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Abstract—Since improper (noncircular) complex signals re-
quire adequate tools such as widely linear filtering, a generalized
likelihood ratio test has been proposed in the literature to verify
whether or not a given signal is improper. This test is based on the
augmented complex formulation, which is sometimes regarded
as the most convenient way of handling improper signals. In
this paper, we show that a derivation of an impropriety test
is also possible without making use of the augmented complex
representation. Instead, we us a composite real formulation,
and we apply the recently proposed framework of block-skew-
circulant matrices. It turns out that this alternative derivation is
of practical relevance since it reveals a computationally more
efficient implementation of the impropriety test by avoiding
redundant matrix structures. The paper is concluded by a
discussion of redundancy in the description of second order
statistical properties of complex random vectors.

I. INTRODUCTION

In the past, methods to process complex signals have often
been derived assuming so-called proper [1] random signals,
i.e., signals which do not have any correlations or power
imbalances between real and imaginary parts. However, in
technical systems, this assumption is often not justified. For
instance, many coding and modulation schemes in communi-
cation systems (e.g., BPSK, ASK, or GMSK) lead to transmit
signals that do not fulfill the conditions for propriety (see,
e.g., [2], [3]). Moreover, hardware imperfections such as I/Q
imbalance can lead to improper received signals [4].

To adequately treat such improper signals, so-called widely
linear processing (see, e.g., [2], [3], [5], [6]) is required, i.e.,
linear processing of the signal and its complex conjugate or,
equivalently, linear processing of the real and imaginary parts
of a signal. It has been shown that widely linear processing can
achieve significant gains over conventional linear processing
(e.g., [4], [7]–[17]), for instance, in terms of mean square error
or in terms of data rates in a communications system.

Therefore, it makes sense to have a tool at hand that can
classify a given signal as proper or improper. In [2], [18], the
question was asked how such a classification can be done if
only noisy measurements are available. The authors developed
a generalized maximum likelihood ratio test for impropriety
of complex signals based on the augmented complex represen-
tation, where a complex random vector and its conjugate are
stacked in a complex vector of twice the original dimension.
They acknowledge that a generalized maximum likelihood
ratio test is not generally optimal in the sense of Newman-
Pearson, but they point out that the concept is widely accepted

in practice due to its reliable performance [19], and they
demonstrate the usefulness of the particular test derived in
their work by means of simulation results.

The augmented complex representation, on which the
derivation of the test relies, is often considered as the most
convenient framework for studying improper complex signals
(see, e.g., [2], [3], [20]–[23]). Therefore, a large variety of
mathematical tools has been developed for this formulation
(e.g., [2], [3], [6], [18], [20]–[23]). An alternative way of
treating improper signals is the so-called composite real repre-
sentation, where real and imaginary parts of complex vectors
are stacked in real-valued vectors. This formulation had for
a long time been disregarded when it comes to developing
mathematical tools. However, it has recently been proposed to
exploit properties of so-called block-skew-circulant matrices
and block-Hankel-skew-circulant matrices (see Section II)
when working with the composite real representation [24].
Moreover, [24] contained many examples of applications
where the composite real representation in combination with
the new framework is advantageous compared to the aug-
mented complex representation. However, there still exist
many problems for which researchers have proposed solution
approaches in the augmented complex representation, but not
in the composite real representation.

One of these problems is testing a complex signal for impro-
priety. In this paper, we show that this is another application
where the framework of block-skew-circulant matrices delivers
an improved solution compared to the existing augmented
complex approach. We apply the framework in order to derive
the generalized likelihood ratio test (GLRT) for impropriety
based on a composite real formulation in Section III. We then
show that with this alternative derivation, we can obtain the
same test results as with the augmented complex impropriety
test (see Section IV), but at a reduced computational com-
plexity (see Section V). This advantage in the implementation
makes the approach proposed in this paper beneficial from a
practical point of view.

