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Abstract

By imparting us the ability to touch and feel virtual or remote environments, haptics intro-

duces physical interactivity into multimodal communication systems. The inclusion of haptic

media has been shown to improve task performance, immersiveness, and the overall experience

of task execution. While several decades of research have been dedicated to the acquisition,

processing, coding, and display of audio-video streams in multimodal systems, similar aspects

for haptic streams have started getting addressed only recently.

This thesis presents novel data compression (coding) approaches for haptic signals gener-

ated while stroking a textured surface with a mechanical tool. Detailed investigations of the

mechanisms of texture signal production and perception are described. Mathematical models

for these mechanisms are then used as the basis for the presented data compression approach.

The performance of the compression algorithm is comprehensively evaluated both objectively

as well as through subjective user studies. These evaluations show that the compression al-

gorithm achieves, for a comparable perceptual quality, a compression ratio two times better

than the state-of-the-art.

To obviate the constant need for difficult and time-consuming user studies, this thesis also

presents methods for the model-based prediction of haptic perceptual quality. This part of

the thesis addresses both wide frequency-band haptic texture signals as well as low-frequency

kinesthetic haptic signals. For both cases, high correlations are obtained between the predicted

and the actual perceptual quality data.

v





Kurzfassung

Haptische Systeme ermöglichen das Erfühlen einer virtuellen oder entfernten Umgebung und

führen somit physische Interaktivität in multimodale Kommunikationssysteme ein. Hapti-

sche Signale steigern die subjektive Interaktionsqualität sowie die Fähigkeit anspruchsvolle

feinmotorische Aufgaben auszuführen. Während die Erfassung, Verarbeitung, Kodierung und

Darstellung von Audio- und Videoströmen in multimodalen Systemen seit mehreren Jahr-

zehnten intensiv untersucht wird, sind solche Betrachtungen für die Haptik ein relativ neues

Thema.

In der vorliegenden Arbeit wird ein neuartiger Ansatz zur Kompression von haptischen

Signalen, die durch das Überstreichen einer texturierten Oberfläche mit einem Stift erzeugt

werden, vorgestellt. Die Mechanismen hinter der Erzeugung haptischer Textursignale und de-

ren Wahrnehmung durch den Mensch werden detailliert beschrieben. Mathematische Modelle

von diesen Mechanismen bilden die Basis für den präsentierten Komprimierungsansatz. Die

Leistungsfähigkeit des Verfahrens wird durch umfangreiche objektive sowie subjektive Qua-

litätsbewertungen evaluiert. Die Ergebnisse zeigen, dass der Komprimierungsansatz für eine

vergleichbare Wahrnehmungsqualität eine Kompressionsrate zwei mal besser als der neueste

Stand der Technik erzielt.

Desweiteren, um den ständigen Bedarf an schwierigen und zeitaufwendigen Benutzerstu-

dien zu umgehen, werden Verfahren zur modellbasierten Prädiktion der durch den Mensch

wahrgenommenen haptischen Qualität beschrieben. Dieser Teil der Arbeit befasst sich so-

wohl mit breitbandigen haptischen Texturen sowie niederfrequenten kinästhetischen hapti-

schen Signalen. In beiden Fällen wurde eine hohe Korrelation zwischen den prädizierten und

experimentellen Daten erzielt.
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Chapter 1

Introduction

Remarkable technical innovation and tremendous growth in audiovisual communications have

improved the Quality-of-Experience and productivity in networked interaction between distant

people, e.g. through video conferencing. State-of-the-art commercial teleconferencing solu-

tions already simulate very convincing online environments, where participants experience a

high Sense-of-Togetherness (e.g. [Cis14, Hew14]). Sophisticated audiovisual sensing/display

devices, efficient audio/video coding standards and high-capacity communication networks

have driven this progress.

The ability to physically interact with distant objects and humans, a feature that would

contribute substantially towards improved task performance and ultimate immersion, is how-

ever not yet fully realized. The rapidly rising field of haptics (the science, technology, and

applications related to the sense of touch) is widely believed to be a big step forward in this

direction [Sad07, She92b, SHE+12]. The broad field of haptics can be categorized into roughly

three classes [Sri10]:

• Human haptics — referring to the study of human sensing, perception, and manipulation

through touch,

• Machine haptics — referring to the design, construction, and evaluation of haptic devices

for humans as well as for robots, and

• Computer haptics — referring to the haptic rendering of virtual objects.

Combined with powerful communication technologies, it promises to comprehensively aid

and transport not only human communication, but also control capabilities, enabling us to

physically transcend the boundaries of space and time. Figure 1.1 shows the block schematic

of a multimodal communication system that depicts this vision. As can be seen from the

figure, haptic communication is inherently bidirectional. That is, humans not only perceive

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: A multimodal communication system. The human user can interact physically
with the remote object by commanding the movement of the remote robot. At the remote
side, audio-visual-haptic signals are encoded, multiplexed together, and transmitted back to
the user side. At the user side, the incoming signals are demultiplexed and decoded for
presentation to the user. The user can react physically to this feedback, thus closing a global
control-loop between herself and the remote environment over the communication channel.
Figure reproduced from [CcK+12].

haptic feedback — similar to audio/video — but can also physically act upon the environ-

ment. Accordingly, a bidirectional human-centric design and analysis of haptic technology is

necessary [ABC+07].

All applications that involve physical interaction with environments that are remote, in-

accessible, hazardous, or too big/small in scale for a human can benefit extensively from

haptic technology. Some examples include on-orbit servicing for satellites [RLH07], space

exploration [ST92], tele-surgery [CCK+12], deep-sea exploration [RCHP07], safety-critical

situations [FUS92, KSP+04], tele-manufacturing [FB01], tele-manipulation and tele-assembly

[PUB06]. Haptics also plays a key role in virtual simulations of real environments (e.g.,

collaborative assembly and design [ICG+08]) or fantasy worlds (e.g., games [OSSP12]).

The acquisition, processing, communication, and display of audio and video are tradition-

ally well-established fields [Z0̈8, WOZ02]. But the study of similar aspects for haptics is still

at a nascent stage. Although the acquisition and display of haptics have been a subject of

intense research [HAC+04, CK13], both these aspects are still far from standardization.

Nevertheless, there is consensus on the various physical properties of objects that need

to be captured to realistically reconstruct remote environments for the human user. These

properties include hardness, surface texture, shape, etc. To represent these properties, re-

searchers have largely relied on interaction force and torque signals, and vibrotactile signals

from surface texture scans. When it comes to communicating these signals over networks,

each of them have their own associated challenges. Force and torque (kinesthetic) signals lead

to high packet-rates on a network [SHE+12], whereas vibrotactile signals may present large

data rates (bits per second), if not high packet-rates [CcK+12].
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Until now, the communication of kinesthetic signals has been the prime focus of attention

within the field of haptic communications. Highly efficient communication schemes that ascer-

tain system-stability and perceptual transparency have been developed in [HMF+01, SOK02,

Bor05, HB04, HHSB05b, KKH06, HB07b, HHC+08a, VKHS09, VRH10, SHE+12, Hin09,

Kam12]. The field of vibrotactile communications, on the other hand, has received much less

attention [OY13].

This thesis has vibrotactile texture communication as its center of focus. The main contri-

butions made to this field are outlined next. In the following, these contributions are linked to

the corresponding chapters/sections of this thesis, where they are presented in further detail.

Major contributions and thesis organization

This thesis presents original contributions towards the efficient delivery of haptic media

streams, in particular vibrotactile texture signals, over communication networks. It also inves-

tigates perceptual quality aspects of haptic communication systems. The main contributions

can be summarized as follows (also see Figure 1.2).

• Models for the production and perception of vibrotactile texture signals

Lossy data compression schemes usually take advantage of the following factors to

achieve low bitrates:

1. modeling a phenomenon or a signal corresponding to this phenomenon with a small

set of parameters, and transmitting this (quantized) parameter set, and

2. modeling human limitations under which this phenomenon or signal is perceived.

Such models collectively aid in capturing the essence of the signal and “throwing away”

redundant or perceptually irrelevant information.

Section 3.1 addresses point 1 from above for vibrotactile textures. It analyzes, qualita-

tively, the mechanism behind the production of vibrotactile signals when a mechanical

tool is used to scan a textured surface. Furthermore, it motivates the use of a source-

filter signal model to capture this mechanism.

Section 3.2 addresses point 2 from above. It presents novel masking data, which confirm

that the well-known perceptual Simultaneous Masking phenomenon [Gel10] also holds

true for vibrotactile signals over a wide frequency range. Both these aspects form the

basis for the efficient data compression technique proposed in Section 3.3.
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Figure 1.2: Overview of this thesis. The shaded boxes highlight original contributions made
in this thesis. Blocks to the left of the arrows denote thesis sections that review related work
for a given topic. These sections also identify any gaps in existing research or opportunities
for extending it. The arrowheads point to thesis sections that supply novel results to fill the
identified gaps or extend the state-of-the-art.

• Haptic (vibrotactile) texture compression

Vibrotactile signals have a bandwidth much wider (upto 1 kHz [BH03]) than kinesthetic

signals (0–12 Hz [Jon00]), demanding a sampling rate of at least 2 kHz according to the

Nyquist sampling theorem. Moreover, an average human body is covered with 2 m2 of

skin that can be stimulated by distributed tactile stimuli. Combining the above two
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factors together, huge data volumes and rates may potentially result, necessitating data

compression for cost-efficient transmission and storage.

Section 3.3 presents a novel texture compression scheme that exploits the production

and perception models mentioned in the first contribution. In particular, it proposes an

encoder based on a Linear Predictive model of the texture signal. The coding noise in-

troduced by this modeling and the subsequent parameter quantization process is judged

for imperceptibility using a Simultaneous Masking-based weighting filter.

Sections 3.4 explains the operation of the decoder, and Section 3.5 gives implementation

details for the codec. Section 3.6 then analyzes the performance of this codec objectively

and subjectively.

The codec should be bitrate-scalable to enable operation in a range of different bitrates

under varied network traffic conditions and quality demands. Section 3.7 describes

methods for achieving such bitrate-scalability. It also presents objective and subjective

evaluation of the performance of the bitrate-scalable codec.

• Model-based Quality Prediction for haptic communications

Human-user studies form an integral part of the evaluation of haptic systems. It is

necessary to rigorously test the performance of every new development in haptic sensors,

actuators, signal processing and synthesis algorithms from a perceptual perspective.

However, such studies are difficult, time-consuming, and expensive. They significantly

slow down the progress of research. This issue can be addressed by developing model-

based methods to predict haptic perceptual quality.

Chapter 4 deals with this topic for both vibrotactile texture and kinesthetic signals.

Section 4.1 presents a model that predicts perceptual quality based on high-level features

for vibrotactile texture signals. Section 4.2 treats quality prediction for kinesthetic

signals. In addition to a perception model, it also presents a model for human action

to account for the bidirectional closed-loop nature of kinesthetic haptics. This action-

perception modeling allows for a fully automatic software simulation of a kinesthetic

communication system, enabling an instrumental prediction of perceived quality.

Parts of the work presented in this thesis have been published in various international

peer-reviewed scientific journals and conferences [CSH11, CSN+11, CcK+12, CAS14, CSDS15,

CYS+15, SPCS14, SHE+12, KCS11, SHK+11, CCX+14, SCS14, SCS12, XKCS11, BCS11,

KCS10, CKS09, BCH+11].





Chapter 2

Background and related work

2.1 The human haptic sensory system

The tactual inspection of a physical object leads to a holistic percept of the object. This

percept combines the contributions of two distinct senses - the kinesthetic one, and the tactile

one. When reconstructing tactual signals in a technical system, this distinction plays a very

important role. The technical sensor(s), the signal processing, and the actuator(s) need to be

chosen appropriately depending upon which of the above two haptic senses is being targeted

for stimulation. The two senses differ functionally as follows.

2.1.1 The kinesthetic sense

The kinesthetic sense notifies us about the static body posture (configuration of the head,

torso, limbs, and end-effectors), as well as the dynamic movement of body parts with respect

to each other [LL86]. It enables the perception of forces and torques acting on the human

body. Thereby, it facilitates the determination of the inertia or stiffness of a touched solid

object, or the viscosity of a liquid, based on the resistance to limb movements alone.

It integrates information from: 1) mechanoreceptors located in the muscles (afferent or

inward channel), and 2) efferent (outward) information about the body configuration available

to the brain [vH54]. The kinesthetic mechanoreceptors include muscle spindles appearing in

parallel with the muscle fibers, and Golgi Tendon Organs (GTO) appearing in series with

muscle fibers at their connection with the skeleton. The muscle spindles respond to the

stretching of muscle, i.e. the change in muscle length. The GTOs, on the other hand, respond

to force applied on the muscle (muscle tension) [Jon00].

In mainly kinesthetic tasks, the tactile sense may play the secondary role of indicating

a contact. For example, in the primarily kinesthetic task of detecting and turning a door

7
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knob in the dark, the tactile sense just indicates presence of contact through skin-pressure

and deformation.

2.1.2 The cutaneous (tactile) sense

In an average adult human, the skin covers almost 2m2 of the body surface. Subcutaneous

(under-the-skin) tactile mechanoreceptors provide us information about stimuli acting on

the surface of the body. Such stimuli may include tapping, stretching, vibration, pressure,

indentation, etc. of the skin.

Four kinds of mechanoreceptors exist in the glabrous (hairless) skin (see Figure 2.1) .

They are parameterized by the size of their receptive fields (type I - small with well-defined

borders, and type II - large with poorly defined borders), and their adaptation rate to a

stimulus (slowly or rapidly adapting, i.e. SA or RA). Each mechanoreceptor is responsive to

stimuli of a distinct nature [PAF+01]:

• The Merkel cells (SA-I), with their small receptive fields and high spatial resolution,

mediate the perception of precise spatial patterns such as Braille dots and sharp edges.

• Meissner corpuscles (RA-I) also have a very high spatial resolution, In fact, they are

even more densely packed into the human finger than the Merkel cells. These cor-

puscles mediate the perception of low-frequency vibrations (30–50 Hz), which may be

generated during the relative motion of the finger with respect to a textured surface.

The information they provide contributes to the accurate control of grip forces during

grasping.

• Pacinian corpuscles (RA-II) are highly sensitive to nanometer-scale skin motion. They

are also responsible for the perception of high-frequency vibrations (40 – 1000 Hz), such

as the ones generated on the finger by fine surface textures. They adapt to the stimu-

lus more rapidly than the Meissner corpuscles, thus providing information only about

Meissner 
corpuscle

Ruffini 
Merkel 

CellRuffini 
ending

Cell

Pacinian 
corpuscle

Figure 2.1: Afferent mechanoreceptors of the glabrous skin. Figure adapted from [AYS98],
©1998 IEEE.
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dynamic mechanical stimuli. They are believed to be responsible for the perception of

an object through a mechanical tool.

• The role of the Ruffini endings (SA-II) is still not as well understood as the other

mechanoreceptors. They are believed to respond to the stretching of the skin caused by

the movement of digits or limbs.

2.2 Mechanical signals that stimulate human haptic channels

In real-world interactions with objects in the immediate surroundings, humans execute manual

tasks and perceive object properties through direct touch. In technical systems however, it is

quite challenging to deliver realistic natural or artificial haptic feedback to humans consistent

with this real-world experience. The following sections describe which physical signals can be

used to represent haptic information, and how they can be sensed and delivered to humans

in a technology-mediated way.

2.2.1 Kinesthetic signals

In technical systems, kinesthetic signals can be represented by forces and torques (F/Ts)

generated during physical interactions with objects. F/Ts affect the static and dynamic

human body state, and can thereby be sensed indirectly through the kinesthetic sensory

system.

A haptic device, such as the one in Figures 2.2(a) or 2.2(b), is typically used to sense hu-

man motion (position/orientation of the hand, and the corresponding velocities), and present

kinesthetic (F/T) feedback in the reverse direction. Haptic devices are characterized by pa-

rameters such as shape and size of the workspace, inertia, backdrivability, friction/damping,

dynamic range of displayable stiffness, etc. [HA96].

The human motion sensed by the haptic device can be used to control either the motion of

a virtual end-effector in a virtual environment (VE) (see Figure 2.2(a)), or that of a real end-

effector at the end of a robot-arm (see Figure 2.2(b)). Whenever the controlled end-effector

collides with a virtual/real object, feedback F/Ts are either algorithmically computed (in case

of a VE), or physically sensed (in case of real-world teleoperation). These F/Ts then drive

the haptic device motors to display an impedance to the human hand, which stimulates the

human kinesthetic system.

2.2.2 Tactile signals

Tactile mechanical stimuli mainly consist of vibration, pressure, skin-stretch, temperature,

etc. Out of these, one of the most prominent — wideband vibration — is discussed more in

detail here.
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Figure 2.2: (a) Haptic interaction with a virtual environment. A standard haptic (force
feedback) device, such as the one shown here, reads human motion commands through position
sensors and in the reverse direction, displays force to the human hand via motors. (b) A haptic
teleoperation system [FS67a]. The human motion ẋh is sensed at the Human System Interface
through the haptic device, and transmitted to the teleoperator robot over a communication
network, where it serves as a reference for the robot’s motion ẋs. When the robot comes in
contact with its environment, forces/torques Fe are sensed and transmitted back to the human
operator side, where they are displayed to the user through the haptic device as Fh. Figure
reproduced from [CAS14], with kind permission from Springer Science+Business Media.

Vibrations carry information on the texture of surfaces, mechanical system defects or ma-

terial properties. Wideband vibrations resulting from the scanning of textured surfaces with

a mechanical tool can be represented by acceleration signals sensed from the tool [MRRK10].

The spectral response of these vibrations can represent their general feel, whereas their tem-

poral profile can capture important transient events. Texture perception through vibrations

is mainly mediated by the Pacinian corpuscles (see Section 2.1.2).

Several researchers have concentrated on the design and construction of vibrotactile trans-

ducers for delivering vibrations to the human hand. Electromagnetic shakers (see Figure 2.3),

voice-coil actuators (similar in operating principle to shakers, but smaller in size and cheaper),
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is recognized as being elastic rather than rigid. This is mod-
eled by treating the coil and table as separate masses connected

The performance envelope of an electrodynamic shaker sys-
tem is strongly influenced by three modes of vibration and the
voltage/current capacities of the power amplifier that drives
it. Other limiting factors are the designed stroke (displace-
ment) of the table, the moving mass and the total mass of the
shaker, the thermal power limit (i2R) of the coil and the stress
safety factor of the armature. This article will discuss a basic
electromechanical shaker model, how to determine Maximum
Drive performance for sinusoidal testing, the merits of pneu-
matic load-leveling suspensions and the often overlooked side
effects of shaker isolation. It will also examine system perfor-
mance from a power perspective and present a simple means
of estimating maximum system performance.

The structure of an electrodynamic shaker bears some resem-
blance to a common loudspeaker but is more robust. At the
heart of the shaker is a coil of wire, suspended in a fixed ra-
dial magnetic field. When a current is passed through this coil,
an axial force is produced in proportion to the current and this
is transmitted to a table structure to which the test article may
be affixed.

Figure 1 shows the magnetic circuit used to create the intense
magnetic field required by the shaker. A permeable (ferrous)
inner pole piece transmits flux from one end of an axially
magnetized permanent magnet or electromagnet, say, the North
face. A permeable “back structure” conducts flux from the
opposite pole of the magnet to a permeable disk with a hole in
its center surrounding the inner pole piece. This creates a ra-
dial flux field in the air gap between the round face of the
North-polarized inner pole piece and the round hole in South-
polarized outer pole piece. The air-gap between these pole
pieces is minimized to reduce the reluctance of the magnetic
circuit thus maximizing the intensity of the fixed magnetic
field.

The force provided by the machine is proportional to the
magnetic flux passing through the coil, to the current flowing
through the coil and to the length of wire within the flux field.
In general, shaker coils use heavier conductors than speakers
so that they may accommodate heavier currents.

The coil, coil form and table structure combination is called
the armature assembly. The test object is rigidly mounted to
the armature assembly. Some shakers have interchangeable
armatures, providing a small table for high-g testing of light
objects and a large table for mounting heavy objects. In older
designs, the coil is wound around the outer diameter of a stiff,
thin-walled tube. Modern armature designs typically use ep-
oxy bonding techniques to affix a rigid epoxy-stabilized coil
to a light magnesium table structure.

The armature must be accurately centered in the narrow gap
between the inner and outer poles. It must be allowed to move
axially while being restrained from all other motions. This is
accomplished by a soft elastic suspension system. In small
shakers, a pierced compliant disk provides radially distributed
cantilevers between the load table and the shaker body. In larger
units, guide rollers support and center the armature while sepa-
rate elastomeric shear elements provide the axial compliance.

