continuous with respect to the entries of assignment

matrix. The partial derivatives of objective function could be approximated by
finite difference method or other sensitivity analysis technique, which make the

procedure mathematical meaningful.

After obtaining a starting point, the accelerated local search algorithm is
employed to solve the problems. Still, for a multiple-group problem, the

LAP-improvement is applied on each group separately.

The total number of function evaluations required by above procedure is the
same as in Section 3.3. And for a multiple groups problem, where total N parts

are divided into M groups with each have * + parts. (i=1,2,…,M, ∑),

total number of function evaluations is expressed:

51

 ∑𝑁

𝑀

 =

 [∑
𝑁 (𝑁)

𝑀

 =

] ∙ 𝑛 𝑜𝑛 (𝑁
) (5.19)

10 instances are generated with maximum properties deviation of 10% for each
load case. The global optimal is still found by enumerating all the possible

combinations with total number of . Average
results of all three cases are presented in Table 5-9, where vioinitial is the average
of stress violation of initial solutions.

Table 5-9: Average results of 25-bar truss structure

Method errorinitial vioinitial errorfinal Psuccess numite numfunc

Random start + NS 4.73% 1.07% 0.22% 88.5% 14.3 460

LAP start + NS
1.82% 0.27%

0.03% 100% 5.5 265

LAP start + ANS 0.03% 100% 3.4 202

It could be seen, the procedure could return a starting point with both better

objective and less violation of the stress constraint. The quality of final solution is
also higher with a reduction in total number of function evaluations. The

LAP-improvement strategy could well reduce the number of iterations needed,

and thus less total number of function evaluations is required.

5.4.3 A 72-bar truss structure (a large scale multiple groups

example)

Finally, a large scale 72-bar truss allocation problem is employed to demonstrate

the procedures. The 72-bar truss structure is shown in Figure 5-5, where bars are

divided into 4 groups with 8, 16, 16, 32 exchangeable bars respectively and

makes total number of combinations of . .

52

Figure 5-5: 72-bar truss structure

Together with a uniform thermal load of . , two different mechanical
load cases are applied onto the structure respectively as listed in Table 5-10. The

objective is to minimize the displacement of node 20. Cases both with and

without stress constraints are discussed.

Table 5-10: Load cases for 72-bar structure

Load

case
Nodes

Mechanical forces Allowable Stress

/Mpa Fx/kN Fy/kN Fz/kN

1 17 22241 22241 -22241 109

2

17 0 0 -22241

81
18 0 0 -22241

19 0 0 -22241

20 0 0 -22241

10 instances are generated with maximum properties deviation of 5% for each
load case. The average results are presented in Table 5-11 and

Table 5-12 respectively. Due to innumerous total combinations, there is no way

to find the global optimum in this problem. So for each instance, the best
solution obtained by all the three methods is taken as the reference solution and

the relative error are calculated with respect to it.

Table 5-11: Average results of 72-bar truss structure without stress constraints

Method errorinitial errorfinal Psuccess numite numfunc

Random start + NS 11.6% 0.03% 100% 122.5 93571

0
2000

0
2000

0

1000

2000

3000

4000

5000

6000

22

66

1010

1414

1818

X position

33

77

1111

1515

1919

72 bar truss

11

55

99

1313

1717

Y position

44

88

1212

1616

2020

Z
 p

o
s
it
io

n

53

LAP start + NS
0.16%

0.01% 100% 26.9 22114

LAP start + ANS 0.01% 100% 10.7 9748

Table 5-12: Average results of 72-bar truss structure with stress constraints

Method errorinitial vioinitial errorfinal Psuccess numite numfunc

Random start + NS 11.5% 2.62% 0.20% 84.8% 131.6 100546

LAP start + NS
4.79%

0.36% 0.03% 100% 72.9 57258

LAP start + ANS 0.36% 0.02% 100% 18.8 15945

Numerical results show that presented procedures could create a high quality
starting point from both view of objective and constraints. Although the

procedure requires larger number of function evaluations at the beginning
compared with other initial solution generation methods, the reduction of total

computational cost could more than compensate for it in the whole optimization
process.

The results also show that accelerated neighbor search algorithm could reduce

the relative error of final solution with respect to the global optimum. It

significantly increases the speed of improvement of the intermediate step

solutions and thus largely reduces number of iterations it needed. From small
scale to large scale problems, it could be seen that, the larger the scale of

problem is, the more significant the reduction will be.

54

6. Stacking sequence optimization (SSO) in

fibre-reinforced laminate structure design

In this section, stacking sequence optimization in fibre-reinforced laminate

structure design is investigated. The problem is formulated as a nonlinear
assignment problem. The developed optimization procedure presented in

Chapter 3 is transplanted to solve this problem, where necessary adjustments are
made regarding the starting point generation. To improve the feasibility of
solutions with respect to the stacking sequence constraints, a so-called repair

operator is developed. It adjusts the design of the stacking sequence properly so

as to reduce the degree of constraints violations. The operator is proven to be
able to obtain high quality feasible solutions with much less computational cost.

6.1 Introduction to stacking sequence optimization

Fibre-reinforced laminates are composite materials constructed by stacking

multiple fiber-reinforced layers in a specific sequence. Each layer or ply consists
of parallel fibers embedded in a matrix (Figure 6-1 left). The orientation of fibers

of different layers could be varied with respect to a common reference axes

(Figure 6-1 right).

Figure 6-1: An individual fibre-reinforced ply (left) and a 8-layer

fibre-reinforced laminate stacking with plies in four different orientations

(right)

There are mainly three aspects in designing a laminate composite material: ply
material selection, ply thickness and orientation optimization, and finally the

stacking sequence optimization. In the first two steps, the composition of each
ply and the number of plies in each direction are to be determined. The stacking

55

sequence optimization determines in which order all these plies should be

combined together in the end so that mechanical properties are optimized.

6.2 Theory of fibre-reinforced laminate analysis

For better understanding the optimization approach, the theory of classical
fibre-reinforced laminate analysis is briefly introduced here as background
knowledge.

Given the properties of layers and the stacking sequence of the layers, the
properties of a laminate material are determined through classical laminate

theory. Further, the mechanical performance of the structure could be evaluated

by closed-formed formula for simple supported 2D panel or by finite element
analysis for more complicated structure.

6.2.1 Material properties matrices (A B D matrix)

Given the layer material properties: two in-plane Young’s modulus E1, E2 in

longitudinal and transverse directions, Poisson’s ratio , and modulus E3 in
vertical direction, they have the following relations:

 (6.1)

Then material invariants Q, U and V are calculated as [Tsai1968]:

(6.2)

And U

()

()

()

()

(6.3)

56

()

And VA

 ∑()

 ∑()

 ∑()

 ∑()

 ∑()

(6.4)

In these formulas, the variable hk represents the coordinate of the layer to the

midplane of the laminate.

Figure 6-2: Distance of the layer to the midplane

And VD

…

1

2

3

…

N

k

N-1

…

h1 h2 h3

hk

hN-1

hN hN
h

57

∑(

)

∑(

)

∑(

)

∑(

)

∑(

)

(6.5)

Then, stiffnesses Aij are obtained by:

 . ∙ ()

 . ∙ ()

(6.6)

flexural stiffnesses Dij

 . ∙ ()

 . ∙ ()

(6.7)

The coupling stiffnesses Bij are equal to zero when the laminate is symmetric. The
symmetry of a composite material is defined as layers are distributed

symmetrically to the midplane. The symmetry assumption ensures a balanced

distribution of layer directions and usually provides a better load bearing abilities
under complicated cases. Therefore it is usually true and practical in real world
manufacturing and design.

The material stiffness matrices are assembled as:

58

 [

] (6.8)

 (6.9)

 [

] (6.10)

With these stiffness matrices, plate constitutive equation can be established:

[

]

 0

1 ∙

[

]

 (6.11)

6.2.2 Strain failure load factor

The maximum strain theory states that if any of strains in the principal material

directions exceeds allowable values, then the material will fail. The relation of

strains in the longitudinal direction , transverse direction and shear strain

 and that in common-reference coordinate system are:

 {

} [

] {

} (6.12)

the strain failure load factor is:

 *

+ (6.13)

6.2.3 Tsai-Wu failure criterion load factor

There are several material failure theories regarding stresses. Tsai–Wu failure
criterion is commonly employed for anisotropic composite material due to
different strengths in tension and compression. The criterion states that the

stresses of any point in a plane stress should satisfy:

 (6.14)

59

where

,

,

2,

√ ,

,

. and are longitudinal tensile and compressive strengths

respectively, and are transverse tensile and compressive strengths
respectively, is shear strength. The stresses components in principal material
axes are given:

 {

} [

] {

} (6.15)

Given a load condition , the strength load factor is defined as

 (6.16)

For a linear structure system, the stresses under the critical load and given load
have following relations:

 (6.17)

Replace equation (6.17) into (6.14) and get:

 (6.18)

where

 , .

By solving the inequality, the maximum load factor regarding Tsai-Wu criterion

could be obtained.

6.2.4 Critical buckling load analysis

Laminate composites are widely used in the manufacturing of structural parts in
the aerospace industries. They are often operated under compression loadings

and thus buckling behavior has to be taken into consideration during the design.
Critical buckling load analysis is a method used to determine critical loads at
which structural parts become unstable and their corresponding buckling modal

shapes.

Finite element method is used for the analysis of complex composite laminate
structures. However, for simple composite plate under simple boundary

conditions, there are strict theoretical analyses or approximations to predict the
instabilities. These closed-form predictions provide ways of highly efficient
structural evaluation for practice. In the following, an approximation of the

critical buckling load factors for orthotropic composite laminated plates subject
to uniformly distributed in-plane loads are introduced as an example. The

60

structure is depicted in Figure 6-3. It will be further employed in the

demonstration of the developed optimization procedure.

Figure 6-3: Composite laminated plate under in-plane loads

Theoretical critical buckling load factor of the plate under only normal loads Nx
and Ny is

 ∙
 (

) ()(

) (

) (

)

(

) (

)

 (6.19)

where (m, n) is the pair of number of half-waves that minimizes .

If the plate is under only shear loads, a finite element analysis is normally

required to get the buckling load factor. When the plate is assumed to have an
infinite length in x direction, an analytical solution is given:

{

 (
)

 √ ()

 (6.20)

where

√

 (6.21)

and is given in Table 6-1.

Table 6-1: Empirical value of coefficient regarding shear buckling load factor

0.0 11.71

61

0.2 11.80

0.5 12.20

1.0 13.17

2.0 10.80

3.0 9.95

5.0 9.25

10.0 8.70

20.0 8.40

40.0 8.25

 8.13

When normal and shear loads are applied at the same time to the plate, their

interaction should be considered. And the normal buckling load factor is modified
by:

 (6.22)

To prevent the buckling under both shear and normal loads, both and
should be larger than one. Therefore the critical buckling load factor is:

 *| | + (6.23)

6.3 Mathematical formulation of stacking sequence

optimization into a nonlinear assignment problem

In stacking sequence optimization problem, all the plies are given, and the
number of plies in each orientation is fixed. Assume total number of N plies in M

different orientations , ,…, are given, and in direction there are

plies (m=1, 2,..., M). A binary matrix X *x + * +
 could be used to

represent the sequence order from top surface to bottom, where x means

that the ith layer counting from the top is arranged with the jth ply. If j≤ , then
it means a ply in orientation should be arranged in layer i. In general, if

 ⋯ 𝑗 ⋯ , then it means a ply in direction
 should be arranged. Denote:

 , … ⏟

 1

 … ⏟
 2

 … … ⏟

-
(6.24)

62

 Then ply direction could be expressed:

 () ∑x

 =

 (6.25)

Taking entries of X as design variables, it is obvious that they should satisfy the
assignment constraints:

 ∑

 =

 (𝑖 … 𝑁) (6.26)

 ∑

 =

 (𝑗 … 𝑁) (6.27)

Once a stacking sequence is chosen, mechanical performance of the structure
that is made of this material could be usually calculated through finite element

codes for a complex structure or by classical laminate composites theory for a
laminate plate. These results then go into the objective or constraint function

evaluations.