Moreover, considering this alternative derivation is inter-
esting from a theoretical point of view, since it is another
step towards better understanding differences and common
points of the augmented complex and the composite real
formulations. In particular, we discuss in Section VI that
the differences in computational complexity are caused by
redundancy in the representations of the second order statis-
tical properties of complex random vectors. It turns out that



elegant formulations of these properties seem to always come
at the cost of introducing redundancy, but we show that the
composite real representation makes it possible to find a good
compromise by making redundancy appear only in some steps
of a derivation, but not in the final result.

Notation: We write •T, •∗, •H, < and = to denote trans-
pose, complex conjugate, conjugate transpose, real part and
imaginary part, respectively. We use a tilde •˜ below complex
quantities to easily distinguish them from real quantities. The
shorthand notations

x̌ =

[
<(x˜)
=(x˜)

]
and x =

[
x
x̃˜∗
]

(1)

are used for composite real vectors and augmented complex
vectors, respectively.

II. BLOCK-SKEW-CIRCULANT MATRICES

In [24], it was proposed to study composite real representa-
tions using so-called block-skew-circulant (BSC) and block-
Hankel-skew-circulant (BHSC) matrices with 2 × 2 blocks.
The BSC2 and BHSC2 structures (the subscript refers to the
number of blocks) are given by

À =

[
A1 −A2

A2 A1

]
and B́ =

[
B1 B2

B2 −B1

]
(2)

respectively [24]. Since a BSC2 matrix is a block-Toeplitz
matrix while a BHSC2 matrix is block-Hankel, we denote
these matrices using grave and acute accents •̀ and •́, which
mimic the shape of the constant northwest-to-southeast and
southwest-to-northeast diagonals in Toeplitz and Hankel struc-
tures, respectively. We indicate the block size by a superscript
where necessary.

One of the most notable properties of BSC2 and BHSC2

matrices is that any matrixC can be uniquely decomposed into
a sum of a BSC2 component C̀ and a BHSC2 component Ć,
i.e., C = C̀ + Ć. The reason for this is that the subspace
BSCK×L2 is the orthogonal complement of BHSCK×L2 in
R2K×2L [24].

The BSC2 component C̀x̌ of the composite real covariance
matrix

Cx̌ = E[x̌x̌T]− E[x̌] E[x̌T] =

[
C<x˜ C<x˜=x˜
CT
<x˜=x˜ C=x˜

]
(3)

completely describes the power shaping of the orginal complex
signal, which is usually described by the complex covariance
matrix C˜ x˜ = E[x˜x˜H] [24]. On the other hand, the BHSC2

component Ćx̌ captures the information about the impropriety,
which is usually expressed by the pseudocovariance matrix
C̃˜ x˜ = E[x˜x˜T]. In particular, the BHSC2 component is zero
(i.e., Cx̌ has BSC2 structure) if the random vector x˜ is proper
[24]. Therefore, testing for impropriety means testing whether
or not the BHSC2 component Ćx̌ of the composite real
covariance matrix vanishes.

This is different from the augmented complex representation
where an impropriety test has to check whether the augmented

covariance matrix

C˜ x = E[(x− E[x])(x− E[x])H] =

C˜ x˜ C̃˜ x˜
C̃˜ ∗x˜ C˜ ∗x˜

 (4)

is block-diagonal.
Other notable properties of BSC2 and BHSC2 matrices

shown in [24] are that the BSC2 structure is preserved by
linear combinations, transposition, matrix products, and matrix
inversion if all involved matrices are BSC2 matrices [24,
Lemmas 1, 3, and 8]. On the other hand, the product of a
BHSC2 matrix with a BSC2 matrix is BHSC2, and it can
be shown that the trace of a BHSC2 matrix is always zero
[24, Lemmas 3 and 4]. For later reference, we summarize the
combination of the last two properties as follows.

Lemma 1: Let À be BSC2 and B́ be BHSC2. Then
tr[ÀB́] = tr[B́À] = 0.