This compliant connection between the armature assembly
and the shaker body forms an obvious spring/mass/damper
vibration system with one degree-of-freedom. Here, the test
object and armature assembly move together, relative to the
shaker body. Adding two more degrees-of-freedom completes
the shaker mechanical model. Firstly, the armature structure

Understanding the Physics of
Electrodynamic Shaker Performance
George Fox Lang and Dave Snyder , Data Physics Corporation, San Jose, Cali\\\fornia

Figure 1. Soft iron pole pieces bend and concentrate almost all of the
magnetic field into a very narrow gap. The armature coil is centered in
this gap using support flexures (for small shakers) or rollers (for large
shakers). Significant compliant connections include the support flex-
ures, the isolation mounts and the connection between the coil and the
Load Table

Figure 2. The mechanical and electrical parts of a shaker are cross-
coupled. The mechanical system is excited by a force proportional to
electrical current, while the electrical circuit is excited by an internal
voltage (back-emf) proportional to mechanical velocity. The amplifier
drives the electrical circuit providing an external voltage e and current
i.
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Figure 2.3: Cross-sectional view of an electromagnetic shaker. A permanent magnet or an
electromagnet produces a radial magnetic field in a narrow air gap between the inner and
outer magnet poles. A conducting coil is suspended in this gap using support flexures. When
an AC current is passed through this coil, forces are produced along the coil’s axis due to
the interaction between the varying magnetic field of the coil and the radial magnetic field.
These forces cause the load table to vibrate in proportion to the coil current. Figure based
on [LS01], with kind permission from the Sound and Vibration magazine.

eccentric mass motors, piezoceramic actuators, bending wave actuators, surface acoustic wave

(SAW) displays, and tactile pattern displays have been used to display tactile feedback. The

feedback quality of the actuator is strongly influenced by the bandwidth of the device, fre-

quency response, maximum feedback amplitude, resolution, and latency [Alt12]. Thus, the re-

production quality depends on the ability of a transducer to accurately reproduce a waveform.

A detailed discussion of the reproduction characteristics of different actuator technologies can

be found in [AM12].

2.3 Human haptic psychophysical limitations

The human sensory-perception system has certain limitations, irrespective of whether the

auditory, visual, or the haptic modality is considered. Such limitations are usually captured

in terms of:

• the perceptual detection threshold — the smallest perceivable stimulus magnitude,

• the perceptual difference threshold — the smallest perceivable difference in the stimulus

magnitude, and

• the time or frequency-domain masking — the raised detection threshold of one stimulus

component due to the presence of another one close in time or frequency.
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The study of perceptual limitations is critical for the design of technical systems for sensing,

reconstructing, and displaying physical stimuli to humans. This is because the knowledge of

these limitations gives us the ability to relax the constraints on how precisely and accurately

stimuli need to be reconstructed. The following sections discuss some perceptual aspects of

kinesthesis and tactility relevant for technical systems.

2.3.1 Kinesthetic perception

The kinesthetic sense is stimulated by low-frequency forces/torques, for which the magnitude

difference threshold is a very important perceptual limitation.

2.3.1.1 Weber’s law

Ernst Weber, a German physician regarded as the founder of experimental psychology, was

among the first to propose a mathematical relationship between the physical intensity of a

stimulus and its phenomenologically perceived intensity [Web51b]. He proposed the size of the

difference threshold (or Just Noticeable Difference, JND) to be a linear function of stimulus

intensity. This phenomenon became known as Weber’s Law of JND, and is represented by

the following equation:
∆I

I
= κ or ∆I = κ · I, (2.1)

where I is the stimulus intensity, ∆I is the so-called Difference Threshold or the Just No-

ticeable Difference (JND) and κ is a constant called the Weber factor. With some variation,

Webers law has been found to apply to every human sense including the haptic sense, over a

wide stimulus range [Web51b, TSEC94]. Weber factors for a variety of kinesthetic phenom-

ena are given in [Jon00]: this factor averages 7–10% for forces between 0.5–200N, 15–27% for

forces below 0.5 N, 8–22% for stiffness, 14–34% for viscosity, and 21–113% for inertia.

Thus according to the Weber’s law, a perceptual deadband exists around the stimulus mag-

nitude, within which stimulus changes go unperceived. Perceptual force limitations captured

by the Weber’s law have been exploited successfully in several schemes for the efficient trans-

mission of kinesthetic signals over communication networks [HHC+08a, SHK+11, SHE+12].

2.3.1.2 Multi-DoF perceptual deadzone

Human perceptual limitations for multidimensional kinesthetic (force) signals were inves-

tigated by Barbagli et al. in [BSH+06], by Tan et al. in [TBS+06], by Pongrac et al.

in [PFH+06], and more recently by Kammerl et al. in [KCS10b]. The authors focused on the

limitations in perceiving changes in force direction in [BSH+06, TBS+06]. Studies on human

limitations in perceiving combined changes in force amplitude and direction were described

in [PFH+06]. Force amplitude and direction changes were studied separately in [KCS10b].
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These studies collectively proved that the multidimensional extension of Weber’s law for force

signals is non-isotropic, which means that it is not uniform as a function of the direction of

the force vector (see Figure 2.4).

It was found in [KCS10b] that depending upon the direction of force feedback, the Weber

factor varied between 2.75% to 6.7%. On the contrary, similar to [BSH+06, TBS+06], force

angular thresholds were found to be independent of the direction of force feedback and re-

mained constant at around 1.85°. With these new findings, the work in [KCS10b] achieved an

improvement of 26.7% in the packet-rate reduction performance in comparison to a isotropic

Weber factor assumption.

Earlier on, the force angular thresholds were also found to be independent of the direction

of force feedback in [BSH+06, TBS+06]. Therein the average angular threshold determined

was much higher —18.4°, than that from [KCS10b]. It should be noted however that the

two results are not directly comparable, since they were obtained under different experiment

conditions (see Table 2.1).

Today’s picture of haptic perception is still not complete but with more and more in-

vestigations being performed, the individual results contribute towards a comprehensive un-

derstanding of the underlying mechanisms and limitations that can be exploited in technical

systems.

x 

z 

y 

1
D

1),'( xf
'

2
D

2),'( xf
'

Figure 2.4: Stimulus discrimination zones (gray) have been found to be non-uniform as a
function of the direction of the force vector (∆f(x′),1 6= ∆f(x′),2 with α1 = α2, where ∆f(x′) and
α denote amplitude and angular discrimination thresholds, respectively) [KCS10b]. Figure
reproduced from [CAS14], with kind permission from Springer Science+Business Media.



14 CHAPTER 2. BACKGROUND AND RELATED WORK

[KCS10b] [BSH+06, TBS+06]

Motivation

To determine perceptual
force angular thresholds
that can be exploited for
efficient networked haptic
communication

To provide fundamental
psychophysical results on
force angular perceptual
thresholds

Force feedback

Force was rendered in re-
sponse to active contact and
movement on a spherical
surface by subjects.

Subjects passively perceived
a fixed force magnitude pro-
file in a test direction, and
compared it to the same
magnitude profile in the ref-
erence direction.

Psychophysical
method

Subjects tuned a force-angle
quantization parameter un-
til no step-like artifacts
could be perceived while
moving on the sphere.

A 3-Down 1-Up adap-
tive staircase method
(see [Lev70]) was used with
the angle between the test
and the reference force
vectors as an independent
parameter.

Table 2.1: Determination of perceptual thresholds on force direction — a comparison of the
experiment conditions in [KCS10b] with those in [BSH+06, TBS+06]

2.3.2 Vibrotactile perception

In addition to the stimulus detection and difference thresholds, the Perceptual Masking phe-

nomenon also plays an important role in tactile perception.

2.3.2.1 Detection and difference thresholds

As mentioned at the beginning of this section, detection thresholds are an important human

perceptual limitation. In the related literature, haptic detection thresholds have been studied

for different stimulus signals — force, acceleration, or even vibrator position.

Force and position detection thresholds from studies on vibrotactile perception over a

frequency range mediated by the Pacinian corpuscles are shown in Figures 2.5 (a) and 2.5

(b), respectively. Both of them are seen to follow U-shaped profiles as a function of stimulus

frequency, with peak sensitivity between 100–300 Hz. Furthermore, Figure 2.5 (c) shows dif-

ference thresholds for position signals as a function of the sensation level of a 160 Hz sinusoidal

stimulus. It is seen that the difference threshold, and hence the Weber factor, is more or less

independent of the stimulus intensity.
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(a) (b)

(c)
Figure 2.5: (a) Force detection thresholds. Figure reproduced from [ICT07a], ©2007 IEEE,
(b) Position detection thresholds. Figure reproduced from [ICT07a], ©2007 IEEE, (c) Posi-
tion difference thresholds for a 160 Hz sinusoidal stimulus. Figure reproduced from [Cra72],
©1972 Psychonomic Society, Inc.

2.3.2.2 Perceptual masking

It has been observed for all human sensory modalities that the presence of a strong stimulus

component masks the perception of a weaker one near to it in space, time, or frequency [FZ56,

BO07]. This masking manifests itself by way of increased detection and difference thresholds

for the weaker component. Auditory masking has been studied in great detail in the past

decades, and has contributed to very successful and efficient audio communication schemes.

In the following, masking results for the auditory modality are reviewed first, followed by a

survey of the masking studies in vibrotactile perception. It is found that vibrotactile masking

has not received all-round attention in the literature, and a number of gaps in the state of

scientific knowledge in this area are identified.

Auditory masking models A vast number of studies on auditory masking have been carried

out since the 1950s. Psychophysical findings from these studies have been applied to auditory
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signal/device design, and to compression of speech and audio signals. For the sake of brevity,

this section refrains from a comprehensive review of the auditory masking literature, and

focuses on a select few studies which are in essence suitable for application to speech/audio

compression techniques.

Comprehensive results on auditory masking have been reported by Feldtkeller and Zwicker

in [FZ56]. Figure 2.6 shows simultaneous masking patterns from [FZ56] for pure tones in the

range of approximately 4–9kHz, with a narrowband noise centered at 6 kHz as the masker

stimulus. It can been seen that the detection thresholds for the pure tones in presence of the

masker rise well above the original detection thresholds in quiet. Moreover, it can be seen that

the pure tones further away in frequency from the masker are increasingly easier to detect as

compared to the ones close to it. This behavior is seen to hold for the entire range of masker

noise intensity from 0–60 dB. Similar results were also reported before by Egan and Hake

in [EH50] for a masker noise center frequency of about 410 Hz.

In [SAH79], Atal et al. proposed a speech coding algorithm exploiting the auditory simul-

taneous masking for hiding the coding noise below human perceptual thresholds. Despite the

availability of previous masking results, further masking studies are reported in [SAH79] with

the roles of the masker and maskee reversed as compared to [FZ56] (pure tones as masker

stimuli and narrowband noise as maskee). However, the authors made the same qualitative

observations about masking as the previous studies.

It should be emphasized here that the masking model deployed in speech coding is quali-

tative rather than quantitative, and the model parameters are tuned a-posteriori in subjective

listening tests. The authors of [SAH79] also found that the model is rather insensitive to the

model parameters, and that laborious tuning of these parameters is not required.
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Figure 2.6: Wideband auditory masking characteristics. The increasing peaks represent mask-
ing curves for increasing masker loudness (0–60 dB). The pure tone detection thresholds in
quiet are shown at the bottom. Figure reproduced from [FZ56], with kind permission from
Hirzel Verlag, Stuttgart.
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Vibrotactile masking models Vibrotactile perception uses sensory information received by cu-

taneous mechanoreceptors embedded in the human skin. Of the four kinds of mechanore-

ceptors, the research presented in this thesis focuses on the perception mediated by Pacinian

corpuscles.

Some of the earliest vibrotactile masking results were reported in [GVD82]. Therein, the

thenar eminence of the right hand was excited through a 2.9 cm2 vibrating contactor. A nar-

rowband noise centered at 275 Hz acted as the masker. Pure sinusoidal tones of frequencies 15

(non-Pacinian region), 50, 80, and 300 (all three in the Pacinian region) Hz acted as maskees.

Detection threshold shifts for each of the maskees were obtained for masker levels ranging

from 0–52 dBSL (sensation-level). It was found that threshold shifts rose in a monotonically

increasing manner with increasing masker levels. Maskees located far away in frequency from

the masker were found to have lower threshold shifts compared to the ones close to it. Also,

from the case of the 15 Hz maskee, it was shown that cross-channel masking did not occur in

the duplex (Pacinian and non-Pacinian) model for vibrotactile perception.

In-channel and cross-channel masking situations with both sinusoidal and noise maskers

were explored in [HVZ83]. For in-channel masking, for both Pacinian and non-Pacinian

regions, threshold shifts for the pure tone maskees increased with increasing masker levels.

This was true irrespective of whether the masker was a pure tone or narrowband noise. It

was once again shown that signals did not mask each other across channels, corroborating

evidence for a critical band like structure in the tactile mechanoreceptor system, similar to

that in audition. This conclusion was further consolidated in [MFCJV95b].

The influence of stimulus onset asynchrony (SOA) between the masker and the maskee

on threshold shifts was studied in [GSJBV89]. SOA was varied over a range of –1000 to 1500

ms, to generate backward, simultaneous, and forward masking. Again, both sinusoidal as well

as narrowband noise signals were used as maskers and in-channel masking was explored for

both Pacinian and non-Pacinian channels separately. Higher threshold shifts were observed

for simultaneous masking as compared to backward and forward masking.

The studies above have used relatively small localized areas on the human hand (index

finger pad or the thenar eminence) to deliver their stimuli directly to the skin in a direction

perpendicular to it. The haptic devices used today in teleoperation, however, commonly em-

ploy a stylus-like interface attached to a robotic arm, so that the user’s movements can be

easily mapped to that of the remote robot and appropriate reaction forces can be displayed

during contact with remote objects. The human operator usually holds this stylus in a way

similar to how one would hold a pen while writing (see Figure 1.1). The rich array of haptic

cues like shape, stiffness, friction, texture, etc. that we perceive through the tool in such a

setup are displayed to a large area on the hand, tangential to the surface of the skin. To the

best of the author’s knowledge, no masking data are available for such tool-mediated haptic
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display in the literature. Moreover, the range and number of masker as well as maskee fre-

quencies tested in most masking studies is rather limited, hence a wideband masking threshold

pattern cannot be derived from these results.

To overcome the limitations mentioned above, new psychophysical experiments are re-

ported in Section 3.2 of this thesis. Table 2.2 shows a detailed comparison of the work

presented in Section 3.2 and the most important results available from the literature.

[GVD82] [HVZ83]
Section 3.2 of this
thesis

Mechano-
receptors
stimulated

Pacinian as well as non-
Pacinian

Pacinian as well as
non-Pacinian

Only Pacinian, since
they are responsible
for tool-mediated hap-
tic texture perception

Hand-area
stimulated

Thenar eminence of the
right hand

Thenar eminence
of the right hand

Fingers and side of the
hand (pen-like grip)

Vibration
actuator
used

2.9 cm2 vibrating con-
tactor

2.9 cm2 vibrating
contactor

Electrodynamic min-
ishaker with a cus-
tomized stylus

Masker
Narrowband-noise
(NBN) centered at
275 Hz

i) Sinusoids at 70,
200, and 400 Hz,
ii) NBN centered
at 200 Hz

NBN centered at fc =
120, 200, and 280 Hz

Maskees
Sinusoidal tones at 15,
50, 80, and 300 Hz

Sinusoidal tones
collocated with
the maskers

(fc − 3 · ∆f) to (fc +
3 · ∆f) in steps of ∆f
(= 10%fc)

Masker lev-
els

0–52 dBSL (sensation-
level)

-12 to +34 dBSL
(sensation-level)

25 dB above detection-
threshold, and only for
280 Hz, also 50 dB
above detection thresh-
old

Conclusions

i) No cross-channel
masking, ii) masking
threshold monotoni-
cally increasing with
masker level, iii)
masking threshold
monotonically decreas-
ing function of maskee
frequency-difference to
masker

Same as i) and ii)
on the left

Confirmed conclu-
sions ii) and iii)
from [GVD82] for a
stylus-like grip, and a
wider range of masker
and maskee frequencies

Table 2.2: A comparison of the novel Simultaneous Masking study presented in Section 3.2
of this thesis with major related contributions from the literature
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2.4 Haptic data communication

When it comes to communicating haptic signals over a network in a multimodal system,

kinesthetic and vibrotactile signals come with their own distinct sets of challenges. Table 2.3

shows the main points of difference between the requirements presented by the transmission

of these two kinds of signals. The main challenge for kinesthetic (force and torque) signals is

the requirement for a high packet-rate and a low-delay in the communication. On the other

hand, the main challenge for vibrotactile signals is the requirement for a high bitrate within

delay constraints less strict relative to kinesthetic signals.

Kinesthetic data Vibrotactile data

Signal bandwidth

3–10 Hz, in response
to human motion band-
width, and a haptic en-
vironment that can be
modeled linearly (e.g. a
spring)

40–1000 Hz for Pacinian
corpuscle-mediated vibro-
tactile signals [BH03]

Sampling rate

1 kHz dictated by
the control-loop sta-
bility requirement
and human temporal
resolution

2 kHz — Nyquist sampling
rate

Delay constraints

Tens of milliseconds
can destabilize the
global control loop be-
tween the human and
the environment, with-
out additional control
engineering mea-
sures [HS06, SHE+12]

40 ms delay is detectable by
humans, above 60 ms sub-
jective degradation creeps
into the texture perceptual
quality [OKST08]

Motivation for data re-
duction or compression

High packet-rate of
1000 packets/s dif-
ficult to maintain,
may congest the
network [SHK+11]

Distributed multi-channel
feedback (e.g., artificial
skin) can quickly lead to
large data volumes/bitrates.
Moreover, output bitrate
is shared with high-bitrate
audio-video.

Data reduction or com-
pression strategy

Weber’s law (see 2.1)
used to select only
perceptually relevant
time-domain samples
for transmission

Block-based perceptual
linear-predictive signal cod-
ing (Section 3.3, [CcK+12])

Table 2.3: A comparison of kinesthetic and vibrotactile data
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2.4.1 Packet-rate reduction for kinesthetic data

The Weber’s law (see Section 2.3.1.1) forms the basis for almost all of the perceptually moti-

vated haptic data reduction schemes. When a haptic sample is considered to be relevant for

transmission, a Perceptual Deadband (PD) is defined using Equation 2.1 for the subsequent

haptic samples (see Figure 2.7 for an illustration). As long as the subsequent haptic samples

fall within this deadband, they can be dropped from transmission, as the signal-change they

constitute is too small to be perceptible.

When a new sample violates the current PD, this sample is considered relevant for trans-

mission. This sample then redefines the PD that is applied for the subsequent samples. Such

a Perceptual Deadband Data Reduction (PDDR) scheme allows for signal-adaptive down-

sampling, since only those samples that constitute perceptually relevant signal changes are

sent [HHC+08a].

Mathematically, the size of the applied deadband ∆i at discrete time i is a function of a

deadband parameter k (closely related to Webers JND parameter κ from 2.1), and the signal

amplitude of the most recently transmitted haptic sample value hi−m, if the last perception

threshold violation took place m samples back in time:

∆F
i = ∆F

i−m = k · |hi−m| (2.2)

At the receiver side, the signal needs to be upsampled to a constant rate before display through

the haptic device. To this end, a simple hold-last-sample approach has been proposed for data

reconstruction in [HHC+08a]. The deadband scheme achieves packet-rate reduction of upto

90% without introducing any noticeable artifacts in the reconstructed signals [HHSB07].

In practical applications, haptic signals are 3D-vectors, corresponding to three Degrees-of-

Freedom (DoF) available for motion. Hence, a 3DoF extension of the perceptual deadbands

shown in Figure 2.7 is necessary to make sample-transmission decisions. For this purpose,

the stimulus discrimination zones (or Perceptual Deadzones) shown in Figure 2.4 are used.

I

t

Figure 2.7: Principle of deadband-based data reduction. The thickness of the gray perceptual
deadbands is a function of the haptic stimulus intensity I. Black circles represent haptic
samples violating the applied perception deadband, and hence need to be sent to the receiver
side. Figure reproduced from [SHK+11], ©2011 IEEE.
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Whenever new incoming haptic signal vectors fall within the constructed deadzone, the change

in signal is expected to be too small to be perceivable. This new haptic vector can therefore

be dropped from transmission in order to reduce the transmission packet rate to a minimum.

The experiment results in [KCS10b] show that with this extension to 3-DoF, a data reduction

performance comparable to that in the 1-DoF case can be achieved.

Figure 2.8 shows an end-to-end block diagram of a kinesthetic communications system. In

this diagram, efficient haptic communication is achieved on the forward haptic channel based

on PDDR. The human velocity ẋh is sensed by the Human System Interface (HSI). After

undergoing PDDR, it is transmitted to the Teleoperator side, where it may be reconstructed

using the hold-last-sample strategy. The reconstructed velocity acts as a reference input to

the teleoperator, which further interacts with the environment at a velocity of ẋs. On the

feedback haptic channel, the force feedback Fe sensed by the Teleoperator, which may again

undergo PDDR before being transmitted to the human side for reconstruction and display.

But, also alternative data reduction approaches, e.g. the contact event-based coding

from [KCS11] or the model-mediated approach presented in [Kam12], may be used on the

feedback channel. In such approaches, signal models or models for the environment geometry

or physics are identified online, and model parameters transmitted to the human side. At the

human side, force feedback is rendered fully-locally based on the incoming model parameters.

The resulting packet rate over the network is much lower at an average as compared to full 1

kHz haptic transmission.
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Figure 2.8: Block diagram of a haptic communication system

2.4.2 Compression of vibrotactile texture data

The reduction of kinesthetic data for both offline and online applications has been a very

active area of research over the past decade. Various data reduction schemes which differ in

their sampling, quantization, and coding strategies have been presented [HMF+01, SKB+01,

SOK02, Bor05, HHC+08a, KS08, BS10, SHK+11, Kam12].

On the contrary, the efficient communication of vibrotactile data has received very less

attention. To the best of the author’s knowledge, the only other work on tactile data com-
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pression was presented by Okamoto and Yamada in [OY13]. It describes a frequency-domain

texture compression algorithm that exploits human vibrotactile perceptual limitations for

compression.

