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Abstract—To communicate over a priori unknown channels,
pilot sequences can be exploited to assist the receiver in obtaining
the channel state information. The analog-to-digital converter
(ADC) at the front end of the receiver samples and quantizes
the input signal, including both pilot and data symbols. This
results in a reduction of the receive signal-to-noise ratio (SNR) as
well as deteriorated quality of channel estimation, which depends
quantitatively on the bit resolution used by the ADC. In this work,
we consider the point-to-point, training based communication be-
tween a single-antenna transmitter and a multi-antenna receiver
over a Rayleigh block fading channel, and take into account the
impact of the ADC for a joint optimization of the training length,
the average receive SNR, the number of receive antennas, and the
bit resolution of the ADC. Goal of the optimization is to minimize
the energy per bit metric, where we include both transmit power
and power dissipation of the ADC into the energy consumption
model, and employ a capacity lower bound which depends on
all aforementioned design parameters. Results from numerical
simulations are demonstrated and analyzed, leading to a number
of insightful observations and conclusions which are important
for the energy efficient operation of the system.

I. INTRODUCTION

For wireless communications, the degree of channel state
information available at the transmitter and/or the receiver
is a key assumption in the study of channel capacity. The
ideal case of having perfect channel knowledge has been
thoroughly studied, e.g. by [1] for flat-fading channels. In
practice, the system dedicates a certain amount of time and
energy for the transmission of pilot symbols which are known
by the receiver. Channel estimation as well as other signal
processing tasks can then be performed which provides the
receiver with an imperfect channel estimate [2]. How much
resources in terms of time and power should be allocated for
training has been investigated in a number of works. In [3],
the authors consider the training and channel estimation for a
multiple-input multiple-output (MIMO) system, and maximize
a lower bound on the capacity with respect to the training
parameters. In [4], an energy efficiency perspective is taken
and training schemes which minimize the energy cost per
transmitted information bit are proposed. Due to the difficulty
in obtaining exact capacity formulas, both papers treat the
product of the channel estimation error and the data symbols as
Gaussian noise, which gives a lower bound on capacity since
Gaussian noise minimizes the mutual information.

In digital communication systems, the received analog sig-
nal is sampled and quantized into discrete-time, discrete-valued
signals via the A/D conversion. The precision with which the
receiver is able to access the received signal has a direct impact
on the channel capacity as well as the power dissipation of the
receiver. It has been reported [5] that the ADC consumes a

significant amount of power when operating at high sampling
rate and resolution, hence becoming a bottleneck in system
performance. As a result, there have been intensive research ac-
tivities in recent years on communications with low-precision
A/D conversion at the receiver e.g. [6][7], which establish the
relation between capacity degradation and the applied ADC
resolution. In our previous work [8], we propose to maximize
the energy efficiency of a multi-antenna receiver with respect to
the vector of ADC resolutions, assuming perfect channel state
information. In this paper, we further investigate the energy
efficiency, but of a training based system and address the
impact of the ADC on channel estimation. To this end, we
evaluate the energy per bit metric of the system by deriving a
capacity lower bound of the quantized channel and by setting
up an energy consumption model which accounts both the
transmitter and the receiver. The minimization of energy per
bit with respect to the training length, the average receive SNR,
the ADC resolution, and the number of receive antennas is of
both theoretical and practical importance, which remains yet
unexplored to our best knowledge in the literature.

The rest of the paper is organized as follows. In Section II,
we set up the system model for the training based transmission
scheme and discuss in particular the modeling of the quantiza-
tion operation. Then we derive a capacity lower bound of the
quantized channel. The minimization problem of the energy
per bit metric is formulated in Section III. Numerical results
are demonstrated and analyzed in Section IV, while a summary
and conclusions are given in Section V. Throughout the paper,
we use boldfaced letters to represent vectors and matrices. The
operators (·)T and (·)H stand for the transpose and Hermitian
of a matrix, respectively. The symbol 1M denotes the identity
matrix of dimension M×M , and diag(A) denotes the diagonal
matrix with the same diagonal elements as matrix A.