III. A TEST FOR IMPROPRIETY OF COMPLEX SIGNALS

The aim of this section is to derive a test to verify whether a
complex Gaussian random vector s˜ is proper. We can conclude
from the previous section that we have to test the hypothesis

H1 : Ć š 6= 0 (s˜ is improper) (5)

against the null hypothesis

H0 : Ć š = 0 (s˜ is proper). (6)

The joint probability density function

p
(
{s˜}Ki=1;Cš, µ̌

)
=

1
√

2π
2NK

det (Cš)
K
2

· exp

(
−1

2

K∑
k=1

(šk − µ̌)
T
C−1
š (šk − µ̌)

)
(7)

of K independent and identically distributed (i.i.d.) samples
{s˜i}Ki=1 is parameterized by the composite real covariance
matrix Cš and the composite real mean vector µ̌ = E[š].

We obtain the test statistic of the GLRT as the ratio of a
constrained and an unconstrained maximum likelihood (ML)
expression, i.e.,

λ =

max
µ̌,Cš�0
Ćš=0

p
(
{s˜}Ki=1;Cš, µ̌

)
max
µ̌,Cš�0

p
(
{s˜}Ki=1;Cš, µ̌

) . (8)

The maximization in the numerator is constrained to composite
real covariance matrices with vanishing BHSC2 component,
i.e., it is constrained to the set of proper complex Gaussian
distributions. On the other hand, an arbitrary composite real
covariance matrix, i.e., any Gaussian distribution (proper or
improper), is allowed in the denominator.

The maximum likelihood estimate of the mean vector µ̌ is
given by the sample mean

m̌ =
1

K

K∑
k=1

šk (9)



in both cases. Moreover, the unconstrained ML estimate of the
covariance matrix is the sample covariance

Rš =
1

K

K∑
k=1

(šk − m̌) (šk − m̌)
T ∈ R2N×2N . (10)

In the following, we apply the framework of block-skew-
circulant matrices to show that the constrained ML estimate
in the numerator is given by the orthogonal projection of
the sample covariance matrix Rš to the subspace of BSC2

matrices, i.e., R̀š.
To find this solution, we first plug in µ̌ = m̌ and rewrite the

objective function in terms of the sample covariance matrix as

p
(
{s˜}Ki=1;Cš, m̌

)
=

exp
(
−K

2 tr[C−1
š Rš]

)
√

2π
2NK

det (Cš)
K
2

. (11)

Then, we make a change of variables by introducing K =
C−1
š , and we take the logarithm of the objective function.

Due to [24, Lemma 8], the inverse of a matrix is BSC2 if
and only if the original matrix is BSC2. Thus, the constraint
translates to PBHSC2 (K) = 0, where

PBHSC2

([
A1 A2

A3 A4

])
=

1

2

[
A1 −A4 A2 +A3

A2 +A3 A4 −A1

]
(12)

is the orthogonal projection to the set of BHSC2 matrices
from [24, Lemma 6]. We obtain

max
K�0

log
(
p
(
{s˜}Ki=1;K−1, m̌

))
s.t. PBHSC2

(K) = 0

(13)
and after dropping constant terms and factors from the opti-
mization, we have

max
K�0

log det (K)− tr[KRš] s.t. PBHSC2 (K) = 0. (14)

Introducing a Lagrangian multiplier matrix ΛT ∈ R2N×2N

and setting the derivative of the Lagrangian function

L (K,Λ) = log det (K)− tr[KRš]

+ tr[ΛPBHSC2 (K)] (15)

with respect to K to zero, we obtain (see Appendix A)

0 =
1

det (K)
det (K)

(
K−1

)T −RT
š + Λ́

T
(16)

⇔K =
(
Rš − Λ́

)−1

=
(
R̀š + Ŕš − Λ́

)−1

(17)

where Λ́ is the BHSC2 component of Λ, and Rš = R̀š+Ŕš
is a decomposition into BSC2 and BHSC2 components. To
comply with the constraint PBHSC2 (K) = 0, we have to set
Λ́ = Ŕš. The constraint K � 0 is inherently fulfilled in this
unique solution.