In [OY13], textures were represented as height profiles (the height of a surface point

as a function of lateral distance on the object surface), which were captured by an ultra

high-resolution laser scanner. The height profiles were transformed to the temporal frequency

domain using the Discrete Cosine Transform (DCT) assuming a constant scan velocity (refer to

Figure 2.9). The DCT coefficients below human perceptual detection thresholds were then set

to zero. The remaining coefficients were quantized with step-sizes determined from perceptual

difference thresholds [Cra72]. Finally, this lossy-coded frequency-domain information was

transformed back to the time-domain via inverse DCT, and further to the distance-domain

assuming the same constant scan velocity as before. The reconstructed height waveform was

then used for position-based texture rendering.

The perceptual quality of this algorithm was evaluated in subjective tests, where sub-

jects scanned the height profiles of uncompressed and compressed textures with a haptic

device [OY13] and compared them perceptually. It was shown that the proposed algorithm

is perceptually transparent (i.e., the coding distortion goes unnoticed) up to a quantization

as coarse as 12 levels. The algorithm achieves a very significant compression ratio of 4:1.

However, when it comes to realtime haptic teleoperation, there are a couple of limitations

to the applicability of this approach. Firstly, the algorithm is offline, meaning that the en-

tire surface height profile is required in advance as an input to the algorithm. The second

and more severe limitation is the assumption of a constant (and predetermined) texture scan

velocity, necessary to transform the spatial-domain data to the temporal-frequency domain.

Compression was achieved in [OY13] by discarding information based solely on human

perception (the sink for texture signals) models — namely, perceptual detection and differ-

ence thresholds. Section 3.3 of this thesis takes a different approach. In addition to a human

perception model, a model of texture signal production (the source) with much fewer parame-

ters than the number of texture samples used to build the model is employed for compression.

The model parameters, rather than the signal samples themselves, undergo quantization be-

fore transmission. The perceptual simultaneous masking phenomenon (see Section 2.3.2.2)

is exploited for judging the perceptibility of coding noise introduced by the modeling and

quantization processes.

In [OY13], textures were represented by height profiles, whereas this thesis represents them

by acceleration signals sensed by Microelectromechanical Systems (MEMS)-based acceleration

sensors. MEMS sensors are used since they are small, inexpensive compared to position-

sensing systems, and lightweight making them easy to mount on a teleoperator end-effector.

The subjective and objective evaluations show that for a comparable level of subjective
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Fig. 2: Process flow of the compression of vibrotactile material textures

2) Log Quantization: Log quantization has been used
in sound compression. The application of fine quantization
steps for small amplitudes and coarse quantization steps for
large amplitudes may effectively reduce the data size while
maintaining the quality. We use a log function to determine the
step sizes. Positive and negative amplitude values are quantized
separately. For positive Ck (k = 1, . . . ,N′), the log-quantized
amplitude Nk is determined by

log10 Nk = round(
log10Ck − log10 S

Δ+
) ⋅Δ++ log10 S (7)

if Ck > S

Δ+ =
max(log10Ck∣Ck > 0, k = 1, . . . ,N′)− log10 S

L/2−1
. (8)

For negative Ck(k = 1, . . . ,N′), Nk is determined by

log10 Nk = round(
log10 (−Ck)− log10 S

Δ−
) ⋅Δ−+ log10 S (9)

if Ck <−S

Δ− =
max(log10−Ck∣Ck < 0, k = 1, . . . ,N′)− log10 S

L/2−1
. (10)

In the linear quantization method mentioned previously, the
amplitudes are quantized between the maximum and minimum

Fig. 3: Linearly quantized wood texture: L = 4

Fig. \4: Log\-quantized sandpaper texture: L = 6

Ck(k = 1, . . . ,N′). On the other hand, for log quantization, the
amplitudes are quantized between the maximum or minimum
Ck and S. S is an amplitude small enough that it does not
influence the perceived texture (here 0.0\5 μm). For Ck with an
amplitude smaller than S, Nk is determined by

Nk = sign(Ck) ⋅S if ∣Ck∣ ≤ S. (11)

\Clearly, S affects the performance of the compression algorithm.
S needs to be small enough, but if it is too small, it increases
quantization errors. A reasonable determination of S remains
as future work.

Fig. 4 shows an example of the log-quantized sandpaper
texture and its amplitude spectrum. The amplitudes were
quantized between the maximum amplitude and S in six steps.
The larger amplitudes were quantized more coarsely. The data
compression ratio of the texture in Fig. 4 is 16.2%.

3) Truncation of Data beneath Shifted Thresholds: As-
suming that stimuli beneath the detection threshold level can
be removed while maintaining subjective quality, the third
compression method eliminates vibratory amplitudes smaller
than the thresholds. When they are removed, the D\CT indices
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Fig. 1: Experimental setup. a) Vibrotactile display usage. b)

Linear-slider-type vibrotactile display.

finger that the latter does not cause the output displacements
to decay. The maximum output displacement is approximately
80 μm when the applied voltage is 150 V. The displacement
changes linearly with the input voltage when the frequency is
fixed. The frequency response curve is relatively flat and does
not exhibit resonance in the range used for the experiments
(up to 400 Hz). The frequency response reaches -3 d\B at
\270 Hz. To compensate for attenuation at high frequencies so
that the desired displacements are output, the voltage inputs
to the stimulator are multiplied by the inverse function of the
frequency response curve. Voltage is applied to the stimulator
through a bipolar amplifier (FRA5014, NF, Yokohama, Japan).
The contactor is circular with a diameter of 11.6 mm.

B. Material Textures

The surfaces of 11 materials, including woods, paper, and
cloth, were measured. A board made from the wood of the
Judas tree and a piece of sandpaper (#1500) were chosen for the
experiments, in part because they showed good correspondence
with reality when they were explored by experts using the
equipment. A non-contact surface measure (NH-3SP, Mitaka
Kohki, Mitaka, Japan) was used to measure the surfaces. It
measured the surface height profile of a randomly selected
portion of each texture for 10 mm with an interval of 0.5 μm.

III. LOSSY DATA COMPRESSION OF VIBROTACTILE

TEXTURES

A. Perceptual Characteristics for Vibrotactile Stimuli

The compression methods use the discriminability and
detectability characteristics of the amplitudes of vibrotactile
stimuli. The discriminability describes supraliminal stimuli. The
differential threshold for the vibratory amplitudes is a Weber
ratio of 10–\20% (computed from [19] and [\20]). This indicates

that amplitudes can be somewhat coarsely quantized. The
detectability suggests how to handle subliminal stimuli. Because
subliminal vibrotactile stimuli may not be necessarily delivered
to users, the compression algorithm eliminates amplitudes
smaller than detection threshold. These two types of properties
have been discussed in frequency space. Hence, in this study, the
compression of material textures is also performed in frequency
space.

B. Data Compression using Discrete Cosine Transformation

A discrete cosine transformation (DCT) is used to convert the
texture profile to a frequency spectrum. \By computing the DCT
of texture height samples yn (n = 0,N− 1), amplitude spectra
Ck (k= 0,1, ...N−1) are acquired (Figs. \2a and 2b). Ck is given
by

Ck =
2

N

N−1

∑
n=0

yn cos(
(2n+1)kπ

N
) k = 1, ...N′ (1)

Ck = 0 k = 0,N′+1, ...N−1 (2)

where N is the number of samples: N = 20000. The DC
component C0 is not used, since it does not influence perception.
The N′-th DCT index corresponds to the amplitude of the
400 Hz component. \Because the command refresh rate of the
vibrotactile display is 3.0 kHz, the elements with a frequency
higher than 400 Hz are removed. The frequency fk for the k-th
DCT index is determined by

fk =
Sampling frequency

\Number of samples
⋅ k =

N/L ⋅ v

N
⋅ k =

v ⋅ k

L
(3)

where L and v are the distance over which the texture surface
was measured (10 mm) and the average velocity of participants’
exploratory hand movements, respectively. The average velocity
was set in a range in which natural explorations are not
disturbed (50 mm/s). In the experiments described below,
participants conducted their exploration following the rhythm
of a metronome and used a specified stroke length to realize this
average velocity as far as possible (as described in section IV-A).
N/L is equivalent to the number of samples per millimeter.

The DCT indices are converted by the compression methods
described in section III-C (Fig. \2c). The converted DCT indices
C′

k are re-converted to texture height profiles y′n through an
inverse DCT (Fig. 2d). y′n is acquired by

y′n =
N ′

∑
k=1

C′

k cos(
(2n+1)kπ

N
) n= 0,1, ...N−1. (4)

C. Data Compression Algorithms for Vibrotactile Textures

1) Linear Quantization: Quantization is one of the most
popular strategies for lossy data compression. The quantized
amplitude spectrum Lk is determined by

Lk = round(
Ck

Δ
) ⋅Δ (5)

where Δ is the quantization step. Δ is

Δ =
max(C1, ...,CN ′)−min(C1, ...,CN ′)

L−1
(6)

where L is the number of quantization steps and determines
the compression level. Fig. 3 shows an example of the DCT
indices and the surface profile of the uncompressed and linearly
quantized (L = 4) wood textures. Given that each DCT index
of the uncompressed texture is written in 2 bytes, the data size
of the compressed texture in the figure is 1\2.5% of the size of
the uncompressed data.
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Figure 2.9: Okamoto’s texture codec. The tactile actuator that displays the height profiles is
shown at the bottom. Figures reproduced from [OY13], ©2010 IEEE.

quality, the compression performance of the algorithm presented in Section 3.3 is significantly

better than that of the algorithm in [OY13]. Table 2.4 summarizes the points of comparison

between these two algorithms.

2.5 Perceptual quality assessment in haptic communications

Ultimately, a technical (audiovisual-) haptic system would be deemed to have excellent per-

formance, if it facilitates full subjective immersion in a remote/virtual environment. In other

words, the system should facilitate the feeling of being “present” in that environment. To
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[OY13] Section 3.3, [CcK+12]

Sensor Laser-scanner
Micro-electromechanical ac-
celeration sensor

Haptic texture repre-
sentation

Position signal —
height as a function of
time

Acceleration signal

Approach

Block-based coding,
perceptual threshold-
ing and quantization
of Discrete-Cosine-
Transform coefficients

Block-based coding, texture
production modeling (Lin-
ear Prediction), and tex-
ture perception modeling
(Simultaneous Masking)

Compression ratio
Scalable from 4:1 down
to 8:1

Scalable from 8:1 down to
16:1

Table 2.4: A comparison of the state-of-the-art texture codec [OY13] with the codec presented
in this thesis

evaluate the Presence phenomenon, special questionnaires have been devised, e.g. in [WS98a].

Such questionnaires inquire for abstract concepts like user control over the system, naturalness

of the interaction, the sense of object movement, the consistency with real-world experiences,

the anticipation of system response, the ability to concentrate on the task rather than the

technical means, etc.

On the other hand, a less ambitious evaluation approach concedes technical limitations,

and instead only attempts to evaluate the system performance as perceived by a human

user in comparison to the best capability of the system. For example, it may address the

question: how much perceptual degradation do communication-induced artifacts introduce in

comparison to a perfectly transparent communication link? Such an approach may search for

perceptual thresholds within which a user cannot distinguish one system performance level

from another.

Inspired by subjective evaluation methods from the audio and video fields, haptic coding

algorithms have also been evaluated by rating their perceptual performance based on scales

such as the one shown in Table 2.5 [Hin09, Kam12]. There are several shortcomings of this

approach. Firstly, the adjectives used in the left column of the table are prone to individual

interpretation and can be susceptible to response bias. At best, they should be regarded as

categorical responses in the sense that subjects assign stimuli to five different classes according

to their own personal criteria. Also, these criteria may be different from subject to subject.

Secondly, assigning numerical values to the adjectives is also highly problematic. Since the

interpretation of “disturbing” for one subject can be quite different from that for another

subject, the same numerical value cannot be assigned to both subject responses. Furthermore,
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Description Rating

no difference 100

perceptible, but not disturbing 75

slightly disturbing 50

disturbing 25

strongly disturbing 0

Table 2.5: A rating scale for the perception of communication-induced artifacts in comparison
to a transparent communication link

the assumption that the five responses are equally spaced on a numerical scale also cannot be

easily supported or verified.

The Magnitude Estimation method from [Ste75, ZG80] avoids some of the above problems.

Under this method, subjects assign each stimulus a continuous numerical value proportional

to the magnitude of the stimulus they perceive, without the need for any adjectives. The

data is processed in a way that normalizes inter-participant differences. But this method also

suffers from response bias. Secondly, it may be suitable for rating just stimulus magnitude

for brightness, loudness, or tactile intensity. But it cannot be carried over for rating complex

communication-induced artifacts in a straightforward manner.

A Signal Detection Theory-based method avoids all of the above problems [MC05]. Herein,

subjects are presented with a pair of stimuli and have to make a choice between two alterna-

tives – do the two stimuli feel the “same” or “different”. Apart from being very simple for the

subjects to perform, this method allows one to separate perceptual sensitivity from response

bias.

The methods outlined above entail extensive subjective testing, which is usually costly, dif-

ficult, and time-consuming. In haptics, it is especially so, since customized hardware makes it

difficult to parallelize tests. Also, since subjects are typically not used to being delivered artifi-

cial haptic stimuli, extensive experimenter monitoring is required. These issues slow down the

progress of technical developments. To circumvent this problem, mathematical/algorithmic

models of human perception may be employed for automatically predicting haptic feedback

quality.

2.5.1 Kinesthetic haptics

A technical kinesthetic haptic system is said to be transparent, if it enables a human to

directly interact with the (remote) real/virtual environment, without noticing the mediat-

ing system itself [Min80, She92a]. This goal may be achieved by ensuring that the human-
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side and the environment-side positions and forces are equal [YY94] (xHSI = xTO, fHSI =

fe). Another definition of transparency requires the mechanical impedance displayed to

the human to be equal to the environment impedance [Law93] (ZHSI = Ze). Ideal trans-

parency according to the above criteria is not achievable in practice, in particular when

lossy data reduction/compression is used or in the presence of time delay on the commu-

nication channel. This is since there is a fundamental trade-off between robust stability

and transparency [Han89, Law93, HZS01]. Typical performance metrics derived from these

transparency criteria include integrals (frequency or time) over position and/or force and/or

impedance errors between the operator and the remote side.

A criterion which incorporates human haptic perception limits in the system evaluation

was first introduced by Hirche et al. in [Hir05, HB06, HFB+07]. According to this crite-

rion, the haptic system is deemed perceived transparent if the difference between the displayed

impedance and the environment impedance is within the Just Noticeable Difference (JND)

Zdispl. ∈ [Zenv − JND,Zenv + JND]. The effect of control and communication parameters

on the perceived impedance was analyzed. Closed form solutions were obtained for certain

settings. For example, the relationship between the displayed stiffness, the environment stiff-

ness and the time delay on the communication channel was derived. In addition, this work

allows for the optimization of control and communication parameters with respect to stability

robustness under the constraint that the system remains perceived transparent.

In [SHPH09], Sagardia et al. provided a framework of testing scenarios and measures

that help objectively evaluate the quality of haptic rendering algorithms by comparing the

response of the algorithms with the expected analytical one.

A comprehensive classification of Quality-of-Experience (QoE) parameters for haptic VE

applications was presented by Hamam et al. in [HESG08a, HESG08b, HS13, HSA14]. Both

Quality-of-Service (QoS) influences and User-Experience (UX) parameters were considered in

this taxonomy. QoS parameters considered were delay, jitter, and packet loss. The relevant

UX parameters were classified as: perception-related parameters, quality of haptic rendering,

psychological, and physiological parameters.

The perception-related parameters reflected how the user broadly perceived the haptics-

based application. The rendering quality jointly considered the rendering of graphics, audio,

and haptics. The psychological and physiological parameters captured the subjective and

objective user-states respectively. A subset of parameters that represents these classes was

selected for further evaluation: media synchronization (QoS parameter), fatigue and user in-

tuitiveness (perception-related), haptic rendering (rendering quality parameter), and degree

of immersion (psychological). While working with the same QoS and UX parameters, refer-

ences [HESG08b, HSA14] differ from [HESG08a, HS13] in the way the subjective data for the

above parameter subset was mapped to the overall QoE rating.
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In [HESG08a, HS13], a holistic system-level mathematical model for haptic QoE based on

weighted linear combinations of QoS and UX parameters was presented and validated:

QoE = ζ ×QoS + (1− ζ)× UX (2.3)

where ζ was used to weight QoS parameters versus UX parameters,

QoS =
Σl(ηlSl)

Σl(ηl)
(2.4)

and

UX = A
Σi(αiPi)

Σi(αi)
+B

Σj(βjRj)

Σj(βj)
+ C

Σk(γkUk)

Σk(γk)
(2.5)

where Sl, Pi, Rj , and Uk represent quality values for QoS measures, perception measures,

rendering quality measures, and user-state measures, respectively, and ηl, αi, βj , γk are weight-

ing factors which depend on the relative quality values within the QoS and user experience

categories. Weightings A,B,C were determined empirically. Optimal weighting factors de-

termined in [HS13] led to quality estimates with a high correlation with the subjective rat-

ings (correlation coefficient 0.92, with p < 0.005). In comparison to the above approach,

in [HESG08b, HSA14], fuzzy membership functions were defined for each of the above param-

eters, and the user data was mapped to QoE results using fuzzy logic rules.

Different from the previously mentioned approaches in [HB06, BCSS00, HS13, HSA14],

Section 4.2 of this thesis takes a signal-based approach to the evaluation of haptic feedback.

It focuses on the degree of perceptual quality degradation as the strength of the PDDR data

reduction scheme is increased (i.e., as the packet rate is reduced). In the context of a haptic

communication system, human action and perception models are presented, which enable the

automatic prediction of perceptual quality. A comparison between the most important work

in the literature and the work in Section 4.2 is shown in Table 2.6.

2.5.2 Vibrotactile haptics

In [OY11], Okamoto and Yamada presented a metric for quantifying perceptual quality degra-

dation caused by haptic texture data compression. Their metric is based on the spectral model

for vibrotactile perception presented by Bensmäıa et al. in [BHY05].

In [BHY05], Bensmäıa et al. hypothesized the presence of frequency-domain Gaussian-

shaped “minichannels” mediating vibrotactile perception, and calculated the “activation”

generated by a given stimulus in each of these minichannels. The perceptual dissimilarity

DS1S2 between two stimuli S1 and S2 was estimated by taking the difference between the

activations ZS1 and ZS2 they generated in the minichannels, and by summing up the absolute

differences across all minichannels: DS1S2 ∝
∑

fc
|ZS1(fc)−ZS2(fc)|, where fc’s are the center
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System parame-
ters

Quality pa-
rameters

Modeling ap-
proach

Remarks

[HB06]
Constant commu-
nication delay

Transparency
(in free-
space and in
contact)

Exploits the con-
cept of JNDs for
stiffness percep-
tion to derive
wave impedance
values for haptic
transparency

Free-space: mass
increases,
in-contact: wall
softer than actual

[HESG08a,
HS13]

Media synchro-
nization, fatigue
and user intu-
itiveness, haptic
rendering, and de-
gree of immersion

Overall QoE
rating

Weighted linear
combinations of
QoS and UX
parameters

Correlation coeffi-
cient between the
subjective rating
and the model-
based prediction
0.92

[HESG08b,
HSA14]

same as above same as above
Mamdani fuzzy in-
ference system

Correlation coeffi-
cient 0.98

[OIFS12] Network delay same as above no model proposed

Position-force con-
trol QoE degrades
more seriously
than position-
position control
QoE

Section 4.2
of this
thesis

Perceptual
Deadband data-
reduction scheme
parameter k

Subjective
quality rating

Human action and
perception models

Predicted data
matches in trend
with subjective
data, correlation
factor: 0.97

Table 2.6: A review of perceptual quality evaluation for kinesthetic haptics in the literature,
and its comparison with the approach presented in this thesis

frequencies of 100 minichannels, placed in logarithmic increments in the Pacinian frequency

range (40–1000 Hz), and minichannel activation

ZS(fc) =
∑
f

(
A2

f

T 2
f

)af

· e−
(f−fc)2

2(αfc)2 ,

where frequency f lies in (40–1000 Hz), Af is the signal amplitude and Tf the Pacinian

detection threshold both as functions of frequency, and α controls the spread of the Gaussian

filter.

The work in [OY11] supplemented the above power-spectral model with an analogous

amplitude-spectral model (replacing (A2
f/T

2
f ) with (Af/Tf )). This extra amplitude-spectral

term accounts for Meissner corpuscle-mediated lower frequency vibrations (tens of Hz), which
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Fig. 6: Profiles of the psychophysical weighting filters for

vibrotactile stimuli

weighting filter of frequency spectra so that the objective

index can be available to the vibrations of tens of hertz.

2) Introduction of Amplitude and Power Spectra: The

concept of the Pacinian filter was originally introduced by

Makous et al. [13]. They attempted to explain the masking

effects of noisy vibration stimuli that shift the detection

threshold of vibrotactile stimuli as an analogy to the phe-

nomena of auditory critical bands. The Pacinian filters used

by Makous and \\\\\\\Bensmaı̈a et al. were the square of the

inverse detection threshold curve of Pacinian corpuscles.

However, because the detection threshold level of Pacinian

corpuscles is much smaller than that of Meissner corpuscles

(roughly smaller than one-tenth), weighting by the square

of the inverse threshold curve underestimates the effects of

the vibratory stimuli of tens of hertz for which Meissner

corpuscles are most sensitive. In addition, such weighting by

the square function is not valid except by analogy to auditory

perception.