In practice, there is always a contiguity constraint which helps to prevent cracks

going through many layers. This constraint requests that contiguous plies of the

same orientation should not exceed a specific number. A function named

violation number (Vnum for short) is defined to measure in which degree the

sequence violates the contiguity condition. Assume the number of maximal

allowable consecutive layers in the same direction is Nc, the value of Vnum is

calculated as follows: initially, set Vnum equals to zero. Then check from the
topmost layer till the bottom layer, if more than Nc layers of the same orientation

are detected, the violation number is added by the number of consecutive layers

of same direction minus Nc. So the contiguity constraint could be formulated as:

 () (6.28)

A penalty is added to the objective if this constraint is violated. Thus the optimal
stacking sequence problem is formulated into a constrained nonlinear
assignment problem. The total number of possible combinations equal to

𝑁 (∏ 𝑁
𝑀
) , which is always a huge number due to the existence of the

factorial operator.

63

6.4 Improvements on the optimization procedure

6.4.1 Linear assignment based starting point generation

Since the problem is also formulated into a nonlinear assignment problem, the
procedure depicted in Figure.3-1 is employed here to generate the starting point.

The key point to apply the procedure lies in how to define the “partial derivatives”
of objective with respect to {xij} and evaluate with fraction in the assignment

matrix.

Two methods are presented in the following to tackle this problem. When the

structural evaluation codes allows for external input of A, B, D matrices, the first
method is suitable. Otherwise, the second technique could be used instead. The

ideas of these methods are identical: firstly, “homogenized” the laminate
structure, secondly, assign one and only one layer to a specific angle while

keeping other layers under homogenized state, and then the objective function

value of the “perturbed” structure is defined as the corresponding entry in the C

matrix of a linear assignment problem.

6.4.1.1 Method with interpolation of material stiffness

matrices

There are finite element analysis codes such as ANSYS that allow input of

material stiffness matrices A, B, D as material properties, with which the

structural performance could be evaluated.

To evaluate the objective function at continuous-relaxed design points, an
interpolation scheme is defined:

 𝑓(()) ∑x ∙ 𝑓()

 =

 (6.29)

where 𝑓(∙) is a general function of ply angle. Apply this scheme to trigonometric
function in Eq.4.4 and Eq.4.5. Then the A, B, D matrices are as follows:

 ∑()

 ∑()

∑x

(6.30)

64

 ∑()

∑x

 ∑()

∑x

 ∑()∑x

∑(

)

∑(

)∑x

∑(

)

∑x

∑(

)

∑x

∑(

)

∑x

(6.31)

The A, B, D matrices are presented as continuous functions of design matrix X,

thus the structural evaluations at continuous-relaxed design points is

mathematical meaningful and the procedure developed in Section 3.1 could be

directly applied here.

6.4.1.2 Method with quasi-homogenization concept

In many composite laminate finite element analysis codes, such as MSC.Nastran,

only the stacking sequence and layer material properties are accepted as inputs

to the finite element model. Therefore, interpolations of A, B, D are not useful in

this case. To overcome this difficulty, a method with quasi-homogenization

concept is presented, with which the initial solution generation procedure could
be carried out.

Homogenization is a process to make a mixture of the composite so that the

mechanical properties are the same throughout the material. In the first step of
the algorithm presented in Section 3.1, an evaluation of X with all entries are

equal is required. It could be seen as the material is “homogenized”. Therefore, a

65

procedure to “homogenize” a laminate material so that it is able to be analysed

by finite element laminate analysis code, and at the same time its performance is
influenced as little as possible by assigned stacking sequence is required.

Given a composite laminate with N layers, the thickness t of each layer is t and

stacking sequence is ~ as shown in the left of Figure 6-4. A corresponding
quasi-homogenized laminate is created as depicted in the right of Figure 6-4.

Figure 6-4: Quasi-homogenization of a composite laminate material

The quasi-homogenized laminate is composed of N homogenized layers, where

each layer is composed of m sub-layers with thickness of t/(mN). Here m is a

preselected integer, the larger the m is, the more close the laminate properties

approximate that of the real homogenized laminate.

Each sub-layer is composed again with N ply with thickness t/mN/N, where the

stacking sequence of the plies keeps the same as the original laminate. To

evaluate the “partial derivative” of design variables, assume it is cij, the

quasi-homogenized material is modified as depicted in Figure 6-5 to reflect the

influence of a layer in direction j locates in the ith position: replace the ith

homogenized layer with a layer in direction j, while keep the other layers still

homogenized.

Figure 6-5: Modified quasi-homogenized material to evaluate cij

66

6.4.2 Repair operators for contiguity constraints

To improve the efficiency of stacking sequence optimization, so called repair

operators are presented in literature, which repair the stacking sequence to force

it satisfy the contiguity constraint. A state of the art repair operator is firstly

introduced in this section, and then a new repair operator with consideration of

maximize degree of improvement on violations is presented. Their efficiencies

are compared with numerical examples thereafter.

6.4.2.1 Introduction to Baldwinian repair operator

Todoroki & Haftka [TH1998] introduced a Baldwinian repair strategy for dealing

with contiguity constraints for standard GA. The idea of the operator is based on
repairing stacking sequence with the nearest different one. The operator checks

from the outermost layer to innermost layer, and once a contiguity violation is

found in the sequence, the inner ply will be changed with the nearest layer in

other directions in the inner side. Then it checks further violation and repair any
violation it meets. The advantage of this operator is that it only changes the

nearest possible layer each time, which minimize the change of stacking

sequence and thus minimize the influence on the material properties. However,

the disadvantage of the operator is that it focuses on one violation with each

exchange, and thus requires many times of repair work.

6.4.2.2 Maximum improvement repair operator

Applying repair operator to found solutions will change the stacking sequence

and thus the objective function value. To limit this influence on system responses

as much as possible, one natural idea is to reduce the changes on stacking

sequences. Based on the idea to repair as many as possible contiguity violations

with the least number of changes of stacking sequence, the following repair

operator is developed.

Firstly, a function to measure the degree of improvement is defined as follows:

 ∙ () | | (6.32)

67

where N is total number of stacks, viooriginal is number of violation before repair,

viorepair is number of violation after the repair, and distrepair is the difference of

positions of interchanged stacks in the repair.

The maximum improvement repair operator works as shown in Figure 6-6. When

the stacking sequence violates the contiguity constraint, it checks each pairwise

exchange of the sequence and carries out the exchange that has the largest

degree of improvement. Then the operator applies on the new stacking sequence

again until exchanged sequence fulfils the contiguity condition.

Figure 6-6: Flowchart of maximum improvement repair operator

From the definition of degree of improvement, it is easily seen it has the

following properties:

1. If a 2-exchange of sequence repairs at least one contiguity violation, then

 is positive;

2. The 2-exchange that repairs the most number of violations has the largest

degree of improvement, no matter what the distance between the exchanged

two layers is;

3. If two 2-exchange repairs the same number of violations, the exchange that

involve closer layers has larger degree of improvement.

Violation of contiguity

constraint?

Evaluate dimprove of all 2-exchange neighbours

Carry out the pair wise exchange that has

the largest dimprove value

Stop, return a feasible design

No

Yes

68

Therefore, on one hand, this repair operator focuses on reducing the number of

violations as many as possible within one 2-exchange. And on the other hand, it

succeeds the advantage of Baldwinian operator which chooses exchange that

involves layers as near as possible.

The difference of above two repair strategies is better presented with the

following example. Given a stacking sequence of [/ / / / /],

and contiguity constraint equals to 4. Therefore, the given sequence violation the

constraints twice with 3 successive and layer respectively.

The Baldwinian operator will first repair the violation caused by stacks by

exchanging the third with next to it. And then it repairs the violation

due to stacks by exchanging the first with next to it. The repair

procedure is depicted in the following:

[/ / / /][/ / / /][/ / / /]

Evaluating all possible 2-exchange of stacks with respect to degree of

improvement, the results are shown in Table 6-2.

Table 6-2: Example of evaluation of degree of improvement (, N=7)

Pair to exchange Resulted stacking sequence Viorepair disprepair dimprove

[/ / / / / /] [/ / / / /] 2 3 -3

[/ / / / / /] [/ / / / / /] 0 4 10

[/ / / / / /] [/ / / / / /] 0 5 9

[/ / / / / /] [/ / / / / /] 0 6 8

[/ / / / / /] [/ / / / / /] 1 2 5

[/ / / / / /] [/ / / / / /] 0 3 11

[/ / / / / /] [/ / / / / /] 0 4 10

[/ / / / / /] [/ / / / / /] 0 5 9

[/ / / / / /] [/ / / / /] 1 1 6

[/ / / / / /] [/ / / / / /] 0 2 12

[/ / / / / /] [/ / / / / /] 0 3 11

[/ / / / / /] [/ / / / / /] 0 4 10

[/ / / / / /] [/ / / / /] 1 1 6

[/ / / / / /] [/ / / / /] 1 2 5

[/ / / / / /] [/ / / / / /] 2 3 11

69

Therefore, the 2-exchange of the third and the first is selected. It could

also be seen, that Baldwinian operator leads to a result that is different to

original one in three bits (the third, the fourth and the fifth), while the result of

developed operator differs in only two bits (the third and the fifth) with less

number of change of stacking sequences.

6.4.3 Optimization procedure

The accelerated neighbor search algorithm presented in Section 3.2 can be

directly applied to solve this problem. Integrating the repair operator, the

following initial solution generation procedure in Figure 6-7 and accelerated

neighbor-search algorithm depicted in Figure 6-8 are employed.

Figure 6-7: Initial generation procedure with repair operator embedded

Start from SX , 1/S

ijx N

For i,j=1,2,...,N, compute:

/ij ijc f x  

Solve linear assignment problem:

0

1 1

min
N N

ij ij

j i

c x
 



Initial solution:
0 0{ }ij N Nx X

Contiguity repair  X0_feasible

70

Figure 6-8: Deterministic algorithm with repair operator

embedded

In generating the starting point, it requires NM+1 function evaluations. In each

iteration, it needs only to evaluate the pairwise exchange between two plies in

different directions, and thus calls for ∑
 (∑)

 ∑ ∑

 =

 =

 =

 function evaluations. Therefore, total number of function evaluation is:

 Totalfunc= + [∑ ∑

 =

 =] ∙ (6.33)

It can be derived that Totalfunc 𝑁 , which means number of

function evaluations of the approach is in order of ().

Evaluate all repaired 2-exchange

neighbours

Form a LAP by value of objective

of all the neighbours

Solve the LAP  XLAP

Contiguity repair  XLAP_Feasible

X= best{neighbours, XLAP_Feasible}

Better than last

iteration?

Final solution

k=0, Start from Xk
feasible

No

Yes

k=
k+

1
, u

p
d

at
e

X
k Fe

as
ib

le

71

6.5 Demonstration through test problems and comparison

of different algorithms

6.5.1 A thin panel design examples

The procedure is tested with a simply supported 0.61m square laminar plate as in
Figure 6-3, which is widely employed in literature. All the plies are in

direction , , 9 . The laminate is assumed to be in symmetry.

To simplify the problem, the laminate is further assume to be made up of stacks

that has two plies of the same orientation, i.e. plies in and 9 always show
up with two together, and each ply is followed by a ply (as shown
in Figure 6-9). This assumption is adopted in practice to reduce the complexity in
manufacturing.

The material property is listed in Table 6-3. The maximum number of consecutive

layers in a same direction is 4. The objective is to maximize the critical buckling

load factors under given loads and give number of layers in each direction.

Figure 6-9: Layout of stacking sequence

Table 6-3: Material properties

E1/Gpa E2/Gpa G12/Gpa v12

128 13.0 6.4 0.3

With reference to literature, 11 cases shown in

Table 6-4 are employed, where both the composition of plies and total number of

stacks are different.

Table 6-4: Test cases

72

case
Loading(N/mm) Number of stacks Total

combinations Nx Ny Nxy (0°)2 (±45°) (90°)2 Total

1 -3500 -350 175 9 18 9 36 4.4×1014

2 -2625 -350 175 8 17 8 33 1.5×1013

3 -1750 -350 175 7 15 7 29 2.7×1011

4 -875 -350 175 6 12 6 24 2.5×109

5 0 -350 175 4 8 4 16 9.0×105

6 0 -2800 1400 8 16 8 32 7.7×1012

7 2797 -2584 1778 9 8 13 30 2.9×1012

8 -2915 344 145 13 7 15 35 2.5×1014

9 1865 -2599 1750 14 10 15 39 4.9×1016

10 1865 -2599 1750 14 8 17 39 1.6×1016

11 1973 -3318 1400 10 8 12 30 3.8×1012

6.5.1.1 Optimization without repair operators on the stacking

sequence

Firstly, the focus is on comparing different optimization algorithms. Therefore,
the repair operators are not involved, and the penalty method is employed to

deal with the contiguity constraint.