As a result, the constrained maximum likelihood estimate
in the numerator of (8) is Cš = PBSC2

(Rš) = R̀š, where

PBSC2

([
A1 A2

A3 A4

])
=

1

2

[
A1 +A4 A2 −A3

A3 −A2 A1 +A4

]
(18)

is the projection to the set of BSC2 matrices from [24,
Lemma 6]. Inserting all ML estimates in (8) yields

λ =

(
det R̀š

)−K
2

exp
(
−K

2 tr
[
R̀
−1

š (R̀š + Ŕš)
])

(detRš)
−K

2 exp
(
−K

2 tr
[
R−1
š Rš

]) (19)

where we have again used the decomposition Rš = R̀š+ Ŕš
of the composite real sample covariance matrix. Since the trace
of the product of a BSC2 matrix and a BHSC2 matrix vanishes
(Lemma 1), R̀

−1

š Ŕš can be dropped in the numerator.
For convenience, we introduce a transformed test statistic

r = λ
2
K , and we obtain

r =
detRš

det R̀š
. (20)

The test decides for the alternative hypothesis H1 (s˜ is
improper) if r is below a given threshold, and for the null
hypothesis H0 (s˜ is proper) otherwise.

IV. COMPARISON WITH THE AUGMENTED COMPLEX
IMPROPRIETY TEST

The test statistic of the augmented complex impropriety test
derived in [18] is given by

l =
detR˜ s(
detR˜ s˜

)2 . (21)

where R˜ s is the sample covariance matrix of the augmented
complex samples s = [s˜T, s˜H]T and R˜ s˜ is the sample covari-
ance matrix of s˜. The structure of the expression resembles the
one in the last section, but the involved matrices are different
ones, and the denominator is not squared in the composite real
version.

To study the relation between the expressions (20) and (21),
we make use of the transformation matrix

TN =

[
IN j IN
IN − j IN

]
∈ C2N×2N (22)

from [2]. This matrix transforms the composite real repre-
sentation of a complex vector into the augmented complex
representation, i.e., x = TN x̌, where x ∈ C2N and x̌ ∈ R2N

are defined in (1). Note that 1√
2
TN is unitary, so that TH

NTN =
2I2N .

For the augmented complex sample covariance matrix, we
have

R˜ s =
1

K

K∑
k=1

(sk −m) (sk −m)
H

=
1

K

K∑
k=1

TN (šk − m̌) (šk − m̌)
T
TH
N

= TNRšT
H
N . (23)

Therefore,

detR˜ s = det(TNRšT
H
N ) = det(TH

NTNRš) = det(2Rš)

= 22N detRš. (24)



Using the projection to the set of BSC2 matrices from (18)
and the projection to the set of block-diagonal matrices

Pblockdiag

([
A1 A2

A3 A4

])
=

[
A1 0
0 A4

]
(25)

it is easy to verify by means of basic algebra that

Pblockdiag(TATH) = T PBSC2(A)TH (26)

for any A ∈ R2N×2N . Applying this to A = Rš, we have
that(

detR˜ s˜
)2

= detR˜ s˜ detR˜ ∗s˜ = det
(
Pblockdiag(R˜ s)

)
= det

(
Pblockdiag(TNRšT

H
N )
)

= det
(
TNPBSC2

(Rš)T
H
N

)
= det

(
TH
NTNR̀š

)
= 22N det R̀š (27)

We see that the numerator as well as the denominator of r
are scaled versions of the respective terms of l with a common
scaling factor. This shows that the composite real GLRT is
equivalent to the test that was derived in [18] based on the
augmented complex formulation, but its derivation has not
used any of the mathematical tools of the augmented complex
framework.