In this study, we introduce the amplitude spectrum that

is weighted by the inverse of the detection threshold curve

in addition to the power spectrum that is weighted by the

square of the inverse threshold curve used by Makous and

\\\\\\\Bensmaı̈a et al. The threshold-filtered amplitude spectrum is

expected to evaluate the perceptual effects of the stimuli of

tens of hertz, whereas the threshold-filtered power spectrum

tends to underestimate the effects of these stimuli. Fig. 6

shows the weighting values of threshold filters. The squared

inverse filter almost neglects the effects of the vibrations of

tens of hertz, whereas the inverse filter does not completely

diminish them.

C. Equations of the Objective Index

The sum of the power spectrum that is weighted by the

square of the inverse detection threshold curve is given by

P =
N′

∑
k=1

C2
k

b( fk)2
and P′

i =
N′

∑
k=1

C′2
ki

b( fk)2
. (8)

P and P′
i are the sums of threshold-filtered power spectra for

the uncompressed and compressed textures, respectively. The

suffix i denotes the type of compressed texture. The sum of

the amplitude spectrum weighted by the inverse of detection

threshold curve is determined by

A =
N′

∑
k=1

|Ck|

b( fk)
and A′

i =
N′

∑
k=1

|C′
ki|

b( fk)
. (9)

A and A′
i denote the uncompressed and compressed textures,

respectively. The objective index is defined by a linear

connection of the relative error of the sum of weighted

spectra. The index is

Iob j·i = a
|P−P′

i |
1
2
(P+P′

i )
+ b

|A−A′
i|

1
2
(A+A′

i)
(10)

where a and b are the contribution ratios of the power

and amplitude spectra to the subjective quality indices,

respectively.

For comparison of the proposed objective index mentioned

above, we prepare two types of indices, I p and Ia. Each is

composed of either the power spectrum or the amplitude

spectrum. Ip is defined by the relative error of the sum of

the weighted power spectrum and is given by

Ip·i =
|P−P′

i |
1
2
(P+P′

i )
. (11)

Ia is defined by the relative error of the sum of the weighted

amplitude spectrum and is given by

Ia·i =
|A−A′

i|
1
2
(A+A′

i)
. (12)

The constant variables in the indices, a and b were

determined by multiple regression analyses that involved the

experimental results of Section IV. The analysis minimized

the sum of square residuals between the subjective and

objective indices, which is given by

||S−O|| (13)

where S and O are the vectors of subjective and objective

indices, respectively. They are

S = (Isb j·1, ..., Isb j·i, ..., Isb j·M)T , (14)

O = (Iob j·1, ..., Iob j·i, ..., Iob j·M)T (15)

where M is the number of compressed/uncompressed tex-

tures involved in the analysis. Isb j·i is the subjective dissim-

ilarity between the uncompressed and compressed textures

specified by i. These subjective dissimilarities are the aver-

ages of all participants’ answers acquired in Section IV. We

did not use the result of the linearly quantized sandpaper

with L = 4 for the regression analysis. This is because

all the participants answered the dissimilarity between this

compressed and uncompressed texture as “different” in the

experiment. In such case, 4-grading scales were invalid to

estimate the subjective dissimilarity.

3064

Filter for amplitude spectrum

Filter for power spectrum

Figure 2.10: Psychophysical weighting filters for vibrotactile stimuli. The filter that weights
the power spectrum deemphasizes low frequencies more severely in comparison to the filter
that weights the amplitude spectrum. Figure reproduced from [OY11], ©2011 IEEE.

were previously ignored due to the inverse of the square of the (U-shaped) Tf function (see

Figure 2.10). With this extension, the algorithm in [OY11] was able to predict perceptual

dissimilarity for compressed texture signals with an improved Goodness-of-Fit R2 = 0.64, up

from 0.2 for the Bensmäıa model alone.

The above two models capture low-level perceptual properties of texture signals by fo-

cusing on one particular aspect of vibrotactile perception — the Pacinian/Meissner detection

thresholds. On the other hand, the work presented in Section 4.1 of this thesis uses high-

level descriptions of subjective perception — roughness [FL12], coarseness [BH05], bright-

ness [HC10], regularity, time-envelope pattern [PC11], etc. — to predict perceptual data.

These “features” are then weighted and combined to best predict perceptual degradation

(dissimilarity) data for haptic texture compression. Please refer to Table 2.7 for a comparison

of the related literature and this work.
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Haptic features

Perceptual qual-
ity metric (quality
degradation w.r.t.
reference uncom-
pressed signal)

Goodness
-of-fit R2

[BHY05]
Gaussian-minichannel activation due
to signal power weighted by squared
detection thresholds

Sum-of-Difference
of minichannel ac-
tivations due to
compressed and un-
compressed signals

0.2

[OY11]

Linear combination of spectral ampli-
tude and power, weighted by inverse
detection thresholds and squared in-
verse detection thresholds, respec-
tively

Difference of the linear
combinations

0.64

Section 4.1
of this
thesis

Linear combination of high-level hap-
tic features like roughness, bright-
ness, etc. with low-level psychophys-
ical models [BHY05, OY11]

Same as above 0.84

Table 2.7: A comparison of the state-of-the-art perceptual quality evaluation approaches for
haptic textures with the approach presented in this thesis

2.6 Chapter summary

This chapter has covered the background in haptics — physiology, technical haptic systems,

haptic psychophysics, data communication, and perceptual quality evaluation — necessary for

the reader to understand the motivation for the research presented in the upcoming chapters.

The limitations of the state-of-the-art in haptic data compression and perceptual quality

evaluation were identified. Furthermore, the chapter also outlined how the work presented in

this thesis makes original contributions to address these limitations. Here is a summary of

the most important points:

• Most of the research in this thesis deals with haptic textures, represented by wideband

acceleration signals, whose perception is mediated by the Pacinian mechanoreceptors in

the human hand.

• In technical systems, wideband texture signals can be sensed by an accelerometer, and

displayed to the user via an electrodynamic minishaker or a voice-coil actuator.

• Potentially large data volumes and high bitrates motivate the development of efficient

compression algorithms for haptic textures.
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• Simultaneous masking, an important human perceptual limitation, can be exploited for

efficient perceptually-transparent coding of haptic texture signals.

• Automatic model-based perceptual quality prediction is necessary to tackle the challenge

of difficult and time-consuming subjects tests, which impede the pace of haptics research.





Chapter 3

Haptic texture compression

This chapter presents one of the main contributions of this thesis — namely, the compression

of haptic texture data based on texture production and perception models. Furthermore, the

topic of bitrate scalability of the texture codec is also addressed.

3.1 Mechanisms of texture production (source modeling)

As mentioned in Section 2.2.2, stroking a textured surface with a mechanical tool generates

wideband vibrotactile signals (represented as acceleration waveforms) that encode the dy-

namics of the interaction between the hand-tool system and the textured surface. Figure 3.1

shows an illustration of such stroking.

Object surfaces can have coarse features with relatively large physical dimensions, or

fine ones with random height profiles. While stroking the surface, the tool-tip usually hits

a coarse feature once resulting in a response that can be modeled by a damped sum of

sinusoids [GLL11], and then goes on to hit the next feature. On the other hand, the tool-tip

has a more prolonged contact with the surface while traveling over fine features, resulting in

a continuous random response. Coarse and fine features may also reside on the surface in an

interleaved manner. In this case, the response can be thought to be a superposition of the

coarse and fine responses.

Such a hand-tool-surface system can be modeled well by linear filters excited with appro-

priate input. The coarse features can be modeled as large-amplitude pulsed input, whereas

the fine features can be modeled as a small-amplitude random noise input. Such modeling

of the texture production mechanism is very reminiscent of the modeling of speech produc-

tion [RS07].

The well-known model for speech production described in [RS07] represents the human

vocal tract by an all-pole speech synthesis filter (see Figure 3.2). This speech synthesis filter

33
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Coarse

texture

Fine-random

texture

Perceiving texture 

through a tool 

Hand-tool-surface
dynamics

distance/time
time

Acceleration

output

Accelerometer

Figure 3.1: Mechanism of texture production. A hand-held tool is used to stroke a textured
surface. An acceleration sensor signal mounted on the tool measures the response of the
hand-tool system as it hits surface features.

is excited by an air flow originating from the lungs and shaped by the opening/closing of

the vocal cords, followed by any intermediate constrictions on its way to the vocal tract.

Depending upon the nature of this excitation (quasi-periodic pulses or random noise or a

mixture of both), a variety of sounds are produced (voiced sounds or unvoiced sounds or

voiced fricatives, respectively).

With the above resemblance, coarse textures can be treated as being analogous to voiced

sounds (compare Figure 3.3 (a) to Figure 3.3 (b)), fine textures to unvoiced sounds (compare

Figure 3.2: Mechanism of speech production. The vocal tract shapes the excitation from
the vocal cords to form the sound output at the mouth. Figure reproduced from [FCR+70],
©1970 IEEE.
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(c) Fine random texture (d) Unvoiced speech

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
−40

−20

0

20

40

60

Time [s]

A
c
c
. 

[m
/s

2
]

0 0.005 0.01 0.015 0.02 0.025 0.03
−0.4

−0.2

0

0.2

0.4

Time [s]

A
m

p
lit

u
d
e

(e) Mixed texture (f) Voiced fricative

Figure 3.3: [Left panels] Typical texture signal classes. Coarse (here, regularly patterned or
quasi-periodic) texture is shown in (a). The noise-like appearance of fine random textures is
shown in (c). A mixture of coarse surface features with fine intermediate features is shown
in (e) (“Acc.” denotes “Acceleration”). [Right panels] Typical speech signal classes. Quasi-
periodicity of voiced speech is visible in (b). Random noise-like appearance of unvoiced speech
is shown in (d). A voiced fricative (mixture of quasi-perdiocity and noise) is shown in (f).
Figure reproduced from [CcK+12].
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Figure 3.3 (c) to Figure 3.3 (d)) and a mixture of coarse and fine textures to voiced fricatives

(compare Figure 3.3 (e) to Figure 3.3 (f)). Thus, a very close analogy can be drawn between

the production mechanisms of texture signals and speech signals. This provided the inspira-

tion to study the use of speech coding techniques for developing a haptic texture codec. In

particular, the Code-Excited Linear Prediction (CELP) coding technique [CT08] was found

to be a suitable candidate for haptic texture compression.

The dynamics of hand-tool-surface interactions have been modeled successfully with all-

pole Linear Predictive filters in [KRM11]. This past work provides a strong rationale for basing

our coding approach on LP models of texture production. Moreover, Analysis-by-Synthesis

coders based on Linear Predictive Coding (LPC) are also known to exhibit low bitrates with

high subjective quality.

3.2 Perceptual simultaneous masking (sink modeling)

The ultimate sink of the haptic texture signals is the sensory-perceptual apparatus of a human.

The distortions introduced in the texture signals over the source–sink chain (compression algo-

rithm, communication channel, reconstruction) will go unnoticed by the human in comparison

to the clean original texture signal, if they fall within certain perceptual bounds around the

original signal. Therefore, models for dominant perceptual phenomena like Simultaneous

Masking form a very critical component of a texture compression algorithm.

3.2.1 Psychophysical experiments

Simultaneous masking is a phenomenon in which the perceptual detection threshold of a weak

(maskee) signal increases in the presence of another strong (masker) signal present in the

immediate frequency neighborhood of the maskee. This is a fundamental human perceptual

limitation that has been exploited successfully by various speech and audio coding schemes

in the past, e.g. [SAH79, BS94].

Depending upon the time-offset between the masker and the maskee, three kinds of mask-

ing phenomena occur — forward masking, simultaneous masking, and backward masking.

The experimental work presented next has simultaneous masking as its focus, while forward

and backward masking are left for future work. The objective of the experiments is to inves-

tigate if and how the detection thresholds for vibrotactile maskees change in the presence of

a masker, and how this change compares to auditory simultaneous masking.

3.2.1.1 Stimuli

The masker and maskee stimuli were displayed to the subjects through a K2004E01 elec-

trodynamic minishaker (The Modal Shop, Inc., USA, see Figure 3.4). To avoid the beats
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Figure 3.4: Block schematic for generating the masker and maskee stimuli. Figure reproduced
from [CSDS15], ©2014 IEEE.

phenomenon, which occurs when two pure tones slightly different in frequency are added to-

gether [LKK12], narrowband noise (NBN) was used as the masker and pure tone sinusoids as

the maskees.

The frequencies of the stimuli were chosen to be in the range 80–380 Hz, which falls within

the sensitivity bandwidth of the pacinian mechanoreceptors. Three NBN center frequencies

were spread out over this range — 120 Hz, 200 Hz, and 280 Hz. To generate narrowband noise,

the second-order bandpass filter (BPF) given in (3.1) was driven by a white noise generator.

The bandwidth of this BPF can be controlled by the parameter α, and its center frequency

by β.

HBP (z) =
1− α

2
· 1− z−2

1− β(1 + α)z−1 + αz−2
(3.1)

The three (scaled) BPF responses are illustrated in Figure 3.8 (a). This BPF is symmetric

for a center frequency fc = Fs/4, where Fs is the sampling rate. However, it becomes more

and more asymmetric as the center frequencies are shifted away from Fs/4 on both sides. The

effect of this asymmetry on the stimuli was minimized by making two design choices. Firstly,

the BPF operated at a sampling rate of 800 Hz. This resulted in a perfectly symmetric BPF

at 200 Hz; the other two BPFs at 120 Hz and 280 Hz were also relatively less asymmetric

compared to a BPF operating at a higher sampling rate, e.g. 2 kHz. Secondly, the BPF’s

−3 dB bandwidth was fixed to 40 Hz, and its −40 dB bandwidth was tightened to 150 Hz,

in an effort to minimize the asymmetry at 120 Hz and 280 Hz. This resulted in a set of 25

identical cascaded BPFs to generate a given NBN masker. Each of the BPFs in the cascade

was controlled by the same values for parameters α and β.
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The NBN masker intensity was fixed at 25 dB above the detection threshold. For every

masker frequency fc, the maskee frequency was varied from (fc − 3 ·∆f) to (fc + 3 ·∆f) in

steps of ∆f (= 10%fc), resulting in 7 maskees per masker. The duration of both the masker

and the maskee stimuli was fixed to 1 s, and both of them started and stopped at the same

time instant. Both stimuli were windowed with a Hanning window (symmetric 100 ms rise

and fall times) to reduce transient effects. Five maskees centered around the 200 Hz masker

were also tested for a masker intensity of 40 dB above detection threshold. Figure 3.4 shows

the block diagram for generating the masker and maskee stimuli described above.

In the perceptual tests described later in more detail, subjects determined the amplitude

at which the maskee was just detected in the presence of the masker. This particular maskee

amplitude is the masking threshold for the given masker-maskee combination.

3.2.1.2 Signal processing chain

Inverted minishaker+hand transfer function To ensure that a subject indeed felt stimuli as

close to the commanded ones as possible, the non-flat minishaker+hand system response was

neutralized as follows. While the subjects held the vibrating handle of the minishaker, the

acceleration response at the hand was measured for a chirp input signal to the minishaker.

The users maintained a consistent grip force by monitoring visual feedback from a FlexiForce

(TekScan Corp., USA) sensor. Matlab functions were used to determine a linear transfer

function based on this I/O data (see Figure 3.5):

Hhd(s) =
3896

s+ 3896
× s2 + 730s+ 2.9e04

0.02128s2 + 15.56s+ 7903
(3.2)

The influence of these dynamics was canceled out by incorporating the inverse model into

the signal processing chain. Figure 3.5 shows the transfer function estimated for data that

was averaged across users. These data were collected two days before the psychophysical

experiments began. Before each subject session during the experiments, new hand-device

data was collected and if required, the parameters of the above model were re-tuned to fit the

new data.

Digital-to-Analog conversion The signal processing chain shown in Figure 3.4 was imple-

mented in the form of a Simulink block diagram. A realtime executable was generated using

the realtime interface for the Realtime Application Interface (RTAI)-Linux target operating

system running on a standard PC.

The realtime process sends signal samples to the minishaker through the Digital-to-Analog

(DAC) converter on a NI PCI-6221 Data Acquistion (DAQ) card. The time-domain sample-

and-hold response of the DAC creates a sinc function roll-off in the frequency domain, which

extends indefinitely on the frequency axis. This undesirable effect was alleviated to some ex-

tent, but not eliminated completely, by operating at an oversampled rate of 8 kHz. Therefore,
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Figure 3.5: Frequency Response Functions (FRF)s plotted for the hand-device input-output
data recorded for five users. The thick black curves show the linear transfer function approx-
imation Hhd(s) for these FRFs. Figure reproduced from [CSDS15], ©2014 IEEE.

a 50-tap FIR pre-equalizer was used to further cancel out the sinc roll-off and to obtain a flat

frequency response in the bandwidth of interest.

3.2.1.3 Subjects and experiment setup

Five subjects participated in the pyschophysical experiments - 1 female, and 4 male. Their

ages ranged from 24 to 29, with an average of 26 years. All of them were right handed, four

had participated in haptic psychophysical experiments before, while one was inexperienced.

Their self-reported experience with haptic devices ranged from “none” to “extensive”. None

of them reported having any ailments that would affect their sensorimotor performance.

A custom-made stylus-like handle similar to that of the PHANToM Omni (SensAble Tech-

nologies, Inc., USA) haptic device was mounted on the K2004E01 minishaker (see Figure 3.6).

The subjects were instructed to hold the stylus like a pen in their dominant hand in a stan-

dardized 3-finger grip. Their elbow and forearm rested on a wooden plank, which supported

a neutral wrist position. When the stylus was held as instructed, the vibrations transmit-

ted through the stylus were mostly tangential to the skin in contact. The subjects wore

acoustic noise-canceling headphones (QuietComfort 15, Bose Corp., USA) that played pink

noise to mask out auditory cues from the experimental apparatus. They interacted with the

experiment GUI through the keyboard.

3.2.1.4 Method

For determining the masking thresholds, a standard psychophysical method was chosen similar

to the one used for characterizing the force and position detection thresholds in [ICT07b]. In
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Figure 3.6: Experiment setup. The minishaker device is shown as an inset. Figure reproduced
from [CSDS15], ©2014 IEEE.

the literature (see [JT13], for example), this method is referred to as the three-alternative

forced-choice (3AFC) 1-up 3-down (1U-3D) adaptive staircase method.

Under this method, on each trial (a given masker-maskee combination) of the experiment,

the subject was presented with three consecutive stimulus intervals (3A) with interleaved

pauses. The masker was present in each of the three stimulus intervals. However, the maskee

was present only in one randomly-selected interval out of the three. The currently active

stimulus interval was indicated visually on the GUI. At the end of the trial, the subject had

to respond by indicating the interval which she/he perceived to be different from the other

two intervals. The next trial started after the subject’s response.

The stimulus interval duration was chosen to be 1 s, since haptic adaptation to the stimulus

is known to creep in after that. The pause duration was chosen as 600 ms, so that haptic

enhancement and summation effects [VG75] were alleviated. Thus, the successive presentation

of two stimuli did not affect their individual or collective perception. Haptic enhancement

means the increase of the subjective magnitude of the second stimulus due to the presentation

of the first one. Haptic summation, on the other hand, is the effect of increment in overall

subjective magnitude of two successive stimuli. Each trial thus lasted about 5.2 s, which falls

within the constraint of several seconds imposed by the haptic working memory [ASG08].

The step size through which the intensity of the maskee was increased/decreased was

initially set to 8 dB for faster convergence towards the threshold. With each reversal of the

staircase, it was halved until it reached a minimum of 0.5 dB (see Figure 3.7). The minimum

step size of 0.5 dB was found to be a good trade-off between the precision of the masking

threshold determined and the size of the experiment. The step-size stayed fixed at this value

during the rest of the staircase. A staircase was terminated after three direction reversals

(change of intensity from increasing to decreasing) occurred with the minimum step-size. The
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masking threshold was calculated to be the mean of all the staircase points across the last

three reversals. Every staircase was inspected by the experimenter visually. If the data had

not converged, the subject was requested to repeat that staircase.

To make the experiment even more rigorous, each masker-maskee combination was eval-

uated by the subjects twice — once by tracing an ascending staircase, and once by tracing a

descending one (see Figure 3.7). For the ascending staircase, the initial maskee amplitude was

chosen to be well below the expected masking threshold level, so that it was not detectable at

all at the beginning. On the other hand, for the descending staircase, the initial maskee am-

plitude was chosen to be well above the expected detection threshold level, so that the maskee

was easily detectable at the beginning. The final threshold was calculated by averaging the

thresholds obtained from the two staircases. Such averaging is standard practice for staircase

methods used in psychophysics [Ges13]. The staircases thus guided the subject towards his

perception threshold, at which she/he detected the maskee just as frequently as she/he did

not.

Each staircase took about 10 minutes to finish. To avoid fatigue, subjects took a break

of 1–2 minutes after every staircase. In all, each subject underwent 3 maskers × 7 maskees

per masker × 2 staircases per maskee = 42 trials. This amounted to about 7 hours per

subject, excluding breaks. The whole experiment was scheduled over two weeks. Each subject

performed her/his experiments over two days, 6 disjoint sessions each day (corresponding to

3 maskers, 2 staircases each) with 7 trials (corresponding to 7 maskee tones) per session.

Thresholds obtained with the 1U-3D adaptive method correspond to the 79.4 percentile

point on the psychometric function, which is considered to be a reliable level in psychophysics [Lev70].