II. SYSTEM MODEL

We start with considering a single-input single-output
(SISO) system in a block fading channel, i.e., the channel
coefficient stays constant within one block and changes in-
dependently to a new value for the next block. The length of
each block is assumed to be small enough compared to the
channel coherence time. During each block, the transmitter
sends first a number of pilot symbols, and then the information
carrying data symbols. At the receiver side, channel estimation
is performed upon the reception of all pilot symbols based on
the a priori knowledge of the pilots, and the estimated channel
coefficient is then used in the detection of the subsequent data
symbols. Note that in real digital systems, estimation error is
unavoidable not only because of the additive noise introduced
at the receiver RF front end, but also because of the limited
precision we have in obtaining the received pilots.
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Figure 1. SISO system model with quantization at the receiver

A. Transmit signal and the wireless channel

A block diagram of the SISO system is plotted in Figure 1.
Let m be the total number of symbols in one block, and l be the
number of pilot symbols. For the training based transmission
scheme, we restrict m ≥ 2 and 1 ≤ l ≤ m−1. The transmitted
symbols within one block are given by

√
Px, where P is the

transmit power which is assumed constant, i.e., pilot symbols
and data symbols are radiated with the same power. The vector
x ∈ Cm contains unit variance symbols and can be partitioned
into a training vector xt ∈ Cl and a data vector xd ∈ Cm−l

x = [x1 x2 · · · xl xl+1 · · · xm ]
T
=

[

xt

xd

]

,

|xi|2 = 1, E
[

|xj |2
]

= 1, i = 1, . . . , l, j = l + 1, . . . ,m.

The corresponding unquantized received symbols are denoted

with a vector y ∈ Cm and expressed as y =
√
P · hx + η,

where h ∼ CN (0, α) is the random channel coefficient and
η ∼ CN (0, β1m) is the noise vector. The average receive
signal-to-noise ratio (SNR) before quantization is given by

γ =
αP

β
. (1)

We have used γ instead of P later as an optimization variable
for convenience and generality, and the optimal transmit power
P ∗ is immediately determined according to this linear mapping
once the optimal average receive SNR γ∗ is obtained.

B. Modeling the quantization operation

The A/D converter at the receiver samples and quantizes
the received signal with a finite number of bits. We let b ∈
{1, . . . , bmax} be the bit resolution of the ADC, where bmax is
the maximal number of bits that the ADC can use to represent
one sample. In general, the quantization operation is nonlinear,
and the introduced quantization error is correlated with the
input signal. By using the Bussgang theorem [9][10], we can
linearize the operation as shown in Figure 1 to produce

r = (1 − ρ)y + q =
√
P (1− ρ)hx+ (1− ρ)η + q,

where ρ is the distortion factor which depends on the ADC
resolution b, and q is a noise vector which is uncorrelated
with y. The covariance matrix of q, which depends on b via
the distortion factor ρ, is given approximately by [8]

Rqq = ρ(1− ρ) diag(Ryy). (2)

With Gaussian input and optimal (in the sense of minimum
distortion which requires the step size of the quantizer to scale
linearly with the square root of the input power) scalar non-
uniform quantizer, the distortion factor ρ attains the values
given in Table I [11], where for b > 5 the asymptotic

approximation ρ = π
√
3

2
· 2−2b can be used [12].

Table I. DISTORTION FACTOR ρ FOR DIFFERENT ADC RESOLUTIONS b

b 1 2 3 4

ρ 0.3634 0.1175 0.03454 0.009497
b 5 6 7 8

ρ 0.002499 0.0006642 0.0001660 0.00004151

C. Channel estimation

The receiver employs the linear minimum mean square

error (MMSE) estimator ĥ = gH
MMSErt for channel estimation,

where the quantized received pilot symbols rt are given by

rt =
√
P (1− ρ)hxt + (1− ρ)ηt + qt,

and the vector of filter coefficients gMMSE is computed as

gMMSE = argmin
g

E
[

|h− ĥ|2
]

= R−1
rtrt

p
rth,

where Rrtrt
= E

[

rtr
H
t

]

= β(1 − ρ)
(

γ(1− ρ)xtx
H
t + (ργ + 1)1l

)

,

p
rth = E [rth

∗] = α
√
P (1 − ρ)xt.