The augmented complex representation and the composite
real representation of complex random vectors are equivalent
in the sense that there exists a one-to-one mapping between
them, and many problems can be conveniently formulated
in either of them. However, there are also many problems
considered in the literature for which a solution has been
found only using one of them, but not using the other one.
The problem of testing for impropriety had been one of them
since it had only been solved via the augmented complex
representation. Therefore, the alternative derivation presented
in this paper is interesting from a theoretical point of view
since it shows that a convenient derivation of a GLRT for the
impropriety of complex signals is possible using the composite
real representation as well.

Moreover, as already mentioned in the introduction, the
composite real formulation of the impropriety test is not only
of theoretical interest as an alternative derivation, but also
helps to develop a test with reduced computational complexity
as discussed in the next section.

V. COMPUTATIONAL COMPLEXITY

To compare the computational complexity of the two ap-
proaches, we note that there are three main steps in both cases.
The first one is the computation of the augmented complex
sample covariance matrix R˜ s or the composite real sample
covariance matrixRš, respectively. As a second step, we either
have to extract the sample covariance matrix R˜ s˜ (upper left
block of R˜ s), or we have to perform the projection of Rš
to the space of BSC2 matrices to obtain R̀š. Finally, two
determinants have to be computed in both algorithms in order
to obtain l and r, respectively.

The computational complexity of the second step can be ne-
glected in both algorithms. This is obvious for the augmented
complex version. For the composite real version, we argue
that the O(N2) additions can be neglected compared to the
multiplications that are needed in the other steps. Moreover,
the scaling by a factor of 1

2 can be implemented by bit-shifting
in fixed-point arithmetic (or by decreasing the exponent in
binary floating-point arithmetic). Therefore, we concentrate on
the computation of the sample covariance matrices and of the
determinants.

When comparing (10) to the first line of (23), we see that
the dimensions of the involved quantities are the same in both
cases (outer product of 2N -dimensional vectors). However,
the underlying fields are the real numbers in the first case
and the complex numbers in the second case. If a complex
multiplication is carried out by performing four real-valued
multiplications, implementing this step in the composite real
representation saves three fourth of the computational com-
plexity when compared to the augmented complex version.

A similar reasoning holds for the determinants in the
numerators of l and r. Both R˜ s and Rš have the same di-
mensions, but real-valued arithmetics are sufficient to compute
detRš. Thus, we again save one fourth of the computational
complexity by choosing the composite real implementation.

To study the determinants in the denominators, we note that
the asymptotic complexity of this operations is O(Nw) with
w > 2 for an N ×N matrix.1 Since 2w > 4, the computation
of the determinant of a real-valued 2N × 2N matrix with a
complexity order of O((2N)w) is more time-consuming than
the computation of the determinant of a complex N×N matrix
if each complex multiplication is implemented as four real-
valued ones.

It is therefore more efficient to compute the denominator of
the test statistic via the complex covariance matrix R˜ s˜. Doing
so makes sense even if the composite real representation is
used since computing the complex sample covariance matrix
R˜ s˜ from the composite real sample covariance using

R˜ s˜ = R<s˜ +R=s˜ + j(RT
<s˜=s˜ −R<s˜=s˜) (28)

with

Rš =

[
R<s˜ R<s˜=s˜
RT
<s˜=s˜ R=s˜

]
(29)

requires additions only. In order to compute the test statistics
via (20), the value of the squared determinant (detR˜ s˜)2 then

has to be divided by 22N , which can again be implemented
efficiently by bit-shifting (or by decreasing the exponent in
binary floating-point arithmetic).

From all these considerations, we conclude that the most

1Determinant computation has the same asymptotic complexity as square
matrix multiplication [25], for which the best known upper bound is
woptimal < 2.3728639 [26] (so-called fast matrix multiplication). However,
many implementations use conventional algorithms with w = 3.



efficient implementation is to compute

r =
22N detRš(

detR˜ s˜
)2 (30)

with Rš from (10) and R˜ s˜ from (28). This reduces the
computational complexity roughly by a factor of four when
compared to the implementation of the augmented complex
version in (21) and reduces the complexity slightly when
compared to the composite real version in (20).