The higher this percentile, the lower the chance that the subject “guesses” her/his way to

the final threshold, so that it is not his real threshold at all. The Matlab-based Psylab li-
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Figure 3.7: Ascending and descending staircases corresponding to a particular masker-maskee
combination. Figure reproduced from [CSDS15], ©2014 IEEE.
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brary [Han06] implements the above staircase procedure, and was used to control the GUI as

well as the stimulus parameters during the experiment.

3.2.2 Results

Figure 3.8 (a) shows the masking thresholds in comparison to the corresponding sine-detection

thresholds. Figure 3.8 (b) shows the average threshold shifts, whereas Figure 3.9 shows

the threshold shifts for individual subjects for each of the maskers. The figures show that

the sine-detection thresholds shifted upwards in the presence of the masker for each of the

three maskers. The figures also show that the masking thresholds were the highest when the

sinusoid’s frequency coincided with the NBN masker center frequency, and that they rolled-

off gradually on both sides as the sinusoid’s frequency went away from the masker center

frequency.

From Figure 3.8(b), it can be seen that for a masker intensity of 25 dB above threshold,

the central maskee had an approximately 25 dB threshold shift up for all maskers. For a

200 Hz masker intensity of 40 dB above threshold, the threshold shifts were all approximately

15 dB above the 25 dB results. Thus, the 40 dB threshold shifts were higher proportionally

with respect to the masker intensity, while appearing more or less parallel to the 25 dB ones

in the frequency range considered.

Figure 3.8 shows that while the masking thresholds corresponding to the 200 Hz masker
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IEEE.
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Figure 3.9: Threshold shifts for sinusoids around maskers at 120 Hz (a), 200 Hz (b), and 280
Hz (c). Figure reproduced from [CSDS15], ©2014 IEEE.

were more or less symmetric, the ones corresponding to the 120 Hz and 280 Hz maskers are

less so. This asymmetry may be attributed to the asymmetric behavior of the band-pass filter

that was used to generate the masker stimuli.

These results show that the simultaneous masking phenomenon for vibrotactile percep-

tion has a behavior very similar to simultaneous masking for auditory perception. Similar

to speech/audio coding, masking can be exploited in the texture codec to hide the coding

distortion below human perceptual thresholds. This will be explained in more detail in Sec-

tion 3.3.5.

3.3 Linear prediction-based texture encoder

As described in Section 3.1, a strong analogy can be drawn between the mechanisms of produc-

tion of haptic texture signals and speech signals. This provides the motivation for evaluating

the adaptability of speech coding techniques for texture coding. The most widely used speech

coding techniques are based on linear predictive (LP) modeling of signal segments (or frames),

followed by the transmission of the corresponding (quantized) model parameters [CT08, RS07].

This technique, along with an algebraic code approximation of the associated LP filter exci-

tation, was found to adapt well to texture coding. In the following, salient steps in the linear

prediction-based coding algorithm are outlined.
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3.3.1 Linear Predictive Coding

The sampled signal is subdivided into frames that are processed in succession. As mentioned

before, the frame content is modeled by an LP-filter. The LP parameters and the correspond-

ing filter excitation are encoded and sent to the receiver side for decoding and display.

In Linear Predictive Coding (LPC), future samples are predicted on the basis of a linear

weighting of N past samples:

x̂[n] =

N∑
i=1

ai · x[n− i] (3.3)

where a = [ai]i=1:N are the LPC coefficients and N is the order of the LPC filter.

The mean square prediction error is given as:

E =
1

L

L∑
n=1

(e[n])2 (3.4)

where L is the number of samples in the frame and e[n] = x[n] − x̂[n]. E is minimized by

setting the partial derivatives

(
∂E

∂ai

)
i=1:N

to 0, leading to a linear system of equations (for

zero-mean x[n]):

RN×N · aN×1 = rN×1 (3.5)

where R is the autocorrelation matrix of x[n] and r = [R(1)...R(N)] (first row of R). A well-

known efficient recursive method, the Levinson-Durbin algorithm [RS07] can be used to solve

for a. If A(z) =

(
N∑
i=1

ai · z−i
)

, the LPC Analysis filter can be written as H(z) = (1− A(z))

and the corresponding synthesis filter as P (z) = 1/H(z) (see Figure 3.10).

The general feel of haptic textures is governed by their spectral signature [KRM11]. In

an LP-based algorithm, this feel is represented by the spectral response of the LP synthesis

filter. In principle, it can be recreated by simply exciting the synthesis filter with white

noise. However, realtime transient temporal events occurring due to surface features and scan

velocity changes are equally important. Therefore it is necessary to transmit not only the LP

)(zA
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][nx ][ne ][̂ne ][ˆ nx

)(/1)( zHzP =

)(a )(b

Figure 3.10: H(z) - LPC analysis filter, P (z) - LPC synthesis filter, x[n] - input signal to be
predicted, e[n] - residual output of the LPC analysis filter, ê[n] - an approximation made to
e[n] by the encoder, x̂[n] - reconstructed output, i.e., an approximation to x[n] at the decoder
output. Figure adapted from [RYK10], ©2010 IEEE.
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parameters determined above, but also an encoded version of the excitation parameters that

go with them and decide the temporal response of the LP synthesis filter.

As described in Section 3.1, two different kinds of surface features play a role in the haptic

interaction of a tool with a textured surface — the coarse features and the fine random ones.

3.3.2 Macro-scale (coarse) surface features

For a tool moving with an almost constant velocity, coarse features produce quasi-periodic

acceleration responses over a long time-duration. Coarse features can be modeled by an LP

synthesis filter excitation with two parameters — the pitch period T (which corresponds to

the time-duration between two coarse features), and the pitch gain β.

A preliminary range for T is first determined by searching for the peaks in the autocorre-

lation function for a buffer constituting of past and current samples. This is referred to as the

“open-loop” search for T . A final refined value for T , and a value for β are then estimated

in the so-called “closed-loop” search by minimizing the perceptually-weighted Mean Square

Error (MSE), as will be described in Section 3.3.4 (Excitation-parameter search).

3.3.3 Micro-scale (fine random) surface features

Fine random features juxtaposed with the coarse ones, produce random responses. These

responses are short-duration relative to the coarse features. Fine random features can be

modeled by an LP-synthesis filter excitation with two parameters — an index i into a fixed

codebook with an algebraic structure (referred to as “algebraic codebook” hereonwards), and

a gain G.

Such a codebook contains codevectors with only a few non-zero pulses. Each of these pulses

can have an amplitude of either +1 or –1. The pulses can assume only specific positions in the

vector according to an algebraic code. The codebook is very efficiently searchable on account

of its algebraic nature, and it does not need to be stored. Similar to the long-term excitation,

both these parameters are estimated in a “closed-loop” search by minimizing the perceptually

weighted MSE (see below).

3.3.4 Excitation-parameter search

Please refer to the encoder structure in Figure 3.11 for this discussion. Within this structure,

branches 1, 2 and 3 successively remove their contributions from the original input texture

signal, producing a new target signal for the branch below.

The contribution of Branch 1 is the Zero-Input-Response (ZIR) of the LPC synthesis filter.

The ZIR is the response of the filter, only on account of its past memory, without any new

excitation (switch s in Figure 3.11 open). This branch facilitates a smooth transition from

one frame to the next.
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Figure 3.11: Search procedure for excitation parameters at the encoder side. ZIR: zero-input-
response, ZSR: zero-state-response, P (z): LP synthesis filter, W(z): perceptual weighting
filter (see Section 3.3.5). Figure adapted from [CT08], with kind permission of Springer
Science+Business Media and the authors.

The contribution of Branch 2 is the long-term Zero-State-Response (ZSR, the filter re-

sponse with the filter memory set to zero) that accounts for the quasi-periodicity in the

texture signal. Branch 2 searches for the best (corresponding to minimum MSE) past ex-

citation that can be used for the current frame (due to repeatability of responses to coarse

features).

The long-term excitation parameters T and β are determined as follows. Once the

autocorrelation-based open-loop search gives an initial range for T , a buffer is populated

with sections of past excitation corresponding to the initial range of T values. Then, an in-

terative closed-loop search is performed, which yields the best estimates of T and β leading

to minimum MSE. Branch 2 removes the contribution of the past excitation corresponding to

these final estimates from the target signal generated by Branch 1, producing a new target

signal for Branch 3.

The contribution of Branch 3 is the short-term Zero-State-Response. It accounts for the

novelty in the current signal frame that could not be “explained away” by the upper branches.

Branch 3 also removes its contribution actively by searching for the best algebraic codebook

parameters, leading to a minimum perceptual MSE.

After the three branches are executed in an order and all excitation parameters are found,

the switch s (in Figure 3.11) closes momentarily to update the filter memory and the past

excitation buffer for processing the next frame.
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Figure 3.12: The excitation parameters are optimized to obtain minimum perceptual MSE.
Figure reproduced from [CcK+12].

3.3.5 Perceptual weighting

The LPC-based coding algorithm is lossy since it approximates the spectral response with

its poles and the synthesis filter excitation with an algebraic code. Moreover, these codec

parameters are vector-quantized before transmission. Thus, the coding process introduces

distortion into the encoded signal. To ensure the perceptual transparency of the codec, the

coding distortion should be kept as low as possible (ideally below perceptual thresholds). In

other words, the difference between the codec input and output signals should be as low as

possible (ideally imperceptible). It is therefore necessary to include a perceptual model for

texture perception in the coding process.

This is achieved by deploying a perceptual weighting filter W (z) that captures the simul-

taneous masking phenomenon (see Section 3.2). This filter weights the MSE between the

original texture signal and the texture signal reconstructed by the codec. The excitation pa-

rameters for the LP filters are searched for by minimizing this perceptually weighted MSE

(see Figure 3.12).

The simultaneous masking phenomenon is accounted for in the codec by defining the

perceptual weighting filter as a function of the LP synthesis filter response as:

W (z) =
P (z/α2)

P (z/α1)
(3.6)

where 0 < α1,2 < 1. Thus, the poles of W (z) lie at the same angles as the poles of P (z), but

at radii α2 times those of P (z)’s poles. Furthermore, the zeros of W (z) lie at the same angles

as the poles of P (z), but at radii α1 times those of P (z)’s poles.

If α1 > α2, the frequency response of W (z) is like a controlled inverse filter of H(z) [RS07]

(see Figure 3.13 for an illustration). This nature of the frequency response of W (z) assures

that the coding process admits higher noise energy in the frequency regions where the signal

energy is high, and low noise energy in the regions where the signal energy is low. Due to

simultaneous masking, it is expected that in both these cases, the high/low noise energy will
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Figure 3.13: [Top] An acceleration signal segment, [Bottom] the frequency response of the
LPC synthesis filter P (z) estimated from the segment, and of the corresponding perceptual
weighting filter W (z). Figure reproduced from [CSDS15], ©2014 IEEE.

be masked by the corresponding high/low signal energy. Ideally, this would completely hide

the coding noise perceptually from the subject. Parameters α1 and α2 were tuned to about

0.92 and 0.55 through pilot subjective tests.

3.4 Decoder

At the decoder side (see Figure 3.14), the LP filter and excitation parameters are recov-

ered from the received bit stream. The excitation is then reconstructed by adding the past-

excitation and algebraic codebook vectors scaled by their respective gains. It is then passed

through the LP synthesis filter to reconstruct the texture signal x̂[n].

3.5 Codec implementation

While the previous sections conceptually explained the linear prediction based texture codec,

this section gives key implementation details about the codec.
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Figure 3.14: The decoder side. Figure reproduced from [CcK+12].
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Parameter Bits per frame

Quantized LPC coefficients 17

Pitch delay T 14

Algebraic-codebook index i 26

Quantized codebook gains β and G 14

Total 71

Table 3.1: Bit budget allocation

The human vibrotactile perception mediated by the Pacinian neural channel is sensitive

to vibrations upto a bandwidth of 1 kHz [BH03]. Hence, the texture signal was sampled at

the Nyquist rate of 2 kHz. In order to remove DC-bias, the sampled signal was then digitally

high-pass filtered with a 4th order Butterworth filter with a cutoff frequency of 40 Hz.

Texture signals are short-term stationary for natural texture scan motions (slow changes

in scan velocity and operator applied force), and when the surface features do not change

drastically. For natural scans, it was found that an LPC analysis buffer duration of 0.06 s is

a good choice for time/frequency-domain tracking performance. The sampled texture signal

was therefore subdivided into frames of length L = 120 samples (60 past + 40 current + 20

look-ahead samples) that were processed in succession.

The LPC analysis took place per frame and had an order of N = 10, with which 5 distinct

spectral peaks could be captured. The excitation search took place on a per-subframe basis,

with each subframe being 20 samples-long. The open-loop T determination used 143 past

samples and 40 samples from the current frame. The algebraic codebook contains a set of

generic 20 sample-long vectors. Each of these vectors contains four non-zero pulses, with the

rest of the samples set to zero. The overall bit budget of 71 bits/frame was distributed among

the various codec components as shown in Table 3.1.

The texture codec described here was implemented as a Simulink model. Such a model-

based design allowed for efficient optimization due to the signal recording and plotting facil-

ities of Matlab/Simulink. Also, a Linux Realtime Application Interface (RTAI)-interface for

Simulink facilitated the generation of a realtime executable for the subjective experiments.

3.6 Codec performance

This section describes the evaluation of the codec for various objective and subjective perfor-

mance criteria.
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3.6.1 Bitrate

The uncompressed bitrate for texture signals:

bitrateuc = sampling rate × number of bits/sample

= 2000 samples/sec. × 16 bits/sample

= 32 kbps (3.7)

The codec algorithm described above encodes every frame of 40 samples with 71 bits. Ac-

cordingly, the compressed bitrate can be calculated as follows:

frames/sec. =
2000 samples/sec.

40 samples/frame
= 50 (3.8)

bitratec = 50 frames/sec. × 71 bits/frame

= 3.55 kbps (3.9)

This amounts to a compression ratio of approximately 8:1. To match this performance, for

every frame of 40 samples, the Okamoto codec described in Section 2.4.2 [OY10, OY13] should

also generate 71 bits. That is, the corresponding 40 DCT coefficients should be quantized

with a 2-bit (4-level) linear quantizer. However, [OY13] reported a compression ratio of

approximately 4:1 with a 12-level quantizer (fewer than 12 levels trigger significant perceptual

differences between the original and quantized textures). This comparison shows that in terms

of bitrate reduction, the CELP-based codec described above performs better by at least a

factor of 2 than the texture codec from [OY13].

3.6.2 Delay

The codec introduces a delay of 20 ms into the signal stream due to frame buffering (40 samples

per frame at a sampling rate of 2 kHz). Additionally, a look-ahead delay of 10 ms occurs due

to buffering of 20 future samples. On a common PC configuration (Intel(R) Xeon(R) CPU

EE5506, quad-core @2.13 GHz), the average encoding time was measured to be around 230 µs,

and the average decoding time was around 18 µs. Thus, the encoder and decoder introduce

a negligible delay in comparison with the buffering delay of 30 ms. A summary of the main

codec performance parameters is given in Table 3.2.

During haptic manipulation, the presence of delay in the haptic signal stream is detected

by humans at approximately 40 ms [OKST08]. Furthermore, subjective degradation in the

perception of textures creeps in at about 60 ms of delay (also see [OKST08]). Thus, a further

channel transmission delay of around 10 ms is tolerable before the human delay-detection

threshold is reached. A further channel transmission delay of around 30 ms is tolerable before

subjective degradation in texture perception results.

Figure 3.15 shows the time-domain and frequency-domain performance of the CELP-based

codec.
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Figure 3.15: [Left panels] Time-domain view of the codec operation. Codec input (codec
OFF) and output (codec ON) are shown. It can be seen that the codec has a very good
temporal tracking performance. [Right panels] Frequency-domain view of the codec operation
for one texture frame (120 samples, i.e., 0.06 seconds long). It can be seen that the spectral
signature is faithfully captured. Figure reproduced from [CcK+12].
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Parameter Value

Output bitrate 3.55 kbps

Buffering delay 20 ms

Look-ahead delay 10 ms

Average encoding time 230 µs

Average decoding time 18 µs

Table 3.2: Summary of the codec performance parameters

3.6.3 Perceptual quality

Let us firstly outline the requirements of subjective evaluation for assessing the perceptual

performance of the CELP-based codec. The objective was to prove that the codec is percep-

tually transparent. Perceptual transparency means that, ceteris paribus, subjects are unable

to discriminate between the tactile stimuli perceived:

1. when the codec was switched OFF. Let us denote this stimulus set as C1i (where i is an

index into this set): tactile signals sensed by the accelerometer presented directly to the

subject without any intermediate processing — in other words the codec input, and,

2. when the codec was switched ON. Let us denote this stimulus set as C2j (where j is

an index into this set): compressed-decompressed tactile signals — in other words, the

codec output.

The subjects needed to make a binary decision if pairs of stimuli, with one stimulus from each

set above, felt the same or different. In practice, such choices are made by subjects in the

presence of uncertainty. For instance, non-idealities like internal noise in the human sensory

process might lead to different percepts for the same physical stimulus in two different trials

separated by time and/or space. Additionally at a cognitive level, a bias in the subject’s

decision process may push her/his response in a certain direction.

To achieve robustness toward uncertainties and to account for response bias, a Signal

Detection Theory (SDT) approach was taken for perceptual performance evaluation [MC05].

In particular, the two-alternative forced-choice (2AFC) experiment paradigm was employed.

Herein, subjects were presented a pair of tactile stimuli and had to make a choice between

two alternatives — do the two stimuli feel the “same” or “different”. This was followed by an

SDT analysis of the results.

Another consideration unique to haptics should be mentioned here. Contrary to audio

and video where information flows unidirectionally from a technical system to the human, we

can actively affect the feedback we perceive in case of the haptic modality (see Figure 3.16
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(a) (b)

Figure 3.16: (a) Teleoperation setup used for this work. The operator (MASTER) controls
the activities of the remote SLAVE robot during interactions with the remote environment.
The accelerometer on the SLAVE robot picks up wideband acceleration signals arising in
the interactions, which capture the surface texture of the remote objects. These signals are
then transmitted to the MASTER and displayed to the human operator hand through a
vibrotactile actuator. Figure reproduced from [CcK+12]. (b) Voice-coil actuator embedded
inside the haptic device stylus on the MASTER side.

(a)). This makes it difficult to compare two stimuli perceptually in realtime teleoperation.

This is because it cannot be made certain that the human elicits two temporally comparable

stimuli in two separate trials. To work around this problem, the subjective evaluation was

broken down into two experiments:

• Offline experiment: Subjects judged recorded pairs of stimuli haptically, with no visual

feedback. Thus in this experiment, manipulability of the haptic interface was sacrificed

in the interest of a fair comparison between two stimuli.

• Online (realtime) teleoperation experiment: Subjects performed realtime teleoperation

with visual-haptic feedback. For a given texture, they compared the general feel of the

surface for two modes of operation — when the codec was switched OFF versus when

it was switched ON.

3.6.3.1 Experiment setup

The perceptual experiments were based on a teleoperation setup similar to the one presented

by McMahan et al. in [MRRK10]. As shown in Figure 3.16, the master and slave robots

were both PHANToM Omni haptic devices (SensAble Technologies, Inc., USA). To limit

the motions used by the subjects and to simplify the setup, the elbow and gimbal joints of

both Omnis were immobilized using physical constraints. The shoulder joint’s two rotational

degrees of freedom allowed the handle to move on a spherical surface. As a result, the slave

end-effector traversed the remote object surface along an arc.
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The master Omni carried a custom handle 3D-printed in ABS plastic. Inside the handle,

a NCM02-05-005-4JB linear voice-coil actuator from H2W Technologies, Inc. was attached

(see Figure 3.16 (b)). The actuator coil was centered in its 7.6 mm workspace by a pair of pre-

loaded compression springs. It could move up and down on linear bearings. Passing current

through the coil created equal and opposite electromagnetic interaction forces between the

handle and the coil, which induced high-frequency accelerations on the user’s hand.

The slave Omni end-effector was instrumented with a three-axis LIS344ALH accelerometer

from ST Microelectronics. This MEMS-based analog accelerometer has a range of ± 6 g (±
58 m/s2), and its output is filtered with an on-board analog low-pass filter (cutoff frequency

956 Hz).

Since the actuator had only one degree-of-freedom, the three-axis accelerometer output

needed to be reduced to a single dimension. One solution to this issue could be to sum the

three acceleration components together sample-by-sample. However, this approach leads to a

distortion of vital texture information due to constructive or destructive interference whenever

the acceleration components are positively or negatively correlated, respectively. To avoid this,

the DFT321 algorithm proposed by Landin et al. in [LRMK10] was employed for dimensional-

ity reduction. The DFT321 algorithm combines the three-axis data in the frequency-domain

in a perceptually optimal manner, while preserving both important temporal and spectral

properties of the texture signals.

A quad-core 2.13 GHz PC with an NI PCI 6221 data acquisition card was used to sample

the accelerometer output with a 16-bit ADC at 2 kHz. The PC also drove the voice-coil

actuator via a 16-bit DAC output at a 2 kHz update rate. The Sensable OpenHaptics 3.0

library was used to control the teleoperation system. It operated a servo-loop at approximately

1 kHz, sensing the 3D position of each Omni and specifying its 3D force output at each time

step.

A cardboard barrier shielded the haptic device and the subject’s hand from her/his vision

during the actual experiment to prevent visual observation of the moving coil. Moreover, audi-

tory cues from the voice coil were masked out by playing pink noise through headphones, since

they tend to interfere with haptic perception [SGS08]. Thus, isolation of haptic perception

was ensured in the experiment.

