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Abstract

Technological advances of robotic systems lead to a paradigm change of their role in
society. Whereas in the past robots were mostly used for repetitive tasks in industry, they
are bridging the gap these days into everyone’s life, fulfilling a diversity of complex daily
tasks. Different from automation tasks in a factory, the environment is often unstruc-
tured and not known a priori in such a situation. This imposes additional challenges on
how a robotic motion is executed best. When facing tight time constraints - e.g. dur-
ing interaction with humans - the classical way of calculating an robotic motion without
prior knowledge becomes quickly unfeasible in a complex environment. An alternative
approach is Programming by Demonstration where a optimal prototypic motion is learned
beforehand for every task and only adapted to fit environmental constraints. Low com-
putational complexity and a small deviation from the demonstrated movement in the
presence of disturbances and obstacles are two key features that must be maintained
during adaptation for smooth real-time execution and the recognition of the original mo-
tion. Existing schemes are either learning-based and thus computationally expensive or
possess only minor adaptation capabilities.

The contribution of this thesis is a computationally efficient approach to reproduce
and adapt a demonstrated motion with a (humanoid) robot. By using a least-squares
optimization, additional constraints imposed either by another interaction partner or the
environment can be considered in addition to the local motion properties and solved in
closed form. The framework is extended to handle generic robotic problems including
collision avoidance in highly constrained environments, cooperative manipulation of two
or more robots and efficient collision checking methods. A set of controllers with similar
optimality properties is derived, bridging the gap between planning and control and al-
lowing to suppress disturbances in real-time while maintaining the original motion shape.
Simulations and experiments with three different robotic platforms verify its applicability
to a variety of tasks under real-time constraints.

Special focus is drawn on a holistic approach to keep the shape of the resulting motion
consistent in the three domains of planning, control and reasoning. Different from con-
ventional approaches which favor a strict separation, this work aims at a tight coupling
to keep the optimality properties consistent for the entire process chain.



Zusammenfassung

Fortschreitende technische Entwicklungen auf dem Gebiet der Robotik fithren zu einem
Paradigmenwechsel in Bezug auf deren Platz in der Gesellschaft. Im Gegensatz zu Indus-
trierobotern mit standardisierten Bewegungsabldufen sind heutige Systeme in der Lage,
eine Vielzahl komplexer Aufgabenstellungen des tdglichen Lebens zu bewéltigen. Im
Gegensatz zu herkdommlichen Automatisierungsaufgaben ist das Umfeld hierbei oftmals
unstrukturiert und nicht im Vornherein bekannt, was zu zusitzlichen Herausforderun-
gen beziiglich einer optimalen Roboterbewegung fiihrt. Sind Echtzeitbedingungen in
komplexen Umgebungen gefordert - z.B. bei der Mensch-Roboter-Interaktion - erreichen
klassische Bewegungsplaner schnell ihre Grenzen. Ein alternativer Ansatz ist Program-
ming by Demonstration, bei dem eine optimale prototypische Bewegung fiir jede Aufgabe
bereits im Voraus gelernt wird und wéihrend der Ausfiihrung nur noch angepasst wer-
den muss, um Umgebungsbeschrankungen zu geniigen. Fiir eine fliissige Ausfiihrung ist
einerseits ein geringer Rechenaufwand notwendig, auf der anderen Seite darf die resul-
tierende Bewegung selbst unter dem Einfluss von Stérungen und Hindernissen nur eine
geringe Abweichung von der demonstrierten Bewegung aufweisen, um als solche erkannt
zuwerden. Bestehende Ansitze sind entweder learning-basiert und daher rechenintensiv
oder besitzen nur geringe Anpassungsfihigkeiten.

Der Beitrag dieser Dissertation ist ein rechnereffizienter Ansatz, um eine vorab demon-
strierte Bewegung mit einem (humanoiden) Roboter wiederzugeben und anzupassen.
Mithilfe eines least-squares Ansatzes konnen sowohl die lokalen Merkmale der Bewegung
als auch zusétzliche umgebungs- oder interaktionsspezifische Beschrankungen beschrie-
ben und in geschlossener Form gel6st werden. Mehrere Erweiterungen fiir Kollisionsver-
meidung in verblockten Umgebungen, kooperative Manipulation mit zwei oder mehr
Robotern und effiziente Kollisionserkennungsmethoden machen den Ansatz fiir eine Viel-
zahl an typischen Robotikaufgaben tauglich. Die Herleitung von Reglern mit den gle-
ichen unterlegten Optimalitdtseigenschaften schliesst die Liicke zwischen Planung und
Regelung und erlaubt die Unterdriickung von Stérungen in Echtzeit unter gleichzeitiger
Beibehaltung der originalen Bewegungseigenschaften. Die Validierung des Ansatzes fiir
eine Vielzahl an Aufgaben unter Echtzeitbeschrankungen erfolgt sowohl durch Simulatio-
nen als auch mittels Experimenten unter Einbeziehung von drei verschiedenen Roboter-
plattformen.

Ein Schwerpunkt dieser Arbeit liegt auf einer ganzheitlichen Betrachtung, um die Form
der resultierenden Bewegung in den drei Doménen Planung, Regelung und Schlussfol-
gerung konsistent zu halten. Im Unterschied zu konventionellen Ansitzen, welche eine
strikte Trennung favorisieren, zielt diese Arbeit auf eine enge Kopplung, um die Optima-
litatseigenschaften wéahrend der gesamten Wirkkette beizubehalten.
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Motion imitation and control
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Introduction

This chapter familiarizes the reader with the general topic of the thesis, its application
domains and properties. Starting with 1.1, the general principles of movement gener-
ation and adaptation are recapitulated. When applied to robots, this leads to a set of
challenges which are identified and characterized in Sec. 1.2. An overview of how the
challenges are tackled is given in Sec. 1.3, corresponding to the outline of this thesis and
its main contributions.

1.1 Basics of motion imitation, adaptation and reasoning

Nature features a rich variety of different movements amongst their inhabitants, many
of them which still look like a miracle regarding speed, complexity or simplicity. Mantis
shrimps are able to accelerate theirs claws at an astonishing acceleration of more than
10000g when hunting preys [241], elephants have to coordinate around 40000 — 50000
muscles when moving their trunk [273] and the flocking motion of bird swarms is ex-
plained by a set of remarkable basic rules [252]. Humans are fascinated by these be-
haviors for a long time, trying not only to understand but also to reproduce them. A
proof of the early efforts are mechanical automata, which date back to the 16th century
when the robotic monk was manufactured, capable of walking around, lifting his cross
and remain in silence while praying [96]. Other similar works include Tipu’s tiger [286 ]
or the digesting duck [315], testifying the impressive craftsmanship at that time. Even
if these automata had an ingenious mechanical movement mechanism, they could only
reproduce a very limited set of motions. On the other hand animals and humans can not
only execute a variety of motion types but also modify them depending on the context.
Whereas the motion of walking is of rather general scope, every human shows a different



1 Introduction

walking style depending on the texture of the surface he walks on, its inclination or the
walking speed. They are also able to learn new types of movements throughout their
life, e.g. when playing a new type of sports or dealing with physical impairments like an
implant or amputation. All those effects are investigated in the discipline of motor skill,
trying to answer the question how an intentional movement is learned and executed to
fulfill a goal-oriented task [43, 215, 283].

Despite all technological advances, such capabilities are still limited to living creatures.
Yet there is a huge branch in the field of biomimetics and bioinspiration to take advantage
of useful developments in nature and synthesize or adapt them to solve human-related
problems. Prominent examples are velcro fasteners inspired by burs sticking to fur and
clothes or swimsuits with a surface texture in the style of a sharkskin for lower drag
when moving through water. The highly specialized figure of certain animals has moti-
vated researches to build robots based on the same design principles in order to exploit
their capabilities and imitate their style of movement. The sticky surface of gecko toes is
used as inspiration for StickyBot [62], a mechanical climbing robot using synthetic setae
and comparable shape to a real gecko. Other robots resemble the shape and motion of
snakes, consisting of a single hyperredundant actuator that can travel along narrow pipes
and imitate a sidewinder’s motion [79, 214]. Regarding human motion and appearance
there exist multiple humanoid robots like Honda’s ASIMO [119] or the different HRP
platforms [138, 139]. As all of them are able to interact with humans, they support
the trend from humans and robots working in independent domains like a fully automa-
tized assembly line towards dynamic and interactive coexistence [64, 72, 236, 254, 299].
Whereas they are a promising approach for being accepted as a human-like interaction
partner [153, 204] they also show the limitations of today’s technology as a humanoid
robot with similar skills and abilities as a real human is not yet in sight. Besides tech-
nological challenges regarding miniaturization and a only superficial understanding of
how cognition works [2], this is also due to a missing knowledge about how to generate
suitable motions which are on the one side able to fulfill a given task but also pleasant
to humans and capable of sufficing environmental constraints. Especially in the context
of human-robot-interaction it is this unique combination of all three factors which makes
movement generation challenging.

Caused by these new demands and increasingly sophisticated robot designs engineers
are reconsidering how to let the robot execute a given motion. To generate a new robotic
movement the standard way was for a long time to program every single movement step
by step. This method becomes strenuous for complex movement or highly redundant ma-
nipulators as it requires multiple iterations of refinement and adaptation. Another option
is motion imitation. By having a human expert at hand who demonstrates the desired
motion to the robot, mapping algorithms [ 199, 240, 290] or kinesthetic teaching [3, 116,
163, 184] let the robot move in a similar way. The movement is then recorded for latter
manual adjustment or multiple reproductions. Differing from the standard way where
complexity scales with the length of the movement and the number of robot joints, the
motion imitation approach is very simple, fast and can be redone easily once the map-
ping algorithms have been developed. Implicitly it is assumed that the expert executes
an optimal motion, omitting the need to find the underlying optimality principle behind
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each motion manually.

Once encoded and transferred to the robot, it imitates the specific motion. Yet it is
unable to fit the given motion to a new environment, a changed task or robot-specific
constraints occurring during reproduction. Such constraints include joint angle limits
or balance of the robot [4, 319]. A motion adaptation scheme is necessary that suffices
additional constraints while keeping overall deviation from the original motion small, see
Fig. 1.1. Without adaptation scheme, there is no way of modifying a imitated motion and
thus every different motion requires a new teaching. The used adaptation scheme also
influences the amount of adaptation without creating degenerated motions. Among the
most general and robust methods are explicit planning methods [180] and optimization
routines [98, 274, 287, 303] and learning methods [108, 125] yet they are slow and
require an offline computation. Another option are online adaptation methods [150,
298, 321], but they lack the flexibility of the explicit optimization methods. It is thus
a still ongoing challenge to find adaptation schemes which are both general and fast.
Motion imitation and motion adaptation are closely related to motion reasoning. When

Figure 1.1: Motion adaptation with a humanoid robot. Left: Adaptation to a different
start position. Right: Adaptation to a different motion shape

adapting a recorded motion, an infinite variety of different ways exist. Yet for a given task
some adaptation schemes are better than others. A suitable motion reasoning scheme has
to be aware of the current situation, judge it and select best-fitting adaptation scheme
for the given task [8, 172, 211]. Multiple aspects have to be considered such as the used
representation for motions, decision rules, the temporal dependencies between multiple
motions and the immediate and long-term effect of each motion [26, 97, 165].

The application domain of a (humanoid) robot capable of adapting learned motions
is manifold, see [1]. They expect an increasing demand of robotic technology in non-
manufacturing areas like healthcare, civil service, commercial and consumer market. One
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goal is to replace existing human workforce when needed, for example if disasters and ac-
cidents do not allow humans to enter endangered zones themselves [216] or because the
task would be too bothersome for elderly or handicapped people [233]. When equipped
with advanced sensing and motor skills, a humanoid robot can operate human-tailored
devices (automats, cars, portable electric/electronic devices) in a straightforward fashion
[232], making it capable of fulfilling daily life human tasks. For interaction with humans
in society, observations in the context of human-robot-interaction indicate human-like
motions increase both the acceptance of (humanoid) robots as interaction partners and
their predictability [99, 166, 173]. Building upon results covered in this thesis, a cogni-
tive framework may allow robots in the future to autonomously acquire task knowledge
by looking at other’s motions and adapt them for their own purpose. This will enable vir-
tually everyone to serve as a robot programmer when needed by simply demonstrating
the desired task to the robot.

1.2 Challenges in motion imitation and adaptation

Different from conventional motion planning schemes there are a number of specific
challenges associated with robotic motion imitation and adaptation. To make these chal-
lenges mathematically tractable, the entire movement generation process is represented
as a minimization problem of the general form

optimize g(x, X),
s.t. h(u). (1.1)

In the optimization problem above, X and x stand for the demonstrated and adapted
motion. Multiple motion representations are possible, for example a deterministic way
using a n-dimensional trajectory or vector field. Another option is a probabilistic encoding
through hidden Markov models (HMM) or Gaussian mixture models (GMM). Due to the
variety of motions, no further assumtions are made, explicitly ignoring time-dependency
(optional but not necessary) or the underlying dynamics of the motion (for slow motions
the kinematics are sufficient as well). Based on the chosen representation, the function
g(x, x) calculates a distance between the two motions, indicating how much they differ
from each other. Common measure include the spatial distance, represented by the norm
of a vector valued function or the likelihood if a probabilistic encoding is used. If both
motions x and x differ, the goal becomes to find an optimal value for g(x, X). The variable
u serves as an abstract representation for the given task which may be described by “bring
me a cup of coffee” or “wash the laundry”. The function h(u) then translates the task
into suitable boundary constraints that have to be fulfilled in order to complete the task.
Note that h(u) specifies the type of constraint independent of the specific motions X or
x which are hence no function parameters of h(u). Still the constraints imposed by h(u)
must be in the same domain as the motion to be constrained.

Reducing both motion imitation and motion adaptation to an optimization problem has
several advantages. When facing the decision which imitated motion to choose from a
set of possible options, the cost function g(x, X) provides an intrinsic measure to evaluate
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the quality of each motion. In this sense it acts as an automated decision maker for the
human that also fits the desired movement to the constraints in h(u) in an optimal way. As
there are highly optimized algorithms for a vast class of optimization problems available
today, it also results in a faster approach compared to manual evaluation and adaptation.
Still these algorithms only provide an optimized solution that is as close as possible to
the true solution. If the imposed constraints are conflicting, the optimization result can
be arbitrarily bad.

Regarding the differentiation of motion imitation, adaptation and reasoning, motion
imitation is about finding viable transformation schemes to transfer a recorded motion
to the robot which results in x. It also covers the task of finding a proper representation
for x that lets the robot imitate a given task. For example, if someone has to carry a box
by hand, recording and reproducing only the left foot’s position will most likely result
in an unsuccessful task completion. For a better representation scheme it is necessary to
consider also the position and orientation of both hands. After a movement representa-

motion system
scheme architecture
scheme

and actuator commands

motion adaption planning layer
adapt an |m|tateq motion -~ plan/execute subtask
to a changed environment

motion reasoning reasoning layer
determine suitable boundary |«----- translate abstract task
constraints for motion adaptlon into simple subtasks

<«—> functional relation
<---» schematic relation

motion imitation control layer
transfer demonstrated |-+~ track desired movement
: through sensor information
motion on a robot

level of abstraction

<€

Figure 1.2: Functional and schematic relation between different motion schemes and cor-
responding system architecture schemes

tion scheme is determined, boundary constraints h(u) must be determined by a motion
reasoning algorithm that perform the task successfully in a different environment. For
the task “carry the box by hand” this can be the finding that the box has to be held in
an upright position while grasping it firmly with both hands, corresponding to the un-
derlying optimality criterion of the task. Once both boundary constraints and a proper
motion representation are given, the motion adaptation scheme has to solve (1.1) while
taking care of the underlying robot-specific constraints. Among the most common ones
are dynamic constraints (the robot can only achieve a certain velocity/acceleration with-
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out damaging gears and motors) and kinematic constraints (certain robot poses result in
collisions with the robot itself or objects in the environment).

The challenges associated with such an approach are twofold. The first problem arises
from the interaction between the three schemes of motion imitation, adaptation and
reasoning, requiring good mathematical methods and a proper framework for real-time
execution on a robot. The authors of [164] suggest using a three-layered architecture,
which we redefine as a control, planning and reasoning layer. The reasoning layer corre-
sponds to motion reasoning as it translates an abstract task for a given state into simpler
subtasks which can be processed by the planning layer. The planning layer then calculates
a suitable movement which is tracked by the control layer by means of the available sen-
sor information and actuator commands. Both planning and control layer show a tight
correlation to the motion adaptation and imitation scheme. On the one hand planning a
motion is often rewritten as optimizing a function with additional boundary constraints.
On the other hand the control layer only tracks information encoded in X and x, this
however depends on the used representation for motion imitation.

The second challenge is consistency. For a seamless interaction between all three lay-
ers, they must not contradict with each other as otherwise the demonstrated movement
cannot be adapted. Ideally they are based on the same optimality principles. To illustrate
the problem, we consider again the “carry the box by hand”-scenario. If there are fragile
items in the box, it is not sufficient anymore just to carry the box in an upright position.
One must also minimize the acceleration exerted on the box as not to break objects inside
the box accidently. This new aspect requires modifications of all layers: The reasoning
layer has to split the general task into subtasks that can be fulfilled by the planning layers
without exceeding a certain acceleration, the planning layer has to calculate a feasible
motion and the control layer must track the desired motion while considering not only
positional offsets but also the amount of acceleration. Keeping all three layers consistent
is a challenging task, especially if hard constraints must be met during adaptation. If
the optimality criterion is complex, planning a motion or tracking it in real-time might
not be possible. In a similar manner it can take too long for the reasoning layer to find
an optimal command to be executed by the planning layer, for example when trying to
calculate an optimal next move for a game of Go. In this case an approximate optimality
criterion has to be found, which resembles the true criterion sufficiently well to complete
the task in an adequate manner.

1.3 Contributions and outline of the thesis

This thesis aims at a holistic approach for real-time adaptation of an imitated motion
from an expert demonstration to different tasks and changed environmental situations.
It pursues an trajectory-driven approach in which both the demonstrated and the adapted
movement are encoded as discrete trajectories. This representation allows to tackle vari-
ous application-oriented questions regarding the feasible amount of adaptation, different
ways of dealing with hard environmental constraints, tight real-time constraints or a con-
sistent planning and control architecture. Following the partitioning described in the last
section, the presented methods are grouped in three chapters, corresponding to the con-
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trol, planning and execution layers in Fig. 1.2.
Chapter 2: Planning

Chapter 2 tackles the challenge of real-time motion planning in heavily cluttered envi-
ronments while preserving the original motion shape. To allow for fast modifications and
provide a good flexibility, a least-squares based optimization approach is presented. This
provides a closed form solution and allows the prioritization of additional constraints.
Inspired by the field of computer graphics, the discrete Laplace-Beltrami operator is used
to encode the trajectory properties on a local scale and maintain them during adaptation.
The chapter focuses on three main aspects of the motion adaptation process which are
essential for generic trajectory modification in cluttered environments: A low computa-
tional complexity, guaranteed spatial bounds and efficient approaches to avoid obstacles
during adaptation. It is shown how the computational complexity can be reduced through
a hierarchical approach which downsamples the trajectory before deformation or an al-
ternative representation using splines that can be calculated efficiently in the continuous
domain. Depending on the used approach, spatial bounds allow for a fast feasibility check
of the adaptation process which further reduces computational complexity. To account for
spatial obstacles in the environment, three different collision avoidance methods are pre-
sented. For mostly unconstrained environments it is sufficient to rely on spatial bounds
to avoid obstacles. If these spatial bounds become too conservative, a reactive collision
avoidance scheme circumnavigates obstacles through repellent force fields. In heavily
constrained environments, a sampling-based approach pursues a different idea by not
deforming a given trajectory but rather growing a search tree with optimal local tree
properties while circumnavigating obstacles. The results in this chapter and the related
appendix are either partly or in their entity based on the author’s work in [223, 225, 226,
228].

Chapter 3: Control

The challenge of developing a controller that is consistent in its underlying optimality
criterion with a given motion planning scheme is addressed in chapter 3. To ensure safe
interaction with the robot, stability must be guaranteed in addition. Caused by the in-
terlocking nature of the local trajectory properties it is necessary to consider not only the
current state but also future states when developing an optimal controller. To account
for both aspects the underlying cost function of the planning framework is embedded
in a linear quadratic regulator (LQR) controller, resulting in a predictive control scheme
with guaranteed asymptotic convergence. Kinematic singularities are avoided by extend-
ing the approach to follow a given reference trajectory both in joint- and task space. It
turns out that the method resembles a predictive version of the weighted damped least
squares (WDLS) inverse kinematics approach. As the used motion representation influ-
ences the motion adaptation process to a large extent, two other common representations
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are presented and evaluated for their tracking capabilities. Whereas the first, vector-field
method using a set of piecewise linear functions is mainly used for endeffector (EE) con-
trol, a HMM based approach is applicable to close-contact scenarios while taking into
account the full-body motion of a humanoid robot. The results in this chapter and the
related appendix are either partly or in their entity based on the author’s work in [224,
227, 229].

Chapter 4: Reasoning

Chapter 4 addresses the problem of pursuing an abstract task through decomposition into
smaller subtasks which can be processed by an underlying motion planning framework.
An Markov decision process (MDP) representation allows to consider a variety of effects
while deriving policies to let the robot act in an optimal manner. Being a model-based
approach, it relies on a precise model of all environmental effects. This becomes challeng-
ing if difficult processes like human behavior must be modeled. Pool is used as a test bed
to evaluate all effects and measure their influence. When facing a human with a robot,
a dynamic programming framework calculates an optimal robot motion for each move,
depending not only on the robot’s capabilities but also on the opponent. By learning the
opponent’s behavior and adapting the motion of the robot to counter him, a significant
improvement is achieved. The results in this chapter and the related appendix are either
partly or in their entity based on the author’s work in [188, 222, 230].



Motion adaptation and planning

This chapter focuses on motion adaptation of a previously demonstrated movement. Dif-
fering from existing state-of-the-art-approaches, it allows to encode and adapt a demon-
strated discretized trajectory in real-time while preserving its local features. The pre-
sented Laplacian trajectory editing (LTE) framework is based upon a least squares (LS)
approach to provide an optimal weighting between the local trajectory properties and
additional constraints. Due to its generality it serves as a common basis for further ex-
tensions. The key finding of this chapter is to show how LTE can be used to fulfill a variety
of typical robotic problems with only minor modifications. Depending on the complexity
of the problem, the spectrum of applications ranges from real-time deformation of a given
trajectory to explicit offline planning of an optimal path in a labyrinth-like environment.

The chapter is organized as follows: In Sec. 2.4 LTE is introduced as the basic for-
mulation of the motion adaptation framework throughout this thesis. Sec. 2.5 discusses
various properties of the method, not only highlighting its capabilities but also showing
its drawbacks and how they are overcome. The multiresolution approach in Sec. 2.7
provides an computationally efficient way of deriving a solution while also considering
nonlinear deformation effects. A cooperative manipulation scheme in Sec. 2.8 extends
the approach to more than one robot in order to manipulate objects in a synchronized
manner. Spatial bounds of the approach are derived in Sec. 2.6, allowing a fast approxi-
mate solution to be estimated a priori without the need to calculate an explicit solution.
Last, Sec. 2.9 focuses on collision avoidance during the adaptation process if not only
free-space trajectories are considered. Most presented approaches are evaluated not just
through simulations but also real life experiments in Sec. 2.10. A summary in Sec. 2.11
quickly reviews the general aspects of LTE and bibliographical notes in Sec. 2.12 highlight
the relation to previously published papers about the topic.



2 Motion adaptation and planning

2.1 Introduction

Humans are able to generate and adapt a vast variety of goal-driven movements without
apparent effort. Scientists have developed different theories to address this degrees of
freedom problem in motor control [29, 110, 262, 301, 314], still there is no unifying and
profound theory at hand. This is problematic as more and more sophisticated robots are
available today, with a comparable number of degree of freedom (DOF) as the human
body. In this context the hardware seems to be ahead of software. Although there exists
a vast number of different robots which vary in shape, functionality and complexity [ 55,
92, 205], most of them are only capable of performing very primitive and highly specific
movements.

It is still unknown when or even whether the human movement mechanisms can be
decoded in their entity. Until then, the process of human movement generation must be
seen as a black box, with sensors perceiving the environment, an unknown information
processing structure and whole-body movements as the resulting action. This knowledge
is exploited to a certain extent by roboticists. Even if the information processing structure
is unknown, it is possible to observe and measure the human movement for a given
environment and imitate the movement with a robot [156, 160] in order to perform
human-like motions and facilitate the interaction with humans [153, 154, 173, 237].

For a humanoid robot and a recorded whole-body movement, the movement is imitated
in its entity. Other researchers focus only on specific parts of the entire body and map the
movement to a robot with completely different structure. A good movement imitation
scheme allows the successful movement reproduction in a similar environment. This is
only of limited practicability for real problems as even small modifications require an
adaptation of the reproduced movement. Unless aforementioned information processing
structure is known, it has to be mimicked manually through optimization of a proper
optimality principle.

So far this approach is entirely human-driven as it tries to resemble and understand a
human motion as good as possible [212, 284]. Another aspect comes from engineering
as demonstrating a motion to a robot is an efficient and fast method for executing a
complex motion on a robot with multiple DOE Once an approximate motion is found, it
must be fit to the task through a proper motion adaptation scheme. Usually this motion
adaptation scheme cannot be defined arbitrary but has to meet specific criteria regarding
smoothness or collision avoidance.

2.2 Related work

Motion adaptation as defined before belongs to the wider class of programming by
demonstration (PbD) where a new robotic movement is not programmed from scratch
but based on a previously demonstrated movement. Whereas first approaches date back
to the 90’s [95] it gained widespread attention just during the last decade [34]. PbD
approaches have different requirements than conventional motion generation schemes.
As the movement generation process with PbD is either partially or fully automatic, the
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type of movement encoding limits the adaptation capabilities. Depending on the require-
ments, different encoding schemes are used. Among the most common ones is GMR,
encoding a motion by a set of Gaussian kernels with different shape and weight [50, 51,
320]. The method has been extended to account for multiple constraints both in joint and
task space during adaptation [47]. In addition the combination with HMMs increased
robustness towards temporal deviations [49]. Another option are dynamic movement
primitives (DMP) [82, 260, 261], modulating a second order point attractor to fulfill ad-
ditional constraints like collision avoidance or variable goals [121, 238]. Both methods
encode the resulting prototypic trajectory through a highly reduced number of variables,
thus easing the adaptation process at the cost of a large computational complexity during
the learning/encoding step.

Another option are adaptation schemes working either directly on trajectories or using
an encoding that does not need to be learned. Prominent examples are the Elastic Strips
framework for obstacle avoidance while maintaining a shortest distance path [39], Elastic
Bands for minimal deformation in joint space [250], trajectory retargeting maintaining
affine features [244, 245] and reactive collision avoidance schemes through repellent
force fields [20, 152, 175, 253] or velocity obstacles [89].

One can also use the intrinsic smoothness of specific trajectory representations based
on splines [178] or Bézier curves [117]. All methods described so far have in common
that they are of rather limited scope, either allowing trajectory modifications only in
the space they are defined or working well only in conservative environments. Whereas
this is often associated with a low computational complexity during adaptation, it also
limits the applicability if complex dynamical constraints have to be considered or the
surrounding is cluttered and heavily unorganized. In the latter case an explicit numeric
optimization is often the only viable option, shifting focus from online adaptation towards
planning. Two different classes exist: Direct adaptation methods and indirect adaptation
methods. Whereas direct adaptation methods modify the motion directly based on the
constraints in task space, indirect methods depend on a cost function calculated from
a set of demonstrations and valid over the entire task space [189, 206, 207]. Even if
indirect methods can have better generalization capabilities, the cost function is difficult
to obtain for complex movements and provides a good approximation to the true cost
function only on a local scale, requiring multiple repetitions to cover the entire task space.
Direct methods are easier to handle as they allow the user to modify the cost function
directly by imposing additional constraints with corresponding weights. When used with
PbD, the similarity between original and adapted motion is encoded in the constraints
[137, 263, 326].

If the environment is even more constrained, aforementioned methods are prone to
fail. Yet by giving up the similarity constraints a solution may still be found. In this case
we are focusing on pure path/motion planning. With increasing computational power
sampling-based motion planners are nowadays the most prominent approach, exploring
the entire search space randomly until a valid solution is found. Such methods include
probabilistic roadmaps [122, 147], rapidly exploring random trees (RRT) [127, 134, 179,
181, 187] and RRT*, a modified version of RRT with global optimality properties [ 140,
142, 147, 179, 243].

11
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2.3 Problem statement and conceptual approach

Recapitulating the adaptation problem in (1.1), the goal of motion adaptation is to find
a solution for

optimize g(x, X),
s.t. h(u), (2.1)

such that the adapted motion x matches the original motion X best while sufficing ad-
ditional constraints h(u). It turns out that all PbD approaches presented in the previous
section can be described by (2.1) even if their exact definition differs from approach to
approach. Besides the type of encoding, additional design criteria must be considered.

One challenge is computational complexity. It covers two aspects, execution time for
realistic applications and theoretical scaling effects investigating the asymptotic behavior.
A low execution time has several advantages as it is not limited to an a priori offline com-
putation but allows for an online replanning to react to sudden disturbances. In the ideal
case, the method is fast enough to calculate multiple adaptation strategies in real-time
[93]. Computational complexity is intrinsically related to the underlying mathematical
optimization problem, leading to specific optimization algorithms that must be used. As
nonlinear optimization techniques are susceptible for local minima, finding the global
minimum is a time-consuming undertaking and thus not applicable. A special class are
convex optimization problems as they have only one unique optimal solution. Once an
optimum is found, it is known to be the global optimum. Sadly no analytical form exist in
general, requiring iterative optimization algorithms which are computationally demand-
ing [263]. This drawback is overcome by linear LS [101] as for any problem formulated
by a set of linear equations, there is a unique LS solution fulfilling the equations in an
optimal manner.

Another challenge are generalization capabilities, referring to the general nature of
the underlying mathematical framework. At this point one is often forcing a tradeoff be-
tween a general yet unspecific approach and an approach explicitly designed for special
needs yet impossible to be applied directly to solve a related problem. On the other hand
it aims at how easily the approach can be extended to fit additional needs. The two as-
pects are related as even a highly specific approach can be easily expanded to fit a wider
class of problems. In a similar way, expansions make an otherwise highly unspecific ap-
proach suitable for a set of very special problems. When expanding a given approach one
can either choose a bottom-up or top-down approach. The bottom-up approach looks at
a highly specific problem with is further generalized and abstracted afterward through
suitable expansions. In contrast the top-down approach first tackles a rather generic and
application-unspecific problem, driven for example by an abstract mathematical prob-
lem. Either through proper interpretation or modifications of the original approach it is
then used to solve user-specific problems. As such GMR as in [46] is a special case of
Bayesian regression [268] used successfully to classify and reproduce robotic motions.
Whereas a bottom-up approach is the more promising method in the beginning, general-
izing implemented concepts and transferring them to new problems is a challenging task.
Unlike this a top-down approach is more difficult to derive in the beginning as specific
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application might be missing, but generally easier to adapt as the underlying framework
is of generic nature.

The problem associated with all PbD approaches based on HMMs, GMR, DMPs or
an explicit optimization [49, 261, 263, 326] require either an explicit learning step or
the optimization of a complex nonlinear function and are thus not real-time capable if
a movement has to be adapted right after demonstration. On the other hand, move-
ment retargeting approaches specifically designed for online execution [20, 175, 250]
show only limited generalization capabilities as the underlying optimization problem is
of highly specific structure. It is thus an open question how to combine the universal-
ity of learning-based approaches with the real-time execution speed of online motion
retargeting approaches.

The contribution of this chapter is an approach based upon one of the fastest known
optimization methods - the least-squares optimization. Its solution is calculated by means
of the pseudoinverse, which can be given both in closed-form and calculated analytically.
The method also provides a way of prioritizing constraints through adequate weights.
Differing from linear optimization where conflicting constraints can lead to an empty
solution set, LS provides an optimal solution in any case which is advantageous from
a practical view point. The adaptation process in this paper is inspired by the discrete
Laplace-Beltrami (Laplace) operator which has been used extensively throughout the last
decade to deform [7, 6, 38, 219, 279, 281], classify [197, 251] and compress [ 145, 190,
282] triangular surface meshes in the field of computer vision. As the Laplace operator
is extensively studied in literature, it has a well-backed theoretical background [70, 91,
106, 114, 190, 248, 294, 318]. By representing the robot motion by a trajectory, con-
sisting of an n-dimensional path with associated temporal information, the problem is
reduced to keep the geometric trajectory properties as similar as possible during path
deformation. When interpreting the path as an extremely simple, degenerated surface
mesh, the Laplace operator can be applied in a straightforward way to capture the in-
trinsic path properties. Being a linear operator, the resulting optimization problem is
solved through LS. The main problem associated with the approach is to find the right
constraints in linear form to achieve additional goals like collision avoidance or a syn-
chronized manipulation involving multiple manipulators.

Simple as it looks, there are also a pitfalls that must be taken care. As such the Lapla-
cian operator is defined only inconsistently across literature. Being mainly based upon
the connectivity of the underlying graph, the used Laplace operator belongs to the class of
combinatorial mesh Laplacians [324]. Another class are geometric mesh Laplacians, ex-
plicitly taking into account the underlying Riemannian geometry [ 70, 202, 285]. Even if
they do capture the geometric properties better, they are only defined on triangle meshes
and thus not straightforwardly applicable to paths. The second one is related to the ap-
plication to trajectories. On the one hand the special mesh structure of paths for simpli-
fications which speed calculations up and help for a better understanding. On the other
hand the LS solution suffers from a few drawbacks which are tackled in this chapter,
mainly bad scaling effects and the improper handling of nonlinear deformation effects
[325].
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2.4 Laplacian trajectory editing (LTE)

This section presents LTE as the underlying framework being used throughout this thesis
to deform discretized trajectories. A fast and optimal solution is derived that maintains
the intrinsic trajectory properties while sufficing additional constraints imposed by the
user or the environment. It is assumed that a discretized trajectory is given, consisting of a
path described by an ordered set of sampling points P = [p(t,), p(t,),...,p(t,)]" € R>™"
with associated temporal information t; € R for each sampling point. For simplicity we
write P =[py,P,,...,P, )" instead of P = [p(t,), p(t,),...,p(t,)]".

During adaptation it is desired to preserve certain properties of the trajectory. The
properties are either on a local (e.g. acceleration along the trajectory) or global scale
(e.g. absolute position in space). By keeping the temporal information fixed, the problem
is reduced to preserve the path properties. To provide a quick solution, the local path
properties are described by a set of linear equations

LP = A, (2.2)

where the matrix L can be interpreted as a operator transforming the path P into local
path properties A.

During adaptation the path has to fulfill additional constraints. Writing them as a linear
equation system yields

PP=C,

with the matrices P and C specifying the type of constraints. There are different ways of
solving the two equation systems. If they are linearly independent and of full rank, they
can be concatenated and solved for P; = [p,, Py, ..., Pns]’ € R™™ using the matrix

inverse as .
P — L A
=p| |el

If they are not linearly independent, they have to be prioritized. With the constraints
given a higher priority than the local path properties, the problem is rewritten as

min [[LP, — All,
s.t. PP, =C, (2.3)
that is a linear optimization problem. An approximate solution of (2.3) can be cal-

culated using LS. By weighting the constraints with a diagonal weighting matrix Q =
diag(w, ..., w) > 1 the problem is reformulated and solved as

L17Ta

Differing from (2.3) where the solution set can be empty, there is always a solution found
in (2.4) which is advantageous from a practical point. In addition, if the LS problem is
sparse, it has linear computational complexity and can be solved efficiently. The downside
is that except for 2 — oo the constraints are never met perfectly.
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Due to the additional boundary constraints in P and C, the paths P, and P generally dif-
fer from each other. This constitutes the core concept of the trajectory adaptation scheme.
The original trajectory P is only needed in order to define the local path properties A that
have to be preserved. After they are determined and the matrices L, P, C are given, the
resulting deformed path P is directly calculated using LS according to (2.4).

