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Nomenclature 
The following tables contain a survey of the abbreviations and the formula symbols utilized 

most frequently throughout the thesis. Common symbols as well as indices are written in 

italics, while matrices and vectors are shown in bold and non-italic. Most matrices are shown 

with capital letter while vectors and scalars are written with small letters. Furthermore, vectors 

with a physical meaning in the three-dimensional Euclidean space are marked with an arrow 

on top of the symbol. 

For any Euclidean vector 𝐱⃑  , the following declaration scheme is applied: 

(𝐱⃑ 𝑇𝑦𝑝𝑒 𝑜𝑓 𝑚𝑜𝑡𝑖𝑜𝑛/𝑆𝑜𝑢𝑟𝑐𝑒 𝑜𝑓 𝐹𝑜𝑟𝑐𝑒/𝑀𝑜𝑚𝑒𝑛𝑡
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡

)
𝑁𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝐹𝑟𝑎𝑚𝑒

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐹𝑟𝑎𝑚𝑒
 

For example, the velocity derivative (𝐯⃑ ̇𝐾
𝐺)
𝐾

𝐸𝐾
 means, 

 

Symbols 

𝐵  Body-fixed frame 

𝑊  World frame, deduced from NED frame by user-defined heading 

𝐌𝐵𝑊, 𝐌𝑊𝐵 Transformation matrices from W frame to B frame and B to W 

𝛴(𝐅⃗𝐺)
𝐵
 = [𝐹𝑥 𝐹𝑦 𝐹𝑧]T, the total forces on C.G: denoted in B frame,  

𝛴(𝐌⃗⃑⃑⃑𝐺)
𝐵
 = [𝐿 𝑀 𝑁]T, the total moments on C.G. denoted in B frame 

(𝛚⃗⃑⃑⃑𝑊𝐵)𝐵 = [𝑝 𝑞 𝑟]T , angular rates between W and B frame, denoted in B frame, 

respectively 

(𝐫 𝐺)𝑊  Position vector of C.G., denoted in W frame 

(𝐯⃑ 𝐾
𝐺)
𝑊

𝑊
  Kinematic velocity vector of C.G. w.r.t. W frame denoted in W frame 

(𝐚⃑ 𝐾
𝐺)
𝑊

𝑊𝑊
 Kinematic acceleration vector of C.G. w.r.t. W frame denoted in W frame 

𝐪𝑊𝐵  Unit quaternions to represent the attitude, the same rotation as 𝐌𝑊𝐵 

𝐠⃑ 𝑊  = [0 0 9.81]T, gravitational acceleration vector denoted in W frame 

𝐠⃑ 𝐵  = [𝑔𝑥 𝑔𝑦 𝑔𝑧]T, gravitational acceleration vector denoted in B frame 

Referenced to point G
A velocity relative to the E-frame has been 
differentiated with respect to the K-frame

K-frame is Notation Frame

Type of Acceleration addressed: K-kinematic, W-wind, A-Aerodynamic 
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𝐟 𝐵  = [𝑓𝑥 𝑓𝑦 𝑓𝑧]T , specific force vector denoted in B frame, accelerometer 

measurements. 

𝑇  Total thrust of the quadcopter 

(𝐈𝐺)𝐵𝐵  Moment of inertia of the center of gravity 

𝐧  = [𝑛1 𝑛2 𝑛3 𝑛4]T, normalized rotor rotation speeds of the quadrotor 

𝐈3  = [
1 0 0
0 1 0
0 0 1

], unity matrix 

 

 

Abbreviations 

NDI  Nonlinear Dynamic Inversion 

BS  Backstepping 

LLP  Low Level Processor 

HLP  High Level Processor 

IMU  Inertial Measurement Unit 

SDK  Software Development Kit 

AHRS  Attitude Heading Reference System 

EKF  Extended Kalman Filter 

ESKF  Error State Kalman Filter 

CFB  Command Filtered Backstepping 

 

 



Introduction 1 

1. Introduction 

1.1. Thesis Goal and Research Approach 

Many well-established methods and design techniques, such as root locus, Eigen structure 

assignment, pole placement, LQR, H∞, and etc., exist for linear time-invariant (LTI) systems. 

However, most of the real systems under control are not LTI systems and those linear theories 

cannot be applied directly, but they are applied to the linearized systems around the design 

points, in whose vicinity the plant can be assumed linear. Conservative bounds have to be 

used due to approximations and when the operation range is large, it is likely to perform very 

poorly or to be unstable. Nonlinear control methods can explicitly address the specific 

nonlinear dynamics of the plant and fully or partially linearize the plant, not by any 

approximation (i.e., Taylor expansion/Jacobian linearization) but by feedback transformations. 

Then the linear control theory can be applied on the transformed plant. So that full physical 

and control capabilities of the plant can be exploited. 

In addition to the modeled nonlinear dynamics, there is also a wide range of model 

uncertainties, like un-modeled dynamics, parameter uncertainties, senor errors and even 

partial plant failures. The adaptive control aims to parameterize those uncertainties and use 

feedback to learn and estimate these parameters online so that the performance and 

robustness of the aerial vehicle is improved. Hence, the adaptive control can be augmented 

to the nonlinear baseline control to account for uncertainties and failures. 

The main goal of the thesis is not to develop novel control theory but to investigate the 

potential of the existing nonlinear adaptive control theories and to bridge the gap between 

theory and reality by designing novel control architectures in experimental and operational 

systems. The controlled system shall be able to follow complex, highly curved three-

dimensional trajectories with high bandwidth and high robustness. With high bandwidth flight, 

it becomes very challenging because first the nonlinearities and state couplings will be fully 

visible and second the influence of model and parameter uncertainties and the actuator 

dynamics increases. 

The multirotor platform serves as an ideal platform to realize and analyze different nonlinear 

control designs. Given the nonlinear and tightly coupled dynamic nature of this type of 

vehicles, nonlinear control appears to be a natural choice. Nonlinear Dynamic Inversion (NDI) 

and Backstepping are two popular nonlinear control methods, which are analyzed and 

compared in this thesis 

  



2 Introduction  

1.2. System Overview over Quadrotors 

Recent technological progress in low-cost MEMS-based sensors, actuators and energy 

storage devices enables the development of miniature vertical take-off and landing (VTOL) 

systems. As one of the most preferred types, the quadrotors have gained increasing interest 

as a research platform, due to its VTOL and hovering capabilities, easy construction and 

steering principle, as well as high maneuverability. 

1.2.1. Basic steering principle 

Figure 1.1 shows one of the quadrotor. As the name suggests it has four rotors. Each rotor 

produces both a thrust and torque about its center of rotation only by changing the rotation 

speed of the propellers. If all rotors are spinning at the same angular velocity, with the front 

and back rotors rotating clockwise and the left and right rotors counterclockwise, the net 

aerodynamic torque and hence the angular acceleration about the yaw axis is zero. This 

implies that the yaw stabilizing rotor of conventional helicopter is not needed. Yaw is induced 

by mismatching the balance in aerodynamic torques, i.e. by offsetting the cumulative thrust 

commands between the counter rotating blade pairs. 

Angular accelerations around the pitch and roll axes can be caused separately without 

affecting the yaw axis. Each pair of blades rotating in the same direction controls one axis, 

either roll or pitch. Increasing thrust for one rotor while decreasing thrust for the other will 

maintain the torque balance needed for yaw stability and induce a net torque around the roll 

or pitch axes. This way, fixed rotor blades can be used to maneuver the quadrotor in all 

dimensions. Translational acceleration is achieved by maintaining a non-zero pitch or roll 

angle. 

 

Figure 1.1 Asctec Quadrotor ‘Hummingbird’ 
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1.2.2. Hardware and software 

Two variants of quadrotors are used in the research. The first one is the ‘Hummingbird’ 

developed by Ascending Technology [1], as shown in Figure 1.1. It has an arm length of 17 

cm and a rotor diameter of 8 inches. It includes aluminum mainframe and carbon composite 

arms, four BLDC Motors with specific motor RPM controllers, and four propellers. As shown 

in Figure 1.2, the autopilot board consists of two ARM7 60MHz 32 bit microprocessors. The 

low level processor (LLP) is responsible for all the hardware management and the Asctec 

default flight control system, which includes sensor data acquisition, preprocessing and 

fusion, and three different controller: GPS way point control, an attitude control, and a direct 

motor control for custom controller. The custom code can be freely programmed on the 

second ARM7, the high level processor (HLP). 

Besides the standard hardware from Asctec, we also further developed a Gumstix Overo Fire 

COM with 720 MHz processor [2] to the ‘Hummingbird’ to allow floating-point computation. 

 

Figure 1.2 Asctec Sensor and Processor Board 

The other variant, ‘Pelican’, is a bigger version of ‘Hummingbird’, as shown in the Figure 1.2. 

It has an arm length of 21cm and a rotor diameter of 10 inches. It is additionally equipped 

with an Intel atom processor of 1.6GHz to make online processing of image data possible. 
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Figure 1.3 Asctec Quadrotor ‘Pelican’ 

The sensors package includes a three-axis gyroscope [3], three-axis accelerometer [4] and 

three-axis magnetometer, barometer, GPS receiver and vision sensor systems. The technical 

specifications of the Inertial Measurement Unit (IMU) are attached in the Appendix. There are 

three different positioning systems used in the experiments, image based vision sensor [5], 

VICON system [6], and GPS sensor. 

The used framework [7] on the HLP is a joint development of the Institute of Flight System 

Dynamics (FSD) and Ascending Technologies. The HL Software Development Kit (SDK) 

provides all tools necessary to program custom C-code to flash and debug the code on the 

processor. The custom C-code can be generated by an automatic process. The control 

system can be designed in Matlab/Simulink and then translated using the Real-time 

Workshop Embedded Coder. The developed framework provides all templates for code 

generation, as well as the code interface between the Simulink controller and the HL-SDK 

code. Real time LINUX operating system and similar framework as the HLP has also been 

developed for the Gumstix Overo Board at the Institute of FSD. Based on this work, the flight 

control system can be designed and implemented without any prior knowledge of the 

programming language C. 

Detailed descriptions of the hardware and software implementations are given in Chapter 8. 

  



Introduction 5 

1.3. Literature Review – State of the Art 

1.3.1. High Bandwidth Quadrotor Control 

Due to its mechanical simplicity and robustness, quadrotor or even multirotor received 

remarkable attention from various research groups, hobbyists and companies. By this time, a 

tremendous variety of linear and nonlinear as well as adaptive control designs is presented in 

literature. Highly accurate and mature tracking has been achieved in various publications on 

the position tracking problem. 

Flight tests of position/trajectory controllers presented in Valenti [8] and Bouabdallah [9] were 

conducted in a controlled lab environment with very feasible, low bandwidth trajectories 

where linear properties dominate. With the STARMAC project, Hofmann [10] already showed 

successful outdoor flights with a velocity of up to 2 m/s.  

However, the physical capabilities of quadrotors are much beyond the presented autonomous 

position/trajectory controller. An experienced pilot can fly the quadrotor with highly aggressive 

maneuvers of speeds more than 10 m/s, aided by the angular rate feedback. In [11] the 

authors present unprecedented three dimensional and high dynamic manoeuvers that show 

the physical capabilities of quadrotors. The quadrotor is able to fly aggressive maneuvers that 

are comparable to the manual flight of an experienced pilot, but more precise in the position 

tracking. However, these results have been obtained in a controlled lab environment with 

almost perfect measurements delivered by VICON system [6]. Furthermore, there is no general 

solution to achieve this level of position tracking performance, but several distinct controllers 

with a combination of position, attitude and angular rate control for different maneuvers were 

implemented. This thesis aims to develop generic solutions for autonomous position control 

aiming maximization of the control bandwidth. 

1.3.2. Nonlinear Dynamic Inversion 

Nonlinear Dynamic Inversion, also called feedback linearization, became a topic of much 

research from the 1970s. It is rather a transformation applied to the nonlinear system, which 

renders a new dynamical system that is LTI. Once a linear system is obtained, a secondary 

linear control law can be designed to ensure that the overall closed-loop system performs 

according to the specifications. Two comprehensive textbooks dealing with NDI are [12] [13]. 

Previous efforts on NDI control include a three-loop design corresponding to inversion of 

rotational, attitude and path dynamics in separated cascaded loops. A more common design 

is a two-loop control structure [14], where the outer loop is the position control loop and the 

inner loop is the attitude control loop. Both control loops have second order dynamics, i.e. 

the Relative Degree (RD) is two. Two non-cascaded structure designs for quadrotor position 

control are presented in [15] [16]. However, additional assumptions have to be made in the 

control designs: In [15] a dynamic input, the second derivative of the thrust, has to be used 

and in [16] a quasi-static height control has to be assumed for the control of the X- and Y- 

axes. 
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1.3.3. Backstepping 

Backstepping is a systematic, Lyapunov-based method and is also used to force a nonlinear 

system behave like a linear one. The name ‘Backstepping’ refers to the recursive nature of 

the design procedure. The design procedure starts at the output state, which is separated by 

the largest number of integrations from the control input and ‘step back’ towards the control 

input. Each step an intermediate control law is calculated and in the last step the real control 

law is derived. The recommended textbook about Backstepping and Lyapunov theory is [17].  

There are several Backstepping approaches on quadrotors as well. A Backstepping control 

approach that used similar two-loop architectures, i.e. position loop plus attitude loop, was 

presented in [18] [19]. A non-cascaded position control design using Backstepping was 

presented in [20]. However, command filters have to be used to estimate the virtual control 

derivatives and the thrust dynamic is extended to its derivatives. A modification was 

introduced in [21] that attempts to accounts for the filter estimation errors and it is named 

‘Command filtered Backstepping’. 

1.3.4. Adaptive Control 

The research of adaptive control started in the early 1950s. It has several breakthrough results 

in the 1970s. Direct and indirect Model Reference Adaptive Control (MRAC) schemes using 

the Lyapunov based approach were designed and analyzed in [22] [23]. Starting from the mid-

1980s, the robust adaptive control designs were proposed and analyzed extensively. Several 

adaption modifications, like MRAC modification, neural network, ℒ1 adaptation [24] [25] [26] 

were introduced to improve the stability and robustness of the adaptive structure, where it is 

possible to guarantees signal boundedness in the presence of unmodeled dynamics and 

bounded disturbances as well as performance error bounds that are of the same order as the 

modeling error. The superior performance of the adaptive control over linear control has been 

demonstrated in [27] [28], especially in the presence of the parameter uncertainties and 

structure changes. In the last decade, the research focus is to develop certification strategies 

for recently developed results of nonlinear adaptive control theory. Hence, the stability and 

performance of the transient region has also been addressed [29] [30] [31]. 
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1.4. Thesis Organization 

Chapter 2 introduces the theoretical background. The standard design procedures are 

clarified. This chapter is intended as a reference source but not a full coverage of these topics. 

In Chapter 3 the comparison between NDI and Backstepping is made using a generic 2nd 

order system.  

Starting from Chapter 4 to Chapter 7, the quadrotor control applications of various types are 

introduced and analyzed. Chapter 4 describes the mathematical model of the quadrotor, 

including model for simulation, model for data fusion and models for control design. Chapter 

5 presents the attitude control designs with conventional Euler angle and a novel state 

variable. Similar approaches are also implemented on the attitude loop to further validate the 

comparison results of Chapter 3. Chapter 6 extends the control designs to the position 

dynamic loop. Again, different architectures are designed for the position loop. Flight test 

results are presented as well. Chapter 7 applies the ℒ1  adaptive control to augment the 

baseline control. Chapter 8 introduces the experimental systems and discusses problems and 

possible solutions in the practical implementations. In Chapter 9, the conclusion and 

recommendation for further research are discussed. 
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1.5. Contribution & Publications 

The following aspects are regarded as the main contributions of this thesis to advance the 

current state of the art in the respective fields: 

 Comparison of NDI and Backstepping designs 

A throughout comparison of the two methods is made giving a clear overview of the 

different control approaches. Through the comparison of a simple control system and the 

attitude control system, the disadvantages and advantages of the control approaches are 

concluded. 

 Development of a novel state parameter to replace conventional Euler angle 

The novel state can provide the same functionality as Euler angles and decouple the 

system control and intermediate control variables so that non-cascaded Backstepping 

control is made possible. In addition, the dynamic equations/mathematical model are 

simplified without any approximations, for instance the trigonometric functions are no 

longer needed, which is beneficial for small UAVs with limited computation power. 

 Development of various NDI control designs for quadrotors, including a novel NDI position 

control architecture 

Besides the conventional NDI control structure (Relative Degree 2 position loop + RD2 

attitude loop), a novel NDI structure is designed and tested in flight. It is a cascaded loop 

design with a RD3 position loop and a RD1 rate loop. Due to the faster inner loop, the 

position loop is able to have a higher control bandwidth compared to the conventional 

control structure. 

 Development of various Backstepping designs for quadrotors 

The Lyapunov based Backstepping design with the novel state parameter can provide 

comparable performance with the NDI designs and less model dependency, i.e. higher 

robustness. Various Backstepping modifications are analyzed. 

Furthermore, the other aspects of the quadrotor control system have also been covered: 

Implementation of data fusion algorithms for various sensors, and augmentation of the ℒ1 

adaptive control, as well as necessary ground computer algorithms.  

Many of the novel designs and applications described in this thesis have been peer reviewed 

and presented at conferences, while this thesis provides more comprehensive details. The 

main publications are listed in Bibliography [5] [32] [33] [34] [35] [36] [37] [38] [39], and also 

listed together in the next page. 
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2. Theoretical Background 
This chapter collects some background material needed throughout the thesis. As the 

theories are standard and are available in many textbooks, few proofs are offered. The 

emphasis is to explain the concepts and point out their importance in later applications.  

2.1. Mathematical Tools 

A few basic mathematical concepts are review in this section. 

2.1.1. Diffeomorphism & Coordinate Transformations 

A function 𝐟:𝒟 ⊂ ℝ𝑛 ⟶ℝ𝑛 is said to be a Diffeomorphism on 𝒟, or a local Diffeomorphism 

[40], if  

 it is continuously differentiable on 𝒟, and 

 Its inverse 𝐟−1 defined by 𝐟−1(𝐟(𝐱)) = 𝐱,⋅ ∀𝐱 ∈ 𝒟 

 exists and is continuously differentiable. 

The function 𝐟 is said to be a global Diffeomorphism if in addtion 

 𝒟 = ℝ𝑛, and 

 lim
𝐱→∞

‖𝐟(𝐱)‖ = ∞ 

It is often beneficial to perform a coordinate change to transform a state space representation 

into another. A Diffeomorphism 𝐓(𝐱) can be used to perform a coordinate transformation. 

Given a nonlinear state space representation of an affine system of the form 

𝐱̇ = 𝐟(𝐱) + 𝐆(𝐱)𝐮 (2.1) 

Defining 𝐳 = 𝐓(𝐱), we have 

𝐳̇ =
𝜕𝐓

𝜕𝐱
𝐱̇ =

𝜕𝐓

𝜕𝐱
[𝐟(𝐱) + 𝐆(𝐱)𝐮] (2.2) 

Given that 𝐓 is a Diffeomorphism, we can recover the original state space representation 

𝐱 = 𝐓−1(𝐳) (2.3) 
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2.1.2. Relative Degree & Lie Derivative 

The relative degree of a scalar dynamic system is defined as the number of times we have to 

differentiate the output before the input appears. 

When deriving the NDI transformation or stability in the sense of Lyapunov, we often need to 

take a time derivative of a scalar function. This leads to the concept of the Lie Derivative [40]. 

Given a scalar function ℎ(𝐱) and a vector field 𝐟(𝐱), we define the Lie derivative 𝐿𝐟ℎ, called the 

derivative of ℎ with respect to 𝐟. 

𝐿𝐟ℎ(𝐱) =
𝜕ℎ

𝜕𝐱
𝐟(𝐱) (2.4) 

Consider the system of the form as in Eq. (2.1) with output equation 𝐡(𝐱), where 𝐟, 𝐆:𝒟 ⊂

ℝ𝑛 ⟶ℝ𝑛 and 𝐡:𝒟 ⊂ ℝ𝑛 ⟶ℝ are sufficiently smooth. 

𝐱̇ = 𝐟(𝐱) + 𝐆(𝐱)𝐮
𝐲 = 𝐡(𝐱)

 (2.5) 

In order to find the nonlinear state transformation, each output 𝑦𝑖 , 𝑖 = 1,… , 𝑝  has to be 

differentiated w.r.t. time. 

𝑦̇𝑖 =
𝜕ℎ𝑖
𝜕𝐱
𝐱̇ (2.6) 

Substituting the state dynamic equation and using the definition of Lie derivatives,  

𝑦̇𝑖 =
𝜕ℎ𝑖
𝜕𝐱
(𝐟(𝐱) + 𝐆(𝐱)𝐮) 

𝑦̇𝑖 = 𝐿𝐟ℎ𝑖(𝐱) + 𝐿𝐆ℎ𝑖(𝐱)𝐮 

(2.7) 

If 𝐿𝐆ℎ𝑖(𝐱) = 𝟎, the output needs to be differentiated once more, until the control input 𝐮 

appears, i.e. the coefficient of 𝐮 is no longer zero.  

𝑦̈𝑖 = 𝐿𝐟
2ℎ𝑖(𝐱) + 𝐿𝐆(𝐿𝐟ℎ𝑖(𝐱))⏟        

=𝟎

𝐮 (2.8) 

As we can see, the Lie derivative notation is simpler in this case. Thus it is usually preferred 

whenever higher order derivatives need to be calculated. Let’s say in the 𝑟𝑖
𝑡ℎ derivative the 

control input appears, 

𝑦𝑖
(𝑟𝑖) = 𝐿𝐟

𝑟𝑖ℎ𝑖(𝐱) + 𝐿𝐆 (𝐿𝐟
𝑟𝑖−1ℎ𝑖(𝐱))⏟          
≠𝟎

𝐮 (2.9) 

and r is called relative degree of the system with given initial conditions. 

2.1.3. System of triangular form 

Both NDI and Backstepping are only applicable to a special class of systems having a 

triangular form. This ‘triangular’ system, also called pure-feedback system [17], has the 

following form, 
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𝑥̇1 = 𝑓1(𝑥1)                          + 𝑔1(𝑥1, 𝑥2)

𝑥̇2 = 𝑓2(𝑥1, 𝑥2)                    + 𝑔2(𝑥1, 𝑥2, 𝑥3)

𝑥̇3 = 𝑓3(𝑥1, 𝑥2, 𝑥3)              + 𝑔3(𝑥1, 𝑥2, 𝑥3, 𝑥4)
      ⋮
𝑥̇𝑛 = 𝑓𝑛(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) + 𝑔𝑛(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 , 𝑢)

 (2.10) 

The nonlinearities 𝑓𝑖  and 𝑔𝑖  depend only on 𝑥1, … , 𝑥𝑖  and form a lower triangle, thus it is 

named. The 𝑥𝑖+1 acts as a pseudo control and appears non-affine in the dynamics of 𝑥̇𝑖. In 

case if the 𝑥𝑖+1 appears affine in the dynamics of 𝑥̇𝑖 , the system is called strict-feedback 

system and has the following form, 

𝑥̇1 = 𝑓1(𝑥1)                          + 𝑔1(𝑥1) ⋅ 𝑥2
𝑥̇2 = 𝑓2(𝑥1, 𝑥2)                    + 𝑔2(𝑥1, 𝑥2) ⋅ 𝑥3
𝑥̇3 = 𝑓3(𝑥1, 𝑥2, 𝑥3)              + 𝑔3(𝑥1, 𝑥2, 𝑥3) ⋅ 𝑥4
      ⋮
𝑥̇𝑛 = 𝑓𝑛(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) + 𝑔𝑛(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) ⋅ 𝑢

 (2.11) 

An important property of system of strict feedback form is that the nonlinearities are 

continuously differentiable, so that the Lie derivative may be applied to perform the NDI 

transformation of the original nonlinear system. A common case for systems of non-triangular 

form is that the system input 𝑢 appears not only in the last differential equation, but also in 

the other nonlinearities 𝑓𝑖 and 𝑔𝑖. This invokes the concept of relative degree and makes direct 

applications of NDI and Backstepping not possible. 
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2.2. Nonlinear Dynamic Inversion 

Nonlinear Dynamic Inversion, also called input-output linearization or feedback linearization, 

was a topic of much research since 1970s [12] [13]. It has been used successfully to address 

some practical control problems including helicopter control, high performance aircraft. 

However, there are also a number of limitations that hinder its use. But even with these 

shortcomings, NDI is a concept of paramount importance in nonlinear control theory. The 

intention of this section is to provide a brief introduction to the design procedures by using a 

second order example system. For a more complete coverage on the theory and detailed 

derivations, please refer to the two textbooks [12] [13]. 

2.2.1. The NDI transformation and Companion form 

The NDI method is rather a system transformation than a control method. It can be applied to 

transform the original nonlinear system into the so-called companion form, or controllability 

canonical form. Given a nonlinear SISO system as in Eq.(2.12),  

𝐱̇ = 𝐟(𝐱) + 𝐠(𝐱)𝑢

𝑦 = ℎ(𝐱)
 (2.12) 

Lie Derivative can be applied until the system input explicitly appears in the derivative 

equation. 

𝑦(𝑟) = 𝐿𝐟
𝑟ℎ(𝐱) + 𝐿𝐆(𝐿𝐟

𝑟−1ℎ(𝐱))⏟        
≠𝟎

𝑢 (2.13) 

𝑧𝑟 = 𝑦
(𝑟) = 𝑓𝑟 + 𝑔𝑟𝑢 (2.14) 

The transformed state 𝐓(𝐱) can be defined as 𝐳. 

𝐳 = 𝐓(𝐱) =

[
 
 
 
 
 
𝑧1
𝑧2
.
.
.
𝑧𝑟]
 
 
 
 
 

=

[
 
 
 
 
 
𝑦
𝑦̇
.
.
.
𝑦(𝑟)]

 
 
 
 
 

 

The transformed system obtains the companion form, represented as below. 

𝑧̇1 = 𝑧2
𝑧̇2 = 𝑧3
𝑧̇3 = 𝑧4
      ⋮
𝑧̇𝑟 = 𝑓𝑟 + 𝑔𝑟𝑢

 (2.15) 

In state space representation, it can be written as, 

𝐳̇ = 𝐀𝐳 + 𝐛𝜈 (2.16) 

where 

𝜈 = 𝑓𝑟 + 𝑔𝑟𝑢 
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𝐀 =

[
 
 
 
 
 
0 1 0 . . 0
0 0 1 . . .
. . . . . .
. . . . . .
0 0 0 . . 1
0 0 0 . . 0]

 
 
 
 
 

  𝐛 =

[
 
 
 
 
 
0
.
.
.
0
1]
 
 
 
 
 

 

By assuming 𝐆𝑛  is a Diffeomorphism, for systems in the companion form, system 

nonlinearities can be inverted and the transformed systems can be regarded as a chain of 

integrators. 

𝑢 = 𝑔𝑛
−1[𝜈 − 𝑓𝑛] 

(2.17) 

𝑧̇𝑟 = 𝑦
(𝑟) = 𝜈 (2.18) 

2.2.1.1. Scalar Example 

A generic scalar example can be used to illustrate the method and for simplicity full state 

feedback is assumed. A second order nonlinear state space representation of an affine 

system is given in Eq.(2.19). This example is extensively used in the remainder of this thesis. 

{
𝑥̇1 = 𝑓1 + 𝑔1 ⋅ 𝑥2
𝑥̇2 = 𝑓2 + 𝑔2 ⋅ 𝑢

 (2.19) 

The outer loop state 𝑥1  is often the output of interest. To generate a direct relationship 

between the output 𝑥1 and the input 𝑢, let us differentiate the output state, 

𝑥̈1 =
𝑑

𝑑𝑡
[𝑓1 + 𝑔1 ⋅ 𝑥2] = 𝑓1̇ + 𝑔̇1 ⋅ 𝑥2 + 𝑔1 ⋅ 𝑥̇2  

    = 𝑓1̇ + 𝑔̇1 ⋅ [𝑔1
−1(𝑥̇1 − 𝑓1)] + 𝑔1 ⋅ [𝑓2 + 𝑔2 ⋅ 𝑢]  

    = 𝑓1̇ + 𝑔̇1 ⋅ [𝑔1
−1(𝑥̇1 − 𝑓1)] + 𝑔1 ⋅ 𝑓2⏟                    

=𝑓3

+ 𝑔1 ⋅ 𝑔2⏟  
=𝑔3

⋅ 𝑢  

    = 𝑓3 + 𝑔3 ⋅ 𝑢  

The derivatives of the nonlinear functions 𝑓1 and 𝑔1 have to exist and can be expressed by 

measurable parameters. Assuming the given system is in triangular form (i.e. strictly feedback 

form), these function can be expressed as in Eq. (2.20),  

{
 

 
𝑑

𝑑𝑡
𝑓1(𝑥1) =

𝜕𝑓1
𝜕𝑥1

𝜕𝑥1
𝜕𝑡

=
𝜕𝑓1
𝜕𝑥1

𝑥̇1

𝑑

𝑑𝑡
𝑔1(𝑥1) =

𝜕𝑔1
𝜕𝑥1

𝜕𝑥1
𝜕𝑡

=
𝜕𝑔1
𝜕𝑥1

𝑥̇1

 (2.20) 

Hence, we can obtain the canonical form as in Eq. (2.15),  

{
𝑥̇1 = 𝑥3
𝑥̇3 = 𝑓3 + 𝑔3 ⋅ 𝑢

 (2.21) 

The NDI transformation similar to Eq. (2.17) can be applied to obtain a linear system with a 

chain of integrators, 

𝑢 = 𝑔3
−1[𝜈 − 𝑓3] 
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𝜈 = 𝑥̇3 = 𝑥̈1 

If the system is not in triangular form, i.e. 𝑓1 = 𝑓1(𝑥1, 𝑥2)  and 𝑔1 = 𝑔1(𝑥1, 𝑥2) ，  this will 

introduce additional states if we try to obtain the canonical form. The relative degree is 

violated as the system input influence both states of different system order. In this case, a 

cascaded NDI structure can be the solution. However time scale separation is needed. 

{
 

 
𝑑

𝑑𝑡
𝑓1(𝑥1, 𝑥2) =

𝜕𝑓1
𝜕𝑥1

𝑥̇1 +
𝜕𝑓1
𝜕𝑥2

𝑥̇2 =
𝜕𝑓1
𝜕𝑥1

𝑥̇1 +
𝜕𝑓1
𝜕𝑥2

(𝑓2 + 𝑔2 ⋅ 𝑢)

𝑑

𝑑𝑡
𝑔1(𝑥1, 𝑥2) =

𝜕𝑔1
𝜕𝑥1

𝑥̇1 +
𝜕𝑔1
𝜕𝑥2

𝑥̇2 =
𝜕𝑔1
𝜕𝑥1

𝑥̇1 +
𝜕𝑔1
𝜕𝑥2

(𝑓2 + 𝑔2 ⋅ 𝑢)

 

 

2.2.2. Linear Controller 

After the NDI transformation, the original system becomes a chain of integrators. A linear 

controller is designed for the transformed linear system. The linear control used includes two 

parts:  

 A Reference model to provide smooth reference signals including reference state 

derivatives. 

 An Error controller to accounts for external disturbances, parameter and modeling 

uncertainties, and measurement uncertainties. 

2.2.2.1. Reference Model 

Linear reference models are similar to low pass filters. The differential equation and the 

transfer function of a first order reference model are 

𝑥̇𝑟 =
1

𝑇
(𝑥𝐶 − 𝑥𝑟) 

(2.22) 

𝑥𝑟 =
1

𝑇𝑠 + 1
𝑥𝐶 (2.23) 

where 𝑇 is the time constant of the transfer function. Additionally the design requirements (i.e. 

rise time, overshoot) and system constraints can be specified in the reference model. The 

block diagram and time response to a step command is shown in Figure 2.1 and Figure 2.3. 

The state derivative 𝒙̇𝒓 is limited to 5 as an example. 

 

Figure 2.1 Block diagram of first order reference model 

The reference model can also be regarded as a simplified version of the controller and plant. 

For linear reference models, a chain of integrators is simulating the plant and a linear controller 
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is controlling it. This could generate the reference state signals until the n-th derivatives in the 

ideal model and then feed forward them to the actual controller, and n is determined by the 

relative degree of the dynamic model. 

To provide the n-th derivative of the reference state, the dynamic order of the reference model 

should be compliant with the RD of the system model. For the second order example system 

given in Eq. (2.19), a second order reference model should be used. The differential equation 

and transfer function for a second order reference model are, 

𝑣𝑟 = 𝑥̈𝑟 = 𝜔0
2(𝑥𝐶 − 𝑥𝑟) + 2𝜁𝜔0𝑥̇𝑟 

(2.24) 

𝑥𝑟 =
𝜔0
2

𝑠2 + 2𝜁𝜔0𝑠 + 𝜔0
2 𝑥𝐶 (2.25) 

where 𝜁 is the relative damping and 𝜔0 is the natural frequency of the reference dynamics. 

The maximum bandwidth of the reference model can be determined according to the error 

dynamics. It should not be higher than that of the error dynamics (in the next section). The 

designed block diagram and the time responses with different relative damping values are 

shown in Figure 2.2 and Figure 2.4 respectively. 

 

Figure 2.2 Block diagram of second order reference model 
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Figure 2.3 Time response of first order reference model  

 

Figure 2.4 Time response of second order reference model 
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2.2.2.2. Error Controller 

In perfect situation, the system states would exactly follow the reference states. However, 

due to the model uncertainties, sensor uncertainties, actuator constraints and external 

disturbances, the system state derivative 𝑥̈ will differ from the pseudo control 𝑣 as shown in 

Eq. (2.26). This will be propagated through the integrations and the system is unstable. 

𝑥̈ = 𝜈 + ∆ (2.26) 

The error controller is designed to account for those deviations. As the name indicated, it 

controls the errors between the reference signals and the state feedbacks. This moves the 

poles of the integrator chain into the left half complex plane. 

For the second order example system, a PD error feedback is normally used. 

𝜈 = 𝜈𝑟⏟
=𝑥̈1𝑟

+ 𝑘𝑑 (𝑥̇1𝑟 − 𝑥̇1)⏟      
𝑒̇

+ 𝑘𝑝 (𝑥1𝑟 − 𝑥1)⏟      
=𝑒

= 𝜈𝑟 + 𝑘𝑑𝑒̇ + 𝑘𝑝𝑒 (2.27) 

𝑥̈1𝑟 − 𝑥̈ = −𝑘𝑑(𝑥̇1𝑟 − 𝑥̇1) − 𝑘𝑝(𝑥1𝑟 − 𝑥1) − ∆ (2.28) 

𝑒̈ = −𝑘𝑑𝑒̇ − 𝑘𝑝𝑒 − ∆ (2.29) 

The error dynamics can be expressed in state space representation. 

[
𝑒̇
𝑒̈
] = [

0 1
−𝑘𝑝 −𝑘𝑑

] [
𝑒
𝑒̇
] + [

0
−1
] ∆ (2.30) 

In the ideal case where there is no deviation of any kinds, the transfer function from the state 

output to the reference state is, 

𝑥 =
𝑠2 + 𝑘𝑑𝑠 + 𝑘𝑝

𝑠2 + 𝑘𝑑𝑠 + 𝑘𝑝
𝑥𝑟 

(2.31) 

The bandwidth of the error dynamics is limited by the actuator dynamics and measurement 

quality. Enough time scale separation could hide the actuator dynamics. For a second order 

system, the PD feedback gains are normally set according to the natural frequency and 

relative damping as in Eq. (2.25).  

{
𝑘𝑑 = 2𝜁𝜔0
𝑘𝑝 = 𝜔0

2  (2.32) 

Together with the NDI transformation, the overall control law is given as follows, 

{
𝑢 = 𝑔3

−1[𝜈 − 𝑓3]

𝜈 = 𝜈𝑟 + 2𝜁𝜔0𝑒̇ + 𝜔0
2𝑒

 (2.33) 

The overall control structure is shown in Figure 2.5, where 𝐺𝐴 is the actuator dynamics. 
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Figure 2.5 Overall NDI design structure for a second order system 

 

2.2.3. Pseudo Control Hedging 

One major flaw of the above design is that the actuator dynamics is ignored in the design 

process. Eric Johnson proposed a modification in [41], called Pseudo-Control Hedging (PCH), 

to address the actuator problem. PCH could be implemented to NDI control to ‘hide’ the 

actuator dynamics from the error dynamics by moving the reference signals in opposite 

direction by an estimated amount the plant did not move due to system constraints like the 

actuator saturations. In addition, it can also prevent the integrator wind-up if an integral 

feedback is used or gradient based adaptation is used, as the actuator will saturate if there is 

an integrator wind-up.  

The overall NDI design structure with PCH is shown in Figure 2.6, 

 

Figure 2.6 Overall NDI design structure with PCH 

Due to the actuator, the commanded system input 𝑢𝑐 will deviate from the real system input 

𝑢. The amount the plant did not achieve can be quantified using the pseudo-control signals. 

For the example system, the pseudo-control signal 𝑣 is given by the error controller as shown 

in Eq. (2.27). The hedging signal to the reference model is the expected reaction deficit of the 

plant. If 𝑥̈1 is measurable, the expected reaction deficit can be directly computed. If 𝑥̈1 is not 

measurable (in most cases of small UAVs), it has to be estimated using the actuator and 

system model. 
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𝜈ℎ = 𝜈 − 𝑥̈1 = 𝜈 − 𝜈̂ (2.34) 

𝜈̂ = 𝑓3 + 𝑔̂3 ⋅ 𝐺̂𝐴 ⋅ 𝑢𝑐 
(2.35) 

Recalling Eq. (2.26), the deviation ∆ can be splitted into two parts, one part from the modelling 

errors and external disturbances ∆𝑒 and the other part from the actuator dynamics ∆𝑎𝑐𝑡. The 

actuator error is the error caused by the actuator, i.e. the plant reaction with actuator minor 

the expected plant reaction without the actuator. 

𝑥̈1 = 𝜈 + ∆𝑎𝑐𝑡 + ∆𝑒 
(2.36) 

∆𝑎𝑐𝑡= 𝜈̂
∗ − 𝑣 = ( 𝑓3 + 𝑔3𝐺𝐴𝑢𝑐) − (𝑓3 + 𝑔3𝑢𝑐) 

(2.37) 

where 𝑣 is computed using Eq. (2.27).  

After the expected reaction deficit is calculated, the reference model dynamics can be slowed 

down about this amount. The reference dynamic equation is modified as 

𝑥̈1𝑟 = 𝑣𝑟 − 𝜈ℎ (2.38) 

𝑥̈1𝑟 = 𝜔0
2(𝑥1𝑐 − 𝑥1𝑟) + 2𝜁𝜔0𝑥̇1𝑟 − 𝜈ℎ (2.39) 

The second order reference model with PCH is, 

 

Figure 2.7 Second order reference model with PCH 

The overall error dynamics of the plant can be derived to illustrate how the PCH hides the 

actuator dynamics. 

The error feedback part remains the same. 

𝜈 = 𝜈𝑟 + 𝑘𝑑𝑒̇ + 𝑘𝑝𝑒 
(2.40) 

The closed loop dynamic equation is, 

𝑥̈1 = 𝜈 + ∆𝑎𝑐𝑡 + ∆𝑒 
(2.41) 

𝑥̈1 = 𝜈𝑟 + 𝑘𝑑𝑒̇ + 𝑘𝑝𝑒 + ∆𝑎𝑐𝑡 + ∆𝑒 
(2.42) 
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𝑥̈1 = 𝑥̈1𝑟 + 𝑣ℎ + 𝑘𝑑𝑒̇ + 𝑘𝑝𝑒 + ∆𝑎𝑐𝑡 + ∆𝑒 
(2.43) 

𝑒̈ + 𝑘𝑑𝑒̇ + 𝑘𝑝𝑒 = −𝑣ℎ − ∆𝑎𝑐𝑡 − ∆𝑒 
(2.44) 

If there is no modeling error, or the plant reaction is measurable, the above error terms 𝑣ℎ 

cancels the deviation caused by actuator. 

𝑣ℎ = 𝜈 − 𝜈̂ ≈ 𝜈 − 𝜈̂
∗ = −∆𝑎𝑐𝑡 

(2.45) 

Then the error dynamics of the closed loop system is only excited by the modeling errors, 

sensor errors and external disturbances. Therefore, it can be shown that the concept of PCH 

could hide the actuator dynamics from the error dynamics. 