Subjects The same nine subjects participated in both experiments, 1 female and 8 males,

ranging in age from 23–30 years. None of them reported having any ailments that would

hamper their sensorimotor performance. Two of them were researchers in haptics, using

commercial kinesthetic devices like the PHANToM Omni on a regular basis. However, none

of them had prior experience with tactile feedback systems. In a preliminary session, all the

subjects were made familiar with the experiment setting and the operation of the hardware.
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3.6.3.2 Offline experiment

In this experiment, only the master side of the teleoperation system shown in Figure 3.16

(a) was used to present pre-recorded texture stimuli to the subjects. As mentioned before

at the beginning of Section 3.6.3, the subjects were asked to give binary “same/different”

judgments for each pair of texture stimuli presented. This choice of the experiment paradigm

was driven by the fact that binary decisions are the easiest for subjects to make and tend

to yield results that are cleaner than those from other methods like magnitude estimation.

Magnitude estimation suffers from response bias, whereas the Signal Detection Theory-based

“same/different” approach does not. The scope of this experiment was to prove the perceptual

indiscriminability of uncompressed and compressed textures. Subjects could switch between

the two stimuli in a pair as many times as they wanted before reaching a decision and moving

on to the next pair.

There were a total of 80 pairs of stimuli to be judged. These were divided as follows (32

+ 32 + 16):

1. Ground truth: “different”: {C1i ⇔ C2j |i = j ∈ {1, 2, ...32}} (corresponding codec input

and output signals),

2. Ground truth: “same”: {C1i ⇔ C1i|i ∈ {33, 34, ...64}} (same stimulus repeated twice

for each of the 32 pairs),

3. Ground truth: “different”: 16 randomly selected pairs from {C1i ⇔ C1k|i 6= k ∈
{33, 34, ...64}}

The 80 pairs were randomly ordered, and the order changed randomly from subject to

subject. Each stimulus was an approximately 1 s long texture signal segment recorded while

scanning four different textures (ABS plastic, shoe sole, rock, and vinyl, see Figure 3.17). The

recording and segmentation was done by the experimenter in advance before the experiment.

The segments were carefully selected to cover representatives of a wide variety of stimuli from

every category of texture stimuli — coarse, fine random and mixed (see Section 3.1).

Since manipulability of the haptic device was removed in this experiment, fairness was

maintained in the comparisons, and every subject judged the same stimulus pairs with exactly

the same time-frequency profiles. Moreover, subjects were not required to remember long

durations of stimuli when making comparisons.
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Figure 3.17: Textures used: (a) rough ABS plastic (fine random), (b) shoe sole (coarse regu-
larly patterned), (c) rock (mixed), and (d) vinyl (mixed). Figure reproduced from [CcK+12].

Results

For every subject, the number of “hits” (h) and “false alarms” (f) were counted across all

stimuli as follows:

h =
∑

(decision “same”| ground truth “same”)

f =
∑

(decision “same”| ground truth “different”)

Accordingly, the “hit rate” (H) and the “false-alarm rate” (F) were calculated as H = h/32

and F = f/32 (eight 1 s recordings per texture × 4 textures = 32 stimuli).

A stimulus sensitivity parameter from Signal Detection Theory called d′ was used for the

analyses [MC05]. The parameter d′ represents the ability of a subject to discriminate between

stimuli belonging to two different classes. Low values of d′ indicate that the stimuli are not

easily discriminable, whereas high values indicate higher discriminability. SDT commonly

assumes a Gaussian noise-model of the human sensory process. Accordingly, the sensitivity

parameter can be computed as d′ = z(H)−z(F ), and the response bias as c =
−[z(H) + z(F )]

2
,

where z() denotes the inverse Gaussian cumulative distribution function.

Figures 3.18 show the results of the analysis of data from the offline experiment. It

is generally accepted that if |d′| < 1.0, the difference between the stimuli is below human

perceptual thresholds. From Figure 3.18(a), it can be seen that across all subjects, |d′| < 0.5

consistently. In informal accounts from the subjects, it was noted that all of them found the

stimuli to be “very difficult to distinguish” in general.

3.6.3.3 Online (realtime) teleoperation experiment

In this experiment, subjects teleoperated the slave omni through the master (see Figure 3.16).

They could directly observe the remote teleoperator side visually. Visual observation of the
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Figure 3.18: Offline experiment result: d’. Figure reproduced from [CcK+12].

local voice-coil movements by the subject was prevented by a cardboard shield. Headphones

playing pink noise masked out any auditory cues from the voice coil actuator.

One by one, the subjects scanned each of the four textures, while turning the intermediate

codec between the teleoperator and operator sides ON and OFF using a keyboard. They

could explore the four textures as long as they liked. They were then asked to judge if the

textures felt the “same” or “different” in the two modes of operation (codec ON, codec OFF).

At an average, the experiments required a total of 45 min to complete per subject, ex-

cluding training sessions at the beginning. No subjects except one found any perceivable

differences in the feel of the textures between the two modes of operation (codec ON/OFF).

This further corroborates the conclusions drawn from the results of the offline experiment.

3.7 Bitrate scalability

The haptic texture codec from [CcK+12] described in the previous sections has a constant

output bitrate of 3.55 kbps. In this section, work is presented towards turning this codec

bitrate-scalable, enabling us to operate in a range of different bitrates under varied network

traffic conditions and quality demands.

Out of the total 71 bits per frame (3.55 kbps), the LPC coefficients in the codec account

for 18 bits per frame (0.9 kbps). Furthermore, the algebraic codebook excitation codevector

accounts for 26 bits per frame (1.3 kbps). Since these two components together contribute

more than 50% of the total bitrate, they were the best targets for bitrate reduction.

3.7.1 Scalable Vector-Quantization for the Linear Prediction coefficients

The LPC coefficient vector determined for a frame at the encoder was vector quantized before

transmission to the decoder side. This quantization took place in the Line Spectral Pair (LSP)

domain, in order to ensure the stability of the LPC IIR filter after quantization [RS07]. Vector

Quantization (VQ) codebooks corresponding to different VQ resolutions were generated from

a pre-recorded texture dataset. Anywhere from 17 down to 0 bits could be allocated to the
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LPC VQ (see Table 3.3) for achieving bitrate scalability. Mean Square Error (MSE) was used

as the error criterion for generating the codebooks as well for searching them.

The VQ implementation was divided into two stages. Stage 1 coarsely quantized the

entire input vector. Stage 2 separately and finely quantized the lower and upper halves of the

quantization error vector from stage 1. Such splitting allows high-fidelity quantization, while

reducing the memory requirements for the same total number of bits allocated to the VQ.

There are multiple ways in which bits can be allocated to the two VQ stages, based on

the total available number of bits. Table 3.3 shows two such bit allocation schemes possible.

Scheme 1 shares the available bits (almost) equally between the lower and higher splits,

whereas Scheme 2 allocates more bits to the lower-split, thus favoring lower frequencies over

higher ones.

LPC
bitrate

(bits/frame)

Scheme1
(1st, 2ndlow, 2

nd
high)

Scheme2
(1st, 2ndlow, 2

nd
high)

17 (7,5,5) (7,5,5)

16 (7,5,4) (7,5,4)

15 (7,4,4) (7,5,3)

14 (7,4,3) (7,5,2)

13 (7,3,3) (7,5,1)

12 (7,3,2) (7,5,0)

11 (7,2,2) (7,4,0)

10 (7,2,1) (7,3,0)

9 (7,1,1) (7,2,0)

8 (7,1,0) (7,1,0)

7 (7,0,0) (7,0,0)

6 (6,0,0) (6,0,0)

5 (5,0,0) (5,0,0)

4 (4,0,0) (4,0,0)

3 (3,0,0) (3,0,0)

2 (2,0,0) (2,0,0)

1 (1,0,0) (1,0,0)

0 (0,0,0) (0,0,0)

Table 3.3: LPC bit allocation
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3.7.2 Scalable algebraic codebook

By changing the number of non-zero pulses in the algebraic codebook, the reconstructed

texture-quality can be traded off against the number of bits allocated to this codebook.

3.7.2.1 4-pulse structure

Here, each algebraic codevector of length 20 samples (size of the subframe) contained four

non-zero pulses. Each pulse pi could have the amplitude of ±1 and could assume the positions

indicated in the table below.

Pulse Sign Positions

p0 s0 : ±1 m0 : 0, 5, 10, 15

p1 s1 : ±1 m1 : 1, 6, 11, 16

p2 s2 : ±1 m2 : 2, 7, 12, 17

p3 s3 : ±1 m3 : 3, 8, 13, 18,

4, 9, 14, 19

The excitation codevector v[n] wass constructed by summing the four pulses as follows:

v[n] =
3∑

i=0

pi[n] =
3∑

i=0

siδ[n−mi]; n = 0, ..., 19 (3.10)

Each pulse required 1 bit for the sign. Two bits were required for encodeing the positions

of pulses p0, p1 and p2, and 3 bits for the position of pulse p3. Thus, a total of 13 bits were

required to index the entire codebook for each subframe in the texture codec in Section 3.3

(4 bits for signs and 9 bits for the positions). Since a frame consists of two subframes, 26 bits

were necessary to encode each frame.

3.7.2.2 2-pulse structure

Here, the algebraic codevector was configured to have only two pulses per subframe, instead

of four. The two signed pulses were searched in two overlapping tracks, as shown in the track

table below. Like the 4-pulse structure, pulses could have amplitudes of ±1. Thus, 2 bits

were required for the signs, 3 bits for the position of pulse p0, and 4 bits for the position of

pulse p1. Thus, a total of 9 bits were required to index the entire codebook for a subframe,

and 18 bits were required for a frame.
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Pulse Sign Positions

p0 s0 : ±1 m0 : 1, 3, 6, 8, 11, 13, 16, 18

p1 s1 : ±1 m1 : 0, 1, 2, 4, 5, 6, 7, 9, 10

11, 12, 14, 15, 16, 17, 19

3.7.3 Performance

The performance of the bitrate scalable codec was again evaluated objectively and subjectively.

3.7.3.1 Objective evaluation

Since texture communication is a relatively new area of research, there is a lack of reliable

and robust objective quality metrics for wideband vibrotactile signals in the literature. Hence,

the audio-domain metrics Log-spectral Distortion and Segmental SNR were used to get an

impression of the increase in distortion as the codec bitrate was scaled down.

The frequency-domain performance was evaluated with the standard form average Log-

spectral Distortion (SD):

SD(i)[dB] =

√√√√ 1

fh − fl

∫ fh

fl

[
10 · log10

Si(f)

Ŝi(f)

]2
df (3.11)

where fl = 40 Hz and fh = 1000 Hz are the lower and upper frequency limits, respectively,

corresponding to the sensitivity bandwidth of the Pacinian mechanoreceptors in the human

hand, Si(f) and Ŝi(f) denote LP power spectra for the i th texture frame corresponding to

the unquantized and quantized LPC coefficients, respectively.

Figure 3.19 shows the averaged SD results across all texture signals in the test dataset.

Due to the absence of haptic perceptual thresholds for spectral distortion in the literature, it

is currently not possible to comment on the significance of a given SD value. However, the

figure serves as an illustration of how SD increased monotonically as the LPC VQ bitrate was

decreased.

The time-domain performance was evaluated using the Segmental Signal-to-Noise ratio

metric defined as:

SSNR[dB] =
10

Nf

Nf−1∑
i=0

log10

( ∑Ns−1
j=0 s2(k)∑Ns−1

j=0 [s(k)− ŝ(k)]2

)
(3.12)

where k = (i ·Ns + j), Nf is the number of frames in a texture signal, Ns = 40 is the number

of samples per frame, s(n) and ŝ(n) are the codec input and output signals, respectively.
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Figure 3.19: Average spectral distortion for the LPC VQ, evaluated for the two bit allocation
schemes (Table 3.3) over the LPC VQ bitrates ranging from 17 to 0 bits per frame. Figure
reproduced from [CSDS15], ©2014 IEEE.

Figure 3.20 shows the monotonic rise of the SSNR for the 4-pulse and 2-pulse codebooks

as the LPC VQ bitrate increases. The SSNR profile for the 2-pulse codebook is similar to the

one for the 4-pulse codebook, but with lower SSNR values.

3.7.3.2 Subjective evaluation

Subjects Seven right-handed male subjects in the age-range of 21 to 44 years participated

in the experiment designed to evaluate the perceptual performance of the codec. None of

them reported having any ailments that would affect their sensorimotor performance. Their

experience with haptic devices ranged from “none” to “extensive”. Two had participated in

haptic psychophysical experiments before, while the rest were inexperienced.
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Figure 3.20: (a) SSNR when a 4-pulse FCB is used, plotted against LPC VQ bitrate, (b) SSNR
when a 2-pulse FCB is used, plotted against LPC VQ bitrate. Both subfigures show SSNR for
the two LPC VQ bit allocation schemes from Table 3.3. Figure reproduced from [CSDS15],
©2014 IEEE.
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Textures Five different textures, shown in Figure 3.21 were used to perform the experiment.

Textures (a), (b), (c) in the figure were used before in generating the training set to design the

codebooks of the VQ encoder, while new textures (d) and (e) were included for the experiment.

The experiment setup remained the same as described in Section 3.6.3.1.

Method Pilot tests were conducted with five subjects to get a first impression of the codec

quality, before a formal subjective experiment was performed using a standard psychophysical

method. While the subjects explored each of the five textures with the teleoperation setup,

sometimes the codec was turned OFF, and at other times, it was turn ON and set to the

maximum compression strength. After these pilot tests, the subjects reported that while

none of them could “perceive any distortion” introduced by the codec, all of them could

“clearly distinguish” between different textures.

With this outcome, a simple psychophysical experiment was designed based on the classical

psychophysical method of 1 Up–1 Down (1U–1D) staircases [Lev70]. The need for a higher

order adaptive staircase method (e.g. 1U–3D, as in Section 3.2.1.4) was not felt due to the

clear impressions of the codec performance from the pilot tests.

The stimuli used for the experiment consisted of the codec highest-bitrate setting (3.55

kbps), the lowest-bitrate setting (2.30 kbps, achievable with the LPC VQ bit allocation from

Table 3.3 and a 2-pulse algebraic codebook), and several settings corresponding to interme-

diate compression levels. A total of 26 stimuli corresponding to 26 different bitrate settings

(50 bps steps) were chosen by making various combinations of the LPC and the algebraic

codebook bit-allocation.

In each experiment run, the subject compared two bitrate settings of the codec bitrate

while exploring a remote texture, judging them to feel the “same” or “different”. One of the

two settings was fixed to be the highest-bitrate or the “reference” (3.55 kbps), while the other

“comparison” bitrate corresponded to one of the remaining 25 settings. To begin with, the

“comparison” bitrate was set to the lowest value of 2.3 kbps. Depending upon whether the

subject responded with a “same” or a “different”, the “comparison” bitrate was decreased

or increased, respectively, through a step-size of 50 bps (the 1U–1D method). If the subject

responded with “same” when the “comparison” bitrate was 2.30 kbps or with “different” when

it was 3.55 kbps, that “comparison” bitrate was only repeated, since it was not yet possible

to go beyond these bitrates.

An experiment run was terminated when the staircase had undergone three reversals (up

to down) of direction. It was also terminated if the “comparison” bitrate got saturated to the

highest bitrate of 3.55 kbps or the lowest bitrate of 2.3 kbps over the last three steps of the

staircase. In case of reversal-based termination, the threshold bitrate was calculated as the

mean of all the staircase points across the reversals, while for saturation-based termination,

the threshold bitrate was selected to be the saturation value.
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(a) (b) (c) (d)

(e)

Figure 3.21: Textures used for the haptic interaction. (a) quasi-sinusoidal aluminium grating,
(b) random-structured plastic, (c) random-structured fine vinyl, (d) peaky metal-case, (d)
circular-sinusoidal plastic grating. Figure reproduced from [CSDS15], ©2014 IEEE.

Results Figure 3.22 shows staircase patterns for all 7 subjects for Texture (a) from Fig-

ure 3.21. It can be seen that the top six subjects could not reliably distinguish between the

“reference” bitrate of 3.55 kbps and the lowest “comparison” bitrate of 2.3 kbps, while the
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Figure 3.22: Staircase patterns for all 7 subjects for Texture (a) in Figure 3.21. Figure
reproduced from [CSDS15], ©2014 IEEE.
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last subject flipped between 2.3 and 2.35 kbps three times in a row.

In total 35 experiment runs (7 subjects and 5 textures) were performed. Thirty-one of

these runs showed that the subjects could not distinguish between the reference and the lowest

bitrates. All these 31 runs ended after receiving three “same” responses from the subjects.

The remaining 4 runs stopped after six reversals of direction between 2.3 and 2.35 kbps, giving

a threshold of 2.325 kbps. Overall, these experiments show that subjects could not reliably

detect coding distortion even at the lowest bitrate possible at the time.

3.8 Conclusion

This chapter presented some of the most important contributions of this thesis. Mathematical

models for the production and perception of haptic texture signals were described. They were

employed in the development of a bitrate-scalable perceptually transparent haptic texture

codec. The codec was evaluated both subjectively and objectively to test for operational as

well as perceptual performance.

Here is a summary of the conclusions:

• The source–filter model based on Linear Predictive Coding fits well to the problem of

mathematically describing haptic texture signal production. A frame of 40 samples can

be described by a 14-parameter model (see Table 3.1), encoded with only 71 bits.

• The nature of the Simultaneous Masking phenomenon for vibrotactile perception was

found to be very similar to that of its auditory counterpart. Masking thresholds peak

when the maskee is collocated with the masker. They decrease as the function of the fre-

quency difference between the masker and the maskee. In the texture codec, a weighting

filter exploiting this phenomenon guides the search for the model parameters, ensuring

that the coding noise stays below human perceptual thresholds.

• Bitrate scalability is achieved by scaling the number of pulses used by the algebraic-

codebook, and by having a scalable vector quantizer for the LPC coefficients. With the

bitrate scalable codec, it is possible to drive down the output bitrate to as low as 2.3

kbps without the subjects being able to reliable discriminate between the codec input

and distorted output texture signals. The next chapter addresses further reduction of

the output bitrate until users clearly perceive coding artifacts.

3.9 Outlook

The presence of multiple frequency-domain peaks in a haptic texture signal is a common

occurrence in a real-world texture system. However, the simultaneous masking experiments
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in this chapter dealt only with a single-peak masker. Future work in this area should address

the characterization of the shape of the masking curves in the presence of more than one

wideband masker.

As seen in Section 3.7.3.2, even with a codec bitrate of 2.3 kbps, subjects could not

reliably detect perceptual distortion in the compressed haptic signals. Future work should

address further reduction of bitrate in order to observe how the perceived quality degrades as

a function of the bitrate.

The subjective tests in this chapter studied the deterioration of the perceptual performance

for a given texture as the coding distortion rises. However, it is also necessary to answer

the following question: can subjects still discriminate between two different textures as the

coding distortion rises? Such a “task performance” evaluation of the codec will give a more

comprehensive picture of the codec performance. Audio-video research also usually progresses

along the same lines.

This chapter demonstrated how difficult and time-consuming it is to test perceptual quality

aspects for haptic signal processing methods via subjective tests. This drives the need for

development of model-based prediction of haptic perceptual quality, which is the subject of

the next chapter.





Chapter 4

Model-based quality prediction for

haptic communications

Efficient communication of haptic data over a network in a teleoperation system necessitates

data compression [HHC+08a, CcK+12]. Lossy data compression may lead to the degradation

of the perceptual quality of the haptic signals.

Traditionally, perceptual quality in media compression schemes is evaluated through sub-

jective user tests. A human user introduces a large number of variables into the evaluation.

These variables may be psychological (e.g. response bias), or cognitive (attention, intention,

misinterpretation of experiment instructions, etc.). In addition to these, haptics involves

physical variables (e.g. body posture, neuromuscular dynamics, grip-force, etc.). The experi-

menter has to very carefully control these variables, so as to standardize subjective tests and

isolate the focus variables.

Thus, subjective tests (or user studies) need to be designed meticulously, and usually

turn out to be difficult, time-consuming, and expensive. Such difficulties have led to the

development of a number of perceptual model-based methodologies for quality evaluation in

the audio and video fields [Jek05, WSB03], something that haptics research currently lacks.

Computer modeling and simulation of entire haptic teleoperation sessions should be developed

to address this.

To eliminate the need for difficult and time-consuming subjective tests, this chapter devel-

ops a Model-based Quality Prediction (MBQP) methodology for compressed haptic signals.

Vibrotactile and kinesthetic signals are treated separately. Such a quality-prediction method-

ology aims to simulate a dedicated human who gives honest and consistent opinions about

the system, thus removing unnecessary inter-subject variability appearing in subjective tests.

67
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4.1 Vibrotactile textures

Certain haptic properties of a textured surface can be captured by scanning it with a tool and

recording the wideband acceleration signals generated. It was shown in [MRRK10, KH96]

that displaying these texture signals to the human through a vibrotactile actuator (see Sec-

tion 3.6.3.1) improves the perceived haptic realism of object surfaces as well as the task

performance.

Chapter 3 of this thesis presented a Code-Excited Linear Predictor (CELP)-based codec

for haptic texture signals. In this codec, a linear predictive (LP) filter captures the spectral

envelope, while a pair of codebooks capture the salient time-domain features of the texture

signal. The LP and codebook parameters are vector quantized before transmission to the

receiver side. For the work presented in this section, the CELP texture codec was used to

generate compressed haptic texture signals at five decreasing bitrates — 3.15, 2.75, 2.45,

2.15, and 1.75 kbps — leading to five perceptual quality degradation levels for the subjective

experiments performed in this section. Then, a methodology for the model-based (objective)

prediction of the texture quality degradation was developed and validated.