Both local path properties as in (2.2) and constraints as in (2.2) are described by the
same set of equations. The only difference is that local path properties are based upon a
similar type of equation for all sampling points whereas the constraints apply only to a few
sampling points. The first and probably most important type are positional constraints
of the form

Pi = Cip; (2.5)

pinning a sampling point p; to a desired position c;,. For the local path properties this
results in the identity matrix as

L1 — . . (2.6)

1

A drawback of the matrix L, is the decoupling of subsequent sampling point, thus treat-
ing every sampling point independently. Another option coupling subsequent sampling
points are first order finite difference constraints of the form

Pi —Pi-1 = €15 (2.7)

resulting in a fixed spatial difference between two sampling points p,,; and p; along the
path. In matrix form the local path properties are described by

L=L, = : (2.8)

The scheme of (2.5) and (2.7) can be extended to higher order finite differences. Hence
it is for second order central finite differences

Pi+1—2P; T Pi1 = Cips (2.9)
resulting in the matrix
1 —2 1 i
1 -2 1
L=L,= : (2.10)
1 —2 1
I 1 -2 1]
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In (2.7)-(2.10) the matrix L consists only of one specific type of equation. Yet they can
also be concatenated and weighted depending on the user preferences. For example
a weighted instance of both first and second order finite difference for the local path
properties with additional constraints results in

_ [l _[2a,
L = _ﬂsz]’ A_|:QZA2 s (2.11)
+
r L + A ﬂlLl QlAl
L Qp QcC

with Q > Q,,Q, as three diagonal weighting matrices. If the matrices L. and P consist
of arbitrary elements, it must be noted that when writing the first n, finite differences in
matrix form as

1
-1 1 0
1 =2 1
-1 3 -3 1 ’

one can see that they are linearly independent. Hence any row of L or P with n, nonzero
entries can be interpreted as a weighted sum of the first n, order derivatives.

Fig. 2.1 shows a small deformation example using LTE under the influence of positional
constraints to display its capabilities. Whereas the upper row depicts the unmodified path
P, the lower row shows four different realizations where specific sampling points (round
dots) are pinned to defined positions.

Figure 2.1: Various possible path deformations using LTE by applying positional con-
straints to individual sampling points (round dots)
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Laplacian trajectory editing

Given a path P described by its local path properties
LP = A,

additonal constraints are imposed in linear form as

PP =C.

Then an optimal solution of the deformed path P, is calculated using least

squares as
p_| L A
ST |ap| |aC]

with the diagonal weighting matrix €.

2.5 Properties of LTE

This section provides a detailed analysis of the theoretical properties of LTE and how
they can be applied to account for a wider class of problems. In addition, it examines the
relation of LTE to other disciplines like computer graphics.

Derivation from Laplacian mesh editing

Before applied to trajectories, the Laplace-Beltrami operator has been used in computer
graphic for more than one decade to deform surface meshes [278]. This method is known
as Laplacian mesh editing. When deriving LTE from Laplacian mesh editing, the basic
principle is to interpret a discretized path as an extremely primitive, 1D surface mesh
and apply the same geometric mesh deformation operations to it. Whereas some results
are identical, others derived from two-dimensional (2D) Riemannian manifolds do not
have any equivalent when applied to paths. When interpreting the path like a surface
mesh as an undirected graph ¥ = (¥, &) where each vertex v; is associated with one
sampling point p;, the neighbor set .4; of the vertex v, is the set of all adjacent vertices v;
and the edge set is defined as & = {e;;},1,j € {1, ..,n} with
_fwy ifjEe,
A 0  otherwise.
Instead of working in absolute Cartesian coordinates, the discrete Laplace-Beltrami op-

erator D(v;) or Laplacian is used to specify the local path properties, called Laplacian
coordinates 6, ; [194]. For vertex v;, this results in

w..
D(v;)=0o i - (p; —pj)-
’ ;:v 2wy

JEN

i
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Applied to surface meshes, the Laplacian coordinates specify the mean curvature of the
mesh at each vertex v;., When used for paths, they serve as an approximation of the
curvature along the path. Written in matrix form, the discrete Laplace-Beltrami operator
resembles the graph Laplacian matrix L, € R"*" encoding the topology of the graph as

1 if i =7j,
_ if je N
Leip =1\ 2wy v
jek

0 otherwise.

By defining w;; = 1, one obtains the typical structure for paths as

2 -2
-1 2 -1
-1 2 -1
1
Lg:E ..
-1 2 -1
-1 2 -1
-2 2 |

When concatenating all Laplacian coordinates 6,; into a single matrix A, =

g
[5&1, 0g0---» 5g,n]T, it becomes
L,P=A,,
which is equivalent to (2.2) with L = L,. In this case the matrix L consists of first order
finite differences for the first and last sampling point and second order finite differences

for all other sampling points of the path.

It shall be noted that neither the Laplacian operator nor the edge weights w;; are
uniquely defined in the field of Laplacian mesh editing. Starting with the Laplacian
operator, there are two cases that have to be distinguished [324]: Combinatorial mesh
Laplacians and geometric mesh Laplacians. Combinatorial mesh Laplacians [57, 67, 293,
323] are based entirely upon topological information of the underlying graph, i.e. the
edge connectivity. Then the geometry of the underlying mesh structure is only defined
indirectly, requiring a “well-defined” graph structure with similar edge length. Geomet-
ric mesh Laplacians [202, 246] on the other hand are directly derived by discretizing
the continuous Laplace-Beltrami operator on a Riemannian manifold [118, 210]. They
implicitly considers the manifold geometry, yet are only defined on triangle meshes and
thus not applicable for trajectories. To account for irregularly shaped meshes, different
edge weight schemes have been developed. Among the most simple ones are uniform
umbrella weights, resulting in w;; = 1. In this case it is assumed that the edge length
l;; = |lp; — p;ll> is roughly equal for all graph edges. In case of irregular lengths, a better
choice are scale-dependent umbrella weights w;; = 1/1;;. Another option are cotangent
weights [67, 246], yet they are only defined on triangle meshes and thus not applicable
to paths. Last, one can also directly modify the position of all sampling points through
smoothing [67, 223] causing an irreversible effect.
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Interpretation

Despite the mathematical background originating from Riemannian manifolds, there are
intuitive geometric and physical interpretations of LTE available.

To derive an interpretation for the discretized path, we look at the continuous path
II(s) € R® parameterized by the arc length s. Then the Frenet-Serret formula describe
the local curvature k and the local torsion 7. By introducing the unit tangent vector t,
the normal unit vector n and the binormal unit vector b = t x n with x as the three-
dimensional (3D) cross product, one obtains [73]

dt _
= Kn,
an it b
= Kt+ Tb,
db
— = —7Tn. (2.13)
ds
The curvature « is calculated as
|l dt]| _||d*1cs) 2.14)
"= ds|| || ds? '

In case of a discrete path P and m = 3 the central difference approximation of (2.14) is
d’p(s)|| _ p(s +h)—2p(s) + p(s —h)
ds? h? ’

with step length h. If the sampling points are equidistantly spaced with distance h, (2.15)
is expressed as

(2.15)

d’p, _ P 2p; +Pi1
ds? h? ’
This formula is closely related to the one for Laplacian coordinates, formulated in [293]
as
i - 2 i + i—
5, = 132 P, (2.16)

with the scaling factor hl—z instead of _iz as the only difference. If the trajectory sampling
points are also sampled at a constant sampling rate, it results in a constant temporal
difference At = t; —t;,_; between subsequent sampling points. Then the acceleration
along the trajectory is expressed as

N 2p; + Pi—1
Pi At? ’

differing from (2.16) only by the scaling factor — instead of }2 If two subsequent

A 2
sampling points are fixed as described by t
Pi —Pi

Pi="Ar

it corresponds to a velocity constraints. In a similar fashion three subsequent sampling
points correspond to acceleration, four to jerk, and so on.
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Handling nonlinear deformation effects

Based upon a set of linear equations, LTE cannot handle nonlinear deformation effects
like rotations. Whereas nonlinear deformation effects are negligible for small deforma-
tions, they play a major role as the amount of deformation increases [196], see Fig. 2.2.
Shown is a handwritten word (“Hello”) which is deformed by fixing three sampling points
using positional constraints. The left side shows the result when ignoring nonlinear defor-
mation effects during path adaptation. In contrast a multiresolution approach described
later in this chapter explicitly considers nonlinear deformation effects and resembles the
original word well as shown on the right side. To handle nonlinear deformation effects on

original trajectory
without nonlin. effects
with nonlin. effects

® fixed sampling points

Figure 2.2: Influence of nonlinear deformation effects during path adaptation

a local path scale, the method of Arun [16, 304] is combined with LTE. Similar to [124,
195] it finds an optimal nonlinear deformation for each vertex such that the amount of
intrinsic distortion is minimized.

The core concept of the method of Arun is recapitulated as follows: Assume that
one is given two sets of sampling points, namely P, = [p,;,P,»,- ..,pr,k]T € R*™ and
Py =[Py1,Paz--->Paxl) € R*™ that have to be matched using the homogeneous trans-
formation

Pai =CRp, +t Vi=1,...,k,
with constant ¢ as a scalar scaling factor, R € R™™ as a rotation matrix and t € R™ as a
translational vector. Due to matching imperfections we are looking for the best possible
transformation between P, and Py, resulting in a minimization of the error term n, as

Kk
n, :Z de,i_(éﬁpr,i +E)H2~ (2.17)
i=1

The solution is calculated through a singular value decomposition (SVD): Let Q € R™™
be the covariance matrix as

1 k
_ I _ a2 3T
Q — k ;:1 (pri pr)(pd,i pd) 5
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2.5 Properties of LTE

with p, as the centroid of P, and p,; as the centroid of P,

1 I
= E;pni: Pq = E;Pd,i-

Similarly, the variance o2 is calculated as

1
52%21

The SVD of Q is calculated such that

Q="UsV'.

Then ¢, R and t are computed as

=>
Il

vs'uT,

o
I

1 /
) tr(SS ),
o

~-+>
I
=]
QL
I
=
2

with S’ preventing mirrored mappings

g — I if det(U)det(V)=1,
| diag(1,...,1,—1) if det(U)det(V)=—1.

As shown in [280], the method can be adapted with ¢ = 1 to rotate the Laplacian co-
ordinates 0; of a mesh individually for every sampling point, named as-rigid-as-possible
(ARAP) deformation. This results in new Laplacian coordinates o0; as

31’ :Ri5i’

with the rotation matrix R; based upon the sampling points’ position of original and
deformed mesh. The method can also be applied to paths. For paths, the two sets of
sampling points are P, = [p; —P;_;,p; — Pix1]" and Py = [P — Pi—1,5, Pis — Pisa,s] - We
realize that both P, and P, consist only of two vectors. Then an optimal rotation R; is
calculated in 2D and 3D using basic geometry, making the use of a SVD obsolete.

Path similarity measure

LTE can be used to measure the similarity between two given paths. Depending on
whether nonlinear deformation effects are taken into account, the resulting measure is
either intrinsically provided by the residual of the LS solution or by the underlying cost
function which is minimized when handling nonlinear deformation effects. When ne-
glecting nonlinear deformation effects, the LS solution in (2.4) minimizes the cost term

E defined as X

[l Lae]l

>
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2 Motion adaptation and planning

with the subscript ; as the Frobenius norm. If positional constraints are the only type of
constraints, the unweighted positional error ||P — C|| ~ 0 is invisible to the human eye.
In this case a more human-oriented measure E, is given as

E, = |Lp,— 4. (2.18)

If nonlinear deformation effects shall be taken into account as well, [280] showed that an
optimal solution of the weighted instance of (2.17) corresponds to minimizing the cost
term E,, defined as

n

E,= Z Z will(p; —pi) — ﬁi(pj,s - pi,s)”§~

i=1 je;

with the rotational matrix R, as calculated in Sec. 2.5 such that the deformed sampling
point positions p;,p;; € P, match the original sampling points p;,p; € P best. If the
measure E; should not only account for rotational but also scaling effects, it has to be
modified. This gives the new measure E5 as

n

Bs= D > wyll(p;—p) — cRilp;, — pi)II%

i=1 je;

with the scale factor ¢ as in (2.17) as the only difference. A last commonly used measure
to calculate the similarity between two paths is the summed quadratic difference of the
original respectively deformed path’s absolute sampling points’ positions. This gives the
measure E, as

Ey= > lIp—pill? 2.19)
i=1

for the sampling point position p; of the original path and the sampling point position
p; s of the deformed path.

As it is unknown how LTE is perceived by humans, a psychological experiment is per-
formed to resolve this issue. Five synthetic 3D reference paths composed of added si-
nusoidal paths and five real 3D reference path recorded with a Kinect are deformed
randomly using the multiresolution approach presented in Sec. 2.7. Based upon ev-
ery reference path three deformed paths are calculated, see Fig. 2.3. Ten participants
(male/22-32yrs/@25yrs) are asked to rate "how similar" each path is with respect to the
corresponding reference path on a scale from O (very similar) to 9 (very dissimilar). The
result (error bars with mean and standard deviation) for all four measures E;-E, together
with the Pearson correlation coefficient r for a semilogarithmic plot are given in Fig. 2.3,
showing a good correspondence between the logarithmic value of the similarity mea-
sure and the perceived human similarity. Apparently the measure E, reflects the human
perception of path similarity best, the measure E, least. A detailed description of the
experiment is given in App. A.
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Figure 2.3: Evaluation of the psychological experiment for the four similarity measures
E,-E, with corresponding Pearson correlation coefficient r

2.6 Spatial bounds on the LTE deformation

Calculating the pseudoinverse in (2.4) is computationally demanding for trajectories with
many sampling points. As the exact shape of the resulting trajectory after the LTE defor-
mation is unknown, multiple deformations are necessary to fit the desired path to external
constraints like workspace boundaries or obstacles along the path. To reduce the compu-
tational load, this section aims at determining spatial bounds of the LTE solution that can
be calculated without the need to evaluate the LS solution. Two different methods are
presented. The first method interprets the path deformation process as the coordinated
movement of a leader-follower network, which allows to decomposed the LS solution
into a set of smaller problems which are solved independently and provide tighter spa-
tial bounds as they do not suffer from numerical problems. The second method finds
an equivalent spline representation for LTE in the continuous domain. By representing
splines through Bernstein polynomials, tight spatial bounds are derived.

2.6.1 Spatial bounds based on multi-agent systems

This section derives a tight upper bound based on the norm of the LTE solution that is not
affected by numerical instabilities. A standard way to calculate such a bound is based on

the Cauchy-Schwarz inequality as
+
L A
i |}

Yet this approach suffers from numerical problems as the matrix [LT PTQ”]is badly con-
ditioned due to large weights of the weighting matrix Q2. Rather than preconditioning the
matrix [27], the matrix [LT PTQT] is split up into several submatrices. For the limiting
case ||2|]| — oo the LS solution then becomes independent of the weighting matrix Q. A
gradient descent approach is used to derive a solution. If the additional constraints con-
sist only of positional constraints, the movement of all sampling points during gradient
descent is described by a dynamical system of interconnected agents.

P[] <
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2 Motion adaptation and planning

The LS solution in (2.4) minimizes the cost term E as

- lae

Calculating the partial derivative g—f; independently along every dimension (without writ-
ing the subscript () results in

JE oo _

7= 2(L'L+PTQ*P)P—2L" A — 2P"Q?C.
Note that Q7 = Q because it is a diagonal weighting matrix. A gradient descent approach
is used to find an optimal solution. When descending along the steepest gradient, it

becomes

2

P, = argmin(E) = argmin
P P F

P=—(L'L+P7Q?P)P+LTA + PTQ?C, (2.21)

which is interpreted as a dynamical system of the form

Xx=Ax+u,
with
x=DP,
x=P,

A=-LTL-P'Q?%P,
u=L"TA +PTQ?C.

If the matrix [LT PTQT]T has full column rank n, the position of all sampling points in
P, are uniquely specified by the LS solution. In this case the resulting dynamical sys-
tem is stable as it performs a gradient descent towards the optimal solution of a convex
function. Inspired by multi agent systems, (2.21) is split up into sampling points with
fixed positional constraints denoted by a subscript ; and all other sampling points with
subscript ;. This keeps the notation of leader sampling points with subscript ; and fol-
lower sampling points with subscript , consistent with literature [78]. Rearranging the
elements in P results in

P, =— (LTL)L+QZ (L'L)r || Ps LTA; + Q2C
[PJ_ [(LTL)ZF @), ||Pr|" L}fAF ) (2.22)

with the matrix L”L being split up into three submatrices (L'L);, (L'L); and (L'L),
accounting for the autonomous leader movement, the autonomous follower movement
and the follower movement induced by the leader movement. In a similar fashion, the
matrix A is split up into two parts A; and A. The matrix PTQ?P is reduced to Q2 in this
representation and the matrix PTQ2C is expressed by Q2C’ with the matrix C’ as a row-
permuted version of C. When prioritizing the positional constraints as ||Q|| — oo, (2.22)

reduces to . 2 2
PL . _ﬂ PL + ﬂ C/
[PJ B [—(LTL)ZFPL —(L"L);P; +LI AF:| : (2.23)
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2.6 Spatial bounds on the LTE deformation

Setting the left side of (2.23) to zero results in

P, =C,
P, =—(L'L);' (L'WY ,.c—1A;),

proving that the leader sampling points converge to their desired position C. Differing
from (2.21) the solution in (2.23) is now independent of the weighting factors Q. By
splitting the term C up into a constant factor C’ coinciding with the original path P and a
variable factor AC accounting for the deformation AP, Py, is split up in a similar manner
into a constant part P, and a variable part AP, as

P, = P,+AP;
= —(L'L);' ('L .C' —11A)
Ty 1y TyNT
—(L"L);'(L'L)], AC,

Because the term P/, coincides with the undeformed path P, we are only interested in AP;.
Its norm is bounded by

AP < [IL"L) I L) ACH,

and in general smaller than the solution of (2.20), resulting in tighter spatial bounds.

2.6.2 Spatial bounds based on spline representation

It is possible for some special cases to obtain a LTE solution without the need to calculate
a pseudoinverse by deriving an equivalent solution in the continuous domain. The re-
sulting solution is a set of piecewise polynomial functions, better known as splines. The
advantage is a reduced computational complexity as an equation system of much smaller
size has to be solved. In addition this solution provides the tightest spatial bounds known

for LTE. The pseudoinverse [LT (QP)T]T+ is a linear operator. One can thus decompose

the solution in (2.4) as
o[ L] A L T o
sTlaP| |QC, QP | |QC, |

~ > ~ /
-~

R} 2
s.t. C;,+C,=C

Through a suitable choice of C;, the term {1} is a sole translation of the original trajec-
tory P that can be calculated without the need of an explicit LS solution. Under specific
conditions, the term {2} can be approximated using splines.

Theorem 1 LetL =L,,L,,...beaLaplacian matrix of same order finite differences for all
sampling points, A = 0 and the matrix P consist only of positional constraints according
to (2.5). If furthermore all sampling points of the trajectory are equitemporally spaced
ast;—t,_; = At Vi € {2,...,n}, LTE as calculated in (2.4) is identical for @ — oo to a
spline-based approach in the continuous domain.
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2 Motion adaptation and planning

Proof. Without loss of generality only the most common case L. = L, is considered. The
optimized trajectory P, is then calculated as

L4

The underlying problem is to find a trajectory with minimal acceleration going through
a set of predefined via points. In the continuous domain this corresponds to minimizing
the acceleration X. An optimal trajectory x,,, is calculated as

T
1
Xope = minI(x) = minEJ i(t)%dt.
0

The derivation of a solution is conceptually similar to the one for minimum-jerk trajecto-
ries [90]. Through the calculus of variation we consider the disturbed trajectory x(t)+en
with the scalar € and 7 as an arbitrary function fulfilling the boundary conditions

n(0)=0, n(T)=0,
n(0)=0, 7(T)=0,
(2.24)

This results in
T

1
I(x+en)= EJ(X + e7))?dt,

0

T
dI(x +
—(X €n) :f(jé+eﬁ)ﬁdt.
de
0

For x to minimize I(x + €n), the following condition has to be fulfilled. In all other cases
the trajectory x is not optimal. Note that we write () for the i-th time derivative.

T

=0= f %7 = x®n®,
e=0

0

dI(x +en)
de

Through partial integration we obtain
T T T

2), (2 2). (D|T 3), (1 3), (1
Jx()”():x()”()|o_fx()”():_JX()Tl()~
~—_———
0 0 0

Applying partial integration another time yields

T T T

3),.(1 3),.|T 4 4
—fx()ﬂ()=—x()T)|O+fx()n=fx()7’),
~——
0 0 0
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2.6 Spatial bounds on the LTE deformation

giving
T

f x(4)’r) =0,

0
as the resulting condition that must hold for any function n. This is the case for any
function

x®=0 Vee[0,T].

Any third order polynomial of the form

3

x=> agth, (2.25)

k=0
fulfills this condition, resulting in a spline curve if multiple via points must be passed.

Differing from LTE, the equation system that has to be solved is independent of the
number of sampling points. After the free parameters a, are determined, the solution
for the discretized trajectory is computed based on the solution (2.25) for the continu-
ous trajectory. However, as there are only four free parameters a,,...,a;, the number
of applicable constraints is limited. For multiple via points that have to be passed, cubic
splines with boundary conditions ¥(0) = 0, ¥(T) = 0 are the equivalent continuous rep-
resentation of P consisting only of positional constraints. For the j-th trajectory interval
in a possibly multidimensional space, the resulting cubic spline is written as

3
X; = Z a;t*, te[0,1], (2.26)
k=0

There are multiple ways to represent a cubic spline curve. One option are Bézier splines.
In this case one can rewrite (2.26) with as

[

_ § : l
X;= aj,kB s

k=0

with the control points a; ;, the parameter [ = 3 and B;{ as Bernstein polynomials of the
form

BL(t) = G{) (1—0) ", telo,1]. (2.27)

Due to the non-negativity of each Bernstein polynomial for t € [0, 1], every point of x;
is a convex combination of the control points a; ;. As a result the trajectory segment
x; always stays within the convex hull of its control points. The same accounts for the
discrete trajectory segment P; € {2}.

The convex hulls conv({1}) and conv({2}) are found both for {1} through numerical
optimization and for {2} by calculating the control points of the Bézier curves. The convex
hull of the deformed trajectory {1} + {2} is then bounded from above by

conv({1} +{2}) < conv({1} ) {2}) = conv({1}) EP conv({2}), (2.28)
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2 Motion adaptation and planning

with the operator € as the Minkowski sum of two convex hulls. Tighter bounds can be
derived if the original trajectory is allowed to be split up into smaller trajectory segments
for which new convex hulls are calculated independently. Jensen’s inequality proves that
if a trajectory interval x; is split up into two smaller trajectory segments x;; and X; ,, it
is for the resulting convex hull

conv(x;) = conv(x; ) + conv(x; ,).

The presented approach is based on third order polynomials, corresponding to minimum
acceleration deformations. The same method can be derived for polynomials of any order,
as such fifth order polynomials correspond to minimum jerk deformation, seventh order
polynomials to minimum snap deformation, etc.

2.7 Multiresolution LTE for improved performance

The batch LTE method in Sec. 2.4 deforms the entire path by means of a single LS solution.
Although being straightforward to apply, the approach is computationally demanding if
nonlinear deformation effects have be considered individually for every sampling point
along the trajectory. A faster method is to perform all computationally demanding oper-
ations only on a small subset of sampling points and interpolate the missing information
for all other sampling points afterwards. The method grabs up a similar idea as presented
in[77,111, 158]. The complete approach consists of three steps. In a first downsampling
step the number of path sampling points is reduced, resulting in a subset of so called sup-
port sampling points. The second step consists of deforming the support sampling points.
In the last step, all remaining sampling are interpolated. When being compared to the
batch LTE method, computational complexity can be reduced by more than a magnitude.
Yet it must be also clear that the method provides only an approximate solution of either
(2.4) or the optimal solution presented in [16].

downsampling adaption reconstruction

Figure 2.4: Multiresolution approach overview
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Path downsampling

The goal of path downsampling is to obtain a subset of support sampling points P’ =
[P}, P, - --,P;]T € RP*™ p < n subject to

P’ P, (2.29)

p—1
min ) (Ip; — P{_ylla — [P}, — P}ll)*. (2.30)

i=2
The two conditions allow to interpolate the remaining sampling points during the re-
construction step without further coordinate transformations. In addition, they enforce a
similar distance between subsequent sampling points (||p;—p;_,ll, = ||p},, —P;ll>) which
is necessary as combinatorial mesh Laplacians do not take into account the underlying
geometry of the graph and thus rely on a regular mesh structure for a good approximation

[37, 293, 311]. As it is

F(Af(x)) =F(V>f (x)) o< u*F (w),

with § as the Fourier transform from the spatial domain f(x) to the frequency domain
F(u), the Laplace operator is heavily influenced by high-frequency noise. To increase
robustness, the path has to be smoothed in the spatial or frequency domain using a spatial
moving average (SMA) filter respectively a fast Fourier transform (FFT). In the limit, this
will result in a regular mesh structure ||p; —p;_, ||, = IIp},, — P;ll, = const. If additional
fixed positional constraints are defined, the corresponding sampling points have to be
included in P'.

Path adaptation

After all support sampling points are determined, the downsampled trajectory P’ is
adapted. Similar to [280], an iterative two-staged approach is used. For the remain-
der of this section, support sampling points of iteration it are marked with P} and the
local coordinates of the support sampling points with A’ . In the first step, the resulting
LTE equation system is solved for P}, as

o | L]A
itt1 7 | QP| | QC |

In the second step, the elements of A/ are updated individually for every support sam-
pling using Arun’s method based on P, and P/, , resulting in A!_, . After [ iterations,
this results in the downsampled path P; = [p; ;... ,p;,n,]T with associated rotation ma-
trix R, k = {1,2,...,n}, measuring the rotation between P} and P, based on Arun’s

method.

Path reconstruction

In the last step all remaining sampling points are reconstructed, resulting in the upsam-
pled deformed path P, with a similar number of sampling points as the undeformed path
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2 Motion adaptation and planning

P. Let the k-th path segment of P, - named P;; - be defined as the set of all sampling
points between p;’k and p;’k .1» corresponding to p; ; and p; ; of the upsampled deformed
path. In this context "between" refers to the graph structure and not the spatial domain.
During the reconstruction step, the position of all sampling points of P, are calculated

through LTE as
+
P, = L Ak
SETaP | | QC |

with L, as the Laplacian matrix for the k-th trajectory segment, A, containing the
rotated local coordinates and suitable boundary constraints encoded in P, , C; .

The matrix L, is a submatrix of L with similar structure. The boundary constraints
in P, C,; are obtained by fixing the first and last sampling point of every trajectory
segment.The elements of A, are calculated by linearly interpolating the differential co-
ordinates of the path segment based on R; and R}, ,. In 2D and 3D the local coordinates
of any other sampling point with index i < o < j are either linearly interpolated based
on an axis/angle representation of the rotational matrices R; or through SLERP/NLERP
based on a quaternion representation. Using SLERP [272], the local coordinate 6, € A
is rotated as

qy Sin (J]_Tf) + Qp,4; Sin (E)
sin(©) ’

q, =
60,3 = qoaoqgl,

with q,, q,,; as the quaternion representation of R, R,,;, q; as the interpolated quater-
nion and 0, € A, as the rotated Laplacian coordinate.

Path reconstruction in 3D

The multiresolution approach is suitable for an arbitrary dimension and mainly limited
by finding a interpolation scheme for the Laplacian coordinates in higher dimensions.
In 3D computational complexity can be further reduced by using affine transformations
for the reconstruction step instead of LTE. Affine transformations are discussed in detail
in [245] and recapitulated only briefly here. For a path consisting of multiple sampling
points p; they are of the general form

f’i = Mpi +w,

with M € R™™ w € R™. Boundary constraints for discrete paths ensuring C? continuity
at the beginning/end of the path are incorporated by fixing the first respectively last g+1
sampling points. Hence for C° continuity it is

p; =Mp,; +w,
P, =Mp, +w,
and for C! continuity it is in addition
P2 =Mp, +w,
Pn1=Mp,; +W,
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resulting in the linear equation system
Vb =c, (2.31)

with V. e R¥mxm+m) g Rgm*+m containing the elements of M,w and ¢ =

[B7,pL, P!, f)Z]T € R*". Thus C? continuity is only achieved if there are less or exactly
as many boundary conditions as free variables in ./ . As such for C° continuity at least one
dimension and for C! continuity at least three dimensions are required. Affine transfor-
mations are advantageous from a computational perspective as only a small-sized linear
equation system has to be solved for every path segment. Yet the method suffers from
instabilities if the matrix V becomes singular. To prevent this, the four boundary sampling
points must span a three-dimensional space. By defining the condition numbers x(V,)
and x(V,_,) based on (2.31) for every path segment, (2.29)-(2.30) are reformulated as

P P,
n'—1 n'—1

min f; > (1P, = P|_ls— 1P}, — P22 + o >, x(Vy),
i=2 i=1

with constants f; and f,.

Computational complexity comparison

Simulations compare the computational complexity of the different approaches. Shown
in Fig. 2.5 is the processing time for a single deformation step over the number of path
sampling points n, performed on a Intel Core2Duo T7500 2.2GHz CPU with 4GB RAM
with Matlab R2010a running under Windows 7. Five different approaches are evalu-
ated, an ARAP deformation which is a state-of-the-art approach from literature and the
multiresolution approach presented in this section with two different methods for the re-
construction step. As the reconstruction step constitutes the computational bottleneck for
all multiresolution approaches, the different downsampling/adaptation methods are not
evaluated more in detail. All methods are compared to a non-multiresolutional LTE ap-
proach, either in its original version or using a spline representation. The main properties
of all approaches are compared in Tab. 2.1, indicating whether it is a multiresolution ap-
proach, able to handle nonlinear deformation effects, applicable in an arbitrary number
of dimensions and the section is presented in. It is visible that all algorithms that do not

| name | multires. | nonlin. effects | general applic. | presented in |
ARAP optimization v v Sec. 2.5
Laplacian reconstruction v v v Sec. 2.7
Affine reconstruction v v Sec. 2.7
Spline approach Sec. 2.6.2
Original approach v Sec. 2.4

Table 2.1: Features of different retargeting approaches
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consider nonlinear deformation effects (spline approach, original approach) outperform
the other approaches. For large trajectories (n ~ 10°) affine reconstruction and the spline
approach have roughly the same computational complexity, yet affine reconstruction is
only applicable in 3D. All presented approaches outperform the current state-of-the-art
approach (ARAP optimization), either because they are based on a multiresolution ap-
proach or because they do not take nonlinear deformation effects into account. Yet one
has to remember that all other approaches only approximate the optimal solution given
by the ARAP optimization. For a given path consisting of n sampling points in an m-

1

10 ¢ -

10°
w
[ 1
£ 10 g
o /
£
[
§ 102 s ARAP optimization
g_ Laplacian reconstr.

3 affine reconstr.
10 = spline approach
: == Original approach :
10 * i ; ‘

10° 10 10°
number of sampling points

Figure 2.5: Processing time comparison between different LTE methods

dimensional space both spline and original approach have a computational complexity
of 0(nm). For the spline approach the transformation from continuous to discrete do-
main scales linearly with n and m. The original approach scales linearly with nm due to a
sparse linear equation system for every dimension. All other approaches have a computa-
tional complexity of @(nm?) because they rely at some point on Arun’s method requiring
a SVD on a m x m-matrix and scale linearly with the number of sampling points n.

Spatial comparison

Comparisons between the approaches are also performed in the spatial domain. For
this purpose a helix-shaped sinusoidal path is deformed by imposing four positional con-
straints, see Fig. 2.6. The methods compared are the original approach (Sec. 2.4), ARAP
optimization (Sec. 2.5) and multiple downsampling/reconstruction combinations for the
multiresolution approach. The spline approach is not shown as its path coincides with the
original approach. It is visible how the affine reconstruction method without modified
downsampling is mathematically unstable and differs strongly from the original path.
Shown in the bottom bar graphs are normalized similarity values for all other methods,
indicating how the original approach minimizes E; and the ARAP optimization minimizes
E,.
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Figure 2.6: Spatial comparison between different LTE methods. Top: Spatial extension
of different methods. Bottom: Corresponding similarity measures E;-E,

2.8 Cooperative manipulation of multiple agents
through LTE

This section describes how LTE can be used to adapt the movement of multiple
agents/trajectories in a coordinated manner which is an essential requirement for many
collaborative scenarios like bimanual manipulation or coordinated swarm behavior. The
key idea is to deform more than one trajectory in a systematic way by imposing additional
constraints between the trajectories.

Given a set of trajectories Py = [Py 1,P19,---»P1n) »--»P; = [Pi1,P12s---»Pial €
R™™, the corresponding LTE equation system is written for the resulting trajectories

P.i,...,P; €R"™ as
L P, A,
L P, A
Under the influence of additional constraints, it is rewritten as
L A
Ps,l . !
L A
_ _ P, L
QP ... QP ’ Q.C

with the matrices P,,...,P,;, C accounting for the constraints and the weighting matrices
Q

c*
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Fig. 2.7 shows a toy scenario in which two respectively three agents have to maintain
a defined spatial distance defined by wide red lines while circumnavigating two obsta-
cles (black cylinders). Shown are both undeformed trajectories without obstacles and
deformed trajectories in the presence of obstacles. For two agents, the corresponding
equation system is given by

J

L 0 A,
O L [Ps’lj| = AZ
QP QP, ’ .C

with the definition of the matrices Q,,P_,P, € R"" and C as

Q, =diag(w,,...,w,),

P_=diag(—1,...,—-1),
P, =diag(1,...,1),
C{i:} =P1,i — P>

with weighting factor w,, thus specifying the desired distance between sampling points
of the two trajectories with similar index i. Under the condition of identical timings
t;(p1;) = t;(p,;), the two trajectories maintain a defined spatial distance d; ~ p; ;—p,; at
time instance i. The difference between the constraints in (2.7) and P_, P, is that the first
accounts for the spatial distance of two subsequent sampling points of the same trajectory
whereas the latter specifies a spatial distance between two sampling points of different
trajectories. As the trajectories of both agents are coupled through C, it is sufficient to
specify positional constraints only for a single agent to deform both trajectories. When
extending the approach to three agents, it becomes

[ L 0 0 7 (A ]
0 L 0 p A,
0 0 L Ps’l A;

QP. QP, 0 PS’Z —lec |’

QP. 0 QP, 53 Qc,

. 0 QP QP ] | QC, |

in order to maintain a fixed spatial distance between every three sampling points of the
three trajectories with similar index. Positional constraints according to (2.5) are incor-
porated in a straightforward manner and not described more in detail at this point. The
graph on the right side displays the spatial distance d;; for the undeformed trajectory
and d;; ,, for the deformed trajectory between agents j and j over time. Through proper
choice of the weighting matrices € the distance between every two agents stays constant
over time. The error due to the LS solution is negligible for practical purposes as it is in
the range of 1e-10 m. One also observes how the trajectories of all agents are adapted
when just fixing the position of a single agent. The figure displays only the most primitive
case with a constant spatial distance and direction across multiple agents which can be
further modified through proper choice of the additional constraints.
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Figure 2.7: Cooperative manipulation involving two and three agents in the presence of
obstacles. Left: Trajectory paths. Right: Distance between every two agents

2.9 LTE collision avoidance in cluttered environments

One of the most common problems during trajectory adaptation is circumnavigation
around obstacles. This section presents different approaches for collision avoidance de-
pending on the amount of obstacles. The first approach is directly deduced from the
methods presented so far. By imposing positional constraints on specific sampling points,
obstacles are avoided. The second approach makes use of variable positional constraints
and constructs a repellent potential field around obstacles. The last approach derives
an optimized solution through excessive planning, sampling the entire free search space
until a valid, optimized solution is found. All methods have specific advantages and dis-
advantages. They also differ in their range of use. The first two approaches are best
situated for gently constrained environment. Moreover it is assumed that all obstacles
are known a priori and an efficient method measuring the distance between trajectory
and obstacles is at hand. On the other hand the planning method only requires a collision
detection scheme measuring whether an intersection of the trajectory with an obstacle
happens. It does not rely on a precise distance measure between trajectory and obstacles.
A drawback is the high computational complexity. Being only a minor modification of the
original LTE method, the potential fields approach can be executed in real time to deform
small trajectories. As the planning approach iteratively samples the free space to find a
valid solution, there are no guaranteed bounds for convergence. The approach is also
magnitudes slower, making offline calculation the only viable way to find a solution.
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2 Motion adaptation and planning

2.9.1 Collision avoidance through high-weighted positional
constraints

This section grabs up the idea of deforming paths through positional constraints with a
weight 2 > 1. Whereas the purpose of previous applications was to display the capacity
of LTE during path adaptation, it can be also used to avoid obstacles in a systematic and
efficient way. When using high-weighted positional constraints, they can be combined
with the spline-based deformation approach as described in Sec. 2.6.2 for a fast colli-
sion avoidance scheme. By splitting a trajectory x up into smaller trajectory segments
X1, Xo, ..., X, such that the last point of trajectory segment x; coincides with the first point
of trajectory segment Xx;_,, convex hulls are calculated for every trajectory segment. If the
convex hull of the i-trajectory segment penetrates an obstacle with penetration depth d,,
both first and last point p; ;, p;; of the trajectory segment are deformed through positional
constraints as

Pi1s=Pi1+d;,
Piis =Piy +d;.