VI. DISCUSSION

The fact that a gain in computational complexity compared
to the augmented complex formulation can be achieved (see
Section V) is a consequence of the inherent redundancy
of augmented complex representations. This redundancy is
introduced by stacking the complex vector and its conjugate
and can be easily recognized by noting that the augmented
vector contains twice the number of coefficients as the original
complex vector.

By contrast, the composite real vector, which is obtained
by stacking real and imaginary parts, has the same number
of real-valued coefficients as the original vector: we have
again doubled the size of the vector, but at the same time,
we have switched from complex to real numbers. Therefore,
the composite real vector does not contain any redundancy.
Accordingly, the composite real covariance matrix has the
same dimension as the augmented complex covariance matrix,
but has real-valued elements instead of complex ones.

The redundancy in the augmented complex representation
is the price that has to be paid for obtaining convenient math-
ematical expressions as described, e.g., in [2], [3], [20]. The
framework of block-skew-circulant matrices was introduced to
obtain elegant mathematical formulations without resorting to
augmented representations. Interestingly, this framework in-
troduces the same amount of redundancy: when decomposing
the composite real covariance matrix of an improper complex
random vector into a BSC2 and a BHSC2 component, we
obtain just as many real-valued coefficients as in the real
and imaginary parts of the augmented covariance matrix. It
seems that the price of redundancy always has to be paid
for obtaining convenient representations of the second order
statistical properties of complex random vectors.

However, when using the composite real representation,
a decomposition of composite real covariance matrices into
BSC2 and BHSC2 components is usually necessary only
for some steps of theoretical derivations while the actual
computations can then be performed directly on the composite
real covariance matrix (instead of on the decomposed version).
An example of this can be seen in this paper, where the
theoretical derivation of the test relies on the above-mentioned
decomposition while the final computation rule (30) does not
contain redundant representations.

Therefore, the composite real framework allows us to
perform computations in a more efficient manner than the

augmented complex framework.2 The difference is that the
composite real representation does not have an inherent re-
dundancy, but is turned into a redundant formulation only
by the above-mentioned decomposition. In contrast to this,
redundancy is always present in the augmented complex
representation due to the joint consideration of the signal and
its conjugate.

If a random vector is known to be proper, its pseudoco-
variance matrix is zero and the complex covariance matrix
suffices to exhaustively describe the second order statistical
properties. In this special case, even the composite real co-
variance matrix has an inherent redundancy since it becomes
a block-skew-circulant matrix with the block structure from
(2). In the complexity analysis in Section V, we have seen
that this redundancy of the blocks in BSC2 matrices can lead
to an increase in computational complexity when compared
to computations based on the complex covariance matrix.
Obviously, the most efficient representation of the second-
order properties of proper random vectors is the conventional
covariance matrix. However, using only this covariance is
of course not possible in the case of improper signals with
nonzero pseudocovariance matrix.

APPENDIX A
DERIVATIVE INVOLVING PROJECTION TO BHSC SPACE

Let K = K̀ + Ḱ and Λ = Λ̀+ Λ́ be decompositions into
BSC2 and BHSC2 components. Note that tr[Λ̀Ḱ] = 0 =
tr[Λ́K̀] due to Lemma 1. Thus, we have

∂

∂K
tr[ΛPBHSC2(K)]

=
∂

∂K
tr[(Λ̀+ Λ́)Ḱ] =

∂

∂K

(
tr[Λ́Ḱ] + tr[Λ̀Ḱ]︸ ︷︷ ︸

=0

)

=
∂

∂K

(
tr[Λ́Ḱ] +

0=︷ ︸︸ ︷
tr[Λ́K̀]

)
=

∂

∂K
tr[Λ́(K̀ + Ḱ)]

=
∂

∂K
tr[Λ́K] = Λ́

T
. (31)
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