𝑒̈ + 𝑘𝑑𝑒̇ + 𝑘𝑝𝑒 = −∆𝑒 
(2.46) 
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2.3. Backstepping 

Backstepping has been developed in the early 1990s by Kristic, Kanellakoulos, and Kokotovic 

[17]. It is rather a method to construct a Lyapunov function whose derivative can be made 

negative semi-definite by a wide variety of control laws. Through the Backstepping process, 

the system nonlinearities can be fully or partially feedback linearized, which is quite similar to 

NDI design. Detailed comparison of the two methods is given in the next chapter. 

The Backstepping design starts from the output and ‘steps’ back to the input. In each design 

step a Lyapunov function candidate and the corresponding control law are derived for the 

current virtual control variable to stabilize the considered subsystem. The Lyapunov function 

candidate and the control law are complete until the final control input is reached. 

2.3.1. Integrator Backstepping 

This is the basic form of Backstepping design [40]. Given a scalar system as below, 

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝜉 

𝜉̇ = 𝑢 
(2.47) 

Assumptions: The origin is an equilibrium point of the subsystem 𝑥̇ = 𝑓(𝑥), i.e. 𝑓(0) =

0 

Viewing the state variable 𝜉 as an independent ‘input’ for this subsystem, we assume that 

there exists a state feedback control law of the form,  

𝜉𝑑𝑒𝑠 = 𝜙(𝑥), 𝜙(0) = 0  (2.48) 

Where the 𝜉𝑑𝑒𝑠  is the desired value to stabilize the subsystem represented by the first 

equation. The given control law will render the derivative of a Lyapunov function candidate 

𝑉1(𝑥) negative semi-definite, 

𝑉̇1(𝑥) =
𝜕𝑉1
𝜕𝑥

(𝑓(𝑥) + 𝑔(𝑥)𝜙(𝑥)) ≤ −𝑉𝑎(𝑥) ≤ 0 (2.49) 

where 𝑉𝑎(𝑥) is a positive semi definite function. 

The desired subsystem is given in Eq. (2.50) 

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝜉𝑑𝑒𝑠 
(2.50) 

However, the 𝜉 in the true system will always have error dynamics. The equivalent true system 

can be expressed as the desired system plus the error term. 

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝜉𝑑𝑒𝑠 + 𝑔(𝑥)[𝜉 − 𝜉𝑑𝑒𝑠] 
(2.51) 

The following error terms are defined to reformulate the system in a new form, 

𝑧 = 𝜉 − 𝜉𝑑𝑒𝑠 = 𝜉 − 𝜙(𝑥) 

𝑧̇ = 𝜉̇ − 𝜙̇(𝑥) = 𝑢 − 𝜙̇(𝑥) 

𝑧̇ = 𝑣 

(2.52) 
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Where 𝑣 is the pseudo input to the transformed but equivalent system now controlling the 

error. And the derivative 𝜙̇ is given as below. 

𝜙̇ =
𝜕𝜙

𝜕𝑥

𝜕𝑥

𝜕𝑡
=
𝜕𝜙

𝜕𝑥
𝑥̇ =

𝜕𝜙

𝜕𝑥
[𝑓(𝑥) + 𝑔(𝑥)𝜉] (2.53) 

With the state transformation (𝑧 is the error variable), the resulting system is  

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝜙(𝑥) + 𝑔(𝑥)𝑧 

𝑧̇ = 𝑣  
(2.54) 

To assess the stability of the system, consider a Lyapunov function candidate of the form 

𝑉 = 𝑉1(𝑥) +
1

2
𝑧2 (2.55) 

Therefore, a stabilizing state feedback law is given by 

𝑢 =
𝜕𝜙

𝜕𝑥
[𝑓(𝑥) + 𝑔(𝑥)𝜉] −

𝜕𝑉1
𝜕𝑥

𝑔(𝑥) − 𝑘[𝜉 − 𝜙(𝑥)] (2.56) 

Because entering this into the derivative of the Lyapunov function given in Eq. (2.97), you get, 

𝑉̇ = 𝑉̇1(𝑥) + 𝑧𝑧̇ 
(2.57) 

𝑉̇ =
𝜕𝑉1
𝜕𝑥

(𝑓(𝑥) + 𝑔(𝑥)𝜙(𝑥) + 𝑔(𝑥)𝑧) + 𝑧 (𝑢 − 𝜙̇(𝑥)) (2.58) 

𝑉̇ = −𝑉𝑎(𝑥) − 𝑘𝑧
2 (2.59) 

In [40], there is a detailed figure illustrating the design process. Figure a) is the original system. 

Figure b) shows the modified but equivalent system after introducing the control law −𝜙(𝑥). 

Figure c) is the Backstepping of the −𝜙(𝑥) to the front of the integrator. Figure d) is the final 

system with a new control variable 𝑣. 
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Figure 2.8 Integrator Backstepping Design Procedure ( [40],p142) 
(a) The original system;  
(b) modified system after introducing −𝝓(𝒙);  
(c) ‘Backstepping’ of −𝝓(𝒙);  
(d) the final system after the change of variables 
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2.3.2. Block Backstepping Design Procedure 

Without loss of generality, the same example can be used to illustrate the Backstepping 

design procedures. Recall the system from Eq. (2.19), 

{
𝑥̇1 = 𝑓1 + 𝑔1 ⋅ 𝑥2
𝑥̇2 = 𝑓2 + 𝑔2 ⋅ 𝑢

 

There are two cascade subsystems in the example. Let’s start from the first subsystem and 

consider only this system now, where 𝑥2 is used to control 𝑥1.  

𝑥̇1 = 𝑓1 + 𝑔1𝑥2,𝑑𝑒𝑠 
(2.60) 

The virtual control 𝑥2,𝑑𝑒𝑠 is the desired control law to stabilize the considered subsystem. 

Define the tracking error 𝑧1 and propose a Lyapunov function,  

𝑧1 = 𝑥1𝑟 − 𝑥1 
(2.61) 

𝑉1 =
1

2
𝑧1
2 (2.62) 

To derive the control law, the Lyapunov function candidate is differentiated, 

𝑉̇1 = 𝑧1𝑧̇1 = 𝑧1(𝑥̇1𝑟 − 𝑥̇1) = 𝑧1(𝑥̇1𝑟 − 𝑓1 − 𝑔1𝑥2,𝑑𝑒𝑠) 
(2.63) 

The following control law can drive the Lyapunov function derivative to negative semi-definite, 

𝑥2,𝑑𝑒𝑠 = 𝑔1
−1(𝑥̇1𝑟 − 𝑓1 + 𝑘1𝑧1) 

(2.64) 

𝑉̇1 = −𝑘1𝑧1
2 (2.65) 

That completes the first step. The next step is to track the 𝑥2,𝑑𝑒𝑠 as a command. Defining the 

Backstepping tracking error, 

𝑧2 = 𝑥2,𝑑𝑒𝑠 − 𝑥2 
(2.66) 

The control law and the error 𝑧2 are substituted into the system equations, 

{
𝑥̇1 = 𝑓1 + 𝑔1𝑥2,𝑑𝑒𝑠 − 𝑔1𝑧2
𝑥̇2 = 𝑓2 + 𝑔2𝑢

 

Augmenting the Lyapunov function in Eq. (2.62) with the new tracking error, 

𝑉2 =
1

2
𝑧1
2 +

1

2
𝑧2
2 (2.67) 

Differentiate the Lyapunov function to derive the stabilizing control law, 

𝑉̇2 = 𝑧1𝑧̇1 + 𝑧2𝑧̇2 = −𝑘1𝑧1
2 + 𝑧1𝑔1𝑧2 + 𝑧2(𝑥̇2,𝑑𝑒𝑠 − 𝑥̇2) 

      = −𝑘1𝑧1
2 + 𝑧1𝑔1𝑧2 + 𝑧2(𝑥̇2,𝑑𝑒𝑠 − 𝑓2 − 𝑔2𝑢) 

(2.68) 

The control law to render the above Lyapunov function negative semi-definite can be derived, 



 Theoretical Background 27 

𝑢 = 𝑔2
−1(𝑥̇2,𝑑𝑒𝑠 − 𝑓2 + 𝑔1𝑧1 + 𝑘2𝑧2) 

(2.69) 

Together with Eq. (2.64) we derive the control law for the given system. And the stability is 

guaranteed by the Lyapunov function. 

𝑉̇2 = −𝑘1𝑧1
2 − 𝑘2𝑧2

2 (2.70) 
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2.3.3. Solutions to the Virtual Control Derivative 

As we can see from the control law in Eq. (2.69), the derivative of the virtual control 𝑥̇2,𝑑𝑒𝑠 is 

not available directly and needs to be solved. 

There are two ways to solve the derivative, analytically or numerically. Analytical solution 

means to differentiate Eq. (2.64) and hopefully the parameters exist and are available. 

  𝑥̇2,𝑑𝑒𝑠 =
𝑑

𝑑𝑡
[𝑔1
−1(𝑥̇1𝑟 − 𝑓1 + 𝑘1𝑧1)] 

    =
𝑑

𝑑𝑡
(𝑥2𝑟 + 𝑔1

−1𝑘1𝑧1) 

    = 𝑥̇2𝑟 + 𝑔1
−1𝑘1𝑧̇1 − 𝑔1

−2𝑔̇1𝑘1𝑧1 

Hence the final expression for the control law is, 

𝑢 = 𝑔2
−1[𝑥̇2𝑟 + 𝑔1

−1𝑘1𝑧̇1 − 𝑔1
−2𝑔̇1𝑘1𝑧1 − 𝑓2 + 𝑔1𝑧1 + 𝑘2(𝑥2,𝑑𝑒𝑠 − 𝑥2)] 

(2.71) 

The derivative of the nonlinear functions 𝑓1̇ and 𝑔̇1 should be analytically solvable. If they are 

available, the analytical method provides maximum control bandwidth. However, the 

analytical method has strong dependence on the model accuracy and sensor availability. In 

addition, as system order increases, especially when the system order is bigger than three, 

the analytical solution gets extremely tedious and almost impossible to solve. It gets worse 

for a system of non-triangular form, where more states (e.g. actuator states) will be introduced 

when analytically solving the derivatives.  

Alternatively, the virtual control derivative can be numerically estimated by means of a low 

pass filter, which is called ‘command filter’ in this context. 

𝑥̇̂2,𝑑𝑒𝑠 = 𝑘𝑓(𝑥2,𝑑𝑒𝑠 − 𝑥̂2,𝑑𝑒𝑠) 
(2.72) 

where 𝑘𝑓 is the filter gain. It is much easier to implement, but it introduces additional phase 

lag into the system hence time scale separation is needed. By increasing the bandwidth of 

the command filter, the performance could be made arbitrarily close to that of the analytical 

method. However, the bandwidth is limited by the sensor noise and the control bandwidth of 

the next inner loop. 

Theoretically, the analytical method provides the best results. However, in practical 

implementation, the choice between analytical and numerical methods has to be made on a 

case-by-case basis. Modelling the real plant is impossible, so the analytical solution also just 

provides an estimation of the derivative whose accuracy depends on the model accuracy and 

sensor quality. 
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2.4. 𝓛𝟏 Adaptive Control 

2.4.1. Predictor Based MRAC 

The ℒ1  adaptive control is developed on the basis of the predictor-based MRAC. The 

predictor based MRAC is given in Figure 2.9. 

 

Figure 2.9 Predictor based MRAC 

Considering a deterministic, time-continuous and scalar case first order plant with unknown 

parameters: for instance, the system matrix 𝑎 and a time varying value 𝑓, which e.g. could be 

a nonlinear function of 𝑥 but is not limited to that. The input parameter 𝑏 is assumed to be 

known. 

𝑥̇ = 𝑎𝑥 + 𝑏(𝑢 + 𝑓) (2.73) 

The desired reference dynamics for the above system is, 

𝑥̇𝑚 = 𝑎𝑚𝑥𝑚 + 𝑏𝑚𝑟 
(2.74) 

where 𝑎𝑚 is negative. The system in Eq. (2.73) can be written as, 

𝑥̇ = 𝑎𝑚𝑥 + (𝑎 − 𝑎𝑚)𝑥 + 𝑏(𝑢 + 𝑓) 
(2.75) 

The state predictor mimics the structure of the parameterized plant (where ̂  denotes the 

estimates of the unknown parameters), 

𝑥̇̂ = 𝑎𝑚𝑥̂ + (𝑎̂ − 𝑎𝑚)𝑥 + 𝑏(𝑢 + 𝑓) 
(2.76) 

Two adaptive parameters 𝜃𝑥and 𝜃𝑓  are introduced in the state predictor to estimate the 

unknown parameters by adaptation (the adaptation law will be derived later). 

𝜃𝑥 =
𝑎𝑚 − 𝑎̂

𝑏
 

𝜃𝑓 = −𝑓 

(2.77) 

The state predictor with the adaptive parameters is, 

𝑥̇̂ = 𝑎𝑚𝑥̂ − 𝑏𝜃𝑥𝑥 + 𝑏(𝑢 − 𝜃𝑓) 
(2.78) 
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It can be also written as, 

𝑥̇̂ = 𝑎𝑚𝑥̂ + 𝑏𝑢 − 𝑏 (𝜃𝑥𝑥 + 𝜃𝑓)⏟      
Δ𝑢

 (2.79) 

The adaptive part (−Δ𝑢) obtained by adaptation makes the reference model behave like the 

plant. Then, vice versa, the adaptive part Δ𝑢 would be the inut difference that would make the 

plant behaves like the desired reference model in the controller. The control law also consists 

of a normal feedforward part 𝑘𝑟𝑟, 

𝑢 = 𝑘𝑟𝑟 + Δ𝑢 = 𝑘𝑟𝑟 + 𝜃𝑥𝑥 + 𝜃𝑓⏟      
Δ𝑢

 (2.80) 

where, 

𝑘𝑟 =
𝑏𝑚
𝑏

 (2.81) 

The matching conditions can be computed by inserting Eq. (2.80) into Eq. (2.75),  

𝑥̇ = 𝑎𝑚𝑥 + (𝑎 − 𝑎𝑚)𝑥 + 𝑏(𝜃𝑥𝑥 + 𝑘𝑟𝑟 + 𝜃𝑓 + 𝑓) 

𝑥̇ = 𝑎𝑚𝑥 + (𝑎 − 𝑎𝑚 + 𝑏𝜃𝑥)𝑥 + 𝑏𝑘𝑟𝑟 + 𝑏(𝜃𝑓 + 𝑓) 

(2.82) 

Recalling the reference dynamics with Eq.(2.74), 

𝑥̇𝑚 = 𝑎𝑚𝑥 + 𝑏𝑚𝑟 
(2.83) 

To render the dynamic equation similar to the reference dynamics, the match conditions 

should be given as in (2.84), where ∗ denotes the true values of the adaptive parameters, 

𝜃𝑥
∗ =

𝑎𝑚 − 𝑎

𝑏
 

𝜃𝑓
∗ = −𝑓 

(2.84) 

The adaptation law can be derived from the predictor error dynamics using the Lyapunov 

stability theorem [42] [43]. The error terms are defined as, 

𝑥̇̃ = 𝑥̇̂ − 𝑥̇ 

𝜃̃𝑥 = 𝜃𝑥
∗ − 𝜃𝑥 

𝜃̃𝑓 = 𝜃𝑓
∗ − 𝜃𝑓 

(2.85) 

The predictor error dynamics can be computed by subtracting Eq. (2.76) by Eq. (2.75),  

𝑥̇̃ = 𝑎𝑚𝑥̃ + 𝑏 (𝜃𝑥
∗ − 𝜃𝑥⏟    
𝜃̃𝑥

)𝑥 + 𝑏(𝜃𝑓
∗ − 𝜃𝑓⏟    
𝜃̃𝑓

) (2.86) 

Define a Lyapunov function candidate as, 
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𝑉 =
1

2
𝑥̃2 +

1

2Γ𝑥
𝜃̃𝑥
2
+
1

2Γ𝑓
𝜃̃𝑓
2
 (2.87) 

The Lyapunov function derivative is, 

𝑉̇ = 𝑥̃𝑥̇̃ +
1

Γ𝑥
𝜃̃𝑥 𝜃̇̃𝑥 +

1

Γ𝑓
𝜃̃𝑓 𝜃̇̃𝑓 

𝑉̇ = 𝑥̃(𝑎𝑚𝑥̃ + 𝑏𝜃̃𝑥𝑥 + 𝑏𝜃̃𝑓) +
1

Γ𝑥
𝜃̃𝑥 𝜃̇̃𝑥 +

1

Γ𝑓
𝜃̃𝑓 𝜃̇̃𝑓 

𝑉̇ = 𝑎𝑚𝑥̃
2 + 𝑏𝜃̃𝑥𝑥𝑥̃ + 𝑏𝜃̃𝑓𝑥̃ +

1

Γ𝑥
𝜃̃𝑥 𝜃̇̃𝑥 +

1

Γ𝑓
𝜃̃𝑓 𝜃̇̃𝑓 

(2.88) 

To render the Lyapunov function derivative negative semi-definite, a possible solution is to 

drive the second part of the function zero, 

𝑉̇ = 𝑎𝑚𝑥̃
2 + 𝑏𝜃̃𝑥𝑥𝑥̃ + 𝑏𝜃̃𝑓𝑥̃ +

1

Γ𝑥
𝜃̃𝑥 𝜃̇̃𝑥 +

1

Γ𝑓
𝜃̃𝑓 𝜃̇̃𝑓

⏟                      
=0

 

We can obtain the following adaptation law where Γ𝑥 and Γ𝑓 are adaptation gains, 

𝜃̇̃𝑥 = −Γ𝑥 𝑏𝑥𝑥̃ 

𝜃̇̃𝑓 = −Γ𝑓 𝑏𝑥̃ 

(2.89) 

So that, 

𝑉̇ = 𝑎𝑚𝑥̃
2 ≤ 0 (2.90) 

Using the Barbarlat’s Lemma [43] it may be proven that the prediction error tends to zero 

asymptotically. The overall structure of the scalar example can be seen in Figure 2.10 
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Figure 2.10 Detailed structure of the scalar example using Predictor based MRAC 

However, in the presence of uncertainties it may exhibit some adverse characteristics in 

transient behavior like: 

 Control signals of high-frequency or large amplitudes 

 Large transient errors 

 Slow convergence rate of tracking errors 

Different strategies have been investigated to address these characteristics. The ℒ1 control is 

one of them. 
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2.4.2. 𝓛𝟏 Control Architecture 

The ℒ1 adaptive control follows the main structure of the predictor based MRAC but adds a 

low pass filter 𝐶(𝑠) on the control input 𝑢 indicated by blue in Figure 2.10. By doing so, the 

state predictor can have fast adapting parameters in the state predictor, but no high frequency 

signals are fed through the plant. Adaptation is decoupled from robustness [42]. The speed 

of adaptation is limited only by the hardware limit. A comprehensive textbook with detailed 

derivation and mathematical proof is [42]. The basic architecture of ℒ1 adaptive control is 

shown in Figure 2.11. 

 

Figure 2.11 𝓛𝟏 adaptive control 

 

2.4.3. Piecewise Constant Update Laws for 𝓛𝟏 Controller 

Having similar performance with the gradient based update laws, piecewise constant update 

law [31] appears more like linear feedback, which makes it relatively easier to implement and 

perhaps closer to the certification process. In this thesis, this update law is employed in the 

augmented ℒ1 controller for the quadrotors. 

For the purpose of analysis, consider the following first order system, 

𝑥̇ = 𝑎𝑥 + 𝑏(𝑢 + 𝑓) (2.91) 

where 𝑥 is the plant state; 𝑎 is unknown plant parameter but with known bounds; 𝑏 is known 

and 𝑓 is some nonlinear uncertainty. The desired reference dynamics for the above system is, 

𝑥̇𝑚 = 𝑎𝑚𝑥𝑚 + 𝑏𝑚𝑟 
(2.92) 

The system in Eq. (2.91) can be written as, 

𝑥̇ = 𝑎𝑚𝑥 + 𝑏(𝑢 + 𝜎) 
(2.93) 

where  

𝜎 =
𝑎 − 𝑎𝑚
𝑏

𝑥 + 𝑓 (2.94) 

The state predictor will take a similar form with the plant but with an adaptive parameter, 

𝑥̇̂ = 𝑎𝑚𝑥̂ + 𝑏(𝑢 + 𝜎̂) 
(2.95) 
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The prediction error dynamics can be computed, 

𝑥̇̃ = 𝑥̇̂ − 𝑥̇ = 𝑎𝑚𝑥̃ + 𝑏𝜎̂ − 𝑏𝜎 (2.96) 

Let’s try to solve the error state 𝑥̃ in time domain, both sides are multiplied by 𝑒−𝑎𝑚𝑡 

𝑒−𝑎𝑚𝑡 𝑥̇̃ = 𝑒−𝑎𝑚𝑡(𝑎𝑚𝑥̃ + 𝑏𝜎̂ − 𝑏𝜎) 

𝑒−𝑎𝑚𝑡 𝑥̇̃ − 𝑒−𝑎𝑚𝑡𝑎𝑚𝑥̃ = (𝑒
−𝑎𝑚𝑡𝑥̃)′ = 𝑒−𝑎𝑚𝑡𝑏𝜎̂ − 𝑒−𝑎𝑚𝑡𝑏𝜎 

Integrating both sides by one time step from 𝑡0 to 𝑡0 + 𝑇𝑠,  

𝑒−𝑎𝑚(𝑡0+𝑇𝑠)𝑥̃(𝑡0 + 𝑇𝑠) − 𝑒
−𝑎𝑚𝑡0𝑥̃(𝑡0) = ∫ 𝑒−𝑎𝑚𝑡𝑏𝜎̂

𝑡0+𝑇𝑠

𝑡0

𝑑𝑡 − ∫ 𝑒−𝑎𝑚𝑡𝑏𝜎(𝑡)
𝑡0+𝑇𝑠

𝑡0

𝑑𝑡 

Note that the adaptive parameter 𝜎̂ remains constant within one time step; hence the first 

term on the right hand side can be solved. The second term is the error caused by the 

uncertainties or disturbance 𝜎(𝑡) and thus not analytically solvable. 

∫ 𝑒−𝑎𝑚𝑡𝑏𝜎̂
𝑡0+𝑇𝑠

𝑡0

𝑑𝑡 − ∫ 𝑒−𝑎𝑚𝑡𝑏𝜎(𝑡)𝑑𝑡
𝑡0+𝑇𝑠

𝑡0

= −
1

𝑎𝑚
(𝑒−𝑎𝑚(𝑡0+𝑇𝑠) − 𝑒−𝑎𝑚𝑡0)𝑏𝜎̂(𝑡0) − ∆(𝜎) 

The prediction error can be expressed as follows, assuming 𝑥̃(𝑡0) = 𝑥̃0, 

𝑒−𝑎𝑚(𝑡0+𝑇𝑠)𝑥̃(𝑡0 + 𝑇𝑠) − 𝑒
−𝑎𝑚𝑡0𝑥̃0 = −

1

𝑎𝑚
(𝑒−𝑎𝑚(𝑡0+𝑇𝑠) − 𝑒−𝑎𝑚𝑡0)𝑏𝜎̂(𝑡0) − ∆(𝜎) 

𝑥̃(𝑡0 + 𝑇𝑠) = 𝑒
𝑎𝑚𝑇𝑠𝑥̃0 −

1

𝑎𝑚
(1 − 𝑒𝑎𝑚𝑇𝑠)𝑏𝜎̂(𝑡0) − ∆(𝜎) 

(2.97) 

There is nothing much we can do about ∆(𝜎) but it is bounded given bounded uncertainties. 

By setting the sampling time 𝑇𝑠 small enough, one can keep the prediction error small and 

achieve arbitrary performance improvement. 

The piecewise constant update law is derived to render Eq. (2.97) to zero. It will fully 

compensate the prediction error accumulated on the previous sampling period. 

𝑥̃(𝑡0 + 𝑇𝑠) = 𝑒
𝑎𝑚𝑇𝑠𝑥̃0 −

1

𝑎𝑚
(1 − 𝑒𝑎𝑚𝑇𝑠)𝑏𝜎̂(𝑡0) = 0 

𝜎̂(𝑡0) =
1

𝑏
(1 − 𝑒𝑎𝑚𝑇𝑠)−1𝑎𝑚𝑒

𝑎𝑚𝑇𝑠𝑥̃0 

The sampled update law is, 

𝜎̂ = 𝜎̂(𝑖𝑇𝑠) =
1

𝑏
(1 − 𝑒𝑎𝑚𝑇𝑠)−1𝑎𝑚𝑒

𝑎𝑚𝑇𝑠𝑥̃(𝑖𝑇𝑠), 𝑖 = 1,2,3,… 

The control law is computed as the output of the low pass filter 𝐶(𝑠), 

𝑢(𝑠) = 𝐶(𝑠) (
𝑏𝑚
𝑏
𝑟(𝑠) − 𝜎̂(𝑠)) 
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2.5. Data fusion 

The control system is normally designed in two parts: a ‘full-state feedback’ control part 

based on the assumption that all the state variables can be measured; and a data fusion part 

to estimate the state for purposes of feedback control based on available sensor data. 

Extended Kalman filter and Luenberger observer are briefly introduced this section, taken 

from two reference textbooks [44] and [45]. 

 

2.5.1. Luenberger Observer 

The concept of an observer for a dynamic process was introduced in 1966 by Luenberger 

[46]. The Kalman filter, which appeared several years earlier, is in fact an important special 

case of a Luenberger observer, where the observer gain is optimized for the noise present in 

the input and observation. The Luenberger observer could have constant feedback gain, 

which is useful in cases that the covariance of the observation is difficult to determine but has 

to be roughly estimated (e.g. vision sensor). As no covariance update is needed, the 

computation burden is also heavily reduced. Such an observer is used on the linear portion 

of the position dynamics of the quadrotor. 

Consider the same linear continuous-time dynamic system as in Eq. (2.99), a full-order 

Luenberger observer has the generic form, 

𝐱̇̂ = 𝐀𝐱̂ + 𝐁𝐮 + 𝐊(𝐲 − 𝐇𝐱̂) (2.98) 

The generic structure is shown as in  

 

Figure 2.12 Luenberger observer structure 

Define the observation error 

𝐱̃ = 𝐱̂ − 𝐱 

The error dynamics can be derived by subtracting Eq. (2.98) by Eq. (2.99), 

𝐱̇̃ = 𝐀𝐱̃ + 𝐊(𝐲 − 𝐇𝐱̂) = (𝐀 − 𝐊𝐇)𝐱̃ = 𝐀̂𝐱̃ 

The pole placement method can be used to design the observer gain matrix 𝐊 to place the 

poles of the observer, i.e. the eigenvalues of 𝐀̂, to appropriate values in the left half of the 

complex plane. Alternatively, the gain matrix can be chosen as a Kalman filter gain matrix, 

since the observer given in Eq. (2.98) has the structure of a Kalman filter. The Kalman gain 



36 Theoretical Background  

equation is derived with more details in the next section. In most applications, the steady-

state covariance matrix will be used,  

𝐊 = 𝐏𝐇𝐓𝐑−𝟏 

where 𝐏 is the covariance matrix of the observation error and it satisfies the algebraic Riccati 

equation. 

𝐀𝐏 + 𝐏𝐀𝐓 − 𝐏𝐇𝐓𝐑−𝟏𝐇𝐏+ 𝐐 = 𝟎 

It is rarely possible to determine the exact sensor covariance 𝐐 and 𝐑, so they are best treated 

as design parameters that can be varied to achieve overall system design objectives. There 

are available algorithms that can be used to solve the Kalman gain in MATLAB, such as 

‘kalman’, ‘care’, ‘dare’ [47]. 

The use of algebraic Riccati equation is usually preferable to design the gain matrix, compared 

with the pole placement method. When two or more measurements are taken, specification 

of the eigenvalues of 𝐀̂  does not uniquely specify the gain matrix. In addition to the 

eigenvalues, most of the eigenstructure needs to be specified. 

 

2.5.2. Kalman Filter 

The Kalman filter is one of the fundamental tools for estimation applications. Dan Simon 

shows in [44] that the Kalman filter is the optimal estimator when the noise is Gaussian, and 

it is the optimal linear estimator when the noise is not Gaussian. Over the past few decades, 

this estimation algorithm has found applications in virtually every area of engineering. It is 

natural to apply it in the quadrotor applications. 

A standard Kalman filter has two distinct phases: ‘Predict’ and ‘Correct’, or they are also 

called ‘Time update’ and ‘Measurement update’, respectively. The prediction step predicts 

the state by integrating the high frequency IMU data with strap-down equations. It also 

propagates the state covariance. At arrival of information other than IMU data (e.g. GPS, 

vision, barometer), the correction step is performed to correct the predicted state and to 

update the covariance.  

In digital implementation, the continuous state space model is usually transferred to its 

discrete counterpart. Given a continuous state space model as follows, 

{
𝐱̇(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝐮(𝑡) + 𝐰(𝑡)

𝐲(𝑡) = 𝐇𝐱(𝑡) + 𝐯(𝑡)
 (2.99) 

where 𝐰 and 𝐯 are Gaussian noises with covariance 𝐐 and 𝐑 repectively. 𝐰 is normally the 

system process noise representing the model uncertainties and 𝐯 is the measurement noise 

of the sensors. To transfer the system into discrete time, Eq. (2.99) needs to be integrated for 

one time step. A common factor 𝑒−𝐀𝑡 is multiplied on both sides for easier computation. 

𝑒−𝐀𝑡𝐱̇ = 𝑒−𝐀𝑡𝐀𝐱 + 𝑒−𝐀𝑡𝐁𝐮+ 𝑒−𝐀𝑡𝐰 

𝑒−𝐀𝑡𝐱̇ − 𝑒−𝐀𝑡𝐀𝐱 = (𝑒−𝐀𝑡𝐱)
′
= 𝑒−𝐀𝑡𝐁𝐮+ 𝑒−𝐀𝑡𝐰 

Integrating both side from step 𝑘 − 1 to 𝑘, with the sampling time ∆𝑡 
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𝑒−𝐀(𝑡+∆𝑡)𝐱𝑘 − 𝑒
−𝐀𝑡𝐱𝑘−1 = ∫ 𝑒−𝐀𝑡𝐁𝐮𝑑𝑡

𝑡+∆𝑡

𝑡

+∫ 𝑒−𝐀𝑡𝐰𝑑𝑡
𝒕+∆𝒕

𝑡

 

The noise is assumed to be Gaussian and can be ignored and the input 𝐮 can be assumed to 

be constant in the last time step. 

𝑒−𝐀(𝑡+∆𝑡)𝐱𝑘 − 𝑒
−𝐀𝑡𝐱𝑘−1 ≈ ∫ 𝑒−𝐀𝑡𝑑𝑡

𝑡+∆𝒕

𝑡

𝐁𝐮𝑘 = −𝐀
−𝟏𝑒−𝐀𝑡|

𝑡

𝑡+∆𝑡
 𝐁𝐮𝑘 

𝑒−𝐀(𝑡+∆𝑡)𝐱𝑘 − 𝑒
−𝐀𝑡𝐱𝑘−1 ≈ (−𝐀

−𝟏𝑒−𝐀(𝑡+∆𝑡) + 𝐀−𝟏𝑒−𝐀𝑡) 𝐁𝐮𝑘 

𝐱𝑘 = 𝑒
𝐀∆𝑡𝐱𝑘−1 + (−𝐀

−𝟏 + 𝐀−𝟏𝑒𝐀∆𝑡) 𝐁𝐮𝑘 

The first order Taylor approximation is often used in the discretization process given small 

time step, 

𝑒𝐀∆𝑡 ≈ 𝐈 + 𝐀∆𝑡 

Hence, 

{
𝚽 = 𝐈 + 𝐀∆𝑡

𝚪 = (−𝐀−𝟏 + 𝐀−𝟏𝑒𝐀∆𝑡) 𝐁 = 𝐁∆𝑡
 (2.100) 

With the approximation, the discrete counterpart of the state space model is, 

{
𝐱𝑘 = 𝚽𝐱𝑘−1 + 𝚪𝐮𝑘−1

𝐲𝑘 = 𝐇𝐱𝑘
 (2.101) 

With the discrete state space equation, the state can be propagated to the next time step, 

and the error covariance 𝐏𝑘
− can be propagated.  

{
𝐱̂𝑘 = 𝚽𝐱𝑘−1 + 𝚪𝐮𝑘−1
𝐏𝒌
− = 𝚽𝐏𝒌−𝟏𝚽

𝑻 + 𝚪𝐐𝚪𝑻
 (2.102) 

That’s the predictor part of the Kalman filter. When a measurement arrives, the correction part 

can be triggered. Based on the measurement covariance, the optimal Kalman gain is 

computed and then the states 𝐱̂𝒌 and error covariance 𝐏𝒌 are updated with the computed 

Kalman gain. The correction equations are as follows, 

{

𝐊𝒌 = 𝐏𝒌
−𝐇𝑻(𝐇𝐏𝒌

−𝐇𝑻 + 𝐑)−𝟏

𝐱̂𝒌 = 𝐱̂𝒌
− + 𝐊𝒌(𝐲𝒌 − 𝐇𝐱̂𝒌

−)

𝐏𝒌 = (𝐈 − 𝐊𝒌𝐇)𝐏𝒌
−

 (2.103) 

The basic equations and operation cycle of a standard discrete time Kalman filter are given in 

Figure 2.13. 
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Figure 2.13 Discrete time Kalman filter 

 

2.5.3. Extended Kalman Filter (EKF) 

Extended Kalman Filter (EKF) can be applied on nonlinear systems like the quadrotors. The 

EKF consists of two parts. The first part only integrates the high frequency IMU data and 

propagates it to a nominal state, which drifts with time due to IMU noises and possible model 

imperfections. With respect to the nominal state, the nonlinear system can be linearized and 

an error state space model can be formulated. The second part is an error state Kalman filter 

applied on the linear error state space model. In the prediction step, only the covariance needs 

to be propagated and in the correction part, the predicted error state is corrected and the 

covariance is updated. Both measurement and prediction are considered as error states, 

computed from the values of the nominal state. The estimated error state is then injected into 

the nominal state and reset to zero for the next time step. The overall EKF structure is given 

in Figure 2.14 and the linear error state Kalman filter is given in Figure 2.15. 

 

Figure 2.14 EKF structure 
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Figure 2.15 Linear error state Kalman filter 

The EKF has the following remarkable assets: 

 The error-state system is always operating close to the origin, and therefore providing 

a guarantee that the linearization validity holds at all times. 

 As the error state is always small, all second order products are negligible. This makes 

the computation of the Jacobian relatively easy and fast. 

 The error dynamics is slow because all the large-signal dynamics have been integrated 

in the nominal-state 

 The inertial propagation and Kalman filter can be processed with different sampling 

rate. 
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3. Generic Comparison of Dynamic 
Inversion and Backstepping 

The purpose of the comparison is to find an optimal control law in the nonlinear control field, 

so that control accuracy and bandwidth can be maximized yet with adequate stability margin 

and robustness.  

Typically, there are two inputs and one output of the flight control law design as shown in 

Figure 3.1. The two inputs are the reference signals and feedback signals; the output is the 

calculated system input. The reference signals are normally generated by the reference 

model, which can provide the reference signals up to n-th state derivatives (n is the system 

order excluding the actuator dynamics). Knowledge of the plant dynamics, especially state 

saturations and constraints, can be included in the reference model so that physically-capable 

and consistent reference signals can be generated. 

 

Figure 3.1 Flight Control System Structure 

The role of the control design is to extract as much information as possible from both the 

reference and feedback signals to enable the plant to track a desired trajectory as close as 

possible in the presence of noise and disturbances despite of uncertainties about the plant. 

The reference feedforward control tries to track a desired trajectory and the feedback control 

tries to maintain the plant state near the desired trajectory. The feedforward reference signals 

give active control, while the feedback control is passive control to regulate errors and reject 

disturbances. On utilizing the feedback signals, nonlinear control has the advantage over the 

linear control that the feedback gains are state dependent so that gain scheduling over the 

flight envelope may not be necessary, or hybrid methods may be used to gain performance. 

On utilizing the reference signals, it mainly depends on model uncertainties. Feedforward 

control with signals of high uncertainty deteriorates stability and robustness margin. The 

difference of different nonlinear control design lies in the feedforward control, while the 

feedback control of different nonlinear designs can be made arbitrarily close by fine gain 

tuning. 

NDI and Backstepping are widely used and probably the most popular nonlinear control 

methods applied to multirotors. The design principle and procedures of NDI and 

Backstepping are different; however, the feedback linearization structure and the final control 
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law have many similarities. The differences in those control designs could eventually be 

categorized by the utilization of the feedforward and feedback signals. 

The control designs are compared with the same generic example given in Eq. (2.19), to 

evaluate not only the differences between the two methods but also difference in various 

designs by the same method. The comparison results are again verified and validated in 

Chapter 5 and 6 with the quadrotor control applications.  

Eight different control designs of the two methods are analyzed and compared. There are 

three NDI designs a), b) and c);  

a) Non-cascaded NDI design 

b) Cascaded NDI design 

c) Non-cascaded NDI design with original model 

and five Backstepping designs, listed as follows, 

d) Analytical Backstepping with original model 

e) Analytical Backstepping with transformed model 

f) Cascaded Backstepping design 

g) Backstepping with command filter 

h) Command Filtered Backstepping (CFB) 

The following issues are addressed through the comparisons,  

 The time scale separation analysis in both cascaded and non-cascaded NDI designs 

 The difference between the Backstepping error dynamics and NDI error dynamics 

 The difference between analytical estimation and numerical estimation of the virtual 

control derivative in Backstepping designs 

 The conditions that the same control law can be obtained between NDI and 

Backstepping methods. 

 The effect of the additional term in Backstepping compared with NDI. 

 The improvement of CFB over the Backstepping with command filter. 
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3.1. Nonlinear Dynamic Inversion Designs 

There are two different NDI design structures: the cascaded and non-cascaded design. 

Cascaded design divide control system into two or more nested loops where the nonlinearities 

are feedback linearized separately in their respective loops. The NDI transformation can be 

made much easier compared with a non-cascaded design. However, time scale separation is 

needed between the cascaded loops for stability consideration. It means that the outer loop 

is designed to be much slower than the next inner loop so that the inner loop can be assumed 

to reach the steady state without affecting the outer loop stability. This simplifies the control 

design but compromises the overall control performance. For stability consideration, the 

cascaded structure is not able to use the reference inner loop state derivative. Instead, it is 

commonly estimated by a low pass filter. The non-cascaded design feedback linearized the 

plant dynamics in one loop so that the reference state derivative can be used without affecting 

the stability. Therefore no additional time scale separation is needed within the controller. 

 

3.1.1. Non-cascaded NDI design (Design a) 

For better comparison, the same example system as in Eq. (2.19) is used to apply all different 

NDI and Backstepping designs. In addition, the same second order reference model given in 

Eq. (2.25) is used for all.  

The example given in section 2.2 is the non-cascaded NDI design and the control structure is 

shown in Figure 2.5, though the PCH is not implemented here for comparison purpose. Recall 

the corresponding control law given in Eq. (2.33), 

{
𝑢 = 𝑔3

−1[𝜈 − 𝑓3]

𝜈 = 𝜈𝑟 + 2𝜁𝜔0𝑒̇ + 𝜔0
2𝑒

 

 

3.1.2. Cascaded NDI design (Design b) 

Cascaded NDI design makes use of the time scale separation principle to hide the inner loop 

dynamics so that quasi-stability in the outer loop can be established. Time scale separation 

exists in many dynamical systems. It can arise due to small time constants, moments of 

inertia, actuator dynamics and many other effects. Using the natural separation between ‘fast’ 

and ‘slow’ variables to reduce the complexity of a dynamical system can greatly simplify the 

control designs and analysis problem. 

The cascaded design is less restrictive than the non-cascaded design and it can be applied 

to any system of non-triangular form.  

The second order system could be separated into two loops. First, the outer loop system is 

considered, 

𝑥̇1 = 𝑓1 + 𝑔1 ⋅ 𝑥2 ≈ 𝑓1 + 𝑔1 ⋅ 𝑥2,𝑑𝑒𝑠 
(3.1) 

The virtual control input 𝑥2,𝑑𝑒𝑠 is the desired value of 𝑥2 to stabilize the outer loop. Applying 

the NDI transformation and linear controller, the control law for the outer loop is, 
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𝑥2,𝑑𝑒𝑠 = 𝑔1
−1[−𝑓1 + 𝑥̇1𝑟 + 𝑘1(𝑥1𝑟 − 𝑥1)] 

(3.2) 

The desired 𝑥2,𝑑𝑒𝑠 is commanded to the inner loop. Usually an inner loop reference model is 

used to generate smooth signals for the inner loop. In this case, a first order low pass filter is 

appropriate. 