As the trajectory gets deformed through the shifting operation, the shape of the new
convex hull of x; differs from the old one which can require multiple shifting operations
until collision avoidance is guaranteed. In addition due to the coupling between two
trajectory segments (p; ; = p;_;;) the deformation has to take into account neighboring
segments. A modified approach results in

Pi1s = Pi1 + nmax(d;,d;_,),
Piis =Py TN max(d;,d;,;),

with constant 7 > 1. Obstacle avoidance based on convex hulls is a very efficient and
fast method. When bounding the convex hull from above as described in (2.28), the term
conv({1}) @ conv({2}) can be quickly calculated. By using splines for the deformation
process, conv({2}) is given by the control points of each Bernstein polynomial which is
faster than calculating it through a conventional, iterative scheme. The convex hull of
the undeformed trajectory conv({1}) is calculated offline as it does not change during
deformation.

2.9.2 Collision avoidance through low-weighted positional
constraints

A second method avoids collisions with obstacles by creating a repulsive force field around
each obstacle while maintaining the original path’s shape. When solving the LS solution
(2.4), the weighting matrix Q is generally chosen as Q > 1. This way constraints are
prioritized when calculating the LS solution. In case only positional constraints are used,
this results in a negligible error p; — ¢;, ~. In contrast to that, this section considers
low-weighted positional constraints with 2 ~ 1 or 2 < 1, resulting in a non-negligible
positional error. For L # L, the resultant behavior is best described by a “force”, pushing
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or pulling a sample point of the path in a certain direction without pinning it to a specific
position. By imposing low-weighted position constraints on all sampling points of the
path and smoothly varying the constraints between subsequent sampling points, a con-
tinuous “force field” is imitated. The presented approach consists of three superimposed
forces:

e A repulsive force for obstacle avoidance
e An attractive force for trajectory convergence towards its original position

e The Laplacian coordinates maintaining the local shape of the path

Unmodified approach

For a single obstacle W the vector d; accounts for the shortest distance between the obsta-
cle and a sampling point p; of the path, see Fig. 2.8. The repulsive force is then exerted in
direction of d; in order to prevent a collision of the path with any obstacle. It is desired
that the repulsive force becomes larger if the sampling point approaches the obstacle.
This is achieved by setting the positional constraint defined by P, and C as

_ d;
Ciin = -+ — |,
P, =diag(B,,...,B.,)- (2.32)

The constants a,,, 3,, and v,, act as task-specific tuning parameters. A parameterization
of y,, = 3 for example lets the repulsive force decrease quadratically over the distanca
d;, this resembling the force of an electric point charge in 3D. In a similar fashion the
attractive force is described by a positional constraint of the form

> 132 = diag(¢w1 LR d)w))

pulling a sampling point p; back to its original position p; , of the undeformed path. The
constant ¢,, adjusts the strength of the attractive force. To account for both repellent and
attracting force, the terms in (2.4) accounting for the constraints are modified as

-~ _ |G 5_ | P
=[] ae=[t]

Modified approach

There are two problems associated with the unmodified approach. First the repulsive
force acts individually on each sampling point p; and not on the vertex between two
subsequent sampling points p; and p;,;. The path thus can “slip through” or collide
with an obstacle if two subsequent sampling points are either far apart or the obstacle is
small. Another problem are instabilities if the amount of deformation gets too large. In
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.- d;
deformed trajectory - \

Pio °

Figure 2.8: Collision avoidance through low-weighted positional constraints

this case the influence of all three forces may build up, leading to abrupt jumps of the
deformed path. To overcome the first problem the shortest distance d; is not calculated
between the obstacle and every sampling point p; but between the obstacle and the line
segment p; +a;(ps1—Pp;), o € [0, 1], resulting in the shortest distance (Ali. Hence (2.32)
is reformulated as

_ d,
Cl{i:} = ﬁw (pl + a,, ”é\l ”Yw ) 5
ill2
l_)l = diag(/jwa RS} ﬁw)

The second problem is overcome by limiting both the attractive force and the force ex-
erted by maintaining the Laplacian coordinates, thus letting the repulsive force become
predominant when getting too close to an obstacle. The attractive force is limited by
modifying C,;, as

Pio — Pi
Y14 Ip:o —pilly

with the constant €, specifying the force’s upper bound. To limit the force exerted by the
Laplacian coordinates, let A, and A, be the matrices with the Laplacian coordinates of
the original and deformed path. By updating the matrix A during each deformation step
as

Cyiy =Pt € (2.33)

A=(1—-C)A,+C,A,, (2.34)

the influence of the Laplacian coordinates is varied smoothly via the constant {,, € [0,1].
For {,, = 0 both modified and unmodified approach equal each other. For {,, = 1 only
the Laplacian coordinates of the deformed path are considered, effectively disabling the
ability to maintain the local shape of the path. When comparing the modified and unmod-
ified approach, the modified approach has a larger computational complexity, mainly due
to the calculation of cAli. In addition it has a slower convergence rate back to the original
trajectory in the absence of obstacles.

Relation to Elastic Strips

Both approaches are related to the Elastic Strips framework [39] as the forces can be
split up into internal forces for maintaining the path’s shape and external forces for path
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deformation. Yet both their definition and purpose differs. Whereas LTE uses the discrete
Laplace-Beltrami operator

~ Pi—1 —2p; + P; )
Frol=§,=—1—"" " i=23,...,n—1,
-2
o describe the internal force astic Strips rely on a heuristic definition for the
to describe the internal force F."“*, Elastic Strips rely heuristic definition for th
internal force F””E as

int,E d
Fr=k d +d ———(Piy1 —Pim1) — (Pi —Pi-1) |
i—1
1i=2,3,...,n—1, (2.35)

ext,E .

with d; = ||p;;; — p;ll,. The external force F;" " is defined as

i

0 otherwise.

Whereas Elastic Strips try to maintain the shortest possible path in task space, LTE tries
to maintain the original shape of the path. If the undeformed path is a straight line,
the result after deformation is roughly the same, see Fig. 2.9. Yet Elastic Strips cannot
be applied to non-straight paths as they’ll always converge to a straight path in the ab-
sence of obstacles. Both methods tackle the problem of large deformations by modifying
the internal forces. Whereas Elastic Strips use a modified minimum-distance formula-
tion (2.35) that shares common properties with curvature based methods, LTE scales the
internal forces as described in (2.33) and (2.34). Elastic Strips are advantageous from
a computational point of view in two ways. First they only add sampling points (robot
configurations) to the path when necessary, keeping the overall number low whereas
LTE always considers all sampling points. It also relies on a matrix inversion whereas
Elastic Strips are calculated through a computationally more efficient gradient descent
approach. On the other hand the LS approach of LTE converges faster as an optimal
solution is calculated at every time step.

LTE Elastic Strips
a, =0.05 | k. =0.05
B,=0.05 | k. =0.02
/.\ \./\ o, =3
=0

Laplaci o w

ET:SzzlaSrt]rips (;bw =0.002

undeformed path C =0
w=1eb

Figure 2.9: Comparison between Elastic Strips and LTE. Left: Straight path. Right: Sinu-
soidal path
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2.9.3 Collision avoidance through incremental planning using
Laplacian-RRT*

The approach described in this section shifts focus from reactive collision avoidance
strategies that are executed in real time to offline path planning methods which must
be calculated before execution. Whereas until now always the entire path is deformed
when avoiding obstacles, such methods are only applicable in gently constrained envi-
ronments, this section presents an incremental approach based upon the RRT* algorithm
that grows a search tree following the shape of the original path to connect to positions
in task space.

Overview

Path planning in constrained environments is a well elaborated problem in robotic appli-
cations. A recent trend goes towards sampling-based planning, focusing not on analytical
optimal solutions but on the exploitation of today’s available computing power. One of
the most successful incremental sampling-based planners is the RRT* algorithm. The
algorithm is used to connect a start and end state via a path by growing a connected
tree with local optimal properties while avoiding obstacles and sampling the free space
randomly when expanding the tree. It consists of two different, interlocking steps. In the
first step a new sampling node is added to a search tree according to a set of rules. In the
limiting case the search tree spans across the entire search space, reaching every state
from a given start state. A feasible path connecting the desired start and end state is then
found by backtracking the nodes along the tree. Yet the resulting solution is in general
not optimal. Thus the tree is rewired in the second step on a local scale based upon a
given cost function to create a tree with optimal local properties. It is shown in [142]
that the resulting tree is also optimal on a global scale in the limiting case, providing an
optimal path. Its pseudocode is given in Alg. 1-3.  Its core components are

Algorithm 1: RRT* (¥,&,N)
fori=1,...,N do

Yrand < Sample;

Ynearest < Nearest (41/, yrand);

Ynew € Approach (ynearesn Yrand ) >
if CollisionFree( Y eqrest> Ynew) then

Yiear < Near (¥, Yiew);
(/1/, g) — Parent(“f/, g: Ynear: ynew);
(7/, g) — ReWire(/j/> g: Ynear: ynew);

return (v,8)

e Cost: The optimal cost of a state y based on the underlying distance metric
dist(y,y’) between two states y and y’ in configuration space C.
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2.9 LTE collision avoidance in cluttered environments

Algorithm 2: Parent (¥, &, Y .0r> Ynew)
V=YV Ynews
minCost < 00; ¥, < NULL; 0,;,, < NULL;
for ynear € Ynear do

O- «— Steer(ynear’ ynew);
if Cost(x,,q) + Cost(o) < minCost and CollisionFree(o) then

L minCost < Cost(Y,.qr) + Cost(0);

Ymin € Ynear> Omin € O

&—8&U {yneaw ynew};
return (¥, &)

Algorithm 3: Rewire(?, &, Yours Yiew)
for ynear e Ynear do

O < Steer(ynew’ ynear);
if Cost(¥pew) + Cost(o) < Cost(Y,eqr) and CollisionFree(o) then

Yparent < Parent(¥,eq,);
g — g\ {yparent’ ynear};
& — & U{Ynews Ynear 13

re:turn (v,8)

e Near/Nearest: Returns a set of states Y € ¥ resp. the nearest state ¥,  .s; from
the vertices ¥ of the graph (¥, &) within a certain radius

e Steer: Gives a path o connecting two states y and y’.
e Approach: Returns a state that is closer to y’ from y by a predefined amount a,..

e CollisionFree: Checks if the path o connecting two states y and y’ lies entirely
in the non-colliding configuration space C¢,,, < C.

e Sample: Performs independent uniformly random sampling of Cy,.,.

When expanding the tree graph, i.e. adding a leaf node to the tree, the RRT* algorithm
performs as follows: In a first step a random state y,,,; is sampled from the free configu-
ration space. After having found the closest node y,,q..s:> the random state is approached
by a predefined amount a,, resulting in the new state y,,,. Until now the approach is
similar to the RRT algorithm and aims at sampling the entire free configuration space
Cree- To create a tree with local optimal properties, its nodes are rewired dynamically. If
the path between y,.,,.s; and y,.,, is non-colliding, the Parent function selects the parent
node with minimal cost from Y,,,, for y,.,. The function Rewire does the same for leaf
nodes in Y,,,, and rewires the graph accordingly.
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2 Motion adaptation and planning

Distance metric

A key feature of RRT* is the underlying distance metric which determines how far two
states are apart from each other. In general it is either chosen to be the Euclidean dis-
tance in Cartesian space or time, resulting in shortest paths or time-optimal trajectories.
For being combined with LTE, the distance metric is defined as the residual of the LTE
solution. Without loss of generality it is defined as the weighted velocity and acceleration
deviation between two sampling points p; € P of the reference trajectory and p;; € P, of
the tree as

di'gt(pi: pi,s) = wlllcil,s - ci1||12: + w2||Ci2,s - cizllfn (236)

with weighting factors w; € 2, w, € Q, and ¢;; ;, €1, Co 5, €;5 as defined in Sec. 2.4. This
representation holds in case of equitemporally spaced sampling points. When comparing
two paths with multiple sampling points, one has to take the sum over n sampling points.
In addition, every tree path P, has to pass at least the first and last sampling point. This
is reformulated as

doym = Z dist(p;, i) = Z willeqs —eallf + wslle, — el
i=1 i=1
s.t. PP, =C. (2.37)

and solved through LTE for the unconstrained case as minimizing d,,,, corresponds to
solving (2.12). In order to apply the distance metric in (2.36) to RRT*, three modifica-
tions are necessary.

For the given distance metric the RRT* algorithm operates in the acceleration/velocity
(configuration) space. As the acceleration is calculated through second order finite differ-
ences based on three subsequent sampling points {p;,, P;, Pi_1} € R*", the configuration
space is 3n-dimensional. Because the velocity is calculated based on {p;, p;_;} and those
two points are already included in the configuration space, adding the velocity does not
change its dimension. When sampling the configuration space, asymptotic optimality is
guaranteed [142]. Yet due to the high dimensionality of the configuration space the al-
gorithm can become unfeasible slow. Another option is to operate in task space, defined
by the sampling points p,. By associating every velocity/acceleration vector with an in-
dividual sampling point p;,p;; in task space, the dimensionality of the search space is
reduced from 3n to n.

Another aspect are indexed sampling points. As comparing the local path properties
is only reasonable for two sampling points p;, p; ; with similar index along the trajectory,
the distance metric is only defined in this case. Implicitly it is assumed that P and P,
consist of the same number of sampling points. Indexing the sampling points has another
consequence: When modifying the connections between nodes in the tree as done by the
Parent or Rewire function, it has to be assured that only nodes with subsequent sampling
points are connected.

Last, the resulting tree is grown from nodes with lower index towards nodes with
higher index in order to ensure the continuous increase of subsequent sampling points’
indices, making it necessary to use backward finite differences when calculating p, and

pi,s‘
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All three modifications lead to a new distance metric
dist(y,y") = dist(p;, pis) = willci s — cil”}z: + w,llep s — ci2||12:; (2.38)

associating each state y, y’ with a specific point p;, p; ; in task space.

To account for all modifications, the pseudocode of the RRT* algorithm has to be

modified as described in Alg. 4-6. To consider the index of all sampling points prop-
erly, a new variable id,,,; € {1,2,...,n} is introduced. As a result, the ParentId
function only connects the new node y,,, to other nodes with index id,,,; — 1.
The RewireId works in a similar fashion and reconnects only other nodes with an
index id,,,q + 1 or id.,,q + 2. Because the acceleration is calculated based on
three subsequent sampling points, also nodes with index id,,,; + 2 must be consid-
ered for the Rewireld function. In addition, the function has to check every possi-
ble combination {p;_,, Pi_1,P;}, I € {id,qng + 1,1d,4nq + 2} for better cost/collision and
rewire when necessary. For better distinction between the original RRT* algorithm and
the modified version, it is renamed as Laplacian-RRT*.
If the set Y,,,, consists of all vertices V, the asymptotic optimality property of RRT*
still holds. Even if the task space has a lower dimension than the configuration space, all
elements of the configuration space are uniquely calculated based on the position of the
sampling points {p;,1,P;, P;—1} in task space. Still, as indexed sampling points impose
additional restrictions on which nodes to rewire, the algorithm has a slow convergence
rate.

Algorithm 4: Laplacian-RRT* (¥, E,N)
forit=1,...,N do

Yrand> idrand — Sample;

Ynearest < Nearest (nj/> Yrand> idrand);

yneW — ApproaCh(yneareSt’ yr(lnd);
if CollisionFree(Y eqrests Ynew) then

Yiear =V
(¥,E) « ParentId(¥,E, Y. .ar» Ynews 1rand);
(¥,E) < RewireId(V,E, Y, .ar» Ynews 1Qrand);

return (V,E)

Task space bias

A task space bias [270, 271] is introduced to increase the convergence rate and reduce
computational complexity. Rather than sampling the entire task space randomly, the
growth of the tree is biased towards solutions with a smaller cost function d,,,,,. Whereas
this provides a fast and good solution, it also limits the amount of exploration. The task
space bias accelerates calculations in two ways. First it increases the speed at which a
valid solution is found. The stronger the task space bias is, the closer the valid solu-

tion will be to the optimal one. Second it allows one to use a standard nearest neighbor
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Algorithm 5: ParentId(¥, E, Y,ear> Ynews 1rand)
VYV —VUYnews
minCost < 00; ¥,,;, < NULL; 0,;,, < NULL;
for ynear € Ynear do

if id(¥,0qr) = 1d,4q — 1 then

()- — Steer(ynear’ ynew);
if Cost(¥,.qr) + Cost(o) < minCost and CollisionFree(o) then

L minCost < Cost(¥,.q-) + Cost(0);

Ymin € Ynear> Omin € O

E—EU {ynear’ynew};
return (v, E)

Algorithm 6: RewireId(V,E, Y, car> Ynews> 1drand)

for ynear E Ynear do
if id(.ynear) = idrand +1or id(.ynear) = idrand +2 then
1= idnear;
Check any possible combination {p,_,, p;_1,p;} for lower cost/collision and
rewire when necessary

return (¥, E)

search in task space when determining the set Y,,,,.. It has been explained before that LTE
minimizes the term d,,,, in (2.37) for the unconstrained case. Mathematically, when ex-
panding a tree branch Py = [p; 1, Py, ---,Ppy ]’ With another sampling point with index
[ + 1, its optimal position p ;,, is calculated as

0L, MA,
P, = | L, 0,A,
QP QC
Poi+1 = Psyi1y
pr nd pr nd
pb,l_."'. ) Po,i e
¥ new .. ..pnew
E)b,|?":|~~“._~ PS

Figure 2.10: Task space bias. Left: Conventional approach. Right: Modified approach
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with Q = diag(w, ..., w). The resulting vector p;,;,; — Py, is used as an offset for the
Approach function to bias the tree growth towards the optimal trajectory. Whereas a
conventional approach results in

Pnew = Pbp,1 + ar(prand - pb,Z)J

the modified version becomes

Prew = f’b,l+1 + ar(prand - lsb,l+1); (2.39)

with the variable a, € [0, 1] accounting for the amount of bias, see Fig. 2.10.

Task space nearest neighbors

A computational bottleneck of all RRT-based algorithms is the need of a fast nearest neigh-
bor search for tree expansion. Whereas one can define any distance metric dist(x, x"),
the challenge is to find a nearest neighbor algorithm both being consistent with the cho-
sen distance metric and reasonably fast. The LS solution depends quadratically on L,
and L, and therefore also on the position of all sampling points p;. For a given branch
P, = [Py1,Pp2-----Pp;]" of the tree, the next sampling point’s position py,, is split up
as
Pbi+1 = Do i1 + APps1s

with the optimal next sampling point’s position P, ;,; and an offset Ap,,,,, see Fig. 2.11.
The term d,,,, in (2.37) is split up into two parts as

l n
dsum = ZdiSt(pi: pi,s) + Z diSt(pi’ pi,s) .

1 i=l+1
DN
~~ ~"

N 7

For a strong task space bias the term d, is approximately equal for different branches

prand
Po,1,1 /0
e
Pb,1,1+1
Pb2 e
Pb,2,1+1

Figure 2.11: Task space nearest neighbors. Left: Sampling point position p; ;,; being split
up into an optimal position P, ;,, and an offset Ap,;,,. Right: Resulting
nearest neighbor search

of the tree. When expanding a tree branch by a new sampling point p;;,;, the term

d, depends quadratically on Ap,;,; while being minimal for Ap,;,; = 0. It is thus
sufficient to find the branch with minimal Ap,;,; when performing a nearest neighbor
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search. Mathematically, when given different branches Py, ;, finding the nearest sampling
POINt P,.qrese fOr @ random sampling point p,,,,4 reduces to

Prearest = argmin”Prand - Isb,j,l+1 ”F
Pb,j1+1

An interesting observation is that the sensitivity s, , for a trajectory with n sampling points,

defined as
2\ 2
Q,L, A,
el

aAPb]l ’

Apy, ;=0

is largely independent of the choice of [ and n and independent of the shape of the
underlying path, see Fig. 2.12. This justifies the practice of using the nearest neighbor
search regardless of the index of each node for the Nearest function.

o o
o o o o
o o o o o o
~ [ap] ~ (ap] ~ ™
—~ 6 1 1 1 1 1 1
c c c c c c c
e
>4
=
‘@ 2
c
[0}
(%]
0 0 .1 .2 .3 .4
10 10 10 10 10

sampling point (1)

Figure 2.12: Sensitivity s; , for multiple trajectories with different number of sampling
points n, evaluated over varied sampling point indices [. The used parame-
terization is w = 1e6, w; =0.1, w, =1

Growing exploration ratio

Whereas both a task space bias and task space nearest neighbors are essential parts when
combining LTE with the RRT* algorithm, there are further modifications possible which
have proven to result in a considerable speedup of finding a valid solution. One is a grow-
ing exploration ratio. As displayed in (2.39) the Approach function depends on a variable
a, specifying the amount of exploration. When increasing its value with increasing itera-
tion number n,, the amount of exploration is increased in order to find trajectories which
are less optimal but eventually bypass obstacles. This is expressed as

{qbrn’;r if ¢, n*r <1,
a, =

1 else,
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Multiple sampling point expansion

When expanding a branch of the tree, the optimal path P, consists not only of the next
sampling point, but all sampling points till the end of the path. Hence the branch P,
can expanded with multiple sampling points pj ;.1,- .., Py 4o, at every iteration without
losing its optimality property. Fig. 2.13 illustrates the idea.

Pbl Ppiet = Prew Po.

.
“.\Ps

Po,i+1 = Pnew

Figure 2.13: Multiple sampling point expansion. Left: Conventional approach extending
only one node. Right: Accelerated approach improving multiple nodes (o =
3 for the given illustration)

Reduced rewiring

For large search trees the RewireId checking every combination of {p;_,,p,_1,P;} is the
computational bottleneck of the method. Under the assumption of a tree consisting of
n, sampling points and all sampling point indices being identically distributed over the
range {1,...,n}, the number of checks per iteration is approximately

2

n,\?
Ch - 3 - N
n
resulting in an O (%) complexity. In a similar manner to the task space nearest neighbor
method the three sampling points are decomposed as

P, =P, tAp,, q={i,i—1,i—2},

into an optimal position p, and an offset Ap,. Then the total cost d;,,, depends quadrat-
ically on Ap,. In this case the problem is reduced to find the node with minimal offset
Ap,, which gives rise to the simplification of performing a nearest neighbor search over
p, when rewiring the tree. In addition, complexity is reduced to O (%) by rewiring only
candidate sampling points with an index id(y,.qr) = id,qng + 1, see Alg. 6.

Spatial evaluation

A simulation experiment in 2D aims at displaying the principle procedure when ex-
panding the Laplacian-RRT* tree. Shown in Fig. 2.14 are two different versions of the
Laplacian-RRT* algorithm. For both versions the task consists in finding a trajectory that
does not collide with obstacles (in red) while still resembling the reference trajectory (in
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orange) as good as possible in terms of (2.38). The difference between the two versions
is shown in Tab. 2.2. Task space bias and other related methods are only included in the
biased version on the right side but not the unbiased version on the left side. Clearly the
biased version resembles the original trajectory better than the unbiased one. Fig. 2.15

optimal traj. j
reference traj. [}
@ obstacles |

Figure 2.14: Spatial comparison of different Laplacian-RRT* approaches. Left: Unbiased
version. Right: Biased version

| method | unbiased version | biased version |
number of iterations n, = 5000 n, = 10000
weighting factors w=10° w=1leb
w; =0.1 w; =0.1
wy,=1 w, =1
task space bias not used used
task space nearest neighbors not used used
growing exploration ratio not used ¢, =2e—4
Kk, =0.5
multiple sampling point expansion not used o,=3

Table 2.2: Parameterization for the spatial comparison of different Laplacian-RRT*
approaches

shows the mean cost d,,,, of both unbiased and biased version based on 30 single roll-
outs. Because each individual cost is only plotted after a valid solution has been found,
different graphs start at different abscissa values. The cost of the biased version is about
three magnitudes smaller than the cost of the unbiased version. Moreover, the graphs of
the biased version are almost constant over a wide range of iterations indicating that due
to the growing exploration ratio in combination with the task space bias, near-optimal so-
lutions are found already at an early stage. The presented version of the Laplacian-RRT*
algorithm minimizes the squared velocity and acceleration deviation from the reference
trajectory. Fig. 2.16 shows velocity and acceleration plots of reference and optimal trajec-
tory for the biased version. No major deviations from the reference trajectory are visible.
The Laplacian-RRT* algorithm can be applied to arbitrarily shaped trajectories. In case
of a straight trajectory, the optimal trajectory resembles the solution from the RRT* al-
gorithm. Shown in Fig. 2.17 is the comparison between the RRT* and Laplacian-RRT*
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Figure 2.15: Cost comparison of different Laplacian-RRT* approaches. Left: Unbiased
version. Right: Biased version
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Figure 2.16: Velocity and acceleration plots of the optimal trajectory for the biased
Laplacian-RRT* approach

algorithms. Although the optimal trajectories are almost similar, the created trees differ
both in structure and shape due to different underlying principles of shortest path vs.
minimal velocity/acceleration deviation. The task space nearest neighbor function relies
on a strong task space bias. The stronger the bias is, the more the tree growth is shifted
towards optimal solutions. The more optimal the solution is, the less rewiring opera-
tions of the Parent (-Id) and Rewire(-Id) function are necessary. Thus the amount of
rewiring operations constitutes an indirect evidence for the strength of the task space
bias. Shown in Fig. 2.18 is the relative amount of rewiring operations with respect to the
number of new nodes p,,, for the RRT*, the unbiased Laplacian-RRT* and the biased
Laplacian-RRT* algorithm. Barely any rewiring is necessary using the biased Laplacian-
RRT* algorithm, leading to the optional simplification of not performing any rewiring in
order to reduce computation time.

Computational complexity

Shown in Fig. 2.19 are computation times averaged over 30 rollouts for a single-threaded
Matlab R2013b implementation on a i7-3635QM/8GB notebook. Each gray bar indicates
the overall computation time after every 1000-th iteration. It is split up both into al-
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Figure 2.17: Spatial comparison of RRT* and Laplacian-RRT* for a straight reference tra-
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Figure 2.18: Percentage of rewiring operations for the Parent(-Id) and Rewire(-Id)
function depending on the used algorithm

gorithms (ParentId/Rewireld) and functions (LTE/collision detection/nearest neighbor
search) causing the main computational load. In addition, the number of tree nodes and
its standard deviation is displayed in blue. It is visible that most computation time is
spent for the nearest neighbor search and collision detection. Whereas the method has
a theoretical linear complexity when using optimized nearest neighbor search method,
Matlab’s built-in knnsearch function causes the given example to scale quadratically with
the number of tree nodes.

2.10 Experimental evaluation

This section focuses on real life experiments, verifying the capabilities of LTE and showing
how the presented approaches and expansions can fulfilling a variety of typical robotic
tasks.

2.10.1 Volleyball scenario with a planar 3DOF robot

A first experiment aims at displaying the online deformation capabilities of LTE while suf-
ficing additional boundary constraints in a dynamic manipulation task. Inspired by the
game of volleyball, a tilted airhockey table and a round puck are used to construct a 2D
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Figure 2.19: Processing time evaluation of the Laplacian-RRT* approach

representation of the game. When playing, a human player faces a robot opponent. The
goal is to hit the puck such that it moves across an obstacle (net) located in the center of
the table and lands in the opponent’s field. The robot player consists of a planar 3DOF
manipulator with a flat EE plate. For an incoming puck the system automatically calcu-
lates both, an optimal outgoing puck trajectory and the necessary hit position/velocity
of the EE, see App. A. Five infrared markers make it possible to track the position of the
puck by a Qualisys motion capture system operating at 250Hz while the robot operates
with a sampling rate of 1000Hz. Both motion planning and motion controller are im-
plemented in Matlab/Simulink and compiled with Mathwork’s Realtime Workshop. The
airhockey table measures 160 x 80cm, out of which only the right half is accessible by the
robot. Whereas the robot’s maximum speed is 7% per joint, the underlying PD position
controller constitutes the limiting factor. An reference minimum-torque trajectory for a
typical hitting motion is calculated offline using DirCol [307, 242]. As the method is to
slow for online replanning, LTE is used to deform the reference trajectory with minimum
acceleration deviation. Constraints limiting the amount of deformation are given by the
boundaries of the airhockey table and the net in the middle of the table. A spline-based
deformation in combination with high-weighted positional constraints and convex hulls
for collision avoidance as described in Sec. 2.6.2 is used to suffice all constraints and
replan a new trajectory within one sampling step. To derive tighter spatial bounds of the
convex hulls during trajectory deformation, the trajectory is split up into smaller trajec-
tory segments of about 50ms length. After throwing the puck, the system automatically
estimates the trajectory of the puck through LS regression based on 20 frames of the
motion capture system, corresponding to a 80ms delay until the desired EE trajectory is
calculated. Execution of the desired EE trajectory begins immediately after its calcula-
tion, requiring an adaptation of the optimal trajectory calculated with DirCol not only
in the spatial but also temporal domain. A typical batting motion lasts around 800ms,
consisting of a 350ms long interval from the rest position to the hit position and a 450ms
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long interval where the robot returns back to its rest position. Fig. 2.20 shows an ex-
ample in which the puck is hit by the human and batted back by the robot. The online

Figure 2.20: Volleyball scenario with a human playing against the robot. A red arrow
highlights the position of the puck

trajectory deformation is illustrated more in detail in Fig. 2.21. The left side shows a
variety of possible trajectory deformations depending on the hit point of the puck (blue
dots) and the resting start/end position of the trajectory (red dot). For the given example
the desired velocity in the moment of hitting is similar for all hit points. The color of the
path corresponds to the EE velocity during movement, with green indicating low veloc-
ities and red for high velocities as indicated by the color bar on the right side. Because
the time to reach the hit point and the time back to the resting position are similar for
all trajectories (381ms and 673ms), one can see well how the EE has to move faster to
reach a hit position further away from the resting position. The blue line marks the unde-
formed reference trajectory calculated with DirCol. On the right side a detailed view of
the obstacle avoidance is shown. To avoid the workspace boundaries (red line), convex
hulls (red rectangles) based on the spline representation of the deformation process and
the undeformed trajectory are calculated as shown in (2.28). As they enclose the tra-
jectory, the trajectory is deformed through the collision avoidance scheme of Sec. 2.9.1
such that the convex hulls do not intersect with any obstacle (green rectangles). The
principal goal of torque-optimal trajectories is only indirectly tackled by the deformation
using splines. Even if the approach minimizes the acceleration difference, the absolute
acceleration can still become large for big trajectory deformations. As the EE accelera-
tion in task space is coupled to the manipulator torques through the dynamical model
of the manipulator, minimizing acceleration deviation also minimizes torque deviation
to a certain extent. The faster the movement is, the more dominant the effect becomes
as gravitational terms play only a minor role in this case. Fig. 2.22 illustrates the effect.
The approach works reliably in practice and successfully avoids workspace constraints.
The combination of a spline-based approach with a convex hull-based collision avoid-
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Figure 2.21: Trajectory deformation for the volleyball scenario. Left: Multiple possible
deformations for a given hit position (blue dots) and start/end position (red
dot) with corresponding velocity along the trajectory (path color). Right:
Collision avoidance scheme using convex hulls for a given workspace bound-
ary (red line)

ance strategy is the fastest LTE adaptation method known so far. For the given example
the convex hulls of both the original trajectory segment and the additive LTE term con-
sists of only four sampling points, resulting in 16 sampling points after calculating the
Minkowski sum. Compared to 50 sampling points for each trajectory segment of 50ms
length computational complexity for collision avoidance is reduced by a factor of 3. Al-
though not implemented in the current experiment, an optimal manipulator trajectory
can be recalculated every millisecond for a fast adaptation in case of sudden disturbances
or nonlinear friction effects that are not considered in the actual model. The approach
is very stable as it only depends on a few tunable parameters. Among these the length
of each trajectory segment (50ms for the given example) is the most crucial one as it
constitutes a tradeoff between two extrema. When chosen too high, computational com-
plexity is further reduced for collision avoidance but the resulting convex hull from the
Minkowski sum may be too conservative. When chosen too small (1ms in the limiting
case) the advantage of using convex hulls is canceled out.