Results are listed in Table 6-5, where Error is the relative error of objective with

respect to that of the known optimal so far. For random start, it is evaluated by

the average performance of 100 runs.

Table 6-5: Test results of different deterministic procedure

case
Random start + NS Random start+ ANS LAP start + ANS

numfunc Error (%) numfunc Error (%) numfunc Error (%)

1 7178 0.00 5640 0.00 1433 0.00

2 5162 0.01 3823 0.01 1448 0.00

3 3795 0.01 2455 0.01 868 0.00

4 2093 0.00 1386 0.00 616 0.00

5 577 0.00 331 0.00 211 0.00

6 4635 0.06 3307 0.06 1381 0.12

7 3810 0.00 2844 0.00 1561 0.00

8 7973 0.10 5458 0.10 2458 0.00

9 5976 0.94 5672 0.94 7132 0.35

10 5882 1.20 5309 1.20 4501 2.02

73

case
Random start + NS Random start+ ANS LAP start + ANS

numfunc Error (%) numfunc Error (%) numfunc Error (%)

11 5104 0.13 3859 0.13 2764 0.00

average 4744 0.22 3644 0.22 2216 0.23

It can be seen that, the accelerated neighbor search procedure significantly
outperforms the traditional local-search strategy with a random start in all the
cases. Starting from generated high quality initial solution, the procedure

requires less function evaluations to reach the final solution.

In addition, a genetic algorithm (GA) and a permutation discrete particle swarm

optimization algorithm (PDPSO) which are used to solve these problems in
literature [Chen 2008, Chang 2010] are also implemented. The stopping criteria

of the heuristic algorithms are set as relative error of the objective with respect
to that of the optimal known so far is smaller than 0.5%. And results are

compared in Table 6-6.

Table 6-6: Comparison of optimum and number of function evaluations with

heuristic algorithms

Case
GA with GR1 GA with PMX1 PDPSO2 LAP start + ANS

numfunc Error (%) numfunc Error (%) numfunc Error (%) numfunc Error (%)

1 1777 0.42 3950 0.37 1081 0.33 1433 0.00

2 1617 0.43 3281 0.38 836 0.32 1448 0.00

3 1283 0.33 2881 0.29 686 0.29 868 0.00

4 1038 0.33 2462 0.28 457 0.28 616 0.00

5 621 0.37 1148 0.37 301 0.29 211 0.00

6 1626 0.48 3735 0.45 1290 0.41 1381 0.12

7 2487 0.37 3436 0.36 1470 0.39 1561 0.00

8 2429 0.29 15597 0.41 3281 0.31 2458 0.00

9 15684 0.36 22452 0.41 9995 0.36 7132 0.35

10 21024 0.41 23942 0.46 10474 0.38 4501 2.02

11 4196 0.48 9814 0.48 6634 0.47 2764 0.00

average 4889 0.39 8427 0.39 3319 0.35 2216 0.23

1. GA with GR refers to genetic algorithm using gene-rank crossover, GA with PMX refers to genetic algorithm using partially

mapped crossover, which are presented in literature. The results are evaluated by taking the average of 100 runs.

2. The results are evaluated also by taking the average of 100 runs.

It shows that the developed deterministic approach can still greatly reduce the
computational cost comparing with the genetic algorithm and particle swarm

optimization method.

74

6.5.1.2 Optimization with repair operators on the stacking

sequence

The performance of above two repair operators are then evaluated again with

test cases presented in

Table 6-4. The repair operators are embedded into all the four algorithms to be

compared. For heuristic algorithms, the repair operator is invoked for each

generated solution before evaluation. For accelerated neighbor search algorithm,

the repair operator is invoked in three different steps as shown in Figure 6-7 and

Figure 6-8. The results of Baldwinian operator and operator with maximum

degree of improvement (MI) are listed in Table 6-7 and Table 6-8 separately.

Table 6-7: Results with Baldwinian repair operator

 GA+GR GA+PMX PDPSO LAP start + ANS

 numfunc
Error

(%)
numfunc

Error

(%)
numfunc

Error

(%)
numfunc

Error

(%)

1 1247 0.34 2984 0.33 580 0.31 504 0.00

2 1112 0.33 2148 0.32 511 0.30 429 0.00

3 958 0.34 2146 0.29 392 0.30 336 0.00

4 760 0.32 1708 0.27 299 0.28 245 0.00

5 425 0.35 592 0.25 187 0.25 206 0.00

6 1086 0.38 1619 0.32 485 0.32 721 0.12

7 1126 0.37 2089 0.34 470 0.39 607 0.00

8 1164 0.33 3008 0.28 785 0.27 460 0.00

9 1494 0.39 3710 0.34 382 0.38 1000 0.30

10 2301 0.39 7852 0.37 550 0.39 1848 0.12

11 677 0.32 954 0.28 249 0.37 617 0.00

average 1123 0.35 2619 0.31 445 0.32 633 0.05

Table 6-8: Results with repair considering maximum degree of improvement

 GA+GR GA+PMX PDPSO LAP start + ANS

 numfunc
Error

(%)
numfunc

Error

(%)
numfunc

Error

(%)
numfunc

Error

(%)

1 1255 0.34 2838 0.27 596 0.31 499 0.00

2 1061 0.34 2574 0.27 554 0.29 417 0.00

75

 GA+GR GA+PMX PDPSO LAP start + ANS

 numfunc
Error

(%)
numfunc

Error

(%)
numfunc

Error

(%)
numfunc

Error

(%)

3 933 0.36 2487 0.27 445 0.26 334 0.00

4 732 0.30 1585 0.25 307 0.28 249 0.00

5 487 0.36 684 0.29 191 0.26 126 0.00

6 1201 0.38 1948 0.35 555 0.40 698 0.12

7 1106 0.39 1961 0.31 568 0.38 583 0.00

8 965 0.30 4279 0.25 751 0.28 419 0.18

9 4704 0.44 12439 0.41 2287 0.45 1402 0.93

10 7879 0.44 17990 0.45 3059 0.48 1720 0.00

11 1545 0.38 4346 0.35 1392 0.42 1330 0.00

average 1988 0.37 4830 0.32 973 0.35 707 0.12

In comparison with results in Table 6-6, both repair operators could significantly

reduce the number of function evaluations needed. Applying on the developed

algorithm, repair operator with maximum degree of improvement could achieve

comparable performance as Baldwinian operator, although its performance is

worse in collaboration with heuristic algorithms. And still, LAP based

deterministic procedure well outperform heuristic ones with both repair

strategies.

6.5.2 Problems with large number of layers: thick composite

panels design

Further, one large scale example is employed to demonstrate the whole

procedure. The composite panel structure is the same as in Figure 6-3. However,

two more angles of ply direction and are taken into account. At the

same time, total number of stacks increases to 150~200, and contiguity

constraint is 10 instead of 4. 11 test cases with different composition of stacks

are generated and employed as listed in Table 6-9.

Table 6-9: Test cases of a very thick composite panel

case
Number of stacks Total

combinations 2 2 Total

1 36 72 36 24 24 192 1.1×10122

76

case
Number of stacks Total

combinations 2 2 Total

2 32 68 32 22 22 176 9.1×10110

3 28 60 28 20 18 154 2.6×1096

4 24 48 24 16 16 128 1.8×1080

5 16 32 16 12 10 86 1.2×1053

6 32 64 32 22 20 170 3.0×10107

7 36 32 52 20 20 160 1.0×10103

8 52 28 60 24 22 186 5.4×10118

9 56 40 60 26 26 208 3.1×10135

10 56 32 68 26 26 208 3.2×10133

11 40 32 48 20 20 160 3.0×10103

The same loading conditions as in

Table 6-4 are applied on corresponding case. And still the critical buckling load

factor is taken as the objective to be maximized. Since it has been proved that

the accelerated neighbor search algorithm outperforms the heuristic algorithms

largely, therefore, only results with this algorithm are discussed here. Results of

the two different repair operators are compared in Table 6-10.

Table 6-10: Test cases with different repair operators

 Baldwinian repair Maximum improvement repair

 numfunc Load factor numfunc Load factor

1 41521 4.04 14727 4.04

2 34590 4.03 12365 4.04

3 26592 3.83 9568 3.83

4 18599 3.75 6780 3.75

5 8510 3.83 3216 3.83

6 32382 3.69 11603 3.69

7 103950 4.83 97062 4.83

8 63723 5.01 13561 5.03

9 48557 14.17 98728 14.17

10 173427 14.16 80918 14.03

11 106010 5.07 145307 5.10

average 59806 ---- 44894 ----

77

It shows that, for most of test cases, the repair operator with maximum degree of

improvement requires fewer number of function evaluations than using

Baldwinian repair operator. Comparing with results of small scale problems in

Section 6.5.1.1 and 6.5.1.2, the reduction on computational cost is much more

significant for larger scale problem. This is because the number of changes

required by Baldwinian repair operator is usually larger than that by maximum

improvement repair strategy in a large scale problem.

6.6 Application in engineering problems

6.6.1 Composite panel with stiffeners

In this section, the stacking sequence optimizing of a composite panel with

stiffeners is presented. The finite element model of the structure and the

cross-section of the stiffener are shown in Figure 6-10 and Figure 6-11. Both

panel and stiffeners are made of fiber-reinforced composite laminate layers. Each

layer is of thickness 0.132mm, the material properties of each layer are listed in

Table 6-11, and the composition of layers for stiffener and panel are the same as

shown in Table 6-12.

Table 6-11: Material properties

E1/GPa E2/GPa G12/GPa v12

128 11.3 6.0 0.3

78

Figure 6-10: Composite panel with stiffeners

Figure 6-11: Geometry of the cross-section

Table 6-12: Composition of layers

 Number of stacks Total

combinations 2 2 Total

Panel 16 10 10 10 16 62
2.6×1078

Stiffener 16 10 10 10 16 62

Firstly, only the critical buckling load factor 𝑘𝑙 𝑛 is taken into account and

to be maximized. This factor is calculated directly by finite element analysis. The

boundary and loading conditions are presented in Figure 6-12. The plate is simply

supported and a uniformly distributed normal load Nx of total 2.45×105N is

applied on edges that are vertical to the stiffener direction. And the contiguity

constraint is 10.

2.439m

2.286m

79

Figure 6-12: Boundary conditions and normal loads

The optimization procedure terminates after 10 iterations with total 30548

number of finite element analyses. The critical load factor of the optimal is

1.8579. The first-order buckling mode of the structure is depicted in Figure 6-13.

Figure 6-13: First-order buckling mode of the structure with optimized

stacking sequence

For comparison, 20000 feasible solutions are generated randomly, where the

largest critical load factors obtained is 1.805. In Figure 6-14, the optimization

history is depicted, where the best objective value from random enumeration is

also presented as reference.

80

Figure 6-14: Optimization history

It could be seen that, the procedure is able to find an extremely high quality

initial solutions while the number of function calls to generate the initial solution

in this problem is just 621. In the following table, the relevant optimization result

is summarized.

Table 6-13: Critical load factors results

 Load factor Number of function calls

Average random 1.721 ----

Best random 1.805 20000

Initial solution 1.843 621

Found solution 1.858 30548

The histogram of the critical load factors of random solutions are depicted in the

following histogram. It shows that the distribution of the load factor is

bell-shaped and it is very difficult to obtain a good solution with random

enumeration.

1 2 3 4 5 6 7 8 9 10
1.8

1.81

1.82

1.83

1.84

1.85

1.86

Iteration

lo
a
d
 f
a
c
to

r

opt. Hist.

ref. result

81

Figure 6-15: Distribution of critical load factors for buckling case

In the second case, the critical load factors with respect to critical buckling, stress

failure criteria and strain failure criteria are considered simultaneously. The

structure is under two load cases. The first load case is the same as the above

example. And in the second load case, a pressure of one standard atmosphere is

applied on top surface of the simply supported panel. Stress failure load factor

 and strain failure load factor 𝑛 are calculated according to Section

6.2.2 and 6.2.3 based on the results from static finite element analysis.

Corresponding strain and stress limit of the material employed are stated in Table

6-14.

Table 6-14: Relevant strain and stress limits

strain . , . , .

Stress
 , , . ,

 , . 𝑝𝑎

The critical load factor of the problem which is to be maximized is defined as

follows,

 * + (6.34)

1.6 1.62 1.64 1.66 1.68 1.7 1.72 1.74 1.76 1.78 1.8
0

200

400

600

800

1000

1200

1400

1600

1800

load factor

82

The optimization procedure terminates after 7 iterations, with 21449 number of

function evaluations. The critical load factor of the solution is 1.833. The 20000

randomly generated feasible solutions are evaluated where the largest load

factor obtained is 1.793. In the following figure, the optimization history is

depicted.