𝑥̇̂2,𝑑𝑒𝑠 = 𝑘𝑓 (𝑥2,𝑑𝑒𝑠 − 𝑥̂2,𝑑𝑒𝑠) 
(3.3) 

The inner loop control law is designed similarly to the outer loop, 

𝑢 = 𝑔2
−1[−𝑓2 + 𝑥̇̂2,𝑑𝑒𝑠 + 𝑘2(𝑥̂2,𝑑𝑒𝑠 − 𝑥2)] 

(3.4) 

There are approaches (e.g. [48]) that do not use an inner loop reference model. In certain case 

they are equivalent. It can be shown that when the filter gain 𝑘𝑓 and the feedback gain 𝑘2 are 

the same, the control law is reduced to the same as without any filter, 

𝑢 = 𝑔2
−1[−𝑓2 + 𝑘2(𝑥2,𝑑𝑒𝑠 − 𝑥2)] 

(3.5) 

However, the inner loop reference model gives an additional design freedom and, as shown 

in later sections, it performs similar tasks with the command filter in the Backstepping design.  

Classically for cascaded design, the reference model is designed to have the same system 

order or relative degree of the nested loop. For instance, if the outer loop has a relative degree 

of 1, the reference model is then a first order reference model. However, the true system order 

is larger than the outer loop. It makes sense to extend the dynamic order of the reference 

model to the true system order. The reference model should have a relative degree of 2 for 

the second order example. Then, for the cascaded design, the problem is that the 2nd 

derivative of the reference state is not able to be feedforward to the inner loop due to the 

separation of control loops. This means, there is model information we could use but we didn’t 

use in the cascaded design. Possible loss of control bandwidth may occur.  

After all, the control design structure is given below, 

 

Figure 3.2 Cascaded NDI design 

As we can see, the dynamic inversion complexity reduces with the cascaded design, 

especially when the system order increases. The derivatives of the nonlinear functions are no 

longer needed. The drawback is that the reference model information is not used completely, 

i.e. the reference second order derivative cannot be feed through the inner loop, but a 

numerical estimate 𝑥̇2,𝑑𝑒𝑠 is used instead. The performance can be drawn arbitrarily close to 
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the non-cascaded design by increasing the filter bandwidth. However, the filer bandwidth 𝑘𝑓 

is limited due to sensor noise. 

3.1.2.1. Time scale separation 

The time constant or control bandwidth of each loop may be influenced by the feedback 

gains. Take a first order system with a pure integrator as in Eq. (3.6) for instance, the inverse 

of the feedback gain 𝑘 is the time constant of the system. And the control bandwidth (dynamic 

range), is at the value of the feedback gain 𝑘 . For more complex system, the control 

bandwidth can be identified from the closed-loop frequency response, where the magnitude 

decreases more than 3-dB [45]. 

𝑥̇ = 𝑢 = −𝑘𝑥 = −
1

𝑇
𝑥 (3.6) 

The time scale separation normally requires the outer loop to be 3-5 times faster than the 

inner loop, and the inner loop 3-5 times faster than the actuator dynamics.  

The section aims to quantify the time scale separation with a linear example. Consider the 

following second order linear system, 

𝑥̈ = 𝑢 (3.7) 

A cascaded control loop using simple linear feedback can be designed to stabilize the system, 

{
𝑥̇𝑐 = 𝑘1(𝑥𝑐 − 𝑥)

𝑢 = 𝑘2(𝑥̇𝑐 − 𝑥̇)
 (3.8) 

Where the feedback gains 𝑘1  and 𝑘2  determine the control bandwidth of each loop. The 

transfer function of the close loop system can be derived, 

𝑢 = 𝑥̈ = 𝑘2(𝑥̇𝑐 − 𝑥̇) = 𝑘2[𝑘1(𝑥𝑐 − 𝑥) − 𝑥̇] 

𝑥̈ = 𝑘2𝑘1𝑥𝑐 − 𝑘2𝑘1𝑥 − 𝑘2𝑥̇ 

𝑥 =
𝑘1𝑘2

𝑠2 + 𝑘2𝑠 + 𝑘1𝑘2
𝑥𝑐 

(3.9) 

This is very similar to the transfer function of the second order reference model given in Eq. 

(2.25). Hence, we can relate the feedback gains to the relative damping of the system. 

{
𝑘2 = 2𝜁𝜔0
𝑘1𝑘2 = 𝜔0

2  (3.10) 

We have, 

{
𝑘1 =

𝜔0
2𝜁

𝑘2 = 2𝜁𝜔0

 (3.11) 

The ratio between the control bandwidth of the two-cascaded loops can be calculated, 
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𝑘2
𝑘1
= 4𝜁 (3.12) 

We can see that the time scale separation of 4 times corresponds to critical relative damping 

of 1 for this linear example. Hence, for nonlinear systems, time scale separation between 

loops is normally required to be 3-5 times. 

 

3.1.3. Non-cascaded NDI design with original model (Design c) 

Comparing the above two designs, the cascaded control design has simpler dynamic 

inversion. However, the reference state derivative cannot be feedforward to the inner loop. 

Instead, estimation by the inner loop reference model is used. 

It is intuitive to propose a new NDI design with original model and a nonlinear reference model, 

which is able to feed forward the reference commands to the inner loop and consequently 

eliminate the time scale separation. Due to the feedforward signal, it is a non-cascaded 

nonlinear control design, though the design structure is rather close to the cascaded NDI 

design. In [49], such a controller is designed for a missile attitude control system. However, 

the approach does not fully account for the nonlinearity in the ‘outer loop dynamics’. A novel 

modification term is proposed here to render the tracking error dynamics to a linear one. 

The ‘outer loop’ follows the same design as in Eq. (3.2). For the ‘inner loop’, [49] suggests to 

use the reference signal 𝑥̇2𝑟 in the control law instead of the 𝑥̇2,𝑑𝑒𝑠 generated by the inner loop 

reference model. The overall control law as proposed in [49] is summarized, 

{
𝑥2,𝑑𝑒𝑠 = 𝑔1

−1[−𝑓1 + 𝑥̇1𝑟 + 𝑘1(𝑥1𝑟 − 𝑥1)]

𝑢 = 𝑔2
−1[−𝑓2 + 𝑥̇2𝑟 + 𝑘2(𝑥2,𝑑𝑒𝑠 − 𝑥2)]

 (3.13) 

The design structure is shown in Figure 3.3. 

 

Figure 3.3 Non-cascaded NDI design from [49] 

The tracking error dynamics of this control law can be derived by substituting the control law 

into the system differential equation, 

   𝑥̈1 = (𝑓1 + 𝑔1𝑥2)
′ = 𝑓1̇ + 𝑔̇1𝑥2 + 𝑔1𝑥̇2 = 𝑓1̇ + 𝑔̇1𝑥2 + 𝑔1(𝑓2 + 𝑔2𝑢) 

    = 𝑓1̇ + 𝑔̇1𝑥2 + 𝑔1(𝑓2 + 𝑔2𝑔2
−1[−𝑓2 + 𝑥̇2𝑟 + 𝑘2(𝑥2,𝑑𝑒𝑠 − 𝑥2)]) 

    = 𝑓1̇ + 𝑔̇1𝑥2 + 𝑔1𝑥̇2𝑟 + 𝑘2𝑔1(𝑥2,𝑑𝑒𝑠 − 𝑥2) 
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The reference signal 𝑥̇2𝑟 can be calculated from the linear reference signal 𝑥̈1𝑟. The reference 

dynamics use the same dynamic model so the dynamic equation is, 

𝑥̇1𝑟 = 𝑓1 + 𝑔1𝑥2𝑟 
(3.14) 

Differentiating it, 

𝑥̈1𝑟 = (𝑓1 + 𝑔1𝑥2𝑟)
′ = 𝑓1̇ + 𝑔̇1𝑥2𝑟 + 𝑔1𝑥̇2𝑟 

(3.15) 

Rearranging the above equation,  

𝑥̇2𝑟 = 𝑔1
−1(𝑥̈1𝑟 − 𝑓1̇ − 𝑔̇1𝑥2𝑟) 

(3.16) 

The 𝑥2,𝑑𝑒𝑠 − 𝑥2 term can be calculated as follows, 

𝑥2,𝑑𝑒𝑠 − 𝑥2 = 𝑔1
−1[−𝑓1 + 𝑥̇1𝑟 + 𝑘1(𝑥1𝑟 − 𝑥1)] − 𝑔1

−1[−𝑓1 + 𝑥̇1] = 𝑔1
−1[𝑥̇1𝑟 − 𝑥̇1 + 𝑘1(𝑥1𝑟 − 𝑥1)] 

(3.17) 

Substituting them into the system differential equation above, 

𝑥̈1 = 𝑥̈1𝑟 − 𝑔̇1(𝑥2𝑟 − 𝑥2) + 𝑘2(𝑥̇1𝑟 − 𝑥1) + 𝑘2𝑘1(𝑥1𝑟 − 𝑥1) 
(3.18) 

The tracking error dynamic equation is, 

𝑒̈ + 𝑘2𝑒̇ + 𝑘2𝑘1𝑒 = 𝑔̇1(𝑥2𝑟 − 𝑥2) 
(3.19) 

We can see that the proposed control law does not completely cancel the nonlinearities. The 

dynamics of the tracking error 𝑒 could not be optimized only by the gains. If the function 𝑔1 is 

a diffeomorphism, i.e. its inverse and derivative is solvable, further modification can be made 

to the control law to eliminate the extra term in the tracking error dynamics. The modified 

control law is,  

{
𝑥2,𝑑𝑒𝑠 = 𝑔1

−1[−𝑓1 + 𝑥̇1𝑟 + 𝑘1(𝑥1𝑟 − 𝑥1)]

𝑢 = 𝑔2
−1[−𝑓2 + 𝑥̇2𝑟 + 𝑘2(𝑥2,𝑑𝑒𝑠 − 𝑥2) + 𝑔1

−1𝑔̇1(𝑥2𝑟 − 𝑥2)]
 (3.20) 

Optimal tracking error dynamics can be achieved with the above control law. The resulting 

tracking error dynamic equation is, 

𝑒̈ + 𝑘2𝑒̇ + 𝑘2𝑘1𝑒 = 0 (3.21) 

The final design structure for the second order system is shown in Figure 3.4. 
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Figure 3.4 Non-cascaded NDI design with original model 

We can see that by the novel term (red block in Figure 3.4 ) the tracking error dynamics is 

rendered to be the same as the classical case as in Design a), but the design is more intuitive 

and the inversion is less complicated compared with the classical NDI design a). For systems 

with relative large parameter uncertainties, such as sensor noise and external disturbances, 

the effect of the additional term becomes trivial.  
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3.2. Backstepping Designs 

Backstepping designs, derived with the Lyapunov approach, have more design freedoms. For 

instance, the non-cascaded NDI design can be seen as a special case of Backstepping. The 

different variations of Backstepping control are derived here for comparison with each other 

and with the NDI designs. 

 

3.2.1. Analytical Backstepping with original model (Design d) 

This is the standard Backstepping approach, whose derivation procedures and results have 

been given in section 2.3. Recall the control law in Eqs. (2.64), (2.69) and (2.71), 

{

𝑥2,𝑑𝑒𝑠 = 𝑔1
−1(𝑥̇1𝑟 − 𝑓1 + 𝑘1𝑧1)

𝑢 = 𝑔2
−1(𝑥̇2,𝑑𝑒𝑠 − 𝑓2 + 𝑔1𝑧1 + 𝑘2𝑧2)

𝑢 = 𝑔2
−1[−𝑓2 + 𝑥̇2𝑟 + 𝑘2(𝑥2,𝑑𝑒𝑠 − 𝑥2) + 𝑔1

−1𝑘1𝑧̇1 − 𝑔1
−2𝑔̇1𝑘1𝑧1 + 𝑔1𝑧1]

 (3.22) 

In Figure 3.5, the control structure is shown. The difference to the design c) is shown in the 

red box. 

 

Figure 3.5 Analytical Backstepping with original model 

The Backstepping error dynamics can be derived and summarized in matrix form in Eq. (3.23) 

𝑧̇1 = 𝑥̇1𝑟 − 𝑥̇1 = 𝑥̇1𝑟 − 𝑓1 − 𝑔1𝑥2,𝑑𝑒𝑠 + 𝑔1𝑧2  

    = 𝑥̇1𝑟 − 𝑓1 − 𝑔1𝑔1
−1(𝑥̇1𝑟 − 𝑓1 + 𝑘1𝑧1) + 𝑔1𝑧2 = −𝑘1𝑧1 + 𝑔1𝑧2 

𝑧̇2 = 𝑥̇2,𝑑𝑒𝑠 − 𝑥̇2 = 𝑥̇2,𝑑𝑒𝑠 − 𝑓2 − 𝑔2𝑢  

    = 𝑥̇2,𝑑𝑒𝑠 − 𝑓2 − 𝑔2𝑔2
−1(𝑥̇2,𝑑𝑒𝑠 − 𝑓2 + 𝑔1𝑧1 + 𝑘2𝑧2) = −𝑔1𝑧1 − 𝑘2𝑧2  

[
𝑧̇1
𝑧̇2
] = [

−𝑘1 𝑔1
−𝑔1 −𝑘2

] [
𝑧1
𝑧2
] (3.23) 

Furthermore, the tracking error dynamics similar to NDI design can be derived, the matrix 

form is with  

𝑒 = 𝑧1 = 𝑥1𝑟 − 𝑥1  

𝑒̇ = 𝑧̇1 = −𝑘1𝑧1 + 𝑔1𝑧2 = −𝑘1𝑒 + 𝑔1𝑧2  
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𝑒̈ = 𝑧̈1 = −𝑘1𝑒̇ + 𝑔̇1𝑧2 + 𝑔1𝑧̇2 = −𝑘1𝑒̇ + 𝑔̇1 𝑧2⏟
𝑔1
−1(𝑒̇+𝑘1𝑒)

+ 𝑔1 𝑧̇2⏟
−𝑔1𝑒−𝑘2𝑧2

  

   = −𝑘1𝑒̇ + 𝑔̇1𝑔1
−1(𝑒̇ + 𝑘1𝑒) + 𝑔1(−𝑔1𝑒 − 𝑘2𝑔1

−1(𝑒̇ + 𝑘1𝑒))  

   = −𝑘1𝑒̇ + 𝑔̇1𝑔1
−1𝑒̇ + 𝑔̇1𝑔1

−1𝑘1𝑒 − 𝑔1
2𝑒 − 𝑘2𝑒̇ − 𝑘2𝑘1𝑒 

   = (−𝑘1 − 𝑘2 + 𝑔̇1𝑔1
−1)𝑒̇ + (−𝑘2𝑘1 + 𝑔̇1𝑔1

−1𝑘1 − 𝑔1
2)𝑒  

[
𝑒̇
𝑒̈
] = [

0 1
−𝑘2𝑘1 + 𝑔̇1𝑔1

−1𝑘1 − 𝑔1
2 −𝑘1 − 𝑘2 + 𝑔̇1𝑔1

−1] [
𝑒
𝑒̇
] (3.24) 

The tracking error dynamics is clearly nonlinear as the nonlinear function 𝑔1  is state 

dependent. The Lyapunov theory only guarantees the stability but nothing regards the 

performance. Besides the gain design, the tracking performance depends more on the 

magnitude and rate of change of the function 𝑔1. This is further validated in the later sections. 

 

3.2.2. Analytical Backstepping with transformed model (Design e) 

The tracking error dynamics can be rendered linear if the function 𝑔1 is a constant or even 

unity. The example system is transformed into the companion form as in Eq. (2.21), 

{
𝑥̇1 = 𝑥3
𝑥̇3 = 𝑓3 + 𝑔3 ⋅ 𝑢

 

Applying the standard Backstepping procedure (refer to section 2.3.1 for the more detailed 

procedure): 

Step 1,    𝑥3,𝑑𝑒𝑠 = 𝑥̇1𝑟 + 𝑘1𝑧1 

Step 2,    𝑉3 =
1

2
𝑧1
2 +

1

2
𝑧3
2, where 𝑧3 = 𝑥3,𝑑𝑒𝑠 − 𝑥3 

    𝑢 = 𝑔3
−1(𝑥̇3,𝑑𝑒𝑠 − 𝑓3 + 𝑧1 + 𝑘3𝑧3) 

    𝑥̇3,𝑑𝑒𝑠 = 𝑥̈1𝑟 + 𝑘1𝑧̇1 

    𝑉̇3 = −𝑘1𝑧1
2 − 𝑘2𝑧3

2 

Backstepping error dynamics: 

[
𝑧̇1
𝑧̇2
] = [

−𝑘1 1
−1 −𝑘2

] [
𝑧1
𝑧2
] (3.25) 

Tracking error dynamics 

[
𝑒̇
𝑒̈
] = [

0 1
−𝑘2𝑘1 − 1 −𝑘1 − 𝑘2

] [
𝑒
𝑒̇
] (3.26) 

The tracking error dynamics can be exactly the same as the NDI non-cascaded design by 

assigning proper feedback gains. 

{
𝑘2𝑘1 + 1 = 𝑘𝑝 = 𝜔0

2

𝑘1 + 𝑘2 = 𝑘𝑑 = 2𝜁𝜔0
 (3.27) 
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The control law is also the same as in Eq. (2.33) 

{
𝑢 = 𝑔3

−1[𝑣 − 𝑓3]

𝑣 = 𝑣𝑟 + 2𝜁𝜔0𝑒̇ + 𝜔0
2𝑒

 (3.28) 

There are two conditions that make the same control law for Backstepping and NDI, 

1. The system is represented in companion form, so that all the nonlinearities can be 

cancelled out in the most inner loop and both methods transform the system into 

a chain of integrators 

2. The same linear controller is used in the outer lop to provide the desired 

convergence towards to a reference state. 

 

3.2.3. Cascaded Backstepping design (Design f) 

Cascaded Backstepping design of the second order example system is the same as the 

cascaded NDI design. It is listed here only for the sake of completeness. 

However, for more complicated systems, especially with system order bigger than 3, the 

division of loops needs additional design considerations. This is further illustrated in the 

position control designs, which have a system order of 4. 

 

3.2.4. Backstepping with command filter (Design g) 

For systems not in the strict-feedback form, it could be difficult or even not possible to apply 

the analytical methods to solve the virtual control derivative 𝑥̇2,𝑑𝑒𝑠 . Recall the derived 

Backstepping control law from section 2.3.1, 

{
𝑥2,𝑑𝑒𝑠 = 𝑔1

−1(𝑥̇1𝑟 − 𝑓1 + 𝑘1𝑧1)

𝑢 = 𝑔2
−1(𝑥̇2,𝑑𝑒𝑠 − 𝑓2 + 𝑔1𝑧1 + 𝑘2𝑧2)

 

As mentioned earlier, it is quite common to implement a low pass filter to estimate 𝑥̇2,𝑑𝑒𝑠 as 

in Eq. (2.72) 

𝑥̇2,𝑑𝑒𝑠 = 𝑘𝑓(𝑥2,𝑑𝑒𝑠 − 𝑥2,𝑑𝑒𝑠) 

The final control law is, 

{

𝑥2,𝑑𝑒𝑠 = 𝑔1
−1(𝑥̇1𝑟 − 𝑓1 + 𝑘1𝑧1)

𝑢 = 𝑔2
−1(𝑥̇̂2,𝑑𝑒𝑠 − 𝑓2 + 𝑔1𝑧1 + 𝑘2𝑧̂2)

𝑧̂2 = 𝑥̂2,𝑑𝑒𝑠 − 𝑥2

 (3.29) 

The derived Backstepping control law is very similar to the cascaded NDI control law. The 

command filter could have the same filter structure as the inner loop reference model in the 

NDI design. In this case, both are just a first order low pass filter. The only difference is one 

additional term 𝑔1𝑧1 in the Backstepping design. The control structure is shown below, 
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Figure 3.6 Backstepping with command filter 

Due to the filter estimation, the Lyapunov stability is violated. Since the original Lyapunov 

function is not differentiable, a new Lyapunov function is defined, 

𝑉̂2 =
1

2
𝑧1
2 +

1

2
𝑧̂2
2 (3.30) 

Its derivative can be calculated, 

𝑉̇̂2 = 𝑧1𝑧̇1 + 𝑧̂2𝑧̇̂2 = −𝑘1𝑧1
2 − 𝑘2𝑧̂2

2 + 𝑧1𝑔1(𝑧2 − 𝑧̂2) = −𝑘1𝑧1
2 − 𝑘2𝑧̂2

2 + 𝑧1𝑔1(𝑥2,𝑑𝑒𝑠 − 𝑥2,𝑑𝑒𝑠) 

The estimation error 𝑥2,𝑑𝑒𝑠 − 𝑥2,𝑑𝑒𝑠  violates the negative semi-definite property of the 

Lyapunov function derivative. 

 

3.2.5. Command Filter Backstepping (Design h) 

Farrell [21] introduced the CFB aiming to compensate the unachieved portion of 𝑥2,𝑑𝑒𝑠 due to 

the estimation error. This section presents the derivation of the compensation term from the 

Lyapunov stability theory, though the original work was presented from a different point of 

view. 

Considering the violated Lyapunov function, the 𝑧̂2 is an estimated term, which is difficult to 

be modified, but the 𝑧1 has certain room for augmentation. A modification term 𝜉1, without 

knowing its formulation, can be introduced to the 𝑧1 term in both the Lyapunov function and 

the control law, 

𝑉2,𝐶𝐹𝐵 =
1

2
(𝑧1 + 𝜉1)

2
+
1

2
𝑧̂2
2 (3.31) 

{

𝑥2,𝑑𝑒𝑠 = 𝑔1
−1(𝑥̇1𝑟 − 𝑓1 + 𝑘1𝑧1)

𝑢 = 𝑔2
−1(𝑥̇̂2,𝑑𝑒𝑠 − 𝑓2 + 𝑔1(𝑧1 + 𝜉1)+ 𝑘2𝑧̂2)

𝑧̂2 = 𝑥2,𝑑𝑒𝑠 − 𝑥2

 

The Lyapunov function derivative is, 

  𝑉̇2,𝐶𝐹𝐵 = (𝑧1 + 𝜉1)(𝑧̇1 + 𝜉̇1) + 𝑧̂2𝑧̇̂2 

   = (𝑧1 + 𝜉1)(−𝑘1𝑧1 + 𝑔1𝑧2 + 𝜉̇1) + 𝑧̂2(−𝑘2𝑧̂2 − 𝑔1(𝑧1 + 𝜉1)) 

  = (𝑧1 + 𝜉1)(−𝑘1𝑧1 − 𝑘1𝜉1 + 𝑘1𝜉1 + 𝑔1𝑧2 + 𝜉̇1) + 𝑧̂2(−𝑘2𝑧̂2 − 𝑔1(𝑧1 + 𝜉1)) 
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  = (𝑧1 + 𝜉1)(−𝑘1(𝑧1 + 𝜉1) + 𝑘1𝜉1 + 𝑔1𝑧2 + 𝜉̇1) + 𝑧̂2(−𝑘2𝑧̂2 − 𝑔1(𝑧1 + 𝜉1)) 

   = −𝑘1(𝑧1 + 𝜉1)
2 − 𝑘2𝑧̂2

2 + (𝑧1 + 𝜉1)(𝑘1𝜉1 + 𝑔1𝑧2 + 𝜉̇1) − 𝑧̂2𝑔1(𝑧1 + 𝜉1) 

The optimal result would be to render the Lyapunov function derivative into the following 

negative semi-definite from, 

𝑉̇2,𝐶𝐹𝐵 = −𝑘1(𝑧1 + 𝜉1)
2 − 𝑘2𝑧̂2

2 (3.32) 

In order to make the Lyapunov function derivative that form, the rest of the equation needs to 

be zero, 

(𝑧1 + 𝜉1)(𝑘1𝜉1 + 𝑔1𝑧2 + 𝜉1̇) − 𝑧̂2𝑔1(𝑧1 + 𝜉1) = 0 (3.33) 

The following modification control law can be derived for the 𝜉1  to make the derivative 

negative semi-definite, 

𝜉1̇ = −𝑘1𝜉1 + 𝑔1(𝑧̂2 − 𝑧2) = −𝑘1𝜉1 + 𝑔1(𝑥̂2,𝑑𝑒𝑠 − 𝑥2,𝑑𝑒𝑠) 
(3.34) 

In Laplace domain, the modification term 𝜉1 is the filtered estimation error. 

𝜉1 =
𝑔1

𝑠 + 𝑘1
(𝑥̂2,𝑑𝑒𝑠 − 𝑥2,𝑑𝑒𝑠) (3.35) 

With this feedback, the Lyapunov function derivative becomes, 

𝑉̇2,𝐶𝐹𝐵 = −𝑘1(𝑧1 + 𝜉1)
2 − 𝑘2𝑧̂2

2 (3.36) 

The control structure is also drawn in similar fashion as before for comparison. As shown 

below, the modification in the control law is quite small, 

 

Figure 3.7 Command Filtered Backstepping 

Though the Lyapunov stability is satisfied, it should be noticed that the Lyapunov function is 

not exactly the tracking error (𝑧1) cost function. Hence, the performance is expected to be 

compromised. 

The modification law for higher order system can be derived similarly. Detailed derivations 

are given in [21], 

𝜉𝑖̇ = −𝑘𝑖𝜉𝑖 + 𝑔𝑖(𝑥̂𝑖+1,𝑑𝑒𝑠 − 𝑥𝑖+1,𝑑𝑒𝑠) + 𝑔𝑖𝜉𝑖+1 
(3.37) 
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3.3. Comparison and Simulation Results 

3.3.1. Analysis of the different designs 

The above eight control designs can be categorized into two groups; one group does not use 

any low pass filter and the other group does use low pass filters to estimate command 

derivatives, as there is a distinct performance difference between the two groups. The 

differences between designs within the same group are comparatively small for the generic 

example. There are more model dependent differences to be shown in the next chapter. 

Control designs a), c), d) and e) belong to the first group. All four designs has non-cascaded 

structure and the full reference information can be used in the feedforward control, i.e. no 

filtering is necessary. Design a) and c) are derived from NDI, while d) and e) are derived from 

Backstepping. Design a) and design e) have exactly the same control laws, which completely 

invert the plant dynamic in the inner loop so that linear error dynamics can be obtained. 

Ignoring model uncertainties, they could give the best possible tracking performance with 

appropriate linear control design. Their control law for the example generic system is, 

{
𝑢 = 𝑔3

−1[𝑣 − 𝑓3]

𝑣 = 𝑣𝑟 + 2𝜁𝜔0𝑒̇ + 𝜔0
2𝑒

 

However, not every system could be formulated as system representation 2 in Eq.(2.21), so 

that control design a) and e) can’t be applied. The designs c) and d) could be applied to the 

original formulation as in Eq. (2.19). The state space representation has nonlinearities in all 

equations. There plant dynamics has to be inverted separately at different system order. As a 

result, their tracking error is no longer linear and its performance may not be as good as the 

clean designs a) and e). In design c) with the additional novel terms, its tracking error dynamics 

can be rendered to be linear, the same as in design a) and e). All three designs a) c) and e) 

could has the ideal linear error dynamics, 

[
𝑒̇
𝑒̈
] = [

0 1
−𝜔0

2 −2𝜁𝜔0
] [
𝑒
𝑒̇
] 

While in design d), though it has Lyapunov stability proof by Backstepping, the tracking error 

dynamics is nonlinear and its performance is not deterministic because it depends on certain 

nonlinear terms in the math formulations. One important point is that the Backstepping 

method only gives Lyapunov stability guarantee but nothing about the tracking performance. 

The tracking error dynamics of design d) can be evaluated as in Eq. (3.24), 

[
𝑒̇
𝑒̈
] = [

0 1
−𝑘2𝑘1 + 𝑔̇1𝑔1

−1𝑘1𝑒 − 𝑔1
2 −𝑘1 − 𝑘2 + 𝑔̇1𝑔1

−1] [
𝑒
𝑒̇
] (3.38) 

In many cases, the 𝑔1 related terms are comparatively smaller than the designed gains so its 

impact is hidden, for example, the linear example demonstrated in this section. It will be 

shown in the next chapters with the quadrotor example, when the 𝑔1  related terms are 

comparatively bigger, they can deteriorate the tracking performance. 

In the second group, design b), f), g) and h) all used filter to estimate the intermediate control 

derivatives, which can avoid the tedious computation of the intermediate control derivative 

especially for complex nonlinear high order systems. The big advantage is that they can be 
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applied to system of non-triangular form. However, due to the filtered estimation, the 

reference signal (𝑥̇2𝑟 or 𝑥̈1𝑟) cannot be used in the feedforward control, which is the main 

reason causing the performance differences in this linear example. 

The control laws from the four designs are listed below, 

1. The first part or the ‘outer loop’ is the same for all four cases. The same filter can be 

used because its input, output and purpose are the same. 

𝑥2,𝑑𝑒𝑠 = 𝑔1
−1[−𝑓1 + 𝑥̇1𝑟 + 𝑘1(𝑥1𝑟 − 𝑥1)] 

𝑥̇2,𝑑𝑒𝑠 = 𝑘𝑓(𝑥2,𝑑𝑒𝑠 − 𝑥2,𝑑𝑒𝑠) 

2. The control laws are given below to show the differences, 

b)&f)    𝑢 = 𝑔2
−1[−𝑓2 + 𝑥̇2,𝑑𝑒𝑠 + 𝑘2(𝑥̂2,𝑑𝑒𝑠 − 𝑥2)] 

g)        𝑢 = 𝑔2
−1[−𝑓2 + 𝑥̇2,𝑑𝑒𝑠 + 𝑘2(𝑥̂2,𝑑𝑒𝑠 − 𝑥2) + 𝑔1(𝑥1𝑟 − 𝑥1)] 

h)        𝑢 = 𝑔2
−1[−𝑓2 + 𝑥̇2,𝑑𝑒𝑠 + 𝑘2(𝑥̂2,𝑑𝑒𝑠 − 𝑥2) + 𝑔1(𝑥1𝑟 − 𝑥1 + 𝜉1)] 

Design b) and f) are the same. Both are the classical cascaded structure. Enough time scale 

separation between the control loops is needed for stability, but the control bandwidth is 

compromised. Design g) has an additional term 𝑔1(𝑥1𝑟 − 𝑥1) feedforward to inner loop, which 

some [50] claimed to work against the time scale separation. However, this feedforward term, 

at least for this linear example, does not show any effect. It is an error term without any gains, 

so for systems requiring high gain controller (i.e. high 𝑘2 gain) like quadrotors, this term is 

rather small comparatively and it doesn’t have any impact even in the ideal simulation 

environment. So its effect in the real system with model uncertainties and sensor errors is 

questionable. As design g) violates the Lyapunov stability proof by using the filter, design h) 

introduce an additional term and prove the Lyapunov stability. However, still this additional 

term is rather small comparatively in the control law. No improvement can be shown in the 

simulation and in real system (see Chapter 5). The low pass filters used in those designs are 

the main reason for the performance reduction. None of the modifications gives noticeable 

improvement in the tracking performance. 

The tracking performance of the second group can be rendered arbitrarily close to the first 

group by increasing the low pass filter bandwidth. However, in real life application the filter 

bandwidth is often limited by the sensor noise. 

 

3.3.2. Simulation Results 

In this preliminary simulation example, a linear system is chosen to compare the different 

designs. To better observe the fundamental difference, instead of more complex systems, the 

simplest linear second order system is most representative. No system uncertainties and 

sensor errors, but only actuator dynamics is considered in the simulation enjoinment in Figure 

3.8. The same reference signals are used for all control designs. For the second order system, 

a second order low pass filter is used to generate smooth reference commands with a relative 

damping of 1 and natural frequency of 10. The reference signal of a step command is shown 

in Figure 2.4. The tracking performance in terms of overshoot and rising time is compared. 
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Figure 3.8 Simulation Environment 

The system equation of motion is very simple (𝑔1 = 1), 

{
𝑥̇1 = 𝑥2
𝑥̇2 = 𝑢

 

The actuator dynamics is modeled as a first order low pass filter with a time constant of 0.04 

s, the Laplace transfer function is, 

𝐺𝐴(𝑠) =
25

𝑠 + 25
 

The control law structures have been designed but the gains have to designed, especially in 

the Backstepping designs. Linear gain design methods like pole placement can be applied to 

the NDI designs (both cascaded and non-cascaded case). However, as the Backstepping 

designs (except design e)) often generate non-linear error dynamics, linear methods can’t be 

applied. For the Backstepping design g) and h), different time-scale-gains are used: set I gives 

TSS between the two states feedbacks, so the gains are same as in those the cascaded 

design b) & f); set II assumes that the additional Backstepping term removes the TSS, so the 

gains are the same as those in Design d) & e). By comparing the performance of the two gain 

sets, the question on whether the additional Backstepping term eliminates the TSS could be 

answered. The gains are listed in Table 3.1. 

Design a)  𝑘𝑑 = 2𝜁𝜔 = 20; 𝑘𝑝 = 𝜔
2 = 100 

Design c) 𝑘1 = 10; 𝑘2 = 10; 

Design d) & e) 𝑘1 = 9; 𝑘2 = 11; 

Design b) & f) 𝑘1 = 5; 𝑘2 = 20; 𝑘𝑓 = 20 

Design g)-h) – I 𝑘1 = 5; 𝑘2 = 20; 𝑘𝑓 = 20 

Design g)-h) – II 𝑘1 = 9; 𝑘2 = 11; 𝑘𝑓 = 20 

Table 3.1 Gain Designs for the linear example 

The low pass filter gain for the control designs of the second group is set to be 20 here, though 

it can be further increased, as there is no sense noise and the actuator model are over-

simplified. However, it does not affect the conclusion made. With the above gain designs for 

the linear example, design a), c), d) and e) could result the same control law. Their differences 

will be further analyzed in later section with the nonlinear quadrotor example. Design b) and 

f) are cascaded designs and they have the same control law in any case.  
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The tracking performance of a step command is shown in Figure 3.9. Besides the reference 

signal of the step commands (in black), there are three different performing groups, blue, cyan 

and yellow. The blue signal comes from the non-cascaded designs a), c), d) and e), which 

give the best performance. Signals from designs b), f), g)-I, and h)-I coincide in the cyan line. 

They belong to the cascaded designs. The design g) and h) give rather the same performance 

as the cascaded control designs. The additional Backstepping terms in their control law are 

negligible compared to the magnitude of the control input u, as shown in Figure 3.11. As a 

group their performance is not as good as the blue signal, but better than the yellow line, 

which is given by designs g)-II and h)-II with different gains.  These two designs use the non-

cascaded design gains and it could have performed better if the TSS was eliminated by the 

additional Backstepping term. However, the reality is the additional term is too small to have 

any impact. With the aggressive non-cascaded gain design, the performance gets worse and 

bigger oscillation and overshoot can be observed. Figure 3.10 shows clearly the differences 

using error signals. 

 

Figure 3.9 Tracking performance of a step command 



58 Generic Comparison of Dynamic Inversion and Backstepping  

 

Figure 3.10 Tracking errors of different designs 

 

Figure 3.11 The Backstepping Terms in Design g) and h) 

  



 Generic Comparison of Dynamic Inversion and Backstepping 59 

3.4. Conclusion 

From the above analysis, the non-cascaded designs a), c), d), and e) have obviously better 

performance over the other designs utilizing a low pass filter. However, the other four designs 

have more design freedom and could be applied to systems of non-triangular form. Among 

them, compared to the cascaded structure in design b) and f), the Backstepping approaches 

g) and h) have additional terms in the control law but still TSS has to be considered in the gain 

design for better performance. The low pass filter used in the control designs is the reason 

for the TSS, no matter if it is a NDI or Backstepping design. In this sense, the Backstepping 

designs utilizing filters should be considered as cascaded control, as their performance is not 

any better than the cascaded designs. 

From the above analysis and simulation, preliminary conclusion can be drawn: though 

Backstepping method shows more design freedom (even the same control law as NDI can be 

designed), NDI method gives most simplicity and equivalent best performance as 

Backstepping. In addition, as NDI is rooted from the physics of the system, the gain design 

can be more intuitive than the Lyapunov based Backstepping. 

To validate the conclusion, the comparisons between NDI and Backstepping are continued 

with real world example, the quadrotor attitude control and position control systems. The 

following issues are still open to be addressed, 

 The difference between design a), c) and d) can be explored on a nonlinear system: 

the quadrotor attitude system. 

 The filtered designs, b), g) and h) can be further compared on a non-triangular system: 

the quadrotor position system. 

However, design e) and design f) will not be considered as they are analytical the same as the 

design a) and design b) respectively. 
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4. Mathematical Models for the 
Quadrotor 

The mathematical formulations are the fundamentals for model-based designs. Deep 

understanding of the system dynamics is essential for the control design, data fusion and 

system integrations. Careful choice of math model could simplify the design, reduce 

implementation effort, and improve the overall performance. 

The mathematical models for the simulation, data fusion and control design are all based on 

state-space model, but the level of fidelity and focuses can be very different. In this chapter, 

the simulation model is briefly introduced; the models for data fusion are introduced on 

implementation basis. The models for control designs are analyzed in details and those are 

the basis for the control designs in later chapters. 

4.1. Model for Simulation 

The math model for simulation aims to virtually represent the real system in mathematical 

formulations. A high fidelity simulation model typically consists of the following modules: 

 Environment model: includes the atmosphere model, the earth geometry, the earth 

gravity and magnetic field 

 Motion kinematics: computes the kinematic transformations between all relevant 

frames for positions, velocities, accelerations, angular rates, and angular 

accelerations. 

 Airframe: represents the airframe thus varies from different air vehicles. It is generally 

divided into two sub–categories, passive systems and active system. The passive 

system may include avionics, electric system, hydraulic system and control surface 

actuators; and the active system may include landing gear, control surface deflection, 

fuel system, propulsion, fluid dynamics, weight and balance.  

 Equation of motion: includes the translational and rotational rigid body equation of 

motion based on the linear and angular momentum equation according to Newton’s 

second law. 

 Sensor model: gives the state measurements with realistic sensor errors, like update 

rate, bias and noises. 

For the quadrotor case, the environment consists of an ellipsoidal earth and gravity model 

conforming to WGS84, the world magnetic model and a static and dynamic atmosphere 

model. Parts of the airframe subsystem are the aerodynamics of the quadrotor’s base unit, 

gravity force and the propulsion model. As the latter is the crucial part of a multirotor 

simulation, it comprises a detailed model of the propeller’s aerodynamic properties and the 

electrical drive that consists of a BLDC motor, and a power output stage with RPM control. 

The electrical system is completed by a lithium-ion battery model. Furthermore, this 

subsystem contains the ground contact mechanics that are modeled as point contacts on a 
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2D half-plane with regularized friction laws. This allows conducting realistic takeoff and 

landing maneuvers in the test procedure. 

The equations of motion for the rigid body are formulated for a flat non-rotating earth and 

w.r.t. the aircraft’s reference point (R) which is not equal to the center of gravity. This leads to 

state propagation equations for rotation, translation, attitude and position. The orientation is 

described with a quaternion in order to benefit from a singularity free and computationally 

efficient differential equation. Position is propagated in a local navigation/world frame. The 

velocity state is denoted in the body fixed coordinate system, which leads to a coupled 

differential equation for rotation and translation. 

[
𝑚 ⋅ 𝐈3 −𝑚 ⋅ [(𝐫⃗𝑅𝐺) ×]

𝑚 ⋅ [(𝐫⃗𝑅𝐺) ×] (𝐈𝑅)𝐵𝐵
] ⋅ [

(𝐯̇⃗⃑𝑅)
𝐼𝐵

(𝛚̇⃗⃑⃑⃑𝐼𝐵)
𝐵]

= [
∑𝐅⃗ − 𝑚 ⋅ {(𝛚⃗⃑⃑⃑𝐼𝐵) × (𝐯⃗⃑𝑅)𝐼} − 𝑚 ⋅ {(𝛚⃗⃑⃑⃑𝐼𝐵) × [(𝛚⃗⃑⃑⃑𝐼𝐵) × (𝐫⃗𝑅𝐺)]}

∑𝐌⃗⃑⃑⃑ − (𝛚⃗⃑⃑⃑𝐼𝐵) × 𝐈𝑅 ⋅ (𝛚⃗⃑⃑⃑𝐼𝐵) − 𝑚 ⋅ (𝐫⃗𝑅𝐺) × [(𝛚⃗⃑⃑⃑𝐼𝐵) × (𝐯⃗⃑𝑅)𝐼]
] 

(4.1) 

In order to calculate the state derivatives, the given linear equation system has to be solved 

in each time step. 