2.10.2 Bin-the-litter scenario using a HRP-4 humanoid robot

The second scenario displays how LTE can be combined with a prioritized inverse kine-
matics (IK) approach to generate whole-body motions for a humanoid robot. It also shows
an application making use of low-weighted positional constraints for collision avoidance
and the cooperative manipulation scheme to carry an object with two hands. The task
is to clean up garbage and consists of lifting a bin from a lower position onto the table,
grasp a bag of garbage firmly with both hands and dispose the garbage in the bin. The
human demonstration is recorded at a frame rate of 200Hg using a motion capture sys-
tem from Motion Analysis Inc. by tracking the position and orientation of both hands, bin
and the garbage bag. The obtained motion is then mapped to a HRP-4 robotic platform
and adapted using LTE. The used HRP-4 platform is about 151cm tall and has 50 joints,
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Figure 2.22: Maximum EE acceleration and maximum joint torque depending on the hit
position in task space. A red dot indicates the hit position of the reference
trajectory

out of which 34 are articulated and used for task reproduction [139]. It weights about
39kg and is controlled by a 1.6GHz Intel Pentium M prozessor. First simulations are con-
ducted in Matlab to synthesize the desired hand pose for a successful task completion.
Based on the result, a whole-body motion is calculated in OpenRave [69] and verified
afterward in OpenRTM [12] before final execution on the robot. A prioritized IK ap-
proach ensures a physically consistent whole-body motion taking joint angle limitations,
self-collisions and center of mass (COM) based balance into account for a given trajectory
of both hands. The multiresolution approach of Sec. 2.7 is used to fit the motion of the
human demonstration to the different figure of the robot, resulting in the imitation run
in Fig. 2.23. All LTE parameters are displayed in Tab. 2.3. The modification run differs
from the adaptation run in two ways: An added obstacle (yellow book) is placed on the
table and must be avoided by the robot when putting the bucket on the table. In addition
the initial position of the garbage bag is elevated by around 40cm. By creating a repellent
force field around the book and using low-weighted positional constraints as described
in Sec. 2.9.2, the obstacle is circumnavigated. To account for the modified position of
the garbage bag, the hand trajectory is lifted accordingly using positional constraints.
During both runs the cooperative manipulation scheme of Sec. 2.8 maintains a specific
distance between both hands when holding the garbage bag, preventing it from falling
down and grasping the bag firmly. For a better understanding of the movement adap-
tation process, the trajectories of both EEs are compared in Fig. 2.24 for the imitation
and adaptation run. Based on the marker position attached to bin, garbage bag and the
table, their position is reconstructed. Whereas the table is shown in gray, both garbage
bag and bin before and after the placement are marked with blue. When comparing the
imitation run on the left side with the adaptation run on the right, it is clearly visible
how the trajectory of the left endeffector is lifted to avoid the obstacle. Fig. 2.25 shows
velocity and acceleration plots for both EEs during the imitation and adaptation run after
LTE deformation. Whereas both human demonstration and robotic motion last around
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imitation demonstration

adaption

Figure 2.23: Bin-the-litter scenario. Top: Human demonstration. Middle: Robot imita-
tion. Bottom: Robot adaptation

7.5s, the motion is slowed down afterward by a factor 5 for safety reasons. Both velocity
and acceleration are continuous without any visible jumps. It is good to see how veloc-
ity and acceleration of the left EE increase during the adaptation run as the robot has
to circumnavigate the object without retargeting the time. When holding the garbage
bag, the original distance between both EEs during the imitation run is maintained also
during the adaptation run. This effect is displayed in Fig. 2.26. To avoid a collision with
the added obstacle, the path of the EE is modified to a large extent for 2s < t < 3s,
thus the distance between the imitation and adaptation run differs. For 6s < t < 7s
the robot holds the garbage bag with both endeffectors, making a precise coordinated
movement essential. Applying the cooperative manipulation scheme lets the distance
and also the relative spatial position between both EEs stay identical for the adaptation

| parameter | value |

a, 0.001
B. 0.001
Y 3
€ 0
b 0.001
Cw 0
w, le4
w le6

Table 2.3: Parameters for the bin-the-litter scenario
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Figure 2.24: Bin-the-litter scenario. Left: Schematic view of the imitation run. Right:
Schematic view of the adaptation run
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Figure 2.25: Bin-the-litter scenario. EE velocity and acceleration for both hands during
the imitation and adaptation run

and imitation run. The example shows how a complex motion can be adapted in a goal-
directed way. Compared to a probabilistic encoding using HMMs or a vector-field based
representation, the trajectory-based approach allows an intuitive understanding of the
deformation process and eases verification. Still, as only the EE trajectories are adapted
through LTE it neglects the underlying robot kinematics. Although the robot is highly re-
dundant, the constraints beside LTE limit the workspace considerably, thus allowing only
small amounts of adaptation. The low-weighted positional constraints depends on a few
parameters and required some fine tuning for motion adaptation. Here a tradeoff had to
be found between a large safety distance to any obstacle and the limited workspace of
the robot, requiring close circumnavigation around obstacles.

2.10.3 Lift-the-cup scenario using a HRP-4 humanoid robot

A final scenario illustrates the planning capabilities of the Laplacian-RRT* algorithm in
Sec. 2.9.3 in a real environment. The task consists of lifting a cup from under the table
onto the table. Similar to the previous example a reference motion recorded from a
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Figure 2.26: Bin-the-litter scenario. EE distance between both hands during the imitation
and adaptation run

human demonstration is mapped to the robot using a motion capture system from Motion
Analysis Inc. and mapped to the robot. Due to a stack of books being placed on the table
a pure motion imitation leads to an unsuccessful task completion as the robot collides
with it. The Laplacian-RRT* method is used to find an optimal, non-colliding motion
resembling the reference motion as good as possible. The 3D search space consists of
the position of the right hand, with its orientation kept similar to the reference motion.
A prioritized IK approach ensures that additional constraints like joint angle limitations,
self-collisions and COM-based balance are maintained. If the constraints are violated or
the robot collides with an obstacle, the corresponding tree segment is discarded when
expanding the tree. Results are shown in Fig. 2.27 with the used parameters given in
Tab. 2.4. Used mainly for collision avoidance, the approach is also compared with a
conventional potential fields approach of the form

lkr(d —d(p))? ifd(p) <d,,
0 otherwise.

for a given minimal point-obstacle distance d(p) and scalar constant d,. As shown in
the figure, the similarity measure d,,,, for the Laplacian-RRT*-based trajectory is about
5x better (=lower) than for the potential field based trajectory. The entire robot motion
is first simulated in OpenRave [68] and verified in OpenRTM [12] before execution.

| parameter | value |

n, 1000
w le6
w; 0.1
w, 1
P, le—4
K, 0.6
o, 10

Table 2.4: Parameters for the lift-the-cup scenario

Shown in Fig. 2.28 are velocity and acceleration plots for the optimal trajectory found by
Laplacian-RRT*, the potential field based trajectory and the reference trajectory. Whereas
the reference trajectory is almost perfectly tracked for t < 2.5s using potential fields, the
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Figure 2.27: Lift-the-cup scenario. Top: Simulation results. Bottom: Conducted experi-
ment. A bar graph compares the similarity measure d,,,, for the Laplacian-
RRT* and an artificial potential field approach

repellent force fields induced by the obstacles cause large velocity/acceleration deviations
for t > 2.5s. The Laplacian-RRT* trajectory has only a small velocity/acceleration error
over the entire time span. The small ripples are caused by the stochastic nature of the
algorithm and become smaller with increasing number of sampling point of the Laplacian-
RRT* search tree. Yet the potential fields approach allows for online adaptation whereas
the Laplacian-RRT* approach must be calculated offline. The presented approach shows
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Figure 2.28: Lift-the-cup scenario. EE velocity and acceleration of the right hand for the
potential fields approach, the reference trajectory and using Laplacian-RRT*

how the Laplacian-RRT* algorithm can be used to imitate a given motion in a constrained

environment. Yet its general nature does not limit application to kinematic constraints
for a fixed robot. It also allows to consider more complex aspects like dynamics-based
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constraints, advanced scenarios where the robot also has to walk or the inclusion of an
underlying controller. If any of the conditions is violated, it is interpreted as the collision
of the tree segment with an obstacle and the tree segment is discarded. However, as both
the original RRT* and the Laplacian-RRT* algorithm depend on a fast collision checking
routine such approaches are limited to robotic systems with few DOF [312, 130, 143,
144].

2.11 Conclusion

This chapter introduces LTE as a powerful tool for trajectory and path adaptation. The
method’s key aspect is to represent any constraint during path adaptation by a set of
linear equations which can be included in the LTE framework and solved efficiently us-
ing LS. Whereas the original formulation is of general nature and only of limited scope
for complex motion adaptation, several modifications and expansions fit the approach to
robotic specific needs like passing waypoints or avoiding obstacle while maintaining a
smooth trajectory. Special focus is drawn on discussing both theoretical properties that
might be of interest for future expansions and practical aspects engineers have to con-
sider during implementation. As such a large part of the chapter is dedicated to compu-
tational complexity and possible improvements to increase the speed of the method. The
method requires a discretized reference trajectory for adaptation, thus being unusable for
other trajectory descriptors like state-space representations or a probabilistic encoding.
In addition the LS approach provides only an approximate solution for overdetermined
equation system. Whereas this is crucial from a theoretical point of view as constraints
are never perfectly met, the practical implications are minor as the error can be made
insignificantly small before encountering numerical instabilities.

2.12 Bibliographical notes

The results in this chapter and the related appendix are either partly or in their entity
based on the author’s work in [223, 225, 226, 228]. Because LTE is based upon the
idea of interpreting a discretized trajectory as a surface mesh, the original approach has
strong similarities with existing literature in computer graphics on mesh deformation,
for example the handling of nonlinear deformation effects for surface meshes with arbi-
trary node connectivity [280]. The presented approach in this chapter is only a special
version of Laplacian mesh processing, allowing simplifications due to the unique mesh
structure of paths. In a similar fashion there are multiple articles on multiresolution ap-
proaches downsampling a mesh through subdivision [157, 159], yet they are specifically
designed for surface meshes and thus not directly applicable to paths. When calculating
spatial bounds of LTE, both the concept of a leader-follower network and the decomposi-
tion of the system dynamics matrix into multiple submatrices are common in networked
controlled systems [198] and only adapted in this chapter to modify paths. For colli-
sion avoidance, the LTE framework is combined both with a potential fields approach
and with the RRT* algorithm, Both methods are independent concepts presented also in
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[141, 151] and modified to cirrcumnavigate obstacles while maintaining the shape of the
rreferrence.
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Motion imitation and control

This chapter investigates control structures to generate robotic motions which share the
common optimality principles as the corresponding motion adaptation scheme. Differing
from existing state-of-the-art methods the approach allows to consider not just kinematic
constraints but also dynamic constraints while maintaining local trajectory properties by
means of a predictive optimal control scheme.

The chapter is organized as follows: Focusing on whole body motion control in Sec. 3.4,
a classical prioritized IK scheme is combined with a LQR controller to account for LTE-
specific local trajectory properties. It also presents an HMM-based probabilistic approach
considering not only the movement of the robot but also its interactions with the environ-
ment. For EE control subject to trajectory retargeting a piecewise linear system based ap-
proach is presented in Sec. 3.7. Focusing on dynamic manipulator properties in Sec. 3.5,
a closed-form algebraic expression is derived to specify upper bounds on the amount of
deformation that suffice given torque constraints. An trajectory classifier is presented in
Sec. 3.8 that shares common properties with LTE bus is applicable to a wider class of
classification problems. Most proposed control and classification schemes are evaluated
in Sec. 3.9 through experiments. Sec. 3.10 provides a short summary about the chap-
ter. The chapter ends with Sec. 3.11 where bibliographical remarks to other published
articles about the topic are listed.

3.1 Introduction

LTE as presented in the last chapter is used to plan and adapt a desired movement before
execution. This happens on an abstract trajectory level which is at first independent of the
used manipulator structure and takes a perfect environment for granted, e.g. no dynamic
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constraints or disturbances caused by external influences or measurement inaccuracies.
In contrast, this chapter focuses on the question how a predefined motion is executed
best on a given robotic platform. It comprises of different aspects that must be taken care
of when being applied to the field of motion imitation.

The first aspect is motion representation. For a calculated motion, the type of motion
encoding influences the imitation capabilities and is crucial for successful task comple-
tion. This aspect also considers the data to use when specifying the task as a brute-force
approach considering all available data might lead to no additional insights if both the
task-specific and imitation-related properties must be extracted and the resulting infor-
mation are contradicting. As for most tasks rather few conditions must be met, it gives
room for modifications of the original motion which do not interfere with the task. Still
these modifications must be optimized by measuring their influence on the imitation
quality during execution.

The second aspect is motion mapping. If the motion is transferred from a demon-
strator to a robot with different kinematic and dynamic properties, additional conditions
must be met by the motion imitation scheme. A simple one-to-one mapping is in general
impossible to be executed by the robot as violated joint angle limits will damage gears,
additional balance constraints may cause the robot to fall over or different link lengths
can cause positioning errors.

A last aspect are additional considerations of motion control in the context of motion
imitation and adaptation. Differing from a conventional, decoupled approach between
planning and control this thesis favors a tight coupling between the motion adaptation
methods in the last chapter and the motion control methods in this chapter. The underly-
ing idea is to find control schemes that share the same optimality principle as the motion
adaptation schemes, thus easing the design process and avoiding contradicting control
schemes.

3.2 Related work

As LTE is primarily designed to deform EE trajectories in task space, it requires a mapping
scheme from task to joint space for a feasible whole-body motion. Different methods and
applications exist for the IK problem [107, 129, 269], with differential IK methods as
the most common ones [217]. Although the associated Jacobian matrix is in general
calculated analytically, recent advances in the field of (un-)supervised learning make it
possible to learn the IK [75, 275]. The differential IK approach accounts for arbitrary
task spaces and is not limited to EE trajectories. There are different ways to define such
task spaces, for example through a probabilistic encoding scheme using HMMs [ 170] that
accounts for temporal deviations or through automatic extraction [131, 132, 213]. They
can be also defined through offline comparison [169] or encoded in a Dynamic Bayesian
Networks to deal with unforeseen perturbations [80], making clear that the used task
space cannot be uniquely defined and depends highly on the user requirements.

Every IK scheme relies on a controller to suppress disturbances and let the manipulator
converge back to its desired position in case of an sudden offset. To be consistent with
LTE, a controller must consider the same optimality principle. Suitable control methods
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considering the time-varying structure of the local trajectory properties are found in the
field of optimal control [203] and model predictive control [88]. Both control methods
are closely related. Optimal control aims at finding a control law for a dynamical sys-
tem such that a given optimality criterion is met. Model predictive control has the same
goal but is solely used for discrete models and a finite control horizon, whereas optimal
control also considers the continuous case and an infinite control horizon. An important
class of optimal controllers is the linear quadratic regulator or LQR controller for linear
systems and quadratic cost functions [ 174]. Multiple extensions exist, including applica-
tions to nonlinear systems [ 191] and stochastic/risk-sensitive systems [200, 267], global
optimal control when combining LQR with RRT* [100, 295], adaptive LQG controllers
for collision avoidance [28] and constrained problems [264]. Generic and powerful the
LQR controller is, it is also computationally demanding. A simpler control version in this
chapter is based upon a set of piecewise linear (PL) systems [277, 133] which are quickly
recalculated whenever the reference trajectory gets deformed. Extensive research is con-
ducted on PL systems regarding the synthesis to stabilize and control nonlinear systems
and their identification [87]. The approach is driven by the idea to create a vector field
that automatically avoids obstacles and converges to a desired goal state [ 103, 149, 155,
182, 193, 235].

If not only kinematic but also dynamic constraints have to be considered, a precise
model of the robot is required to simulate the inverse dynamics [84, 220]. Once ob-
tained, it can be used to suffice dynamic constraints by either retargeting the motion in
the temporal or spatial domain [35, 245]. Both types of approaches can also consider
other dynamics-related effects like unilateral constraints and rigid contacts [256].

Once a desired motion is executed on a robot by means of an underlying control
scheme, it’s similarity to a given reference motion must be evaluated and classified in
the field of motion imitation. LTE is very limited in this context as the trajectories to be
classified must fulfill restrictive constraints. There exist more generic trajectory-based
descriptors which are categorized according to the invariant features they consider [45,
18, 71, 42]. Without any invariant features, trajectories must match both in the spatial
and temporal domain for being classified as similar. Temporal invariance allows two tra-
jectories to differ in temporal domain while following the same path for being considered
as similar, see for example dynamic time warping (DTW) [148]. Regarding spatial invari-
ance there exist multiple descriptors, based either upon force fields [60], pose normaliza-
tion through principal component analysis (PCA) [22, 209] or curvature/torsion along
the trajectory [65, 317]. An additional distinction is made between non-hierarchical
descriptors working on a certain granularity level of the trajectory like LTE [306] and
hierarchical descriptors capturing both local and global trajectory properties [41, 186,
316]. Depending on the used classifier, a motion is encoded not through a temporal-
spatial trajectory [234] but a symbolic representation [171, 201] that is used to generate
full body movements [24, 135, 291] and has in general better abstraction capabilities
than a trajectory-driven approach.
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3.3 Problem statement and conceptual approach
Regarding the original problem in (1.1), which is stated again as follows

optimize g(x, X),
s.t. h(u),

the goal of motion adaptation was to optimize g such that the adapted motion x matches
the original motion X best while sufficing additional constraints in h(u). Motion control
achieves the same goal but focuses on online control instead of offline planning. Whereas
the latter one is necessary to find an initial solution for an underlying control scheme,
it considers an ideal environment. However during execution an online controller has
to deal with all hardware-related challenges like measurement inaccuracies or external
disturbances. In addition there are hard real time constraints imposed on an embedded
controller as a new optimal input must be calculated at every sampling step. Offline
planning methods do not suffer from these constraints.

The major challenge of motion control in the field of motion imitation is consistency
with the motion planning framework in order to minimize a similar cost function. Classi-
cal manipulator control schemes are inapplicable as they focus solely on convergence of
the resulting trajectory but not its local properties. Optimal controllers on the other hand
are more flexible as they can be based on an arbitrary cost function, yet are difficult to
prove for convergence and computationally demanding. Existing schemes like GMM and
DMP guarantee convergence but lack the optimality property in case of a disturbance.

Thus the main contribution of this chapter is to derive a controller consistent with LTE
that can be executed in real-time and has guaranteed convergence properties. To account
also for whole-body control, LTE is combined with a prioritized IK approach. As LTE con-
siders the local trajectory properties along the entire trajectory, these information must
be also processed by the controller. When linearizing the IK around a certain operating
point, the optimal input is calculated through an LQR controller while considering local
trajectory properties over a finite horizon. If the trajectory has to be modified online, a
hybrid control/planning framework is presented which allows trajectory deformations at
every time step while ensuring asymptotic stability towards a reference trajectory. De-
spite being powerful, the method is also computationally expensive as the input has to
be optimized over a number of future steps via backward induction. A simpler scheme
based on piecewise linear systems overcomes this drawback. By creating a set of conver-
gent vector fields around the reference trajectory which are recalculated whenever the
trajectory gets deformed, stability is guaranteed within specific bounds. To reduce the
number of calculations during online motion control while providing a generic descrip-
tor for motion imitation and adaptation tasks, a probabilistic learning-based scheme is
presented. By encoding the task space distances between robot links and objects in the
environment, it automatically extracts whole body pose information of the robot and in-
teractions with other objects. Focus is drawn on suitable simplifications for preprocessing
most information before execution.
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3.4 Whole-body control and imitation

This section presents control schemes which share the same optimality principle as LTE
and expand it to whole-body movements. As the main purpose of LTE is to plan desired
trajectories, it requires an underlying controller when being executed on a real robot. In
case of a sudden disturbance causing the executed trajectory to differ from the reference
trajectory, LTE alone neither accounts for collision avoidance of the executed trajectory
nor for convergence back to the reference trajectory. Moreover it relies on a IK scheme if
a robot with multiple DOFs is considered.

The section presents three approaches. The first one is a conventional differential pri-
oritized IK scheme for a Jacobian-based mapping of a task space motion to joint space.
Based on the differential IK representation a LQR-based controller is developed, track-
ing a reference trajectory in a predictive manner while avoiding singularities through an
adaptive weighting scheme of task space and joint space objectives. Both approaches can
be combined with LTE by augmenting either the state vector of the resulting dynamical
system or the cost function, resulting in a novel LQR controller for continuous trajectory
retargeting. The last approach works not a single EE trajectory but instead defines a hy-
perdimensional task space trajectory by considering a set of spatial task space distances
between links of the robot and objects in the environment, automatically extracting the
task-relevant features and layering the foundation for a subsequent differential kinemat-
ics imitation scheme.

3.4.1 Prioritized inverse kinematics and singularity avoidance

This section presents a common prioritized IK scheme and shows how it can be combined
with LTE for a continuous replanning of the desired trajectory. It is assumed that the task
space coordinates x are related to the generalized joint space coordinates q through the
differential relation

x=J(q)q, (3.1)

with J as the Jacobian matrix encoding the differential kinematic relation between joint
and task space. If both vectors x and q are of similar rank, an inverse solution is calculated
by means of the inverse Jacobian as

q=J"%,

In all other cases, the Moore-Penrose pseudoinverse is used to find the solution minimiz-
ing q"q for a given task space velocity x as

q=J"x
=JTN Uk (3.2)
By using the right pseudoinverse it is implicitly assumed that rank(q) > rank(x). The

approach fails for kinematic singular configurations as in this case the term (J7J)™! is
not invertible anymore. The problem can be overcome by adding a small constant term
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4L, m4; > 0 when calculating the inverse. This is known as dampled least squares (DLS)
and results in

Q=" I+ n D) " k. (3.3)

Differing from (3.2), the inverse in (3.3) can always be calculated but results in a nonzero
tracking error ||x —Jq|| > 0. To overcome this problem, the singular robust (SR) inverse
or WDLS is introduced in [217] as

q=J'x
='W J+ W) W, x. (3.4

with W, and W, as positive definite weighting matrices related to the errors in task and
joint space. For a parameterization of W, =TI and W, = 7,1 the solution equals the DLS
solution, for W, =T and W, = 0 it results in the Moore-Penrose pseudoinverse solution.
The key idea of the weighted damped pseudoinverse is to adjust the elements of the
weighting matrices dynamically. Whereas for W, a common parameterization is W, =1,
the matrix W, is modified depending on the proximity to a singularity. As the measure

of manipulability
w = /det(JI7), (3.5)

becomes zero at singularities, its absolute value serves at a distance measure from singu-
larities [322]. The adaptation method for W, then becomes

0 forw > wy, (3.6)
T lw,(1— WKO)I for w < wy, '

with positive constants w,, w;. The proposed adaptation method leads to zero tracking
error when being far away from singularities while damping the joint space velocity when
being close to a singularity. If there are multiple tasks, they are concatenated in the vec-
tor x and prioritized by parameterizing the matrix W, accordingly. Still this is only an
approximate prioritization as possibly concurrent tasks are not executed in a hierarchical
order. To account for a strict prioritization between two tasks X;, X, with corresponding
Jacobian matrices Jq, J,, it is possible to project the joint velocity q, of the lower priori-
tized task in the null space of the Jacobian of the higher prioritized task as

q= Jir)‘(l + (I _JTJ1)Q2,

q, = J;rxz-

Another more elaborate version is presented in [217], modifying the previous result such
that the lower-prioritized task interacts as least as possible with the higher-prioritized
one

q= JIFX1 + (I _JTJ1)‘EI2,
Q2 = J;r(xz - JleLxl)-
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From here on things become interesting:: Note that the pseudoinverse is only used for
simplification during prioritization. It is also possible to use the DLS or WDLS solution.
Now in the equation above the term I—J7J; corresponds to the null space motion of
the higher-prioritized task, i.e. the self-motion of the manipulator that does not interfere
with the task. The approach can be cascaded to account for more than two prioritized
tasks and calculation for this case is similar to (3.5).

Hence for motion imitation on a humanoid robot, the motion imitation task is in general
lower prioritized than hardware-related constraints like balance of the robot, collision
avoidance or joint limit avoidance. Let the secondary task thus be described by

Qo = JimXims

Xim = _Kimcim’

with the term c;,, as the cost function encoding the imitation quality. Ergo the term c;,,
can be based on different measures, for example the squared distance in task space, the
residual of a least squares solution or the error of a HMM. Through a gradient descent ap-
proach with variable gain factor K;,, a task space velocity x;,, is calculated. The task space
velocity is then mapped to joint pace by means of the imitation Jacobian J;,,, calculated

as T
J dc;,
im — dq *

En bloc the primary task achieves a COM-based balance, collision avoidance for a hu-
manoid robot. Reactive fixed feet positions are also achived by prioritizing them all
equally and concetanating all constraints::

‘]1 = [Jcom Jca Jf]T:

Xl = [rcom L f'f:IT'

For sufficiently slow motions of the robot a zero moment point based calculation [258]
is unnecessary. Instead, balance of the robot is achieved by keeping the projected COM
Peom € R? within the support polygon of the robot. A balance controller is used that moves
the COM of the robot towards the center PZZ{n € R? of the support polygon spanned by
the two feet standing on the ground. Mathematically it is described by

xcom = Kcom(PZS{n - pcom)a

with adjustable gain K_,,,,.
Self-collision avoidance between two links of the robot is achieved through enclosing
cylinders covering all robot links. In this case, if the distance d; ., between two links falls
below a certain threshold d™", the desired collision avoidance velocity x; ., is expressed

as ’
)'Ci,ca = Kca(d'min - di,ca) if di,ca < d‘min

i,ca i,ca’
with gain factor K_,, resulting in X, and J_, after concatenating multiple collision avoid-
ance velocities. The same method also accounts for collision avoidance with obstacles in
the environment. In the latter case the distance d, , is calculated between any robot link
and the obstacle.
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By defining three linearly independent sampling points p; ; ; associated with the co-
ordinate frame of each foot, a single Jacobian J; accounting both for orientational and
positional errors of the feet is calculated based on the cost function

2

3
_ ref 2
= > Il —pisfl

i=1 j=1

The scalar 7 is defined in terms of the gradient descent speed x; = —K;c; with gain
K;. Joint angle limits are considered through an underlying controller with bilateral
boundaries. For a manipulator with a fixed stand, only collision avoidance and joint
angle limits must be taken into account.

A highly redundant robot can fulfill the given imitation task perfectly while sufficing
higher prioritized tasks. If the trajectory to be followed during the imitation task is cal-
culated through LTE and the manipulator is not redundant enough to track it perfectly,
LTE is used to adapt the optimal trajectory online. Fig. 3.1 shows an example where a
planar 3DOF manipulator has to follow a straight trajectory. Whereas the left side shows
the reference motion, the manipulator has to avoid an added obstacle on the right side
with one of its joints, highlighted in red. Because the real EE trajectory deviates from
the planned straight trajectory, LTE is used to replan new minimum acceleration trajecto-
ries online. Note that the replanned trajectories account only for the unconstrained case
and are thus tracked perfectly after the manipulator does not collide anymore with the
obstacle.

without obstacle with obstacle

(N LN A\ A

executed trajectory
replanned trajectory

Figure 3.1: Prioritized inverse kinematics with continuous trajectory replanning. Left:
Trajectory following without obstacle. Right: Trajectory following in the pres-
ence of an obstacle and with continuous replanning of optimal trajectories

3.4.2 LQR-based inverse kinematics with singularity avoidance

In this section the Jacobian-based IK scheme of the last section is combined with an
LQR controller to consider not only the current manipulator’s kinematic properties but
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3.4 Whole-body control and imitation

also future states and control inputs. A finite-horizon, discrete LQR controller assumes
the robot kinematics to be constant over the prediction horizon and uses the resulting
system dynamics as basis for a predictive controller. If the reference motion is both given
in task- and joint space, singularity avoidance is achieved through an adaptive weighting
scheme.

The discrete LQR controller for trajectory tracking

LOR control is a special class of predictive optimal control. Whereas in general such
controllers are difficult to derive and can be often only approximated due to real-time
constraints, a closed form solution exists for the LQR controller that can be derived an-
alytically. There are four types of LQR controllers that have to be distinguished, de-
pending on whether they consider a finite/infinite horizon or whether they work in the
discrete/continuous domain. This section considers the discrete case with a finite hori-
zon, yet the discrete case with an infinite horizon can be calculated in a similar manner.
The LQR controller assumes that a discrete LTI system evolves according to

Pr+1 = Ap, + By, 3.7)

with the state vector p,, the input vector u, and A,B as the system respectively input
matrix. This system representation is suitable for describing the convergence towards a
fixed point. When following a trajectory, it is assumed that a reference state p, will be
tracked perfectly using a reference input vector 1, as

Pr+1 = APy + Bl (3.8)

Subtracting (3.7) from (3.8) yields the error dynamics which evolve similarly to the sys-
tem dynamics for small errors as

(Prs1 — Prr1) = APy — Pr) + B(u, — ).

The cost function to be minimized by the LQR controller consists of both the state tracking
error and the input tracking error over a number of future time steps, defined as

Sk = Z(Pi — P Q(p; —P) + (0, —4) " R(y; — 1)),
i=k
= ApTQAp; + Au'RAu, (3.9)
i=k
with positive semidefinite weighting matrices Q and R weighting the error in state and
input space with respect to each other. Starting from a final state for i = n, the cost

function in (3.9) is written as
S, =Ap.Q;Ap,. (3.10)

The key claim to be verified soon is that every cost function J, can be written in the
general form
Sk = Ap, Vi Apy,
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in analogy to (3.10). Through backward induction the cost S;_; is derived from S,. Start-
ing with the final cost function S,,, the cost function S, is obtained through the last back-
ward induction step. Associated with the calculation of the cost function S, is also the
derivation of an optimal input vector u;, which gives the optimal input vector u, for the
current time step. The cost function S;_; is split up into three parts as

Si_1=Ap; ,QAp,_; +Au, ,RAy_; +5;
= Ap, ,QAp,_; +Au; RAu_+
(AAp;_, + BAuk—l)TVk(AApk—l +BAw,_,;),

to account for the cost S, and the cost to get from S, to S;_;. To find the optimal control
input u,_, for an optimal cost function S;_,, the partial derivative is taken and set to zero

ISk
owy_,

= 2RAu,_; + 2B"V,(AAp,_, + BAu,_;)
=0.
The optimal control input u,_; is then calculated as

u,_; =—(B"V,B+R) 'B'V,AAp,_; + i,
=K1 APy + Wy, (3.11)

with K;_; as the optimal LQR gain. Inserting u,_; back into S;_; yields
Sk-1= APZ_1Vk—1Apk—11

with
Vie, = (Q+K!_RK,_; + (A+BK,_;)"V.(A+BK,_,)),

as the iterative update scheme to calculate V,_; based on V,, verifying aforementioned
claim. It is visible that neither the calculation of the optimal LQR gain nor of the optimal
cost function depends on specific values for the system state or the system input. This
leads to efficient calculation schemes as the both the optimal LQR gain and the optimal
cost function have to be calculated only once for constant weighting matrices Q and R.

Application to inverse kinematics

The LQR controller can be applied to IK in the field of motion imitation to track a given ref-
erence trajectory both in task- and joint space. An efficient singularity avoidance scheme
is derived that lets the robot adapt a given motion to a different environment without
getting trapped in a singular configuration. The differential robot kinematics in (3.1) are
rewritten in discrete form as

Pi+1 = Pr T Jidq;,
with dq, as the joint angle difference between two subsequent sampling steps, J, as
the Jacobian matrix of the k-th time step and p, as task space coordinates. The error
dynamics are written in a similar way as

(Prs1 — Prs1) = (P — Dr) + Ji(dq, — dA‘lk),
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and assume that a reference trajectory p, € P with reference joint velocities chk is given.
The formulation in (3.12) is similar to (3.7) under one premise. The matrix J, depends on
the joint angles q and thus generally varies over time. In contrast the LTI system in (3.7)
is per definition time independent. If the manipulator is far from a singular configuration
and the joint angle velocities are small, the matrix J can be assumed to be constant over
the prediction horizon as

J.=J=const. Yke{l,...,n}.
Then the differential robot kinematics are written similar to (3.7) with

A=]1,
B=1J.

The optimal input during backward induction is calculated in analogy to (3.11) as
dg,y = —(I"ViJ + R Vi(pi— i) + day (3.12)
and shares common properties with the WDLS solution in (3.4) which is recapitulated as
q=J"WJI+W) J'W,x

Whereas the cost minimized by the LQR controller for the error dynamics becomes

Sk = Z(Pi - Isi)TQ(pi —p;) +(dq;, — d/'\qi)TR(dqi - d/'\qi))
i=k

the WDLS solution minimizes a cost function of the form
Swprs = (x— JCDTWx(X - JQ) + quc].

Both cost functions are of similar structure, minimizing a weighted sum errors in task
space and joint space. However, the LQR controller also considers future time steps
whereas the WDLS solution only refers to a single time step. Both controllers also differ
in the type of error to be minimized. The LQR cost function is based on a positional error
in task space with respect to a reference trajectory and a velocity error in joint space with
respect to a reference joint speed. The WDLS solution is based on a velocity error in task
space between the desired velocity X and the current velocity Jq. The term qW,q is the
velocity error in joint space with respect to zero velocity. Because the WDLS is solely
based on differential errors, any imperfect solution with S, ;s # 0 will lead to a persis-
tent positional tracking error. As the LQR solution depends on the positional task space
error, it overcomes this drawback. A related controller is presented in [33]. Based on
the positional error both in joint space and task space, two possibly concurrent goals are
considered. If the two reference trajectories in task space and joint space are conflicting,
the used weighting scheme has to prioritize one over the other, leading to a persistent
positional tracking error either in joint space or task space. Based on the four possible
combinations of positional/velocity error in task space and positional/velocity error in
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joint space, there exists a fourth type of controller based on the velocity error in task
space and the positional error in joint space. Through a change of variables in (3.12)
between joint space and task space coordinates, it can be derived in a similar manner.
However, as most tasks are specified through positional task space errors, e.g. a mini-
mum distance to an obstacle or zero distance to an grasped object, the benefit of using
a velocity task space error in combination with a positional joint space error is question-
able. To avoid singularities, an adaptive weighting scheme between task space and joint

| method | LOR | WDLS | Calinon | hypoth. controller |
positional task space error | Vv
velocity task space error v v
positional joint space error v v
velocity joint space error v v
predictive controller v v
persistent tracking error v W)

Table 3.1: Comparison between different controllers for motion imitation and adaptation
depending on the underlying imitation measure

space objectives is proposed. Similar to WDLS the manipulability measure w is chosen
such that close to a singularity the joint space objective is weighted more. In analogy to
(3.6) this results in a modification of the weighting matrix R as

B {wel for w > wy, (3.13)

wI+w, (1—2) forw <wy,
Wo

with w,,w,_ as positive scalars. Note that w, is only required to guarantee theoretical sta-
bility of the resulting controller but can be set to zero for practical purposes. In addition,
the task space objective is weighted less. The weighting is chosen such that in a singular
configuration the weighting matrix Q becomes zero.

(3.14)

_ {qu for w > w,,

w,—I forw <w,.
Qg

Two limiting cases are derived. Away from a singularity, i.e. w > w,, the two weighting
matrices are given as R =w_I, Q = w I and both the optimal input and the cost function
update rule result in

dq,_, ="V, J +w D) UV, (pr — Br) + dgy_,
Vioi = (wI+wXK K., +(A+BK_;) Vi,(A+BK_,)).

In a singular configuration given by w = 0, the weighting matrices become R = (w,+w )],
Q =0, which give

dg,_, =—'ViJ+ W, + w DIV (p — i) + dAClk—p
Vier = ((w, +wOKL_ K, + (A+BK,_;)"V,(A+BK,_;)).
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For w, ~ 0, it reduces to

dq, , ~dq,_,,
Vk—l ~ O)

that is a direct feedthrough of the reference joint velocity. Close to a singularity both
WDLS and the proposed controller weight the positional error in task space less in or-
der to avoid the singularity. As the second objective of the WDLS controller is minimal
joint velocity, the manipulator will move unnecessarily slow. In contrast the proposed
controller will give more weight to the joint velocity of the reference motion, passing the
singularity quickly.

Evaluation

The presented LQR approach is evaluated through simulations and compared with a
WDLS scheme and an iterative linear quadratic regulator (ILQR) controller. With its as-
sumption of a constant system and input matrix over the predicted horizon, it is located
in between a non-predictive controller which optimizes only over a single time step and
an ILQR approach which explicitly considers the time-varying nature of the underlying
optimization problem [191]. Whereas the WDLS scheme is presented in Sec. 3.4.1, the
ILQR approach is explained in this paragraph. It iteratively evaluates a trajectory py
by applying the input dq, based on (3.4.2), linearizes the system dynamics around the
given trajectory and calculates an optimized local input through LQR backward induc-
tion. When applied to IK, the differential robot kinematics in (3.12) are rewritten as

Pr+1 = f (Pr,dq;) = pr + J(pr)dq,.

After approximating the system dynamics by a Taylor expansion around p;, dq;, we ob-
tain

2f(p;,dq;) 2f(p;,dq;)

= f(p},dq;) + dq, —dq,) + —P)s
Pri1 = f (P, dqy) 2dq, (dq, —dq,) dpr (P —Py)

which results in the error dynamics as

2f(p;,dq;) af(p;,dqy) .