Figure 6-16: Optimization history

In Table 6-15, the relevant optimization result is summarized.

Table 6-15: Critical load factors results

 Load factor Number of function calls

Average random 1.712 ----

Best random 1.793 20000

Initial solution 1.757 621

After Iteration 2 1.810 6687

Found solution 1.833 21449

It could be seen that, the algorithm is also able to find a very high quality initial

solution. After two iterations, the algorithm is able to find a solution that better

than all the random ones.

1 2 3 4 5 6 7
1.74

1.76

1.78

1.8

1.82

1.84

1.86

Iteration

lo
a
d
 f
a
c
to

r

opt. Hist.

ref. result

83

6.6.2 Hybrid-stiffness laminated fuselage panels with window

cutouts

6.6.2.1 Introduction to hybrid-stiffness laminated fuselage

panels with window cutouts

Hybrid-stiffness laminates consists of both straight and curvilinear fiber layers. As

the name stated, the composite fibers direction in a curvilinear fiber layers varies

with respect to their spatial position. The advantage of hybrid-stiffness laminates

has been investigated in recent years. It has been demonstrated that it is capable

to increase both the structure’s buckling load and tensile strength by applying the

hybrid-stiffness laminated in plate with cut-outs. The application of this concept

in the design of aircraft structures has been carried out at the Institute of

Lightweight Structures of TU München [Ungwattanapanit 2012, 2013].

Figure 6-17 depicts the geometry of a hybrid-stiffness laminated fuselage panels

with window cutouts that is being developed. The panel is composed of four

segments: the plate, the outer flange which is overlapped with the plate, the

vertical flange and the inner flange. All the four segments are manufactured with

carbon fiber reinforced polymers (CFRP), among which the outer flange and the

plate contains curvilinear fiber layers to improve the performance of the

structure.

84

Figure 6-17: A fuselage panel with window cutouts to be reinforced

The compositions of the outer flange layers and plate layers have both been

optimized. The outer flange contains eight circular layers in which the fibre

direction is parallel to the outline of the window cut-out, four -layers, four pair

of layers as depicted in Figure 6-18. The stacking sequence is required to

be symmetric.

(a) Circular layer ×8 (b) layer ×4

Vertical flange

Inner flange

Outer flange

plate

85

(c) layer ×4

Figure 6-18: Composition of layers for outer flange

The plate is composed of linearly varied fibre layers, where the fibre direction

varies along y-axis according to Eq.(4.35). The layer is denoted ⟨ ()| .

/⟩ to

show its angle at y=0 and y=b/2. An illustration of the layer is depicted in Figure

6-19.

 () ()
 | |

𝑏
∙ [(

𝑏

) ()] (6.35)

Figure 6-19: Linearly varied fiber layer

Y

x
0

b

 (b/2)

 (0)

a

86

The plate is composed of twelve pairs of linearly varied fibre layers as shown in

Figure 6-20.

(a) ⟨ . | . ⟩ ×4

(b) ⟨ . | . ⟩ ×4

(d) ⟨ . | . ⟩ ×4

Figure 6-20: Composition of plate layers

87

The thickness of each layer is 0.125mm, and the material is CFRP IM7/E8550. The

stacking sequence of the structure is symmetric and the positive and negative

angle layers are arranged consecutively. The total number of possible stacking

sequence combination is .

/ ∙ .

/ ∙ .

/ ∙ .

/ .

The finite element analysis is carried out through Msc.Nastran, which doesn’t

accept interpolation of A, B, D matrix. Therefore, the initial solution generation

method presented in Section 6.4.1.2 is employed here.

6.6.2.2 Stacking sequence optimization with respect to

compression buckling

Firstly, the structure is under a compressive load of F=72822.5N as depicted in

Figure 6-21. The compression critical buckling load factor is to be maximized.

Figure 6-21: Compressive load and buckling mode

The optimization result is listed in Table 6-16. All the feasible solutions are

evaluated and their average is listed in the table as reference. The optimized

stacking sequence presented in Table 6-17.

F

F F

88

Table 6-16: Stacking sequence optimization result with compression buckling

numFuncEva Initial_obj. Optimized obj. Average Global

175 1.01 1.07 0.991 1.07

Table 6-17: Optimum stacking sequence

 Outer flange Plate

global [(±45)2/(Circular)4/02]S [(⟨ . | . ⟩/ ⟨ . | . ⟩)2 /(⟨ . | . ⟩)2]S

Found [(±45)2/(Circular)4/02]S [(⟨ . | . ⟩/ ⟨ . | . ⟩)2 /(⟨ . | . ⟩)2]S

In Figure 4-21, the histogram of the objective of all possible stacking sequences is

presented. Different to a single bell-shaped distribution as in Figure 4-15, it is

composed of many separated smaller bell-shaped histograms.

Figure 6-22: Distribution of load factor

Further looking into the distribution of the result, it turns out that this

phenomenon is caused by the hybrid-stiffness layers: fixing the stacking

sequence of the plate, the histogram of the load factor with changing the

sequence of the outer flange is continuous. And the other way around, the

histogram of the load factor with changing only the sequence of the plate is still

separated.

0.85 0.9 0.95 1 1.05
0

100

200

300

400

500

600

700

800

900

1000

load factor

89

(a) Fix flange, change plate (b) Fix plate, change flange

Figure 6-23: Histogram of load factors when the stacking sequence of only one

component changes

The range of load factor of changing the stacking sequence of the plate is much

larger than that when change only the flange. This fact demonstrates that the

stacking sequence of the structure, especially the components that contain

hybrid-stiffness laminates, should be properly arranged in order to obtain a

satisfying structural performance.

6.6.2.3 Stacking sequence optimization with respect to shear

buckling

In this case, the structure is under a uniformly shear load as presented in Figure

6-24, and the shear critical buckling load factor is the objective to be maximized.

1.08 1.1 1.12 1.14 1.16 1.18 1.2 1.22 1.24 1.26 1.28
0

5

10

15

20

25

30

35

1.165 1.166 1.167 1.168 1.169 1.17 1.171 1.172
0

10

20

30

40

50

60

70

90

Figure 6-24: Shear load and buckling mode

The optimization result is listed in Table 6-18. The total combination of feasible

stacking sequences is 37800. All the feasible solutions are evaluated and their

average is listed in the table as reference. The optimized stacking sequence is

presented in Table 6-19.

Table 6-18: Stacking sequence optimization result with shear buckling

numFuncEva Initial_obj Optimized obj. Average Global

131 1.271 1.273 1.224 1.274

Table 6-19: Optimum stacking sequence

 Outer flange Plate

global [(Circular)4/02/(±45)2]s [(⟨ . | . ⟩)2/(⟨ . | . ⟩)2/(⟨ . | . ⟩)2]s

Found [(Circular)4/02/(±45)2]s [⟨ . | . ⟩/ ⟨ . | . ⟩/ ⟨ . | . ⟩/(⟨ . | . ⟩)2/ ⟨ . | . ⟩]s

91

7. Simultaneous material selection and size

optimization in structural design

Optimal materials selection and materials combination are important topics in

modern structural design, when more and more new types of material are

developed and available. In this chapter, the optimal material selection is taken

into account together with traditional size optimization. The problem is

formulated into a mixed-integer nonlinear programming (MINLP) problem, the

algorithm developed in section 4.2 is applied to find a good solution for problems

with specific characteristics. A strategy to improve the quality of solutions is also

presented. Several numerical examples are employed to demonstrate the

procedure.

7.1 Mathematical formulation into MINLP

Assume there are M types of material available for a structure which is composed

of N components. Each of the components is made of one type of material, and

different components could use different kinds of material. Additionally, there is

one continuous size parameters that needs to be optimized for each component.

The objective and constraints are functions related to the structural performance,

such as buckling load factor, stresses and deflections.

Number the M material by 1 to M, and N components by 1 to N. The geometric

configuration of a structure is determined by vector X=[x1, x2 ,.., xM], where xi is

the size parameter for component i (i=1,2,…,N).

A binary matrix (𝑏) * + 𝑀 is employed to represent the selection of

materials, where:

 𝑏 {
 𝑖𝑓 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑗 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖
 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑒𝑠𝑒

 (7.1)

According to assumption that each component is made of one material, the

row-wise assignment constraints should be satisfied:

92

 ∑𝑏

𝑀

 =

 (𝑖 … 𝑁) (7.2)

Denote the density of material j (j=1,2,….,M), then the density of component i

could be interpolated by:

 (𝑖) ∑ 𝑏

𝑀

 =

 (7.3)

This interpolation scheme is applied also to other material properties, with which

properties of each component are expressed as functions of .

Therefore, general structural performance and further constraints, which are

fully determined by structural configuration and material properties, could be

formulated implicitly as functions of and :

 𝑔𝑘() (…) (7.4)

Normally objective and constraints are highly nonlinear functions in a structural

system. Thus, the simultaneous geometric and material optimization problem is

formulated into a mixed-integer nonlinear programming problem.

7.2 Illustration with a single beam optimization problem

To illustrate the formulation procedure, a cantilever beam example as depicted in

Figure 7-1 is employed. The cantilever beam, which is of circular cross-section

with length L=1m, is under an axial load of F=2000N. The beam is to be light

weighted with a constraint on stress that should not be larger than the maximum

allowable stress.

93

Figure 7-1: Cantilever beam under axial force

There are five kinds of material available for manufacturing the beam with their

properties listed in Table 7-1.

Table 7-1: Available material and related properties for the beam example

 Aluminum Steel Titanium Copper Magnesium

Density (103kg/m3) 2.7 7.85 4.5 8.9 1.8

Maximum allowable stress

 (MPa)
143 235 539 294 210

The area of cross-section of the beam is the size variable to be optimized, and

five binary variables 𝑏 𝑏 represent the selection of the five materials. Then

the density of the beam through the interpolation scheme is formulated as:

 ∑ 𝑏

 =

 (7.5)

The maximum allowable stress is interpolated as

 ∑ 𝑏

 =

 (7.6)

The weight of structure to be minimized is:

 𝑓 ∑ 𝑏

 =

 (7.7)

With the row-wise assignment constraint:

 ∑𝑏

 =

 (7.8)

94

The stress of beam is calculated by force divided by area of cross-section, and

thus the constraint related to structure performance is:

 (7.9)

i.e.:

 ∙ ∑ 𝑏

 =

 (7.10)

Equation (7.7), (7.8) and (7.10) is the mathematical formulation of the problem.

The solution procedure of this problem has been presented in section 4.4.

7.3 Demonstration with bar truss structures optimization

through comparison of algorithms at hand

7.3.1 A small scale 3-bar truss example

In this section, performance of the algorithm is evaluated through a three bar

truss example. The structure is presented in Figure 7-2, with two load cases listed

in Table 7-2, lengths of bar 1 to bar 3 are equal to 1732mm, 1000mm, and

1000mm respectively.

Figure 7-2: Three bar truss structure and loads

Table 7-2: Load cases of three bar truss example

Load case Force (kN) Direction

1 25 Vertical downwards

95

2 150 15o to horizontal downward

Seven kinds of material are available with their properties listed in Table 7-3.

Table 7-3: Available material and related properties for three-bar truss example

 Al Steel Ti Cu Ni Zn Mg

Density (103kg/m3) 2.7 7.85 4.5 8.9 8.8 7.14 1.8

Young’s modulus E(GPa) 70 210 102 119 207 70 45

Maximum allowable stress

 (MPa)
143 235 539 294 450 30 210

The size variables are area of cross-section of each bar in the range of 0.01 to

2000 mm2. Under each load case, all three bars are under constraints of

maximum stress and buckling conditions:

 𝑖

 () (7.11)

 𝑖

 () (7.12)

, where the critical buckling stress is calculated as:

 (7.13)

The mathematical formulation of this problem has 21 binary variables, 3 bounded

continuous variables, 3 linear equality constraints and 12 inequality constraints.

The global optimal of the problem could be obtained by enumerate all possible

binary combinations, which is total 73=343 under assignment constraints. The

best material for bar 1 to bar 3 is [Mg, Ti, Mg], area of cross-section is [153.8,
222.5, 1175.6] mm2 respectively, with objective equals to 3.437kg. The results of
developed algorithm and state of the art algorithms are compared in Table 7-4.