Note that in the calculation of Rrtrt
, the relation (2) and

the assumption that the training symbols are all of unit norm
are needed. Plugging the results back and applying the matrix
inversion lemma, we proceed to have

gMMSE =
α
√
P

β (1 + ργ + lγ(1− ρ))
· xt.

The variance of the channel estimate ĥ is computed as

σ2

ĥ
= E

[

|ĥ|2
]

= pH
rthgMMSE =

lγ(1− ρ)α

1 + ργ + lγ(1− ρ)
, (3)

and the variance of the estimation error e = h − ĥ follows
according to the orthogonality principle as

σ2
e = α− σ2

ĥ
=

α(1 + ργ)

1 + ργ + lγ(1− ρ)
. (4)

D. Capacity lower bound of the quantized channel

The received data symbols before and after quantization
can be written respectively as

yd =
√
P (ĥ+ e)xd + ηd,

rd =
√
P (1− ρ)ĥxd +

√
P (1 − ρ)exd + (1 − ρ)ηd + qd.

In the quantized received data vector rd, we consider
√
P (1−

ρ)ĥxd as the signal part, and the remaining summation η′ =√
P (1− ρ)exd + (1− ρ)ηd + qd as additive Gaussian noise.

To this end, the effective instantaneous SNR is computed as

ΓSISO =
E
[

|
√
P (1− ρ)ĥxd,i|2|ĥ

]

E
[

|
√
P (1− ρ)exd,i|2

]

+ E
[

∣

∣(1 − ρ)ηd,i

∣

∣

2
]

+E
[

∣

∣qd,i

∣

∣

2 |ĥ
]

=
P (1− ρ)|ĥ|2

P (1− ρ)σ2
e + β(1 − ρ) + ρ(P |ĥ|2 + Pσ2

e + β)
=

(1 − ρ)|ĥ|2

σ2
e + α

γ
+ ρ|ĥ|2

.

Although the true distribution of ĥ can not be determined
due to qt, we approximate it as Gaussian which is asymp-
totically valid for large l. By using the results of (3)(4) and

replacing ĥ with an auxiliary random variable w according to

ĥ = σĥ · w, w ∼ CN (0, 1), (5)



we further write the effective instantaneous SNR as

ΓSISO =
lγ2(1− ρ)2|w|2

(1 + γ)(1 + ργ) + lγ(1− ρ) + lγ2ρ(1− ρ)|w|2 .
(6)

Let B be the transmission bandwidth. The ergodic channel
capacity in bit/sec achieved during the data transmission phase
is lower bounded by

CL,SISO = E [B log2 (1 + ΓSISO)] , (7)

which is a function of the training length l, the average receive
SNR γ (the transmit power P ), and the distortion factor ρ (the
ADC resolution b), for given m and α. The reason that the
formula given in (7) is a capacity lower bound is as follows:

- the channel estimation error e is treated as random
noise, while it stays constant during each block and
changes independently only from block to block;

- the noise summation term η′ is taken as Gaussian
which is not necessarily true, especially since that
the additive noise q introduced by quantization is not
necessarily Gaussian [10].

Consequently, what we have considered is the worst case
scenario which leads to a lower bound on the channel capacity.

E. Extension to SIMO system

Now suppose the receiver is equipped with M > 1 anten-
nas and each antenna is connected to an ADC employing the
same bit resolution. Assuming that the M spatial subchannels
are independent, we obtain the effective instantaneous SNR as

ΓSIMO =

M
∑

i=1

(1− ρ)|ĥi|2
σ2
e +

α
γ + ρ|ĥi|2

(8)

=

M
∑

i=1

lγ2(1− ρ)2|wi|2
(1 + γ)(1 + ργ) + lγ(1− ρ) + lγ2ρ(1− ρ)|wi|2

,

with ĥi being the estimate of the channel coefficient hi for the
i-th antenna, and wi the associated auxiliary random variable
which is standard Gaussian distributed. The coefficients for
maximal-ratio combining which lead to (8) are given by

pi =
ĥi

σ2
e +

α
γ + ρ|ĥi|2

, i = 1, . . . ,M.