(Prs1 — Prs1) = (dg —dq,) + (dq, —dq}) + f(p}, dq)) — Prsy

9dq, ddgq
2f(p;,dq;) . of(p;,dq,)
+ ——p— D)+ ——— D —P;
Jpn (Px — Px) pr (Pr — PL)

Through augmentation of the system state, the error dynamics can be rewritten in LQR

form as
|:Pk+1 ka+1:| = A, |:Pk I Pki| +B.(pr— i),
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with

[ 9 (P;.dq;) 9f (pj-dar) %
A=| e S PodG) Pt (dg; —dq;) + =3 (b — p}) ’

0 1

of (pk qu

[ 3 (p;.daqy)

B, = ddq; .

Away from a singular configuration, the effect of

aJ(lf") is negligible, allowing one to
k

rewrite A, and B, in simpler form as

>

0 1
B, = [J(lgk):| ,

which is both used when calculating the updated trajectory p, and during the LQR back-
ward induction step.

A — [1 J(pr)dq; — Pri1 +f’k:|
=

Fig. 3.2 shows a simulation that compares the three WDLS, LQR and ILQR controllers.
For both LQR and ILQR controller the singularity avoidance scheme according to (3.13)
and (3.14) is used. The parameterization given in Tab. 3.2 ensures comparability of the
three controllers. A planar three-link manipulator is moved with constant joint velocity
to generate the reference trajectory p, (black) and the reference joint velocity chk as
shown on the left side. The task space consists of the EE position in x/y direction and the
EE orientation. The reference trajectory is then shifted in task space by a constant factor
along the x/y direction, resulting in the modified trajectory (blue) that must be followed
in the middle picture. As the robot enters a kinematic singularity when following the
modified trajectory it is unable to track the reference trajectory perfectly, leading to a
non-negligible offset in task space. Two plots on the right side illustrate the positional
offset and EE velocity over time when tracking the modified trajectory. Looking at the
offset plot, it is visible that both LQR and ILQR controller have a larger offset than the
WDLS controller out of a singular configuration due to a imperfectly matching reference
input ch. On the other hand, the reference input helps at leaving a singular configuration
quickly as it does not slow down the manipulator. Looking at the velocity plot, the WDLS
controller has by far the largest EE velocity when leaving the singular configuration. It
must be mentioned that the ILQR controller has a significantly higher computational
complexity (~ 5s) than the LQR controller (& 100ms) or the WDLS controller (A 50ms)
for the given scenario. The presented controller in (3.12) is a redefined version of the
generic LQR controller in (3.11) for which stability is guaranteed for the infinite horizon
case. The weighting scheme in (3.13)-(3.14) does not influence the stability properties
as stability is guaranteed for all values of R and Q.
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Figure 3.2: Evaluation of different singularity avoidance control schemes. Left: Original
movement. Middle: Adapted movement. Right: Offset and velocity plots of
the different control schemes for the adapted movement

| parameter | value |
Wy 0.05
wy 1
w, 1
w, 1
w, < 1le—307

Table 3.2: Parameters for the different singularity avoidance control schemes

3.4.3 Integrated motion planning and control by combining LQR
and LTE

This section presents two approaches to combine LTE with an LQR controller to account
for local trajectory properties not only during offline motion planning but also when con-
trolling the robot online during execution. In combination with the IK approaches pre-
sented, this results in a whole-body motion control scheme letting a robot react instantly
to sudden disturbances in an optimal manner.

State augmentation

One way to incorporate the local coordinates from LTE over the prediction horizon with
an LQR controller is to augment both state and input vector. For the m-th order finite
difference, not only the current state but also m — 1 states of the past are considered in
the state vector. This allows to include the local trajectory properties as

Pri1 A 0 0 0] [px B 0 0],

. ) , k

. _|lo . 0 o0 L0 0 ) (3.15)
Pr-m-1 0 0 A O |Prm 0 0 B,

81 E, E, 0| |6, 0 0 0 k=m
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with pg, us, A, B as the elements of the LTI system in (3.7) and the vector 6, as the lo-
cal path properties for the LTI system. The matrices E,...,E, account for the local
trajectory properties, as such a common choice for second order finite differences is
E, = LE, = —2LLE, = I. To weight all three objectives, namely state error, control
input error and error of the local trajectory properties, the weighting matrices Q and R
in (3.9) are augmented accordingly, resulting in Q" and R’

0

R 0
., R=]o0o . o, (3.16)
0 0 R
with the positive semidefinite matrix F accounting for the relative weight of the local path
properties.

The principle of state augmentation is described in Fig. 3.3. Its schematic process flow
is illustrated on the left side. For a given system, the desired reference state/trajectory is
calculated a priori through LTE. The reference trajectory p € P serves as the input for the
LQR controller to generate an optimal output trajectory p € P. The right side shows the
desired behavior in task space. For a nonzero weighting matrix Q’ the resulting trajectory
P converges to the reference trajectory P, illustrated by the mechanical analogy of a spring
between the two trajectories. Due to the finite horizon method of LQR, augmenting the

rm

LTE LQR —>

tour t

Figure 3.3: LQR/LTE state augmentation

state vector with local path properties will account for a number of path properties in the
future given the history of the LTI system until the k-th time step. Though in general it
results in slower convergence towards the reference path due to an additional constraint
that must be considered, it makes it possible to consider local path properties also on a
controller level. State augmentation cannot be used to consider LTE-specific constraints
if they are not defined in a similar way for every sampling point of the trajectory (e.g.
positional constraints for a few sampling points). This requires either a dynamic modifi-
cation of the state vector, which is difficult and leads to discontinuities during execution
or a conceptually different approach as described in the next paragraph. Stability can be
guaranteed for the infinite-horizon case if the system in 3.15 is controllable [74].

Cost function augmentation

Augmenting the system state allows to combine the advantages of LTE with a predictive
LQR controller in a straightforward fashion. When deviating from the reference trajec-
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tory, the LQR controller calculates an optimal input given the system dynamics. Differing
from the example in Fig. 3.1, the reference trajectory is calculated only once before exe-
cution and not updated through LTE at any time step. In contrast the method presented
in this paragraph retargets the reference trajectory at every time step. In this case an
alternative way of combining LTE and LQR based on an augmented LQR cost function
is presented in this paragraph. Its scheme is depicted in Fig. 3.4. Similar to the normal
LOQR controller it is assumed that a fixed reference trajectory P is given. A second LTE-
deformed reference trajectory P is calculated based on the system state for t < t,,. and
results in an optimal reference trajectory for all future time steps t > t,,, for the current
system state. The optimal input of the system then depends both on the state and input
error with respect to P and P. The resulting LQR cost function depending on the state
and input error with respect to p; € P and p; € P is written as

Se= Y (pi— ) Qp; — )+ (u, — &) "R(w; — &)+
i=k

(p; — P L(p; — py) + (v; — ;) "M(u; — ;)

n
= APIQAP; + AGTRAG, + APILAP, + Al MA, (3.17)
i=k

with weighting matrices Q,R,L, M. Similar to the standard LQR problem, the cost func-
tion is written in a more general form as

S = V1 (AP + W AP+
AP, Vo + AP Wy +
AP, X AP+
A1313 Y, APyt
AP Y, AP+
AP Z APy + ¢,
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3 Motion imitation and control

with scalar ¢, vectors vy i, Wy y, Vo i, W, and matrices X, Yy, Y5, Z,. The backward in-
duction step results in

Sio1 = AP, QAP + Al  RAG, +
AP, LAP, , +Au  MAt,_,+
Ji
= AP, QAP + Al RAG_+
AP, LAp,_, +Au MAt,_,+
vi (AADy_; +BAGy_;)+
wi  (AAP_; +BAG,_;)+
(AADPy_; + BAﬁk—1)TV2,k+
(AAP;_; + BAﬁk—1)TW2,k+
(AAP;_; +BAl ) X, (AAP; | + BAl, )+
(AAP;_; +BAl, )Y, ((AAP,, +BAT, )+
(AAP,_; + BAG, )Y, (AAD,; +BAG, )+
(AAP;_; +BAW, ) Z, (AAP,_; +BAW, )+

Cr—1-

The optimal input u,_, is obtained by calculating the partial derivative of J,_; and setting
it to zero

ISk
w4

= 2RA{, , + 2MAi, +

2B"X, (AAp,_, + BAly_,)+
2B"Z,(AAP,_; + BAw,_;)+
B' (Y14 + Y, )(AADy_; + BAGy_ )+
BY (Y1 + Y, )(AAP_; +BATy_; )+
BT (Vy g + Vo + Wy o + W)

=0.
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3.4 Whole-body control and imitation

This results in an optimal input as
— (R+M+B"X,B+B"ZB+B"(Y,  +Y,,)B)
1
KR +B'X,B+ - BT(Y1 L+ Y, k)B) i, +
T 1 T
M+B ZkB+ =B (Y, +Y,,)B |1i_;—
( XA+ —BT(Y1 kT Y, k)A) APr1—

1
(BTZkA + EBT(YU{ + Yz,k)A) ApPr_1—

BT(Vl,k TV tWy e+ Wz,k)]
:Clﬁk—l + CZﬁk—l + CgAlsk_l + C4A15k_1 + CSJ (3.18)

from which the updated cost S;_; is calculated as shown in App. B. After the optimal

P p
> LTE

|_—: LQR

L]

tCUI’ t

Figure 3.4: LQR/LTE cost function augmentation

input u, is calculated and applied, the reference trajectory p € P is updated through
LTE to provide an optimal reference trajectory for all future time steps t > q given the
evolution of the system for t < q. This is done by applying positional constraints (2.5) to
all sampling points for t < q to match the trajectory p with the past states of the system
as shown in Fig. 3.4.

The LQR cost function results in a blending between the two trajectories. The relation
between the weighting matrices Q and L and between R and M achieves a tradeoff of the
convergence speed towards P and the maintenance of the optimized local coordinates
in P. Two extrema can be analyzed: Setting £. = 0, M = 0 cancels the influence of the
LTE-deformed trajectory, thus the LQR controller depends solely on P and coincides with
(3.9). Setting Q = 0, R = 0 ignores the reference trajectory P which can be interpreted
as a reference input to the feedback control system, thus convergence to the reference
trajectory is either very slow or nonexistant.

The cost augmentation approach provides an integrated approach for combined motion
planning (LTE) and motion control (LQR). Compared to the state augmentation approach
this gives the user more freedom when designing a controller as the trajectory P can
be retargeted through LTE in an optimal manner, thus considering not only the local
coordinates but also other objectives as shown in Sec. 2. As such collision avoidance
can be prioritized dynamically through intelligent reweighting of the matrices £, M, Q,R
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3 Motion imitation and control

in highly cluttered environments whereas in free space more weight can be given on a
quick convergence towards the reference trajectory.

Alternative calculation

Updating the trajectory P through LTE for the cost augmentation approach means to apply
positional constraints to all sampling points for t < q. The two LTE updates between
t =t.,, tot=t,, + At differ by a single equation, the added positional constraint for
P, +ac- In this case alternative approaches than the batch LS solution as in (2.4) can be
more efficient. One option is to use recursive least squares (RLS) [115] which assumes
that the solution for z, of the linear system

¥ = Hyzg,

has to be updated due to a new measurement as
B A
- +1>
.yq+1 hq+1 K

Yq+1 = Hq+1zq+1 .

which is rewritten as

Then an updated solution for z,,, based on z, is calculated through RLS as
kq+1 = thq+1(h§+1thq+1 + 1)_1,

— T
Zg1 =2, + kq+1(Yq+1 - hq+1Zq),

Eq+1 = (I_ kq+1hT )Eq:

q+1

with the optimal gain k., the correction factor (y,; —hg +1Z,) and the error covariance
matrix E ;. Differing from the batch LS solution no matrix inversion is required. There
are other incremental methods relying on subspace projection like Kaczmarz’s algorithm
[17] or exploiting a special structure of the underlying problem (lattice least squares
[185, 94, 259], fast transversal algorithms [59]). All of them have a computational com-
plexity of &¢(n) and are magnitudes faster than the pseudoinverse solution. Yet subspace

projection methods are inapplicable as they minimize

||Zq+1_zq||2;

instead of
1¥g41 — Hgs12Zga ll-

Lattice least squares and fast transversal algorithms are theoretically applicable to LTE as
they are specifically designed for time-evolving systems. The major difference between
the two methods is that fast transversal based algorithms are of fixed order i.e. only
applicable to trajectories with n sampling points, whereas lattice least squares algorithms
are order-recursive i.e. the trajectory length can change online from n to n + 1. Yet
it is unknown whether and how both algorithms can be modified to include the local
trajectory properties.
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3.4 Whole-body control and imitation

Evaluation

The cost function augmentation approach is compared with a standard LQR controller as
shown in Fig. 3.5. The scenario consists of a particle with finite mass subject to friction
and moving according to the dynamics in (3.19).

ol Sl [ ][] e
Xi1 0 1— o, X M, X, 1

The used parameterization is given in Tab. 3.3. Whereas the plots on the left side show
the results for the standard LQR controller, the right side shows results for the cost func-
tion augmentation approach. Two plots on the top display the x-axis over time, showing
both the desired trajectory (red), the resulting trajectory of the particle (black) and the
planned optimal LTE trajectory at a few time steps (green). The lower two plots show
the spatial offset between the resulting trajectory and the desired trajectory (red) and be-
tween the resulting trajectory and the planned optimal trajectory (green) at every time
step. Both controllers behave roughly similar, yet the cost function augmentation ap-

proach allows to consider secondary objectives like collision avoidance when updating
the planned trajectory.

0.27 des. traj. 0.6} planned traj.
— traj. — 04} des. traj.
E 0.1 E traj.
X x 02 L
0 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600
time [ms] time [ms]

10 ¢ 10 Ty
-5 -10 traj. - planned traj.
r 10 g :
traj. - des. traj.

0 100 200 300 400 500 600 0 100 200 300 400 500 600
time [ms] time [ms]

offset [m]
>
offset [m]

traj. - des. traj. ‘

Figure 3.5: Evaluation of the cost function augmentation scheme and comparison with a
standard LQR controller. Left: Standard LQR controller. Right: Cost function
augmentation scheme. Top: Spatial extent. Bottom: Spatial offset

Stability

Theorem 2 Let the combined controller be defined according to (3.17) and the two tra-
jectories P and P coincide to a fixed point. Then asymptotic stability can be guaranteed
for the infinite horizon case if the system {A, B} is controllable.
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| parameter | value |
At 0.01
M, 20
D, 5
Q,L diag(le4,1e3)
R,M diag(1,1)

Table 3.3: Parameters for the cost function augmentation scheme

Proof.  Stability for the infinite-horizon case of the standard discrete LQR controller
can be guaranteed for controllable systems [ 74]. When augmenting the cost function, the
interlocking scheme of LQR and LTE makes it difficult to guarantee stability. A special
case is given for p = P, i.e. if the fixed reference trajectory matches the LTE-deformed
trajectory. Then the cost function in (3.17) reduces to

Ji= Y (P — p)T(Q+L)(p; — B) + (u; — )" (R+M)(w; — ),
i=k
which is the standard discrete LQR controller. Convergence of p towards p in the asymp-
totic case is ensured either through positional constraints for all future sampling points
with increasing weighting factor  over time or through a defined upper bound of the
form
1B(t > toy) =Pt > e )l < xe™,

with p(t > t.,.),p(t > t.,) as all future sampling points of the reference and LTE-
deformed trajectory and y as a task-specific constant.

3.5 Upper deformation bounds satisfying dynamic
constraints

This section derives upper deformation bounds that allow the robot to suffice given dy-
namic constraints. Because LTE deforms trajectories in task space, it cannot be used
directly for dynamic constraints in joint space. A function is necessary that links the up-
per bounds on the applicable joint torques to the amount of deformation, resulting in a
verification scheme whether the desired trajectory can be executed or not. The dynamic
model of a given robot is described by

M(q)q +C(q,q)q+g(q) =7, (3.20)

with M as the inertia matrix, C as the Coriolis and centrifugal forces, g accounting for
all gravitational terms and 7 as the torque vector to achieve a desired joint movement
q,q,q. The vectors q, q are related to the task space coordinates through the (differential)
inverse kinematics scheme as in (3.1). After derivation we obtain

x=Jq+Jq, (3.21)
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3.5 Upper deformation bounds satisfying dynamic constraints

respectively
q=1J"(x—Jg), (3.22)

which link the task space acceleration X to the joint space velocity and acceleration q, g.
In general the joint torques are limited be the used hardware, thus the goal is to keep the
actual joint torques below a specified threshold 7; as

IM(q)4 +C(q,9)q + g(q)| < 7;. (3.23)

On a more general scale the goal becomes to keep the norm of all torque values below a
specific constant 7,,,,. This is done by evaluating the worst case scenario, i.e. by deriving
upper bounds for each factor involved in the torque calculation.

Theorem 3 Let the dynamic model of the robot be given according to (3.20) and (3.21)
and its kinematic model according to (3.1). Then the norm of the joint torques can be
bounded from above by a scalar 1,,,, depending on the LTE deformation expressed by
Bernstein polynomials according to (2.27).

Proof. The norm of the matrices M, C, g is limited from above by a constant factor [58]
as

IM|| < My,
ICIl < caxllall,
gl < &max>

thus (3.23) is rewritten as

mmax“d” + Cmax”q””q” + 8max < T1»

with the scalar value 7,,,, accounting for the limiting motor torque constraint. Using
(3.1) and (3.22), the norms of g, q are be bounded by

lall < I3l + 1tal),
llall < 17111

As q, q depend both on the Jacobian J and the tasks space velocity/acceleration X, X, their
upper bounds must be determined too. Due to the finite extent of each robot, the norm
of the manipulator Jacobian is bounded from above by a constant scalar. If the Jacobian
is Lipschitz continuous and the joint velocities are bounded, the norm of J is bounded by
a scalar factor j,,,, as

1IN < Jimas-

An upper bound of the norm J* can be derived for certain cases through the singular
values O in, -« - > O gy Of J. It is

||J+||2 = :smaxJ
min
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3 Motion imitation and control

with finite scalar s,,,, if the robot does not enter a singular configuration, which can be
ensured through a workspace analysis.

In most cases upper bounds of x,% cannot be calculated in closed form and must be
determined by evaluating the deformed trajectory. An exception is a spline-based defor-
mation, see Sec. 2.6.2. When splitting the deformed trajectory up in two parts {1} and
{2}, the sole transition of {1} enables one to calculate an upper bound of the norm of x, X
for {1} independent of the deformation, resulting in X,,,,, X,,4,- If the additive deforma-
tion term {2} is represented by Bernstein polynomials B%{, its derivative can be calculated
based on

B =1(B.} —B/™).

For a spline curve described by

its velocity is calculated as
-1
x=1)» (a,,,—a;)B:!
k+1 k)P >
k=0

and the acceleration as
-2
£=101-1) ) (ak> —2ac.: +a)B] 7,
k=0

Thanks to the non-negativity of each Bernstein polynomial, the norm of %X,% can be
bounded by
5] < g +1_max_llag, —all

]| < oy + 11 —1), maX [lag, — 285 + - (3.24)

This results in the torque bound 7,,,, as

max

mmaxsmax(”x” + jmaxsmax”i(”) + cmaxsiax”x” ”X” + 8max < Tmaxs

with ||X]|, ||%|| bounded by according to (3.24).

3.6 Whole-body control through task-space distance
meshes

This section presents a novel encoding scheme for motion imitation by considering not
only the robot pose but also its interactions with objects in the environment. Differing
from LTE which is mainly used to encode and reproduce EE trajectories, the appraoch pro-
vides a holistic framework to handle both free space motions and close contact scenarios.
Based on a probabilistic encoding using HMMs, the importance of each task imitation
aspect is automatically extracted and considered during motion adaptation and control.
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3.6 Whole-body control through task-space distance meshes

Information encoding and reproduction

Similar to the previous chapter the robot consists of a number of k joints concatenated in
the joint space vector q and a set of [ links with uniquely identifiable position in task space
xﬁ €R?,i ={1,...,1}. The same accounts for a set of objects in the environment. In order
to obtain information about the objects’ orientation, o object points x; € R3,i={1,...,0}
are defined depending on the objects’ geometry. We define n = [ + o as the total number
and x; € R®,i = {1,...,n} as the total set of position vectors. The time-varying version
of x; at time step t is denoted x; ., the one of q is denoted q,. Then the distance mesh
vector d € R"""V/2 comprises every possible Euclidean distance between the position
vectors. For every time step t € {0,..., t,,,} @ new distance mesh vector d, is calculated,
thus encoding the temporal progress of the distance mesh. To obtain the task-relevant
elements of the distance mesh, multiple demonstrations of a task are performed and the
elements of the resultant distance meshes for each demonstration are processed using a
continuous hidden Markov model (CHMM) and GMR. The CHMM is represented by the
parameter set {7t,a, w, u, X} with 7t for the initial state probabilities, a the state transi-
tion probabilities and w, w and X for weight, mean and covariance of each state of the
CHMM. In addition to the spatial mean y, , and variance ¥ , for every Gaussian mixture
component g for a single dimension, the temporal information are used to calculate the
temporal mean u, ., the temporal variance %, , and the covariance between temporal
and spatial data X, ,. Differing from existing approaches in literature [292] the interest
of this approach is solely on motion imitation and adaptation, thus no movement recog-
nition is performed. Through concatenation of all elements the motion is encoded in the
spatio-temporal mean vector u, and covariance matrix X,. For a single dimension of the
CHMM for a single state it is defined as

w, = |:Ms,g] Y = |:Zs,g Z:ts,gi| )
8 Peg |’ 8 Yisg Dig
If all task repetitions are matching in the temporal domain one can also use GMM in
combination with an EM algorithm to extract the task-relevant information. The re-
trieval of a most likely motion for straightforward motion imitation is done through
GMR based on u, and %, for every dimension as described in [34], resulting in a refer-

ence distance mesh &t € R*"~1/2 together with its associated reference spatial variance
ﬁ:s € Rn(n—l)/an(n—l)/Z as

z:s,t = diag(zs,g,la ) Z:s,g,n(n—l)/2)>

The combination of &“ 23,( and x; , provides all information about the robot’s pose and its
interaction with objects in the environment. Even if x; , is not given fully but one knows
only the position of objects in the environment, the most likely position of all robot links is
reconstructed through numeric optimization. The time-dependent variance fls,t encodes
the relative importance of each element of the reference distance mesh. In this sense a
large variance corresponds to a low importance of the specific element and a low variance
corresponds to a high importance, except for those elements of the distance mesh where
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the robot’s geometry imposes a time-invariant constant distance. Whereas generally the
inverse of the variance as .

W, = Zs’ 0
is used to represent the variance-dependent importance matrix W, € R*"1/2 of every
element of the distance mesh, a more general version is used in this paper as

W, =f (23_: ),

such that W, is positive definite. As the motion representation solely depends on elements
in task space, the challenge of weighting joint space and task space elements relatively
to each other is overcome. The initial inclusion of all possible task space distances also
omits the need to specify task-relevant elements manually.

When mapping the motion on the robot and executing the encoded motion in a changed
environment, the reproduced distance mesh d,(q,) at time t generally differs from cAlt. To
find an optimal robot configuration defined by the joint angles q,, a cost function c;

based on the weighted difference between d,(q,) and the reference distance mesh élt is
minimized as

dt[i](qt) - dt[i]
dt[i]
ccf = dzelwtdreli

Qnin = argmin(ccf)-
qe

drel[i] =

Differing from [48] the relative deviation (&t[i](et) —(Altm) / (Ait[i] is used instead of the ab-
solute deviation &tm(et) — cAlt[i] to focus on deviations of small distance mesh elements,
i.e. close contact situations. For execution on a real robot the cost function c.; is opti-
mized using a gradient descent approach as described in Sec. 3.4.1.

Handling modeling/measurement errors

Using a task-space measure is challenging as it does not consider the underlying kine-
matic properties of the robot. This can lead to kinematic singularities or impossible robot
configurations as indicated in Fig. 3.7. Shown are two different manipulators, one el-
ement of the distance mesh and a hypothetical manipulability ellipsoid measuring the
amount of manipulability. If caused by a modeling/measurement error the distance be-
tween base and EE has to be increased when descending the gradient of c ¢, joint angle
velocities are minimal for the left manipulator. In contrast the right configuration will
enter a singularity as the manipulator reaches its kinematic workspace limits. If the DLS
or WDLS method is used, their additive term during matrix inversion will cause an un-
predictable drift of the joint angles close to a singularity. Thus another option based on
the manipulability ellipsoid is proposed, modifying the cost function c; such that ele-
ments of the distance mesh leading to singular configurations are weighted less. The
manipulability ellipsoid is defined as

XTI k=1,
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conventional approach new approach
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Figure 3.6: Information encoding and reproduction for task-space distance meshes. Left:
Conventional approach encoding joint angles and only selected task space dis-
tances. Right: Proposed approach encoding the full set of task space distances

and used to calculate the manipulability along an arbitrary dimension in task space. Yet
changing the elements of the distance mesh only influences the manipulability along a
single direction. If f;, € R? is the direction the i-th element of d, accounts for, we get

XiT,t(Ji,tJiT,t)_lxi,t =1,

for every element of d,. It is then

|X1,t ||2 IRERE Xn(n—l)/Z,t ||2)9

a1
W, =D, 5 .

D,,., = diag(

resulting in a weighting scheme that reduces the influence of distance mesh elements
leading to a singular configuration during gradient descent.

To calculate the elements of D, ,,,, a Jacobian matrix must be calculated between any
two links of the robot. In general Jacobians are calculated with respect to a base link 0,
resulting in °J; and °J;. for two different links G and F. The calculation of *J given only
°J; and °J; is [289]

F _ 0 0 0 0 0
Jeor = Ro{ Jo.or — Jper + (X — %) JF,w} >

with %r; and °r; as the position of link G and F with respect to the base link 0, the
subscript ,, respectively , denoting the translational and rotational part of the Jacobian,
the rotation matrix R, accounting for the pose of the base link with respect to world
coordinates and * for the cross product and therefore skew-symmetric matrix of a vector.

Complexity reduction

Depending on the number of position vectors the calculation of the distance mesh and gra-
dient computation has an @(n?) complexity. In addition, the weighting matrix is highly
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Figure 3.7: Handling modeling/measurement errors. Changing the distance between EE
and base causes much higher joint velocities for the right configuration than
for the left one. To consider the effect, the manipulability in direction of each
mesh distance element is calculated (red arrow)

redundant as its elements vary by several magnitudes. Two methods are presented that
overcome both problems by considering only a subset of all distance mesh elements when
calculating the cost function c.;. The first, simple method considers only a specific por-
tion of the largest elements in W,. Yet this can cause undesired null space movements
of the robot if ¢, is not calculated based on the postions of all links. Thus an elabo-
rate method interprets the distance mesh as a mechanical system of connected springs
keeping the points x; , in position. Through a successive removal of springs it is inves-
tigated how well the points x; , are fixed to a defined spatial position. This is done by
looking at the volume of the unit energy ellipsoid of every point. Differing from the first
method it considers not only the weighting W, but also the spatial arrangement of the
distance mesh elements. The j-th element of c ; is now seen as a mechanical spring with

\ a °
® Vi //
@ . t Lz)
= o
W& i
°
Pit Dt

Figure 3.8: Complexity Reduction. Left: Undesired null space movements of the robot
in case the cost function c.; does not depend on the position of all links.
Right: Interpretation of the distance mesh as a mechanical system of con-
nected springs
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displacement
S = dj,t(ot) - dj,t’

and spring constant

D — Wi
j>t - AT S
d d

ot st

For a perfect motion reproduction it is s;, = 0 Vj,t. In case of only a single spring
between two endpoints and a infinitesimal small displacement of one of the two endpoints
x;, in a random direction As; ,, the displacement force f;, € R® is expressed as

f,.~D;As,.

Note that the symmetric matrix D; , € R**® is used instead of the scalar D; ,, accounting

Jt
for the spatial alignment of As; , and d; ,. Consequently, the energy E; , required to cause

the displacement is written as
1 oor
Ei,t == EASi,tDj;tASi,f'

If there is more than one spring attached to the point x; ,, the displacement energy be-
comes the sum

1
E,, = EAsZt(Z D, )As;,. (3.25)
J

In (3.25) it is visible that the energy required to displace the point x; depends both on
the direction of displacement and the amount of displacement. To find redundant con-
figurations where a displacement of x; is possible without change of the energy E; , we
look at the size of the constant energy ellipsoid defined by

1
1= EAs}:t(z D, )As;,,
J

for every point x; .. Similar to the manipulability ellipsoid, its volume v; , is calculated up
to a constant multiplying factor as

vi,t - det (Z Dj’t)_l .
J

The final cost function c,, is then defined as the sum over all volumes v; , by

n
Cre = E :Vi,t-
i=1

During the selection process only the elements minimizing c, are chosen.
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The matrix D; , is the combination of the scalar stiffness value D; , and a matrix M only
considering the amount of As; , in direction of cAlj,t. Using the rotation matrix R, , that

coaligns the vector [1,0,0]" with (Alj,t, it is calculated as

— T
=D, R, R,

st J,t

S O
oS O O
o O O

Whereas in theory the subset of distance mesh elements has to be recalculated at every
time step, it leads to discontinuities during gradient computation as the distance mesh
constantly changes its appearance. A more robust, yet approximate method is to calculate
only a single subset based on the summed values of W, and d, over time, resulting in
the cost function c,. Note that Delaunay tetrahedralization as used originally in [120]
is suboptimal as it does not consider the weighting W, for all possible distance mesh
elements.

3.7 Endeffector control using piecewise linear systems

Presented in this section is a motion control scheme which - when combined with LTE -
ensures quick motion retargeting while ensuring convergence of the manipulator’s inte-
gral curves towards the reference trajectory. In addition it allows a smooth variation of
different execution speeds, overcoming problems arising from using a discrete reference
trajectory. By creating a set of PL systems depending on the underlying trajectory’s shape
and interpolating smoothly between them, a continuous vector field is created around a
discrete reference trajectory. The method shares similarities with [235], yet it does not
depend on a least squares solution to calculate the vector field. Differing from other ap-
proaches like [33, 260], the set of PL systems does not need to be learned from multiple
demonstrations but is calculated based on a single reference trajectory. If the trajectory is
deformed, it is updated quickly. Convergence of the integral curves along the trajectory
towards an end point is ensured by a smooth interpolation between multiple first order
dynamical systems.

PL system representation

Similar to LTE the reference trajectory is represented by a set of sampling points
and temporal information as as P = [p;,p,,...,P,] . The trajectory consists of tra-

jectory segments T; defined as the line segment between two subsequent sampling
points p;, P11, i € {1,...,n—1}. Every trajectory segment has a mid point p,,; = —pi+§i+1 ,

lying on the hyperplane h; with corresponding normal vector n; = ﬁ. The PL sys-
i+17 Pi
tems for the remainder of this paper are of the general form
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with A € R™™ b € R™. For the i-th trajectory segment, they are split up as

A=A +A,

consisting of a parallel PL system V}; = {A;, b;} responsible for moving an object along
the trajectory and an orthogonal PL system V,; = {A,;,b,;} for convergence towards the
trajectory in case of a sudden disturbance, see Fig. 3.9. In order to calculate the elements
of the PL systems, an orthonormal basis in R™ with basis vectors a;;, j € {1,...,m} is
defined such that a, ; coaligns with p,; —p;. It is assumed that the eigenvectors e;; of
A; coincide with a; ;. The scalar values A;; and A4, ;; denote the eigenvalues of A; and
A, ;. Then the parallel PL system V|; has to fulfill the conditions

A‘Hl,i - A'”Z,i —_— ... = A’Hm,i - 0,
1(pp) = 2P o, (3.26)
’ tiy1 — ¢

that is a PL system with constant velocity parallel to the i-th trajectory segment. The
orthogonal PL system V; has to fulfill the condition

A'Ll,i = 0:
Alpi=Aus;i=.. = A, <0,
X(pm:) =0, (3.27)

i.e. the line through p;, p;;; being the only stable set of equilibrium points. By defining
A||1 and b”l as

A”l - O,
b||i _ Pi+1 —DPi ’
tiy1— L

it suffices (3.26). A heuristic approach is used to find a solution that suffices (3.27). By
remembering that
X = AJ_iX + bJ.i’

one can create the equation system

X(Pm,i) =0,
X(Pm,i +21,;) =0,
X(Ppi +a,;) =—K;a,;, Vq€{2,...,m}
and solve it for the variables in A|; and b,; in order to construct the orthogonal PL
system. The strength parameter k; > 0 adjusts the influence of the orthogonal PL system
V, ;, accounting for the rate at which any object converges back to the trajectory after a

disturbance. Note that the norm of any vector v ; caused by the PL system V| ; is directly
proportional to the minimal distance d,,; to the line through p,,,,p; as

vyl = dp ik (3.28)
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An interpolation scheme according to (3.7) with the weighting factor w; € [0, 1] blend-
ing over the PL systems of subsequent trajectory segments is proposed in order to avoid
discontinuities

x=w;(A;+b)+(1—w)(Ay; +biy1), =wi(v; +v )+ (1 —=w)(Vyr + Vi)

with the vector v|; caused by the PL system V|; The trajectory segment 7, is defined by
the two points p;, p;;;, the trajectory segment 7,,; by p;;1,Pii2- Let the projection of

an object position onto the 7; segment be p,; and its relative length r; = H. The
’ i+17Pi
interpolation scheme weight w; is given as

/ —
ri=|r;—0.5|],
/ —

riyy = Irigr —0.5),
/
i1
W= - + /0
riTrig

with the offset of 0.5 moving the moment of switching to the hyperplane h;. Note that
this interpolation scheme is only well defined for intersection angles v;

(P2 —Pi) (P =P\ _ 7
¥, = arccos( pl+2 Pl+1 pl+1 Pi < =, (329)
IPir2 — PisallllPics — Pl 2
Vi \1 result result after detailed
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Figure 3.9: PL system overview. Left: Calculated vector field both after superposition
and split up into individual parallel and orthogonal vector fields. Right:
Schematic view

Convergence and stability

This paragraph deals with the question under which conditions convergence of the inte-
gral curves towards the reference trajectory can be ensured, thus corresponding to the
stability properties of the PL system approach.
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3.7 Endeffector control using piecewise linear systems

Theorem 4 Let the PL system be described according to (3.26)-(3.29). Then conver-
gence of the integral curves towards the last sampling point p,, is guaranteed in an area
around the trajectory where

vl cos(y;) > d,,, ix; sin(y,), (3.30)
holds.