In addition to the described physical system, there are models for all sensors and their signal 

processing in the flight control unit. This includes gyros, accelerometer, magnetometer, static 

pressure sensor and the optical tracking system. Each sensor model includes various effects 

like misalignment, scale-factor errors, nonlinearities, temperature dependent bias, limited 

bandwidth, saturation and noise as well as errors due to quantization and digital sampling. 

The described simulation model is implemented in Simulink and integrated in a testbed that 

allows closed loop testing in real-time. A virtual environment is also built using Simulink 3D 

animation toolbox as shown Figure 4.1. 

 

Figure 4.1 Snapshot of the Simulation Environment. 
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4.2. Models for Data Fusion 

The mathematical models for data fusion need to be observable from the sensor outputs to 

the internal states. The models for data fusion focus on the states to be estimated. Three 

basic models for data fusion are introduced in this section. They have been implemented and 

tested on the quadrotor platform. The math models are simple kinematic models and 

passively depend on sensor measurements. 

 

4.2.1. AHRS system 

An Attitude and Heading Reference System (AHRS) provides attitude estimation by integrating 

gyroscopes and fusing this data with accelerometer data and heading measurement normally 

from magnetometer. In this case, for the indoor experimental platform, the heading is 

measured by the vision sensor. Hence, the World frame is used instead of the NED frame. 

Typically, the input vector for the AHRS model is the three-axis angular rates measured by 

the gyroscopes. The output vector for the AHRS model is the gravity vector measured by the 

accelerometer. The state vector for the AHRS model is the attitude vector, represented by 

either Euler angle or Quaternions. It is also possible to estimate the gyro bias and scale factor 

error. However, they are very trivial in the particular case because in the start-up the gyro bias 

will be calibrated by resetting gyro value to zero and the bias walk during the quadrotor flight 

phase is negligible. Hence, only the attitude is considered as the state vector. 

4.2.1.1. System propagation 

The AHRS system is implemented using the EKF structure. As the Euler angle representation 

of the attitude has singularity problem and more computational intensive, Quaternion 

representation [51] is used. A unit quaternion has four elements, the last three elements are 

the ‘vector part’ of the quaternion and can be thought of as a vector about which rotation 

should be performed. The first element is the ‘scalar part’ that specifies the amount of rotation 

that should be performed about the vector part. Specifically, if 𝜃 is the angle of rotation and 

the vector [𝑖𝑥 𝑖𝑦 𝑖𝑧]𝑇is a unit vector representing the axis of rotation, then the quaternion 

elements can be defined as, 

𝐪̅ = [

𝑞0
𝑞1
𝑞2
𝑞3

] =

[
 
 
 
 
 
 
 cos

1

2
𝜃

𝑖𝑥 sin
1

2
𝜃

𝑖𝑦 sin
1

2
𝜃

𝑖𝑧 sin
1

2
𝜃]
 
 
 
 
 
 
 

 (4.2) 

With the quaternion representation, the attitude propagation equation can be derived as Eq. 

(4.3), 
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[

𝑞̇0
𝑞̇1
𝑞̇2
𝑞̇3

] = [

−𝑞1 −𝑞2 −𝑞3
𝑞0 −𝑞3 𝑞2
𝑞3 𝑞0 −𝑞1
−𝑞2 𝑞1 𝑞0

] [
𝑝
𝑞
𝑟
] (4.3) 

The system is over-determined as there are four variables but only three are required. Hence 

additional constraint, the square-sum is one, needs to be enforced. To correct the constraint 

violations during the propagation, an often used method is “gradient feedback”. This method 

uses feedback to control the square-sum 𝜆 to zero, which is defined as, 

𝜆 = 1 − (𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2) (4.4) 

And a constant feedback gain k may be chosen such that 𝑘 ∙ 𝑇𝑠 < 1 for a fixed integration 

step size 𝑇𝑠. Then the implemented propagation equation is, 

[

𝑞̇0
𝑞̇1
𝑞̇2
𝑞̇3

] = [

−𝑞1 −𝑞2 −𝑞3 𝑞0
𝑞0 −𝑞3 𝑞2 𝑞1
𝑞3 𝑞0 −𝑞1 𝑞2
−𝑞2 𝑞1 𝑞0 𝑞3

] [

𝑝
𝑞
𝑟
2𝑘𝜆

] (4.5) 

4.2.1.2. System Error State Model 

As described in previous section, the EKF consists of a propagation part that propagates the 

gyro data to nominal states and an error state Kalman filter to fuse the measurement data. 

Hence, the output equation is an error output equation. In error state, with small angle 

approximation, the conversion between the Quaternions and Euler angles is, 

𝛿𝐪̅ ≈ [
1

𝛿𝚿⃗⃑⃑⃑/2 
] (4.6) 

Where 𝛿𝚿⃗⃑⃑⃑ is the attitude of the estimated World frame 𝑊̃, with respect to true World frame, 

𝛿𝚿⃗⃑⃑⃑ = [
𝛿Φ
𝛿Θ
𝛿Ψ
] (4.7) 

The rotation of the attitude error vector can be approximated by its skew-symmetric matrix, 

with small angle assumption, i.e. sin 𝛿Ψ = 𝛿Ψ, cos 𝛿Ψ = 1. 

 𝐌𝑊𝑊̃ =

[
cos𝛿Θ cos𝛿Ψ sin𝛿Φ sin𝛿Θ cos𝛿Ψ − cos𝛿Φ sin𝛿Ψ cos 𝛿Φsin 𝛿Θ cos 𝛿Ψ + sin𝛿Φ sin𝛿Ψ
cos 𝛿Θ sin𝛿Ψ sin𝛿Φ sin𝛿Θ sin𝛿Ψ + cos 𝛿Φ cos𝛿Ψ cos 𝛿Φsin 𝛿Θ sin𝛿Ψ − sin 𝛿Φcos 𝛿Ψ
−sin𝛿Θ sin𝛿Φ cos𝛿Θ cos 𝛿Φ cos𝛿Θ

] 

   ≈ [
1 −𝛿Ψ 𝛿Θ
𝛿Ψ 1 −𝛿Φ
−𝛿Θ 𝛿Φ 1

] = 𝐈 + 𝛿𝚿 

Where 𝛿𝚿 is a skew-symmetric matrix of 𝛿𝚿⃗⃑⃑⃑, defined as, 

𝛿𝚿 = [
0 −𝛿Ψ 𝛿Θ
𝛿Ψ 0 −𝛿Φ
−𝛿Θ 𝛿Φ 0

] (4.8) 
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With the approximation, the error propagation equation can be derived. The Euler 

differentiation rule gives, 

𝐌̇𝑊𝐵 = 𝐌𝑊𝐵𝛀𝐵𝐵
𝑊𝐵 (4.9) 

While the 𝛀𝐵𝐵
𝑊𝐵 is the skew-symmetric matrix of the angular rate, 

𝛀𝐵𝐵
𝑊𝐵 = [

0 −𝑟 𝑞
𝑟 0 −𝑝
−𝑞 𝑝 0

] (4.10) 

And 𝐌𝑊𝐵 can be slipped to two parts, 

𝐌𝑊𝐵 = 𝐌𝑊𝑊̃𝐌𝑊̃𝐵 = (𝐈 + 𝛿𝚿)𝐌𝑊̃𝐵 (4.11) 

Eq. (4.9) can be linearized to derive the error state equation, 

(𝐈 + 𝛿𝚿)𝐌̇𝑊̃𝐵 + 𝛿𝚿̇𝐌𝑊̃𝐵 = (𝐈 + 𝛿𝚿)𝐌𝑊̃𝐵(𝛀𝐵𝐵
𝑊̃𝐵 + 𝛿𝛀𝐵𝐵

𝑊𝐵) 

While, (𝐈 + 𝛿𝚿)𝐌̇𝑊̃𝐵 = (𝐈 + 𝛿𝚿)𝐌𝑊̃𝐵𝛀𝐵𝐵
𝑊̃𝐵, to be subtracted, 

𝛿𝚿̇𝐌𝑊̃𝐵 = (𝑰 + 𝛿𝚿)𝐌𝑊̃𝐵𝛿𝛀𝐵𝐵
𝑊̃𝐵 = 𝐌𝑊̃𝐵𝛿𝛀𝐵𝐵

𝑊𝐵 + 𝛿𝚿𝐌𝑊̃𝐵𝛿𝛀𝐵𝐵
𝑊𝐵 

Ignore the second order error term, 

𝛿𝚿̇𝐌𝑊̃𝐵 = 𝐌𝑊̃𝐵𝛿𝛀𝐵𝐵
𝑊𝐵 (4.12) 

Hence, 

𝛿𝚿̇ = 𝐌𝑊̃𝐵𝛿𝛀𝐵𝐵
𝑊𝐵𝐌𝐵𝑊̃ (4.13) 

Transform it into vector representation, we can obtained the error propagation equation, 

𝛿𝚿̇⃗⃑⃑⃑ = 𝐌𝑊̃𝐵𝛿(𝛚⃗⃑⃑⃑
𝑊𝐵)𝐵 

(4.14) 

The output equation from the accelerometer data can be derived by neglecting the 

translational acceleration or treat it as measurement noise. For the multirotor system, it is a 

zero-mean state. However, due to this assumption, certain short-term estimation errors may 

arise during dynamic maneuvers (coordinated turn/circle). There large value accelerations 

may last for a while. However, in most of the flight envelop, the assumption is practical. 

𝐚⃗⃑𝐵
𝐼𝐼 = 𝐟𝐵

𝐼𝐼 +𝐌𝐵𝑊 𝐠⃗⃑𝑊 ≈ 0 

𝐟𝐵
𝐼𝐼 = −𝐌𝐵𝑊 𝐠⃗⃑𝑊 = −𝐌𝐵𝑊̃𝐌𝑊̃𝑊 𝐠⃗⃑𝑊 

(4.15) 

The 𝐌𝐵𝑊̃ is the estimated transformation matrix computed from the attitude estimation, and 

𝐌𝑊̃𝑊 is, 

𝐌𝑊̃𝑊 = 𝐈 − 𝛿𝚿 = [
1 𝛿Ψ −𝛿Θ

−𝛿Ψ 1 𝛿Φ
𝛿Θ −𝛿Φ 1

] (4.16) 

Hence, 
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𝐟𝐵
𝐼𝐼 = −𝐌𝐵𝑊̃(𝐈 − 𝛿𝚿)𝐠⃗⃑𝑊 = −𝐌𝐵𝑊̃ 𝐠⃗⃑𝑊 +𝐌𝐵𝑊̃𝛿𝚿𝐠⃗⃑𝑊 

Transforming the above equation into O frame by multiplying both sides with 𝐌𝑊̃𝐵 

𝐟𝑊̃
𝐼𝐼 = 𝐌𝑊̃𝐵𝐟𝐵

𝐼𝐼 = −𝐠⃗⃑𝑊 + 𝛿𝚿𝐠⃗⃑𝑊 (4.17) 

Since 𝚿 is a skew-symmetric matrix, the following transformation can be made,  

𝛿𝚿𝐠⃗⃑𝑊 = 𝛿𝚿⃗⃑⃑⃑ × 𝐠⃗⃑𝑊 = 𝐠⃗⃑𝑊 × 𝛿𝚿⃗⃑⃑⃑ = 𝐆𝑊𝛿𝚿⃗⃑⃑⃑ (4.18) 

Where, 

𝐠⃗⃑𝑊 = [
0
0
𝑔
] 

𝐆𝑊 = [
0 −𝑔 0
𝑔 0 0
0 0 0

] 

Taking the first two row of the Eq. (4.17), we can derive the output equation for the 

accelerometer measurement. 

[
𝑓𝑥
𝑓𝑦
]
𝑊̃

𝐼𝐼

= [
0 𝑔
−𝑔 0

] [
𝛿Φ
𝛿Θ
] (4.19) 

The output equation for the vision heading is relative simple 

𝛿Ψvision = 𝛿Ψ (4.20) 

With the above mathematical model, the standard AHRS [52] can be applied. 
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4.2.2. Position Observer 

The model for the position observer is relatively simple. The input is the accelerometer and 

the output is the position measured by the vision sensor. The states are the position and 

velocity in the World frame, which can be regarded as inertial frame for the quadrotors. So 

Newton’s 2nd law can be applied in W frame. 

The system equation for this model is linear as a chain of two integrators, 

[
(𝐫̇⃗)

𝑊

𝑊

(𝐯̇⃗⃑)
𝑊

𝑊𝑊] = [
𝟎 𝐈
𝟎 𝟎

] [
(𝐫⃗)𝑊
(𝐯⃗⃑)𝑊

𝑊] + [
𝟎
𝐈
] (𝐚⃗⃑)𝑊

𝑊𝑊 (4.21) 

where, the translational acceleration (𝐚⃗⃑)𝑊
𝑊𝑊  can be calculated using the AHRS attitude 

estimation and accelerometer data, assuming the World frame is the inertial frame. 

(𝐚⃗⃑)𝑊
𝑊𝑊 = 𝐌𝑊𝐵𝐟𝐵

𝐼𝐼 + 𝐠⃗⃑𝑊 (4.22) 

The measurement equation is, 

𝐲⃗ = 𝐇𝐱⃗⃑ (4.23) 

(𝐫⃗)𝑊,𝑣𝑖𝑠𝑖𝑜𝑛 = [𝐈 𝟎] [
(𝐫⃗)𝑊
(𝐯⃗⃑)𝑊

𝑊] 
(4.24) 

Using the fixed-gain-observer structure as given in Eq. (2.98), the gains can be designed 

based on the properties of the vision sensor and accelerometer. Together with the AHRS 

system, the full state vector necessary for the position control is available. In the flight tests, 

the cascaded data fusion structure gives high robustness and adequate performance, though 

certain attitude estimation error may arise due to the dynamic maneuvers. 
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4.2.3. Full State Extended Kalman Filter 

The full state EKF includes the position, velocity and attitude states. It can correct those errors 

due to the dynamic maneuvers because the attitude drift is no longer corrected by the 

acceleration measurement, but by the position measurement, either from the GPS or the 

vision sensor. 

The EKF for the complete state vector of position dynamics has same structure as the AHRS 

system, but extend the states to position. The propagation part propagates IMU measurement 

to all states. It combines the propagations in the AHRS and position observer as in Eqs. (4.3) 

and (4.21). 

The error state model needs to be derived. In addition to the cascaded structure, the 

accelerometer bias can be observed from the velocity state in the full state model (it is not 

observable in hovering state where the velocity is zero). In the implemented EKF, there are 12 

error states: position, velocity, attitude, and accelerometer bias. The error attitude dynamics 

has been derived in Eq. (4.14). The error velocity dynamics is to be derived. Recall the full 

state translational dynamics equation, 

(𝐯̇⃗⃑)
𝑊

𝑊𝑊
= 𝐌𝑊𝐵𝐟𝐵

𝐼𝐼 + 𝐠⃗⃑𝑊 (4.25) 

Break the true state into estimated state and error state, 

(𝐯̇⃗⃑)
𝑊

𝑊𝑊
= (𝐯̇̃⃗⃑)

𝑊

𝑊𝑊

+ 𝛿(𝐯̇⃗⃑)
𝑊

𝑊𝑊
 (4.26) 

𝐌𝑊𝐵 = (𝐈 + 𝛿𝚿)𝐌𝑊̃𝐵 (4.27) 

𝐟𝐵
𝐼𝐼 = (𝐟

̃
𝐵
𝐼𝐼 + 𝛿𝐟𝐵

𝐼𝐼) (4.28) 

Substitute them into the dynamic equation, 

 

(𝐯̇̃⃗⃑)
𝑊

𝑊𝑊

+ 𝛿(𝐯̇⃗⃑)
𝑊

𝑊𝑊
= (𝐈 + 𝛿𝚿)𝐌𝑊̃𝐵 (𝐟

̃
𝐵
𝐼𝐼 + 𝛿𝐟𝐵

𝐼𝐼) + 𝐠⃗⃑𝑊 (4.29) 

While the estimated state dynamics is, 

(𝐯̇̃⃗⃑)
𝑊

𝑊𝑊

= 𝐌𝑊̃𝐵𝐟
̃
𝐵
𝐼𝐼 + 𝐠⃗⃑𝑊 (4.30) 

The remaining error part can be obtained by subtracting the above two equations, 

𝛿(𝐯̇⃗⃑)
𝑊

𝑊𝑊
= (𝐈 + 𝛿𝚿)𝐌𝑊̃𝐵 (𝐟

̃
𝐵
𝐼𝐼 + 𝛿𝐟𝐵

𝐼𝐼) −𝐌𝑊̃𝐵𝐟
̃
𝐵
𝐼𝐼 (4.31) 

Ignoring the second order error term, 

𝛿(𝐯̇⃗⃑)
𝑊

𝑊𝑊
= 𝐌𝑊̃𝐵𝛿𝐟𝐵

𝐼𝐼 + 𝛿𝚿𝐌𝑊̃𝐵𝐟
̃
𝐵
𝐼𝐼 (4.32) 
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𝛿(𝐯̇⃗⃑)
𝑊

𝑊𝑊
= 𝐌𝑊̃𝐵𝛿𝐟𝐵

𝐼𝐼 + 𝛿𝚿𝐟
̃
𝑊̃
𝐼𝐼  (4.33) 

Where, 

𝛿𝚿𝐟
̃
𝑊̃
𝐼𝐼 = 𝛿𝚿⃗⃑⃑⃑ × 𝐟

̃
𝑊̃
𝐼𝐼 = − 𝐟

̃
𝑊̃
𝐼𝐼 × 𝛿𝚿⃗⃑⃑⃑ = −(𝐟

̃
𝑊̃
𝐼𝐼 ×)𝛿𝚿⃗⃑⃑⃑ 

The (𝐟
̃
𝑊̃
𝐼𝐼 ×) indicate the skew symmetric matrix form of the vector 𝐟

̃
𝑊̃
𝐼𝐼  

(𝐟
̃
𝑊̃
𝐼𝐼 ×) = [

0 −𝑓𝑧 𝑓𝑦
𝑓𝑧 0 −𝑓𝑥
−𝑓𝑦 𝑓𝑥 0

] (4.34) 

In addition, the error accelerometer consists of noise and accelerometer bias, 

𝛿𝐟𝐵
𝐼𝐼 = 𝛿𝐟

̃
𝐵
𝐼𝐼 + 𝐛⃗𝑎 

(4.35) 

Hence, the error state equation for velocity derivative is, 

𝛿(𝐯̇⃗⃑)
𝑊

𝑊𝑊
= 𝐌𝑊̃𝐵 (𝛿𝐟

̃
𝐵
𝐼𝐼 + 𝐛⃗𝑎) − (𝐟

̃
𝑊̃
𝐼𝐼 ×) 𝛿𝚿⃗⃑⃑⃑ (4.36) 

To sum the error state equation up in matrix form, 

[
 
 
 
 
 𝛿(𝐫̇⃗)𝑊

𝑊

𝛿(𝐯̇⃗⃑)
𝑊

𝑊𝑊

𝛿𝚿̇⃗⃑⃑⃑

𝐛⃗
̇
𝑎 ]

 
 
 
 
 

=

[
 
 
 
𝟎 𝐈 𝟎 𝟎

𝟎 𝟎 − (𝐟
̃
𝑊̃
𝐼𝐼 ×) 𝐌𝑊̃𝐵

𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 ]

 
 
 

[
 
 
 
 
𝛿(𝐫⃗)𝑊
𝛿(𝐯⃗⃑)𝑊

𝑊

𝛿𝚿⃗⃑⃑⃑

𝐛⃗𝑎 ]
 
 
 
 

+ [

𝟎 𝟎 𝟎
𝐌𝑊̃𝐵 𝟎 𝟎
𝟎 𝐌𝑊̃𝐵 𝟎
𝟎 𝟎 𝐈

] [
𝛿𝐟
̃
𝐵
𝐼𝐼

𝛿(𝛚⃗⃑⃑⃑𝑊𝐵)𝐵

𝛿𝐛⃗𝑎

] (4.37) 

With the above mathematical model, the standard Kalman filter technique can be applied. In 

the quadrotor implementation, the EKF has a couple of disadvantages compared to the 

cascaded structure of AHRS and position observer. The main reason is that position 

measurement covariance for the vision sensor is very difficult to quantify and the estimated 

covariance could be far away from the true value. In the full state EKF, the accuracy and 

integrity of the position measurement, especially the confidence level, could propagate to the 

attitude estimation. Good estimate could improve the estimation quality, but false estimate of 

the confidence level will reduce the robustness of the attitude estimation because of the extra 

dependence on position measurement. In the case of bad or wrong covariance information 

given by the implemented vision algorithm [5], wrong corrections will be applied to attitude 

estimation. In addition, if position signals are lost for a while and then recovered later (typical 

GPS behavior), EKF would response with large corrections to recover the states as fast as 

possible. However, this will, on one hand, effect the attitude estimation with big correction 

step; and on the other hand, couple the control system due to the large state correction. In 

these aspects, the full state EKF is not as robust as the cascaded data fusion structure, 

though it has slightly better estimation performance. The choice of full state EKF and 

cascaded data fusion structure shall subject to applications. In our quadrotor application, the 

cascaded structure is favored in the implementations.  
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4.3. Models for Control Design 

The mathematical models for the control designs are developed so that model-based control 

designs like NDI and Backstepping can be applied. It is often much simpler than the simulation 

model, but it should capture the most distinct feature of the nonlinearities of the plant 

dynamics. In the following section, the mathematical models used for the control design are 

introduced, starting from the system input, the motor commands, until the system output, 

position. 

The signal flow diagram is shown in Figure 4.2. The new variable 𝐠𝑥𝑦 which serves as an 

alternative of the pitch and bank angles, will be introduced in the following section. The four 

integrators indicated the position system has at least system order of four, if the actuator 

dynamics is not considered. 

 

Figure 4.2 Signal flow diagram of the quadrotor position dynamics. 

 

4.3.1. The Force and Moment Mapping 

The force and moment mapping refers to the mapping from the system input to the actuated 

forces and moments. The actuator dynamics, which is the motor dynamics in this case, is not 

included in the models for control design. Its dynamics is normally regarded as first order lag 

element dynamics. 

The control input for the experimental quadrotor is the RPM commands. There is an internal 

motor controller regulates the propeller rotation speed with feedback control. In the normal 

region of operation, a quadratic relationship is normally assumed between the RPM command 

and the force/torque generated by the propeller. However, the propeller efficiency drops with 

at high RPM and the power index of the mapping gets smaller. 

𝐹𝑝𝑟𝑜𝑝,𝑖 = 𝑘𝑛 ∙ 𝑛𝑖
𝑝
;     𝑀𝑝𝑟𝑜𝑝,𝑖 = 𝑘𝑚 ∙ 𝐹𝑝𝑟𝑜𝑝,𝑖 

(4.38) 

Where 𝑘𝑛 and 𝑘𝑚 are the propeller thrust and moment constant, and the power index 𝑝 is 

equal or smaller than two. They can be estimated in experiments and flight tests. Certain 

errors can be expected in the estimation. 

With the single propeller force and moment, the total forces and moments can be calculated 

as follows, 
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[

𝐿
𝑀
𝑁
𝑇

] = [

0 −𝑅 0 𝑅
𝑅 0 −𝑅 0
−𝑘𝑚 𝑘𝑚 −𝑘𝑚 𝑘𝑚
1 1 1 1

]

[
 
 
 
𝐹𝑝𝑟𝑜𝑝,1
𝐹𝑝𝑟𝑜𝑝,2
𝐹𝑝𝑟𝑜𝑝,3
𝐹𝑝𝑟𝑜𝑝,4]

 
 
 

 (4.39) 

The force and moment models are typically utilized to compute a unique solution from the 

desired force and moments to the actuator commands. In the control system, this is called 

control allocation. For over-actuated system, e.g. hex-copter, the control allocation problems 

can be formulated as optimization problems so that all available actuations can be utilized 

and secondary objectives may be achieved. However, the quadrotor is an under-actuated 

system, i.e. the force actuation is only acting on the Body-fixed z axis so that it cannot 

accelerate in a direction perpendicular to the motor axis, although it can be indirectly 

controlled. For such under-actuated system, the controls can be allocated by simple inverse 

of the mapping equation (4.39). 

 

4.3.2. Rotational Dynamics 

Given the total moments from the motor inputs, the rotational dynamics can be derived using 

Newton’s second law, 

(𝛚⃑⃑⃑ ̇𝑊𝐵)
𝐵

𝐵
= (𝐈𝐺)𝐵𝐵

−1 ⋅ 𝛴(𝐌⃗⃑⃑⃑𝐺)
𝐵
− (𝐈𝐺)𝐵𝐵

−1 ⋅ (𝛚⃑⃑⃑ 𝑊𝐵)𝐵 × {(𝐈
𝐺)𝐵𝐵 ⋅ (𝛚⃑⃑⃑ 

𝑊𝐵)𝐵} 
(4.40) 

In a simplified form without the notations, 

𝛚⃑⃑⃑ ̇ = 𝐈−1 ⋅ 𝐌⃑⃑⃑ − 𝐈−1 ∙ 𝛚⃑⃑⃑ × 𝐈𝛚⃑⃑⃑  (4.41) 

This rotational dynamic equation is the same for most of the aerial vehicles. This nonlinear 

dynamics is often feedback linearized by so-called inertial decoupling. The moment of inertia 

of the quadrotor can be calculated from the CAD model or measured experimentally. 

 

4.3.3. Attitude propagation by Euler Angles 

After the rotational dynamics, the attitude propagation is only kinematic, i.e. there is no 

uncertainty in the equation. Simply propagating the angular rate, the attitude represented by 

Euler angles can be derived.  

[
Φ̇
Θ̇
Ψ̇

] = [

1 sinΦ tan Θ cosΦ tan Θ
0 cosΦ − sinΦ

0
sinΦ

cos Θ

cosΦ

cosΘ

] [
𝑝
𝑞
𝑟
] (4.42) 

However, the Euler angle representation of the attitude leads to a singularity in the above 

equation, at pitch angle of 90°. In addition, the trigonometric functions can’t be directly 

implemented with fixed-point computing environment. Look-up tables could be used to 

compute them, but a compromise needs to be made between the accuracy and 

computational power. 
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The attitude could also be propagated using the quaternions representation. The propagation 

equations have been introduced in section 4.2.1.1. The singularity at pitch angle of 90° can 

be eliminated as well as computational power is reduced, however, the quaternions introduce 

extra complexities in the control design, which is not covered in the scope of this thesis. 

 

4.3.4. Attitude propagation using a novel parameterization 

A novel parameter was first introduced in the author’s paper [36] to represent the pitch and 

bank angles. In the multirotor platform, the pitch and bank angles are commanded to change 

the direction of the total thrust vector.  However, imaging the force dynamics in the Body-

fixed frame, the thrust vector is always acting on the z-axis, the only ‘force’ acting on the x- 

and y-axis is the gravitational force. By pitch or bank rotations, the gravitational force 

distribution on the x- and y-axis changes from 0 to 1g.  

The idea is to use the gravitational acceleration components acting on the x- and y-axis of 

the Body-fixed frame to represent the pitch and bank angle. The acceleration representation 

naturally fits better in the dynamic model constructed based on the Newton’s law, rather than 

the human-orientated Euler angle definition. The gravitational acceleration in the Body-fixed 

frame is, 

𝐠⃑ 𝐵 = 𝐌𝐵𝑊 ∙ 𝐠⃑ 𝑊 (4.43) 

Where 

𝐌𝐵𝑊 = [
cosΨ cosΘ sinΨ cosΘ −sinΘ

cosΨ sinΘ sinΦ − sinΨ cosΦ sinΨ sinΘ sinΦ + cosΨ cosΦ cosΘ sinΦ
cosΨ sinΘ cosΦ + sinΨ sinΦ sinΨ sinΘ cosΦ − cosΨ sinΦ cosΘ cosΦ

] 

𝐠⃑ 𝑊 = [
0
0
𝑔
] 

To insert the transformation matrix calculated from the data fusion either quaternion or Euler 

angle formulation, 

[

𝑔𝑥
𝑔𝑦
𝑔𝑧
] = 𝑔 ∙ [

2(𝑞1𝑞3 − 𝑞0𝑞2)

2(𝑞2𝑞3 + 𝑞0𝑞1)

𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] = 𝑔 ∙ [
−sin Θ

cos Θ sinΦ
cosΘ cosΦ

] (4.44) 

Hence, two variables can be extracted from above, 

{
𝑔𝑥 = 𝑔 ∙ −sin Θ
𝑔𝑦 = 𝑔 ∙ cos Θ sinΦ

   (4.45) 

Mathematically, we can see from Eq. (4.45) that the two variables 𝑔𝑥 and 𝑔𝑦 contain the same 

information as pitch and bank angles. Physically, thinking in the Body-fixed frame, the rotation 

of the attitude does not change the direction of thrust vector (z-component), but the direction 

of the gravitational vector (x-y-components).  

The propagation equation from the angular rate to the new variables can be derived from the 

Euler differentiation rule, 
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(𝐠⃑ ̇)
𝐵

𝐵
= (𝐠⃑ ̇)

𝐵

𝑊

⏟  
0

− (𝛚⃑⃑⃑ 𝑊𝐵)𝐵 × 𝐠⃑ 𝐵 = 𝐠⃑ 𝐵 × (𝛚⃑⃑⃑ 
𝑊𝐵)𝐵 (4.46) 

In scalar form, 

𝑔̇𝑥 = −𝑔𝑧 ∙ 𝑞 + 𝑔𝑦 ∙ 𝑟

𝑔̇𝑦 = 𝑔𝑧 ∙ 𝑝 − 𝑔𝑥 ∙ 𝑟

𝑔̇𝑧 = −𝑔𝑦 ∙ 𝑝 + 𝑔𝑥 ∙ 𝑞
 

The first two equations give the propagation from pitch and roll rate to the 𝑔𝑥  and 𝑔𝑦 . 

Compared to the conventional attitude parameterization, the heading is excluded, however 

considering it is not related to the translational dynamic, a separate heading propagation 

equation works fine as well. 

Ψ̇ =
sinΦ

cos Θ
𝑞 +

cosΦ

cosΘ
𝑟 (4.47) 

Ψ̇ =
𝑔

𝑔2 − 𝑔𝑥
2
(𝑔𝑦𝑞 + 𝑔𝑧𝑟) (4.48) 

Together with the novel parameterization, the equation of motion can be collected in matrix 

form, 

[

𝑔̇𝑥
𝑔̇𝑦

Ψ̇

] = [

0 −𝑔𝑧 𝑔𝑦
𝑔𝑧 0 −𝑔𝑥

0
𝑔𝑔𝑦

𝑔2 − 𝑔𝑥
2

𝑔𝑔𝑧
𝑔2 − 𝑔𝑥

2

] [
𝑝
𝑞
𝑟
] (4.49) 

 

4.3.5. Translational dynamics 

The translational dynamics can be derived in an inertial frame where Newton’s second law is 

applicable, in our case, the World frame. 

(𝐯⃑ ̇𝑘
𝐺)
𝑊

𝑊𝑊
=
𝛴(𝐅⃗𝐺)

𝑊

𝑚
=
𝐌𝑊𝐵

𝑚
∙ (𝐅 𝑝𝑟𝑜𝑝,𝐵 + 𝐅 𝑎𝑒𝑟𝑜,𝐵) + 𝐠⃑ 𝑊 

(4.50) 

where the transformation matrix 𝐌𝑊𝐵, 

𝐌𝑊𝐵 = 𝐌𝐵𝑊
𝑇  

𝐌𝑊𝐵 = [
cosΨ cos Θ cosΨ sin Θ sinΦ − sinΨ cosΦ cosΨ sinΘ cosΦ + sinΨ sinΦ
sinΨ cos Θ sinΨ sinΘ sinΦ + cosΨ cosΦ sinΨ sin Θ cosΦ − cosΨ sinΦ
−sinΘ cosΘ sinΦ cos Θ cosΦ

] (4.51) 

where the propeller force 𝐅 𝑝𝑟𝑜𝑝,𝐵 is the total thrust force vector. It is aligned with the Body-

fixed z-axis of the vehicle. 

𝐅 𝑝𝑟𝑜𝑝,𝐵 = [
0
0
−𝑇
] (4.52) 
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The aerodynamic force 𝐅 𝑎𝑒𝑟𝑜,𝐵  mainly consists of aerodynamic drag and disturbances. In 

conventional formulation using Euler angles, there are often ignored in order to solve the 

control commands of attitude angles. So that Eq. (4.50) can be simplified as, 

(𝐯⃑ ̇𝑘
𝐺)
𝑊

𝑊𝑊
≈ 𝐌𝑊𝐵 ∙ [

0
0

−
𝑇

𝑚

] + [
0
0
𝑔
] = −

𝑇

𝑚
∙ [
cosΨ sinΘ cosΦ + sinΨ sinΦ
sinΨ sinΘ cosΦ − cosΨ sinΦ

cosΘ cosΦ
] + [

0
0
𝑔
] (4.53) 

Based on the dynamic equation, proper model based control design computing the desired 

thrust, pitch and bank angles can be developed [5].  

With the new parameterization introduced, the translational dynamics can be formulated in a 

much simpler form, 

(𝐯⃑ ̇𝑘
𝐺)
𝑊

𝑊𝑊
= 𝐌𝑊𝐵 ∙ 𝐟 𝐵 + 𝐠⃑ 𝑊 = 𝐌𝑊𝐵 ∙ (𝐟 𝐵 + 𝐠⃑ 𝐵) 

(4.54) 

The specific force 𝒇⃑ 𝐵  is the sum of propeller force and aerodynamic force (i.e. all non-

gravitational force) normalized by the mass. It is also what a three-axis accelerometer 

measures. The pseudo control can be grouped together,  

(𝐯⃑ ̇𝑘
𝐺)
𝑊

𝑊𝑊
= 𝐌𝑊𝐵 ∙ ([

𝑓𝑥
𝑓𝑦
𝑓𝑧

]

𝐵

+ [

𝑔𝑥
𝑔𝑦
𝑔𝑧
]

𝐵

) = 𝐌𝑊𝐵 ∙ ([

𝑓𝑥
𝑓𝑦
𝑔𝑧

]

𝐵

+ [

𝑔𝑥
𝑔𝑦
𝑓𝑧

]

𝐵

) (4.55) 

The specific force on the Body-fixed z-axis 𝑓𝑧 is composed of two parts, propeller thrust and 

aerodynamic force. Ignoring the aerodynamic drag and disturbances on the z-axis, the 

translational dynamic equation of motion is, 

(𝐯⃑ ̇𝑘
𝐺)
𝑊

𝑊𝑊
= 𝐌𝑊𝐵 ∙ ([

𝑓𝑥
𝑓𝑦
𝑔𝑧

]

𝐵

+ [

𝑔𝑥
𝑔𝑦

Δ𝑓𝑧 −
𝑇

𝑚

]

𝐵

) 

(𝐯⃑ ̇𝑘
𝐺)
𝑊

𝑊𝑊
≈ 𝐌𝑊𝐵 ∙ ([

𝑓𝑥
𝑓𝑦
𝑔𝑧

]

𝐵

+ [

𝑔𝑥
𝑔𝑦

−
𝑇

𝑚

]

𝐵

) (4.56) 
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4.3.6. Position Propagation 

The position propagation in the World frame is linear and straightforward, 

(𝐫 ̇𝑘
𝐺)
𝑊

𝑊
= (𝐯⃑ 𝑘

𝐺)𝑊
𝑊 (4.57) 

For the normal operation of the multirotors, NED or a leveled local frame is often used. GPS 

measurements can be linearized and transformed in the local coordinate. Hence, the position 

propagation is with no complexity for multirotors. 
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5. Attitude Control Designs 
Nowadays IMU is almost a standard sensor package integrated on quadrotors. It can provide 

accuracy and robust attitude estimations for the control task. The heading angle could also 

be measured by onboard magnetometers. Therefore, the attitude control is one of the most 

common and basic control tasks for quadrotors.  

In this section, first the control allocation is introduced, because it is the same for all control 

designs. Next, the attitude control is designed based on the conventional Euler angle 

representation. Then the novel parameterization introduced in above section is used for the 

attitude control design. 

The comparison of different control design structures is further illustrated with the attitude 

example. From the mathematical model of the attitude dynamics, we can see it is a system of 

triangular form. Therefore direct NDI/Backstepping can be applied, which are gives better 

performance to the other designs with filter involved. In the direct NDI/Backstepping designs, 

there are four variations: a), c), d) and e) in section 3. Designs a) and e) are actually the same. 

Hence, in total three different designs [a), c) & d)] will be introduced in the following sections. 

The final comparison results in the last section are taken from simulation and flight tests. 

Detailed experimental setups are described in Chapter 8. 
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5.1. Control Allocation 

The control allocation unit allocates the desired forces and moments to the system input, in 

this case, the RPM of each motor. For the experimental vehicle used in the scope of the thesis, 

the motor controller has dedicated RPM feedback control, which ensures the stability of the 

internal actuator dynamics. Hence the nonlinear control approaches don’t have to deal with 

unstable internal dynamics with this class of system.  

The allocation equation can be obtained by inversing the force and moment mapping 

equations in Eqs. (4.38) and (4.39), 

[
 
 
 
𝐹𝑝𝑟𝑜𝑝,1
𝐹𝑝𝑟𝑜𝑝,2
𝐹𝑝𝑟𝑜𝑝,3
𝐹𝑝𝑟𝑜𝑝,4]

 
 
 

=
1

4
∙

[
 
 
 
 

0 2𝑅−1 −𝑘𝑚
−1 1

−2𝑅−1 0 𝑘𝑚
−1 1

0 −2𝑅−1 −𝑘𝑚
−1 1

2𝑅−1 0 𝑘𝑚
−1 1]

 
 
 
 

[

𝐿
𝑀
𝑁
𝑇

] , 𝑛𝑖 = (
𝐹𝑝𝑟𝑜𝑝,𝑖

𝑘𝑛
)
𝑝

 (5.1) 

Using the above equations, the allocation works well in the nominal range. Hardware limits on 

the total thrust and moments can be specified beforehand. However, if any of the saturations 

get into conflicts, priorities need to be assigned. Optimization is not necessary for quadrotor, 

as there is no redundancy in the system. 

The priorities can be assigned depending on the application. In this case, to ensure rotational 

stability, the pitching and rolling moments have the top priorities, followed by the total thrust, 

and the yawing moment is with lowest priority.  

Step 1, for the pitching and rolling moments only the hardware limit is imposed,  

{
−𝐿𝑚𝑎𝑥 = 𝐿𝑚𝑖𝑛 < 𝐿 < 𝐿𝑚𝑎𝑥
−𝑀𝑚𝑎𝑥 = 𝑀𝑚𝑖𝑛 < 𝑀 < 𝑀𝑚𝑎𝑥

 (5.2) 

The maximum pitching and rolling moments can be computed as, 

𝐿𝑚𝑎𝑥 = 𝑀𝑚𝑎𝑥 = (
𝑇𝑚𝑎𝑥 
4

−
𝑇𝑚𝑖𝑛 
4
) ∙ 𝑅 

Step 2, for the total thrust, not only the hardware limit is imposed, but also the pitching and 

rolling moments limits are considered. By imposing the limits, the total thrust is dynamically 

limited by the pitching and rolling moments.  