The capacity lower bound for the SIMO system follows as

CL,SIMO = E [B log2 (1 + ΓSIMO)] .

On the other hand, the SIMO receiver consumes more power
than a SISO receiver using the same bit resolution in its ADC.
We will treat this aspect in the next section where we formulate
the minimization problem of the energy per bit metric.

III. MINIMIZATION OF THE ENERGY PER BIT METRIC

The energy per bit metric, as given by the energy con-
sumption divided by the number of transmitted/received bits,
is a common and important performance measure of commu-
nication systems. For theoretical analysis, its determination
depends on how the energy consumption is computed, i.e.,

which components of the transmitter and/or the receiver are
considered as the dominating power consuming parts, and how
their power dissipations depend on the system parameters.
In this work we take into account the transmit power of
the transmitter and the power dissipation of the ADC at the
receiver for our energy consumption model. Given resolution
b, the power consumption of the ADC is given by [13]

PADC = 2c ·N0B · 2b,

where c is a constant design parameter, and N0 is the noise
power spectral density. The energy consumption for the trans-
mission and reception of one block is computed as

E = mTs(P + PADC) = mTs

(

βγ

α
+ 2c ·BN0 · 2b

)

,

with Ts denoting the symbol duration and β = BN0. For the
SISO system, as the number of received information bits is
lower bounded by I = (m− l)TsCL,SISO, an upper bound on
the energy per bit Eb normalized with N0 is computed as

Eb,U,SISO

N0

=
E

I ·N0

=
m

m− l
· γ + 2cα · 2b
αE [log2 (1 + ΓSISO)]

. (9)

For the SIMO system, noting that there are M ADC using the
same resolution, we give the upper bound on Eb by

Eb,U,SIMO

N0

=
m

m− l
· γ + 2cα · 2bM
αE [log2 (1 + ΓSIMO)]

. (10)

An optimization w.r.t. l, γ, b, and M can be formulated which
minimizes this upper bound scaled with the path gain α:

min
l,γ,b,M

f(l, γ, b,M)
△
=

Eb,U,SIMO

N0

· α. (11)

For SISO system we simply have M = 1. In the formulation
of (10) and (11), notice that we have used the average receive
SNR γ instead of the transmit power P , which allows us to
cancel out the bandwidth B in our expression. This means, the
signal bandwidth does not play any role in the optimization
and can be used as a degree of freedom in system design
to fulfill certain QoS constraints. For instance, the optimal
solution of (11), denoted with (l∗, γ∗, b∗,M∗), represents a
desirable operation mode from an energy efficiency point of
view. By adjusting the bandwidth in an allowable range, the
parameters (l∗, γ∗, b∗,M∗) can be employed while at the
same time, different data rates can be achieved to support
heterogeneous applications. Also notice that via the scaling of
the upper bound on energy per bit with α in (11), it becomes
clear that the optimal solution depends only on the product cα.
This means, for the numerical simulations we do not need to
specify the constant c which renders our results more general
with respect to different design and performance of the ADC.

Due to the fact that the optimization variables l and M
are integer valued and the difficulty in the evaluation of the
derivatives of f , we propose to use exhaustive search to solve
(11). The expectation in (10) is computed by averaging the
expression over 2× 104 independent channel realizations.
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Figure 2. Minimizing the energy per bit for SISO systems, cα = 0 dB
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Figure 3. Minimizing the energy per bit for SISO systems with varying cα values
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Figure 4. Minimizing the energy per bit for SIMO systems