In Section 3.6.3.3, the perceptual quality of the texture codec was evaluated in an online

teleoperation system. Therein, subjects actively controlled the teleoperator robot while being

displayed vibrotactile feedback, which they were asked to perceptually evaluate. Such an

experimental setup presents a number of difficulties. The human-in-the-loop nature of the

haptic interaction introduces variability in the texture scan velocity and the applied force due

to the individual and time-varying active human behavior. The dynamics of the coupling

between the human and the haptic interface may also change with time and from user to

user. Furthermore, cognitive resources that should ideally be dedicated to the perceptual

task alone are shared with the action task. The subject therefore cannot pay full attention to

the perception task, potentially leading to perceptual thresholds higher than the actual ones.

The above issues introduce unnecessary and undesirable hurdles in an initial subjective

evaluation of the codec, as well as in the development of an MBQP methodology. Therefore

in this chapter, the experimental setup from Section 3.6.3 is simplified further in order to

focus on just the perceptual performance of the codec, rather than on the combination of the

human action and codec performance.

To this end, the human action-related variability in the texture signals is eliminated by

recording texture signals under robotically controlled constant force and velocity conditions.

The codec then operated on these recorded signals to produce distorted output signals. Due

to this offline recording approach, exactly the same codec input and output signals could be

displayed to all the subjects.

A conference paper based on parts of the work presented in this section has been submitted

for peer review [CYS+15].
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LPC
vector

quantizer
(per

frame)

Algebraic
codebook

(per
subframe)

Gain
vector

quantizer
(per

subframe)

Bitrate
(kbps)

12 13 7 3.15

12 13 3 2.75

2 13 5 2.45

0 9 7 2.15

0 9 3 1.75

Table 4.1: Codec bit allocation

4.1.1 Codec perceptual quality degradation

This section describes the psychophysical experiments conducted to generate ground-truth

perceptual quality degradation data for the textures signals processed by the codec. Per-

ceptual quality degradation is expressed as perceptual dissimilarity between the codec input

and output signals, as measured through psychophysical tests based on the “same/different”

experiment paradigm from Signal Detection Theory [MC05].

By an appropriate choice of bit allocation for a texture signal frame, five monotonically

decreasing codec output bitrates — 3.15, 2.75, 2.45, 2.15, and 1.75 kbps — were obtained.

Table 4.1 shows how bits were distributed across various codec parameters — the LPC vector

quantizer, the algebraic codebook, and the vector quantizer for the codebook gains — to

achieve those bitrates.

Subjects

Eight right-handed subjects participated in the experiments — 2 female, and 6 male. Their

ages ranged from 22 to 27, with an average of 24 years. All of them were right handed. None

of them reported having any sensory ailments that would affect their perceptual performance.

Six of them had participated in haptic psychophysical experiments before, while the rest

were inexperienced. Their self-reported experience with haptic devices ranged from “none”

to “extensive”.

Hardware/software setup

The hardware consisted of a Geomagic Touch haptic device (3D Systems, Inc., USA) with

a three-axis ±6 g accelerometer (LIS344ALH from ST Microelectronics) mounted near the

stylus tip (see Figure 4.1). The texture to be recorded was fixed onto a rotatory plate driven

by a DC motor. The tip of the stylus rested on the texture material. The speed of the rotatory
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Figure 4.1: Hardware setup for recording texture signals. A MEMS acceleration sensor board
can be seen near the stylus tip. Figure reproduced from [SLS+14], ©2014 IEEE.

plate, and thus the texture scan speed was controlled to be constant. Moreover, the position

of the stylus tip was controlled with a PID controller. This controller forced the tip to try to

reach a reference position slightly below the texture material on the vertical axis. Thus the

force with which the stylus pressed onto the texture could also be indirectly controlled to be

constant.

The texture recorder software was implemented as a Simulink model. A realtime exe-

cutable was generated for the Realtime Application Interface (RTAI)-Linux target operating

system running on a standard PC. The realtime program sampled the accelerometer output

through the Analog-to-Digital converter on a NI PCI-6221 Data Acquistion (DAQ) card, and

saved the recorded data to a file on the PC.

Stimuli

Five textures varying widely in material and surface patterns were used - a steel texture, a

rubber pad, hard wood, leather, and marble (see pictures in Figure 4.2). Each texture signal

was then processed with the bitrate-scalable codec from [CSDS15], with parameter values

from Table 4.1. This resulted in five distorted output signals per input reference signal. The

input-output signals were divided into 3 segments of 0.8 s each. Figure 4.3 shows pairs of

input-output signals for three of the five distortion levels for the first segment of the steel

texture. Each of these pairs of input-output segments constituted a separate stimulus pair.

Psychophysical trials with the ground-truth answer “different” presented the reference

and the distorted stimuli from a given pair to the subject one after the other, with a gap of

0.6 s. Additionally, trials with the ground-truth answer “same” were presented, in which the

reference stimulus was repeated twice. The subject then indicated if she/he perceived the two

stimuli to be the “same” or “different”.



4.1. VIBROTACTILE TEXTURES 71

(a) (b) (c) (d)

(e)

Figure 4.2: Textures used for the haptic interaction. (a) quasi-sinusoidal aluminium grating,
(b) random-structured plastic, (c) random-structured fine vinyl, (d) peaky metal-case, (d)
circular-sinusoidal plastic grating. Figure reproduced from [CSDS15], ©2014 IEEE.
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Figure 4.3: Three distortion levels (codec output bitrate, left to right: 3.15, 2.45, and 1.75
kbps) for a segment of the “steel” texture signal. The distorted output segment (- - -) is
shown overlapped on the input reference segment (—).

The stimulus duration was chosen to be 0.8 s to avoid adaptation to the stimulus. The

pause duration was chosen to be 0.6 s, to avoid haptic enhancement and summation ef-

fects [VG75] in the display of consecutive stimuli. Each trial thus lasted about 2.2 s, which

falls within the constraint of several seconds imposed by the haptic working memory [ASG08].

Experiment setup

A custom-made stylus-like handle similar to that of the Geomagic Touch haptic device (3D

Systems, Inc., USA) (Figure 4.1) haptic device was mounted on the K2004E01 minishaker

(The Modal Shop, Inc., USA, see Figure 4.4). The subjects were instructed to hold the stylus

like a pen in their dominant hand in a comfortable 3-finger grip. This grip was standardized

across subjects. Their elbow and forearm rested on a wooden plank, which supported a

neutral wrist position. Subjects wore acoustic noise-canceling headphones (QuietComfort 15,
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Figure 4.4: Experiment setup (minishaker device inset). Picture reproduced from [CSDS15],
©2014 IEEE.

Bose Corp., USA) that played pink noise to mask out auditory cues from the experiment

apparatus. Moreover, a cardboard barrier (not shown in the figure) visually shielded the

minishaker from the subject. It was thus ensured that the subject only had a haptic contact

with the minishaker. Subjects interacted with the experiment’s GUI through a keyboard.

Method

As mentioned before, subjects were asked to give binary “same/different” judgments for each

pair of texture stimuli presented. Each stimulus pair was tested 6 times to have higher

reliability of the results. For each test, the subjects could try each stimulus pair as many

times as required before making a decision and moving on to the next pair.

Results

For a given stimulus-pair, all subject responses were aggregated, and the number of “hits”

(h) and “false alarms” (f) were counted:

h =
∑

(decision “different”| ground truth “different”)

f =
∑

(decision “different”| ground truth “same”)

The “hit rate” (H) and the “false-alarm rate” (F) were then calculated as H = h/n and

F = f/n, where n = 144 was the number of ground-truth “same” or “different” pairs (8

subjects × 3 segments × 6 repetitions/segment/subject) for a given texture signal and bitrate

setting.

For the analysis of the results, concepts from the Signal Detection Theory [MC05] were

employed, similar to the subjective evaluation in Section 3.6.3.2. The d′ parameter that

represents perceptual distance between stimuli belonging to two different classes, was com-

puted. The significance of d′ (occasionally refered to as “dissimilarity” in this chapter, similar
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Figure 4.5: (a) – (f) Objective predictions ‘◦’ in comparison with the corresponding subjective
results ‘?’ for all five textures, (g) comparison of the prediction performance of all features
combined together ‘×’ versus the Okamoto model (see Section 2.5.2, [OY11]) alone ‘�’.

to [BHY05]) was explained in detail in Section 3.6.3.2; it is repeated here briefly for con-

venience. Low values of d′ indicate that the stimuli are not easily discriminable, whereas

high values indicate that they are easily discriminable. The parameter d′ is calculated as

d′ = z(H) − z(F ), where z() denotes the inverse Gaussian cumulative distribution function

(assuming a Gaussian noise model for the human sensory process).

Figure 4.5 shows the d′ results for all five textures. It can be seen that, except for the

steel texture, d′ does not always monotonically increase as the bitrate reduces. A possible

reason for this maybe the simultaneous manipulation of multiple unrelated codec parameters

(see Table 4.1) for tuning the bitrate, and the closed-loop nature of the codec.

4.1.2 Model-based quality prediction
The following work aims to algorithmically predict the perceptual dissimilarities obtained

from the subjective tests described above. For this purpose, perceptually meaningful features

were extracted from the texture signals and combined within a linear model. More complex

nonlinear models may be learned in the future.

A number of perceptual tactile features could potentially be exploited — e.g., ‘slow-fast’,

‘sparse-dense’, ‘blunt-sharp’, ‘bumpy-smooth’, ‘hard-soft’, ‘dark-bright’, ‘dull-clear’, ‘thick-

thin’, ‘vague-distinct’, ‘heavy-light’, etc. as proposed in [HC10]. However, algorithmic quality

prediction requires features to have well-defined mathematical models, which are not avail-

able in most of the above cases. This limits the spectrum of features that can currently be

considered for quality prediction.
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4.1.2.1 Perceptually-motivated texture features

A list of the following eight features that could be modeled mathematically was compiled,

combining ones from the literature and the ones from the subjective feedback of the sub-

jects — roughness [FL12], coarseness [BH05], brightness [HC10], regularity, stimulus vertical

asymmetry, and time-envelope pattern [PC11]. The Bensmäıa power-spectral model, and the

Okamoto amplitude-spectral model [OY11] (see Section 2.5.2) were also included as additional

features. The eight feature definitions are given below:

1. Roughness Haptic roughness can be calculated as the logarithm of the average signal

power, as defined in [FL12].

2. Coarseness The signal-analytic coarseness can be defined as the waviness of the fundamen-

tal signal oscillation, which also corresponds to the height profile of the surface texture [Str14].

The characteristic low-frequency profile of a texture was extracted using the DB20 wavelet

transformation. The coarseness was then calculated as the standard deviation of the short-

term slopes of the low-frequency profile. A coarse texture will have a wider distribution of

these slopes around the mean than fine ones.

3. Spectral centroid (“Brightness”) The spectral centroid is commonly defined as the “center

of mass” of the magnitude spectrum of a signal (sum of frequency-weighted spectral magnitude

samples). For haptic textures, higher spectral centroids convey “lively” or “bright” textures.

4. Regularity The regularity of a textured surface gets reflected in the periodicity of the

acceleration signals, which can be captured with the autocorrelation function.

5. Vertical asymmetry Natural texture scans usually generate acceleration signals that are

symmetric about the time-axis. A deviation from such a symmetry causes the hand to be

forcefully “pushed” or “pulled” by the haptic device, rather than vibrate — a perceptually

very strong and disturbing artifact. To capture such asymmetry, the standard statistical

measure of skewness of the signal amplitude samples was used.

6. Bensmäıa spectral model and 7. Okamoto model These features were based on psychophys-

ical detection thresholds, as described in Section 2.5.2.

8. Time-envelope Most of the subjects reported memorizing the undulations of a signal as

audio patterns in their minds, and using them for discriminating between two stimuli. This
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characteristic can be encoded in the form of time-domain signal envelopes [PC11]. The cross-

correlation between the time-envelopes of the codec input and output signals was used as a

measure of perceptual distance between them.

4.1.2.2 Regression modeling and validation

A 25×8 feature-distance matrix X was formed for the 25 stimulus pairs (5 textures × 5

distortions) and the 8 features defined above. Each element in a row of this matrix contained

the Euclidean distance between the input and output stimuli for that particular feature. The

corresponding dissimilarity results from the user studies were stacked in a 25×1 vector y.

A feature-selection algorithm (“sequentialfs” Matlab function) was then used to select a

minimal subset of features that best predict the data in y. The algorithm started by including

all eight features at the beginning. Then it dropped features one-by-one until there was no

further improvement in the prediction performance. The sum of squared linear regression

errors was used as the criterion function to select features. Another parameter specified a

threshold on the error, thus determining when to stop. This linear-regression based feature-

selection process (described below) filtered the list of 8 features down to the following 4 features

— roughness, brightness, the Bensmäıa spectral model, and the time-envelope pattern.

With the reduced feature subset, the data was partitioned into 3 textures for training

a linear regression model, and the remaining 2 textures for validation. The textures were

exhaustively rotated through the training and validation sets. Regression coefficients for the

rotation that led to the least regression error for all textures were selected as final feature

weights.

4.1.3 Quality prediction results

The model-based quality predictions are shown in comparison with the perceptual ground-

truth for all textures in Figure 4.5. Using the Okamoto amplitude-spectral model, an R2

(Goodness-of-Fit) of 0.69 was obtained (R2 adjusted for number of predictor variables was

0.64). When the features described in Section 4.1.2.1 were included on top, an improved R2

of 0.90 (adjusted R2 of 0.84) was obtained. The bottom-right panel in Figure 4.5 shows the

improvement of the prediction performance when all the features combined together against

when the Okamoto model alone is considered.

The weights selected for the four features were [roughness: 5.2, brightness: 3.8, the

Bensmäıa spectral model: 6.3, and the time-envelope pattern:3.3]. It is evident that now,

in combination with other features, the Bensmäıa model plays a vital role in explaining the

variance in the perceptual data, followed by Roughness, then the brightness, and finally the

time-domain signal envelope of the texture signal.
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The MBQP methodology developed for haptic texture signals in Section 4.1 intentionally

avoided including human action into the system. This was done to prevent the active behav-

ior from interfering with texture perception tasks, which have a complex multidimensional

nature [ONY13]. In comparison to that, kinesthetic signals and their perception are relatively

simpler, and hence can afford the inclusion of human action models for MBQP. Work that

addresses action-perception modeling for predicting subjective quality for kinesthetic haptic

signals is presented in the next section.

4.2 Kinesthetic haptics

Quality evaluation in the context of kinesthetic haptic systems can be a vast topic, depend-

ing upon the system aspects considered — the control architecture (e.g. Position–Position

vs. Position–Force), communication-induced artifacts (packet loss, delay, and jitter), the

data reduction/compression scheme (e.g., perceptual deadband-based data reduction, see

Section 2.4.1), the interplay between the audio-video-haptic modalities, the design of human-

system interfaces (haptic devices), etc. [CB94, Law92, LPD+00]. This work however, specifi-

cally concentrates on the evaluation of perceptual quality considering the artifacts arising out

of the perceptual deadband-based data reduction presented in [HHC+08a], and described in

Section 2.4.1.

Haptics involves bidirectional interaction between the human and the machine. So, not

only can humans perceive the haptic feedback offered - similar to other modalities - but also

physically alter the environment and what they perceive. Unlike audio and video, this tight

coupling of the human to the system necessitates the development of a holistic human model

that accounts for human haptic perception as well as human action (models for the Central

Nervous System and the Neuromuscular System of the arm).

4.2.1 A quality evaluation framework for kinesthetic data reduction

While analyzing the performance of different data reduction/compression schemes or even

different settings of the same scheme, fairness demands having a common basis for comparison.

This is automatically ensured in audio, video, and even haptic texture coding schemes since

exactly the same media signals are subjected to compression to produce deterministic output,

which can be evaluated subjectively as well as objectively.

However, the additional manipulative ability to be considered while dealing with kines-

thetic haptics may result in the generation of different haptic signals due to the within- and

across-user variability of human action. Thus there is a need for standardization of the task

to be performed by the user, in order to enforce experiences similar as far as possible across

users. A trajectory tracking task, for which detailed human user models have been derived
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in the past [Hes80, PCAB98] fulfills this requirement. For such a task, a reference position

signal to be followed haptically by the user in a real/virtual environment can standardize

measurements across all users to a large extent.

For the experimenter, a trajectory tracking task buys a definite degree of control over

physical haptic stimuli that different subjects experience. By controlling the reference trajec-

tory to be followed, the user trajectory input to the system can be regulated over a reasonably

wide dynamic range in amplitude and frequency. This range is determined by the limits of

the haptic device and those of human manipulation. For regulated trajectory inputs, a sim-

ple haptic environment (e.g. a linear spring) should respond with comparable force feedback

profiles across users.

Trajectory tracking tasks can take two forms:

• Pursuit tracking, wherein the instantaneous reference trajectory is displayed to the user

visually. She/he then follows it with the haptic device.

• Compensatory tracking, wherein the instantaneous tracking error (= reference trajectory

- actual trajectory) is displayed to the user visually. She/he then tries to keep this error

at a minimum by appropriately steering the haptic device.

The tracking task is a kind of negative feedback control, where the user applies corrections

through the physical motion of her/his muscles to achieve the control objective of keeping the

tracking error at a minimum. In both cases above, the user is subjected to force feedback

generated from the haptic environment in response to her/his actions. A compensatory track-

ing task was chosen for this work, so as to discourage learning or prediction of the reference

trajectory.

In the following, position trajectories are replaced by angular trajectories, and forces by

torques. A rotatory-domain implementation was simpler, since the haptic device used had

rotatory actuators. Figure 4.6 shows an abstract block diagram of the proposed kinesthetic

Quality Evalution framework. In this framework, the instantaneous error between the refer-

ence trajectory θref to be followed and the actual trajectory θD of the operator is fed back

to the operator visually. The operator responds to this error by producing a torque, τh while

perceiving the torque reflected from a virtual environment by the haptic device. The opera-

tor torque τh and the resistive torque τenv generated by the environment in response to user

motion collectively drive the hand-device model to produce a position signal at its output.

The output position θD of the device on the human operator side is communicated to the

virtual/remote environment over the forward communication channel. In the reverse direction,

before the environment response torque τenv is sent over the reverse channel to the operator

side for display, the data compression/reduction scheme operates on it to minimize the data

transmission rate.
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Figure 4.6: Block diagram of the model-based quality evaluation framework for haptic data
compression/reduction. Figure reproduced from [CSH11], ©2011 IEEE.

Altering the compression scheme parameter vector ~k allows us to tune the strength of

data compression/reduction as required. For lossy compression schemes, it usually holds that

the stronger the compression, the larger the savings in the transmission rate, but larger the

distortion introduced into the feedback signal, i.e. the lower the perceptual quality. For a

given parameter setting of the data reduction parameters ~k, based on pyschophysical laws,

the compressed feedback signal τc can be mapped to the perceptual domain along with the

reference uncompressed one τenv. The distortion of the compressed signal τc with respect to

the uncompressed one τenv can then be measured in the perceptual domain, inverting it to

produce an estimate of the feedback signal quality. Mathematical models of the dynamics of

such a haptic system are developed in the following.

4.2.2 Modeling the human operator

The model-based quality evaluation framework can be divided into two main parts:

1. a model of the active control behavior of the human operator, and

2. a model of the human haptic perceptual mechanism.

It is important to note that depending upon the task performed by the user, the human

control model will change. The human intention may also need to be modeled, in addition to

action. But these advanced topics are out of scope for this initial investigation into kinesthetic

model-based quality evaluation.

4.2.2.1 Action model

A well established isomorphic structural model (shown in the dashed box in Figure 4.7) of the

human operator for compensatory manual control was presented by Hess in [Hes80]. It was
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Figure 4.7: Structural operator model for the compensatory tracking task. The perceptual
deadband scheme from Section 2.4.1 is used for minimizing the haptic data transmission rate
on the reverse channel. Figure based on [Hes80, PCAB98], and reproduced from [CSH11],
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applied by Penin et al. for predicting human motion signals in a teleoperation system with

kinesthetic feedback in [PCAB98]. The model is divided into the Central Nervous System

(CNS) and the Neuromuscular System (NMS). This division clearly delineates the signal

processing involved in the human body.

According to this structural model, control signals, proportional to the tracking error (the

proportionality constant being Ke) are produced by the human. They are delayed by time do

due to the inherent response delay (e.g. visual stimulus processing delay) and the transport

time along the neuromotor pathways. The delayed control signal uc(t) is the input command

to the closed-loop system consisting of the open-loop neuromuscular dynamics Ypn of the

arm, and elements Yf and Ym. Yf and Ym represent in an approximate fashion, the combined

processing of the muscle spindles, the Golgi tendon organs, and the joint angle receptors. As

proposed by Hess in [Hes80], for the neuromuscular system, the following characteristic values

were selected: ωn = 10 rad/s and ζ = 0.707.