2𝑁 = 𝑇𝑚𝑖𝑛 < 𝑇 < 𝑇𝑚𝑎𝑥 = 14𝑁 

𝑚𝑎𝑥 (|
2𝐿

𝑅
| , |
2𝑀

𝑅
|) < 𝑇 < 𝑇𝑚𝑎𝑥 −𝑚𝑎𝑥 (|

2𝐿

𝑅
| , |
2𝑀

𝑅
|) 

(5.3) 

Step 3, for the yawing moments, the limits comes from the physical limits and the other three 

control inputs  

𝑁𝑚𝑖𝑛 < 𝑁 < 𝑁𝑚𝑎𝑥 

𝑚𝑎𝑥 (|
2𝐿

𝑅
| − 𝑇,  𝑇 + |

2𝑀

𝑅
| − 𝑇𝑚𝑎𝑥) <

𝑁

𝑘𝑚
< 𝑚𝑖𝑛 (𝑇 − |

2𝑀

𝑅
| , 𝑇𝑚𝑎𝑥 − 𝑇 − |

2𝐿

𝑅
|) 

(5.4) 

  



 Attitude Control Designs 79 

5.2. Attitude Control using Euler Angles 

The Euler angles are probably the most intuitive way to represent the attitude from pilot point 

of view. Hence, it is natural to use them as control state. If the quadrotor is only controlled 

near the hovering attitude, linear control using the Euler angles is sufficient. However, in the 

large angle commands or aggressive maneuver region, the dynamics gets highly nonlinear 

and tightly coupled. There nonlinear control is a better choice to provide consistent control 

behavior without gain scheduling (at least with less dense grid). 

 

5.2.1. Classical NDI Control using Euler Angles 

Classical NDI control is designed using Euler angles in this section, i.e. NDI design a). As 

shown in the attitude propagation by Euler angle in Eq. (4.42) and the rotational dynamics, the 

attitude control has system order of 2, which corresponds to NDI relative degree 2. 

5.2.1.1. Dynamic Inversion 

The considered system output is the Euler angles and the control input is the desired 

moments. The nonlinear control loop(s) calculates the desired moments, which is then 

allocated to the motor RPM in the control allocation unit.  

As the desired moments do not appear in the attitude propagation equation in Eq. (4.42), the 

attitude derivative needs to be further differentiated, 

Ψ̈⃑⃗⃑⃑ = [
Φ̈
Θ̈
Ψ̈

] =

[
 
 
 
 
 Θ̇Φ̇ tanΘ +

Θ̇Ψ̇

cos Θ
−Ψ̇Φ̇ cos Θ

Θ̇Φ̇

cos Θ
+ Θ̇Ψ̇ tanΘ]

 
 
 
 
 

+ [

1 sinΦ tanΘ cosΦ tanΘ
0 cosΦ − sinΦ

0
sinΦ

cosΘ

cosΦ

cos Θ

] [
𝑝̇
𝑞̇
𝑟̇

] (5.5) 

Inverting the above equation, the desired angular accelerations can be calculated from the 

pseudo control Ψ⃗⃑⃑⃑𝜈, i.e., the 2nd derivative of the output vector, 

𝛚⃑⃑⃑ ̇𝑑 = [

Φ̈𝜈 − Ψ̈𝜈 sinΘ − Θ̇Ψ̇ cosΘ

Θ̈𝜈 cosΦ + Ψ̈𝜈 sinΦ cosΘ + Ψ̇Φ̇ cosΦ cosΘ − Θ̇Φ̇ sinΦ − Θ̇Ψ̇ sinΦ sinΘ

−Θ̈𝜈 sinΦ + Ψ̈𝜈 cosΦ cosΘ − Ψ̇Φ̇ sinΦ cosΘ − Θ̇Φ̇ cosΦ − Θ̇Ψ̇ cosΦ sinΘ

] (5.6) 

Next, from the angular accelerations, the desired moment can be calculated by inverting the 

rotational dynamic equation in Eq. (4.40).  

𝐌⃑⃑⃑ 𝑑 = 𝐈𝛚⃑⃑⃑ ̇𝑑 + 𝛚⃑⃑⃑ × 𝐈𝛚⃑⃑⃑  
(5.7) 

5.2.1.2. Reference Model and Error Controller 

With the above feedback linearization and the control allocation unit, the attitude system is 

transformed into a chain of two integrators, from the 2nd derivatives of the Euler angles to the 

Euler angles. The corresponding linear reference model and controller can be designed easily 

as in section 2.2.2.  
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The reference model gets direct commands attitude commands 𝚿⃗⃑⃑⃑𝑐, 

𝚿̈⃗⃑⃑⃑𝑟 = 2𝜻𝝎0 𝚿̇⃗⃑⃑⃑𝑟 +𝝎0
2(𝚿⃗⃑⃑⃑𝑐 − 𝚿⃗⃑⃑⃑𝑟) 

(5.8) 

Normally the relative damping 𝜁 is set to be 1, and the natural frequency 𝝎0 can be replaced 

by a diagonal matrix here so that different frequencies can be assigned to different axis. 

Typically for quadrotor, the yaw dynamics is much slower than the pitch or roll dynamics. 

Hence, smaller natural frequency shall be assigned to the azimuth angle. The same applies to 

the feedback gain design. 

A PD linear controller is designed as follows,  

𝚿̈⃗⃑⃑⃑𝜈 = 𝚿̈⃗⃑⃑⃑𝑟 + 𝐊𝑑 (𝚿̇⃗⃑⃑⃑𝑟 − 𝚿̇⃗⃑⃑⃑) + 𝐊𝑝(𝚿⃗⃑⃑⃑𝑟 − 𝚿⃗⃑⃑⃑) 
(5.9) 

The attitude control structure is illustrated in Figure 5.1. In the data fusion block, a AHRS is 

implemented for attitude estimation. 

 

Figure 5.1 Attitude Control Structure using the Euler Angles 
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5.3. Attitude Control using the Novel Parameterization 

The dynamic equations using the novel parameterization have been stated in section 4.3.4. 

As it is a system of triangular form (strict-feedback form), the non-filtered control designs a), 

c) and d) can be applied on the attitude control system.  

Unlike the Euler angle approach, the pitch and roll dynamics in this case are separated from 

the yaw dynamics with the novel parameterization. In fact, it is not bad to separate them: 

firstly, the yaw dynamics is much slower than the pitch or roll, secondly, the yaw dynamics is 

inherited decoupled from position control due to the quadrotor symmetry. Therefore, the yaw 

control can be separately designed. 

The implementation of the dynamic inversion in Eq. (5.6) is quite tedious, especially in fixed-

point environment due to the trigonometric functions. This can be simplified with the new 

attitude parameterization in the next section. 

In the following control designs, the control allocation, inertial decoupling and reference model 

stay the same as those in the Euler angle application, the main difference lies in the feedback 

control formulations of the 𝐠𝑥𝑦 control block. This will be explained in detailed in the following 

sections. The general control structure is shown in Figure 5.2, 

 

Figure 5.2 Attitude Control Structure using the Novel Parameterization 

 

5.3.1. Classical NDI (Design a) 

Recall the attitude propagation equation, 

(𝐠⃑ ̇)
𝐵

𝐵
= 𝐠⃑ 𝐵 × (𝛚⃑⃑⃑ 

𝑊𝐵)𝐵 (5.10) 

The desired angular accelerations do not appear directly; hence, further differentiation is 

needed, 

(𝐠⃑ ̈)
𝐵

𝐵𝐵
= (𝐠⃑ ̇)

𝐵

𝐵
× (𝛚⃑⃑⃑ 𝑊𝐵)𝐵 + 𝐠⃑ 𝐵 × (𝛚⃑⃑⃑ ̇

𝑊𝐵)
𝐵

𝐵
 (5.11) 

Extracting the first two variables in scalar form, 
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[
𝑔̈𝑥
𝑔̈𝑦
]
𝐵

𝐵𝐵

= 𝑔𝑧 [
0 −1
1 0

] [
𝑝̇
𝑞̇
] + [

𝑔𝑦
−𝑔𝑥

]
𝐵
𝑟̇ − [

0 −𝑟 𝑞
𝑟 0 −𝑝

] (𝒈⃑⃑ ̇)
𝐵

𝐵
 (5.12) 

The desired angular accelerations can be computed from the dynamic Eq. (5.12). The plant 

nonlinearities are grouped and separated from the controls. The (𝒈⃑⃑ ̇)
𝐵

𝐵
 can be computed by 

Eq. (5.10). The 𝑟 ̇ term is yaw acceleration without measurement, but can be approximated by 

the desired yaw acceleration 𝑟̇𝑑. A simple PI controller could be used for yaw rate control.  

𝑟̇𝑑 = 𝑟̇𝑟 + 𝑘𝑝(𝑟𝑟 − 𝑟) + 𝑘𝐼∫(𝑟𝑟 − 𝑟)𝑑𝑡 
(5.13) 

The dynamic inversion equation from the pseudo control 𝐠̈𝑥𝑦𝐵,𝑣
𝐵𝐵  to the desired angular 

accelerations [𝑝̇ 𝑞̇]𝑑 is, 

[
𝑝̇
𝑞̇
]
𝑑

= 𝑔𝑧
−1 ∙ ([

𝑔̈𝑦
−𝑔̈𝑥

]
𝐵,𝑣

𝐵𝐵

+ [
𝑔𝑥
𝑔𝑦
]
𝐵
𝑟̇𝑑 + [

𝑟 ∙ 𝑔̇𝑥 − 𝑝 ∙ 𝑔̇𝑧
𝑟 ∙ 𝑔̇𝑦 − 𝑞 ∙ 𝑔̇𝑧

]) (5.14) 

We can see the inversion is much simpler and easier to be implemented. Similar PD error 

controller is designed to calculated the pseudo control, 

𝐠̈𝑥𝑦𝐵,𝜈
𝐵𝐵 =  (𝐠̈𝑥𝑦)𝐵,𝑟

𝐵𝐵
+ 𝐊𝑑 [(𝐠̇𝑥𝑦)𝐵,𝑟

𝐵
− (𝐠̇𝑥𝑦)𝐵

𝐵
] + 𝐊𝑝 [(𝐠𝑥𝑦)𝐵,𝑟 − (𝐠𝑥𝑦)𝐵] 

(5.15) 

The desired angular accelerations (together with the yaw acceleration from the yaw control) 

can be used to calculated the desired moment via the inertia decoupling, and then the 

system input motor RPM can be calculated in the control allocation. 

The control structure in Figure 2.5 is also representative here except the PCH block. The 

inversion block is a sum of the Eqs. (5.14), (5.7) and (5.1). 

The Backstepping design e) will result the same control law as the classical NDI, though the 

derivation is different. 

 

5.3.2. NDI with original model (Design c) 

Recall the dynamic equations from the section 4.3.4, 

(𝐠̇𝑥𝑦)𝐵
𝐵
= [
𝑔̇𝑥
𝑔̇𝑦
]
𝐵

𝐵

= [
𝑔𝑦
−𝑔𝑥

]
𝐵
𝑟 + 𝑔𝑧 [

0 −1
1 0

] [
𝑝
𝑞] 

(5.16) 

The inertia decoupling and control allocation will be the same as the previous cases, so the 

angular acceleration can be regarded as virtual system input. 

[
𝑝̇
𝑞̇
] = 𝐮 

Applying the design c) general form, we have the following matches, 

{
𝐱̇1 = 𝐟1 + 𝐆1𝒙2
𝐱̇2 = 𝐮
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{
 
 

 
 
𝐱1 = (𝐠𝑥𝑦)𝐵

𝐱2 = [
𝑝
𝑞]

𝐮 = [
𝑝̇
𝑞̇
] 

 

{
 
 

 
 𝐟1 = [

𝑔𝑦
−𝑔𝑥

]
𝐵
𝑟

𝐆1 = 𝑔𝑧 [
0 −1
1 0

]

𝐟2 = 0
𝐆2 = 1

 

 The control law can be easily derived from the scalar solution in Eq. (3.20), 

{
𝐱2,𝑑𝑒𝑠 = 𝐆1

−1[−𝐟1 + 𝐱̇1𝑟 + 𝐊1(𝐱1𝑟 − 𝐱1)]

𝐮 = 𝐱̇2𝑟 + 𝐊2(𝐱2,𝑑𝑒𝑠 − 𝐱2) + 𝐆1
−1𝐆̇1(𝐱2𝑟 − 𝐱2)

 

Where, 

𝐆1
−1 = 𝑔𝑧

−1 [
0 1
−1 0

] 

𝐆̇1 = 𝑔̇𝑧 [
0 −1
1 0

] = (−𝑔𝑦 ∙ 𝑝 + 𝑔𝑥 ∙ 𝑞) [
0 −1
1 0

] 

In addition, the nonlinear reference signals in this implementation are calculated from the 

linear reference signals as in Eq. (3.16). 

𝐱2𝑟 = 𝐆1
−1(𝐱̇1𝑟 − 𝐟1) 

𝐱̇2𝑟 = 𝐆1
−1(𝐱̈1𝑟 − 𝐟1̇ − 𝐆̇1𝐱2𝑟) 

𝐱̇2𝑟 = 𝐆1
−1(𝐱̈1𝑟 − 𝐟1̇ − 𝐆̇1𝐆1

−1(𝐱̇1𝑟 − 𝐟1)) 

Substituting the physical parameters,  

[
𝑝̇
𝑞̇
]
𝒓

= 𝑔𝑧
−1 ([

𝑔̈𝑦
−𝑔̈𝑥

]
𝐵,𝑟

𝐵𝐵

+ (𝐠𝑥𝑦)𝐵 ∙ 𝑟̇ + (𝐠̇𝑥𝑦)𝐵
𝐵
∙ 𝑟) − 𝑔𝑧

−2𝑔̇𝑧 ((𝐠𝑥𝑦)𝐵 ∙ 𝑟 + [
𝑔̇𝑦
−𝑔̇𝑥

]
𝐵,𝑟

𝐵

) (5.17) 

Similarly, the control law can be calculated, 

   [
𝑝
𝑞]𝒅

= 𝑔𝑧
−1 [

0 1
−1 0

] [− [
𝑔𝑦
−𝑔𝑥

]
𝐵
𝑟 + (𝐠̇𝑥𝑦)𝐵,𝑟

𝐵
+ 𝐊1 ((𝐠𝑥𝑦)𝐵,𝑟 − (𝐠𝑥𝑦)𝐵)] 

    = 𝑔𝑧
−1 [

0 1
−1 0

] [[
−𝑔𝑦
𝑔𝑥

]
𝐵
𝑟 + (𝐠̇𝑥𝑦)𝐵,𝑟

𝐵
+ 𝐊1 ((𝐠𝑥𝑦)𝐵,𝑟 − (𝐠𝑥𝑦)𝐵)] 

  = 𝑔𝑧
−1 ([

𝑔𝑥
𝑔𝑦
]
𝐵
𝑟 + [

𝑔̇𝑦
−𝑔̇𝑥

]
𝐵,𝑟

𝐵

+ 𝐊1 [
𝑔𝑦,𝑟 − 𝑔𝑦
𝑔𝑥 − 𝑔𝑥,𝑟

]
𝐵
) 

   [
𝑝̇
𝑞̇
]
𝒅

= [
𝑝̇
𝑞̇
]
𝒓

+ 𝐊2 ([
𝑝
𝑞]𝒅

− [
𝑝
𝑞]) + 𝑔𝑧

−1 [
0 1
−1 0

] 𝑔̇𝑧 [
0 −1
1 0

] ([
𝑝
𝑞]𝒓

− [
𝑝
𝑞]) 

    = [
𝑝̇
𝑞̇
]
𝒓

+𝐊2 ([
𝑝
𝑞]𝒅

− [
𝑝
𝑞]) + 𝑔𝑧

−1𝑔̇𝑧 ([
𝑝
𝑞]𝒓

− [
𝑝
𝑞]) 

With the above equations, the output tracking error dynamics can be rendered linear as in 

Eq. (3.21), 
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(𝐠̈𝑥𝑦,𝑟 − 𝐠̈𝑥𝑦)𝐵
𝐵𝐵
+ 𝐊2(𝐠̇𝑥𝑦,𝑟 − 𝐠̇𝑥𝑦)𝐵

𝐵
+ 𝐊2𝐊1(𝐠𝑥𝑦,𝑟 − 𝐠𝑥𝑦)𝐵 = 0 (5.18) 

For the control structure, please refer to Figure 3.4. Compared with the previous control 

design, the same linear error dynamic can be obtained but the error feedback is less model-

dependent than the classical NDI, i.e. the feedback state is the angular rates instead of 

(𝐠̇𝑥𝑦)𝐵
𝐵
. More model information, i.e. the nonlinearities, is shifted to the nonlinear reference 

model. 

 

5.3.3. Analytical Backstepping with Original model (Design d) 

The Backstepping control law can be derived for the attitude system similarly with the scalar 

example. The general form of the control law is given below similar to Eq. (3.22), 

{
𝐱2,𝑑𝑒𝑠 = 𝐆1

−1(𝐱̇1𝑟 − 𝐟1 +𝐊1𝐳1)

𝐮 = 𝐱̇2𝑟 + 𝐊2(𝐱2,𝑑𝑒𝑠 − 𝐱2) + 𝐆1
−1𝐊1𝐳̇1 − 𝐆1

−2𝐆̇1𝐊1𝐳1 + 𝐆1
𝑇𝐳1

 

Substituting the physical parameters into the above control law, 

[
𝑝
𝑞]𝒅

= 𝑔𝑧
−1 [

0 1
−1 0

] [[
−𝑔𝑦
𝑔𝑥
]
𝐵
𝑟 + (𝐠̇𝑥𝑦)𝐵,𝑟

𝐵
+𝐊1 [(𝐠𝑥𝑦)𝐵,𝑟 − (𝐠𝑥𝑦)𝐵]] 

[
𝑝̇
𝑞̇
]
𝒅

= [
𝑝̇
𝑞̇
]
𝒓

+ 𝐊2 ([
𝑝
𝑞]𝒅

− [
𝑝
𝑞]) + 𝑔𝑧

−1 [
0 1
−1 0

]𝐊1 [(𝐠̇𝑥𝑦)𝐵,𝑟
𝐵
− (𝐠̇𝑥𝑦)𝐵

𝐵
]

− 𝑔𝑧
−1 [

0 1
−1 0

] 𝑔𝑧
−1 [

0 1
−1 0

] 𝑔̇𝑧 [
0 −1
1 0

]𝐊1 [(𝐠𝑥𝑦)𝐵,𝑟
− (𝐠𝑥𝑦)𝐵]

+ 𝑔𝑧 [
0 1
−1 0

] [(𝐠𝑥𝑦)𝐵,𝑟
− (𝐠𝑥𝑦)𝐵]

 

After rearrangement, the control law to be implemented is, 

[
𝑝
𝑞]
𝒅
= 𝑔𝑧

−1 ([
𝑔𝑥
𝑔𝑦
]
𝐵
𝑟 + [

𝑔̇𝑦
−𝑔̇𝑥

]
𝐵,𝑟

𝐵

+ 𝐊1 [
𝑔𝑦,𝑟 − 𝑔𝑦
𝑔𝑥 − 𝑔𝑥,𝑟

]
𝐵
) (5.19) 

[
𝑝̇
𝑞̇
]
𝒅

= [
𝑝̇
𝑞̇
]
𝒓

+ 𝐊2 ([
𝑝
𝑞]
𝒅
− [
𝑝
𝑞]) + 𝑔𝑧

−1𝐊1 [
𝑔̇𝑦,𝑟 − 𝑔̇𝑦
𝑔̇𝑥 − 𝑔̇𝑥,𝑟

]
𝐵

𝐵

+ [𝑔𝑧 − 𝑔𝑧
−2𝑔̇𝑧𝐊1] [

𝑔𝑦,𝑟 − 𝑔𝑦
𝑔𝑥 − 𝑔𝑥,𝑟

] (5.20) 

The resulting output tracking error dynamics is in nonlinear form similar to Eq. (3.24), 

[
𝐞̇
𝐞̈
] = [

0 1
−𝐊2𝐊1 + 𝐆̇1𝐆1

−1𝐊1 − 𝐆1
𝑇𝐆𝟏 −𝐊1 − 𝐊2 + 𝐆̇1𝐆1

−1] [
𝐞
𝐞̇
] (5.21) 

Where,  

𝐞 = (𝐠𝑥𝑦)𝐵,𝑟 − (𝐠𝑥𝑦)𝐵 

The derivative gain and the proportional gain are state dependent, 

  𝐊𝑑 = −𝐊1 − 𝐊2 + 𝑔̇𝑧 [
0 −1
1 0

]𝑔𝑧
−1 [

0 1
−1 0

] 

  = −𝐊1 − 𝐊2 + 𝑔̇𝑧𝑔𝑧
−1 ∙ 𝐈 

  𝐊𝑝 = −𝐊2𝐊1 + 𝐆̇1𝐆1
−1𝐊1 − 𝐆1

𝑇𝐆𝟏 
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    = −𝐊2𝐊1 + 𝑔̇𝑧 [
0 −1
1 0

]𝑔𝑧
−1 [

0 1
−1 0

]𝐊1 − 𝑔𝑧 [
0 1
−1 0

]𝑔𝑧 [
0 −1
1 0

] 

   = −𝐊2𝐊1 + 𝑔̇𝑧𝑔𝑧
−1𝐊1 − 𝑔𝑧

2 ∙ 𝐈 

The error dynamic equation becomes, 

[
𝐞̇
𝐞̈
] = [

0 1
−𝐊2𝐊1 + 𝑔̇𝑧𝑔𝑧

−1𝐊1 − 𝑔𝑧
2 ∙ 𝐈 −𝐊1 − 𝐊2 + 𝑔̇𝑧𝑔𝑧

−1 ∙ 𝐈
] [
𝐞
𝐞̇
] (5.22) 

With the above equation, the control performance may only be addressed locally using the 

linear theory. Near hovering condition, the magnitude of the parameter 𝑔𝑧 is almost 9.81. The 

term 𝑔𝑧
2 adds big influence (ranging from 0~96) to the proportional gains, the resulting relative 

damping can be rather small depending on the ratio of 𝑔𝑧
2  over the constant gain 𝐊2𝐊1. 

Therefore, oscillations may be observed compared with the first two designs if the same 

constant gain setting is used. What’s more, the numerical influence (0~96) on the proportional 

gain could have dominate effect with slow actuators, where normal gain is rather small. 

Fortunately, the quadrotor has rather fast actuators, so no severe stability problem occurs to 

the quadrotor despite of performance degradation. The simulation and experimental results 

are shown in the next sections. 

 

5.3.4. Comparison and Results 

Three different non-cascaded designs have been introduced in the above section.  As 

discussed in section 3.3, design a) and c) results the same linear error dynamics as in Eq. 

(3.21), and their performance are expected to be the same. The design d) has different error 

dynamics as shown in Eq. (5.22), though the performance is the same for the linear example 

in section 3. We can see more differences with the nonlinear attitude system. Here the results 

in simulation and experiments are directly presented while the implementation details are 

given in Chapter 8. 

The implementations structures are collected below for better visualizations. 
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a) 

 

c) 

 

d) 

Figure 5.3 The comparison of non-cascaded control designs for the attitude system 

Theoretically, there is no doubt that the design a) should give the best performance. In the 

simulation, the natural frequency 𝛚𝟎 of the reference signals can be tuned up to 16, beyond 

which noticeable oscillations can be observed in angular rate, i.e. not enough robustness 

margin left. This threshold value is used in reference model for all control designs, so that the 

differences can be observed under the same reference. The design c) could have exactly the 

same error dynamics as the design a) so as the tracking performance. The tracking 

performance of both designs in response to a 3-2-1-1 step commands is shown in Figure 5.4 
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Figure 5.4 Tracking Performance of Design a) in Simulation  

 

Figure 5.5 Tracking Performance of two variations in Design c) in Simulation  
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There is a variation of design c), which is the control structure without the modification term 

(red block in Figure 5.3-c). This gives more design freedom to systems where the modification 

term is not available, i.e. mainly the derivative term 𝐆̇𝟏. In the simulation, the performance 

difference is almost negligible as shown in Figure 5.5. The modification term could render the 

error dynamics to be linear in theory; however, in actual implementation, the effect is 

overwhelmed by the sensor errors and parameter uncertainties. 

The design d) here is no longer the same as the previous designs. In Figure 5.6, the commands 

(black dotted line), the tracking performance of design c) (blue line) and design d) (red line) are 

compared. Since the resulting error dynamics shows a big addition to the proportional 

feedback gains, oscillations in the attitude can be observed in Figure 5.6 as expected. Of 

course if the natural frequency (or the feedback gains) is set smaller, then the oscillation could 

get smaller and even disappear. This means the controller can only follow lower bandwidth 

reference commands, without any benefit. 

The above controllers are also implemented on the Hummingbird for flight tests. The natural 

frequency 𝜔0 of the reference model needs to be decreased to 15, so as the feedback gains. 

In addition, integral gains are turned off for better comparison. The attitude commands are 

given from the remote control by the pilot. The flight test results verify the analytical and 

simulation results. The tracking performance of design a) and c) is given in Figure 5.7.  

Using the same gains, the design d) produces oscillations from beginning of the flight as 

shown in Figure 5.8. Reducing the gain setting to natural frequency 𝜔0 of 13, the oscillations 

get smaller but it is able to fly. There are still occasional oscillations shown in Figure 5.9. 

From the above comparisons and those in chapter 3, the design a) and c) both give the best 

tracing performance for system of triangular form. The Backstepping design guarantees the 

stability but does not address the performance. Due to its resulting nonlinear error dynamics, 

its performance depends on the mathematical model and the gain tuning needs more effort 

than the NDI designs.   

The attitude control system gives good validation on the non-cascaded / analytical control 

designs. The latter four control designs, which utilize low-pass filters, will be applied and 

compared on the position control of the quadrotor.  
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Figure 5.6 Tracking Performance of Design d) in Simulation  

 

 

Figure 5.7 Tracking Performance of Design a)/c) in Flight  
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Figure 5.8 Tracking Performance of Design d) at 𝝎𝟎 = 𝟏𝟓 in Flight  

 

Figure 5.9 Tracking Performance of Design d) at 𝝎𝟎 = 𝟏𝟑 in Flight  



 Position Control Designs 91 

6. Position Control Designs 
The attitude control takes care of the rotation dynamics. To control the position of the 

quadrotor, the translational dynamics needs to be considered. As introduced in section 4, the 

position dynamics has a system order of four (excluding actuator dynamics). The design 

freedom/complexity increases with the system order. Moreover, the position dynamics is a 

system of non-triangular form. Hence, the non-cascaded control designs could not be 

applied, unless with the dynamic extension (will be introduced later).  In the following NDI and 

Backstepping control designs, the control concepts in design a), b), f) and g) are implemented 

and compared. 

In general, there are two considerations in the control designs: on one hand, to improve the 

overall control bandwidth, not only the feedback gain shall be maximized but also the 

reference signals shall be utilized in the feedforward control as much as possible; on the other 

hand, certain stability and robustness has to be guaranteed. 

In the first two sections, the NDI and Backstepping position control designs are introduced. 

In the third section, the reference model for smooth reference position generation is 

introduced, which is used for all the position controllers. 

The comparison results are taken from the simulation and flight tests. Detailed experimental 

setups are described in Chapter 8. 
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6.1. NDI Position Control Designs 

Three different position controllers are designed using NDI. The first two controllers use the 

cascaded structure as in design f). The third controller uses the non-cascaded structure as in 

design a). 

 

6.1.1.  RD2 Position Loop + RD2 Attitude Loop (Design b1) 

The most intuitive control structure is to divide the control loops by the dynamic nature: a 

position output loop of relative degree 2 governing the translational motion and an attitude 

inner loop of relative degree 2 governing the rotational motion. This structure also has good 

robustness from the navigation point of view. There is a clean separation of sensors between 

the loops: the outer loop uses the vision sensor or GPS measurement (which is less reliable), 

while the inner loop is independent of those and only uses the onboard IMU. In case of any 

failure in the outer loop due to the vision sensor or GPS, the stability of inner loop attitude 

control is not affected. 

The choice of control loop interface could result different implementations, though the 

tracking performance of the two designs below can be rather similar. In the first design, the 

interface between the outer loop and inner loop is the Euler angles while the second design 

uses the newly defined parameter 𝐠𝑥𝑦 as interface. 

6.1.1.1. Euler angle approach 

Normally, the control state vector for the outer loop is the position and velocity defined in the 

World frame as shown in Eq. (4.57). 

𝐱𝑜𝑢𝑡𝑒𝑟 = [
(𝐫 𝑘
𝐺)𝑊

(𝐯⃑ 𝑘
𝐺)𝑊
𝑊] = [

𝐫 
𝐯⃑ 
] (6.1) 

The control state for the inner loop is the Euler angle and Euler angle derivative, 

𝐱𝑖𝑛𝑛𝑒𝑟 = [
𝚿⃗⃑⃑⃑

𝚿̇⃗⃑⃑⃑
] (6.2) 

where, 

𝚿⃗⃑⃑⃑ = [
Φ
Θ
Ψ
] 

The inner loop control design is the same as the design in section 5.1. The outer loop design, 

which is also published in [5], is explained here. 

After two differentiations of the output vector (𝐫 𝑘
𝐺)
𝑊

, the 2nd derivative of the position vector 

can be mapped to the inner loop commands and total thrust using the Newton’s Second Law 

as already stated in Eq. (4.53). The aerodynamic drag and disturbances are ignored in the 

model assumption. 
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(𝐫 ̈𝑘
𝐺)
𝑊

𝑊𝑊
= 𝐚⃑ ≈ −

𝑇

𝑚
∙ [
cosΨ sinΘ cosΦ + sinΨ sinΦ
sinΨ sin Θ cosΦ − cosΨ sinΦ

cos Θ cosΦ
] + [

0
0
𝑔
] (6.3) 

We can see that, as the heading angle also appears, the inversion is not so straightforward. 

In classical helicopter control design, a rotated NED frame 𝑂̅ was introduced, which is still 

leveled but rotated by the heading angle Ψ only, so that the x-axis of the coordinate also 

points to the Body-fixed x-axis and in this way the heading angle can be decoupled from the 

translational dynamics. 

The additional assumption for the derivation is that the rotated NED frame can be used as 

inertia frame, where the Newton’s second law can be applied. This can only be fulfilled if the 

heading dynamics is much slower than the position dynamics, i.e. the yaw rate is kept small 

so that the Coriolis terms can be ignored. In the rotated NED frame, the dynamic equation for 

the acceleration in 𝑂̅ frame is derived below. 

(𝐫 ̈𝑘
𝐺)
𝑂̅

𝑂̅𝑂̅
= 𝐚⃑ 𝑂̅ ≈ −

𝑇

𝑚
∙ [
sin Θ cosΦ
− sinΦ

cosΘ cosΦ
] + [

0
0
𝑔
] (6.4) 

In the control design, the desired acceleration 𝐚⃑ 𝑑𝑒𝑠 in W frame (it can also be defined in O 

frame depend on the heading measurement) is the pseudo control 𝛎, which can be calculated 

by the linear feedback control and with appropriate reference signals. For the second order 

system, a second order reference model and a PD control is sufficient, 

𝛎 = 𝐚⃑ 𝑑𝑒𝑠 = 𝐚⃑ 𝑟 + 𝐊𝑑(𝐯⃑ 𝑟 − 𝐯⃑ ) + 𝐊𝑝(𝐫 𝑟 − 𝐫 ) 
(6.5) 

The inner loop commands and total thrust can be then solved by inverting the dynamic 

equation given in Eq. (6.4), however the pseudo control needs to be rotated into the 𝑂̅ frame. 

Rewrite it for the control equation and rearrange it, 

[

𝑎𝑥,𝜈
𝑎𝑦,𝜈
𝑎𝑧,𝜈

]

𝑂̅

= 𝐌𝑂̅𝑊𝛎 ≈ −
𝑇

𝑚
∙ [
sin Θ cosΦ
− sinΦ

cosΘ cosΦ
] + [

0
0
𝑔
] (6.6) 

[

𝑎𝑥,𝜈
𝑎𝑦,𝜈
𝑎𝑧,𝜈

]

𝑂̅

− [
0
0
𝑔
] ≈ −

𝑇

𝑚
∙ [
sin Θ cosΦ
− sinΦ

cosΘ cosΦ
] (6.7) 

First, the desired total thrust can be solved by taking the norm of both sides, 

𝑇𝑑 ≈ 𝑚√𝑎𝑥,𝜈
2 + 𝑎𝑦,𝜈

2 + (𝑎𝑧,𝜈 − 𝑔)
2
 

(6.8) 

Second, the desired pitch and bank angle can be solved, 

Θd ≈ arctan (
𝑎𝑥,𝜈

𝑎𝑧,𝜈 − g
) (6.9) 
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Φd ≈ arcsin (
𝑚 ∙ 𝑎𝑦,𝜈

𝑇𝑑
) = arcsin

(

 
𝑎𝑦,𝜈

√𝑎𝑥,𝜈
2 + 𝑎𝑦,𝜈

2 + (𝑎𝑧,𝜈 − 𝑔)
2

)

  (6.10) 

Together with the azimuth angle commands, the inner loop commands are complete.  

The overall control structure is shown in Figure 6.1. The data fusion block consists of an AHRS 

and a position observer. 

 

 

Figure 6.1 Conventional Position Control Structure with Euler Angles 

6.1.1.2. Gravitational vector approach 

In this approach, the new parameter 𝐠𝑥𝑦 is used for the inner loop control state, so the inner 

loop controller is the same as in section 5.3.1 or 5.3.2. The difference lies in the dynamic 

inversion from the outer loop pseudo control 𝛎 to the inner loop commands. 

Rewrite the translational dynamic equation in Eq. (4.56) for the control design, 

𝛎 = [

𝑎𝑥,𝜈
𝑎𝑦,𝜈
𝑎𝑧,𝜈

]

𝑊

= 𝐌𝑊𝐵 ∙ ([

𝑓𝑥
𝑓𝑦
𝑔𝑧

]

𝐵

+ [

𝑔𝑥,𝑑
𝑔𝑦,𝑑
−𝑇𝑑/𝑚

]

𝐵

) (6.11) 

Solve the control variable by inverting the equation above, 

𝐌𝐵𝑊 ∙ [

𝑎𝑥,𝜈
𝑎𝑦,𝜈
𝑎𝑧,𝜈

]

𝑊

= 𝐌𝐵𝑊 ∙ 𝐌𝑊𝐵 ∙ ([

𝑓𝑥
𝑓𝑦
𝑔𝑧

]

𝐵

+ [

𝑔𝑥,𝑑
𝑔𝑦,𝑑
−𝑇𝑑/𝑚

]

𝐵

) (6.12) 

[

𝑓𝑥
𝑓𝑦
𝑔𝑧

]

𝐵

+ [

𝑔𝑥,𝑑
𝑔𝑦,𝑑
−𝑇𝑑/𝑚

]

𝐵

= 𝐌𝐵𝑊 ∙ [

𝑎𝑥,𝜈
𝑎𝑦,𝜈
𝑎𝑧,𝜈

]

𝑊

 (6.13) 

[

𝑔𝑥,𝑑
𝑔𝑦,𝑑
−𝑇𝑑/𝑚

]

𝐵

= 𝐌𝐵𝑊 ∙ [

𝑎𝑥,𝜈
𝑎𝑦,𝜈
𝑎𝑧,𝜈

]

𝑊

− [

𝑓𝑥
𝑓𝑦
𝑔𝑧

]

𝐵

 (6.14) 
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The inversion equation is much simpler than the conventional inversion of Euler angles. The 

heading dynamic coupling with the translational dynamics is decoupled by the rotation matrix 

𝐌𝐵𝑊.  

Moreover, the accelerator measurement in the Body-fixed x-y- axis can be used. Besides 

measurement and structural noise, the specific force 𝑓𝑥  and 𝑓𝑦  are the normalized 

aerodynamic disturbance and drag. For instance, during fast forward flight with constant 

speed, to work against the constant aerodynamic drag so a constant pitch/bank angle is 

expected to compensate that. In the conventional design, the desired pitch/bank angle is 

driven by the reference acceleration and the position error feedback. So a constant pitch/bank 

angle command can be generated only by a constant position error. The compensation is 

slow and induces steady state errors. In the new design, the drag in the Body-fixed x-y-

components is measured and used in the inversion equation, so a constant 𝑔𝑥,𝑑 or 𝑔𝑦,𝑑 will 

be commanded without additional error terms in position and velocity. As shown in the 

specific force equilibrium diagram in Figure 6.2, the specific drag force 𝑓𝑥 in red in the Body-

fixed x-axis can be used in the controller and the corresponding attitude 𝑔𝑥,𝑑  can be 

commanded to the inner loop. 

 

Figure 6.2 Specific force diagram in forward flight with constant speed 

The overall position control structure is shown in Figure 6.3. 
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Figure 6.3 Conventional Position Control Structure with New Parameterization 

 

6.1.2. RD3 Position Loop + RD1 Rate Loop (Design b2) 

The above designed control structure is very robust in the physics as well as in the sensor 

separation. The inner loop state feedback is the attitude and angular rate, which are quite 

accurate and robust; the outer loop state feedback is the position and velocity, which are not 

so accurate and robust. However, due to the RD2 inner loop, the reference signals can only 

be used up to the second derivative of the position vector, i.e. reference acceleration. 

In this new control structure design, the position loop is extended to RD 3, which enables the 

feedforward of the 3rd derivative of the position vector. The linear state vector for the RD 3 

position loop is,  

𝐗 = [𝐫 𝐯⃑  𝐚⃑ ]𝑇 (6.15) 

The differential equation can be derived starting from the translational dynamic equation in 

Eq. (4.53),  

(𝐫 ̈)
𝑊

𝑊𝑊
≈ 𝐌𝑊𝐵 ∙ [

0
0

−𝑇/𝑚
] + [

0
0
𝑔
] 

Taking one more differentiation, 

    (𝐫 ⃛)
𝑊

𝑊𝑊𝑊
≈ 𝐌̇𝑊𝐵 ∙ [

0
0

−
𝑇

𝑚

] + 𝐌𝑊𝐵 ∙ [

0
0

−
𝑇̇

𝑚

] 

     ≈ 𝐌𝑊𝐵 ∙ 𝛀𝑊𝐵
𝐵𝐵 ∙ [

0
0

−𝑇/𝑚
] +𝐌𝑊𝐵 ∙ [

0
0

−𝑇̇/𝑚
] 

where 𝛀𝑊𝐵
𝐵𝐵  is the skew-symmetric matrix of the angular rate vector, 

𝛀𝑊𝐵
𝐵𝐵 = [

0 −𝑟 𝑞
𝑟 0 −𝑝
−𝑞 𝑝 0

] (6.16) 
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Hence, the dynamic equation can be rearrange as follows, 

(𝐫 ⃛)
𝑊

𝑊𝑊𝑊
≈ 𝐌𝑊𝐵 ∙ [

0 −𝑟 𝑞
𝑟 0 −𝑝
−𝑞 𝑝 0

] [

0
0

−
𝑇

𝑚

] + 𝐌𝑊𝐵 ∙ [

0
0

−
𝑇̇

𝑚

] (6.17) 

(𝐫 ⃛)
𝑊

𝑊𝑊𝑊
≈ 𝐌𝑊𝐵 ∙

1

𝑚
∙ [

−𝑞𝑇
𝑝𝑇

−𝑇̇

] (6.18) 

The final expression of the differential equation is, 

(𝐫 ⃛)
𝑊

𝑊𝑊𝑊
≈ 𝐌𝑊𝐵 ∙

1

𝑚
∙ [
0 −𝑇 0
𝑇 0 0
0 0 −1

] [

𝑝
𝑞

𝑇̇
] (6.19) 

A rather simple dynamic equation is obtained from the differentiation and the pitch and roll 

rates directly appear in the equation, which can be connected to the rate control inner loop. 

The only problem here is that, the total thrust, which can be originally obtained by the 2nd 

derivative of the position, is now further differentiated to thrust derivative. A dynamic 

extension was proposed in [15] to overcome this kind of problems. In this case, the thrust 

derivative is assumed the virtual command and the dynamic extension is an integrator to 

generate the thrust command by integrating the thrust derivative.  

With this modification, a proper RD 3 NDI controller can be designed in the outer loop, while 

the inner loop is RD 1 angular rate control. The advantage over the RD 2 structure is that the 

reference signal can be used up to the 3rd derivative of the position vector, i.e. the acceleration 

derivative can be feedforward in the error controller, hence more model based information 

can be used and higher control bandwidth can be reached. 

Given the derived differential equation, i.e. math model for control design, the NDI equation 

can be obtained by inverting Eq. (6.19). The pseudo control 𝝂 is the position third derivative 

(𝐫 ⃛)
𝑊

𝑊𝑊𝑊
 for the RD 3 outer loop. 