Proof.  Two aspects of convergence must be differentiated, transition convergence
and point convergence. Transition convergence is defined as the convergence from
any point s either on h; or in the area in between the two hyperplanes h;, h;,; defined
byn;-(s—p,,;) =0 and n;; - (s—p,,;+1) <O to a point on the hyperplane h;,,. Point
convergence means that a point s either on the last hyperplane h,_; or in one of the two
half spaces defined by n,_; - (s —p,, ,_;) = 0 eventually converges to the last sampling
point p,. By combining both convergence properties it is ensured that a point moving
along the trajectory eventually converges to p,,. To prove transition convergence, the
vector field p(s) always has to point in direction of n;; as

x(s)'n;,, > 0. (3.31)
By decomposing p(s) as
x(s) = wy(v; + v ) + (1= w) (Vi1 + Vi),

it accounts both for the orthogonal/parallel components of the PL systems V;, V.., and
the interpolation scheme with weight w,. Looking at the geometric properties, (3.31) is
rewritten as

w1 (llvy:ll cos(y;) — vl sin(y;)) + wallvyq [l > 0,
w1 ([lvyill cos(y;) — din i sin(y;)) + wy [V || > 0. (3.32)

The minimal values of (3.32) are given for w; = 1, resulting in

|lvy;:ll cos(y;) > d,, ;x; sin(y;),

which is a necessary condition for transition convergence. Depending on the intersection
angle v; it defines an admissible region around the trajectory segment whose extent can
approach oo for y; — 0 in the limiting case or O for y; — g Point convergence for p,, is
achieved by creating a PL system V for the last trajectory segment such that it fulfills

Ain =g == Ay <0,
x(p,) =0,

that is a point attractor for p, which is created following the idea in (3.7). The proof is
analogous to the one for transition convergence with the only difference that ||v; | for
the last trajectory segment is not constant anymore due to the point attractor. Yet as the
(3.33) does not depend on the term ||v; 4|, it also result in

|lvy;ll cos(y;) > d,, ;x; sin(y;).
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Continuity/differentiability

Due to the used interpolation scheme continuity and differentiability are ensured as long
as subsequent hyperplanes h;,h;,; do not intersect with each other. Differentiability
across the hyperplanes in the moment of switching is shown by calculating the derivative
of the PL system at the left and right side of a point p, on the hyperplane h;. For the left
side p, itis withw; ; =0,w; =1

dw; 1(A_1p+b;_,)+w;(Ap+Db)) —A
dp x=p-
With the weights w; = 1,w;,; = 0 for the right side p; it is
dw;(A;p +b;) + w1 (A 1P +biyy) — A

19

dp x=p?
thus ensuring continuity and differentiability across the hyperplanes and making the
method applicable for a variety of tracking problems which require ¢ continuity.

Bounding volume

It is possible to determine upper bounds for the maximal deviation from the reference
trajectory as the object moves along the trajectory. These bounds depend solely on the
spatial distance between two subsequent sampling points and the intersection angle y;
and are thus simple to calculate. The upper bounds are calculated in terms of distance
d; to the mid point p,,; when passing the hyperplane h;, measuring how the distance d;
propagates to the distance d,,; when passing the next hyperplane h; ;. When considering
only the two dimensions in which two subsequent trajectory segments are not collinear,
one can define an outer side d, ; and an inner side d; , for the distance d,, see Fig. 3.9. In

case of an offset d, ;, the maximal propagated offset d;,, ; is defined with [; = Ipis1 —pil

l, = w and the intersection angle y; as t
d; 1, = max( il + 1, tany;, [, siny;). (3.33)
i
In a similar fashion, the maximal propagated offset d;, , is defined as
d;,1, =max(l,tany;,d,cosy; + 1 siny;). (3.34)
In the general case one has to consider the worst case d;; for d; = {d;,d,} as
d;,; = max(d;,d,),
d;_l >1. (3.35)

1
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3.7 Endeffector control using piecewise linear systems

For values of y; close to g, the first terms of the max operator in (3.33) and (3.34) become
dominant. By remembering that ﬁ A tany; for y; ~ g, one can rewrite (3.35) as

dis1
— ~tany;.
d;

For values of y; close to 0, the second terms of the max operator in (3.33) and (3.34)
become dominant. In this case, it is

So far, only the spatial bounding volume is considered. Another aspect is temporal bound-
edness, that is the time horizon within which the hyperplane h;,; will be passed when
starting from a point on the hyperplane h;. It is for a given offset d; = max{d,,d,} for
the lower distance boundary d, ; and upper distance boundary d, ; orthogonal to h;; to
be travelled

d,; =1lycosy; +1,+d;siny;,
dl,i - Zl COS Yl' + lz — d2 Sin Yi’

In analogy to (3.32) velocity bounds for the minimal velocity v,; and maximal velocity
v,; orthogonal to h;; are determined as

v, = max(|[vl| cos(y;) + d,, ;k; sin(y;), [V D),
Vii= min(”Vni || cos(y;) — dp i%; sin(y;), ||V||i+1 ).

Then the minimal time t;; and maximal time t,; required to travel from hyperplane h;
to h;,, is calculated as

du,i
t, .= ,
Vii

v

u,i

As a result, one can calculate both temporal and spatial bounds for an object moving along
the trajectory. The principle of spatial bounds along the hyperplanes can be extended to
arbitrary hyperplanes, allowing one to cover the entire space.

Spatial bounds approximation

Whereas conservative spatial bounds of the deviation of the integral curve C from the
reference path are presented which hold for any x; > 0, a good approximation can be
made under the assumption of y; ~ 0 and ||v; ;|| ~ [[v|;||. Then for an object starting
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from the hyperplane h; with an initial distance d,, ; to the trajectory - see (3.28) - the
resulting distance d,, ; when passing the hyperplane h; is calculated as

dm,s = dm,l _f VJ_dx7
C
Ndp, | |exp(—K;At),

i=1
s

||pm,i+1 — Pm,i ”
~d, exp(—«k;
i1 ||V||i [

), (3.36)

with f . as the integral over the integral curve C and A, as the time required to traverse
from the hyperplane h; to h;;.

3.8 Path similarity through subspace projection

This section introduces a generic classification framework to measure the similarity be-
tween two discretized paths. Based upon similar principles as LTE, it accounts for a wider
class of paths as it is based upon a learning-free, hierarchical descriptor. Although differ-
ent path similarity measures of LTE presented in Sec. 2.5 can also be used to compare two
paths, they are only applicable under two restrictive conditions: Both path must consist
of a similar number of sampling points and they must be free of noise. The first condi-
tion is obvious as the similarity measures in (2.18)-(2.19) either iterate over n sampling
points or apply the Frobenius norm to the difference of two matrices with similar size.
The second condition becomes clear by looking at (2.31). Depending on the derivative
order of the local path properties, the sensitivity towards high-frequency noise increases
accordingly. A solution is to define a similarity measure both on a local and global scale.
Measurement noise will affect only local path properties whereas path deformations act
on a global scale while maintaining the local path properties. A hierarchical approach
iteratively splits up the path into smaller subpaths and captures the characteristic prop-
erties at each granularity, see [86].

Splitting process

The splitting process for a discretized path is driven by two main ideas. The first one is to
split every path segment in exactly two different subpaths. When writing the dependence
between paths and subpaths in a tree structure, it results in a full binary tree which cap-
tures the global path properties with the root node and the local path properties along the
entire path with the leaf nodes. This can be ensured by splitting a path with n sampling
points at the sampling point with index g atdepth d =1, then at % and %“ atdepthd =2,
etc. Whereas the structural path properties are captured this way, the spatial distribution
of sampling points along the trajectory has a huge influence on the spatial aspect of the
splitting process. Thus the second idea is to maintain specific geometric properties of the
path during every splitting process at the cost of an even split. Every path P consists of
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3.8 Path similarity through subspace projection

a set of path segments P;; containing all the sampling points [p;, Pi11,- - ,pj]T. At the
first level of the splitting process, the path P;,, = P has to be split up by a sampling point
p; € P,, such that the two resulting lines L,; through (p,,p;) and L;, through (p;, p,,)
achieve a tradeoff between resembling the path well and splitting it up evenly for i = g

Inspired by minimal surface energy considerations pimj denotes the orthogonal projec-
tion of a sampling point p, € P;; on L;;. Then the weighted squared length L,; of the
trajectory and the sum of squares S;; is calculated as

)2

i—1
Ly =my (Z ||Pk+1 — P
k=1
) (3.37)

1

51122

k=1

112
proj

pk_Pk

with m; as the number of sampling points of each path segment. The same calculation
is done for any point p, € P;, and the second line, resulting in S;, and L;,. The optimal
sampling point p,, named splitting point, splitting the trajectory into two subtrajectories
is

p, = argmin(L,; +S;; + L, +S;,), i=1,...,p. (3.38)

Pi€Pq,

The values S;;,S;, and Ly;, L;, act as energy terms stored in two types of “mechanical
springs”. Minimizing S;; and S;, means to minimize the squared distance between the
two line segments and the path, thus resembling the path as good as possible in a least
squared sense. Minimizing L,; and L,, on the other hand centers the splitting point with
respect to the number of sampling point n in case of equidistantly spaced sampling points.
In all other cases it centers the splitting point with respect to the arc length of each path
segment. The structural properties of every path segment P;; are uniquely described by

PN
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Figure 3.10: Shape tree creation overview. Left: Splitting process. Right: Resulting shape
tree

its start point p; and end point p;. When continuing iteratively with the splitting process,
every path segment will consist only of two subsequent sampling points (p;_;, p;) in the
limiting case. All resulting path segments are stored in a binary tree called “shape tree”
[86] together with a corresponding depth value d € {1,...,d,,,, }, see Fig. 3.10.
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Similarity measure

When comparing two paths, their similarity is encoded in a single scalar value, the sim-
ilarity measure. Similar to LTE its calculation is inspired by the Frenet-Serret formulas
in (2.13). The Frenet-Serret formulas have an alternative interpretation as the offset of
each point with respect to a lower-dimensional subspace. As such the velocity of a par-
ticle is interpreted as the distance to a OD subspace (the current position) after a certain
time and curvature is the offset related to a 1D subspace (a straight line). Yet the Frenet-
Serret formulas cannot be applied in the generic case if multiple sampling points are not
subsequent. Thus the interpretation of the subspace projection is generalized as

Sq:Span(pSZ_pSD'"’psq_psl)’ q:2:"'sm)
Ps —Ps1 = p||q + pJ_q) p||q € Sq: pJ_q 1 Sq:
lJ_q = ”pJ_q”J (3.39)

with p, being the splitting point, p,; the start point and t,, the end point of the trajectory
segment. In case of a g-dimensional space first a set of bases S, spanning different sub-
spaces with dimension 1,...,n— 1 are defined. Then the vector p, — p,; is split up into
a normal component p;, € S, and an orthogonal component p,, 1 S,, see Fig. 3.11.
The value [, ; as the norm of the offset to each subspace forms the principal component
to compare trajectories. For m > 2, additional sampling points beside p,, and p,; as
stated in (3.39) must be defined to form a basis for the subspaces Sq- Two methods are
suggested: For the parent method, new sampling points are selected by processing the
shape tree towards its root. On the other hand, the neighbor method adds new sampling
points by processing the adjacent nodes of the same depth d.

A problem occurs if the basis for S, is ill-conditioned, leading to a large sensitivity of [ |,
depending on the sampling points that span S,. This effect happens either accidentally
if two sampling points close together or if the trajectory is degenerated and lies in a
lower dimensional subspace. To consider the effect, the condition number based on a
SVD of the basis vectors of S, is calculated. As it is unknown whether a basis is ill-
conditioned by accident or due to degeneracy, the PCA eigenvalues A,, e = 1,...,n of
all sampling points of the trajectory segment are calculated as well. All values - subspace
projection length, condition number and PCA eigenvalues - form the similarity measure
used throughout this chapter. They are stored in a tree with identical structure as the
shape tree, called curvature tree 6. The method is related to LTE but not identical.

Ps
Ps1

Figure 3.11: Curvature tree creation overview. Left: 2D example. Middle: 3D example.
Right: Effect of an ill-conditioned basis
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3.8 Path similarity through subspace projection

For equidistant and subsequent sampling points, the measure [ is similar to first order
finite difference constraints as in (2.7) and the measure [, corresponds to second order
finite difference constraints in (2.9). For higher orders the two approaches differ. LTE
relies on a regular mesh structure, specifies only local path properties and is defined only
for left/right/central finite differences. Subspace projection does not come with these
limitations, yet it suffers from ill-conditioned bases.

Path comparison

This paragraph describes how the similarity measure [; is calculated based on the values
in each curvature tree. It is based upon a four-staged approach:

e Find corresponding nodes of two curvature trees
e Normalize all values of each node
e Calculate the difference between the values of two corresponding nodes

e Sum all differences to obtain [ y:

The first aspect is important if two curvature trees with different structure are compared.
The second aspect prevents any single effect (subspace projection length, condition num-
ber or PCA eigenvalues) to become dominant due to a degenerated path. It also makes
the descriptor scale invariant. The last two aspects described how the final similarity
measure is calculated based on the individual elements of the curvature tree.

To find the corresponding nodes of two curvature trees, the two trajectories to be com-
pared are marked with superscripts ¢ and . When introducing a mid position r,, € [0, 1]
for the order of all nodes of a specific depth d®?}, the position c¢!¢® € %{®} of every
node in the tree is defined by the tupel {r\*"),d'“"}. The corresponding node c, of the
other curvature tree is found as

¢, = argmin(||r? — r,f1||) s.t. dua =dys,
cbeg?
that is the node with similar depth that minimizes the absolute difference between the two
rn-values. To calculate the r,,-value of every node, a iterative scheme evaluates all nodes
of the tree. Its algorithmic description with the start and end position {r,,r,} € [0, 1],
the superscript "°°* for the root node, ? for every parent node, ¢! for every chronologically
first child node and “* for every chronologically second child node is shown in Alg. 7.
An example of Alg. 7 is given in Fig. 3.12 During the normalization process subspace

projection length, condition number and PCA are mapped to a range of values [0, 1].
When normalizing the subspace length, the orthogonal offset [ | , is multiplied by 2/ ls{a’b}
as

ls{a,b} :”ps _pslll + ||p52 —Ps”,

{a,b}
@by _""Lg _
qu BETTOR qg=2,...,m. (3.40)
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Algorithm 7: NodeIndex (%)

foreach c € ¢ do
if c = ¢c"°°* then
L rireet  =40,0.5,1}

{s,me} —

foreach c € ¥ do
if number of children = 1 then

cl . 2
L Tismey = Tismye}

else if number of children = 2 then

rel =rp
S S
<l — (1P 4 pP
rm1 =P +rP)/2
[o Ru—
Ie _rrl:l
re2=rp
52 m
re=(r2 +rP)/2
re=rp

- e e

0
0.25
0.5

Figure 3.12: Relative position of each curvature tree node

0.5 0.625 0.75
0.563 0.688 0.875
0.625 0.75 1

To normalize the condition number (which is always > 1), the inverse is taken as

q K({]a,b} :

(3.41)

All PCA values for a single node are mapped to the [0, 1] range by dividing them with
the largest eigenvalue as

)t{a’b}
L R S Y- (3.42)
f max(?tj{ca’b})

For the final similarity measure [, the difference between the values of the two paths is
taken. An additional normalization by 2¢ achieves a similar influence of all the nodes of
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every depth d as there is usually 1 node at d = 1, 2 nodes at d = 2, 4 nodes at d = 3, etc.
Once calculated, all values of all layers are summed up as

Zq(lla _ lb’

l/

2d

a _ b
Tk =R
d2 — od ’
DY)
a3 — od ?
lf == Z (Zdll + ld2’ + ld?/)'

Vcte6?

to obtain the final similarity measure ;.

Invariance properties

Theorem 5 The similarity measure [; is invariant to rigid transformations and scaling.

Proof. As arigid transformation preserves the distance between every pair of points, it
does neither influence the splitting process nor the similarity measure. To proof scaling
invariance, the coordinates of every sampling point of the trajectory are multiplied by a
scalar y,. Then (3.37) becomes

)2

i—1
Lyy=my E :}
k=1
i

511'22

k=1

Ystk+1 - Ystks ‘

112
roj
Yste — Ystllz D

In a similar way, (3.38) is rewritten as

pS =Yszargmil‘l(Lh+Sll+Lm+Sm), l - 1,...,p.
Pi€P1,

and thus independent of the scaling factor y,. Neither is the final similarity measure I,
influenced by vy, due to the normalization in (3.40)-(3.42).

3.9 Experimental evaluation

This section evaluates approaches presented in this chapter in real life on different robotic
platforms like an HRP-4 humanoid robot and a planar 3DOF manipulator.
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3.9.1 Clap/lift-the-box scenario using a HRP-4 humanoid robot

To validate the distance mesh approach presented in Sec. 3.6, two scenarios with five
demonstrations per scenario are recorded. 38 markers are attached to the human and
tracked by a motion capture system from Motion Analysis Inc. at 200Hz. The whole-
body free space motion is then onto a HRP-4 humanoid robot, providing the link-link dis-
tances and overcoming the problem of different link lengths between human and robot.
Additional link-object distances are measured directly from the human demonstration,
causing some inevitable modeling errors as the link-link and link-object distances are
not perfectly matching anymore. Whereas simulations are performed in OpenRave [68],
real life experiments are conducted on the HRP-4 robot. The prioritized IK method pre-
sented in Sec. 3.4.1 is used to calculate a physically feasible whole-body motion with its
parameters given in Tab. 3.4.

In the first scenario - named clap - a standing human puts his hands first on the lap and
claps afterward with both hands risen up. No objects in the environment are considered,
thus the distance-mesh calculation is based solely on the link-link distances. This way the
free space imitation capabilities of the approach are investigated. For the second scenario
- named box - a box has to be lifted from the right to the left side of a table. In this scenario
also the link-object distances between human and box are taken into account. The second
scenario requires more precise movements than the first scenario as an unilateral contact
between hands and box has to be maintained to prevent the box from falling down.
Key frames of both scenarios are shown in Fig.3.13, both for the human demonstration
and the robot motion reproduction. As the robot is entirely position controlled, motors
and gears are easily damaged due to the closed kinematic chain when holding the box.
Thus a smaller box with added compliant elements is used for safe task execution. A

| parameter | value |

m 0.03
Koom 0.3
K; 0.3
K., 0.5
K, 0.2

Table 3.4: Parameters for the clap/lift-the-box scenario

comparison with a conventional method based on a joint angle encoding is shown in
Fig. 3.14. The figure is both split up into movement reproduction for a standing robot
(top) and a sitting robot (bottom) as well as into the distance mesh based method (left)
and the joint angle approach (right). Similar to the distance mesh approach the joint
angle approach calculates a reference motion by using the combination of a CHMM and
GMR, resulting in a time varying reference joint angle vector q,. To ensure collision
avoidance and a stable stand while keeping the joint error g, — q, between reference
motion and reproduced motion small, a prioritized IK approach of the form

q=J7% +Ko(I—=J7J,)(4, — q.),

102



3.9 Experimental evaluation

Figure 3.13: Human demonstration and HRP4 robot imitation for clap and box scenario

with J; and 1, similar to Sec. 3.4.1. Due to the different control laws the reproduced
movements for the two scenarios differ. The difference becomes obvious for the sitting
clap scenario. When using the distance mesh approach the robot tends to lean back-
wards as it tries to maintain the original link-link distance between legs and upper body.
The joint angle approach fails to place the robot’s hands on the lap because it considers
only joint angles but ignores the spatial relation between lap and hands. Two additional
plots on the bottom illustrate the imitation quality both in terms of the imitation cost
function c.; and the summed joint angle error Zlek“]t —q,|. Whereas the distance mesh
method provides better results in terms of ¢, the joint angle approach results in a smaller
summed joint angle error.

The distance mesh redundancy is evaluated in Fig. 3.15. To reduce the number of ele-
ments of the distance mesh and accelerate calculations, the two methods for complexity
reduction described in Sec. 3.6 are evaluated. n = 32 points are used to construct the
distance mesh for the box scenario, resulting in a maximum of (32 x 31)/2 = 496 ele-
ments for the distance mesh. In contrast the clap scenario consists of only n = 21 points,
corresponding to a maximal number of 210 distance mesh elements. Based on a given
reference reproduction using all elements of the distance mesh the average task space
error of all the points p; , summed up over all time steps is shown. It is visible how a re-
duced number of task space elements leads to a larger average error, corresponding to a
worse imitation quality. For both scenarios there is a defined threshold where the average
error suddenly increases and the robot fails to imitate the desired movement. Fig. 3.16
illustrates the effect of the modeling/measurement error handling scheme. Two different

103



3 Motion imitation and control
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Figure 3.14: Comparison between the distance mesh approach and a joint angle approach
for a standing and sitting robot. Left: Distance mesh approach. Right: Joint
angle approach. Two plots on the bottom show the value of the imitation
cost function c.; and the summed joint angle error

. . o . . &1, . . .
box scenarios with the weighting matrix W, chosen either as D,,,, 2 , (with manipulabil-

ity) or f}s_: (without manipulability) are compared. Differing from the second scenario
the first scenario does not consider any COM, feet or collision constraints. Shown is the
absolute velocity of the fastest moving joint versus execution time. If the robot enters
a singular configuration during execution caused by a modeling/measurement error, it
is detected indirectly through a large joint velocity. Such configurations exist a 250ms
and 2100ms. Yet as the method is encoded in the secondary, lower prioritized task, its
effect decreases with increasing number of constraints in the higher prioritized task as
shown on the right side. The distance mesh approach shows that task-specific properties
can be extracted automatically by a solely task space dependent measure. This makes a
weighting scheme between possibly concurrent objectives in joint space and task space
obsolete. Up to a certain extent it also verifies the applicability to precise manipulation
tasks including closed kinematic chains. A problem of all variance-based methods is the
incorporation of hard positional constraints. Due to measurement noise, a probabilistic
encoding and a pseudoinverse-based differential IK such constraints are never fulfilled
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Figure 3.15: Average positional error of all distance mesh points depending on the rela-
tive number of used distance mesh elements for both scenarios

perfectly, requiring some compliance of the objects to interact with. The method is ro-
bust towards changes of the parameters K., K¢, K.q, K;;,, as all of them can be varied by
more than one magnitude without substantial changes of the reproduced motion. It is
however sensitive to parameter changes of the CHMM/GMR, especially the number of
used states. Another challenge is the automatic extraction of task features based on the
variance matrix ﬁis,t as a small variance can be caused either by a highly task related as-
pect or a completely unrelated aspect that does not change the task space distance during
demonstration.

3.9.2 Obstacle avoidance scenario using a HRP-4 humanoid robot

A small obstacle avoidance scenario validates the PL system approach in Sec. 3.7. The
challenge consists of a button to be pressed in the presence of obstacles. Five human
demonstrations are recorded in which the hand is moved from various starting positions
through a narrow tunnel to press the button, see Fig. 3.17. The movement is then adapted
with a HRP-4 robotic platform for which the used IK parameters are given in Tab. 3.5. To

| parameter | value |

T 0.001
Koom 0.3
K, 0.05
K., 0.5
K, 1

Table 3.5: Parameters for the obstacle avoidance scenario

adapt the motion to a different environmental situation and safely avoid obstacle while
maintaining the task-specific properties, the approach is combined with DTW [148] and
GMR [46]. DTW aligns all demonstrated trajectories in the temporal domain. The result
is used by GMR to give a prototypic trajectory with corresponding spatial variance X;
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Figure 3.16: Effect of the modeling/measurement error handling scheme. Left: Veloc-
ity of the fastest moving joint versus execution time with reduced number
of constraints. Right: Speed of the fastest moving joint versus execution
time when considering all constraints. Close to singular configurations are
highlighted with orange circles

for every sampling point p;. The strength parameter k; in (3.7) depends on the spatial
variance along the trajectory as

1

Vaet(z)

K; &

This ensures quick convergence and small deviations from the prototypic trajectory when-
ever the spatial variance is small, e.g. in heavily constrained environments. At the same
time it also allows a greater flexibility if the spatial variance is large, corresponding to free
space motion. This effect is illustrated in Fig. 3.17. The left side represents an abstract
view of the task. Grey boxes mark the two obstacles, a green and red cylinder stands
for the buttons to be pressed. The five human demonstrations are visualized by orange
trajectories. The colorful tube is centered around the prototypic trajectory. Whereas the
tube color represents the variable PL system strength k;, the tube diameter is directly
proportional to the distance d,, ; of the spatial bounds approximation in (3.36). It is visi-
ble how the small spatial variance of the demonstrated trajectories between the obstacles
result in a large k; and ensure quick convergence. On the other the large spatial variance
at the beginning of each trajectory due to the different start positions results in a small
k; value. The right side shows the adaptation to a different environment where both
obstacle position and goal position, i.e. the button to be pressed, are changed. By de-
forming the trajectory through LTE, collision avoidance according to the spatial bounds
approximation is guaranteed within the tube. The two bottom rows of Fig. 3.17 illustrate
the adapted motion for two different start positions Fig. 3.18 shows the schematic view
of the obstacle avoidance scenario with the different convergence strength depending on
the spatial variance.
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Figure 3.17: Obstacle avoidance scenario. Top: Demonstrated human motion. Bottom:
Adapted robotic motion

3.9.3 Model-free motion classification

Two experiments are performed to evaluate the classification scheme in Sec. 3.8. In
the first experiment the classification rate is evaluated using a proprietary data set of
recorded trajectories. The second experiment compares the proposed method with other
learning-free methods using the Australian Sign Language dataset [136].

Classification of human free space motion

The first set of experiments classifies a set of 3D human hand gestures tracked by a Kinect
camera. The data set consists of 40 different movement classes with 5 samples per class,
see Fig. 3.19. 32 different gesture form the 32 base movement classes. The other 8 classes
follow a similar path as 8 corresponding base classes but the movement is stopped at a
certain point of the trajectory while continuing to recording data. This evaluates the clas-
sification rate of similar paths with a different spatial distribution of all sampling points
along the path. The 5 samples of each class vary in orientation, speed and scaling. To
suppress measurement noise, the measured data is preprocessed using a moving-average
filter with 5 frames and outlier removal for single points. The trajectories consist of 62
to 564 sampling points with images of all classes given in Fig. 3.19. All classification-
relevant computations are conducted in Matlab R2010a under Ubuntu 10.04LTS using
an Athlon Phenom II X6 1075T CPU with 8 GB RAM. Results when comparing the 32
base classes are listed in Tab. 3.6. The percentage of correct classification is on a 1:1
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Figure 3.18: Schematic view of the obstacle avoidance scenario. Left: Original scenario
with demonstrated trajectories (orange) convergence properties towards the
prototypic trajectory (colorful tube) and convergence speed (color of the
tube). Right: Adapted scenario with changed obstacle position (grey cubes)
and different goal position
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Figure 3.19: Overview of the 40 different 3D classes for trajectory classification. Every
black trajectory belongs to one of the 32 “base’ ’classes. Each one of the
other 8 red trajectory classes is a variation of one base class with paused
movement at a specific point along the trajectory

basis, checking individually for every trajectory whether the trajectory with the highest
similarity belongs to the same class. From left to right every row denotes the maximum
compared depth d of the curvature tree, the percentage of correct classifications for the
parent and neighbor method, the total time required to compare each trajectory with
each other and the average time for comparing a single trajectory with another single
trajectory. The last one equals the total time divided by the number of possible com-
binations, that is (32 x 5)%. It is good to see how the classification rate saturates for a
maximum depth d = 3 with only small improvements for higher depths, indicating that
most of the trajectory-specific features are not encoded on a local but rather global scale
for the given dataset. Classification results for all 40 classes are shown in Tab. 3.7. Com-
pared to Tab. 3.6 a decrease in the correct classification rate of around 7% is observed.
The third experiment shows classification results for a set of 160 six-dimensional (6D)
trajectories. To obtain the 6D trajectories from the data set of 3D trajectories, trajecto-
ries from two different classes are interpolated for a similar number of sampling points
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| proc. d | parent | neighbor | time [s] | time 1:1 [us] |

5 93.8% | 90.6% 16.6 648
4 92.5% | 91.3% 8.36 326
3 89.4% | 89.4% 4.33 169
2 80.6% | 80.6% 2.32 90.6
1 45.0% | 53.1% 1.33 51.9

Table 3.6: Classification experiment 1: 3D trajectories, 32 classes, no noise

| proc. d | parent | neighbor | time [s] | time 1:1 [us] |

5 86.5% | 87.0% 25.8 645
4 86.0% | 86.5% 13.5 338
3 81.5% | 83.0% 7.00 175
2 73.5% | 73.0% 3.58 89.5
1 37.5% | 45.5% 2.04 51.0

Table 3.7: Classification experiment 2: 3D trajectories, 40 classes, no noise

and concatenated to form a 6D trajectory. Results in Tab. 3.8 show a decrease in the
correct classification rate of around 4% when compared to Tab. 3.6. Tab. 3.9 displays

| proc. d | parent | neighbor | time [s] | time 1:1 [us] |

S5 90.0% | 90.6% 19.0 742
4 90.0% | 90.0% 10.1 394
3 84.4% | 87.5% 4.40 172
2 74.4% | 77.5% 2.53 98.8
1 44.4% | 48.8% 1.56 60.9

Table 3.8: Classification experiment 3: 6D trajectories, 32 classes, no noise

classification results for the fourth experiment with 160 3D trajectories. Different from
all previous examples Gaussian noise 47(0,0.002) is added to every sampling point in-
dependently along every dimension, see Fig. 3.20. Compared to the first experiment in
Tab. 3.9 the correct classification rate drops by around 10%. The low drop sounds rea-
sonable as the main differences between the different trajectories are encoded in the local
features but the added noise mainly affects local features. The experiments show high
classification rates of the proposed classifiers in the ~ 90% range under various condi-
tions. As the calculation of the curvature tree is independent of the classification process,
a computationally efficient method is to calculate the curvature tree once for each tra-
jectory a priori and store it for further comparison with other trajectories. The classifier
does not depend on any tunable parameter and can thus be quickly applied to generic
problems without any parameter tuning.
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Figure 3.20: Examples of noisy trajectories for the fourth classification experiment

| proc. d | parent | neighbor | time [s] | time 1:1 [us] |

S5 83.1% | 80.6% 16.0 625
4 85.6% | 85.6% 8.87 346
3 80.6% | 80.6% 4.39 171
2 65.0% | 68.8% 2.46 96.1
1 36.9% | 40.6% 1.40 54.7

Table 3.9: Classification experiment 3: 3D trajectories, 32 classes, with noise

Classification of the Australian Sign Language data set

To compare the proposed method with other learning-free classification algorithms, a
common classification test is performed on the Australian Sign Language (ASL) data set
[136]. Similar to Croitoru [60], Vlachos [306] and - with reservation, as their classes

YA 1Y 7

are slightly different - Keogh [148], a set of 10 classes (“Norway”, “cold”, “crazy”, “eat”,
“forget”, “happy”, “innocent”, “later”, “lose”, “spend”) with 5 samples per sign is pro-
cessed. For every of the 45 possible class pairings, the 10 samples are clustered through
group-average agglomerative clustering creating a dendrogram depending on the simi-
larity between the two sequences. If the highest level of the dendrogram separates all
samples of one class from all samples from the other class, it is considered as correct
classification. The percentage of correct classification rates is shown in Tab. 3.10. For a
processing depth d = 3 the success rate of the proposed method is comparable with other
model-free approaches, for a processing depth d > 4 existing comparable approaches are

outperformed. Compared to the 1:1 classification for the human free space motion the

| proc. d | parent | neighbor | Croitoru | Vlachos | (Keogh) |

5 62.2% | 62.2%
60.0% | 57.8%
51.1% | 51.1% 53.1% | 46.6% | 51.1%
33.3% | 37.8%
2.2% 2.2%

— N Wb

Table 3.10: Classification experiment 5: ASL data set

dendrogram-based classification is a much harder problem, leading to lower classifica-
tion rates. If only a single trajectory is classified wrongly, the entire classification for the
two classes to be compared fails.
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3.10 Summary

The LTE planning framework is expanded in this chapter to account for robotic control
applications. Different control schemes are developed which - when combined with LTE
- overcome specific problems of LTE associated with online control. The chapter follows
two main ideas, expanding the trajectory-driven nature of LTE to whole-body control
schemes and accounting for the local trajectory properties on a controller level. To con-
sider dynamic constraints, upper bounds are derived which link the trajectory deforma-
tion in task space to the applicable torque limits. Despite their generality, some methods
are computationally demanding as they require a LTE update of the reference trajectory
at every time step during execution. Computational complexity is further increased by
using a predictive controller to account for the interlocking nature of local trajectory
properties.

3.11 Bibliographical notes

The results in this chapter and the related appendix are either partly or in their entity
based on the author’s work in [224, 227, 229]. All the singular-robust IK approaches in
the style of (3.3), (3.4) and (3.12) tackle the general problem of regularizing an ill-posed
matrix and are better known as Tikhonov regularization [300]. While working on the task
space distance mesh approach, a conceptually similar method is presented in [120, 218]
to control the motion of a humanoid robot/character. Although overlapping at certain
points, e.g. when using a singular-robust IK approach to create task-specific motions,
the detailed implementation and scope differs and is thus difficult to compare. Wheras
the HMM-based task space distance mesh is primarily used to automatically extract the
task-related features, their work focuses on movement adaptation and dynamic balance
constraints. As mentioned in the text, the method of iteratively subdividing a trajectory
and the word choice of “shape tree” have been used previously in [86].
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Motion reasoning

This chapter investigates how to decompose a general task through motion reasoning
into single motions to process them efficiently in the context of motion imitation. Ex-
isting state-of-the-art approaches in PbD focus solely on specific motions but not their
interconnection to achieve an abstract task. In the latter case the challenge of motion
reasoning becomes to find automatically both a set of possible motions and suitable con-
straints for an optimal task completion. By predicting the outcome of each motion for
a given situation and simulating several motions in advance, an optimal motion is se-
lected. As the approach is model-based, it has to resemble the environment precisely. For
cooperative or competitive scenarios involving humans, their behavior has to be modeled
through psychological experiments. As shown in this section, this leads to a significant
improvement in overall task completion rate.

The chapter is organized as follows: Sec. 4.4 introduces the general framework for mo-
tion reasoning based on an MDP representation. Application-specific adaptation mecha-
nisms are described in Sec. 4.5, both in the context of how an desired action can be repre-
sented and how the general approach has to be adapted to fit task-specific requirements.
Sec. 4.6 is dedicated to derive a suitable, yet general model of inaccuracies arising at a
game of pool. All aspects are combined in the general framework and evaluated both
through simulations and experiments with an anthropomorphic platform in Sec. 4.7.
Whereas Sec. 4.8 provides a summary about the motion reasoning framework and its
adaptation to pool, Sec. 4.9 lists existing literature on this topic.

4.1 Introduction

Under the prerequisite that both a reference motion and constraints are given, LTE al-
lows for a proper motion adaptation while taking into account specific properties of the
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reference motion. Whereas the last two chapters showed a variety of options how to
generate a reference motion, it is still mostly unknown how to derive suitable boundary
constraints for a complex task pursuing a long-term goal. When specified manually, the
human has to be an expert for the given task as wrong constraints may have either no
or a counter-productive effect. Another option is an automatic extraction of task-specific
constraints from multiple demonstrations, yet this method assumes that the task is en-
coded in the difference between the demonstrations. This is a highly specific assumption
and only of limited scope for the general case.

In many scenarios the task is not described by a single motion but a multiplicity of
motions. Looking just at a single motion provides no insights about the overall task,
rather it is the interaction and coupling between the different motions. Take soccer as an
example: Just shooting at the goal from any position on the field is probably the simplest
way to score a point but by far not the most efficient one. A better way is to rely on
combinations and tactical play consisting of several passes until finally a player stands
free and can make a close goal shot. In such a situation it is necessary to find an optimal
motion for a long-term goal (shooting a goal) rather than just the instantaneous situation
(make a pass). To find the best action possible, it is necessary to specify the effect of each
action on the long-term goal in a quantitative manner [15, 19, 297]. Depending on
the goal this becomes a strenuous task as the effect might be delayed or very subtle. A
straightforward method is to rely on expert knowledge about the task. If there is no
expert at hand, it can be also learned from previous experience.

All methods lead to a model-based approach where one expects a specific outcome for
each action [83]. This makes it possible to plan ahead, e.g. for a given situation S; an
action A, is found which will result in a new situation S, etc. By simulating all situations
and actions one finds an optimal action for each situation. The more precise the model is,
the better it will represent the true situation and circumstances and the more realistic it
will be. If the task relies on or involves the interaction with humans, their behavior has to
be included in the model as well. This is a challenging duty as in many cases the involved
person is neither aware of its intention nor the outcome of its action. Thus psychological
experiments have to model both the human preference and effect accordingly.