Table 7-4: Results of different algorithms for three bar truss problem

Algorithm obj (kg) Error numfunc

Constr.-directed 3.437 0.00% 325

MISQP* 3.89 13.12% 252

Branch&Cut* 3.450 0.38% 4063

Branch&Bound* 3.437 0.00% 14884

*Since the performance of algorithms relies on the choice of the initial

solution, average 343 results where initial binary variables enumerate

all possible combinations is presented.

96

It could be seen that the developed algorithm is significantly outperform the

branch and bound and branch and cut algorithm from both quality of solution
and number of function evaluations. The computational cost is larger but within

the same magnitude as the MISQP algorithm. However, the quality of solutions is
largely improved. Since the quality of the solution is also an important
consideration, therefore, in the following the performance of MISQP algorithm is

omitted. It should also be noted that, the branch and bound algorithm requires
much larger computational efforts than the other three algorithms.

7.3.2 A medium scale 25-bar truss examples

The same 25-bar truss structure as in Figure 5-4 is taken as examples here. All of

the bars are divided into eight groups, and bars of each group are made of the

same material and with the same area of cross-section. The problem is to select
proper material and cross-section area of each group to minimize the weight of

the structure under stress and displacement constraints. Five kinds of material (Al,
Steel, Ti, Cu, Mg) as stated in Table 7-3 are available. The total number of binary

variables is 40, together with 8 continuous variables. The total combination of
binary variables under assignment constraints is 58≈3.9×105.

Two tests are carried out with this example, where in test 1 only a single load

case is considered. In test 2, two load cases are applied on the structure

respectively. The loading conditions are listed in Table 7-5.

Table 7-5: Loading conditions for 25-bar truss example

Test Load case Node Fx/N Fy/N Fz/N

1 1

1 4448 44482 44482

2 0 44482 44482

3 2224 0 0

6 2669 0 0

2

2
1 0 88964 -22241

2 0 88964 22241

3

1 4448 44482 -22241

2 0 44482 -22241

3 2224 0 0

6 2224 0 0

In the first test example, the structure is under single load case which applied
forces on node 1,2,3,6 at the same time. The displacement of each degree of

freedom is limited to 8.89mm, and compression and tension stresses of each bar
are constrained with respect to buckling and maximum allowable stress. There

are 80 nonlinear constraints and 8 linear equality constraints in all. The global

97

optimal obtained by enumerating all feasible binary combinations is listed in

Table 7-6, with minimum weight of 196.2kg.

Table 7-6: Global optimal of test 1

Group Material Area of cross section (mm2)

1 Mg 11.72

2 Mg 37.88

3 Steel 770.99

4 Mg 0.01

5 Steel 422.36

6 Steel 164.64

7 Steel 33.90

8 Steel 829.64

The developed algorithm stops after 1801 function evaluations, the result is listed

in Table 7-7, with the objective of 210.8kg, which is larger than that of global

optimal by 7.4%.

Table 7-7: Optimal found by developed algorithm of test 1

Group Material Area of cross section (mm2)

1 Steel 0.01

2 Steel 9.44

3 Ti 1503

4 Mg 0.01

5 Steel 436.7

6 Steel 169.6

7 Mg 149.2

8 Steel 856.2

Results of different algorithms are compared in Table 7-8.

Table 7-8: Results of different algorithms for test 1 of 25-bar truss problem

Algorithm obj (kg) error(%) numfunc

Constr.-directed 210.8 7.4 1801

Branch&Cut* 223.9 14.2 3408

Branch&Bound* no comparable returned in 50000 function calls

*Since the performance of algorithms relies on the choice of the initial

solution, average results where initial binary variables enumerate all

possible combinations is presented.

98

In the second example, the problem is the same with above example except that

two load cases needs to be considered. The total number of constraints therefore
increases to 160 nonlinear inequality constraints with 8 linear equality

constraints.

The global optimal obtained by enumerating all feasible binary combinations is
listed in Table 7-9, with minimum weight of 230.05kg.

Table 7-9: Global optimum of test 2

Group Material Area of cross section (mm2)

1 Mg 0.01

2 Steel 432.6

3 Steel 635.5

4 Mg 0.01

5 Mg 0.01

6 Steel 144.9

7 Steel 344.1

8 Steel 566.0

The developed algorithm stops after 1235 function evaluations, the result is listed

in Table 7-10, with the objective of 230.05kg, which is only slightly larger than

that of global optimum.

Table 7-10: Optimum found by developed algorithm of test 2

Group Material Area of cross section (mm2)

1 Al 0.01

2 Steel 432.6

3 Steel 635.6

4 Steel 0.01

5 Steel 0.01

6 Steel 144.9

7 Steel 344.0

8 Steel 566.0

Results of different algorithms are compared in Table 7-11.

Table 7-11: Results of different algorithms for test 2 of 25-bar truss problem

Algorithm obj (kg) error(%) numfunc

Constr.-directed 230.05 0.00 1705

Branch&Cut* 232.76 1.18 9032

Branch&Bound* no comparable returned in 50000 function calls

99

*Since the performance of algorithms relies on the choice of the initial

solution, average results where initial binary variables enumerate all

possible combinations is presented.

From the above two examples, it could be seen that the Branch-and-bound

algorithm is not proper in solving the material selection problem due to its large

and significantly increasing computational efforts with respect to the growth of

problem size. The Branch-and-cut algorithm is comparable but underperforms

the developed constraint-directed algorithm in all of the cases.

7.3.3 A large scale 72-bar truss example

Finally the procedure is demonstrated with a large scale 72-bar truss structure.

All the bars are divided into 16 groups as depicted in different color in Figure

7-3. It is constructed by overlaying the same structure four times from the bottom

to top. The composition of each group is illustrated in Figure 7-4 with a single

layer of the structure.

The structure is under a uniform thermal load with a temperature change of 40℃.

Besides that, three load cases as in Table 7-13 is applied separately, where stress

and deflection constraints as discussed in Section 7.3.2 are applied. Five materials

listed in Table 7-12 are available. There are 80 binary variables, 16 continuous

variables, 16 linear equality constraints, 612 nonlinear inequality constraints in all.

The total number of feasible binary combinations is 716≈3.32×1013.

100

 Figure 7-3: 72-bar truss structure

Figure 7-4: Single layer of the 72-bar structure with group illustration

Table 7-12: Available material and related properties for 72-bar truss

 Aluminum Steel titanium Copper Magnesium

Density (103kg/m3) 2.768 7.85 4.5 8.9 1.8

Allowable stress (MPa) 143 216 539 294 210

E (GPa) 68.95 210 102 119 45

CTE (10-6/℃) 23.6 11.8 8.6 17 26

0
2000

0

2000

0

1000

2000

3000

4000

5000

6000

2

6

10

14

18

X position/mm

3

7

11

15

19

5

9

13

17

1

Y position/mm

4

8

12

16

20

Z
 p

o
s
it
io

n
/m

m

X positionY position

Z
 p

o
s
it
io

n

Group 1,2,3,4

Group 9,10,11,12

Group 13,14,15,16

Group 5,6,7,8

101

Table 7-13: Loading conditions for 72-bar truss example

Load case Node Fx/N Fy/N Fz/N

1 17 22241 22241 -22241

2

17 0 0 -22241

18 0 0 -22241

19 0 0 -22241

20 0 0 -22241

3
10 -22241 -22241 0

12 22241 22241 0

Since the total number of combinations of material is innumerous, there is no

way to know the global optimal for this problem. Instead, 1000 random

combinations of material selection are generated, with which pure continuous

nonlinear optimization with respect to the size variables are carried out with SQP

algorithm of MATLAB optimization toolbox. The distribution of the objective of

optimums for these problems is depicted in Figure 7-5. The objective of the best

result achieved is 119.3kg.

Figure 7-5: 72-bar truss structure and loads

The developed algorithm solves this problem in total 940 function evaluations

with the objective of 147.3kg which is larger than the best result by 23.4%. The

reason that the algorithm behaves not ideally in this case is investigated in the

following and a method to cure this shortcoming is suggested.

120 140 160 180 200 220
0

20

40

60

80

100

120

140

objective/kg

n
u
m

b
e
r

o
f
c
o
m

b
in

a
ti
o
n
s

102

7.4 Enforced neighbor-search strategy

7.4.1 Procedure with enforced neighbor-search strategy

Looking into the optimization procedure of the 72 bar truss example, it shows

that the algorithm stops after only 2 iterations due to the same material selection

in successive iterations is detected. The reason for this is that with the increasing

of number of constraints, it is difficult to improvement the design by adjusting

the material selection and the size of only one component. Therefore, the

possibility of wrongly rejecting a better neighbor material selection (i.e. a

combination of material selection that differs to the current selection in one

component) increases.

To overcome this problem, an enforced neighbor-search strategy is developed

and embedded into the optimization procedure as depicted in red in Figure 7-6.

Figure 7-6: Optimization procedure with enforced neighbour-search strategy

Bk+1=Bk?

fk+1<fk?

Step 4

Return (Bk,xk) as solution

Step 4’ (Enforced neighbour-search):

For i=1 to N

B’k+1= Bk+1

find j that dij is the second least among {diq}q=1:M,

and assign bij=1 and biq=0 for q≠j

Solve the nonlinear programming problem:

Min: fB‘
k+1(x) (Li≤xi≤Ui)

S.t.: gB’
k+1 (x)≤0

Denote the best solution over i by xk+1, and

fk+1=f(Bk+1,xk+1)

No

e

No

e

Yes

Yes

103

It should be noted that, when Bk+1=Bk, it must be the case that all {dij} are

nonnegative. And for the pair (i,j) that bij=1, it must be dij=0. Therefore the

smallest row-wise dij corresponds to the current material selection, and the best

neighbor selection must have the second smallest value of {dij} in a same row.

This strategy enforces the search for a better solution in a neighbor material

selection for each component, which will increase the quality of found solutions.

On the other hand, however, it will increase the computational costs greatly.

During the enforced neighbor-search procedure, N nonlinear optimization

problems needs to be solved. Comparison to the Step 4 where only one nonlinear

optimization problem is to be solved, the number of function evaluations could

be estimated as roughly N times as before. At the same time, the number of

function calls will grow also due to the increase number of iterations.

7.4.2 Demonstration with the 72-bar truss example

The large-scale 72-bar truss problem is again employed here for the

demonstration of the improved procedure. Now, the procedure stops after 5

iterations with total function evaluations of 26571. The objective of the solution

found is 114.2kg, which is smaller than all the 1000 optimization solutions with

random generated material selections. The material and the value of size

variables of the solution are listed in Table 7-14.

Table 7-14: Optimal found by developed algorithm

Group Material
Area of cross-section

/mm2
Group Material

Area of cross-section

/mm2

1 Steel 280.7 9 Al 0.01

2 Steel 188.0 10 Al 112.9

3 Al 221.4 11 Ti 21.4

4 Al 269.2 12 Al 109.1

5 Al 260.1 13 Copper 0.01

6 Al 233.5 14 Al 0.01

7 Al 227.0 15 Copper 0.01

8 Steel 75.3 16 Al 181.0

The bars with area of cross-section equals to the lower bound of 0.01mm2 are

seen that these bars could be removed from the structure, and the total number

of these kinds of bars is 10. By using different colors to represent the material

104

selection, the optimized structure is depicted in Figure 7-7, which contains 62

bars in all.

Figure 7-7: Optimization structure

This example demonstrates that with the enforced neighbour-search strategy,

the quality of the solution is greatly improved. The computational cost could be

estimated by N times the algorithm without this strategy. This estimation could

be used to decide whether the strategy is embedded into the procedure in

practice when the quality of solution and computational cost need to be

compromised.

7.5 Application in the design of a panel with stiffeners

In this section, optimization the design of a panel structure with stiffeners is

presented.

7.5.1 Model description

The panel structure is shown in the following figure. It contains two parts, the

stiffener and the panel. The cross-section of the stiffener is depicted as below.

0
2000

0
2000

0

1000

2000

3000

4000

5000

6000

2

6

10

14

18

X position

3

7

11

15

19

Optimized structure

1

5

9

13

17

Y position

4

8

12

16

20

Z
 p

o
s
it
io

n

steel

Aluminum

Titanium

105

The thickness t is the continuous parameter that determines the geometry of the

stiffeners as in Eq. 7.14.

Figure 7-8: Panel structure with stiffeners

Figure 7-9: Cross-section of the stiffeners

 𝑕 𝑡 (7.14)

Three load cases are under consideration, which are taken from typical working

conditions of a fuselage panel. In the first load case, the panel is under a pure

compression force 33742N, which is uniformly distributed on edges and along the

h

h

t

586.7mm

314.16mm

106

direction of the stiffener. The loading condition with the buckling mode is

depicted in Figure 7-10.