[

𝑝
𝑞

𝑇̇
]

𝑑

= [
0 𝑇−1 0

−𝑇−1 0 0
0 0 −1

]𝐌𝐵𝑊𝑚 ∙ 𝝂 (6.20) 

The nonlinear position dynamics plus the dynamic inversion together can be regarded as a 

linear system with three integrators. The linear reference model and linear controller for the 

equivalent linear third order system can be easily designed the transformed system. Similar 

to the second order system, the third order linear error controller is as follows, 

𝐯 = 𝐚⃑ ̇𝑑 = 𝐚⃑ ̇𝑟 + 𝐊2(𝐚⃑ 𝑟 − 𝐚⃑ ) + 𝐊1(𝐯⃑ 𝑟 − 𝐯⃑ ) + 𝐊0(𝐫 𝑟 − 𝐫 ) 
(6.21) 

The gains can be designed by the pole placement method and finally tuned in flight test. The 

rate inner loop is quite simple and the standard NDI structure applies. The reference model, 

named inner loop reference model, takes the desired angular rate from the outer loop and 

heading control,  
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The inner loop reference model is, 

𝛚⃑⃑⃑ ̇𝑓 = 𝐊𝒇(𝛚⃑⃑⃑ 𝑑 − 𝛚⃑⃑⃑ 𝑓) 
(6.22) 

And the error dynamics has the feed-forwarded 𝛚⃑⃑⃑ ̇𝑓 and a proportional feedback control.  

𝛚⃑⃑⃑ ̇𝑑 = 𝛚⃑⃑⃑ ̇𝑓 + 𝐊𝝎(𝛚⃑⃑⃑ 𝑓 − 𝛚⃑⃑⃑ ) 
(6.23) 

If the inner loop reference model has the same time constant as the error dynamics, we have 

simply the feedback control. 

𝛚⃑⃑⃑ ̇𝑑 = 𝐊𝝎(𝛚⃑⃑⃑ 𝑑 − 𝛚⃑⃑⃑ ) 
(6.24) 

Desired moment can be computed afterward by Eq. (5.7). 

The overall control structure can be designed as in Figure 6.4. 

 

Figure 6.4 Novel RD3 Position Control Structure 

 

6.1.3. Non-cascaded RD4 Position Control (Design a) 

After extending the thrust dynamic to form a RD 3 position loop, we may even extend it further 

to RD 4 position loop. The differential equation for the 4th order position derivative can be 

obtained by further differentiating Eq. (6.19), 

 (𝐫 ⃜𝑘
𝐺)
𝑊

𝑊𝑊𝑊𝑊
= (𝐚⃑ ̈𝑘

𝐺)
𝑊

𝑊𝑊𝑊𝑊
= 𝐌̇𝑊𝐵 ∙

1

𝑚
∙ [
−𝑞𝑇
𝑝𝑇

−𝑇̇

] + 𝐌𝑊𝐵 ∙
1

𝑚
∙ [
−𝑞𝑇
𝑝𝑇

−𝑇̇

]

′

 

     = 𝐌𝑊𝐵 ∙ 𝛀𝑊𝐵
𝐵𝐵 ∙

1

𝑚
∙ [
−𝑞𝑇
𝑝𝑇

−𝑇̇

] + 𝐌𝑊𝐵 ∙
1

𝑚
∙ [
−𝑞̇𝑇 − 𝑞𝑇̇

𝑝̇𝑇 + 𝑝𝑇̇

−𝑇̈

] 

     = 𝐌𝑊𝐵 ∙
1

𝑚
∙ [

0 −𝑟 𝑞
𝑟 0 −𝑝
−𝑞 𝑝 0

] [

−𝑞𝑇
𝑝𝑇

−𝑇̇

] + 𝐌𝑊𝐵 ∙
1

𝑚
∙ [

−𝑞̇𝑇 − 𝑞𝑇̇

𝑝̇𝑇 + 𝑝𝑇̇

−𝑇̈

] 
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     = 𝐌𝑊𝐵 ∙
1

𝑚
∙ [

−𝑟𝑝𝑇 − 𝑞𝑇̇

−𝑟𝑞𝑇 + 𝑝𝑇̇

𝑞2𝑇 + 𝑝2𝑇

] +𝐌𝑊𝐵 ∙
1

𝑚
∙ [

−𝑞̇𝑇 − 𝑞𝑇̇

𝑝̇𝑇 + 𝑝𝑇̇

−𝑇̈

] 

     = 𝐌𝑊𝐵 ∙
1

𝑚
∙ [

−𝑟𝑝𝑇 − 2𝑞𝑇̇

−𝑟𝑞𝑇 + 2𝑝𝑇̇

𝑞2𝑇 + 𝑝2𝑇

] +𝐌𝑊𝐵 ∙
1

𝑚
∙ [

−𝑞̇𝑇
𝑝̇𝑇

−𝑇̈

] 

The final expression of the differential equation can be written as, 

(𝐚⃑ ̈𝑘
𝐺)
𝑊

𝑊𝑊𝑊𝑊
= 𝐌𝑊𝐵 ∙

1

𝑚
∙ ([

−𝑟𝑝𝑇 − 2𝑞𝑇̇

−𝑟𝑞𝑇 + 2𝑝𝑇̇

𝑞2𝑇 + 𝑝2𝑇

] + [
0 −𝑇 0
𝑇 0 0
0 0 −1

] [

𝑝̇
𝑞̇

𝑇̈

]) (6.25) 

As we can see, not only the angular acceleration appears explicitly, but also the thrust has 

been differentiated twice. That is the analytical reason why we need to extend the thrust 

dynamics to its second derivative. The pseudo control is the translational acceleration second 

derivative while the virtual controls are the pitch & roll accelerations and thrust second 

derivative. 

With the derived differential equation, the NDI equation can be derived from the pseudo 

control to the virtual control, 

[

𝑝̇
𝑞̇

𝑇̈

]

𝑑

= [
0 𝑇−1 0

−𝑇−1 0 0
0 0 −1

](𝐌𝐵𝑊𝑚 ∙ 𝛎 − [

−𝑇𝑟𝑝 − 2𝑇̇𝑞

−𝑇𝑟𝑞 + 2𝑇̇𝑝

𝑇𝑝2 + 𝑇𝑞2
]) (6.26) 

The desired angular accelerations can be used to compute the desired moment and the thrust 

second derivative needs two integrators, i.e. dynamic extension, to compute the desired 

thrust. 

The linear error controller for the transformed plant is fourth order. The control equation is, 

𝛎 = 𝐚⃑ ̈𝑑 = 𝐚⃑ ̈𝑟 + 𝐊3(𝐚⃑ ̇𝑟 − 𝐚⃑ ̇) + 𝐊2(𝐚⃑ 𝑟 − 𝐚⃑ ) + 𝐊1(𝐯⃑ 𝑟 − 𝐯⃑ ) + 𝐊0(𝐫 𝑟 − 𝐫 ) 
(6.27) 

Together with RD 2 heading control, we have the following control structure, 

 

Figure 6.5 Non-cascaded RD4 Position Control Structure 
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In total, there are three different control structures, ‘RD2 + RD2’, ‘RD3 + RD1’, and ‘RD4’. 

Their position control performance is compared in later section, as well as three 

Backstepping position control designs derived in next section. 

 

6.1.4. Heading Control 

From the position dynamic equation, be it RD2, RD3 or RD4, the common thing is that the 

position control is not directly affected by the heading dynamics, just the state information is 

needed in the inversion equation. Therefore the heading control can be considered secondary 

goal compared to the position control.  

The focus of this heading control is to stabilize the heading in a robust yet efficient way so 

that the actuation level can be kept low without interference with the position control. The 

control bandwidth and accuracy can be compromised. The control power shall be reserved 

for the position or pitch/roll control but not occupied by the heading control.  

A possible solution for the heading control is to design a rate-control attitude-hold controller, 

i.e. PI yaw rate control.  The integral gain will control the heading angle indirectly with minimum 

impact on the other two axes. The heading drift due to sensor noise and bias is also negligible 

in one-battery flight time (the gyro drift rate is 400°/hour). Recall the PI yaw-rate control law 

given in Eq. (5.13), 

𝑟̇𝑑 = 𝑟̇𝑟 + 𝑘𝑝(𝑟𝑟 − 𝑟) + 𝑘𝐼∫(𝑟𝑟 − 𝑟)𝑑𝑡 
(6.28) 

If the heading needs to be controlled more precisely, both NDI and linear control should work 

fine. For the NDI case, the dynamic equation in Eq. (4.48) needs to be inverted, and there is a 

singularity at bank angle of 90°. For instant, the RD1 inversion equation from the azimuth 

angle derivative to the angular rate is shown below, 

𝑟𝑑 =
cosΘ

cosΦ
Ψ̇𝜈 − tanΦ𝑞 (6.29) 

𝑟𝑑 =
1

𝑔𝑧
(𝑔Ψ̇𝜈 − 𝑔𝑦𝑞) 

(6.30) 

Alternatively, normal linear PD control is also sufficient the heading control as the heading 

dynamics is much slower than the pitch and roll motions for the quadrotor configuration. The 

control law is given below, 

𝑟̇𝑑 = 𝑘𝑟 [𝑘Ψ(Ψ𝑐 −Ψ)⏟        
𝑟𝑑

− 𝑟] (6.31) 
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6.2. Backstepping Position Control Designs  

As illustrated earlier, for the position dynamics of the quadrotors, the Backstepping method 

could not be applied directly. Cascaded structure or command filter can be augmented to 

apply the Backstepping method. The cascaded Backstepping designs, which could result the 

same control law as the NDI, will not be introduced again. The design f) Backstepping using 

command filter is used. 

For high order system, there are also many variations in the design. Each system order will 

generate a Backstepping virtual control and its derivative can be solved either numerically or 

analytically. The objective here is to find the analytical solution as far as possible, which means 

the more reference signals can be feedforward to the plant. In some cases, the analytical 

solution could be difficult to be solved, which are highly dependent on the mathematical 

model to be used. A suitable math model could ease the analytical derivation while if the 

wrong math model is used, the virtual control derivative may not be solvable analytically.  

In this section, two Backstepping designs with command filter are introduced. The first one 

uses the novel parameterization in the math model. The second one uses the NDI-RD3 math 

model. 

 

6.2.1. Backstepping with the novel parameterization (Design g1) 

In previous Backstepping position designs [18] [19] [20], the analytical solution only went to 

the second step, i.e. the attitude level. Then command filter has to be applied to estimate the 

attitude derivatives. The reason is that the analytical solutions encounter difficulties with the 

Euler angle and thrust coupling.  

Using the math model with the gravity parameterization introduced in section 4.3.4, the 

analytical solution can be solved to the angular rate. So that the reference feedforward signals 

can also be used in the angular rate level, which give additional model information into the 

controller and thus increase the control bandwidth, similarly with the NDI designs. 

The following state vectors and control inputs are defined for the position model, 

𝐱1 = [
𝑥
𝑦
𝑧
]

𝑊

      𝐱2 = [
𝑢
𝑣
𝑤
]

𝑊

𝑊

     𝐱3 = [
𝑔𝑥
𝑔𝑦
]
𝐵

    𝐱4 = [
𝑝
𝑞
𝑟
]

𝐵

     𝑢1 = −
𝑇

𝑚
     𝐮2 = [

𝐿
𝑀
𝑁
]

𝐵

 (6.32) 

The math equations, collected from section 4.3, can be rewritten in the following form for 

better clarifications, 

𝐱̇1 = 𝐟1 + 𝐆1𝐱2

𝐱̇2 = 𝐟2 + 𝐆2 [
𝐱3
𝑢1
]

𝐱̇3 = 𝐟3 + 𝐆3𝐱4(1: 2)

𝐱̇4 = 𝐟4 + 𝐆4𝐮2

 (6.33) 

Where the nonlinear functions 𝐟𝒊 are 
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{
 
 

 
 𝐟1 = [0 0 0]𝑇

𝐟2 = 𝐌𝑊𝐵 ∙ [𝑓𝑥 𝑓𝑦 𝑔𝑧]𝐵
𝑇

𝐟3 = [𝑔𝑦 −𝑔𝑥]𝑇 ∙ 𝑟

𝐟4 = −(𝐈
𝐺)𝐵𝐵
−1 ⋅ (𝛚⃑⃑⃑ 𝑊𝐵)𝐵 × {(𝐈

𝐺)𝐵𝐵 ⋅ (𝛚⃑⃑⃑ 
𝑊𝐵)𝐵}

 (6.34) 

The input matrices 𝐆𝒊 and their inverse are, 

{
 
 

 
 
𝐆1 = 𝚰3
𝐆2 = 𝐌𝑊𝐵

𝐆3 = 𝑔𝑧 ∙ [
0 −1
1 0

]

𝐆4 = (𝐈
𝐺)𝐵𝐵
−1

 & 

{
 
 

 
 
𝐆1
−1 = 𝚰3
𝐆2
−1 = 𝐌𝐵𝑊

𝐆3
−1 = 𝑔𝑧

−1 ∙ [
0 1
−1 0

]

𝐆4
−1 = (𝐈𝐺)𝐵𝐵

 (6.35) 

It can be already noticed that there is a singularity at  𝑔𝑧 = 0, which is when the quadrotor is 

at pitch/bank angle of 90°. It needs to be bounded away from zero in implementation for this 

method. This singularity would also occur if the Euler angles are used. 

The recursive derivation structure of the Backstepping position control is shown in Figure 

6.6 as follows, 

 

Figure 6.6 Derivation Structure of Backstepping with the New Parameterization 

Step 1 Position Control 

Consider the following virtual system for the position propagation, 

𝐱̇1 = 𝛂1 
(6.36) 

Define the tracking error for the position and a Lyapunov function candidate, 

𝐳1 = 𝐱1𝑟 − 𝒙1 

𝑉1 =
1

2
𝐳1
𝑇𝐳1 

(6.37) 

Take the time derivative of the Lyapunov function to derive the stabilization control law the 

virtual control input 𝛂1, 

𝑉̇1 = 𝐳1
𝑇𝐳̇1 = 𝐳1

𝑇(𝐱̇1𝑟 − 𝛂1) 

𝛂1 = 𝐱̇1𝑟 + 𝐀1𝒛1 

(6.38) 

Where 𝐀1 is a positive definite matrix and the Lyapunov function derivative can be rendered 

negative semi-definite. 

𝑉̇1 = −𝐳1
𝑇𝐀1𝐳1 ≤ 0 (6.39) 
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Step 2 Velocity Control 

Consider the following virtual system for the translational dynamics, 

𝐱̇2 = 𝐟2 + 𝐆2𝛂̂2 
(6.40) 

Define the tracking error 𝐳2 for the velocity,  

𝐳2 = 𝛂1 − 𝐱2 
(6.41) 

Due to this error, the dynamic equation in step 1 is no longer valid and we need to recover 

the true system dynamic equation in step 1, 

𝐱̇1 = 𝛂1 − 𝐳2 
(6.42) 

The augmented Lyapunov function candidate is, 

𝑉2 =
1

2
𝐳1
𝑇𝐳1 +

1

2
𝐳2
𝑇𝐳2 

(6.43) 

Compute the position tracking error derivative, 

𝐳̇1 = 𝐱̇1𝑟 − 𝐱̇1 = 𝐱̇1𝑟 − 𝛂1 + 𝐳2 = −𝐀1𝐳1 + 𝐳2 
(6.44) 

Take the time derivative of the Lyapunov function to derive the stabilization control law the 

virtual control input  𝛂̂2: 

𝑉̇1 = 𝐳1
𝑇𝐳̇1 + 𝐳2

𝑇𝐳̇2 = 𝐳1
𝑇(−𝐀1𝐳1 + 𝐳2) + 𝐳2

𝑇(𝛂̇1 − 𝐟2 −𝐆2𝛂̂2) 

𝛂̂2 = 𝐆2
−1(𝛂̇1 − 𝐟2 + 𝐳1 + 𝐀2𝐳2) 

Where 𝐀2 is a positive definite matrix, and it yields, 

𝑉̇2 = −∑ 𝐳𝑖
𝑇𝐀𝑖𝐳𝑖

2

𝑖=1
≤ 0 (6.45) 

The augmented control law gives asymptotic stability for 𝐱1 and 𝐱2 states. The virtual control 

input 𝛂̂2 consists of two parts, real control input 𝑇 and virtual control input 𝐠xy. As explained 

earlier, due to the new parameterization, they are decoupled in this case and the virtual input 

can be used in the next step. 

{
𝐮1 = 𝛂̂2(3)

𝛂2 = 𝛂̂2(1: 2)
 (6.46) 

We could also look at the derivation, if not the new parameter 𝐠xy but the normal Euler angles 

are used, recall the dynamic equation for step 2, 

𝐱̇2 = −
𝑇

𝑚
∙ [
cosΨ sin Θ cosΦ + sinΨ sinΦ
sinΨ sinΘ cosΦ − cosΨ sinΦ

cos Θ cosΦ
] + [

0
0
𝑔
] (6.47) 
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The real control input 𝑇  and virtual control input and Θ  & Φ  are coupled in the dynamic 

equation. It is difficult to separate them in order to proceed with the normal analytical 

Backstepping derivation. Filtered estimation has to be used in this step. 

Step 3 𝒈𝒙𝒚 Control 

Consider the following virtual system, 

𝐱̇3 = 𝐟3 + 𝐆3𝛂̂3 
(6.48) 

Define the tracking error for 𝐠𝑥𝑦 and recover the true system dynamic equation in step 2 

{
𝐳3 = 𝛂2 − 𝐱3

𝐱̇2 = 𝐟2 + 𝐆2𝛂̂2 − 𝐆2 [
𝐳3
0
]
 (6.49) 

The augmented Lyapunov function candidate is 

𝑉3 =
1

2
𝐳1
𝑇𝐳1 +

1

2
𝐳2
𝑇𝐳2 +

1

2
𝐳3
𝑇𝐳3 

(6.50) 

Compute the velocity error derivative, 

𝐳̇2 = 𝛂̇1 − 𝐱̇2 = −𝐳1 − 𝐀2𝐳2 + 𝐆2 [
𝐳3
0
] (6.51) 

Take the time derivative of the Lyapunov function to derive the stabilization control law the 

virtual control input 𝛂̂2: 

   𝑉̇3 = 𝐳1
𝑇𝐳̇1 + 𝐳2

𝑇𝐳̇2 + 𝐳3
𝑇𝐳̇3 

   = 𝐳1
𝑇(−𝐀1𝐳1 + 𝐳2) + 𝐳2

𝑇 (−𝐳1 − 𝐀2𝐳2 + 𝐆2 [
𝐳3
0
]) + 𝐳3

𝑇(𝛂̇2 − 𝐟3 − 𝐆3𝛂̂3) 

𝛂̂3 = 𝐆3
−1(𝛂̇2 − 𝐟3 + 𝐆2

𝑇(1: 2, : )𝐳2 +𝐀3𝐳3) 

Where 𝐆2
𝑇(1: 2, : ) is the first two rows of the matrix 𝐆2

𝑇 and 𝐀3 is a positive definite matrix and 

it yields, 

𝑉̇3 = −∑ 𝐳𝑖
𝑇𝐀𝑖𝐳𝑖

3

𝑖=1
≤ 0 (6.52) 

The virtual control input 𝛂̂3 is the desired pitch and roll rate. Together with the desired yaw 

rate, we have the command to step one more integrator back. 

𝛂3 = [
𝛂̂3
𝑟𝑑
] (6.53) 

Step 4 Rate Control 

Last step inverses the rotational dynamics and the control input, moments appear in the 

equation. Rewrite the equation for rotational dynamics for completeness, 

𝐱̇4 = 𝐟4 + 𝐆4𝐮2 
(6.54) 
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Define the tracking error for the angular rates and rewrite the true system dynamic equation 

for step 3, 

{
𝐳4 = 𝛂3 − 𝐱4
𝐱̇3 = 𝐟3 + 𝐆3𝛂̂3 − 𝐆3𝐳4(1: 2)

 (6.55) 

Where the notation 𝐳4(1: 2) means it is the first two elements of the vector 𝐳4. 

The final augmented Lyapunov function candidate is 

𝑉4 =
1

2
𝐳1
𝑇𝐳1 +

1

2
𝐳2
𝑇𝐳2 +

1

2
𝐳3
𝑇𝐳3 +

1

2
𝐳4
𝑇𝐳4 

(6.56) 

Compute the 𝐠𝑥𝑦  error derivative, 

𝐳̇3 = 𝛂̇2 − 𝐱̇3 = −𝐆2
𝑇(1: 2, : )𝐳2 − 𝐀3𝐳3 + 𝐆3𝐳4(1: 2) 

(6.57) 

Take the time derivative of the Lyapunov function to derive the stabilization control law the 

virtual control input 𝜶3: 

𝑉̇4 = −𝐳1
𝑇𝐀1𝐳1 − 𝐳2

𝑇𝐀2𝐳2 − 𝐳3
𝑇𝐀3𝐳3 + 𝐳3

𝑇𝐆3𝐳4(1: 2) + 𝐳4
𝑇(𝛂̇3 − 𝐟4 − 𝐆4𝐮2) 

𝐮2 = 𝐆4
−1 (𝛂̇3 − 𝐟4 + [

𝐆3
𝑇

𝟎1×2
] 𝐳3 + 𝐀4𝐳4) 

where 𝐀4 is a positive definite matrix and the Lyapunov function derivative can be rendered 

negative semi-definite. 

𝑉̇4 = −∑ 𝐳𝑖
𝑇𝐀𝑖𝐳𝑖

4

𝑖=1
≤ 0 (6.58) 

The equations of the Backstepping control law are summarized as follows, 

{
 
 
 
 

 
 
 
 
𝛂1 = 𝐱̇1𝑟 + 𝐀1𝐳1
𝛂̂2 = 𝐆2

−1(𝛂̇1 − 𝐟2 + 𝐳1 + 𝐀2𝐳2)

𝑢1 = 𝛂̂2(3)

𝛂2 = 𝛂̂2(1: 2)

𝛂̂3 = 𝐆3
−1(𝛂̇2 − 𝐟3 + 𝐆2

𝑇(1: 2, : )𝐳2 + 𝐀3𝐳3)

𝛂3 = [
𝛂̂3
𝑟𝑑
]

𝐮2 = 𝐆4
−1 (𝛂̇3 − 𝐟4 + [

𝐆3
𝑇

𝟎1×2
] 𝐳3 + 𝐀4𝐳4)

 

Step 5 Virtual Control Derivatives 

The Backstepping control law still consists of virtual control derivatives, which are not 

directly available. As stated earlier for this design, the virtual control derivatives can be 

solved up to the third step, i.e. the virtual control derivatives 𝛂̇1 and 𝛂̇2 will be solve 

analytically. 

For 𝛂̇1, it is straightforward, 
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𝛂̇1 = 𝐱̈1𝑟 + 𝐀1(𝐱̇1𝑟 − 𝐱2) 
(6.59) 

For 𝛂̇2, the analytical solution get a little longer but still solvable. First, rewrite the virtual 

control 𝛂̂2 itself, 

𝛂̂2 = 𝐆2
−1(𝛂̇1 − 𝐟2 + 𝐳1 + 𝐀2𝐳2) = 𝐌𝐵𝑊 (𝛂̇1 + 𝐳1 + 𝐀2𝐳2⏟          )

𝛎𝑎

− [

𝑓𝑥
𝑓𝑦
𝑔𝑧

]

𝐵

 (6.60) 

𝛂̂2 = 𝐌𝐵𝑊𝛎𝑎 − [

𝑓𝑥
𝑓𝑦
𝑔𝑧

]

𝐵

 (6.61) 

Where 𝛎𝑎 physically is the desired acceleration in 𝑊 frame. It can be solved, as well as its 

derivative. 

𝛎𝑎 = 𝐱̈1𝑟 + (𝐀1 + 𝐀2)(𝐱̇1𝑟 − 𝐱2) + (𝐀1𝐀2 + 𝐈3)(𝐱1𝑟 − 𝐱1) 

𝛎̇𝑎 = 𝐱1𝑟 + (𝐀1 + 𝐀2)(𝐱̈1𝑟 −𝐌𝑊𝐵(𝐟 𝐵 + 𝐠⃑ 𝐵)) + (𝐀1𝐀2 + 𝐈3)(𝐱̇1𝑟 − 𝐱2) 

Taking the derivative of Eq. (6.61),  

𝛂̇̂2 = 𝐌𝐵𝑊𝛎̇𝑎 +  𝐌𝐵𝑊𝛀𝐵𝑊
𝐵𝐵 𝛎𝑎 − [

𝑓𝑥̇
𝑓𝑦̇
𝑔̇𝑧

]

𝐵

 (6.62) 

The virtual control derivative 𝛂̇2 only takes the first two components of 𝛂̇̂2, 

𝛂̇2 = 𝐌𝐵𝑊(1: 2, : )𝛎̇𝑎 +  𝐌𝐵𝑊(1: 2, : )𝛀𝐵𝑊
𝐵𝐵 𝛎𝑎 − [

𝑓𝑥̇
𝑓𝑦̇
]
𝐵

 (6.63) 

The third term in the above equation consists of mainly the disturbance force derivatives, 

which can be ignored and is ignored in other designs as well. 

Lastly in step 4, another virtual control derivative 𝛂̇3 needs to be solved. Analytical solution 

is no longer possible, or at least many assumptions needed. Command filter is not a bad 

idea here to estimate the derivative. A first order low pass filter can fulfill the task, 

𝛂̇3𝑓(𝑠) =
𝑠

𝑇𝑠 + 1
𝛂3(𝑠) 

(6.64) 

The control law for 𝐮2, the desired moments, can be computed, 

𝐮2 = 𝐆4
−1(𝛂̇3𝑓 − 𝐟4 + [

𝐆3
𝑇

𝟎1×2
] 𝐳3 + 𝐀4𝐳4) 

(6.65) 

All together, the Backstepping control law is derived completely and can be implemented. 

In term of the control bandwidth, this design is comparable with the NDI RD3+RD1 

structure. Both utilize the same reference information, up to the third derivative of the 

position reference. The command filter is used on the same signals as the NDI RD3+RD1 

structure, i.e. the angular rate. As compared before, this control law is almost the same as 
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cascaded Backstepping with RD3+RD1 structure. The only difference is the [
𝐆3
𝑇

𝟎1×2
] 𝒛3 term in 

Eq. (6.65). Once again, this term is rather negligible, compared to the filter estimation error, 

sensor noise etc. Without this term, this design is the same as cascaded Backstepping 

design, whose outer loop controls the position and commands thrust and angular rate to the 

inner loop. 

The advantage over the NDI-RD3 design is that the direct thrust command is possible, due 

to the decoupling of the thrust and the virtual controls. The disadvantage is the difficult gain 

tuning due to the resulting nonlinear error dynamics, at least no so straightforward as in the 

NDI designs. 

 

6.2.2. Backstepping with NDI-RD3 model (Design g2) 

The position control design 2) used NDI method on a novel mathematical model, named 

NDI-RD3 model here. As would be shown later in the result, this design gives the best 

overall performance over the other design. It is worthwhile to apply Backstepping on the 

same math model for direct comparison.  

The concept of dynamic extension to augment the system of non-triangular form into a 

triangular form could be applied to Backstepping method as well. In the NDI-RD3 design, 

the position outer loop is extended to a third order system of triangular form (or strictly 

feedback system). Naturally, the Backstepping method could also derive a similar design 

structure. Its performance can be predicted to be very close to the NDI-RD3 controller. For 

comparison and the sake of completeness, the derivation process is listed below. 

The following state vectors and control inputs are defined for the position model, 

𝐱1 = 𝐫⃗𝑊      𝐱2 = 𝐯⃗⃑𝑊
𝑊     𝐱3 = 𝐚⃗⃑𝑊

𝑊𝑊    𝐱4 = 𝛚⃗⃑⃑⃑𝐵      𝑢1 = 𝑇̇     𝐮2 = [
𝐿
𝑀
𝑁
]

𝐵

 (6.66) 

The math equations, collected from section 4.3, can be rewritten in the following form for 

better clarifications, 

𝐱̇1 = 𝐱2
𝐱̇2 = 𝐱3

𝐱̇3 = 𝐆3 [
𝐱4(1: 2)
𝑢1

]

𝐱̇4 = 𝐟4 + 𝐆4𝐮2

 (6.67) 

Where the nonlinear functions 𝐟𝟒 is the same, recall it here, 

𝐟4 = −(𝐈
𝐺)𝐵𝐵
−1 ⋅ (𝛚⃑⃑⃑ 𝑊𝐵)𝐵 × {(𝐈

𝐺)𝐵𝐵 ⋅ (𝛚⃑⃑⃑ 
𝑊𝐵)𝐵} 

(6.68) 

The input matrices 𝐆𝟑 can be found in Eq. (6.19) and 𝐆4 remains the same, 
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{
𝐆3 = 𝐌𝑊𝐵 ∙

1

𝑚
∙ [
0 −𝑇 0
𝑇 0 0
0 0 −1

]

𝐆4 = (𝐈
𝐺)𝐵𝐵
−1

 𝑎𝑛𝑑 {
𝐆3
−1 = [

0 𝑇−1 0
−𝑇−1 0 0
0 0 −1

]𝐌𝐵𝑊𝑚 

𝐆4
−1 = (𝐈𝐺)𝐵𝐵

 (6.69) 

Step 1 Position Control 

The Lyapunov function candidate, 

𝐳1 = 𝐱1𝑟 − 𝐱1 

𝑉1 =
1

2
𝐳1
𝑇𝐳1 

(6.70) 

Take the time derivative of the Lyapunov function to derive the stabilization control law the 

virtual control input  𝛂1, 

𝑉̇1 = 𝐳1
𝑇𝐳̇1 = 𝐳1

𝑇(𝐱̇1𝑟 − 𝛂1) 

𝛂1 = 𝐱̇1𝑟 + 𝐀1𝐳1 

(6.71) 

Where 𝐀1 is a positive definite matrix and the Lyapunov function derivative can be rendered 

negative semi-definite. 

𝑉̇1 = −𝐳1
𝑇𝐀1𝐳1 ≤ 0 (6.72) 

Step 2 Velocity Control 

Consider the following virtual system for the translational dynamics, 

𝐱̇2 = 𝛂2 
(6.73) 

Define the tracking error 𝐳2 for the velocity, due to which we need to recover the true system 

dynamic equation in step 1, 

𝐳2 = 𝛂1 − 𝐱2
𝐱̇1 = 𝛂1 − 𝐳2

 (6.74) 

The augmented Lyapunov function candidate is, 

𝑉2 =
1

2
𝐳1
𝑇𝐳1 +

1

2
𝐳2
𝑇𝐳2 

(6.75) 

Compute the position tracking error derivative, 

𝐳̇1 = 𝐱̇1𝑟 − 𝐱̇1 = −𝐀1𝐳1 + 𝐳2 
(6.76) 

Take the time derivative of the Lyapunov function to derive the stabilization control law the 

virtual control input  𝛂̂2: 

𝑉̇1 = 𝐳1
𝑇𝐳̇1 + 𝐳2

𝑇 𝐳̇2 = 𝐳1
𝑇(−𝐀1𝐳1 + 𝐳2) + 𝐳2

𝑇(𝛂̇1 − 𝐟2 − 𝐆2𝛂̂2) 

𝛂2 = 𝛂̇1 + 𝐳1 + 𝐀2𝐳2 

(6.77) 
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Where 𝐀2 is a positive definite matrix and it yields, 

𝑉̇2 = −∑ 𝐳𝑖
𝑇𝐀𝑖𝐳𝑖

2

𝑖=1
≤ 0 (6.78) 

Step 3 Acceleration Control 

Consider the following virtual system, 

𝐱̇3 = 𝐆3𝛂3 
(6.79) 

Define the tracking error for the acceleration and recover the true system dynamic equation 

in step 2, 

{
𝐳3 = 𝛂2 − 𝐱3
𝐱̇2 = 𝛂2 − 𝐳3

 (6.80) 

The augmented Lyapunov function candidate is, 

𝑉3 =
1

2
𝐳1
𝑇𝐳1 +

1

2
𝐳2
𝑇𝐳2 +

1

2
𝐳3
𝑇𝐳3 

(6.81) 

Compute the velocity error derivative, 

𝐳̇2 = 𝛂̇1 − 𝐱̇2 = −𝐳1 − 𝐀2𝐳2 + 𝐳3 
(6.82) 

Take the time derivative of the Lyapunov function to derive the stabilization control law the 

virtual control input 𝛂̂2: 

  𝑉̇3 = 𝐳1
𝑇𝐳̇1 + 𝐳2

𝑇𝐳̇2 + 𝐳3
𝑇𝐳̇3 

  = 𝐳1
𝑇(−𝐀1𝐳1 + 𝐳2) + 𝐳2

𝑇(−𝐳1 − 𝐀2𝐳2 + 𝐳3) + 𝐳3
𝑇(𝛂̇2 − 𝐆3𝛂3) 

𝛂3 = 𝐆3
−1(𝛂̇2 + 𝐳2 + 𝐀3𝐳3) 

Where 𝐀3 is a positive definite matrix and it yields, 

𝑉̇3 = −∑ 𝐳𝑖
𝑇𝐀𝑖𝐳𝑖

3

𝑖=1
≤ 0 (6.83) 

The virtual control input 𝛂3 is the desired pitch & roll rate and thrust derivative.  

The resulting control law at this step can be summarized as follows, 

{

𝛂1 = 𝐱̇1𝑟 + 𝐀1𝐳1
𝛂2 = 𝛂̇1 + 𝐳1 + 𝐀2𝐳2
𝛂3 = 𝐆3

−1(𝛂̇2 + 𝐳2 + 𝐀3𝐳3)
 (6.84) 

So far, all the controlled states are linear and the virtual control derivatives are quite easy to 

solve analytically. For the first virtual control derivative, 

𝛂̇1 = 𝐱̈1𝑟 + 𝐀1𝐳̇1 
(6.85) 
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The Backstepping error also needs to be converted to the position error 𝐳1 and its derivatives, 

because 𝐳1 is the known error between reference position and true position. For 𝐳2 we have, 

𝐳2 = 𝛂1 − 𝐱2 = 𝐱̇1𝑟 + 𝐀1𝐳1 − 𝐱̇1 = 𝐳̇1 + 𝐀1𝐳1 
(6.86) 

Hence, the second virtual control can be rewritten, 

𝛂2 = 𝐱̈1𝑟 + 𝐀1𝐳̇1 + 𝐳1 + 𝐀2(𝐳̇1 + 𝐀1𝐳1) = 𝐱̈1𝑟 + (𝐀1 + 𝐀2)𝐳̇1 + (𝐀1𝐀2 + 1)𝐳1 
(6.87) 

Its derivative can be solved, 

𝛂̇2 = 𝐱1𝑟 + (𝐀1 + 𝐀2)𝐳̈1 + (𝐀1𝐀2 + 1)𝐳̇1 
(6.88) 

For 𝐳3 we have, 

   𝐳3 = 𝛂2 − 𝐱3 = 𝐱̈1𝑟 + (𝐀1 +𝐀2)𝐳̇1 + (𝐀1𝐀2 + 1)𝐳1 − 𝐱̈1 

   𝐳3 = 𝐳̈1 + (𝐀1 + 𝐀2)𝐳̇1 + (𝐀1𝐀2 + 1)𝐳1 

Hence, the control law for 𝛂3 is, 

 𝛂3 = 𝐆3
−1{𝐱1𝑟 + (𝐀1 + 𝐀2)𝐳̈1 + (𝐀1𝐀2 + 1)𝐳̇1 + 𝐳̇1 + 𝐀1𝐳1 + 𝐀3[𝐳̈1 + (𝐀1 +𝐀2)𝐳̇1 +

(𝐀1𝐀2 + 1)𝐳1]} 

 𝛂3 = 𝐆3
−1 {𝐱1𝑟 + (𝐀1 + 𝐀2 + 𝐀3)⏟          

𝐊𝑎

𝐳̈1 + (𝐀1𝐀2 + 𝐀1𝐀3 + 𝐀3𝐀2 + 2)⏟                  
𝐊𝑣

𝒛̇1 +

(𝐀1𝐀2𝐀3 + 𝐀1 +𝐀3)⏟              
𝐊𝑟

𝐳1} 

 𝛂3 = 𝐆3
−1{𝐱1𝑟 + 𝐊𝑎𝐳̈1 + 𝐊𝑣𝐳̇1 + 𝐊𝑟𝐳1} 

It is the same as the NDI-RD3 outer loop controller if the feedback gains are set to be the 

same. This makes sense because the math model is the same and all the nonlinearities are 

inverted in the last step. 

To proceed to the next loop, the desired thrust derivative is the control input and the desired 

angular rates will be commanded to the rate loop. 

𝑢1 = 𝛂3(3) = 𝑇̇𝑑

𝛂̂3 = [
𝛂3(1: 2)
𝑟𝑑

] = [

𝑝𝑑
𝑞𝑑
𝑟𝑑
]
 (6.89) 

Step 4 Rate Control 

Last step remains more or less the same as in previous Backstepping design. Rewrite the 

equation for rotational dynamics for completeness, 

𝐱̇4 = 𝐟4 + 𝐆4𝐮2 
(6.90) 

Define the tracking error for the angular rates and rewrite the true system dynamic equation 

for step 3, 
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{
𝐳4 = 𝛂̂3 − 𝐱4

𝐱̇3 = 𝐆3𝛂3 − 𝐆3 [
𝐳4(1: 2)
0

]
 (6.91) 

The final augmented Lyapunov function candidate is 

𝑉4 =
1

2
𝐳1
𝑇𝐳1 +

1

2
𝐳2
𝑇𝐳2 +

1

2
𝐳3
𝑇𝐳3 +

1

2
𝐳4
𝑇𝐳4 

(6.92) 

Compute the acceleration error derivative, 

𝐳̇3 = 𝛂̇2 − 𝐱̇3 = −𝐳2 − 𝐀3𝐳3 + 𝐆3 [
𝐳4(1: 2)
0

] (6.93) 

Take the time derivative of the Lyapunov function to derive the stabilization control law the 

virtual control input 𝛂̂3: 

𝑉̇4 = −𝐳1
𝑇𝐀1𝐳1 − 𝐳2

𝑇𝐀2𝐳2 − 𝐳3
𝑇𝐀3𝐳3 + 𝐳3

𝑇𝐆3 [
𝐳4(1: 2)
0

] + 𝐳4
𝑇(𝛂̇̂3 − 𝐟4 − 𝐆4𝐮2) 

𝐮2 = 𝐆4
−1 (𝛂̇̂3 − 𝐟4 + [

𝐆3
𝑇(1: 2, : )
𝟎1×3

] 𝐳3 + 𝐀4𝐳4) 

where 𝐀4 is a positive definite matrix and the Lyapunov function derivative can be rendered 

negative semi-definite.  

  𝑉̇4 = −𝐳1
𝑇𝐀1𝐳1 − 𝐳2

𝑇𝐀2𝐳2 − 𝐳3
𝑇𝐀3𝐳3 + 𝐳3

𝑇𝐆3 [
𝐳4(1: 2)
0

] + 𝐳4
𝑇 (− [

𝐆3
𝑇(1: 2, : )
𝟎1×3

] 𝐳3 − 𝐀4𝐳4) 

  𝑉̇4 = −∑ 𝐳𝑖
𝑇𝐀𝑖𝐳𝑖

4
𝑖=1 + 𝐳3

𝑇𝐆3 [
𝐳4(1: 2)
0

] − 𝐳4
𝑇 [
𝐆3
𝑇(1: 2, : )
𝟎1×3

] 𝐳3 

  𝑉̇4 = −∑ 𝐳𝑖
𝑇𝐀𝑖𝐳𝑖

4
𝑖=1 + 𝐳3

𝑇𝐆3 [
𝐳4(1: 2)
0

] − (𝐳4
𝑇 [
𝐆3
𝑇(1: 2, : )
𝟎1×3

] 𝐳3)
𝑇

 

 𝑉̇4 = −∑ 𝐳𝑖
𝑇𝐀𝑖𝐳𝑖

4
𝑖=1 + 𝐳3

𝑇𝐆3 [
𝐳4(1: 2)
0

] − 𝐳3
𝑇[𝐆3(: ,1: 2) 𝟎3×1]𝐳4 

  𝑉̇4 = −∑ 𝐳𝑖
𝑇𝐀𝑖𝐳𝑖

4
𝑖=1 + 𝐳3

𝑇𝐆3(: ,1: 2)𝐳4(1: 2) − 𝐳3
𝑇𝐆3(: ,1: 2)𝐳4(1: 2) 

  𝑉̇4 = −∑ 𝐳𝑖
𝑇𝐀𝑖𝐳𝑖

4
𝑖=1 ≤ 0 

The equations of the Backstepping control law are summarized as follows, 

{
  
 

  
 
𝛂3 = 𝐆3

−1{𝐱1𝑟 + 𝐊𝑎𝐳̈1 + 𝐊𝑣 𝐳̇1 + 𝐊𝑟𝐳1}

𝑢1 = 𝛂3(3)

𝛂̂3 = [
𝛂3(1: 2)
𝑟𝑑

]

𝐮2 = 𝐆4
−1 (𝛂̇̂3 − 𝐟4 + [

𝐆3
𝑇(1: 2, : )

𝟎1×3
] 𝐳3 + 𝐀4𝐳4)

 (6.94) 

Where the third virtual control derivative is estimated by command filter, 

𝛂̇3𝑓(𝑠) =
𝑠

𝑇𝑠 + 1
𝛂3(𝑠) 

(6.95) 

The new control law with the command filter is, 
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𝐮2 = 𝐆4
−1 (𝛂̇̂3𝑓 − 𝐟4 + [

𝐆3
𝑇(1: 2, : )

𝟎1×3
] 𝐳3 + 𝐀4𝐳̂4) 

(6.96) 

The difference between this design and the NDI-RD3 design lies in the additional term 

[
𝐆3
𝑇(1: 2, : )

𝟎1×3
] 𝐳3. However, as stated earlier it is rather a negligible term, especially in the 

presence of parameter uncertainties such as modeling errors, sensor noises and external 

disturbances. There is no difference at all in terms of performance.  