4.2 Related work

Motion reasoning as described in the introduction is closely related to motion interaction
and prediction - in order to reason about a suitable motion one has to be aware of its
outcome and possible consequences. Various modi of interactions are possible [63]. A
different style of interaction can be achieved either on a physical basis [123, 128, 168,
265] or using gestures, visual information and social interaction [85, 146, 167, 221].
The same accounts for the level of interaction [ 104], ranging from learning-based agents
[126, 200] enabling them to predict future actions of the interaction partner to the inten-
tion of a participating subject, going beyond the set of observable action towards figuring
out the underlying action goals [66], either in collaborative scenarios [32, 81, 231, 266 ]
or competitive scenarios [36, 310].
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Competitive games are an appealing test bed to evaluate the motion reasoning capa-
bilities [52, 305]. As game rules are well defined, the evaluation of motion reasoning is
easy - if you win, you're better than your opponent. Still they require various level of skill
in terms of motion control, motion planning and motion reasoning. Depending on the
game, focus can be on any of the three - whereas tug of war is more about motion con-
trol, chess depends on superior motion reasoning capabilities. Motion reasoning in the
context of motion imitation and adaptation becomes especially important if there is no
unique focus on any of the three but all are essential for a successful task completion. Due
to its multi-faceted aspects combining all aspects, billiards (from now on called “pool”)
is used as a representative scenario in this chapter. Players need a certain level of motion
control in order to pocket balls reliably but also have to reason about future actions for
a good position play.

To master the game of pool, different factors have to be considered. A pool simulator
is required for a model of the environment, e.g. PoolFiz [183] which enables one to
plan several motions (strokes) ahead. Different methods exist when reasoning about the
optimal next motion, either through a densely sampled search tree [13, 276], gradient-
based optimization [176, 177] or fuzzy logic [176, 192]. By treating pool from a game-
theoretic perspective, it was also found to feature the existence of Nash equilibria [14].
Several pool robots have been developed within the last 20 years [9, 10, 53, 54, 105,
296], yet they used either highly specialized gantry-based robots or use modified cues
that fit the robot.

4.3 Problem statement and conceptual approach

Referring to the original problem formulation (1.1) at the beginning of the thesis, motion
reasoning is about finding suitable boundary constraints h(u) for an abstract task u that
is processed by an underlying motion adaptation scheme.

optimize g(x, Xx),
s.t. h(u).

The constraints h(u) must be chosen such that the movement is fulfilled and the task
will be executed in an optimal manner. Thus the motion reasoning scheme has to be
both be aware of which constraints lead to executable movements and how they are
derived in an optimal manner. During motion reasoning it is assumed that only one action
(movement) A € . happens at each state (situation) S € &, leading to a new state.
For every state it is then calculated which action to perform next and how to define the
constraints until the task is finally achieved. If the Markov property holds, i.e. each action
depends only on its single prior state, the task can be modeled as a MDP [25]. There exist
effective solution algorithms for MDPs [30, 44], calculating an optimal action for each
state while allowing also for the outcome of subsequent actions. As the simulation of
subsequent actions depends on a precise model of the environment, the major challenge
of this approach is to find a holistic representation covering all task-relevant aspects. Two
major aspects must be considered when modeling the environment besides the task itself,
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differing both in their representation and the effect on each action. They are limitations
and inaccuracies. Although there are exceptions, limitations are generally treated in a
deterministic manner. Various types of limitations exist, including but not limited to
kinematic constraints, dynamic constraints, safety aspects or artificial constraints for a
pleasant interaction. Yet their effect is the same, reducing the set of all possible actions
-/ to a subset of actions .«¢/,,; that does not violate the limitation constraints as

"Q{red C.d.

Inaccuracies on the other hand are usually treated in a probabilistic manner as their effect
is best predicted in a probabilistic fashion. Due to limited precision, large tolerances,
measurement or sensing errors or other hidden effects the executed action A differs from
the planned action by the unknown function f (A) as

A= f(A).

Without inaccuracies, f(A) would be the identity function and the executed action is
similar to the planned action. When considering inaccuracies, f(A) is a probability, yet
unknown function. Both limitations and inaccuracies must be considered if the model
has to resemble the real world properly. Throughout the chapter the game of pool is used
as a representative scenario with a robot facing a human opponent. During the game,
limitations and inaccuracies occur in different context both as an undesired, parasitic

effect but also as a tool to represent the skill of each player. Three main factors are
identified:

e Limitations: Kinematic constraints
e Inaccuracies: Hardware inaccuracies and a unknown human game style

Whereas the first two aspects refer to the limited motor skill of the robot, the last is
solely human-related. Kinematic constraints are caused by the joint angle limits and the
workspace constraints of the robot, preventing it to bend over the table and to reach all
positions. This aspect only limits the robot - the human’s intrinsic motor skill is far more
advanced so this hardly constitutes any impairment to the human player. Hardware inac-
curacies come from a finite sensor resolution and an imperfect mechanical setup, leading
to a nondeterministic stroke outcome of the robot. Whereas the human’s stroke outcome
is also nondeterministic, the reason is most likely due to a specific perspective and lim-
ited experience. The last aspect is the human game style: As the robot interacts indirectly
through the game of pool with the human, it has to be aware of its specific game style.
Differing from a machine which is supposed to act rational, humans have individual pref-
erences which might detain them from doing the (according to robot preferences) optimal
stroke. This knowledge helps the robot to improve its own game play by counterattack-
ing the human preferences, thus it has to be modeled through psychological experiments.
Out of the three aspects, the unknown human game style is by far the most difficult one
to model and hardly tackled in literature. For competitive games it is in general assumed
that every player has either perfect knowledge or at least acts rationally. Yet as this chap-
ter will show, such an assumption is wrong for certain cases. When modeled properly,
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incorporating an individual human game style significantly increases the success. Thus a
large part of the chapter is dedicated to derive a proper model of the individual players’
preferences.

4.4 Optimal motion reasoning using MDPs

On an abstract level pool can be represented as a sequential stochastic game with con-
tinuous action and state space. Whereas the action space is spanned by the set of all
possible strokes, the state space is defined by the position of all balls on the table and
the actual game situation given by the rules. It is sequential due to the turn-based stroke
order and stochastic due to the non-deterministic outcome of every stroke. Under these
conditions the Markov property holds. When discretizing the action and state space, pool
is modeled as a MAXPROB MDP [161]. Similar to a standard MDP it is defined by tuples
of the form (Y, AT R, ‘ﬁ,so> where

e S € ¢ is the set of states
e A€ o is the set of actions

e T € 7 is a transition function & x ./ x ¥ — [0;1] denoting the probability of
moving from state S; to S; by executing the action A

e Re€ #Z is a mapping & x . —R specifying action rewards
e S, is the start state

As indicated in the introduction, both MAXPROP MDPs and conventional MDPs are de-
scribed by a discrete transition between states (situations) and actions (what to do in
which situation). For a given state S;, multiple actions exist that lead to new individual
states S;. The outcome of each action is described by the transition function T, specifying
with which percentage an action A will result in a state S; for a given state S;, i.e. the
probability of each stroke outcome. In addition, an individual action reward R is assigned
to each action for a given state, rating the outcome of each action. The general goal for
MDPs is to find the action for a start state S, that maximizes the action reward - not only
for the next action but for all future actions. Once calculated, this will give rules for all
states specifying which action A to take when being in state S. The set of all rules is called
policy 7. The optimal policy 7* is the policy that maximizes the action reward over all
policies 7, defined as

" = argmaxE” {Z th(St,At)} (4.1)

t=0

SO:S

In (4.1) the expected reward E™ is used instead of a deterministic reward, accounting
for the probabilistic nature of each action A. The argument in the square brackets is the
with y € [0, 1]-weighted expected reward E over all future timesteps t = {0, ...,00}. The
parameter v weights the importance of expected rewards further in the future relative
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to the immediate expected reward. The policy 7t* just provides information about which
action to take in which state to maximize the expected reward, yet the specific value
of the expected reward is still unknown. This is calculated through the value function
V : & — R accounting for the expected reward when being in state S. In a similar
manner the value function V”(s) for the policy 7 is defined as

Vi(S)=E" |:Z YtR(St:At):| (4.2)
t=0

S():S

With the two definitions in (4.1) and (4.2), the optimal policy 7* is written in a shorter
form as
n* = argmax V",
T
that is the policy maximizing the value function V" over all possible policies 7z. The value
function is closely related to the action-value function Q : & x . — R as

b

SO :S,AO =A

Q*(S,A) =E" [Z yfR(st,At)}
t=0

specifying the expected reward for the policy © when being in state S and taking the
action A. Whereas the value function specifies the expected reward in state S for a multi-
plicity of different actions A, the action-value function assumes also assumes that one is
in state A but has already decided which action A to take. Similar to the value-function,
the optimal policy 7* is rewritten in dependence of the action-value function as

m* = argmaxQ”,
T

maximizing the action value function Q™ over all possible policies 7.

MAXPROB MDPs are a special class of MDPs based upon a Stochastic Shortest Path
MDP (SSP MDP) [31] which extend the standard MDP by a set of absorbing goal states
G € ¢. Such a goal state is defined as

T(G,A,G)=1 YA€ o,
R(G,A)=0 VAe «,

allowing only self-transitions in G and accumulating no reward. The only two conditions
for SSP MDPs are that for every state S at least one proper policy exists that reaches a
goal state with probability P = 1. Moreover, every improper policy must have a reward
of —oo. Both conditions correspond to a goal state being reachable from any state with
P = 1. This is a rather restrictive condition as it only accounts for a “success” when
reaching a goal state or an undefined state when following an improper policy. Yet it
does not explicitly account for a “loss” when reaching a dead end states. This problem
is overcome by MAXPROB MDPs which specifically account for dead ends [162] as their
optimal policy does not maximize the expected reward but the probability of reaching
a goal state, i.e. winning the game. By assigning a reward of 1 to every action that
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reaches a goal state and O to all other actions, the optimal value function V*(S,) reflects
the probability of reaching a goal state when starting in state S,. Under the assumption
of no policy leading to an undefined state, e.g. when entering a loop, the probability of
reaching a dead end is calculated as 1 — V*(S,).

4.5 Action representation

As an action at pool corresponds to the event of executing a stroke, this section investi-
gates how a stroke is represented, how inaccuracies and limitations influence the stroke
outcome and how this knowledge is translated to suitable boundary constraints that are
processed by an underlying motion adaptation framework. It also explains the conse-
quences of the used action representation on the optimal motion reasoning framework
to obtain a computationally tractable solution. The development of the underlying pool
simulator is discussed in App. C.

Stroke difficulty

When executing a stroke, the cue transfers an impulse p on the cue ball. Every stroke is
uniquely described by its contact position and stroke angle defined by four parameters
a, B, y and 6 for a given cue ball position (x., y,.) on the table. Yet their influence on the
stroke outcome differs. Both stroke intensity p and stroke angle 6 have to be considered
in any case to pocket balls reliably. The variables a, 8 and y are mainly used to induce
spin on the cue ball for a better position play. Thanks to the minor effect of the latter
three parameters they are kept constant as a =0, 8 = 0 and o = g from now on. As
a result, the parameter space for each stroke is reduced from five to two dimensions by
considering only p and 6. The stroke difficulty for direct strokes is calculated using basic

Figure 4.1: Stroke parameter overview. Left: All possible parameters. Right: Considered
parameters in this thesis

geometry if the following conditions are fulfilled

e The transferred impulse in tangential direction during ball-ball collisions is negligi-
ble

e The stroke intensity p and stroke angle 6 are independent of each other

119



4 Motion reasoning

e The stroke intensity p being larger than a minimum value p;,

In this case the difficulty of a stroke is specified by the range of values 6, < 6 < 6,. The
values 6; and 6, mark the two limiting cases for which the object ball is just pocketed
without touching the cushion. The value

6, +6,

6 ;
" 2

is the mean angle for which the object ball is pocketed in the middle of the pocket. The
allowed angular deviation (AAD) is defined as

AAD=6,—-6,,=0,—0, (4.3)
and denotes how far one can deviate from the mean angle while still pocketing a ball.
The smaller the AAD is, the more difficult the stroke will be. Note that the approach can
be readily extended to combination shots with more than one object ball.

Another stroke difficulty measure is based upon expert knowledge [56, 76]. It reveals
that the human perception of stroke difficulty depends only on a few parameters: The
distance d; between cue ball and object ball, the distance d, between object ball and
pocket and the "cutting angle" 6., see Fig. 4.2 right side. Various approaches in literature
try to deduce an expression for the difficulty of a stroke from this knowledge [192, 276],
one of the most prominent ones quoted in [177] as

_ cos(6,)
K, = id,

(4.4)

In a similar way to the AAD method, a small value corresponds to a tricky stroke, a
large value represents an easy one. The AAD method is the correct way of measuring
the difficulty for the stated assumptions from a bird’s eye view, implicitly considering the
parameters 6.,d;, d, and partially blocked paths caused by other balls on the table. The
expert method on the other hand suggests that the human perception of difficulty devi-
ates from the AAD method due to a different perspective, thus requiring a new difficulty
measure when modeling the human game style. Hardware limitations caused by kine-

Figure 4.2: Stroke difficulty comparison. Left: AAD method. Right: Expert method

matic constraints directly affect the stroke difficulty as they limit the possible range of 6
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values. The AAD method accounts for kinematic constraints in a straightforward man-
ner as a 0 limitation directly influences the range of feasible stroke values [6;; 6, ]. The
boundaries [6;; 6, ] are calculated through an iterative collision checking between robot
and table. For the expert method however, kinematic constraints are only considered ap-
proximately. As such a stroke is defined impossible if 6,, is not within the possible range
of 6 values. Fig. 4.3 visualizes the effect. Shown is a simplified, yet true-to-scale collision
model of the used pool robot and the pool table, approximated by bounding boxes. The
angle 6, € [0; 27t] defines the possible stroke execution directions for a given position of
the white ball on the table. An angle 6, = 27 means the white ball can be shot in any
direction whereas an angle 6, = 0 stands for an unreachable white ball. The robot is
limited by two constraints. First, it has a stiff body which collides with the table if the
white ball is placed too far away from any cushion. Second, its right EE does not lie on
the table but on the cushion, which causes problems if the white ball is placed too close
to the cushion.

P ~ my 205 deg =6r

~ - IOdeg

Figure 4.3: Kinematic constraints of the robotic system. Due to collisions with the pool
table, the robot cannot execute a stroke in an arbitrary direction for a given
ball position. The greener the area is, the larger the range of possible stroke
directions is. Gray circle segments mark the possible stroke direction for cer-
tain positions of the white ball

Pocket probability

The stroke difficulty makes it possible to rank all strokes depending on their AAD. Still it
is only an abstract measure, providing no information about how likely it is for a specific
player to pocket a ball. This is done by the pocket probability P, € [0;1], connecting the
stroke difficulty with the individual skill of each player to derive a percentage of success
for every stroke. It is assumed that the skill of each player is represented by two normal
distributions both for the stroke intensity p and the stroke angle 6 as %(up,afj) and
J&fg(ue,ag). Whereas the means u,, uy encode the desired stroke impulse and angle,
the variances 0'12), o? account for the individual skill of each player. Novice players are
characterized by large variances, resulting in executed strokes which deviate considerably
from the planned strokes. Expert players on the other hand have variances close to zero
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as they succeed in executing the planned stroke with high fidelity. By representing the
effect of hardware inaccuracies through normal distributions A4}, A4;, they are directly
related to the skill of the robot.

The planned or desired stroke A, is specified by the tupel (u,, ug) as

Ap = (‘U,p, ;U’Q)

Through the limited skill of each player, the executed stroke A will differ from the planned
stroke as

A= fo( A Ao),

with f, (A, A;) = f, as the multivariate normal distribution of .4}, and Aj.

Under the assumption of a constant minimum impulse p; required to pocket the object
ball and a constant maximum impulse p, limited by the strength of each player, the pocket
probability P, € [0; 1] is related to the AAD as

Py

6y
p,= J J Fo( Ny, H5)dOdp. (4.5)

P 6

In general, the stroke impulse p is not limiting factor. Under the condition of o, <
pu.— P> 1 < U, < p,, meaning that the standard deviation is much smaller than the
range of allowed stroke impulse values and the mean stroke impulse is far away from the
theoretical limits, (4.5) is approximated by

6y
P, ~ J Npd®.
0;

Then the pocket probability depends solely on the angular deviation of 8 which is calcu-
lated through the stroke difficulty.

Determination of boundary constraints

The motion reasoning scheme is connected to the motion adaptation scheme through
the stroke parameters. The boundary constraints h(u) for the task of winning the game
of pool are given by the parameters p, 6 and the cue ball position (x_, y.), uniquely
specifying each stroke. The reference motion to be adapted is specified by a number
of fifth order polynomials which move the cue along a straight line. The cue is first
accelerated, then kept at a constant velocity while hitting the cue ball and decelerated
afterward. Whereas 0 and (x.,y.) specify the position of the cue when hitting the cue
ball, the cue velocity in the moment of hit is calculated from the desired impulse p on the
cue ball. Give the boundary constraints, the motion planning framework moves the robot
around the table, places the cue behind the cue ball and executes the stroke autonomously
as described in [230].
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Pool-specific adaptation

By representing the game of pool as a MAXPROB MDE the otherwise continuous action
and state space are discretized to be numerically tractable. This turns the probabilistic
MDP in a deterministic planning problem for every state S,. Still as both action and state
space are large even for strong discretizations, heuristic search algorithms like LAO*
[113] or RTDP [21] cannot be applied. Instead the true value function is approximated
by evaluating only a subset of all possible state-action pairs. This gives a near-optimal
value function V™ < V™, denoted V for simplicity. When evaluating the value function
for a state S, a tree with S, as the root is created. Every vertex of the tree corresponds
to a state, every edge of the tree to an instantiation of an action. As MAXPROB MDPs
calculate the value function based on the percentage to reach a goal state, every branch
of the tree has to be expanded until reaching a goal state or a dead end. This approach
is unfeasible as there is no upper bound on the number of actions, e.g. if no ball gets
pocketed.

A solution that overcomes this problem is to assign a reward not only to the action that
reaches a goal or a dead end but also to other actions based on prior knowledge about
the game mechanics. It is known that to win a game a player has to pocket all balls of
his color. When assigning a reward £, to every action as

(4.6)

_ | +1 for every pocketed ball of the player,
-1 for every pocketed ball of the opponent,

the optimal value function V*(S) is the one for which most balls of the own color and
least balls of the opponent’s color are pocketed. Yet as the principal goal is still to win the
game and not to pocket least balls of the opponent, the original condition of a reward of
2% = 1 when winning a game becomes

4.7)

. +w if player wins,
> l—w if opponent wins,

resulting in Z = #, U %,. The effect of #, becomes obvious in the endgame if one of
the two players is about to win the game. Then a high w-value favors actions where the
player wins the game even if some of the opponent’s balls are pocketed. On the other
side it also penalizes actions which give the opponent a chance to win even if the player
does not pocket any ball of his own color. A parameterization of w =0 and y =1 has a
physical meaning as in this case the value function V(S) represents the expected number
of balls the player will pocket more than the opponent when following the policy 7. In a
similar fashion the action-value function Q(S,A) denotes the difference of pocketed balls
for a given policy when executing the action A.

As a consequence it is not necessary to expand every branch of the tree until finally
reaching a goal state or dead end. A relaxed approach only simulates the next n actions.
The assigned reward as (4.6) and (4.7) acts as a bias towards the optimal solution. The
modification leads to a new value function as

V(SO) = IETC |:Z ')/tR(St,At,{r’h}):| , (48)

t=0
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which evaluates the rewards only for t = {0,...,n}.

After the search tree is created, backward induction iteratively evaluates the value
function V(S,) backward in time to find the value function V(S,_;). When starting with
the leaf nodes S, and processing the tree towards the root node, it will result in an op-
timized stroke for the actual state S,. For the leaf nodes the backward induction step
consists of finding the stroke with the highest success rate. For all other nodes first the
action-value function Q(S,,A,) is calculated by systematically sampling the set of possible
actions A, for a given state S, where a ball of the own color is pocketed. Such strokes are
characterized according to (4.5) by

P <P =Dy
6,<6<6,.

The nondeterministic outcome of each action requires to extend the sampled action space
beyond the limits [p;, p,],[6;, 6,] as

pl_epspspu-i_ep’ GPZO:
91—693939u+€9, 6920.
In addition every stroke has to be weighted with its probability of occurrence, given by

fu(Ay, Ag). By varying u,, ug one finds both an optimized value function V(S,_;) and
optimized stroke parameters (i, uy based on the product Q(S,,A,) fu(A, A) as

maXQ(St,At)fn(%, A) if player’s turn,
Up,>te

V(S._1)= \
(Ser) min Q(S,,A,)f,(A,, A;) if opponent’s turn,
Up,le
argmaxQ(S,,A,) fru( Ay, A5) if player’s turn,
* Y\ Up e
by ig) argminQ(S,,A,)f,(A,, A;) if opponent’s turn.
Up,Uo

For V(S,) the parameters W, Uy are the optimized stroke values for the current state.
The maximization of the own reward while minimizing the opponent’s reward subject to
probabilistic actions is interpreted as a variant of the expectiminimax algorithm [255].
Differing from the expectiminimax algorithm it contains an optimization step for each
node to calculate the optimal reward.

4.6 Human behavior modeling and countering

So far it is assumed that the stroke difficulty experienced by each player is described by
the AAD according to (4.3). Yet interviews with human expert players reveal that the
perceived difficulty for humans is based on a few parameters only. This includes the
distance d; between cue ball and object ball, the distance d, between object ball and
pocket and the cutting angle 0. As the measure in [177] is only determined heuristically
but not verified experimentally, it is unknown which ball humans will pocket when facing
multiple options. This leads to three subproblems:
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e Calculating the subjective difficulty x: How difficult a human thinks it is to pocket a
ball.

e Calculating the objective difficulty P,: How difficult it is for a human to pocket a
ball.

e Calculating the human discount factor y;,: How far a human is planning ahead.

The subjective difficulty describes the human’s preference and the preferred object ball-
pocket combination the player will go for. Yet unknown user preferences or limitations
lead to situations where the human’s preference differs from stroke with the highest
pocket probability, resulting in an irrational behavior. Knowing both the human’s prefer-
ence and pocket probability for a given situation on the table is valuable information as
it influences the expected reward in (4.8) and thus the decision of the robot. In the pre-
vious thought experiment it was assumed that the human player is not planning ahead.
The amount of planning ahead is encoded in the value y in (4.8). A value y = 0 means
that a player only considers the current state, whereas any value O < y lel indicates that
the player also values future rewards and plans ahead. For a robot this parameter can
be adjusted manually. For a human player however this parameter has to be determined
through experiments, resulting in y;,. Once subjective difficulty and objective difficulty
are calculated through user studies, both the human preference and pocket probability
are specified in analogy to Sec. 4.5, allowing a seamless integration into the existing
planning framework.

Subjective difficulty

Although the influencing factors in (4.4) are determined from expert knowledge, the
function in (4.4) is specified heuristically. It is an open question whether other func-
tions based upon the three parameters d,, d,, 6. model the perceived stroke difficulty for
humans better. Two experiments are performed to find a model of the subjective diffi-
culty. In the first experiment, the most influential factors are evaluated. The result is
then used in combination with the second experiment to find an optimized function for
the perceived stroke difficulty.

For the first experiment, 25 participants (15male,21-31yrs,@25yrs) are shown 24 pool
scenarios on a real pool table, see Appendix C. In every scenario two playable object balls
are placed on the table. For 18 scenarios one of the three parameters (d,, d,, 6.) and
the AAD stroke difficulty are kept constant. For the other 6 scenarios, one of the two
object balls is easier to pocket according to the AAD difficulty, but either more tricky to
reach as the player has to lean more over the pool table or partially blocked by a third
ball. Each participant has to judge which ball seems easier to be pocketed and is asked to
specify freely one or more reasons for his decision which are categorized afterward. The
most frequently stated reasons with their number of occurrence for the first 18 scenarios
are shown in Tab. 4.1. The answers show that the variables d,, d, and 6. are the most
influential factors. The effect of a cushion close to cue ball or object ball is indefinite
as it helps some players at aiming whereas others feel disturbed. For the 6 remaining
scenarios, in 70% the easier stroke according to the AAD method is selected even if it is
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| occurrence | reason
264 x A smaller cutting angle 6,
75x A smaller distance d,
31x A smaller distance d,
29x The cushion nearby helped at aiming
24x The cushion nearby disturbed at aiming
12x Intuition
9x Anatomic reason
8x A smaller distance d; +d,
17x Very specific reason

Table 4.1: Influence of different factors on the subjective difficulty

more tricky to reach. In 60% the easier stroke is selected even if it is partially blocked by
another ball. Similar to the answers regarding the advantage of a cushion nearby, some
people state that the ball helps at aiming, however other people feel distracted by it.

For the second experiment, 12 images are created showing pool scenarios of different
difficulty according to the AAD method with one cue ball and one object ball, see App. C.
For comparing every possible pair of images, six sets of six images are shown to 23 partici-
pants (13male,18-51yrs,@25yrs). The participants have to arrange every individual set of
images according to their perceived difficulty. Based on these sequences, both a relative
ranking R, R,n € {1,2,...,12} and an absolute ranking p,, n € 1,2,...,12,p €[1,12]
based on the mean ranking are obtained for every single scenario. In order to map the
result of both experiments to a subjective difficulty, five different equations describing
the subjective difficulty are considered:

K, = aldil(dl) + azdSZ(dZ) + a, 9:3((%)’
K, = aldil(dl) + azdgz(dZ) +a;050) +x
Ky = aldil(dl) + a2d§2(d2) + azcos(6,)%),
Ky = aldfl(dl) + azdSZ(dZ) + azcos(6,)5%) + Kp»
o cos(6,))
> dil(dl) d;z(dz)’

with a = [a,, a,, a;] as constant coefficients and ¢ = [¢;, ¢, ¢ ] as polynomials of degree
one. The first two measures are based upon additive linear models. The next two models
include the term cos(6.) to account for the difficulty at high cutting angles. The last term
is an extension of the existing measure (4.4). A two-staged optimization is used to find
optimal values for a and ¢. The cost function I

2 if A (a,0)#A,,
0 else,

18 12
N=>6.@c’+ ) [R(a,)—R,  §,= {
m=1 n=1

of the first stage consists of two terms related to the first and second experiment. Min-
imizing the first term corresponds to matching the predicted decision A, (a,c) to the
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decision A,, of the majority of participants in the first experiments. The factor 6,, acts
as a penalty term if the predicted decision does not match the decision from the first
experiment. By minimizing the second term, one matches the predicted rank R, (a, c) to
the actual rank R,, of each scenario in the second experiment depending on its difficulty.
The cost function T, for the second stage

12
D= [Ra(a,€) = pposl?,
n=1

is a measure how much the predicted absolute ranking «,(a,c) of each scenario in the
second experiment differs from the 25% trimmed mean p,, »5. By minimizing the function
I, a measure of the resulting stroke difficulty is obtained.

An intermediate calculation indicates that the parameters c,, c, can be chosen as con-
stant coefficients. Final results are displayed in Tab. 4.2, showing that the function ks is
the best approximation. Thus the subjective difficulty k is determined as

Imeasure| a; [ay | as | ¢ | ¢ | Cs | I, |
Kk, | 46 |7.1]1.2]0.10]0.10 | 4.5—4.76, | 0.02
Ky 1.3 |6.5[2.0]1.00.21| 3.8—4.96,. |0.008
K -0.53(1.3 |-4.8|-1.1| 4.6 [0.24+2.26.| 0.06
K4 0.81 |-1.4|-4.8| 1.9 |-0.75| 2.8+ 1.96, | 0.08
K - | - | - |033| 038 41—2.76, |0.002

Table 4.2: Optimized parameters when approximating the subjective difficulty

cos 6c4'1_2.796

— T 70334038 °
d, = d;

Objective difficulty

Calculating the objective difficulty means finding the percentage P, € [0;1] to pocket a
ball. To get a good approximation over a wide variety of (6,,d,,d,)-triplets, a Monte-
Carlo approach is used which evaluates random strokes during a game.

In total, four participants (3male,24-36yrs,029yrs) take part in the third experiment.
They are chosen according to their playing competence: Two players are intermediate
amateurs who frequently play a few pool games per week, two are novice players with
hardly any experience. Participants are grouped into dyads of equal playing skill. Their
task is to play multiple games while sticking to direct strokes and hitting the cue ball cen-
trally. Every measured stroke is assigned to one of eleven intervals depending on their
subjective difficulty, ensuring a roughly similar number of strokes in every interval. To
compare the different measures of subjective difficulty, they are normalized to the [0;1]
interval. For every interval, the success rate (objective difficulty) and mean subjective
difficulty are calculated. Because the number of element per interval varies for every
subjective difficulty measure, so does the objective difficulty vary from graph to graph.
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player evaluated | correlation coefficient
strokes K, |AAD|
one 216 0.46 | 0.61 0.89
two 182 0.65 | 0.72 0.86
three 164 0.54 | 0.58 0.88
four 152 0.76 | 0.68 0.92

Table 4.3: Correlation coefficient between subjective difficulty and objective difficulty
when considering all strokes

Pearson’s correlation coefficient between subjective difficulty xk and objective difficulty
P, for the three difficulty measures is shown in Tab. 4.3. While there is a linear relation
between the subjective difficulty and objective difficulty for most strokes, for easy strokes
the subjective difficulty becomes very large whereas the objective difficulty saturates at 1.
Thus the correlation coefficient has been recalculated as shown in Tab 4.4, neglecting the
interval with the easiest strokes. The linear relation when neglecting very easy strokes

laver evaluated | correlation coefficient
pray strokes K, |AAD|
one 169 0.79 | 0.85 0.94
two 152 0.87 | 0.77 0.91
three 134 0.64 | 0.52 0.88
four 121 0.89 | 0.82 0.91

Table 4.4: Correlation coefficients between subjective difficulty and objective difficulty
when neglecting very easy strokes

has important consequences: It shows that humans act indeed rationally when selecting
the subjective easiest stroke as it is the one with the highest chance to pocket a ball. On
the other hand conclusions about which stroke a human selects are deduced from the
objective difficulty. Fig. 4.4 displays results for one player, showing both the 10 respec-
tively 11 intervals together with the calculated linear regression function for the mapping
between subjective difficulty and objective difficulty. The three different relations corre-
spond to the expert method, the AAD method and the human model developed in this
section. The resulting function for the objective difficulty for player one thus becomes

p _ [036x+027  Vxe[0;2.02],
° 1 Yk €]2.02; 00l
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objective difficulty
objective difficulty

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
subjective difficulty subjective difficulty

Figure 4.4: Normalized subjective difficulty vs. objective difficulty with corresponding
regression lines. Left: All strokes considered. Right: Neglecting very easy
strokes

Discount factor

The data from the third experiment is used to calculate an individual discount factor y,,
for every participant through a maximum likelihood estimation (MLE) maximizing the
percentage of correct predictions W for every player over the parameter y; as
7 = argmax L(y,|¥).
Yh

Results of the MLE for two dyads for a planning depth of 1 are displayed in Fig. 4.5.
When being asked, the intermediate player attests to think about the outcome of a stroke
which corresponds well to the maximum for Y}, ~ 0.55. The novice player on the other
hand confirms focusing solely on the easiest stroke, a statement verified by the maximum
for 1, ~ 0.

0.76 intérmediate piayer - .......... ..........
novicep|ayer ; R
0741t - .......... .......... ..........
T
(]
o
£ 0.72
o
X

0.70

0.68

discount factor vy,

Figure 4.5: Maximum likelihood estimation of the human discount factor y;, for a novice
player and an intermediate player
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4.7 Experimental evaluation

Both simulations and real-life experiments involving an anthropomorphic robot facing a
human opponent on a real pool table evaluate the reasoning capabilities of the presented
framework. Simulations allow for a fast evaluation based on a large number of strokes
and provide holistic insights. The real world scenario on the other hand displays the
applicability when facing a real human. For both human and robot the skill parameters
are determined through multiple strokes recorded by the ceiling-mounted camera. They
are and show that the human has got better pocketing skill, represented by smaller o, o'¢

| parameter | robot | human | unit |

o, 0.03 | 0.01 | Ns
oo 0.012 | 0.07 | rad
Y 1 0.5 i

Table 4.5: Parameters for the experimental evaluation

values but worse planning capabilities as its y value is smaller.

Simulations

To judge the planning and reasoning capabilities of different aspects of the framework
independently, simulations evaluate the outcome of multiple played pool games to find
significant improvements. The first simulation investigates the influence of a varied plan-
ning depth. As discussed in [13], the impact of a search depth of 2 is still an unsolved
question. Differing from entirely deterministic games like chess or backgammon where
the search depth is among the most influential factors, the stochastic nature of pool makes
it difficult to answer this question. Depending on the skill of each player, deep search
depths provide no additional insights or even has an adverse effect if the rewards are not
well adjusted and the player focuses on the wrong objective. In [13] it is found out that
both a search depth of two and a more densely sampled action space of depth 1 have a
similar influence on the percentage to win. Simulations of 200 strokes for arbitrary pool
states with a search depth of 0, 1 and 2 are evaluated to answer the question. As the first
simulation scenario neither considers the human model nor any kinematic constraints,
it is comparable to the experiment in [13]. In contrast, both human model and kine-
matic constraints are incorporated in the second scenario. Results are shown in Fig. 4.6.
The colored circles are Venn diagrams, showing the number of similar/different object-
ball/pocket decisions. As such for 17 strokes the planning results for a depth of 0 and 1
are similar for the first scenario, meaning that the same ball will be pocketed in the same
pocket. Comparable to [13], most of the planned strokes - 105 for the first scenario, 77
for the second scenario - are similar regardless of the search depth. Moreover, a varied
search depth changes the decision only in about 20% of all cases. Even if this provides no
significant results about the outcome of a game, results are expected to be similar: Even
if a search depth of 2 is beneficial, the biggest improvement comes from the available
computation time and number of simulations to be evaluated. A planning depth of 1 or
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2 plays only a minor role. A second simulation evaluates the effect of the human model.

Q Q
S % N )
ez 3L g 48 16 372
© ©
105 - 77 -
15 45 17 32
35 32
Qeptn¥ Qeptnt
without with
constraints / constraints /
human model human model

Figure 4.6: Influence of a varied planning depth for 200 random table states. Left: Ig-
noring kinematic constraints and the human model. Right: Considering both
effects

The simulation consists of three different scenarios, depending on the way the robot’s
kinematic constraints as described in Sec. 4.5 are treated:

e without repositioning: Whenever the robot is unable to reach a ball, it is considered
as a foul

e with repositioning: Whenever the robot is unable to reach a ball, the white ball is
slightly moved such that the robot is able to execute a legal stroke

e without constraints: There are no kinematic constraints, i.e. the robot is able to
reach any position on the table

Every scenario consists of two runs, one without considering the human model accord-
ing to Sec. 4.6, another one where it is taken into account. In every run 1200 games are
evaluated twice, both with robot and human as starting player. Results are checked for
significance using a two-sample t-test and shown in Fig. 4.7 in addition to the number of
won robot games. Two things are visible. Limiting the workspace of the robot by consid-
ering kinematic constraints has a major impact on the success rate of the robot. Without
any constraints the robot has an approx. 30% chance to win the game, mainly limited by
the skill of the robot caused by hardware inaccuracies. When considering the kinematic
constraints this rate drops to slightly more than 10%, yet a more advanced hardware
setup may overcome this problem. The more important aspect is that considering the hu-
man model significantly increases the success rate as the robot wins about 70 games more
compared to the version where it does not consider thee human model. When planning
ahead it is important to provide the planner with a precise model of the kinematic con-
straints so that the robot can continue playing after pocketing a ball. A third simulation
is conducted and similar to the previous simulation 1200 games are evaluated twice with
human and robot as starting player. The kinematic constraints of the robot are treated in
two different ways:
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repositioning =349~ | '

with p =0.035
repositioning 597

without p = 0.022
constraints 794 - with human model

Figure 4.7: Influence of the human model and the kinematic constraints at pool. Left:
Number of robot wins for different scenarios after 2400 simulated games.
Right: Significance level of every comparison using a two-sample t-test

e fake repositioning: When planning ahead, no kinematic constraints are considered.
During stroke execution, it is considered as a foul whenever the robot is unable to
reach a ball.

e without repositioning: When planning ahead, kinematic constraints are considered.
During stroke execution, it is considered as a foul whenever the robot is unable to
reach a ball.