Figure 7-10: Load case 1: buckling under compression

In the second load case, the panel is under both a compression force 24994N and

a shear force 12720N. They are uniformly distributed on edges. The loading

condition with the buckling mode is depicted in Figure 7-11.

Figure 7-11: Load case 2: buckling under compression and shear forces

107

The third load case is a static case. The structure is under both an extensional

force 60650N and a shear force 7500N on one edge.

(a) extension and shear forces (b) contour of in plane displacement

Figure 7-12: Load case 3: static analysis under extension and shear forces

7.5.2 Optimization problem and its solution

There are four kinds of aluminium alloys are available for the manufacturing of

stiffeners and the panel. Some of the properties of these materials are listed in

Table 7-15 [ASM 2014].

Table 7-15: Material properties of four kinds of aluminum alloys

 Al-2024 T3 Al-2014-T6 Al-6061-T6 Al-7075-T6

Density (kg/m3) 2780 2800 2700 2810

Young’s modulus (GPa) 73.1 73.1 68.9 71.7

Poisson’s ratio 0.33 0.33 0.33 0.33

Fatigue Strength (MPa) 138 124 96.5 159

Cost (Euro/kg) 2.016 2.010 1.836 1.893

The design variables of optimization problem are the material selections of the

stiffeners and the panel from these four materials, the height of the stiffeners

and the thickness of the panel. The objective is to minimize the manufacturing

cost of the structure. There are four constraints in all: the lower bounds of the

buckling load factor in load case 1 and load case 2, the upper bounds of the

maximum von Mises stress of both the stiffeners and the panel with respect to

fatigue strength under a safety factor of 1.1.

Applying the developed algorithm, an optimum is found after 2 iterations and

with 62 function evaluations. The solution shows the panel is manufactured with

Al-6061 and the stiffeners are made of Al-7075. The corresponding optimal

108

thickness of the panel is 2.63mm and the height of the stiffener is 20.90mm. The

total cost of the structure is 2.67Euro.

To verify the quality of the solution, continuous optimizations under all 16

material combinations are carried out. The optimal objective values are listed in

Table 7-16. It demonstrates that the algorithm successfully found the global

optimum in this case.

Table 7-16: Optimal objective value (Cost in Euro) of different material combinations

Panel

Al-2024 T3 Al-2014-T6 Al-6061-T6 Al-7075-T6

Stiffener

Al-2024 T3 2.95 2.96 2.70 2.83

Al-2014-T6 3.18 3.20 3.00 3.09

Al-6061-T6 3.83 3.85 3.61 3.71

Al-7075-T6 2.93 2.95 2.67 2.81

109

8. Conclusion and outlook

In this thesis, an accelerated neighbor-search algorithm and a constraint-directed

algorithm are designed for pure integer nonlinear assignment problem and the

mixed-integer nonlinear programming with binary assignment problem

respectively. Initial solution generation procedures for both problems are also

developed, with which high quality of starting points for further optimization

algorithm can be generated.

The performance of these procedures are evaluated from the point of view of

both the solution quality and number of function evaluations which dominates

the computational cost in structural optimization with finite element analysis.

Mathematical formulations of three types of structural optimization problems

with pure integer and mixed-integer design variables are established. The parts

allocation problem is formulated into nonlinear assignment problem, which is a

type of pure combinatorial optimization. Proper interpolation schemes is

established so that the function evaluation at fraction points is mathematical

meaningful. Based on this property, the developed initial solution generation

method and the accelerated neighbor-search algorithm is applied. It

demonstrates that the whole procedure is able to reduce the number of

iterations and thus the number of function evaluations effectively.

The stacking sequence optimization in laminate structure design is also

formulated into nonlinear assignment problem. The same procedure as in solving

the parts allocation problem is transplanted to deal with this problem. The initial

solution generation method is modified in two ways: when the material stiffness

quantities are acceptable by finite element solvers, an interpolation scheme is

utilized. Otherwise, a quasi-homogenous technique is developed and employed.

To fit the contiguity constraint, a repair operator aims at repairing as many as

possible contiguity violations with the least number of changes of stacking

sequence is developed. The performance of the operator is proved through

large-scale examples. The developed procedure is applied on practical

straight-fiber laminate sequence optimization and also achieved success in

variable-stiffness laminate structure optimization.

The simultaneous material selection and size optimization problem is formulated

into a mixed-integer nonlinear optimization problem, with both binary and

110

continuous type design variables. The developed constraint-directed binary

assignment algorithm is directly applied. The efficiency of the algorithm is

demonstrated with small-scale to large-scaled bar truss structures and a panel

design problem. A strategy to improve the quality of final solutions is also

presented.

The accelerated neighbor-search algorithm shows great application potential in

structure optimization with pure integer variables. The idea of fully utilizing

neighbor-search information is important in the design of neighbor-search based

algorithms to solve assignment problems. The acceleration technique presented

here is just an example. It could be properly adjusted to fit further assignment

type problems. The constraint-directed approach shows its capability in solving

mixed-integer optimization with binary assignment. Extension of this algorithm to

adapt to more general types of MINLP problems, for example problems with

natural integers, and improvement on the quality of the solutions by developing

and integrating more advanced nonlinear optimization solvers are interesting

points in future study. From the point of view of an entire solution procedure of

structural optimization problems, surrogate models can be combined with the

solution algorithm to further improve the efficiency.

111

Bibliography

[Aarts 2003] E. Aarts and J. K. Lenstra, Local Search in Combinatorial

Optimization. Princeton, NJ, USA: Princeton University Press,

2003, pp. 57–214.

[Akrotirianakis

2001]

I. Akrotirianakis, I. Maros and B. Rustem, An Outer Approximation

based Branch and Cut Algorithm for convex 0-1 MINLP problems,

Optimization Methods and Software, 16 (2001), pp. 21-47.

[Apalak 2011] Z. G. Apalak, M. K. Apalak, R. Ekici and M. Yildirim, Layer

optimization for maximum fundamental frequency of rigid

point-supported laminated composite plates, Polymer Composites

Volume 32, Issue 12, pages 1988–2000, December 2011.

[ASM 2014]
ASM Aerospace Specification Metals Inc.: Aluminum 2014-T6

2014-T651; Aluminum 2024-T3; Aluminum 6061-T6 6061-T651;

Aluminum 7075-T6 7075-T651.

http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA2014T6

http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA2024T3

http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061T6

http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA7075T6

[Bendsoe 2003] M. P. Bendsoe and O. Sigmund, Topology Optimization Theory,

Methods, and Applications, Springer, 2003.

[Bonami 2008] Pierre Bonami, Lorenz T. Biegler, Andrew R. Conn etc., An

Algorithm Framework for Convex Mixed Integer Nonlinear

Programs, Discrete Optimization 5 (2008) pp. 186-204.

[Burkard 1997] R.E. Burkard, E. Çela, S.E. Karisch and F. Rendl, QAPLIB – A

Quadratic Assignment Problem Library, Journal of Global

Optimization, 1997, 10, pp. 391-403.

[Burkard 2009] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.

Philadelphia, PA, USA: Society for Industrial and Applied

Mathematics, ch. Linear sum assignment problem, 2009, pp.

112

73–144.

[Chang 2010] N. Chang, W. Wang, W. Yang and J. Wang. Ply stacking sequence

optimization of composite laminate by permutation discrete

particle swarm optimization. Struct Multidisc Optim, 41:179-187,

2010.

[Chen 2008] J. Chen, R. Ge, and J. Wei. Probabilistic optimal design of

laminates using improved particle swarm optimization.

Engineering Optimization, 40(8):695-708, August 2008.

[Duran 1986] M. Duran and I.E. Grossmann, An outer-approximation algorithm

for a class of mixed-integer nonlinear programs, Mathematical

Programming 36 (1986) pp.307-339.

[Feo 1991] T. Feo, K. Venkatraman and J. Bard, A grasp for difficult single

machine scheduling problem, Computers&Operations Research,

18:635-643, 1991.

[Fletcher 1994] R. Fletcher and S. Leyffer, Solving mixed integer nonlinear

programs by outer approximation, Mathematical Programming 66

(1994), pp. 327-349.

[Floudas 1995] C. A. Floudas, Nonlinear and Mixed-Integer

Optimization—Fundamentals and Applications, New York, Oxford:

OXFORD UNIVERSITY PRESS, 1995.

[Frieze 1983] A. M. Frieze, Complextiy of a 3-dimensional assignment problem,

European Journal of Operation Research, vol. 13, no. 2, pp.

161–164, 1983.

[Glover 1997] F. Glover and M. Laguna, Tabu Search. Kluwer, Dordrecht, 1997.

[Gomory 1958] R. Gomory, Outline of an algorithm for integer solutions to linear

problems, Bulletin of the American Mathematical Society, 64

(1958), pp. 275-278.

[Graves 1983] S. C. Graves and B. W. Lamar, An integer programming procedure

113

for assembly design problems, Operations Research, 31(3) 1983,

522-545.

[Gupta 1985] O.K. Gupta and V. Ravindran, Branch and bound experiments in

convex nonlinear integer programming, Management Science 31

(1985), pp. 1533-1546.

[Gürdal 1999] Z. Gürdal, R. T. Haftka and P. Hajela, Design and Optimization of

Laminated Composite Materials, John Wiley & Sons, 1999.

[Gutkowski

1994]

W. Gutkowski, Discrete structural optimization, Springer, 1994.

[Huber 2010] M. Huber, D. Neufeld, , J. Chung,, K. Behdinan and H. Baier, Data

Mining Based Mutation Function for optimization problems with

mixed continuous-discrete design variables, International Journal

of Structural and Multidisciplinary Optimization: Volume 41, Issue

4, 2010.

[Huber 2010] M. Huber, Structural Design Optimization Including Quantitative

Manufacturing Aspects Derived from Fuzzy Knowledge, Doctor

dissertation, LLB, TU München 2010.

[Kirkpatrick 1983] S. Kirkpatrick, C. G. Jr. and M. Vecchi, Optimization by simulated

annealing, Science, 1983, 220:671-680.

[Kuhn 1955] H. W. Kuhn, The Hungarian method for the assignment

problem, Naval Research Logistics Quarterly, 1955, 2:83–97.

[Lee 2012] J. Lee and S. Leyffer, Mixed Integer Nonlinear Programming,

Series: The IMA Volumes in Mathematics and its Applications, Vol.

154, Springer 2012.

[Lehmann 2013] S. Lehmann, K. Schittkowski, M. Stingl, F. Wein and C. Zillober,

2013, A strictly feasible sequential convex programming method

applied to free material optimization

[Li 2000] Q. Li, G. P. Steven and Y.M. Xie, Evolutionary structural

http://en.wikipedia.org/w/index.php?title=Naval_Research_Logistics_Quarterly&action=edit&redlink=1
http://www.klaus-schittkowski.de/feasSCP_rep.htm
http://www.klaus-schittkowski.de/feasSCP_rep.htm

114

optimization for stress minimization problems by discrete

thickness design, Computers & Structures, Volume 78, Issue 6,

December 2000, Pages 769–780.

[Li 2006] D. Li and X. Sun, Nonlinear Integer Programming, Series:

International Series in Operations Research & Management

Science, Vol. 84, Springer 2006.

[Liu 2000] B. Liu, R. T. Haftka, M. A. Akgün and A Todoroki, Permutation

genetic algorithm for stacking sequence design of composite

laminates, Comput. Methods Appl. Mech. Engrg. 186 (2000), pp.

357-372.

[Munkres 1957] J. Munkres, Algorithms for the Assignment and Transportation

Problems, Journal of the Society for Industrial and Applied

Mathematics, vol. 5, no. 1, pp. 32–38, 1957.

[Papadimitriou

1998]

H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:

Algorithms and Complexity, Dover Publications, 1998.

[Pardalos 2000] P. M. Pardalos and L. S. Pitsoulis, Nonlinear Assignment Problems:

Algorithms and Applications (Combinatorial Optimization).

Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2000, ch.

Heuristics for Nonlinear Assignment Problems, pp. 175–215.

[Quesada 1992] I. Quesada and I.E. Grossmann, An LP/NLP based branched and

bound algorithm for convex MINLP optimization problems,

Computers and Chemical Engineering 16 (1992) pp.937-947.