For the sake of completeness, the Command Filtered Backstepping is also derived and 

implemented in the next section to further validate the comparison results. 

 

6.2.3. CFB with NDI-RD3 Model (Design h) 

The CFB control design follows the control law from the above design. The filter estimation 

error violates the Lyapunov stability proof, so an additional modification is introduced to 

compensate the estimation error. 

The original Lyapunov function from Eq. (6.92) needs to be modified when using the 

command filter, 

𝑉̂4 =
1

2
𝐳1
𝑇𝐳1 +

1

2
𝐳2
𝑇𝐳2 +

1

2
𝐳3
𝑇𝐳3 +

1

2
𝐳̂4
𝑇𝐳̂4 

Where, 

𝐳̂4 = 𝛂̂3𝑓 − 𝐱4 

To compensate the estimation error in 𝐳̂4, a modification term 𝛏3 in 𝐳3 needs to be added in 

the Lyapunov function. Because all the error terms 𝐳𝑖 have cross-coupled terms to be 

compensated, an additional term 𝛏2 needs to be added in 𝐳2 to compensate 𝛏3 and again 𝛏1 

to be added in 𝐳1 to compensate 𝛏2.  

In total three modification terms 𝛏1, 𝛏2 and 𝛏3 are introduced to form a new CFB Lyapunov 

function, 

𝑉𝐶𝐹𝐵 =
1

2
𝐳̂1
𝑇𝐳̂1 +

1

2
𝐳̂2
𝑇𝐳̂2 +

1

2
𝐳̂3
𝑇𝐳̂3 +

1

2
𝐳̂4
𝑇𝐳̂4 

(6.97) 

Where 

𝐳̂1 = 𝐳1 + 𝛏1 

𝐳̂2 = 𝐳2 + 𝛏2 

𝐳̂3 = 𝐳3 + 𝛏3 

Next, similar to the derivation in section 3.2.5, we could derive the control law for the 

introduced terms 𝛏𝑖 so that the new CFB Lyapunov function derivative can be rendered 

negative semi-definite. The resulting general form has been already given in Eq. (3.37). 

𝛏̇𝑖 = −𝐀𝑖𝛏𝑖 + 𝐆𝑖(𝛂𝑖𝑓 − 𝛂𝑖) + 𝐆𝑖𝛏𝑖+1 
(6.98) 
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The first two terms 𝛏1 and 𝛏2 are relatively simpler, as the filter estimation error has not 

involved yet, 

𝛏̇1 = −𝐀1𝛏1 + 𝛏2 

𝛏̇2 = −𝐀2𝛏2 + 𝛏3 

𝛏̇3 = −𝐀3𝛏3 + 𝐆3 [
𝛂̂3𝑓 − 𝛂̂3

𝟎
] 

(6.99) 

The normal control law needs small modifications (marked in red) on the error feedforward 

terms accordingly, 

{
 
 

 
 
𝛂1 = 𝐱̇1r + 𝐀1𝐳1
𝛂2 = 𝛂̇1 + 𝐳1 + 𝛏1 + 𝐀2𝐳2
𝛂3 = 𝐆3

−1(𝛂̇2 + 𝐳2 + 𝛏2 + 𝐀3𝐳3)

𝐮2 = 𝐆4
−1 (𝛂̇̂3𝑓 − 𝐟4 + [

𝐆3
𝑇(1: 2, : )

𝟎1×3
] (𝐳3 + 𝛏3) + 𝐀4𝐳̂4)

 (6.100) 

The control law is transformed below for simpler implementation, 

{
  
 

  
 
𝛂3,𝐶𝐹𝐵 = 𝐆3

−1{𝐱1𝑟 + 𝐊𝑎𝐳̈1 + 𝐊𝑣𝐳̇1 + 𝐊𝑟𝐳1 + 𝛏̇1 + 𝛏2}

𝑢1 = 𝛂3,𝐶𝐹𝐵(3)

𝛂̂3,𝐶𝐹𝐵 = [
𝛂3,𝐶𝐹𝐵(1: 2)

𝑟𝑑
]

𝐮2 = 𝐆4
−1 (𝛂̇̂3𝑓,𝐶𝐹𝐵 − 𝐟4 + [

𝐆3
𝑇(1: 2, : )

𝟎1×3
] (𝐳3 + 𝛏3) + 𝐀4𝐳̂4)

 (6.101) 
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6.2.3.1. Lyapunov stability proof of the derived control law 

The Lyapunov stability can be proved by substituting the control laws into the CFB 

Lyapunov function derivative, 

 𝑉̇𝐶𝐹𝐵 = 𝐳̂1
𝑇 𝐳̇̂1 + 𝐳̂2

𝑇 𝐳̇̂2 + 𝐳̂3
𝑇 𝐳̇̂3 + 𝐳̂4

𝑇 𝐳̇̂4 

 𝑉̇𝐶𝐹𝐵 = (𝐳1 + 𝛏1)
𝑇(𝐳̇1 + 𝛏̇1) + (𝐳2 + 𝛏2)

𝑇(𝐳̇2 + 𝛏̇2) + 𝐳̂3
𝑇 𝐳̇̂3 + 𝐳̂4

𝑇 𝐳̇̂4 

 𝑉̇𝐶𝐹𝐵 = 𝐳̂1
𝑇(−𝐀1𝐳1 + 𝐳2 + 𝛏̇1) + 𝐳̂2

𝑇(−𝐳̂1 − 𝐀2𝐳2 + 𝐳3 + 𝛏̇2) + 𝐳̂3
𝑇 𝐳̇̂3 + 𝐳̂4

𝑇 𝐳̇̂4 

𝑉̇𝐶𝐹𝐵 = 𝒛̂1
𝑇(−𝐀1𝐳1 + 𝐳2 −𝐀1𝛏1 + 𝛏2) + 𝐳̂2

𝑇(−𝐳̂1 − 𝐀2𝐳2 + 𝐳3 − 𝐀2𝛏2 + 𝛏3) + 𝐳̂3
𝑇 𝐳̇̂3 + 𝐳̂4

𝑇 𝐳̇̂4 

 𝑉̇𝐶𝐹𝐵 = 𝐳̂1
𝑇(−𝐀1𝐳̂1 + 𝐳̂2) + 𝐳̂2

𝑇(−𝐳̂1 − 𝐀2𝐳̂2 + 𝐳̂3) + 𝐳̂3
𝑇 𝐳̇̂3 + 𝐳̂4

𝑇 𝐳̇̂4 

 𝑉̇𝐶𝐹𝐵 = −𝐳̂1
𝑇𝐀1𝐳̂1 − 𝐳̂2

𝑇𝐀2𝐳̂2 + 𝐳̂2
𝑇𝐳̂3 + 𝐳̂3

𝑇 𝐳̇̂3 + 𝐳̂4
𝑇 𝐳̇̂4 

 𝑉̇𝐶𝐹𝐵 = −𝐳̂1
𝑇𝐀1𝐳̂1 − 𝐳̂2

𝑇𝐀2𝐳̂2 + 𝐳̂2
𝑇𝐳̂3 + 𝐳̂3

𝑇 (−𝐳̂2 −𝐀3𝐳3 +𝐆3 [
𝐳4(1: 2)
0

] + 𝛏̇3) + 𝐳̂4
𝑇 𝐳̇̂4 

 𝑉̇𝐶𝐹𝐵 = −𝐳̂1
𝑇𝐀1𝐳̂1 − 𝐳̂2

𝑇𝐀2𝐳̂2 + 𝐳̂3
𝑇 (−𝐀3𝐳3 + 𝐆3 [

𝐳4(1: 2)
0

] + 𝛏̇3) + 𝐳̂4
𝑇 𝐳̇̂4 

𝑉̇𝐶𝐹𝐵 = −𝐳̂1
𝑇𝐀1𝐳̂1 − 𝐳̂2

𝑇𝐀2𝐳̂2 + 𝐳̂3
𝑇 (−𝐀3𝐳3 + 𝐆3 [

𝐳4(1: 2)
0

] − 𝐀3𝛏3 + 𝐆3 [
𝛂̂3𝑓 − 𝛂̂3

𝟎
]) + 𝐳̂4

𝑇 𝐳̇̂4 

 𝑉̇𝐶𝐹𝐵 = −𝐳̂1
𝑇𝐀1𝐳̂1 − 𝐳̂2

𝑇𝐀2𝐳̂2 + 𝐳̂3
𝑇 (−𝐀3𝐳̂3 + 𝐆3 [

𝐳̂4(1: 2)
0

]) + 𝐳̂4
𝑇 𝐳̇̂4 

 𝑉̇𝐶𝐹𝐵 = −𝐳̂1
𝑇𝐀1𝐳̂1 − 𝐳̂2

𝑇𝐀2𝐳̂2 − 𝐳̂3
𝑇𝐀3𝐳̂3 + 𝐳̂3

𝑇𝐆3 [
𝐳̂4(1: 2)
0

] + 𝐳̂4
𝑇 (− [

𝐆3
𝑇(1: 2, : )
𝟎1×3

] 𝐳̂3 − 𝐀4𝐳̂4) 

 𝑉̇𝐶𝐹𝐵 = −𝐳̂1
𝑇𝐀1𝐳̂1 − 𝐳̂2

𝑇𝐀2𝐳̂2 − 𝐳̂3
𝑇𝐀3𝐳̂3 + 𝐳̂3

𝑇𝐆3 [
𝐳̂4(1: 2)
0

] + 𝐳̂4
𝑇 (− [

𝐆3
𝑇(1: 2, : )

𝟎1×3
] 𝐳̂3 − 𝐀4𝐳̂4) 

 𝑉̇𝐶𝐹𝐵 = −∑ 𝐳̂𝑖
𝑇𝐀𝑖𝐳̂𝑖

4
𝑖=1 + 𝐳̂3

𝑇𝐆3 [
𝐳̂4(1: 2)
0

] − 𝐳̂4
𝑇 [
𝐆3
𝑇(1: 2, : )
𝟎1×3

] 𝐳̂3 

 𝑉̇𝐶𝐹𝐵 = −∑ 𝐳̂𝑖
𝑇𝐀𝑖𝐳̂𝑖

4
𝑖=1 + 𝐳̂3

𝑇𝐆3 [
𝐳̂4(1: 2)
0

] − (𝐳̂4
𝑇 [
𝐆3
𝑇(1: 2, : )
𝟎1×3

] 𝐳̂3)
𝑇

 

 𝑉̇𝐶𝐹𝐵 = −∑ 𝐳̂𝑖
𝑇𝐀𝑖𝐳̂𝑖

4
𝑖=1 + 𝐳̂3

𝑇𝐆3 [
𝐳̂4(1: 2)
0

] − 𝐳̂3
𝑇[𝐆3(: ,1: 2) 𝟎3×1]𝐳̂4 

 𝑉̇𝐶𝐹𝐵 = −∑ 𝐳̂𝑖
𝑇𝐀𝑖𝐳̂𝑖

4
𝑖=1 ≤ 0 

Therefore, the modification terms successfully render the new CFB Lyapunov function 

derivative negative semi-definite, and stability can be guaranteed. However, one flaw is that 

the Lyapunov function is no longer to minimize the tracking error but the compensated 

tracking error, due to the additional terms added in each error term of the original Lyapunov 

function candidate.  
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6.3. High Order Reference Model 

All the introduced control designs require reference model of different system orders. In this 

section, a common high order reference model is introduced to provide common basis for the 

controller comparison. For the position dynamics, a fourth order reference model is used. 

The reference model has two main functions: 1. Generate smooth enough signal for the plant 

to follow, or generate the reference dynamics based on given requirement if there is any; 2. 

consider the physical plant constraints and limit the reference commands. 

 

6.3.1. State inconsistency due to state limits 

For first order reference model, there is only one integrator so actuator limit can be easily 

incorporated as shown in Figure 2.1. The state limit can be incorporated on the command 𝑥𝑐 

as there is no overshoot with the first order low pass filter. 

For the second order system, the linear reference model can be formulated similarly with a 

second order low pass filter in Figure 2.2. When system order increases, the complexity 

increases if the actuator and state limits need to be included, esp. for highly dynamic system. 

A simple and common way to incorporate state limits is to put the limits in the integrators. For 

instance, the second order low pass filter with state limits is shown below, 

 

Figure 6.7 Block diagram of second order reference model with direct integrator limits 

If the state limits are not reached for 𝑥̇𝑟 or inactive, then it is fine as before. However, when 

the control bandwidth drives up, highly dynamic states are demanding and the limits will be 

reached. Once that happen, this simple limitation in the integrators will cause inconsistency 

between states. An example is given in Figure 6.9 to show the inconsistency between the 

states. At t≈1.05 s, the first derivative 𝑥̇𝑟 reaches the pre-set limits of ±5. To be consistent, 

the second derivative 𝑥̈𝑟 shall be zero but it is not zero. Afterwards, due to the actuator limit 

(±100) before 𝑥̈𝑟 it takes a while for the controller to finally drive the second derivatives 𝑥̈𝑟 to 

zero. In other words, the same 𝑥𝑟 cannot be obtained if you integrating the second derivative 

𝑥̈𝑟 twice, due to inconsistency caused by the integrator limits in between. 

To avoid inconsistency between the states, one idea is to consider the reference model as a 

complete close loop system with an ideal ‘plant’ and a corresponding controller. On one hand, 

the ideal plant can be formulated based on the true plant dynamics and the integrators there 

should not be -limited so that the states are consistent with each other. It can be either linear 

or nonlinear depending what reference signals are required later. On the other hand, a 

reference controller can be designed to control the reference plant. Because of the perfect 
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state feedback, the controller is also super effective so the physical limits can be easily 

implemented there. No out-of-limit commands goes to the ideal plant. For the second order 

example, the proposed solution is,  

 

Figure 6.8 Block diagram of second order reference model with state limits 

The resulting reference signals have no inconsistency. They are compared in the Figure 6.10, 

with the same state limits and parameters. The new signals (in red) also could reach the 𝑥̇𝑟 

limit of ±5 but this time with consistent 𝑥̈𝑟  signals. This implementation will be further 

illustrated in the following position reference model.  
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Figure 6.9 Possible state inconsistency of the second order reference model 

 

Figure 6.10 Proposed implementation of the second order reference model 
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6.3.2. Position reference model 

For the position dynamics of the quadrotor, at least a fourth order reference model, better fifth 

order, is needed to generate smooth enough position signals, which are differentiable until 

the actuator input (4 integrators in between). With high system order, it is rather difficult to 

incorporate the physical limits. Two challenges arise: 1. the reference state inconsistency 

easily arise if the state limits are hard imposed in the integrators, even worse if just after the 

integrators; 2. the physical limits are normally on the nonlinear states, so it is not accurate to 

impose them directly on the linear reference states. 

The inconsistency could be more problematic here due to the high system order. It is quite 

common that the state reach saturation in the integrators, but the derivative, i.e. input to the 

integrators could not reach zero immediately due to the high order system dynamics. 

6.3.2.1. Linear fourth order reference model 

Similar approach as for the second order reference model is applied here. There are two 

choices for the ‘ideal plant’, one is the ideal nonlinear dynamic plant, and the other is a linear 

plant as a chain of integrators. In [49], the ideal nonlinear plant is used in the reference model 

and a linear controller is designed to control it. A first thought from that reference model is 

why not to use nonlinear control like NDI for the ideal nonlinear plant. However, the perfect 

inversion in the NDI control plus the nonlinear ideal plant will result a chain of integrator, which 

is the same as in the linear low pass filter. In this reference model design, the ideal plant is 

chosen to be a chain of integrator. Nonlinear reference signals can be afterwards computed 

from the linear ones. 

Therefore, the reference plant is chosen to be a chain of integrators, i.e. four integrators for a 

fourth order reference model. The transfer function of a fourth order filter from the position 

command 𝐫 𝑐 to the reference position 𝐫 𝑟 is straightforward, 

𝐫 𝑟 =
𝑘0

𝑠4 + 𝑘3𝑠
3 + 𝑘2𝑠

2 + 𝑘1𝑠 + 𝑘0
𝐫 𝑐 

(6.102) 

From the Laplace transfer function, we can derive the reference control law in time domain, 

𝐫 ⃜𝑟 = 𝑘0(𝐫 𝑐 − 𝐫 𝑟) − 𝑘1𝐫 ̇𝑟 − 𝑘2𝐫 ̈𝑟 − 𝑘3𝐫 ⃛𝑟 
(6.103) 

The control law can be rearranged to the following controller structure, 

𝐫 ⃜𝑟 = 𝑘3

{
 
 
 
 

 
 
 
 

𝑘2
𝑘3

{
 
 

 
 

𝑘1
𝑘2
[
𝑘0
𝑘1
(𝐫 𝑐 − 𝐫 𝑟)

⏟      
𝐯⃑ 𝒅

− 𝐫 ̇𝑟]

⏟              
𝐚⃑ 𝒅

− 𝐫 ̈𝑟

}
 
 

 
 

⏟                    

𝐚⃑ ̇𝒅

− 𝐫 ⃛𝑟

}
 
 
 
 

 
 
 
 

 (6.104) 

Where the states 𝐯⃑ , 𝐚⃑  and 𝐚⃑ ̇ are linear derivative state of position 𝐫  denoted in the World 

frame. This can be also represented in a cascaded controller structure as follows, 
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{
 
 
 
 

 
 
 
 𝐯⃑⃑⃑ 𝒅 =

𝑘0
𝑘1

(𝐫⃑⃑ 𝑐− 𝐫⃑⃑ 𝑟)

𝐚⃑⃑⃑ 𝒅 =
𝑘1
𝑘2

(𝐯⃑⃑⃑ 𝒅− 𝐯⃑⃑⃑ 𝑟)

𝐚⃑⃑⃑ ̇𝒅 =
𝑘2
𝑘3

(𝐚⃑⃑⃑ 𝒅− 𝐚⃑⃑⃑ 𝑟)

𝐚⃑⃑⃑ ̈𝒅 =𝑘3 (𝐚⃑⃑⃑ ̇𝒅− 𝐚⃑⃑⃑ ̇𝑟)≈ 𝐚⃑⃑⃑ ̈𝒓 = 𝐫⃑⃑ ⃜𝑟

 (6.105) 

With the above transformation, the linear state limits can be incorporated on the state 

commands, meaning only the maximum allowable state is commanded to the next loop. In 

this way, we end up with a clean integrator chain without any forced state limits. The 

implementation structure is,  

 

Figure 6.11 Fourth order reference model with linear state limits 

The gains can be determined by pole placement method. All four poles are assigned to the 

same value ‘-𝜔’, so that the reference error dynamics is critically damped. In addition, the 

gain tuning is reduced to one parameter (𝜔) tuning. The gains can be higher than that in the 

real error controller, due to the perfect state feedback. And the generated reference signal will 

fulfil the physical constraints due to the state limiters. The gains can be assigned according 

to the characteristic equation in the Laplace domain. 

𝑠4 + 𝑘3𝑠
3 + 𝑘2𝑠

2 + 𝑘1𝑠 + 𝑘0 = 𝑠
4 + 4𝜔𝑠3 + 6𝜔2𝑠2 + 4𝜔3𝑠 + 𝜔4 (6.106) 

So the gains in the above structure can be represented by 𝜔, 

{
 
 
 

 
 
 
𝑘3 = 4𝜔
𝑘2
𝑘3
=
3

2
𝜔

𝑘1
𝑘2
=
2

3
𝜔

𝑘0
𝑘1
=
1

4
𝜔

 (6.107) 

The linear reference signals generated by the above structure are shown in Figure 6.12. The 

step command for the position is 20 m at time equal to 1 second. The intermediate state limits 

are set as, 𝐯⃑ 𝑟10 m/s, 𝐚⃑ 𝑟 15 m/s2, 𝐚⃑ ̇𝑟 60 m/s3 and 𝐚⃑ ̈𝑟 400 m/s4. Without exceeding the bounds, 

smooth reference signals can be generated using this simple control idea. 
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Figure 6.12 Fourth order reference model with trajectory commands 
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6.3.2.2. Position reference model with trajectory commands 

In addition, this reference model design could also receive trajectory commands including 

velocity 𝐯⃑ 𝑐 and acceleration 𝐚⃑ 𝑐, which can be feedforward to the reference ‘controller’. The 

new control equation is,  

𝐫 ⃜𝑟 = 𝑘3

{
 
 
 
 

 
 
 
 

𝑘2
𝑘3

{
 
 

 
 

𝑘1
𝑘2
[
𝑘0
𝑘1
(𝐫 𝑐 − 𝐫 𝑟) + 𝐯⃑ 𝑐

⏟          
𝐯⃑ 𝒅

− 𝐫 ̇𝑟] + 𝐚⃑ 𝑐

⏟                    
𝐚⃑ 𝒅

− 𝐫 ̈𝑟

}
 
 

 
 

⏟                            

𝐚⃑ ̇𝒅

− 𝐫 ⃛𝑟

}
 
 
 
 

 
 
 
 

 

And the implemented structure is, 

 

Figure 6.13 Fourth order reference model with trajectory commands 

6.3.2.2.1. Implementation of NDI RD4 error controller 

The NDI control design in section 6.1.3 has very similar error controller structure as the 

reference controller in the reference model. The implementation of the error controller can be 

made similarly, just with more feedforward reference signals. 

𝐚⃑ ̈𝑑 = 𝐚⃑ ̈𝑟 + 𝑘3

{
 
 
 
 

 
 
 
 

𝑘2
𝑘3

{
 
 

 
 

𝑘1
𝑘2
[
𝑘0
𝑘1
(𝐫 𝑟 − 𝐫 ) + 𝐯⃑ 𝑟

⏟          
𝐯⃑ 𝒅

− 𝐯⃑ ] + 𝐚⃑ 𝑟

⏟                  
𝐚⃑ 𝒅

− 𝐚⃑ 

}
 
 

 
 

+ 𝐚⃑ ̇𝑟

⏟                              

𝐚⃑ ̇𝒅

− 𝐚⃑ ̇

}
 
 
 
 

 
 
 
 

 (6.108) 

{
 
 
 
 

 
 
 
 𝐯⃑⃑⃑ 𝒅 =

𝑘0
𝑘1

(𝐫⃑⃑ 𝑟− 𝐫⃑⃑ )+ 𝐯⃑⃑⃑ 𝑟

𝐚⃑⃑⃑ 𝒅 =
𝑘1
𝑘2

(𝐯⃑⃑⃑ 𝒅− 𝐯⃑⃑⃑ )+ 𝐚⃑⃑⃑ 𝑟

𝐚⃑⃑⃑ ̇𝒅 =
𝑘2
𝑘3

(𝐚⃑⃑⃑ 𝒅− 𝐚⃑⃑⃑ )+ 𝐚⃑⃑⃑ ̇𝑟

𝐚⃑⃑⃑ ̈𝒅 =𝑘3 (𝐚⃑⃑⃑ ̇𝒅− 𝐚⃑⃑⃑ ̇)+ 𝐚⃑⃑⃑ ̈𝑟

 (6.109) 

Even though the dynamic inversion is non-cascaded, the linear control can be still 

implemented like the cascaded structure but with additional feedforward reference signals. In 

this way, the desired states going to the next level can be limited.  
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The feedback gains can initially designed based on the linear transfer function from the 

reference position 𝐫 𝑟 to the position 𝐫  as shown in Eq. (6.110). However, it needs to be fine-

tuned in flight test. 

𝐫 =
𝑠4 + 𝑘3𝑠

3 + 𝑘2𝑠
2 + 𝑘1𝑠 + 𝑘0

𝑠4 + 𝑘3𝑠
3 + 𝑘2𝑠

2 + 𝑘1𝑠 + 𝑘0
𝐫 𝑟 

(6.110) 

{
 
 
 

 
 
 
𝑘3 = 4𝜔
𝑘2
𝑘3
=
3

2
𝜔

𝑘1
𝑘2
=
2

3
𝜔

𝑘0
𝑘1
=
1

4
𝜔

 (6.111) 

Similar structure can be also used in the reference model to take trajectory commands, whose 

velocity and acceleration commands can be feedforward in the reference controller. High 

frequency (small sampling time) reference signal with all necessary derivatives can be 

generated from the trajectory commands, which may have larger time step or even gaps due 

to signal transmission. 

6.3.2.3. Nonlinear limits in reference model and error controllers 

The above design only builds up the structure to incorporate linear state limits; however, the 

quadrotor has the physical limits on the nonlinear states:  

 The maximum speed, about 10 to 15 m/s depending on the propeller types. 

 The maximum total thrust, depending on the propellers and motors. For the 

‘Hummingbird’, it is around 14N. 

 The maximum angular rate, limited by the gyroscope sensor range. It is 400°/s for 

the ‘Hummingbird’. 

 The maximum angular accelerations, limited by the maximum moments. For the 

‘Hummingbird’, the pitching and rolling moments are about 0.6 Nm, while the 

yawing moment is 0.1Nm. 

The nonlinear dynamic inversion idea can be applied here in the reference model to 

incorporate the nonlinear state limits, as well as in the actual error controllers. In fact, this 

technique is widely used in the classical control of fixed wing aircraft. The limitation block of 

each ‘control loop’ can be modified as such, first the nonlinear state (which has physical limits) 

is computed from the linear one and set the limits, then invert the limited nonlinear state back 

the linear state.  

The position and velocity limits can be directly limited on 𝐫 𝑐 and 𝐯⃑ 𝑑 without any conversions. 

The force limits need to convert the desired acceleration 𝐚⃑ 𝑑 to the thrust vector. The nonlinear 

conversion could be done via Eq. (6.14): 

𝐟2
−1 :   [

𝑔𝑥,𝑑
𝑔𝑦,𝑑
−𝑇𝑑/𝑚

]

𝐵

= 𝐌𝐵𝑊 ∙ [

𝑎𝑥,𝑑
𝑎𝑦,𝑑
𝑎𝑧,𝑑

]

𝑊

− [

𝑓𝑥
𝑓𝑦
𝑔𝑧

]

𝐵

 (6.112) 
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The Eq. (6.8) could also be used to compute the thrust, however to convert the thrust back to 

the acceleration after limiting the thrust could be tricky here. A proportional scaling on the 

acceleration might end up reducing the total thrust and attitude together. Using the above 

equation, the thrust and the gravitational components could be limited separately. The 

maximum thrust limit applies only on the z-axis of the Body-fixed frame but does not affect 

the attitude, which is represented by the gravitational components and might be separately 

limited if necessary. It could be converted back to the desired accelerations by Eq. (4.56) after 

imposing the limits, 

𝐟2:   𝐚⃑ 𝑑 ≈ 𝐌𝑊𝐵 ∙ ([

𝑓𝑥
𝑓𝑦
𝑔𝑧

]

𝐵

+ [

𝑔𝑥
𝑔𝑦

−𝑇/𝑚
]

𝐵

) (6.113) 

Next, the desired acceleration derivatives 𝒂⃑⃑ ̇𝒅 can be converted to the angular rate using Eq. 

(6.20). 

𝐟3
−1 :   [

𝑝
𝑞

𝑇̇
]

𝑑

= [
0 𝑇−1 0

−𝑇−1 0 0
0 0 −1

]𝐌𝐵𝑊𝑚 ∙ 𝐚⃑ ̇𝒅 (6.114) 

The pitch and roll rate can be limited accordingly then converted back using Eq. (6.19). 

𝐟3:   𝐚⃑ ̇𝒅 ≈ 𝐌𝑊𝐵 ∙
1

𝑚
∙ [
0 −𝑇 0
𝑇 0 0
0 0 −1

] [

𝑝
𝑞

𝑇̇
] (6.115) 

The desired acceleration 2nd derivatives 𝐚⃑ ̈𝒅 can be converted to the angular acceleration using 

Eq. (6.26). After limiting, it needs to be converted back by using Eq. (6.25). 

𝐟4
−1 :   [

𝑝̇
𝑞̇

𝑇̈

]

𝑑

= [
0 𝑇−1 0

−𝑇−1 0 0
0 0 −1

](𝐌𝐵𝑊𝑚 ∙ 𝐚⃑ ̈𝒅 − [

−𝑇𝑟𝑝 − 2𝑇̇𝑞

−𝑇𝑟𝑞 + 2𝑇̇𝑝

𝑇𝑝2 + 𝑇𝑞2
]) (6.116) 

𝐟4:   𝐚⃑ ̈𝒅 = 𝐌𝑊𝐵 ∙
1

𝑚
∙ ([

−𝑟𝑝𝑇 − 2𝑞𝑇̇

−𝑟𝑞𝑇 + 2𝑝𝑇̇

𝑞2𝑇 + 𝑝2𝑇

] + [
0 −𝑇 0
𝑇 0 0
0 0 −1

] [

𝑝̇
𝑞̇

𝑇̈

]) (6.117) 

In those equations, all the necessary plant parameters and states can be computed from the 

linear reference state (from the integrator chain). The transformation matrix 𝐌𝑊𝐵 is calculated 

from the reference acceleration, 

𝐌𝑊𝐵,𝑟 =

[
 
 
 
 
 
𝑎𝑧 − 𝑔

𝑎𝑥𝑧

𝑎𝑥𝑎𝑦

𝑎𝑥𝑧𝑓𝑧

𝑎𝑥
𝑓𝑧

0
𝑎𝑥𝑧
𝑓𝑧

𝑎𝑦

𝑓𝑧

−
𝑎𝑥
𝑎𝑥𝑧

𝑎𝑥𝑎𝑦

𝑎𝑥𝑧𝑓𝑧

𝑎𝑧 − 𝑔

𝑓𝑧 ]
 
 
 
 
 

 (6.118) 

Where, 
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{
 

 𝑓𝑧 = −√𝑎𝑥
2 + 𝑎𝑦

2 + (𝑎𝑧 − 𝑔)
2

𝑎𝑥𝑧 = −√𝑎𝑥
2 + (𝑎𝑧 − 𝑔)

2

 

To illustrate the idea, the nonlinear conversions are denoted by a nonlinear function blocks 𝐟𝑖 

as shown in Figure 6.14.  

 

Figure 6.14 Nonlinear state conversion and limits 

With the above modification, smooth, physically capable and more importantly consistent 

reference signals can be generated for the controllers. The stability of the reference model is 

well preserved because the nonlinear modification is done on the limit blocks of the reference 

controller.  

In addition, nonlinear reference state can be also computed from the linear ones and provided 

to the controllers if necessary. 
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6.4. Comparison and Results 

There are in total six different position control designs: three NDI designs and three 

Backstepping designs. Five of the six need to use filter in the controllers because the 

quadrotor position system is of non-triangular form. The only non-cascaded control design 

given in section 6.1.3 used a dynamic extension to transform the system into triangular form. 

In the five filtered control designs, design b1) and b2) use cascaded NDI structure; design g1) 

and g2) use Backstepping with filter and design h) is CFB based on design g2). 

The comparisons are categorized into three groups. The first group compares the two 

variations in Design b1): the Euler angle approach and the gravitational vector approach. The 

second group compares the three NDI approaches: NDI-RD2 design, NDI-RD3 design, and 

NDI-RD4 design. The third group compares the Backstepping designs g1), g2) and h) with the 

best NDI controller, the RD3 design.  

The high-fidelity simulation results are more often used for the comparison for the better 

clarity. In addition, the second comparison has additional VICON test data. Unfortunately, it 

is not available for other control designs. The experimental data from the Webcam system is 

not used for comparison because of the speed and position limitation. With low bandwidth 

maneuvers, the control performance is rather the same for all controllers. The GPS flight data 

is also not suitable because of the big position measurement errors. Nevertheless, the 

experimental data will be presented in Chapter 8. 

 

6.4.1. Euler angle VS gravitational vector 

Design b1) is the most intuitive design structure when it comes to the quadrotor position 

control. The inner loop governs the attitude, while the output loop governs the point-mass 

translational motion. There are two versions with different control states, one with the 

conventional Euler angle parameterizations, and the other with the gravitational vector 

parameterization. The gravitational vector has obvious advantages over the Euler angle, 

 Fast disturbance rejection and no steady-state errors due to the aerodynamic drag in 

high speed flight. External disturbances can be actively compensated by the control 

feedback of the accelerator measurements. In other words, the gravitational vector 

can compensate the disturbances at acceleration level, which of course is fast and 

aggressive. While the Euler angle approach can only react after the disturbances have 

been propagated to velocity and position. Therefore, the gravitational vector approach 

has better position tracking, while the Euler angle approach has more stable and 

robust attitude control. 

Figure 6.15 shows the result in the simulation test of a constant 5 m/s speed flight. 

The inner loop command 𝑔𝑥,𝑐𝑚𝑑 at steady state is the negative value of the measured 

acceleration 𝑓𝑥  on the same axis. In comparison, the Euler angle approach will 

generate equivalent angle commands from constant position errors, which is relatively 

slow. 

The disturbance rejection performance is also improved as shown in Figure 6.16. Both 

approaches are subject to the same amount of disturbances. The gravitational vector 
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approach (in blue) reacts much faster than the Euler angle approach (in red), hence 

smaller velocity and position errors arise under the same level of disturbances. 

 Simplification and efficiency. Limited payload or limited computation power is a 

normal problem for small UAVs like the quadrotors. The hummingbird is originally 

equipped with ARM 7 microprocessor, which is only capable of fixed-point 

computation. The trigonometric functions in the Euler angle approach are slow and 

need a lot of resources to run on embedded systems. The new parameterization 

embeds the attitude information in the transformation matrix, which can be efficiently 

calculated using Quaternions in the data fusion. In my implementation on the ARM 7, 

the new approach save about 20%-40% of computation power than the Euler angle 

approach. Once again, the detailed implementations will be introduced in Chapter 8.  

 Intuitive interpretation and better nonlinear mapping. From Newton’s second law, the 

translational motion is only actuated by force, not by Euler angles or anything else. 

There are two dominate forces on the quadrotors: the thrust force and the gravitational 

force. The thrust can be easily controlled by the motors. After rotating the gravitational 

vector in the Body-fixed frame, the gravitational force is no longer constant but a 

control variable. With the Euler angle as control variable, the error dynamics is linear 

over the angle ranges. However, with gravitational vector, the mapping is more 

reasonable: at low angle range, the control of gravitational force is more effective; 

while at high angle range, the control of gravitational force is much less effective. This 

is due to the sine mapping as shown in Eq.(6.119). With this mapping, the constant 

gain set on the gravitational error is more aggressive at small angles but reluctant at 

high angles, which is good for the robustness considerations. 

[
𝑔𝑥
𝑔𝑦
] = 𝑔 ∙ [

sin Θ cosΦ
− sinΦ

] (6.119) 

 An additional advantage of the gravitational vector parameterization is that the 

Backstepping design g1) is made possible by the new parameterization. The 

intermediate control variables and thrust command is decoupled and the analytical 

solution to the next inner state is thus possible. 
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Figure 6.15 Direct usage of accelerometer in the case of constant speed flight  

 

Figure 6.16 Disturbance rejections of the two approaches 
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6.4.2. NDI Design Comparisons: RD2 VS RD3 VS RD4 

The structural difference between design b1), and b2) is the separation of inner and outer 

loops. Design b1) has RD2 outer loop and RD2 inner loop. Design b2) extends the outer loop 

to the next inner state, from the acceleration to the acceleration derivative. In terms of control 

states, the attitude state (either gravitational vector or Euler angles) is replaced by the 

acceleration (𝐚⃑ )𝑊
𝑊𝑊 but the rest stays the same. Design a) extends it even further and the inner 

loop is simply the actuator dynamics. 

This modification makes an impact mainly on the feedforward control. In design b1), the 

feedforward signals are the reference position, velocity and acceleration because those are 

in the outer loop. Due to the stability assumption of TSS, the feedforward signals cannot go 

into the inner loop. However, in design b2), the outer loop extends to the acceleration 

derivative, so the reference acceleration derivative can be also used in the feedforward 

control, which could potentially increase the control bandwidth. The feedback control is 

merely affected by the different structures. 

The design a) is a non-cascaded design: one loop control of RD4. This enables the 

feedforward of the 2nd derivative of the reference acceleration (or fourth derivative of the 

position). Theoretically, this structure could result the highest control bandwidth. 

To see clearly the differences between the RD2, RD3 and RD4 structures, the reference 

trajectory in Figure 6.12 is commanded to all three controllers in an ideal simulation without 

uncertainties (e.g. sensor errors, parameter uncertainties and external disturbances). 

Therefore, the actuator system is the main limiting factor. The resulting position tracking errors 

are shown in Figure 6.17. As expected, the design a) gives the smallest tracking error as well 

as error oscillations. The tracking performance of design b2) is rather close to design a). 

Design b1) has much bigger tracking error compared to the other two designs. This error 

decreases if the bandwidth of reference signal is tuned to be smaller, which simply means the 

design b1) has smaller control bandwidth than the other two designs. 

 

Figure 6.17 Position tracking errors of three NDI designs in ideal simulation 
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In high fidelity simulation and real flight test, the comparison results are not the same as in 

the ideal simulation environment. On the contrast, the design a) shows poor performance and 

robustness. The feedforward of the acceleration second derivative cause two problems: 

 Oscillation and even instability under external disturbances. The model uncertainties 

increase dramatically from RD3 model to RD4 model. The rate gyro noises, structural 

vibrations and propeller turbulences are not taken into account in the control system 

design. When performing high bandwidth maneuvers in the presence of large 

uncertainties, the feedforward signal of the reference acceleration 2nd derivative, which 

will be converted to the angular accelerations, might be far away from the actual 

desired values and thus deteriorate the performance and stability. The result is larger 

tracking errors, oscillations and even instability. 

 The rate gyro equipped on the ‘Hummingbird’ has a measurement range of 400°/s. A 

pure rate-feedback control design could limit the angular rate command to avoid 

sensor saturation. However, in the design a), unmatched feedforward angular 

accelerations (due to e.g. disturbances) could potentially saturate the sensor, which 

could jeopardize the whole data fusion. This failure happened during the flight test: 

The rate saturated for a few second, then the attitude estimation is directly affected 

and the quadrotor lost its stability. 

To sum up, the quadrotor rate loop is not suitable to apply any feedforward control. For agile 

platform like the quadrotor, the rate control loop should mainly target on disturbance rejection 

rather than command taking. Much slower reference model has to be used for design a) in 

order to have a stable performance. It is not a robust structure for real flight.  

In the high fidelity simulation test, the design b1) and b2) are compared. In Figure 6.18, the 

position tracking performance subject to a 3-2-1-1 signal is presented. The design b2) (in 

green) have obviously larger overshoot and tracking errors compared to the design b1) (in 

red). The velocity comparison result in Figure 6.19 corresponds to the same conclusion. It can 

be noted that the maneuvers are not slow motion, which any controllers can track very well. 

The velocity peak reaches 8m/s. 

In the VICON flight test, similar comparison results are obtained as shown in Figure 6.20 and 

Figure 6.21. The difference may not be as obvious as in the high fidelity simulation. The gain 

settings for the reference model and error controllers are smaller so more conservative for 

robustness considerations. This could be one of the reasons for the smaller performance 

differences. For low bandwidth trajectories, even minor difference could be observed as both 

are tracking the trajectories very well. Nevertheless, the design b2) still has better tracking 

performance in terms of overshoot and error margins. 