In a haptic task, the hand is always coupled to the haptic device. The passive hand-

Dhand
θθ 

in
τ

D
τ

H(s)

D(s)

hand
τ

Figure 4.8: Hand-device model structure. Figure reproduced from [CSH11], ©2011 IEEE.
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device characteristics can be represented by the block diagram shown in Figure 4.8. In this

figure, τin denotes the superposition of the environment feedback torque τc and the torque

τh commanded by the CNS. Output θhand = θD denotes the collective position of the hand

and the device. The hand impedance H(s) was modeled as a linear time-invariant 2nd order

model with effective mass Mh, damping Bh, and stiffness Kh:

H(s) =
τhand(s)

θhand(s)
= Mhs

2 +Bhs+Kh (4.1)

The transfer function of the haptic device dynamics D(s) with mass Md and damping Bd

was modeled as:

D(s) =
θD(s)

τD(s)
=

1

Mds2 +Bds
(4.2)

From (4.1) and (4.2), the overall transfer function is:

HD(s) =
θD(s)

τin(s)
=

D(s)

1 +D(s) ·H(s)

=
1

Ms2 +Bs+K
(4.3)

where M , (Mh +Md), B , (Bh +Bd) and K , Kh. The hand-device model fits into the

operator model as shown in Figure 4.7.

Human operator modeling has been studied in great depth and much more detailed models

for tracking tasks have been developed, for example by McRuer in [McR80]. More recently,

researchers have also begun to focus on tracking tasks with haptic feedback [LMvP09]. In

comparison to those models, this work neither insists on nor claims rigor. The primary

intention here is to lay the foundations of a first easy-to-understand framework which should

be subject to refinements in the future.

Parameter estimation

The operator model parameters were estimated in two successive experiments. In the first

experiment, the hand-device model was identified for a specific grip-force typical for desktop

haptics. With the parameter values determined from the first experiment, the operator model

that drives the hand-device model was identified in the second experiment.

Experimental setup Experiments were performed using a PHANToM Omni haptic device

(Sensable Technologies Corp., USA) equipped with a FlexiForce sensor (TekScan Corp., USA)

to read the hand grip-force. A USB sensor-interface kit from Phidgets Inc. (Calgary, Canada)

acquired data from the grip-force sensor. Only the first (base) joint of the haptic device was

used. A real-time executable application was built using MATLAB/Simulink and QUARC

Real-Time Control Software (Quanser Inc., Ontario, Canada). On a standard Windows PC

(dual core, 2.13 GHz), the executable ran a servo loop that read the high-precision position
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Figure 4.9: Identification of the hand-device model. A transport delay is added to allow the
subject 1 second to position the slider exactly at the center before the experiment began.
Figure reproduced from [CSH11], ©2011 IEEE.

encoders of the haptic device, and commanded torque values to it at the standard 1 kHz

haptic sampling rate.

Subjects Nine right-handed subjects (7 male, 2 female, ages 20–30 years, with an average of 26

years) participated in this study. All of them were right handed. None of them reported having

any sensory ailments that would affect their perceptual performance. Seven of them had

participated in haptic psychophysical experiments before, while the rest were inexperienced.

Their self-reported experience with haptic devices ranged from “none” to “extensive”. The

same subjects participated in both the experiments.

Experimental procedure In the hand-device identification experiment, the subjects were dis-

played a slider on the screen which corresponded directly to the position of the hand-device

coupling (see Figure 4.9). A Gaussian white noise force-input, lowpass filtered with a cutoff

frequency of 30 Hz was commanded to the haptic device [FC10]. When the human hand is

subjected to such a random force disturbance, it is less likely to trigger reflexes, which our

model does not account for.

The subjects were instructed to attempt to hold the visual slider position at the center

as far as possible, while maintaining a constant grip-force of roughly 3 N typical to desk-

top haptic applications. A grip-force measurement in the form of a dial was shown on the

screen too, so that the subjects could tighten/loosen their grip-force as necessary. The input

torque commanded and the corresponding output position of the haptic device were recorded

for subsequent analysis. Figure 4.10 (a) shows an example of the time-domain input and

output signals recorded during the experiment. The low pass character of the hand-device

combination (also see Equation 4.2) is evident in this plot.

In the operator model identification experiment (see Figure 4.11), subjects were displayed

the trajectory tracking error as the deviation of the slider from its center. They were then

asked to keep the error at a minimum by adjusting the hand position so that the slider

approached its center, which corresponded to zero tracking error. They were well trained for

this tracking task before the actual experiment.
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Figure 4.10: Experiment for identifying the hand-device model: (a) time-domain plots, (b)
Bode plots. The dashed curve represents the transfer function fitted to the solid experimental
one. Figures reproduced from [CSH11], ©2011 IEEE.

Force feedback was computed according to a spring model (with stiffness KV E = ...

0.8 N m rad−1) for the environment. The force signal then underwent Deadband data reduc-

tion (see Section 2.4.1), before being commanded to the hand through the haptic device.

The subjects were asked to maintain a consistent grip-force on the device. Similar to the

first experiment, grip force was indicated visually. The reference input trajectory, the actual

trajectory traced by the user and the corresponding feedback torque were recorded. Fig-

ure 4.12 (a) shows an example of the reference trajectory that was to be followed, and the

corresponding trajectories traced by the users in response.

Each subject was initially trained to recognize the step-like deadband artifacts haptically.

She/he then performed the tracking task (100 s long) multiple times for the range of deadband

parameter k from 0% to 20%. To avoid learning effects, the k values were chosen randomly

across experimental runs. After each run, a subjective rating corresponding to the perceived

distortion in the haptic feedback because of the compression scheme was solicited. The rating

scale shown in Table 2.5 was used for this purpose.
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Position-error indicator 
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Figure 4.11: Human model identification. Figure reproduced from [CSH11], ©2011 IEEE.
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For the range of k used here, no operational instabilities were observed, even though no

special control schemes were implemented to ensure stability (see [HHSB05a] for details). This

may be attributed to the hand and device damping, which dissipate energy injected by the

Deadband data reduction into the the haptic loop.

System identification Figure 4.10 (b) shows the Bode plot of the transfer function estimated

from the first half of input-output data measured in the hand-device identification experiment,

averaged across all users. Averaging was possible since exactly the same input torque was

used for all the users. A second-order transfer function (see Equation 4.1) was then fitted to

the experimental data. The estimated parameters are listed in Table 4.2. The second half of

the experimental data was used for model validation.

For the second (operator model identification) experiment, the input signal was designed

to be the summation of thirteen sinusoids to ensure a random appearing input to the user.

The input frequencies were distributed evenly over the frequency range for manual control (0

≤ fin ≤ 3 Hz) [Hes80]. Figure 4.12(a) shows the time-domain plots of the reference input and

the user output position signals.

The presence of delay do in the operator model made parameter adjustment in the frequency-

domain difficult. Therefore, the parameter values in Table 4.3 were estimated in the time-

domain by least squares-based optimization. Nevertheless, the frequency-domain model-fit is

shown in Figure 4.12(b). To make the parameter estimation tractable given the complexity

of the action model in Figure 4.7, some a-priori information or simplifications were used.

As mentioned before, the neuromuscular system parameters were set as ωn = 10 rad/s and
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Figure 4.12: Experiment for identifying the human action model: (a) time-domain plots. The
thick leftmost curve shows the reference position signal to be followed, all other curves are
the position signals traced by subjects for a range of deadband k values. Variances in model
parameters are shown in Table 4.3, (b) Bode plots. The dashed curve shows the transfer
function fitted to the solid experimental one. Figure reproduced from [CSH11], ©2011 IEEE.
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M(kgm2) B(kgm2/rad) K(Nm/rad)

0.003 ± 0.002 0.45 ± 0.21 9.25 ± 3

Table 4.2: Hand-device model parameters

Ke do(s) K1 K2
1
T1

, 1
T2

(s−1)

141 ± 34 0.28 ± 0.07 65 ± 15 38 ± 10 23 ± 7

Table 4.3: Operator structural model parameters

ζ = 0.707. The mechanoreceptor time constants T1 and T2 were set to be equal [PCAB98].

Furthermore, an initial guess of do = 0.2 s was used for the operator delay [Hes80].

4.2.2.2 Perception model

This section presents a haptic perception model based on the well-established Weber-Fechner

law of psychophysics [Yil64]. Inspired by this law, it was assumed that the psychological

sensation registered by the brain when experiencing haptic stimuli varies logarithmically with

the magnitude of the physical haptic stimulus:

S = c · ln(
x

xo
) (4.4)

where S denotes the perceived sensation, determined experimentally, x represents the stimulus

magnitude, and xo denotes the absolute detection threshold of the stimulus, and c is the

proportionality constant.

For an N -long time-sampled signal, a distortion metric called Perceptual Mean Square

Error or PMSE in the perceptual domain can be defined as:

PMSE =
1

N

N−1∑
i=0

[
S(i)− Ŝ(i)

]2
=

c2

N
·
N−1∑
i=0

[
ln(

x(i)

x̂(i)
)

]2
(4.5)

where S is the undistorted reference, while Ŝ is the signal distorted by data reduction/compression,

both in the perceptual domain, x and x̂ are the corresponding time-domain signals.

4.2.3 Quality prediction results

With the model parameters obtained before, the model of the human operator interacting

haptically with a linear spring environment was simulated with the deadband data reduction

scheme parameter k ranging from 0% to 20%. The quality of the resultant compressed force
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feedback signals, distorted due to the lossy data reduction scheme was evaluated using the

PMSE metric for perceptual distortion.

Figures 4.13 and 4.14 show the time-domain position and feedback torque waveforms for

deadband parameter k values of 0% and 15%. Figure 4.15 (a) shows subjective quality ratings

obtained from the experiments as the deadband parameter k increases. Figure 4.15 (a) also

shows results of the simulations performed for increasing values of the deadband parameter

k. The trend of the subjective quality curve is coherent with that of the predictions from

the human model simulation. Moreover, there is high correlation between the corresponding

subjective quality ratings and the objective predictions (correlation coefficient of 0.97). It can

be seen from Figure 4.15 (b) that with increasing k, the predicted perceived quality as well

as transmission packet rates decreased monotonically.

(Figures 4.13– 4.15 appear on the next page.)
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Figure 4.13: Simulation waveforms for deadband parameter k = 0%: (a) positions, (b)
torques (the uncompressed and compressed waveforms coincide for k = 0). Figure repro-
duced from [CSH11], ©2011 IEEE.
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Figure 4.14: Simulation waveforms for deadband parameter k = 15%: (a) positions, (b)
torques. Figure reproduced from [CSH11], ©2011 IEEE.
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Figure 4.15: (a) Normalized subjective ratings (—) from the perceptual experiments, and
the corresponding normalized quality predictions using PMSE (- - -), and (b) packet rate
simulation results. The normalized packet rate at k = 0 is 1. Figure reproduced from [CSH11],
©2011 IEEE.
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4.3 Conclusion

Perceptual user studies in haptics are difficult and time-consuming, slowing down the progress

of haptic signal processing research. To address this challenge, this chapter presented novel

methods for model-based prediction of perceptual quality degradation in compressed haptic

signals.

Vibrotactile haptics

For haptic texture signals, perceptually-motivated features were extracted that were vital clues

for texture signal discrimination. It was seen that abstract features like roughness, brightness,

and time-envelope pattern play an important role in haptic signal perception, in addition to

low-level psychophysical models. A combination of all the above features led to about 30%

improvement in the performance of the quality prediction algorithm over the state-of-the-art.

For future work, a significant challenge will be to construct mathematical models for

haptic perceptual features that have not been accounted for in the present work. These

features could, for example, try to capture subjective characteristics like ‘slowness-fastness’,

‘sparseness-denseness’, ‘bluntness-sharpness’, etc. of the haptic texture signals.

Furthermore, the performance of the proposed approach should be investigated for a wider

variety of textures. The major challenge here will be to compile a comprehensive database of

subjective dissimilarity data for a variety of textures.

Kinesthetic haptics

A framework and a methodology for the model-based Quality Evaluation (MBQP) of a haptic

data reduction scheme was proposed and validated by experiments and simulations. Here is

a summary of the most important points:

• In addition to a perception model, a human action model forms an integral part of the

MBQP framework for kinesthetic haptic interaction.

• The action model presented in Section 4.2.2.1 is based on a compensatory trajectory

tracking task, which to a large extent makes haptic signals uniform across users. The

action model presented contains sub-models for the Central Nervous System and the

Neuromuscular system of the human arm.

• A perception model based on the well-established Weber-Fechner law of psychophysics

was proposed to aid in the perception-domain comparison of clean original kinesthetic

signals and the corresponding compressed ones.
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• Simulation of a haptic communication system with the above models leads to percep-

tual quality predictions that match in trend with subjective ratings obtained from psy-

chophysical tests, as well as show a high correlation with them. The optimal compression

parameter k can be chosen from the simulation results depending upon the operation

quality regarded as acceptable.

When haptic tasks less constrained than trajectory tracking are studied in the future,

human intention will also need to be modeled based on task description. The detection of more

complex features (e.g. artifacts arising out of the presence of network packet loss, delay and

jitter) in the haptic signals may necessitate more complex psychophysical models. Remnant

signals that account for the non-linearities may also improve the prediction of perceptual

quality for more complex non-linear artifacts.



Chapter 5

Conclusion and outlook

Perceptual coding schemes for kinesthetic data streams have been intensively researched upon

over the past decade. However, such investigations for vibrotactile texture signals have not

yet received much attention, although texture signals contribute significantly to the realism of

haptic interaction mediated by technical systems. In Chapter 3, this thesis has addressed the

development of a texture codec based on models for the mechanisms of production and per-

ception of vibrotactile texture signals. Furthermore in Chapter 4, perceptual quality aspects

for haptic communication systems have been studied. A summary of the main contributions

is given below, along with ideas for future research.

5.1 Production and perception models for haptic texture signals

Section 3.1 qualitatively analyzed the mechanism behind the production of vibrotactile signals

when a mechanical tool is used to scan a textured surface. It was shown that the source-filter

signal model, similar to that used for speech production, can be used to effectively describe this

mechanism in the texture codec. Section 3.2 presented novel masking data, which motivate

the usage of a perceptual weighting filter in the texture codec based on the Simultaneous

Masking phenomenon.

Limitations and Future work

The simultaneous masking investigations presented in Section 3.2 dealt with single-peak noise

maskers. However, vibrotactile signals obtained by scanning a texture surface may be wide-

band in nature, with multiple peaks in the frequency domain. Therefore, an interesting

direction for future research is the characterization of the shape of the masking curves in the

presence of more than one narrowband maskers.

89
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Furthermore, an interesting topic to be addressed in the future is the sensing, coding,

and display of multi-point haptic texture signals, for example to the entire palm of the hand.

For the development of a perceptually motivated coding scheme for multiple spatial channels

in such a system, the spatial aspects of haptic perception will have to be considered. In

particular, the changes in the perceptual threshold of a given channel due to the presence of

a strong signal on another channel will have to be studied.

5.2 Haptic texture compression

To address the cost-efficient transmission and storage of haptic texture signals, Section 3.3

presented a novel texture compression scheme that exploits the production and perception

models mentioned above.

An encoder based on a Linear Predictive source-filter model of the texture signal was

presented. A perceptual weighting filter based on simultaneous masking was used to guide

the automatic codec parameter selection, so that the coding noise remained imperceptible to

the user. The performance of this codec was analyzed both objectively as well as subjectively.

It was shown that the compression algorithm achieves, for a comparable perceptual quality,

a compression ratio two times better than the state-of-the-art.

Furthermore, a bitrate-scalable codec to enable operation in a range of different bitrates

under varied network traffic conditions and quality demands was presented in Section 3.7.

Subjective evaluation of the performance of the bitrate-scalable codec showed that it is possible

to drive down the codec output bitrate to as low as 2.3 kbps (down from 32 kbps) without

the subjects being able to reliable discriminate between the codec input and distorted output

texture signals.

Limitations and Future work

The subjective evaluations of the codec studied the deterioration of perceptual performance

for a given texture as the coding distortion rises. However, in the future it is also necessary

to study the “task performance” of the codec. Such an evaluation will study if the subjects

can still reliably discriminate between two different textures as the coding distortion rises.

The above texture codec was developed for a single-channel haptic texture signal. The

surface was sensed with a single stylus tip, and the resulting vibrations were displayed to the

entire hand. Future research could address the development of a codec for multi-point haptic

texture signals that can be displayed to the hand surface with a high spatial resolution. Under

this topic, in addition to the exploiting temporal redundancies on a given haptic channel,

spatial redundancies across neighboring haptic channels could be exploited to achieve efficient

data compression.
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5.3 Model-based perceptual haptic quality prediction

To address the challenge of difficult, time-consuming, and expensive subjective user studies,

Chapter 4 presented model-based methods to predict haptic perceptual quality. Prediction

methods were developed for both vibrotactile texture and kinesthetic signals.

Section 4.1 presented a model that predicts perceptual quality based on high-level features

for vibrotactile texture signals. A combination of high-level features like roughness, bright-

ness, and time-envelope pattern, in addition to low-level psychophysical models, led to 30%

improvement in the performance of the quality prediction algorithm over the state-of-the-art.

Section 4.2 treated the quality prediction for kinesthetic signals. A human action-perception

model accounting for the bidirectional closed-loop nature of kinesthetic haptics was presented.

A high correlation between the corresponding subjective quality ratings and objective predic-

tions (correlation coefficient of 0.97) was obtained.

Limitations and Future work

For vibrotactile signals, a number of high-level perceptual features like ‘slowness-fastness’,

‘sparseness-denseness’, ‘bluntness-sharpness’, etc. have been identified. However, there is a

lack of mathematical descriptions of such features in the literature. This issue should be

addressed for further improvement of the perceptual quality prediction methods. Another

issue that needs to be addressed is creating a comprehensive database of subjective data for

the validation of the proposed prediction methods across many classes of textures.

In case of kinesthetic haptics, the action model presented in Section 4.2 is constrained by

the definition of the haptic task, namely trajectory tracking. Generalization of the human

action model will demand the study of other common tasks like pick-and-place, free natural

exploration, etc. This in turn will require models of the human intention while performing

these tasks.

Finally, an end-to-end system model would allow the simulation of the entire kinesthetic-

vibrotactile teleoperation system on a computer. Any signal-processing algorithms operating

between the remote and local side, could then be designed/evaluated in simulation, without the

need for carrying out human subject experiments every time. Such an end-to-end model will

require the development of a action model together with a unified kinesthetic and vibrotactile

perception model. Under this topic, physical models for the subsystems constituting the

haptic teleoperation system shown in Figure 1.1 should be developed. This would involve

models for the entire chain of human-robot coupling, robot-robot coupling, and the robot-to-

remote-surface interaction.
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Vieweg: Braunschweig, Germany, 1851. [cited on page(s) 14]

[WOZ02] Y. Wang, J. Ostermann, and Y. Zhang. Video Processing and Communications. Prentice

Hall, 2002. [cited on page(s) 2]

[WS98a] B. G. Witmer and M. J. Singer. Measuring presence in virtual environments: A pres-

ence questionnaire. Presence:Teleoperators & Virtual Environments, 7:225–240, 1998.

[cited on page(s) 27]

[WSB03] Z. Wang, H. R. Sheikh, and A. C. Bovik. Objective video quality assessment. In B. Furht

and O. Marqure, editors, The Handbook of Video Databases: Design and Applications,

chapter 41, pages 1041–1078. CRC Press, September 2003. [cited on page(s) 75]

[Yil64] H. Yilmaz. On the laws of psychophysics. Bulletin of Mathematical Biology, 26:235–237,

1964. 10.1007/BF02479044. [cited on page(s) 94]

[YY94] Y. Yokokohji and T. Yoshikawa. Bilateral control of master-slave manipulators for ideal

kinesthetic coupling-formulation and experiment. IEEE Trans. on Robotics and Au-

tomation, 10(5):605–620, Oct. 1994. [cited on page(s) 29]



105

[Z0̈8] U. Zölzer. Digital Audio Signal Processing. Wiley, 2008. [cited on page(s) 2]

[ZG80] J. Zwislocki and D. Goodman. Absolute scaling of sensory magnitudes: A validation.

Perception & Psychophysics, 28:28–38, 1980. [cited on page(s) 28]





List of Abbreviations

Abbreviation Description Definition

DoF Degree-of-Freedom page 24

PDDR perceptual deadband data reduction page 22

HSI Human System Interface page 24

DCT Discrete Cosine Transform page 25

UX User Experience page 30

QoS Quality-of-Service page 30

QoE Quality-of-Experience page 30

CELP Code-Excited Linear Prediction page 41

LPC Linear Predictive Coding page 41

NBN Narrowband Noise page 42

BPF Bandpass Filter page 42

FRF Frequency Response Functions page 44

RTAI Realtime Application Interface page 44

MSE Mean Square Error page 51

2AFC 2-alternative Forced Choice page 59

SDT Signal Detection Theory page 59

LSP Line Spectral Pair page 65

VQ Vector Quantization page 65

MBQP Model-based Quality Prediction page 75

107



108 LIST OF ABBREVIATIONS



List of Figures

1.1 A multimodal communication system. The human user can interact physically with the

remote object by commanding the movement of the remote robot. At the remote side,

audio-visual-haptic signals are encoded, multiplexed together, and transmitted back to

the user side. At the user side, the incoming signals are demultiplexed and decoded for

presentation to the user. The user can react physically to this feedback, thus closing a

global control-loop between herself and the remote environment over the communication

channel. Figure reproduced from [CcK+12]. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview of this thesis. The shaded boxes highlight original contributions made in this

thesis. Blocks to the left of the arrows denote thesis sections that review related work for

a given topic. These sections also identify any gaps in existing research or opportunities

for extending it. The arrowheads point to thesis sections that supply novel results to fill

the identified gaps or extend the state-of-the-art. . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Mechanoreceptors under the human skin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 (a) Haptic interaction with a virtual environment. A standard haptic (force feedback)

device, such as the one shown here, reads human motion commands through position

sensors and in the reverse direction, displays force to the human hand via motors. (b)

A haptic teleoperation system [FS67a]. The human motion ẋh is sensed at the Human
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