[Riche 1993] R. Riche and R. T. Haftka, Optimization of laminate stacking

sequence for buckling load maximization by genetic algorithm,

AIAA Journal, Vol. 31, No. 5 (1993), pp. 951-956.

[Sahni 1976] S. Sahni and T. Gonzalez, P-complete approximation problems,

Journal of the Association of Computing Machinery, 23 (1976), pp.

555–565.

115

[Salman 2002] A. Salman, I. Ahmad and S. Al-Madani, Particle swarm

optimization for task assignment problem, Microprocessors and

Microsystems, Vol. 26(8): pp. 363–371, 2002.

[Schittkowski

2006]

O. Exler and K. Schittkowski, A Trust Region SQP Algorithm for

Mixed-Integer Nonlinear Programming, 2006.

[Schittkowski

2013]

O. Exler, T. Lehmann and K. Schittkowski: A comparative study of

SQP-type algorithms for nonlinear and nonconvex mixed-integer

optimization, Mathematical Programming Computation, Vol. 4,

383-41, 2013.

[Stegmann 2005] J. Stegmann and E. Lund, Discrete material optimization of general

composite shell structures, International Journal for Numerical

Methods in Engineering, Volume 62, Issue 14, pp. 2009–2027.

[Stubbs 1999] R. Stubbs and S. Mehrotra, A branc-and-cut method for 0-1 mixed

convex programming, Mathematical Programming 86 (1999), pp.

515-532.

[Syslo 2006] M. M. Syslo, N. Deo and J. S. Kowalik, Discrete Optimization

Algorithms: with Pascal Programs, Dover Publications, 2006.

[Tsai 1968] S. W. Tsai and N. J. Pagano, Invariant Properties of Composite

Materials, in: Composite Materials Workshop, Technomic

Publishing Company, Westport, Conn., 1968

[Tsutsui 2007] S. Tsutsui, Cunning Ant System for Quadratic Assignment Problem

with Local Search and Parallelization, Pattern Recognition and

Machine Intelligence, Lecture Notes in Computer Science Volume

4815, 2007, pp 269-278.

[Ungwattanapanit

2012]

T. Ungwattanapanit and H. Baier, Strength-Stability Optimization

of Hybrid-Stiffness Laminated Plates with Cut-outs subjected to

Multiple Loads, RAeS Aircraft Structural Design Conference 2012,

Delft.

[Ungwattanapanit T. Ungwattanapanit, Y. Zhang and H. Baier, Hybrid-Stiffness

http://www.klaus-schittkowski.de/minlp_comp_study.htm
http://www.klaus-schittkowski.de/minlp_comp_study.htm
http://www.klaus-schittkowski.de/minlp_comp_study.htm
http://link.springer.com/search?facet-author=%22Shigeyoshi+Tsutsui%22
http://link.springer.com/search?facet-author=%22Shigeyoshi+Tsutsui%22

116

2013] Laminated Fuselage Panels with Window Cutouts Optimized

under Stability and Strength Constraints, ICCS 17 2013, Porto.

[Vavasis 1991] S. Vavasis, Nonlinear Optimization: Complexity Issues. Oxford

University Press, New York, N.Y., 1991.

[Westerlund

1995]

T. Westerlund and F. Pettersson, An extended cutting plane

method for solving convex MINLP problems, Computers &

Chemical Engineering 19 (1995), pp. 131-136.

[Zhang 2011] Y. Zhang and H. Baier, Optimal Parts Allocation for Structural

Systems Via Improved Initial Solution Generation. VII. ALIO / EURO

Workshop on Applied Combinatorial Optimization 2011, Porto,

Portugal, 2011.