Overall, the design b2) is the best NDI design for its high control bandwidth, performance and 

robustness. The design a) is not robustness enough for quadrotor application as there are too 

much model assumptions. The design b1) has less control bandwidth but robust and intuitive 

structure so it may be suitable for low bandwidth control problem, e.g. video/photo taking 

task. 
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Figure 6.18 Position tracking comparison between design b1) and b2) in high fidelity simulation 

 

Figure 6.19 velocity comparison between design b1) and b2) in high fidelity simulation 
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Figure 6.20 Position tracking performance of design b1) in VICON test 

 

Figure 6.21 Position tracking performance of design b2) in VICON test 
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6.4.3. Backstepping Designs VS NDI RD3 Design 

In this section, the three Backstepping designs are compared first, and then the best of 

Backstepping is compared with the best of the NDI designs. 

Due to the non-triangular form, the Backstepping position controllers have to use a command 

filter on the angular rate commands. There are two ‘Backstepping design with command 

filter’, g1) and g2). The design g1) uses the new gravitation parameter as attitude control but 

the design g2) uses the acceleration instead plus a dynamic extension as the NDI design b2). 

The design h) is the CFB design that is derived based on design g2). 

First, the design structures of g1) and g2) are similar to the NDI RD3 control structure. The 

feedforward signals contain the same information, from reference position to the reference 

acceleration. The difference is on the thrust control. Design g1) has direct thrust command to 

the actuators. Design g2) commands thrust derivative due to the dynamic extension. 

However, their performance is still almost the same due to the following two reasons. 

 The gain design on the thrust axis can be higher so that the thrust derivative is still 

high bandwidth signals. 

 The small phase lag between the direct thrust command and the integrated thrust 

command is negligible due to the thrust dynamics. 

The CFB design h) modified the design g2) by adding compensated filter error feedback, the 

𝛏𝑖 terms. The main structure remains the same as design g2). As analyzed in the previous 

sections with the generic example and attitude control example, these modifications have 

little effect on the overall performance. The control laws for the design b2), g2) and h) are 

collected below for comparison, 

{
 
 

 
 
𝑏2): 𝐮2 = 𝑮4

−1(−𝐟4 + 𝛚⃑⃑⃑ ̇𝑑) = 𝐆4
−1(−𝐟4 + 𝛂̇̂3𝑓 + 𝐀4𝐳̂4)

𝑔2): 𝐮2 = 𝐆4
−1 (−𝐟4 + 𝛂̇̂3𝑓 + [

𝐆3
𝑇(1: 2, : )
𝟎1×3

] 𝐳3 + 𝐀4𝐳̂4)

ℎ): 𝐮2 = 𝐆4
−1 (−𝐟4 + 𝛂̇̂3𝑓,𝐶𝐹𝐵 + [

𝐆3
𝑇(1: 2, : )
𝟎1×3

] (𝐳3 + 𝛏3) + 𝐀4𝐳̂4)

 

In the high-fidelity simulation, the four designs have almost the same performance, as shown 

in Figure 6.22. The position tracking errors are at the same magnitude level as in Figure 6.23. 

The control signals are compared in Figure 6.24: the control signal 𝛚⃑⃑⃑ ̇𝑑 in the design b2), the 

additional Backstepping term [
𝐆3
𝑇(1: 2, : )
𝟎1×3

] 𝐳3  in the design g2), and the additional error 

compensation term [
𝐆3
𝑇(1: 2, : )
𝟎1×3

] 𝛏3 in the design h). 

The results show that the differences between the four controllers are again negligible and 

the additional modification terms in the Backstepping designs have no effect on the position 

control as well. The best performing controller is the NDI RD3 design b2), for the high control 

bandwidth and high robustness. 
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Figure 6.22 Position tracking performance of design b2), g1), g2) and h) in high fidelity simulation 

 

Figure 6.23 Position tracking error of design b2) g1), g2) and h) in high fidelity simulation 
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Figure 6.24 Angular rate commands of design b2) g1), g2) and h) in high fidelity simulation 
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6.4.4. Overall performance comparison 

The overall performance of the different nonlinear position control designs in this thesis is now 

compared using several important criteria, such as tracking performance and design 

complexity. A table with the results of this comparison can be found in Table 6.1. It can be 

seen that the NDI RD3 position control design outperforms the other designs. 

 NDI b1) NDI b2) NDI a) BC g1) BC g2) BC h) 

Tracking 
Performance       

Control 
Bandwidth       

Disturbance 
Rejection       

Design 
Complexity        

Tuning 
Complexity       

Table 6.1 Comparison of nonlinear position control designs 

(three-star indicates the best, two-star is good / acceptable and one-star is bad / negative. These three 
categories are also indicated by green, yellow and red, respectively) 

Tracking Performance 

The NDI RD3 control design has the best tracking performance. It has more model 

assumptions than the RD2 design, but not as many as the RD4 design to ruin the structural 

robustness. The Backstepping designs are based on the RD3 concepts, so the tracking 

performance is rather similar. 

Control Bandwidth 

The control bandwidth is predominately determined by the actuator dynamics but can be 

improved by feedforward control. The NDI RD2 design has feedforward control until the 

attitude loop, the NDI RD3 design until the rate loop, the RD4 design until the actuator 

commands. Thus, theoretically the NDI RD4 design has the highest control bandwidth. The 

Backstepping design has similar RD3 structure thus similar feedforward control and control 

bandwidth. 

Disturbance Rejection 

The NDI RD4 design has too much model assumptions thus poor performance against 

external disturbances. The RD3 designs have acceptable disturbance rejection performance. 

In the implementation, the aggressiveness of the disturbance response can be tunable by the 

modifications of accelerometer feedback. The NDI RD2 design is most stable against 

disturbances, as more model uncertainties can be compensated. 
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Design Complexity 

The NDI in general are much simpler than the Backstepping designs, even the RD4 design is 

acceptable. The Backstepping design g1) is quite complicated for the nonlinear states are 

involved in the analytical derivation. The design g2) is slightly better because the analytical 

part only involves linear states. The CFB design h) also gets complicated due to the derivation 

of the compensated tracking error. 

Tuning Complexity 

The tuning effort for the NDI designs is rather small, linear gain design plus minor experimental 

tuning. For the Backstepping designs, the gain design and tuning is difficult, especially with 

original model in the design g1).  
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7. Augmented Adaptive Control 
It is an imperfect world, and there are always disturbances and uncertainties in the real 

applications. Adaptive control is well known to account for disturbances and uncertainties. 

For an agile platform like the quadrotor, fast adaptation with good transient performance is 

essential. The ℒ1 adaptive scheme is chosen because it has guaranteed fast adaptation with 

transient stability without persistent excitation [42]. Besides good performance, its linear-like 

structure is very simple to implement. 

It should be noted that the adaptive control is only augmented to the baseline controllers, 

either NDI or Backstepping. The state vector in the adaptive controller is an error state but 

not the full state. The overall augmented control structure is shown in Figure 7.1. The baseline 

controller (in blue) controls the nominal plant, while the augmented adaptive control accounts 

for uncertainties and disturbances. 

 

Figure 7.1 Overall control structure with augmented 𝓛𝟏 control 

The advantage over full adaptive control scheme is that the knowledge of nominal plant 

dynamics can be actively used in the baseline controller while the adaptive control only needs 

to do what it does best: compensate uncertainties and disturbances. The total control input 

is splitted into two parts, one parts is a confident part which can be operated with maximum 

control bandwidth limited by the plant physics and the other parts is a estimation part whose 

control bandwidth is not only limited by the plant physics but also the transient dynamics of 

the adaptation. Hence, the overall control bandwidth of the combined approach can be higher 

than the full adaptive control approach. 

Recall the full adaptive ℒ1 controller from Figure 2.11, we can see that the controller output 

needs go through the ℒ1 filter 𝐶(𝒔) before entering into the plant. However in the combined 

approach in Figure 7.1, the baseline controller output 𝐮𝑏 goes to the plant directly, i.e., it is 

only limited by the actuator dynamics, and the adaptive control output 𝐮𝑎 has to filtered by 
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the ℒ1 filter. For quadrotor application, where most of plant dynamics can be easily identified, 

the combined approach is certainly favorable. Nevertheless, for systems with little knowledge 

or large uncertainties, full adaptive maybe more appropriate. 
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7.1. Disturbances and Uncertainties 

Reviewing the mathematical model in section 4.3, the position and attitude propagations are 

simple kinematics therefore have few uncertainties. Most of the system uncertainties lie in the 

rotational dynamics and the control allocation. These uncertainties will affect the cancellation 

of nonlinearities in NDI or Backstepping controls. In control designs, the nominal or estimated 

values are used. The errors are often called inversion errors. 

Let’s first recall the dynamic equations from the angular accelerations to the motor RPMs, Eq. 

(4.39) and Eq. (4.41). 

𝛚⃑⃑⃑ ̇ = 𝐈−1 ⋅ 𝐌⃑⃑⃑ − 𝐈−1 ∙ 𝛚⃑⃑⃑ × 𝐈𝛚⃑⃑⃑  

[
𝐿
𝑀
𝑁
] = [

0 −𝑅 0 𝑅
𝑅 0 −𝑅 0
−𝑘𝑚 𝑘𝑚 −𝑘𝑚 𝑘𝑚

]

[
 
 
 
 
𝑘𝑛 ∙ 𝑛1

𝑝

𝑘𝑛 ∙ 𝑛2
𝑝

𝑘𝑛 ∙ 𝑛3
𝑝

𝑘𝑛 ∙ 𝑛4
𝑝
]
 
 
 
 

 

The uncertain parameters include the moment of inertia 𝐈, the force and torque constant 𝑘𝑛 

and 𝑘𝑚, and the power index 𝑝. Moreover, the misalignment of the motor position and axis, 

the performance differences between the motors and propellers, and the propeller 

deformations at high speed are all sources of uncertainties. The adaptive control can play an 

important role here and take some load off the error controller in the baseline controller. 

For quadrotors, disturbances are mainly the aerodynamic forces. These mainly lie in the 

translational dynamics. There are few uncertainties. Recall the dynamic equations 

represented by the new parameter, 

(𝐯⃑ ̇𝑘
𝐺)
𝑊

𝑊𝑊
= 𝐌𝑊𝐵 ∙ ([

𝑓𝑥
𝑓𝑦
𝑔𝑧

]

𝐵

+ [

𝑔𝑥
𝑔𝑦

Δ𝑓𝑧 − 𝑇/𝑚
]

𝐵

) 

𝑇 = 𝑘𝑛(𝑛1
𝑝
+ 𝑛2

𝑝
+ 𝑛3

𝑝
+ 𝑛4

𝑝
) 

From practical point of view, the adaptive control does not perform better than linear error 

control for the aerodynamic disturbances on the quadrotor. Moreover, the disturbances in the 

Body-fixed x-y-axis can be measured by the accelerometer, while the z-component can be 

assumed negligible, because in the same axis the uncertainty in thrust is much larger. The 

mass 𝑚 can be easily measured with good accuracy.  

After analyzing the disturbances and uncertainties, the necessary place to augment the 

adaptive controller is at the rate control loop, because most of the parameter uncertainties 

are there. In addition, the best sensor onboard is often the rate gyros, which has high update 

rate and relatively low sensor bias and noises, so the adaptive controller can provide accurate 

estimate and its performance will not be affected a lot by the sensor errors. On the contrast, 

for the force dynamics, possible adaptive element can also be implemented, e.g. for the 

thrust/height dynamics. However, considering the sensor quality of Image sensor or GPS, the 

performance of the adaptive controller can be largely affected. That is the main reason no 

adaptive element is implemented elsewhere than the rate loop. 
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7.2. Adaptation Law 

The adaptive control on the rate loop can be augmented to any of nonlinear control designs 

above. The dynamic equation for the angular acceleration can be written as the sum of desired 

acceleration to be commanded and a nonlinear function, which groups all the parameter 

uncertainties including external disturbances into a single term, 

𝛚⃑⃑⃑ ̇ = 𝛚⃑⃑⃑ ̇𝒅 + ∆𝐟 𝝎 (7.1) 

The desired angular acceleration 𝛚⃑⃑⃑ ̇𝒅 is commanded to the plant, which contains two parts:  

𝛚⃑⃑⃑ ̇𝒅 = 𝛚⃑⃑⃑ ̇𝒃 + 𝛚⃑⃑⃑ ̇𝒂 
(7.2) 

The baseline command 𝛚⃑⃑⃑ ̇𝒃 is from the reference signals and the error controls, which assign 

the desired dynamics to the system. The second term 𝛚⃑⃑⃑ ̇𝒂 is augmented adaptive control, 

which tries to compensate the parametric uncertainties grouped as ∆𝐟 𝝎. 

𝛚⃑⃑⃑ ̇ = 𝛚⃑⃑⃑ ̇𝒃 + 𝛚⃑⃑⃑ ̇𝒂 + ∆𝐟 𝝎⏟      
→𝟎

 (7.3) 

To estimate the parametric uncertainties, the following state predictor is proposed, 

𝛚⃑⃑⃑ ̂
̇
= 𝛚⃑⃑⃑ ̇𝒅 + ∆𝐟 ̂𝝎 + 𝐊𝒔𝒑(𝛚⃑⃑⃑ ̂ − 𝛚⃑⃑⃑ ) 

(7.4) 

The desired acceleration 𝛚⃑⃑⃑ ̇𝒅 is the same as commanded to the plant. The nonlinear estimate 

∆𝐟 ̂𝝎 tries to estimate the nonlinearities in the real plant. The last term is simply a feedback 

term to make sure the stability of the state predictor. 

The predictor error and parameter error are defined as, 

{
𝛚⃑⃑⃑ ̃ = 𝛚⃑⃑⃑ ̂ − 𝛚⃑⃑⃑ 

∆𝐟 ̃𝝎 = ∆𝐟 ̂𝝎 − ∆𝐟 𝝎
 (7.5) 

The prediction error dynamic can be derived by subtracting the state predictor dynamics and 

the real dynamics. 

𝛚⃑⃑⃑ ̇̃ = ∆𝐟 ̃𝝎 + 𝐊𝒔𝒑𝛚⃑⃑⃑ ̃ 
(7.6) 

Following a similar argument as in Section 3.3 of [42], one can derive the adaptation law of 

piecewise constant type for the unknown parameter, 

∆𝐟 ̂𝝎 = (1 − 𝑒
𝐊𝒔𝒑𝑇𝑠)

−1
𝐊𝒔𝒑𝑒

𝐊𝒔𝒑𝑇𝑠 𝛚⃑⃑⃑ ̃ 
(7.7) 

where 𝑇𝑠 is the time step of the control loop. In our quadrotor processer, the time step is 1ms. 

The adaptation gain is fixed for a fixed time step 𝑇𝑠 and state predictor gain 𝐊𝒔𝒑. 

The adaptive control law is, 
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𝛚⃑⃑⃑ ̇𝑎 = −𝑪(𝑠)∆𝐟 ̂𝝎 
(7.8) 

where 𝑪(𝑠) is the low pass filter to filter high bandwidth content of the estimation due to the 

high gain adaptation. 

The adaptive control law can be substitute into the dynamic equation (7.3), 

𝛚⃑⃑⃑ ̇ = 𝛚⃑⃑⃑ ̇𝒃 − 𝑪(𝑠)∆𝐟 ̂𝝎 + ∆𝐟 𝝎 
(7.9) 

The baseline control 𝛚⃑⃑⃑ ̇𝒃 remains as it is, while the adaptive controller aims to compensate the 

nonlinearities ∆𝐟 𝝎 using the estimate ∆𝐟 ̂𝝎 obtained from the state predictor. The low pass filter 

𝑪(𝑠)  is a tunable element so that the adaptive control only tries to compensate the 

nonlinearities within its actuator bandwidth yet not to excite the system by the sensor errors. 
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7.3. Results 

The ℒ1 adaptive control is augmented to the rate loop of the NDI RD3 position baseline control 

(design b2). To test the augmented adaptive controller, a weight of 180 gram is used to create 

some artificial disturbances, as shown in Figure 7.2. Considering the maximum payload of the 

Hummingbird is 200 gram, this is very large disturbance applied to the vehicle. Moreover, it 

is not attached in the CG point, but at the arm tip, directly under the motor, which can produce 

a large moment disturbance. The weight is attached and cut off during the flight so that the 

adaptation can be clearly visible. 

 

Figure 7.2 Hummingbird with artificial moment disturbance 

The adaptive parameter 𝛚⃑⃑⃑ ̇𝒂 during the flight is shown in Figure 7.3 and the position tracking 

of the flight is given in Figure 7.4. The adaptive augmentation is switched on around t=230s 

and the adaptive parameter starts to adapt to disturbances and uncertainties. During the 

circular motion, there could be periodic disturbances or inversion errors as indicated by the 

adaptive parameter. At t=320s the weight is attached to the vehicle. The adaptive element 𝑝̇𝑎 

on the roll acceleration adapts to about 2 rad/s2 to account for the moment disturbance of the 

weight. The fast adaptation of ℒ1 control can be observed when the weight is cut off at t=390s, 

the adaptive element jumps back within half a second. 
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Figure 7.3 The adaptive parameter 𝛚⃑⃑⃑ ̇𝒂 during the flight 

 

Figure 7.4 The position tracking of the augmented 𝓛𝟏 control 
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8. Implementations 
In this chapter, the hardware and software implementations are described in details. As 

mentioned earlier, there are three systems used for flight tests, webcam system, VICON 

system and GPS system. The flight test results are also presented in the respective sections. 

8.1. Vision Position Systems 

The two vision systems share the same experimental set-up (Figure 8.1), though certain 

parameters maybe necessary to be adjusted. The difference between the VICON and webcam 

systems is the quality of the measurements, and of course the huge cost difference. The 

position measurement performance of both systems is given in Table 8.1. The latency of the 

VICON system is mainly due to the communication delay, while the webcam system has 

additional about 60 ms delay due to the image processing. Additionally, as it utilizes the 

quadrotor edge contrast information for the detection, the speed is quite limited with the given 

frame rate. The edge in the image will be blurred when the speed is more than 2m/s. 

Nevertheless, the performance of the webcam is very satisfactory compared with its low cost. 

 

Figure 8.1 VICON system and Webcam system 

 VICON Webcam 

Accuracy Millimeter 5~10 cm 

Update rate 100 Hz 25 Hz 

Latency 40 ms 100 ms 

Range (x-y-z) 3mX7mX2m 1mX2mX1.5m 

Table 8.1 VICON and Webcam system parameters 

The overall system set-up is presented in Figure 8.2. The different processing speeds of the 

different subsystems are shown in red. The ground computer is used mainly as data 

communication platform. The commands to the Hummingbird are given by a joystick 

connected to the ground computer. The vision outputs from the vision system are transmitted 
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to the Hummingbird via. the ground computer. And the hummingbird send outputs back to 

the ground computer for debug and display. 

All the data fusion and control algorithms are running on the Hummingbird. They are first 

programmed in the Matlab/Simulink and then converted to C code by Mathworks Real-time 

Workshop Embedded Coder. The implementation of the data fusion and control algorithms, 

and their Simulink development environment will be introduced in the next sections. 

 

Figure 8.2 Vision system set-up 

 

8.1.1. Position Observer with time delayed measurement 

The cascaded data fusion structure is implemented for the vision system. The AHRS is 

responsible for the attitude estimation and the position observer responsible for the position 

and velocity estimation. Due to the cascaded structure, the vision system errors do not affect 

the pitch and bank angle estimation. The AHRS uses only the vision heading measurement 

for the azimuth angle correction. Standard AHRS implementation [52] can be applied. 

However, minor modification in the position observer is necessary to account for the time 

delay. 

As stated earlier, the webcam system often has unmatched covariance, which is a common 

problem in vision detection. In our case, a constant covariance is assumed for the position 

measurement. The position observer is a simple but suitable filtering algorithm. 

The fundamental problem in the design of an observer is the determination of the observer 

gain matrix such that the error dynamics is stable. The observer gain can be solved by either 

pole placement or optimization, i.e. solving an algebraic Riccati equation. 
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As stated earlier, the observer has the same structure of a Kalman filter, just without the 

covariance. Recall the math model of the position observer from section 0, the system 

equation and measurement equation are (The reference frame W is ignored for better 

visualization), 

[𝐫̇⃗

𝐯̇⃗⃑
] = [

𝟎 𝐈
𝟎 𝟎

] [𝐫⃗
𝐯⃗⃑
] + [

𝟎
𝐈
] 𝐚⃗⃑ 

𝐲⃗ = 𝐫⃗𝑣𝑖𝑠𝑖𝑜𝑛 = [𝐈 𝟎] [
𝐫⃗
𝐯⃗⃑
] 

(8.1) 

The observer equation is then, 

[𝐫̂⃗
̇

𝐯̂⃗⃑
̇
] = [

𝟎 𝐈
𝟎 𝟎

] [𝐫̂⃗

𝐯̂⃗⃑
] + [

𝟎
𝐈
] 𝐚⃗⃑ − [

𝑘1𝐈
𝑘2𝐈
] (𝐫̂⃗ − 𝐫⃗) (8.2) 

The estimation error dynamics is, 

[𝐫̂⃗
̇
− 𝐫̇⃗

𝐯̂⃗⃑
̇
− 𝐯̇⃗⃑

] = [
−𝑘1𝐈 𝐈
−𝑘2𝐈 𝟎

] [𝐫̂⃗ − 𝐫⃗

𝐯̂⃗⃑ − 𝐯⃗⃑
] (8.3) 

In the Matlab implementation, the observer gains can be design offline using the ‘Kalman’ 

commands, i.e. solving an algebraic Riccati equation. The measurement covariance of the 

accelerometer and position sensor is design parameters, and minor tuning of the covariance 

is necessary for the best performance. 

Based on the classical Luenberger observer, two modifications are introduced for better 

performance in the implementation.  

The first modification considers the accelerator bias: the x-y-axis bias cannot be observed 

due to the cascaded structure, i.e. the coupling with the attitude estimation; the z-axis bias, 

however, can be observed. Additional bias state 𝑏𝑧 can be added to the observer equation 

(8.2). The assumption is to ignore the nonlinearities due to the frame rotation from W frame to 

the B frame. 

The accelerometer bias on the z-axis is added to the velocity differential equation, 

𝐯̂⃗⃑
̇
= 𝐌𝑊𝐵(: ,3)𝑏𝑧 +𝐌𝑊𝐵𝐟𝐵

𝐼𝐼 + 𝐠⃗⃑𝑊 
(8.4) 

Secondly, the bias is estimated by the position correction. However, the position error is better 

rotated into the body-fixed frame. 

𝑏̇𝑧 = −𝑘3𝐌𝐵𝑊(3, : )(𝐫̂⃗ − 𝐫⃗) 
(8.5) 

The expanded observer equation is, 

[
𝐫̂⃗
̇

𝐯̂⃗⃑
̇

𝑏̇𝑧

] = [
𝟎 𝐈 𝟎
𝟎 𝟎 𝐌𝑊𝐵(: ,3)
𝟎 𝟎 𝟎

] [
𝐫̂⃗

𝐯̂⃗⃑
𝑏𝑧

] + [
𝟎
𝐈
𝟎
] (𝐌𝑊𝐵𝐟𝐵

𝐼𝐼 + 𝐠⃗⃑𝑊) − [

𝑘1𝐈
𝑘2𝐈

𝑘3𝐌𝐵𝑊(3, : )
] (𝐫̂⃗ − 𝐫⃗) (8.6) 
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The three gains 𝑘1, 𝑘2 and 𝑘3 are determined by the Matlab ‘kalman’ function as shown in Eq. 

(8.7), where the covariance 𝐐  and 𝐑  is determined by the accelerometer noise 𝒘𝑎 , bias 

random walk 𝒘𝑏  and position measurement noise 𝒗 . The final values are determined in 

experiment given in Table 8.2. It shall be noted that although the steady state accelerator 

noise level can be easily measured, the in-flight accelerator variance is not the same level. In-

flight tuning is absolute necessary. 

[∎, 𝐊, ∎] = 𝑘𝑎𝑙𝑚𝑎𝑛(𝑠𝑦𝑠, 𝐐, 𝐑) (8.7) 

𝐐 = [
𝐸(𝒘𝑎𝒘𝑎

𝑇) 𝟎

𝟎 𝐸(𝒘𝑏𝒘𝑏
𝑇)
] 

𝐑 = 𝐸(𝒗𝒗𝑇) 

 VICON Webcam 

𝒘𝑎 (
𝑚

𝑠2
) 0.3 0.3 

𝒘𝑏 (
𝑚

𝑠2
) 0.01 0.01 

𝒗(𝑚) 0.01 0.02 

𝐊 [7.8  30.3  1] [5.5  15.2  0.5] 

Table 8.2 Position observer parameters 

The second modification is on the time delay problem of the position measurement. An easy 

remedy is to synchronize the signal by delaying the prediction signals and assume the error 

dynamics remains in the last 40 or 100 ms. If the current time is denoted by 𝑡 and time delay 

is 𝜏, the generic form is, 

𝐱̇̂𝑡 = 𝐀𝑡𝐱̂𝑡 + 𝐁𝑡𝐮𝑡 + 𝐊(𝐲𝑡−𝜏 − 𝐇𝐱̂𝑡−𝜏) 
(8.8) 

The final implemented equation and Simulink structure are as follows, 

[
𝐫̂⃗
̇

𝐯̂⃗⃑
̇

𝑏̇𝑧

]

𝑡

= [
𝟎 𝐈 𝟎
𝟎 𝟎 𝐌𝑊𝐵(: ,3)
𝟎 𝟎 𝟎

] [
𝐫̂⃗

𝐯̂⃗⃑
𝑏𝑧

]

𝑡

+ [
𝟎
𝐈
𝟎
] 𝐚⃗⃑ − [

𝑘1𝐈
𝑘2𝐈

𝑘3𝐌𝐵𝑊(3, : )
] (𝐫̂⃗𝐭−𝛕 − 𝐫⃗𝑣𝑖𝑠𝑖𝑜𝑛) 

(8.9) 

The implementation structure in the Simulink is shown in Figure 8.3.  

A close look of the fused signals and the measured signals is presented in Figure 8.4. The 

measured signals (green) are logged on the onboard processer, so it has the image 

processing delay and the transmission delays. After filtering, the fused signals (blue) get 

smooth and continuous; moreover, there is an obvious shift in time indicating that the time-

compensation in the filter has an effect on the performance. 
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Figure 8.3 Vision system set-up 

 

Figure 8.4 Vision measurement and fused position signal in VICON system 
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8.1.2. Position controller implementation 

The implementations of the different position controllers are rather similar. The NDI RD3 

design (b2) is presented here as an example. 

8.1.2.1. Simulink implementation 

The implemented Simulink structure of the position controller is given in Figure 8.5 

 

Figure 8.5 Simulink structure of NDI RD3 position controller 

The reference mode is a linear fourth order reference system as described in section 6.3.2. 

The implementation is straightforward as given in Figure 8.6. The parameter A1 defines the 

natural frequency of the fourth order system. 

 

Figure 8.6 Position reference model in Simulink 

The error controller of the outer loop follows similar structure of the position reference model, 

just with additional feedforward signals. The yellow blocks are signal debug channels. 
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Figure 8.7 Outer Loop Controller in Simulink 

The rest of the blocks are implemented likewise. One minor point in the Simulink 

implementation is the usage of trigonometric functions or square root functions. These 

functions can be computational expensive for small microprocessor like the ARM 7 cortex. If 

they can’t be avoided, for instance, the trigonometric functions in the Euler angle approach 

of design b1) or the square root function for the control allocation (see Eq. Error! Reference 

ource not found.), lookup table is a less expensive alternative method in the implementation. 

The BLDC controller mapping in Figure 8.8 is given as an example. 

 

Figure 8.8 BLDC controller mapping in Simulink 

8.1.2.2. Practical modifications from theoretical control law 

There are two modifications made in the practical implementation compared with the 

theoretical control law.  

The first one is about the nonlinear mapping from force to the RPM command of the BLDC 

controller. Theoretically, it is nearly a quadratic relationship between the force and rotation 

speed, i.e. the parameter p should be close to two in the mapping Eq. Error! Reference source 

ot found.. 

𝑛𝑖 = (
𝐹𝑝𝑟𝑜𝑝,𝑖
𝑘𝑛

)
𝑝≈2
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However, with the actuator dynamics in the consideration, the quadratic mapping is not so 

optimal. The actuator or the motor dynamics would prefer a linear mapping so that the time 

scale separation is constant between the rate loop and the motor control loop. If the quadratic 

mapping is used, it will lead to higher gain at low RPM and lower gain at high RPM, which can 

easily cause oscillations at low thrust level. As a result, the actual implemented mapping is a 

trade-off between the force dynamics and actuator dynamics and an empirical value is chosen 

as 1.5. 

The second modification is about the usage of the accelerometer measurements of the Body-

fixed x and y-axis. As explained, the z-axis is most dominated as the thrust is aligned in this 

axis. The x-y- axis has mainly disturbance forces and aerodynamic drag forces in high-speed 

flight. In the conventional Euler angle approach, those measurements are simply ignored. 

However, with the new math model designs, these values can be actively used in the feedback 

control.  

With the accelerometer feedback, the control state at this level is not the attitude but the 

acceleration. Theoretically, more accurate position tracking shall be obtained. However, in 

flight test it is too aggressive on the disturbances, for instance, if the quadrotor is poked on 

the side, it will try to account for the side force by pitching or rolling up until it flipped over. In 

addition, the measurement of the accelerometer equipped on the ‘Hummingbird’ can be very 

noisy, which may also excite the system to oscillations. The attitude behavior can be very 

jittering. 

To account for these, the modification is to limit the maximum value on the feedback and to 

remove the noises by low pass filter. In the experiment, the absolute maximum of the x-and 

y- feedback is set to be 7m/s2 and a second order filter with natural frequency of 20 is used 

to filter the noise. Another implementation technique is to reduce the x-y-axis accelerations 

into 50%. The disturbance rejection is still better than the Euler angle approach but the 

attitude behavior is still as smooth as the Euler angle approach. 

 

8.1.3. Code generation and ground control 

The software has been developed in two different platforms of the Hummingbird, the ARM 7 

microprocessor and the Gumstix Overo board. They share the same top-level software 

structure and the operations are similar. 

The data fusion, flight controller and other auxiliary functions are first implemented in Simulink 

with predefined input and output bus interface. For instance the bus interface for the Overo 

Simulink implementation is shown in Table 8.3. The FCS_IMU_Bus and FCS_GPS_Bus 

contains the IMU and GPS output. The FCS_Pilot_Bus takes the pilot commands from the 

transmitter. The FCS_Data_in_Bus contains the signals sent from the ground control station, 

which may contains ground control commands, vision sensor output, etc. There are just two 

output buses: the FCS_CMD_Bus is the RPM commands calculated by the controller and the 

FCS_Data_Out_Bus is the user specified debug signals. The detailed definitions of the signals 

can be found in the bus definition file in the appendix. 
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Input Bus Output Bus 

FCS_IMU_Bus FCS_CMD_Bus  

FCS_GPS_Bus FCS_Data_Out_Bus 

FCS_Pilot_Bus   

FCS_Data_in_Bus  

Table 8.3 Input and output bus for Overo 

Next, they can be converted into C code using the Real time workshop embedded coder of 

Matlab/Simulink and uploaded to the ARM cortex. 

The ground control is mainly responsible for the information exchange between the vision 

system and the quadrotor. The vision output are first sent to the Simulink ground model via 

UDP connection and then sent to the quadrotor together with ground commands (from a 

joystick) via X-bee [53]. It also receives debugging signals from the quadrotor via X-bee. The 

ground model is shown in Figure 8.9. 

  

Figure 8.9 Ground Simulink model 
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8.2. GPS based Position System 

The GPS based position system has three sensors to replace the vision system: GPS receiver, 

barometer and magnetometer. The GPS has relative good accuracy in the latitude and 

longitude measurement compared with altitude. The barometer can improve the altitude 

estimation and the magnetometer measures the magnetic field and provides a heading 

correction to the gyro measurement. 

Switching to GPS based position system, the update rate of the position measurement drops 

to 5Hz and accuracy drops to 3-5 m. however, the range and speed limitation are gone and 

the quadrotor can thus cover larger flight envelope and fly more aggressive maneuver. The 

maximum speed in the automatic flight exceeds 10 m/s for instance.  

The implementation of the GPS based position control system is not so much different with 

the vision system. The data fusion has to cope with different sensor inputs. The controller just 

needs minor gain tuning (smaller outer loop feedback gains due to reduced position quality). 

New path generator [39] is implemented for various choices of trajectories. 

The vision sensor is replaced by GPS, barometer and magnetometer. Standard Extended 

Kalman filter is implemented. The time update of this filter can be found in section 4.2.3, the 

math model for the full state EKF. The measurement updates of different sensors has different 

frequencies and their synchronizations are critical for the fusion results. The state and 

covariance corrections are triggered by the data flag of the sensors. The implementation in 

the Matlab-embedded function is shown in Appendix. 

Flight test results are given in the figures below. The tracking performance of position, velocity 

and attitude is good and robust. The position tracking accuracy is much worse than that with 

the VICON system. However, the flight envelope is much wider. More research and 

development in the outdoor flight can be done in the future. 
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Figure 8.10 Position tracking in outdoor flight test with GPS 

 

Figure 8.11 Close look of position tracking 
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Figure 8.12 Velocity tracking in outdoor flight test with GPS 

 

Figure 8.13 Attitude tracking (gxy) in outdoor flight test with GPS 
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9. Conclusions 
This thesis has aimed to investigate the potential of the existing nonlinear adaptive control 

theories and to bridge the gap between the theories and reality by designing novel control 

architectures in experimental & operational systems. Different designs using NDI and 

Backstepping have been investigated and compared. Novel control structures and 

parameterizations have been proposed and their resulting controller has been evaluated 

throughout the thesis. The main conclusion and results of the thesis are summarized below.  

9.1. Summary 

In this thesis, the nonlinear control theories, NDI and Backstepping, have been analyzed and 

novel control structures have been designed to pushing the actuator limits and explore the 

flight envelop of the quadrotor without conservative margins. The baseline + augmented 

adaptive control structure serves as a good basis for future research. 

Gravitational Vector Parameterization 

The gravitational vector parameterization is recommended to replace the conventional Euler 

angle parameterization for its efficiency, simplicity and availability. As it is an acceleration 

state, it has less nonlinearity from the translational acceleration compared with the angle 

representation. The gravitational vector approach has efficient computation and intuitive 

representation of the quadrotor dynamics. In addition, the analytical Backstepping in Design 

g1) is made possible to the rate loop. However, it still has the singularity at Pitch or Bank angle 

of 90 degree. 

NDI Control Design 

The classical theoretical NDI aims to convert the system strictly into a chain of integrators. In 

the control design process, the NDI control can be extended in two directions. First, not every 

nonlinear dynamics needs to be inverted, for instance, the aerodynamic damping or the 

accelerometer x-y-axis feedback. Second, original model design as in design c) is possible. 

With the extension, the disadvantages of classical NDI compared with Backstepping are 

remedied. Overall, the NDI control designs have the same performance as the best 

Backstepping approach, either for system of triangular form or non-triangular form. What’s 

more, the NDI design structures are often simple and intuitive because NDI is deeply rooted 

in the physics of the plants. As a result, the NDI RD3 position loop + RD1 rate loop design 

has the best overall performance with high control bandwidth., the RD2 position loop + RD2 

attitude loop design is a better choice for quadrotor application required low control 

bandwidth but high robustness. To conclude, the NDI control is preferred compared with 

Backstepping for the quadrotor applications. 

Backstepping Control Design 

Backstepping control methods in general has more design freedom and more control 

variations. The best control design with Backstepping has the same performance as NDI, 
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however, the implementations like the gain designs and debugging is not as intuitive as NDI. 

More implementation effort is needed for the similar NDI designs. The additional 

Backstepping term compared with NDI is proved to have little impact on the controller 

performance, as well as the CFB modification. 

Hybrid Control: Nonlinear Baseline Control + Augmented ℒ1 Control  

The hybrid control structure is most suitable for the quadrotor applications, where the 

knowledge of the plant dynamics can be used in the baseline control, and the uncertainties 

mainly from external disturbances and aerodynamics can be compensated with fast 

converging ℒ1 controller. 
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9.2. Future Work 

New question and research directions can be formulated based on the research presented in 

this thesis. They are summarized in this section 

Path generation with consideration of actuator limits 

For high demanding trajectories, the actuator can be easily saturated and impede the tracking 

performance. When switching from trajectory tracking to path following, additional degree of 

freedom of position control in the path direction can be used to improve the cross-path 

deviations. Online computation of the foot point on the path is necessary and the error 

dynamics may be formulated in the path frame. 

What’s more, online path generation with consideration of the actuator limits maybe very 

useful to avoid actuator saturations or only allow short time saturations. The PCH concept 

may be employed in the close-loop reference path generation. 

Advanced Adaptive Control 

The current ℒ1 controller is one of the basic adaptive control implementation. Debates on the 

ℒ1 adaptation are still going on. Other adaptive strategies include MRAC, Neural Network, 

Background Learning, etc. There are huge potential in the adaptive area and further research 

in this area.  
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Appendix 

Coordinate Frames 

 ECEF - Frame (Earth Centered Earth Fixed) 

Index:  E 
Role:   Navigation Frame – used to specify positions 
Origin:  Center of the Earth 
Translation:  Moves with ECI-frame 
Rotation:   Earth Rotation around z-axis at earth angular rate, ~2π/24 h 
x-Axis:   In equatorial plane, points through Greenwich Meridian 
y-Axis:  In equatorial plane to form a right hand system with the x-Axis and z-

Axis 
z-Axis:   Rotation axis of the earth  
 

 
  

  

  
  

  
 
  

  
  

  
 
  

   h 

  h , , P   

  
E x 

E y 

  
E z 

 
 

  

  

     

 

 

   

 

 

 

 

 

 

 

 

         

    

  

  

 

 
  

  

    

  

     

 

 

 

 

   

 

 

 

 

 

 

 

 

         

    

  

  

 
    

   

  

  

     

 

 

 

Surface Normal 
 



168 Appendix  

 NED Frame (North-East-Down Frame) 

Index:  O 
Role:   Orientation Frame – used to specify the attitude of vehicle 
Origin:  Reference Point of the Aircraft 
Translation:  Moves with Aircraft Reference Point 
Rotation:  Rotates with transport rate to keep NED alignment 
x-Axis: Parallel to the local geoid surface, pointing to the geographic north 

pole 
y-Axis:  Parallel to the local geoid surface, pointing east to form a right hand 

system with x-Axis and z-Axis 
z-Axis:   Pointing downwards, perpendicular to the local geoid surface 
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 W Frame (World Frame) 

Index:  W 
Role:  World Frame – used to specify the local position of vehicle, deduced 

from NED frame. 
Origin:  Point on the surface of the earth 
Translation:  None 
Rotation:  None 
x-Axis: Parallel to the local geoid surface, pointing to a direction that deviates 

with alignment angle 𝜒𝑊 from north direction 
y-Axis:  Parallel to the local geoid surface, to form a right hand system with x-

Axis and z-Axis 
z-Axis:   Pointing downwards, perpendicular to the local geoid surface 
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 Body Fixed Frame 

Index:  B 
Role:   Notation Frame – used for forces, moments, …  
Origin:   Reference Point of the Aircraft 
Translation:  Moves with Aircraft Reference Point 
Rotation:  Rotates with the Rigid Body Aircraft 
x-Axis:  Pointing towards the aircraft nose in the symmetry plane 
y-Axis:  Pointing to the right wing to form an orthogonal right hand system 
z-Axis:  Pointing downwards in the symmetry plane of the aircraft, 

perpendicular to the x- and y-axis 

 Kinematic Frame 

Index:  K 
Role:   Flight-Path Axis Frame 
Origin:  Reference point of the aircraft (R) 
Translation:  Moves with Aircraft Reference Point 
Rotation:  Rotates with the direction of the kinematic aircraft motion 
x-Axis: Aligned with the kinematic velocity, pointing into the direction of the 

kinematic velocity 
y-Axis:   Pointing to the right perpendicular to the x- und z- Axes 
z-Axis:  Pointing  downwards parallel to the projection of the local normal to 

the WGS-84 ellipsoid into a plane perpendicular to the x-Axis (i.e. to 
the kinematic velocity) 

 