IV. NUMERICAL RESULTS AND ANALYSIS

We first study the performance of SISO systems. In Fig-
ure 2, we show the scaled energy per bit, the optimal training
length, and the optimal bit resolution as dependent on γ for a
fixed cα value of 0 dB. For the curves illustrated in Figure 2(a),
the training length and bit resolution are optimized for the
quantized case. For the unquantized case, we set c = 0 and
ρ = 0, and optimize only the training length. The existence of a
finite γ∗ can be observed, while f approaches infinity for both
γ → 0 and γ → +∞. Quantization leads to an increased f and
a rightward shift of γ∗, meaning that more transmit power is
required. On the other hand, the change in the optimal training
length due to the impact of quantization is not significant, as
shown in Figure 2(b), where only a small increment in l∗ can
be observed. Higher bit resolution can be employed with better
γ, while the lowest resolution is favorable for low to medium
γ, as illustrated in Figure 2(c). It can also be noticed that the
optimal resolution is almost independent of the block length.

In Figure 3 the variations in l∗, γ∗, and b∗ with respect
to cα are demonstrated. Due to the switch of the optimal
bit resolution, l∗ and γ∗ are not monotonic in cα. For a
given system with fixed c, the increment of cα corresponds
to increasing α, i.e., having better channel conditions. The op-
timal average receive SNR grows almost linearly in cα with a
rather slow rate, leading in fact to a decreasing transmit power
function in cα. The tendency of using lower bit resolution
under better channel conditions as illustrated in Figure 3(c)
can be explained by observing the numerator of (9). When cα
is extremely low, γ is the dominating part in the summation,
and increasing b in this case improves the channel capacity
without raising the power too much. On the other hand, with
cα being large, 2cα · 2b becomes dominant which prohibits
the employment of a high resolution. This is to say, the joint
optimization of γ and b literally results in a balancing between
the power consumption of the transmitter and the receiver.

Numerical results for the SIMO system are depicted in
Figure 4. We first show the variation of the optimal number of
antennas M∗ with respect to γ with fixed cα in Figure 4(a),
and then illustrate the dependency of M∗, l∗, γ∗ and b∗ on
varying cα in Figure 4(b)-4(e). For medium to high cα, using
one single antenna with 2 bit resolution of the ADC, and a
rather short training sequence (3%− 10% of the block length)
gives the minimal energy per bit value. With low cα, having
more antennas helps improving the energy efficiency of the
system, and the associated optimal ADC resolution is 1 bit. The
increment of the optimal number of antennas is steadily fast
with a close-to-linear relation with cα. Training length in this
case is increased compared to the single antenna receiver, and
the percentage in block becomes lower when m is large. The
optimal average receive SNR is a few dB lower in the extreme
low cα regime compared to the SISO system, suggesting some
reduction in transmit power. Due to the impact of the factor
M in (10), a reversed situation in the optimal bit resolution
over cα can be observed in Figure 4(e) for the SIMO case. In
Figure 4(f) we compare the performance of SIMO and SISO
systems, by showing the ratio of the minimum energy per bit
between them. For medium to high cα, there is no gain since
M∗ = 1, whereas for low cα, the SIMO system achieves the
energy per bit value which is only a small fraction of that of
the SISO system, by using a rather large antenna array.

V. CONCLUSION

We consider the pilot-assisted data transmission between
a transmitter and a receiver over a block-fading channel, and
investigate the impact of quantization via A/D conversion at the
receiver. We further formulate a joint optimization problem on
the training length, the average receive SNR, the bit resolution
of the ADC, and the number of receive antennas with the
objective to minimize the energy per bit metric. Numerical
results lead us to the following observations and conclusions: i.
quantization increases the minimal energy required to transmit
one bit and also the optimal average receive SNR, but results
in a very small increment in the optimal training length;
ii. for a wide range of the path gain, low ADC resolution
(1 or 2 bits) yields the optimal performance; iii. while the
optimal training length depends on the block length strongly,
the optimal average receive SNR and the bit resolution are
less influenced by different block lengths; iv. for medium to
high path gain, using a single receive antenna is optimal, while
for very low path gain the SISO system consumes more than
10 times of energy for one bit compared to the optimized
SIMO system, which employs a large number of antennas.
The optimization results we obtained indicate the set of design
parameters leading to the best energy efficiency of the system,
and are quite general in that they are independent of the choice
of bandwidth and the A/D converter the receiver employs.
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