117

Appendix A. Full test results of QAPLIB problems

Table A-1: Test results of developed procedure on QAPLIB

Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva

bur26a 26 5426670 5432907 0.114932 11 4264

bur26b 26 3817852 3836581 0.490564 11 4264

bur26c 26 5426795 5427739 0.017395 12 4590

bur26d 26 3821225 3865437 1.157011 14 5242

bur26e 26 5386879 5411820 0.462995 15 5568

bur26f 26 3782044 3823154 1.086978 11 4264

bur26g 26 10117172 10244156 1.255133 10 3938

bur26h 26 7098658 7191733 1.311163 11 4264

chr12a 12 9552 13194 38.12814 5 481

chr12b 12 9742 14378 47.58776 7 615

chr12c 12 11156 13974 25.25995 5 481

chr15a 15 9896 13376 35.16572 6 863

chr15b 15 7990 10956 37.1214 7 969

chr15c 15 9504 16826 77.04125 4 651

chr18a 18 11098 17948 61.72283 8 1558

chr18b 18 1534 1938 26.33638 8 1558

chr20a 20 2192 2806 28.01095 9 2121

chr20b 20 2298 3236 40.8181 8 1930

chr20c 20 14142 23758 67.99604 6 1548

chr22a 22 6156 7266 18.03119 8 2342

chr22b 22 6194 7360 18.82467 8 2342

chr25a 25 3796 5196 36.88093 12 4239

els19 19 17212548 20508428 19.14812 10 2083

esc16a 16 68 68 0 6 984

esc16b 16 292 292 0 4 742

esc16c 16 160 168 5 4 742

esc16d 16 16 18 12.5 7 1105

esc16e 16 28 30 7.142857 3 621

esc16f 16 0 0 0 1 379

esc16g 16 26 26 0 2 500

esc16h 16 996 996 0 5 863

esc16i 16 14 14 0 3 621

118

Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva

esc16j 16 8 12 50 3 621

esc32a 32 ---- 152 ---- 10 5996

esc32b 32 ---- 212 ---- 10 5996

esc32c 32 ---- 646 ---- 6 4008

esc32d 32 ---- 210 ---- 9 5499

esc32e 32 2 2 0 3 2517

esc32f 32 2 2 0 3 2517

esc32g 32 6 8 33.33333 3 2517

esc128 128 64 64 0 15 138321

had12 12 1652 1676 1.452785 5 481

had14 14 2724 2724 0 5 658

had16 16 3720 3750 0.806452 6 984

had18 18 5358 5414 1.045166 9 1712

had20 20 6922 7044 1.762496 8 1930

kra30a 30 88900 93700 5.399325 13 6570

kra30b 30 91420 94110 2.942463 9 4826

kra32 32 17740 18664 5.208568 12 6990

lipa20a 20 3683 3782 2.688026 12 2694

lipa20b 20 27076 27076 0 6 1548

lipa30a 30 13178 13431 1.919866 9 4826

lipa30b 30 151426 151426 0 11 5698

lipa40a 40 31583 31995 1.304499 18 15660

lipa40b 40 476581 476581 0 9 8631

lipa50a 50 62093 62832 1.19015 14 19666

lipa50b 50 1210244 1210244 0 7 11084

lipa60a 60 107218 108407 1.108956 26 49648

lipa60b 60 2520135 2520135 0 7 15999

lipa70a 70 169755 171046 0.760508 39 99126

lipa70b 70 4603200 4603200 0 10 29062

lipa80a 80 253195 255388 0.866131 35 117037

lipa80b 80 7763962 9369127 20.67456 45 148647

lipa90a 90 360630 363362 0.757563 45 188372

lipa90b 90 12490441 12490441 0 8 40150

nug12 12 578 616 6.574394 7 615

nug14 14 1014 1018 0.394477 6 750

nug15 15 1150 1260 9.565217 4 651

119

Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva

nug16a 16 1610 1686 4.720497 6 984

nug16b 16 1240 1262 1.774194 10 1468

nug17 17 1732 1758 1.501155 7 1250

nug18 18 1930 1968 1.968912 5 1096

nug20 20 2570 2664 3.657588 5 1357

nug21 21 2438 2510 2.95324 5 1498

nug22 22 3596 3628 0.889878 8 2342

nug24 24 3488 3646 4.529817 8 2794

nug25 25 3744 3898 4.113248 8 3035

nug27 27 5234 5448 4.088651 10 4251

nug28 28 5166 5330 3.174603 9 4197

nug30 30 6124 6358 3.821032 14 7006

rou12 12 235528 255614 8.528073 5 481

rou15 15 354210 367966 3.883572 4 651

rou20 20 725522 751674 3.604577 8 1930

scr12 12 31410 35002 11.43585 5 481

scr15 15 51140 56124 9.745796 7 969

scr20 20 110030 116536 5.912933 8 1930

sko81 81 90998 92676 1.843997 29 100552

sko90 90 115534 117010 1.277546 33 140300

sko100a 100 152002 155898 2.563124 33 173385

sko100b 100 153890 156136 1.459484 40 208042

sko100c 100 147862 150234 1.604199 34 178336

sko100d 100 149576 151860 1.526983 34 178336

sko100e 100 149150 153048 2.613476 27 143679

sko100f 100 149036 151062 1.359403 30 158532

ste36a 36 9526 10254 7.642242 11 8239

ste36b 36 15852 19052 20.18673 15 10763

ste36c 36 8239110 9648150 17.10185 8 6346

tai12a 12 224416 244672 9.026094 3 347

tai12b 12 39464925 43975950 11.43047 4 414

tai15a 15 388214 393178 1.278676 7 969

tai15b 15 51765268 51999162 0.451836 7 969

tai17a 17 491812 506346 2.955194 9 1524

tai20a 20 703482 743604 5.703344 9 2121

tai20b 20 1.22E+08 1.37E+08 12.22154 11 2503

120

Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva

tai25b 25 3.44E+08 3.71E+08 7.646 7 2734

tai30b 30 6.37E+08 7.3E+08 14.56366 13 6570

tai35b 35 2.83E+08 3.25E+08 14.8207 14 9571

tai40b 40 6.37E+08 6.68E+08 4.801161 25 21127

tai50b 50 4.59E+08 4.77E+08 3.920445 25 33152

tai60a 60 7208572 7539198 4.586567 26 49648

tai60b 60 6.08E+08 6.77E+08 11.2575 26 49648

tai64c 64 1855928 1865494 0.515429 13 30319

tai80a 80 13557864 13959286 2.960806 47 154969

tai80b 80 8.18E+08 8.46E+08 3.416145 32 107554

tai100b 100 1.19E+09 1.2E+09 1.231798 34 178336

tai150b 150 4.99E+08 5.09E+08 2.069321 54 626006

tai256c 256 44759294 44879440 0.268427 72 2415690

tho30 30 149936 157712 5.186213 12 6134

tho150 150 8133398 8293640 1.970173 52 603654

wil100 100 273038 274946 0.698804 35 183287

esc32h ---- ---- 446 ---- 11 6493

esc64a ---- ---- 118 ---- 6 16200

sko42 42 15812 16406 3.756641 16 15558

sko49 49 23386 23864 2.043958 20 25943

sko56 56 34458 34846 1.126008 32 52450

sko64 64 48498 49252 1.554703 22 48472

sko72 72 66256 67476 1.841343 23 63997

tai10a 10 ---- 135828 ---- 3 240

tai10b 10 ---- 1221121 ---- 5 332

tai25a 25 1167256 1242244 6.424298 9 3336

tai30a 30 1818146 1950320 7.269713 7 3954

tai40a 40 3139370 3285000 4.638829 18 15660

tai50a 50 4938796 5138448 4.042524 21 28248

Table A-2: Test results of procedure without acceleration technique on QAPLIB

Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva

bur26a 26 5426670 5435663 0.165719 18 6528

bur26b 26 3817852 3836672 0.492947 12 4578

bur26c 26 5426795 5429054 0.041627 19 6853

121

Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva

bur26d 26 3821225 3865472 1.157927 16 5878

bur26e 26 5386879 5412611 0.477679 27 9453

bur26f 26 3782044 3827490 1.201625 16 5878

bur26g 26 10117172 10231402 1.12907 21 7503

bur26h 26 7098658 7203633 1.478801 13 4903

chr12a 12 9552 13194 38.12814 5 476

chr12b 12 9742 14378 47.58776 8 674

chr12c 12 11156 13974 25.25995 6 542

chr15a 15 9896 13376 35.16572 6 857

chr15b 15 7990 10082 26.18273 8 1067

chr15c 15 9504 13228 39.1835 6 857

chr18a 18 11098 17948 61.72283 10 1856

chr18b 18 1534 1938 26.33638 8 1550

chr20a 20 2192 3210 46.44161 8 1922

chr20b 20 2298 3108 35.24804 12 2682

chr20c 20 14142 27510 94.52694 16 3442

chr22a 22 6156 7118 15.62703 12 3258

chr22b 22 6194 7360 18.82467 8 2334

chr25a 25 3796 5196 36.88093 19 6327

els19 19 17212548 20508428 19.14812 16 3099

esc16a 16 68 70 2.941176 5 858

esc16b 16 292 292 0 4 738

esc16c 16 160 160 0 5 858

esc16d 16 16 18 12.5 7 1098

esc16e 16 28 30 7.142857 3 618

esc16f 16 0 0 0 1 378

esc16g 16 26 26 0 3 618

esc16h 16 996 996 0 5 858

esc16i 16 14 14 0 3 618

esc16j 16 8 12 50 3 618

esc32a 32 ---- 158 ---- 14 7970

esc32b 32 ---- 192 ---- 19 10450

esc32c 32 ---- 646 ---- 9 5490

esc32d 32 ---- 204 ---- 12 6978

esc32e 32 2 2 0 3 2514

esc32f 32 2 2 0 3 2514

122

Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva

esc32g 32 6 8 33.33333 3 2514

esc128 128 64 66 3.125 17 154562

had12 12 1652 1676 1.452785 6 542

had14 14 2724 2724 0 5 653

had16 16 3720 3750 0.806452 9 1338

had18 18 5358 5444 1.605077 7 1397

had20 20 6922 7056 1.935857 12 2682

kra30a 30 88900 97780 9.988751 16 7862

kra30b 30 91420 94240 3.084664 20 9602

kra32 32 17740 19494 9.88726 16 8962

lipa20a 20 3683 3782 2.688026 12 2682

lipa20b 20 27076 30957 14.33373 5 1352

lipa30a 30 13178 13443 2.010927 17 8297

lipa30b 30 151426 151426 0 22 10472

lipa40a 40 31583 31951 1.165184 25 21102

lipa40b 40 476581 476581 0 25 21102

lipa50a 50 62093 62894 1.29 26 34352

lipa50b 50 1210244 1210244 0 33 42927

lipa60a 60 107218 108363 1.067918 32 60242

lipa60b 60 2520135 2520135 0 39 72632

lipa70a 70 169755 171258 0.885394 40 101502

lipa70b 70 4603200 4603200 0 58 144972

lipa80a 80 253195 255219 0.799384 45 148602

lipa80b 80 7763962 9435946 21.53519 39 129642

lipa90a 90 360630 363458 0.784183 47 196337

lipa90b 90 12490441 12490441 0 61 252407

nug12 12 578 616 6.574394 8 674

nug14 14 1014 1018 0.394477 9 1017

nug15 15 1150 1260 9.565217 4 647

nug16a 16 1610 1686 4.720497 6 978

nug16b 16 1240 1298 4.677419 8 1218

nug17 17 1732 1752 1.154734 9 1515

nug18 18 1930 1998 3.523316 7 1397

nug20 20 2570 2636 2.568093 7 1732

nug21 21 2438 2480 1.722724 15 3593

nug22 22 3596 3690 2.614016 14 3720

123

Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva

nug24 24 3488 3694 5.905963 13 4166

nug25 25 3744 3822 2.083333 18 6027

nug27 27 5234 5446 4.050439 16 6347

nug28 28 5166 5340 3.368177 16 6834

nug30 30 6124 6388 4.310908 20 9602

rou12 12 235528 255614 8.528073 5 476

rou15 15 354210 367966 3.883572 6 857

rou20 20 725522 744514 2.617701 12 2682

scr12 12 31410 35002 11.43585 5 476

scr15 15 51140 56124 9.745796 9 1172

scr20 20 110030 115094 4.602381 17 3632

sko81 81 90998 93652 2.916548 76 252803

sko90 90 115534 117792 1.954403 75 308477

sko100a 100 152002 156120 2.709175 94 475302

sko100b 100 153890 156836 1.914354 132 663402

sko100c 100 147862 150798 1.985635 106 534702

sko100d 100 149576 152028 1.6393 131 658452

sko100e 100 149150 152838 2.472679 96 485202

sko100f 100 149036 151260 1.492257 119 599052

ste36a 36 9526 10382 8.985933 24 16418

ste36b 36 15852 18872 19.05122 23 15788

ste36c 36 8239110 9648150 17.10185 13 9488

tai12a 12 224416 244672 9.026094 3 344

tai12b 12 39464925 43975950 11.43047 7 608

tai15a 15 388214 393178 1.278676 10 1277

tai15b 15 51765268 51999162 0.451836 11 1382

tai17a 17 491812 506346 2.955194 10 1651

tai20a 20 703482 732262 4.091078 13 2872

tai20b 20 1.22E+08 1.38E+08 12.49783 11 2492

tai25b 25 3.44E+08 3.66E+08 6.252887 20 6627

tai30b 30 6.37E+08 7.3E+08 14.64143 21 10037

tai35b 35 2.83E+08 3.25E+08 14.63668 36 22647

tai40b 40 6.37E+08 6.68E+08 4.785443 41 33582

tai50b 50 4.59E+08 4.79E+08 4.42153 55 69877

tai60a 60 7208572 7496622 3.995937 44 81482

tai60b 60 6.08E+08 6.82E+08 12.17491 68 123962

124

Problem Size QAPLIB_opt Found_opt Error(%) Num Ite FuncEva

tai64c 64 1855928 1865494 0.515429 13 30306

tai80a 80 13557864 14020750 3.414151 47 154922

tai80b 80 8.18E+08 8.48E+08 3.55567 126 404562

tai100b 100 1.19E+09 1.23E+09 4.04011 121 608952

tai150b 150 4.99E+08 5.15E+08 3.225353 208 2346902

tai256c 256 44759294 44961636 0.452067 69 2317698

tho30 30 149936 157954 5.347615 21 10037

tho150 150 8133398 8343436 2.582414 166 1877552

wil100 100 273038 276140 1.136106 103 519852

esc32h ---- ---- 476 ---- 10 5986

esc64a ---- ---- 116 ---- 13 30306

sko42 42 15812 16370 3.528965 32 29318

sko49 49 23386 23910 2.240657 35 43563

sko56 56 34458 34958 1.451042 46 73978

sko64 64 48498 49792 2.668151 49 102882

sko72 72 66256 67164 1.370442 77 201998

tai10a 10 ---- 135828 ---- 3 237

tai10b 10 ---- 1228910 ---- 4 282

tai25a 25 1167256 1242244 6.424298 9 3327

tai30a 30 1818146 1950320 7.269713 7 3947

tai40a 40 3139370 3284656 4.627871 26 21882

tai50a 50 4938796 5158174 4.441933 21 28227

125

Appendix B. Optimal stacking sequence

B.1. Thin composite panel examples

Table B-1: Optimal stacking sequence for the thin composite panel

Load

case
Obj. Stacking sequence

1 0.9485 [() /() / /() / /() /() / /() / /() / /]

2 0.9486 [() /() / /() / / / / /() / /() / /]

3 0.9101 [() /() / /() / / /() / /() / /]

4 0.8710 [() /() / /() /() / /() / /]

5 0.7763 [() /() / / /() / /]

6 0.7756 [() /() / /() / / /() / /() / /() / /]

7 0.7820
[() / /() /() / /() / /() / / / / / /() /

 / / /]

8 1.1042
[() /() / /() / /() / /() / /() / / / / /

() / /() / /() / /]

9 2.7967

[/ /() / /() / / / / / /() / /()

/ / / /() / /() / /() / /() / /() / /()

/ /]

10 2.7951

[/() /() / /() / /() / /() / /() /

 / / /() / /() / /() / /() / /() / /() /

 / /]

11 0.9584
[() / / / / /() /() /() / /() / / /

() / /() / /() / /() / /]

B.2. Very thick composite panel examples

Table B-2: Optimal stacking sequence for the very thick composite panel

Load

case
Obj. Stacking sequence

1 4.0401 [(±45)72/(±60)24/(±30)24/(902)5/(02)2/(902)5/02/(902)5/02/(902)5/02/

126

Load

case
Obj. Stacking sequence

(902)5/02/(902)5/(02)5/902/(02)5/902/(02)5/902/(02)5/902/(02)5/902/

(02)3/902/(02)2]

2 4.0370

[(±45)68/(±60)22/(±30)22/(902)5/02/(902)2/02/(902)5/02/(902)5/02/

(902)5/02/(902)5/(02)5/902/(02)5/902/(02)5/902/(02)5/902/(02)5/902/

(02)2]

3 3.8301
[(±45)60/(±60)18/(±30)20/(902)5/02/(902)4/02/(902)5/02/(902)5/02/

(902)3/02/902/(02)5/902/(02)5/902/(02)5/902/(02)5/902/02/902/(02)2]

4 3.7497
[(±45)48/(±60)16/(±30)16/(902)5/(02)2/(902)5/02/(902)5/02/(902)5/

(02)5/902/(02)5/902/(02)5/902/(02)3/902/(02)2]

5 3.8307
[(±45)32/(±60)10/(±30)12/(902)5/02/(902)4/02/(902)3/02/902/(02)5/

902/(02)5/902/02/902/(02)2]

6 3.6937

[(±45)64/(±60)20/(±30)22/(902)5/02/(902)2/02/(902)5/02/(902)5/02/

(902)5/02/(902)5/(02)5/902/(02)5/902/(02)5/902/(02)5/902/(02)5/

902/(02)2]

7 4.8251

[(902)5/±30/(902)5/02/902/(02)5/902/(02)5/902/(02)5/902/(02)5/

(±30)20/(±45)32/(±60)16/(902)3/602/(902)5/02/(902)5/02/(902)5/02/

(902)5/02/(902)5/02/(902)5/02/(902)5/602/(02)5/602/02/602/(02)2]

8 5.0305

[(±45)28/(±60)22/(±30)23/902/302/(902)5/02/(902)5/02/(902)5/02/

(902)5/02/(902)5/02/(902)5/02/(902)5/02/(902)5/02/(902)5/02/(902)5/

(02)5/902/(02)5/902/(02)5/902/(02)5/902/(02)5/902/(02)5/902/(02)5/

902/(02)5/902/02/902/(02)2]

9 14.171

[02/(902)2/302/902/602/02/(902)5/02/(902)5/02/(902)5/02/(902)5/02/

(902)5/02/902/602/(902)5/02/(902)5/02/(902)5/02/(902)5/(±60)24/

(±45)40/(±30)26/(02)5/902/(02)5/902/(02)5/902/(02)5/902/(02)5/902/

(02)5/902/(02)5/902/(02)5/902/(02)5/902/02/902]

10 14.034

[(02)3/(902)2/602/(902)2/602/(902)4/(02)2/(902)5/02/(902)5/02/(902)5/

02/(902)5/02/(902)5/02/(902)5/02/(902)5/02/(902)5/02/(902)5/602/

(902)2/(±60)23/(±45)32/(±30)26/(02)5/902/(02)5/902/(02)5/902/(02)5/

902/(02)4/(902)2/(02)5/902/(02)5/902/(02)5/902/(02)3/(902)2/02/(902)]

11 5.1018

[(±45)5/(±60)2/(902)5/±45/(902)5/±45/(902)5/±45/(902)5/±45/(902)5

/±45/(902)4/±60/±45/(902)4/±60/902/±60/(902)2/(±60)14/(±45)2/

902/±60/(±45)19/±30/902/(±30)5/(902)2/(±30)2/902/(±30)11/(02)5/

±30/(02)5/902/(02)4/902/(02)4/902/(02)5/902/(02)5/902/(02)5/902/

(02)5/902/(02)2]

127

B.3. Composite panel with stiffeners

Table B-3: Optimal stacking sequence considering only buckling

Panel
[(010/±30)2/(06/±30)2/(±30)5/±45/±30/(±45)9/(±60)7/908/±60/(9010/±60)2/

904]s

Stiffener

[±45/902/±60/02/902/±45/02/±60/±45/04/±30/04/±30/902/±30/02/±45/

902/(±60)2/904/02/±30/(±45)2/(±30)2/902/02/±45/02/902/±45/±60/902/02/

(±60)2/±30/±60/02/±45/02/902/04/906/±60/(±30)2/902/±30/±60/02/904/

±45]s

Table B-4: Optimal stacking sequence considering buckling, strain and stress

Panel
[(±45)10/(±30)10/010/±60/06/±60/08/(±60)7/02/908/02/904/02/9010/02/906/

±60/904]s

Stiffener

[±45/±60/04/±60/902/02/±30/02/(±60)2/02/902/(±30/02)2/904/±60/02/±45/

06/(±60)2/±45/02/±30/902/±60/02/±45/902/(±45)2/±30/902/±30/±45/±30/

±60/908/02/±45/904/±45/±30/904/±30/±45/902/02/±30/±60/02]s