Whereas for the “without repositioning” case the model of the kinematic constraints re-
sembles the real situation, the “fake repositioning” case ignores the kinematic constraints
for the model, yet they account in reality. The latter case corresponds to a very bad mod-
eling of the true kinematic constraints. Simulations are performed for a robot planning
depth of 0 and 1 to show how the influence of an increased planning depth depends
on the fidelity of the underlying model. Results are shown in Fig. 4.8 together with the
significance level of a two-sample t-test. The results for the “fake positioning” case do
not differ significantly as the planner has a wrong model of the kinematic constraints.
This nullifies the effect of planning ahead to a large extent and results in roughly similar
results for different planning depths. The second case, which is identical to the first case
in Fig. 4.6, is rerun for a planning depth of 0 and evaluated. As the robot has a precise
model of the kinematic constraints during the game, a planning depth of 1 significantly
improves the robot’s position play.

fake -
=0.24
repositioning P
without pt search depth = 0 -
ut p = 0.039
repositioning (1319 - robot|search depth = 1
Figure 4.8: Influence of the kinematic constraints model at pool. Left: Number of robot

wins for different planning depths after 2400 simulated games. Right: Sig-
nificance level of every comparison using a two-sample t-test
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Real life duel with an anthropomorphic robot

The hardware setup for the real-life experiment consists of an anthropomorphic robot
with a pair of 7DOF arms mounted on an omnidirectional platform, see [40]. Special
gimbal-based EEs are designed to hold the cue properly. A ceiling-mounted camera
(Basler acA1300-30gm) with a resolution of 1280 x 960px mounted approx. 2.50m
above the table detects the position of all balls and the cue relative to the table and is
able to distinguish between white, black, striped and solid balls. In order to place the
cue properly behind the cue ball, combined data of the camera, the robot’s laser range
finders and arm pose data is used. The robot is able to move autonomously around the
table by detecting the legs of the pool table and execute a stroke independently. Fig. 4.9
gives an image of the scenario. A detailed scheme of the combined hardware/software

Figure 4.9: Pool scenario overview. Photo by Kurt Fuchs

setup is displayed in Fig. 4.10. Two computers with a 2.66GHz Intel Pentium i7 920
CPU and 12GB RAM on the robot control both arms and the platform at an update rate
of 1000Hz. A Real-time database [11, 102] acts as a shared memory and allows data
exchange while sufficing hard real time constraints. Both computers are connected via
Ethernet. The arm controller is programmed in Matlab/Simulink and compiled using
MathWork’s Realtime Workshop. The platform controller is programmed in C++. Mo-
tion planning is performed on the central PC equipped with a AMD Phenom II X6 1075T
3GHz CPU and 8GB RAM under ROS [249], processing sensor data from the camera,
the robots and the boundary constraints from the motion reasoning scheme to calculate
a feasible motion for executing a stroke. It also features a state machine to move the
robot around the table and place the cue behind the cue ball before the stroke. The up-
date rate for arm and platform data is 10Hz, for the camera data it varies between 40Hz
when using a 640 x 480px resolution and 10Hz for the full resolution of 1280 x 960px.
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4 Motion reasoning

The central PC exchanges data with the stroke planning PC about the position of all balls
on the table and the boundary constraints for motion planning as described in Sec. 4.5
via shell scripts. Once the stroke planning PC has information about the ball position, it
calculates boundary constraints for an optimal motion as described in Sec 4.4 in Matlab
and sends the results to the central PC. A C++\Qt based pool simulator is developed and
calibrated as described in App. C and [222, 230], predicting the outcome of a stroke and
forming the foundation to calculate an optimal stroke of the robot. To speed up calcula-
tions, computations are parallelized on a cluster of 40 computers with a AMD Phenom
I1 X6 1075T 3GHz CPU and 8GB RAM. The planning capabilities of the robot are evalu-

’
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Figure 4.10: Pool robot system overview |

ated by comparing two scenarios with the same human opponent. In the first scenario a
planning depth of 0 and no human model is used. A manually set stroke intensity p of
0.17N's results in an initial cue ball speed of 1?. In total 7 games are played. Although
the number of played games is too low to make any statement about the effectiveness
of the planner, temporal limitations make an appropriate number of rollout impossible.
The authors of [13] for example simulated more than 600 games before achieving sig-
nificant results, which would require too much time with a real pool robot. Instead the
number of successful strokes is evaluated. Implicitly it is assumed that a large number
of successful strokes leading to more pocketed balls also increases the probability to win
the game. The 7 games result in 89 strokes of the robot, out of which 25 are successful.
In the scenario the planning depth is set to 2 and the human model is considered. Here
6 games are played, resulting in 67 strokes of the robot. Out of these 67 strokes 34 are
successful. A two-sample t-test shows a significant difference between the number of suc-
cessful strokes, indicating that the inclusion of the human model, a precise model of the
kinematic constraints and a deeper sampling depth lead to an improved game play of the
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robot. When comparing results from both simulations and the real experiment, hardware

depth=0
89 |
depth =2 sful strokes
67 - all strokes

Figure 4.11: Pool robot evaluation. Left: Number of successful strokes for different
search depths using an anthropomorphic robot. Right: Significance level
of every comparison using a two-sample t-test

p =0.0037

inaccuracies and kinematic constraints constitute the biggest impairment for the robot.
Although the robot weights about 300kg, the platform shaking during the stroke causes
cue tip deviations. Even if this is partially compensated by using low accelerations during
the stroke, the resulting offset of the cue is still in the range of 0,5¢m, making a central
hit of the cue ball difficult. Although the kinematic constraints of the robot look sever at
first glance, they are overcome to a certain extent by small hardware inaccuracies and a
precise model of the environment through a well-matched pool simulator.

It has to be highlighted that the tight coupling between a player’s skill in terms of 07y, 0,
and its planning capabilities represented by the maximum planning depth y is a quite
unique problem at pool as both aspects have a large effect on motion reasoning about the
next optimal stroke. A counterexample would be chess where motion reasoning is solely
influenced by the planning capabilities of each player, the player’s skill is not important in
this context. This makes it also difficult to reason the other way round as one cannot tell
whether a player has superior planning or skill capabilities by just looking at the outcome
of the game. As shown before it is necessary to differentiate between subjective difficulty
and objective difficulty for motion reasoning in a complex scenario. Whereas the first
characterizes the user’s personal preference, the latter is an objective measure about the
outcome of each action. Although it was not the case for the given scenario, there is
not necessarily a clear relation between the two measures. In this sense classical motion
reasoning schemes based upon expert knowledge solely model the subjective difficulty
perceived by an expert. For nondeterministic tasks where the user has an influence on
the outcome of a stochastic process, it is additionally required to model the objective
difficulty, either independently or as a function of the subjective difficulty. General as the
presented approach is, it can be transferred to other nondeterministic tasks containing
only a single agent or multiple agents interacting both in a cooperative or competitive
manner.

4.8 Summary

Motion reasoning in the field of motion adaptation is a necessary tool if a task is too
big to be completed by a single adapted motion. Through separation into smaller mo-
tions it provides an efficient way to find an optimal motion while reducing computational
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4 Motion reasoning

complexity. Whereas motion reasoning in its general context covers a variety of differ-
ent fields including sensing, task, data and knowledge description or suitable abstraction
and complexity reduction schemes, this thesis focuses on modeling the environment in a
holistic way while considering the individual preferences of a human opponent. The used
data representation as a MDP is a generic way and accounts for a multiplicity of different
tasks. It becomes clear that motion reasoning must not be seen as an independent topic
completely decoupled from motion adaptation, rather it has to be aware of the intrinsic
capabilities and limitation of motion adaptation approach through a proper model of the
task.

4.9 Bibliographical notes

The results in this chapter and the related appendix are either partly or in their entity
based on the author’s work in [188, 222, 230]. The general approach of using an MDP
to encode the game of pool is not new but has been also adopted in [13]. The main
difference between their work and ours is the used heuristics for making the problem
mathematically tractable, the type of tree search (breadth-first vs. Monte-Carlo) and
the used measure to calculate the stroke difficulty Whereas the AAD measure is only
mentioned in other articles but not used, the expert method is used in literature to a
great extent [76, 177, 192, 276]. The underlying pool simulator as illustrated in App. C
is developed to a large extent based on the results presented in [112].

136



Conclusions

The increasing complexity of robotic systems and tight interaction between humans and
robots requires a rethinking of how to program robot motions. Differing from a conven-
tional approach where every motion primitive is specified manually, PbD accelerates the
teaching process and allows complex robotic movements to be executed. This thesis in-
vestigates the adaptation capabilities of trajectory-encoded movement imitation schemes,
allowing real-time adaptation in changed environments. Special focus is drawn on a
holistic approach that ensures consistency of the motion reasoning, planning and control
domain by pursuing similar objectives across the three domains.

5.1 Contributions

Focusing on motion planning in cluttered environments, Sec. 2 investigates methods to
generate feasible motions for complex manipulators up to a 50-DOF robot. To avoid the
curse of dimensionality during planning, the programming by demonstration paradigm
is adopted. Instead of planning every motion from scratch, a previously taught motion
is modified to suffice the new constraints. Based upon Laplacian Mesh Editing in com-
puter graphics, a new framework named LTE is presented that allows to quickly retarget
discretized motions. Through least squares it provides a weighted solution between the
shape of the original path and additional constraints, providing an intuitive understand-
ing and allowing the . The section also shows how different constraints for collision
avoidance, cooperative manipulation and nonlinear deformation effects can be included
in the least squares solution and thus handled efficiently. Approximations schemes for
the true solution are presented, speeding calculations up to three magnitudes and mak-
ing the approach applicable for large trajectories and highly redundant manipulators.
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5 Conclusions

As conventional gradient-based collision avoidance schemes fail in highly cluttered en-
vironments, LTE is combined with an incremental, sampling-based approach (RRT*) for
better performance. Three different experiments in real-life validate the effectiveness
of the proposed approach, allowing fast motion retargeting within milliseconds and the
applicability to a 50-DOF robot.

In Sec. 3 focus shifts from motion planning to robot control after a feasible reference
trajectory is found. The goal becomes to control a robot in its entity while considering
task- and LTE-specific constraints for an integrated motion planning and control frame-
work. To account for the predictive nature of LTE, a LQR-based controller is combined
with a prioritized IK approach for full-body control. Two different extensions allow the
combination with LTE. The first approach extends the state vector of a LTI system and
considers the local properties of a previously calculated reference trajectory, resulting in a
serial connection of LTE and the LQR controller. The second approach combines LTE and
LQR in a feedback control structure, iteratively calculating an optimal input at each time
step and updating the desired trajectory accordingly. This allows the combination of mo-
tion control and planning, ensuring convergence towards the reference trajectory while
being able to react to sudden disturbances, include additional constraints and be consis-
tent with the LTE framework. Asymptotic stability for both controllers is proven. If the
manipulator has a non-negligible weight and inertia, its dynamic properties must be con-
sidered as well. By deriving similarities between LTE and a spline deformation approach,
upper bounds on the admissible trajectory deformation subject to dynamic constraints
are calculated. During robot control, the discrete paths used by LTE are only one option
to encode a motion. As the motion reproduction capabilities of a manipulator depend
highly on the choice of motion representation, three different motion encoding schemes
are presented, focusing on different motion aspects. As such they investigate the motion
classification and reproduction qualities subject to rigid transformations, a probabilistic
and entirely distance-based task space encoding and a continuous interpolation scheme
based on vector fields. All three methods provide very good results in their field, verified
through simulations and experiments with a HRP-4 humanoid.

Sec. 4 considers motion reasoning, investigating the relation between actions and their
outcome - not only in a static environment but also when interacting with other persons
in a competitive scenario. By encoding a task as a Markov decision process the tempo-
ral dependence between actions of the robot and resulting states of the environment is
specified. A model-based approach allows to generate an optimized action from the simu-
lated outcome of each action which can be processed by the underlying motion adaptation
scheme. To model all actions properly in the presence of other interacting humans, a pre-
cise model of the human behavior is necessary. Using the game pool as a representative
scenario for turn-based interaction between human and robot, the influence of the hu-
man model is investigated in detail through psychological experiments and model fitting.
Results based on simulations and a anthropomorphic robot facing a human opponent at
a real pool table show significant improvements when using a proper model.
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5.2 Outlook

5.2 Outlook

Maintaining local trajectory properties during motion adaptations creates new challenges
during motion adaptation that must be tackled at different abstraction levels. This section
covers some emerging issues for future expansion which are treated either on a basic level
or not at all in this work.

Motion representation

The used encoding determines both the intrinsic capabilities and limitations of the motion
adaptation approach. Encoding schemes differ in the way they encode data (determin-
istic vs. probabilistic), the type of encoded data (single limb vs. whole body) and the
type of constraints one can impose (temporal vs. spatial, collision avoidance, waypoints,
velocity/acceleration limits, etc). Due to the novelty of PbD, there is not yet one uniform
approach at hand capable of handling all motion adaptation related requirements. LTE
also suffers from a few drawbacks (e.g. being limited to discrete trajectories) and is thus
not the definite solution. At the moment it is unknown whether an existing approach
can be extended to include all relevant constraints or a novel encoding scheme has better
generalization capabilities and fewer limitations.

Rotations

The least squares solution of LTE is used in this thesis to deform the position of an EE or
other robot links. Rotations are only implicitly treated through the underlying kinematic
chain. Although there are methods for a spline-based rotation interpolation available
[239, 247] they account only for specific cases and not a generic least squares solution.
It is thus still an open question how to include rotations in task space in the existing LTE
formalism.

Sensor-based constraint specification

Although LTE can cope with a variety of constraints, this thesis focuses on how such
constraints can be incorporated to adapt a given path when necessary. It is still unknown
how these constraints can be automatically extracted from sensor data to allow safe task
execution. Arising question include but are not limited to: Which sensors to use? Which
sensor fusion algorithm will provide most information about the environment at minimal
computational cost? Which sensor information can be processed efficiently by LTE? What
is the minimal number of constraints that must be specified for fulfilling the given task?

Real-time reasoning for human-robot-interaction

The presented motion reasoning scheme relies on a Markov decision process, is applica-
ble to a wide class of problems and provides a near-optimal solution through numeric
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5 Conclusions

optimization. For turn-based scenarios the high computational complexity of the back-
ward induction approach is not a critical issue. However, if the robot has to reason about
an optimal motion when interacting directly with a human, calculation times in the range
of seconds or even minutes are not an option and require a different approach to reason
about which action to perform in which state.

Cognition for automatic gain knowledge

LTE can be seen as a small step towards a humanoid robot capable of learning and adapt-
ing new motions autonomously. In this case focus shifts from “how” to “why” a movement
should be adapted. Whereas in this thesis both the prototypic reference motion and con-
straints are specified manually for both scenarios, a cognitive robot might be able to
acquire such knowledge simply by observing others’ movements and drawing its own
conclusions. Hardly any research has been done so far in the field of PbD and possible
investigations spans across the domains of engineering, neuroscience and psychology.
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Appendix to chapter 2

Path similarity measure

Fig. A.1 shows all ten reference paths of the psychological experiment to determine the
human perception of LTE. For each set of paths the black path denotes the undeformed
path whereas green, orange and red paths undergo different amounts of deformation.
The upper row lists the five synthetic paths, the lower row the real paths recorded with
a Kinect. The questionnaire handed out to each participant of the experiment is shown

T
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Figure A.1: Reference and deformed paths for path similarity evaluation

in Fig. A.2
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Gender: Age: Questionnaire process:
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Figure A.2: Path similarity measure questionnaire

Volleyball scenario

For the volleyball scenario in Sec. 2.10.1 a precomputed optimal trajectory is deformed
online to bat the puck in such a way it follows the desired trajectory. As the derivation of
the optimal batting motion and the resulting trajectory deformation is not that straight-
forward as it seems, it is recapitulated below. The goal of the impact modeling is to find
the full state vector of the endeffector for the desired puck motion, described by the hit
position (x;, y,) along the table, the fixed endeffector angle ®, and its translational ve-
locity (vyp, vy). After those information are calculated, they can be incorporated in LTE
through suitable positional/velocity constraints. For a tilted airhockey table the puck
moves along a parabolic trajectory described by

Xy = Xg + vath9

1
Vi =yo+vyoth—§gti- (A.1)
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The preferred hit point (x;, y;) lies on a circle with constant radius r, around the robot’s
base (x.,y.). The hit point at time ¢, is then found by solving (A.1) subject to the con-
straint

(xp—x )+ (n—y) —r2=0.

The velocity of the puck immediately before the hit is denoted by (v,,v,) and the rota-
tional speed by w.

To find the remaining unknowns, one has to specify the velocities (v/, v;) and '’ im-
mediately after the hit. Similar to (A.1) the puck moves on a parabolic trajectory after
the hit. By defining two waypoints (x;, y;) and (x,, y,) along the parabola the puck has
to pass, one can solve the resulting system of equations

_ /
X1 =XtV by,
1

=YtV = o8t
Xy = X +Vity,

/ 1 2
Yo=YtV ta— Egtz,

for the four unknowns t,, t,,v,v!. The variables t, and t, denote the time when passing
the two waypoints. When knowing the state of the puck immediately before and after
the hit, one can derive the required end-effector angle and velocity during the hit. To do
so, the puck velocities are first decomposed into relative normal components v,,v/| and
relative tangential components v||,v|’| before and after the hit as

(1 b (A )
won ([ Le]) ()L

with the projection matrices P, ,P; depending on the endeffector angle ¢ as

<Nk S <
<Nk SN <

P = [cos(®;) sin(®;,)]" [cos(®;) sin(®;)],

Fig. A.3 gives a detailed illustration of the impact model. The hit between puck and en-
deffector is modeled as a partially elastic collision with restitution coefficient € along the
normal direction, resulting in the change of normal impulse Ap, . In tangential direction
it is assumed that the change of impulse Ap; during the hit just reduces the relative tan-
gential velocity v, between puck and endeffector to zero. The tangential impulse also
leads to an angular momentum L;. Mathematically it is described by

APJ_ = _(1 + G)PJ_J
Apy = —mv), =—m(v| + @ x1),
AL” =rX Ap”,
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Figure A.3: Schematic view of the volleyball scenario. Left: Overview of the scenario.
Right: Detailed impact model

with m as the mass of the puck, r as the vector from the center of the puck to the contact
point, w as the vectorized version of w and the operator x as the pseudo cross product
in 2D. The resulting velocities before and after the hit can then be related to each other
as

1
v, =—(p, +Ap,)=—ev,,
m
1
v,=—(p+Ap)) =—wxr,
m
1
w=w+ 61‘ X Apy, (A.2)
with © as the moment of inertia and p, = mv,, py = mv, as the normal/tangential
impulse of the puck before the hit. Due to the nonlinearity of the projection matrices

P, and P, the resulting system of equations (A.2) has to be solved numerically for the
variables v,, vy, ®,.
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Appendix to chapter 3

Whole-body control using LQR/LTE

The cost function S;_; can be calculated from S; and the optimal input u;_; in the general
form

Sk = VlT,k_l APy + WlT,k_l APyt
Af’]f_1vz,k—l + Alv);z_lwz,k—ﬁ‘
Alsz_lxk—l APyt
AP Y AP+
AI?’Z_1Y2,I<—1A151<—1+
Af)]f_l Zy 1 AP+ Chy-

With the simplification of

R, =R+B’XB,
M, =M+ B"Z,B,
Y, =B'Y;;B,
Y, =B"Y,;B,

Cl = (Cl —1I),

C, =(C,—1I).
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and C;,C,,Cs3,Cy,c5 as given in (3.18), the matrices X;_1,Y; 1, Yo, 1,21, Vectors
V1 k1> W1 k-1, Vo k-1, Wo x—1 and scalar c,_; are calculated as

Xpq = Cy (R + Yy + ¥y + M)Cy+
CI(B'X,A+B"Y, A+
(A'X,B+A"Y,  B)Cs+
Q+A'X.A,

Yy o1 = Cy (R + Yy i+ Yo + M )Gyt
Ci(B"Y,:A+B'ZA)+
(A'X,B+A"Y, ;B)C,+
ATY A,

Yoot = Gy (R + Yy + Yo + MG+
C,(B"X,A+B"Y, A+
(A"Y,;B+A"ZB)C;
ATY, A,

Zk—l == Cz(ﬁk + ?Lk + ?Z,k + Mk)C4+

C,(B"Y,;A+B"Z,A)+
(A"Y, B+A"ZB)C,+
L+A"ZA,
v{,k—l = ﬁ]’f_lé{(ﬁk + ?Lk)Cg + ﬁ£_1C{(?2’k + Mk)C3+

i, CI(R+Y,,)C; +1  Cl(Yy, +M)Cs+
cs (Ri + Y1,)Cs + ¢ (Yo + M)Cs+

(C,l_; + Cyly,_; +¢5)"BTX, A+

(Criy_; + oy +¢5)'B'Y, A

(v; +W;)"BC; + V] A,

Wi =0 CT (R + ¥, ,)Cy + i, Cf (Yo + MG+
i,  CI(R+Y,,)C,+1,  CI(Yy, +M)C4+
cs (R + Y1,)C, + ¢l (Yo + M)Cy+
(Cyly_; + Gyl +¢5)"BTY A+
(Cit_q + Cotty_; +¢5)"BTZ,A
(v; +w;)"'BC, + WA,
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Ck—1 =

Vok—1= CgT(Rk + ?Z,k)élﬁk—l + Cg(?Lk +M,)C, 1l +
Cg(f{k +Y,,)Co 0 + Cg(?Lk + MGyl +
CI(R + Yy )es + CL (Y ) + M)es+
ATX,B(C,0;_; + Coly_; +c5)+
A"Y,  B(Cyiy_; + Cyltp_; +c5)+
CiB" (v, +w,) +A"v,,

Wy = C) (R +Y,,)C, + CL (Y, + MG+
Cl (R +Y,,)C, + CL (Y, + M)Cy+
Cl (R + Y, )¢5 + Ch (Y1 + M)es+
A"Y, B(C ly_; + Cyly_; +c5)+
ATZ,B(C, , +C,li, ; +c)+
C;B (v, +w,) +ATw,,

4/ (CTR,C,+CIY,,C, +CIY,,C, +CIM,Cy_,+
4 (CTR,C,+CIY,,C, +CIY,,C, +CIM,C,))l_,+
u (CIR.C, +ClY,,C, +C]Y,,C, +CIM,C)ily_,+
u,  (CIRC,+ClY,,C,+CIY,,C,+ CIM,Cy)uy_,+

(el (R + Y,,)C; + ¢l (Y + M)Cy)ly_; + (vi BC; + W] BCy )y, +
(el (R +Y,,)C, + €l (Y1 + M)C,)iy_y + (v BC, + w! BCy)ii,_;+
) (CT(R+ Yy )5+ Cf (Yo + Mes) + 6 (CIBv, + C] B w,)+
i (CT(R + Yy )es + C (Yo + Mes) + ) (CIB"v, + CIB w,)+

(R + Yy + Yo + Mes + (v +w) )Bes + ¢/ B (v, +wy).
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Appendix to chapter 4

Pool Simulator

A pool model is necessary to simulate behavior of all balls on the table when executing
a stroke. If the model is precise enough, results from the model can be transferred to
the real world without further ado. the development of the pool model is described in
this section. The section is split in two parts. In the first part, algebraic expressions of
the physical model of a pool table are derived. As the expressions depend on a number
of adjustable parameters, the second part coves the calibration in order to resemble the
physical effects of the real pool table well.

Physical Model

To develop a precise pool model, the underlying physical effects are analyzed first. In
total, there are five effects which can be considered individually. At the beginning of
each player’s move, a stroke occurs where the white ball is hit by the cue. After that, a
usually short sliding phase is followed by a rather long rolling phase until the white ball
comes to rest. In addition, collisions between two balls or a ball and the cushion may
happen. Note that the effects described here are also deduced in different from in [5, 23,
61, 109, 208, 257, 302, 308, 313]

Stroke

As the cue hits the white ball, it transfers an impulse p in the x/y-plane to it. The con-
tact point A between cue and ball is specified by the three parameters a accounting for
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Figure C.1: Possible states of a pool game. Top left: Stroke. Top Right: Ball-ball collision.
Bottom left: Ball-cushion collision. Bottom right: Rolling/sliding on the table

displacement of the cue along the y-axis causing side spin, 3 for displacement of the cue
along the z-axis causing top spin and y for the angle between z-axis and cue. Then the
resulting COM velocity of the white ball v, and the rotational velocity w. is calculated
as

siny
Ve = M 0 ,
m 0
Iplllizeal sina cos f§ cosy

w,=———| —cosacosfcosy+sinfsiny
m . .
sinacosf3siny

In the equations above m denotes the mass of the ball and r., the vector from C to A.
For arbitrary stroke directions on the table, v, and w have to be rotated by an angle v
around the z-axis.

149



C Appendix to chapter 4

Rolling on the Table

Differing from a ball sliding on a table, a rolling ball has no tangential speed v;, in the
contact point B with the table. Thus it is vz, = 0. The tangential rotational velocity w,
in the x/y-plane is then calculated as

1

W, =— 3
|rcsl

While rolling on the table, the ball is slowed down by the rolling friction force f, ;; acting
in opposing direction of v, as

Cc
froll = _—mgkra _VCmgArr:
Ivell

with g for the gravitational constant, A,, for the velocity-independent rolling friction
coefficient and A,, for the velocity-dependent rolling friction coefficient.

In case of a nonzero normal rotational velocity w, along the z-axis, it will be unaffected
by the rolling friction force f.,;. Therefore [112] suggest to add another term for the
normal angular acceleration a, depending on the radius p of the contact area between
ball and table as

w, 2
a,= _w_,J% mgpP Ay, (C.1)
depending on the inertia © of a ball. It can be calculated as © = 0.4mr; with the param-
eter ry as the radius of the ball.

Sliding on the Table

A ball sliding on the table is characterized by a translational velocity vz, # 0. In this
case the sliding friction force f;;;, acting at the point B in opposing direction to v, is
calculated as

£ rge = ——2-mgA A
slide — — MEAsq — Vg MEAgys
Vil
with A,, as the velocity-independent sliding friction coefficient and A,, as the velocity-

dependent sliding friction coefficient. Similar to the previous case where the ball is rolling
on the table, (C.1) holds.

Ball-Ball Collision

The collision between two balls is modeled as a partially elastic hit in normal direction. In
case of a nonzero friction between the two balls, some impulse is transferred in tangential
direction as well during the collision. If there are two balls with index 1 and 2 colliding,
vy, denotes the contact point velocity of ball 1 at the point D in a reference coordinate
frame. The same accounts for v;, and ball 2. The relative velocity between the two balls is
then calculated as v, = v,,,—Vj,;, consisting of a normal component v;,, orthogonal to the
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contact plane and a tangential component v;,, along the contact plane. The transferred
impulse p,, on ball 1 in normal direction is

where e, denotes the coefficient of restitution between two balls. The transferred im-
pulse p, in tangential direction on ball 1 is

Vp¢

p: = lIp.lIA -
f P2 v, |l

The resulting velocity V’C1 of ball 1 after the hit is

with v, as the velocity before the hit. For a nonzero tangential impulse p, the transferred
angular momentum L, on ball 1 as

L = Tcp X Pe»
leads to the angular velocity w’cl after collision as

p =E+w

we, =735 c,-

The resulting (angular) velocity of ball 2 is calculated accordingly.

Ball-Cushion Collision

A simplified model of the one presented in [112] is used to model the collision between
ball and cushion. It assumes that the ball is rolling on the table immediately before and
after cushion contact. If the ball has no sidespin, i.e. w, = 0, the contact with a cushion
is modeled as a partially inelastic hit in normal direction as

V/Cn —Ven€hes

‘/Ct = Ve,
V. +V

V/C = M”VC” 51}:
Ve + Vel

with the coefficient of restitution e,. depending on both the velocity ||v.|| before cushion
contact and the angle A.. The velocity v, after cushion contact is reduced by a factor
0, relative to the velocity v, before cushion contact.
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Calibration

The developed pool model depends on a set of parameters which have to be determined
through experiments. The following parameters are evaluated:

1. Ball mass m and radius ry

2. Rolling friction coefficients A,, and A,
3. Sliding friction coefficients A,, and A,
4. Cushion parameters e;,. and 6,

The parameters p, A, and e;;, cannot be evaluated precisely enough due to an imperfect
measurement setup or superimposed, more dominant effects. For those three parameters
values based on [112] and [309] are used instead. Differing from purely event-based
integration a fixed step integration size is used that can be adapted in case of an event
(ball-ball or ball-cushion collision) [288].

Rolling friction coefficients

A ceiling mounted camera is used to track the position of a single ball on the table at
a frame rate of 40Hz. As the ball rolls over the table, the rolling friction force f, ;.

By measuring the acceleration as the ball is slowed down, the rolling friction force can
be deduced using Newton’s second law. Fig. C shows the experimental results and the

1
E 1 0.04
. 05 €
£ - 2 002
| 7 = v
> 0 N @
% . \\ 8 0»
@ A c
= _ L o
5 0° g —0.02
o =

-1 -0.04

-1 0 1 0 02 04 06
pool table x—dim. [m] velocity [m/s]

Figure C.2: Determination of the rolling friction coefficient. Left: Recorded trajectory
by the ceiling-mounted camera for a single stroke. Right: Calculated rolling
friction coefficient with the corresponding piecewise linear regression result.
For better readability, only every tenth sampling point has been plotted

linear regression lines. For ball velocities ||v.|| > 0.05% the rolling friction coefficient is
nearly independent of the ball velocity. For ball velocities ||v;|| < 0.05% a linear relation
between the rolling friction coefficient and the ball velocity is observed. As shown in
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the figure, outliers coming from the camera’s limited resolution are removed for better
regression results. The rolling friction force is calculated as

A(ve) 0.0011 for |v,| < 0.0473,

V. =

ratte 0.0075 for |v.| > 0.0473,

A (%) 0.1350  for |v,| < 0.0473,
V-)=

e —0.0004 for |v,| > 0.0473.

Sliding friction coefficients

A special rack with defined weight standing on three balls is designed to determine the
sliding friction coefficients. The rack is pulled over the table by a linear axis with constant
velocity. By fixing the balls to the rack, they are sliding over the table. A JR3 force/torque
attached to the linear axis measures the force f;;;, when the rack is moving. Multiple
runs at different speeds between 0.01% and 1? are performed, see Fig. C.3. The rack

©c o o
w M W

o
(V)

o
=

friction coefficient [-]

o

velocity [m/s]

Figure C.3: Determination of the sliding friction coefficient. Left: Photo of the exper-
imental setup. Right: Calculated sliding friction coefficient and piecewise
linear regression lines

is attached to the linear axis through a slightly elastic string, causing small vibrations
during the movement and resulting in noisy observation results. Similar to the rolling
friction coefficient, the sliding friction coefficient is almost constant for large velocities

and shows a nearly linear dependence for small velocities. A piecewise linear regression
results in

0.2014 for |vg,| < 0.672,
0.2322 for |vg,| > 0.672,

0.4763 for |vg,| < 0.672,
0.0180 for |vg,| > 0.672.

Asa(VBt) = {

)’sr(VBt) = {
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Cushion contact coefficients

A single ball is shot at the cushion from multiple angles A, and with varied velocity
V.. Similar to the rolling friction coefficient, the parameters for the cushion contact
are evaluated by tracking the trajectory of the ball on the table with a ceiling-mounted
camera at 40Hz. Both the coefficient of restitution e;, and the factor 6, are determined as
functions of the impact angle A, and the velocity v, before contact. Fig. C.4 displays the
individual results with corresponding regression planes based on 1217 cushion contacts.
The regression planes for e, and 6, are

=
o

=

057 ° W

rel. velocity [-]

05 11555 o5 1 0% 11555 o5 1
velocity [m/s] angle [rad] velocity [m/s] angle [rad]

Figure C.4: Determination of the cushion parameters. Left: Coefficient of restitution ey,
of the cushion with corresponding regression plane for 1217 cushion contacts.
Right: Relative velocity 6, with calculated regression plane

e,.(Ve, A) = 0.9331 —0.0278|v.| — 0.1051A,
5,(Ve, A) = 0.7366 —0.1094|v.| + 0.1698A.

Subjective/objective difficulty
Two psychological experiments are performed in Sec. 4.6 to determine the subjective and
objective difficulty of the human players. The parameters of both psychological exper-

iments are shown in Tab. C.1 and C.1. In addition, Fig. C.5 and C.5 provide top-down
and true-to-scale images of all scenarios for a better impression.
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Experiment 1 | d; green | d, green | 6, green | d; red | d, red | 6, red |

Scen.
Scen.
Scen.
Scen.
Scen.
Scen.
Scen.
Scen.
Scen.

Scen.
Scen.
Scen.
Scen.
Scen.
Scen.
Scen.
Scen.
Scen.

=N I e = R CIEN B Y I N S

0.83m
1.37m
1.28m
0.57m
0.38m
0.38m
0.33m
0.14m
0.10m
0.89m
0.50m
1.40m
0.98m
0.47m
0.62m
1.23m
1.27m
0.79m

0.70m
0.64m
0.38m
1.02m
0.34m
0.34m
0.17m
0.60m
0.56m
0.41m
1.03m
0.27m
1.10m
0.61m
0.11m
0.15m
0.31m
0.32m

7.5°
0.7°
24.8°
24.7°
61.6°
61.4°
59.6°
46.5°
3.6°
28.4°
17.1°
32.4°
7.6°
14.7°
53.0°
5.4°
23.9°
1.4°

0.11m
1.32m
0.75m
0.96m
0.67m
0.31m
0.33m
0.14m
0.10m
0.89m
0.50m
1.40m
0.89m
0.69m
0.24m
1.00m
1.36m
0.40m

0.58m
0.49m
0.74m
0.64m
0.19m
0.57m
0.38m
0.37m
0.58m
0.36m
0.81m
0.28m
1.10m
0.61m
0.10m
0.15m
0.31m
0.31m

7.7°

0.6°
25.2°
25.1°
61.3°
60.8°
11.8°
67.2°
17.4°
39.3°
33.5°
0.9°
24.1°
47.5°
74.6°
39.6°
50.9°
59.4°

Table C.1: Parameter overview of the first psychological experiment

Experiment 2 | d, | d, | 0. |
Scen. 1 0.12m | 0.10m | 22.0°
Scen. 2 0.14m | 0.12m | 48.0°
Scen. 3 0.22m | 0.12m | 0.5°
Scen. 4 0.17m | 0.35m | 6.5°
Scen. 5 0.17m | 0.35m | 55.0°
Scen. 6 0.25m | 0.46m | 9.1°
Scen. 7 0.58m | 0.23m | 45.0°
Scen. 8 0.31m | 0.68m | 12.0°
Scen. 9 0.33m | 0.56m | 48.0°
Scen. 10 0.55m | 0.52m | 19.0°
Scen. 11 0.51m | 0.75m | 40.0°
Scen. 12 0.55m | 0.94m | 2.2°

Table C.2: Parameter overview of the second psychological experiment
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10 11 5 12 .
13 14 5 15 °
16 . o 17 ° 18 °

Figure C.5: Overview of the different scenarios of the first psychological experiment to
determine the subjective difficulty



10 11 12

Figure C.6: Overview of the different scenarios of the second psychological experiment
to determine the subjective difficulty
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