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Abstract 

High-resolution positron imaging of tumor metabolism has previously been applied for some 

preclinical and intraoperative clinical applications. However, the interpretation of measured 

positron signals with respect to the underlying physiology is not straightforward and less 

quantitative. This thesis developed computational modeling methods to investigate the 

mechanisms of substrate and positron-emitting tracer metabolisms in solid tumors, and positron 

depositions in a silicon detector in the imaging process. A novel tumor physiology model was 

proposed to describe the interactions of relevant key metabolites within the network of metabolic 

pathways. The quantitative relationship between pathophysiological factors (such as expressions 

of enzyme, transporter and transcriptional factors, and vascular distribution) and tumor 

metabolism was established to support molecular imaging analysis. To understand the physical 

principles of positron imaging, the traversing processes of positrons in the silicon detector was 

modeled by Monte-Carlo simulation. In particular, we developed for the first time a machine 

learning approach to improve the spatial resolution by classifying the primary pixels within the 

detector using support vector machine. The classification model was constructed by learning the 

features of positron trajectories based on Monte-Carlo simulations. Computational modeling 

helps to capture the metabolic characteristics behind the positron imaging signals, provides an in-

depth understanding of co-influences of physiological and system factors on measured signals, 

and has the potential to accelerate the development of positron imaging for clinical and 

preclinical applications. 

  



 

 

  



 

 

Zusammenfassung 

Hochauflösende Positronen-Bildgebung des Tumor-Metabolismus wurde in früheren Arbeiten 

schon auf präklinische und intraoperative klinische Anwendungen angewendet. Jedoch ist die 

Interpretation von gemessenen Positronen-Signalen in Hinblick auf die zugrundeliegende 

Physiologie sehr anspruchsvoll und bislang wenig quantitativ. In dieser Arbeit wurden 

Computermodelle entwickelt, um den Mechanismus von molekularer Bildgebung in soliden 

Tumoren zu untersuchen und um die Positronenwechselwirkung in einem Siliziumdetektor bei 

der Positronen-Bildgebung zu bestimmen. Eine neuartiges Modell der Tumor-Physiologie wurde 

vorgeschlagen, um die Wechselwirkungen von relevanten Schlüssel-Stoffwechselprodukten in 

dem Netzwerk von Stoffwechselwegen zu beschreiben. Eine quantitative Beziehung zwischen 

pathophysiologischen Faktoren (wie Expressionen von Enzymen, Transport und transkriptionelle 

Faktoren und Gefäßverteilung), und dem Tumor-Metabolismus wurde etabliert, um die Analyse 

der molekularen Bildgebung zu unterstützen. Um die physikalischen Prinzipien der Positronen-

Bildgebung zu verstehen, wurde der im Siliziumdetektor ablaufende Prozess durch Monte-Carlo-

Simulation modelliert. Insbesondere haben wir zum ersten Mal einen Ansatz entwickelt, der 

maschinelle Lerntechniken mit Unterstützung der Support-Vektor-Maschine verwendet, um die 

räumliche Auflösung durch Klassifizierung von Primär-Pixeln innerhalb des Positronen-

Detektors zu verbessern. Die Klassifizierung wurde durch das Erlernen der Eigenschaften der 

Prositronen-Bahnen im Detektormaterial konstruiert, die auf Monte-Carlo-Simulationen basieren. 

Rechnerische Modelle können helfen, die metabolischen Merkmale hinter den Signalen der 

Positronen-Bildgebung zu erfassen. Sie geben ein tieferes Verständnis des Einflusses der 

physiologischen Faktoren und der Systemfaktoren auf die gemessenen Signale und besitzen das 

Potential, die Entwicklung von Positron-Bildgebung für klinische und vorklinische 

Anwendungen zu beschleunigen.  
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1. Introduction 

Molecular imaging enables the non-invasive visualization of the cellular function and the follow-

up of the molecular process in living organisms, and opens up an incredible number of exciting 

possibilities for clinical and preclinical applications [1]. An important application of molecular 

imaging involves monitoring tumor metabolic processes for the in-depth understanding of 

mechanisms behind the tumor formation, progression and metastasis [2]. With these knowledge, 

the tumor diagnosis, treatment and prognosis are hopefully improved. This chapter will present 

an overview of tumor pathophysiology and molecular imaging, in particular the modalities that 

may be used for high-resolution imaging of tumor metabolism, to sustain the studies of 

computation modeling of positron imaging of tumor metabolism in this thesis. 
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1.1. Overview of molecular imaging  

The molecular imaging that has emerged in recent decades originates from the field of radio-

pharmacology due to the need to better understand fundamental molecular pathways inside 

organisms in a noninvasive manner. It enables the visualization of the cellular function and the 

follow-up of the molecular process in living organisms without disturbing them. Unlike the 

previous methods of imaging which primarily image differences in qualities such as density or 

water content, molecular imaging uses probes (known as biomarkers) to help image particular 

targets and pathways [3].  

The entire molecular imaging research chain is driven by molecular targets [3]. The choice of 

molecular target depends on given biological questions and disease management problems. The 

selected targets should be abundant and specified for the studied disease process to achieve a 

successful molecular imaging assay. The targets are imaged with the help of probes. In most 

strategies, a molecular imaging probe (or probes) must first be introduced into the living subject 

(e.g., by injection into the blood stream). The probes can be small molecules, peptides, aptarmers, 

engineered proteins or even more complex nanoparticles. After injection, the specific component 

of the probe interacts with the intended molecular target, producing a signal that can hopefully be 

detected. The probes are then tested in-vitro (extracts of cells or intact cells in cell culture) and 

in-vivo (animal model) with appropriate imaging modality. The in-vitro test provides better 

understanding of the probe’s ability to traverse the cell membrane and interact with targeting and 

clearance from cells. The in-vivo test allows the examination of pharmacokinetics and bio-

distribution of the probe, and the optimization of administration routes and probe injection 

masses to achieve desired signal, signal-to-background ratio. The next step concerns the 

quantification and visualization issues in the animal model and cell-level model. These issues 

involve developing various algorithms for the image reconstruction and pharmacokinetics using 

the dynamic images acquired, mathematical modeling of organism metabolism and other 

statistical analysis. The research chain ends with translating the molecular imaging strategy into 

the clinical applications which requires obtaining approval from appropriate agencies. 

There are many different modalities that can be used for non-invasive molecular imaging, such 

as magnetic resonance imaging (MRI), optical imaging, single photon emission computed 

tomography (SPECT), positron emission tomography (PET) and other molecular imaging 

methods. They are applied based on different imaging principles, using different biomarkers and 

are oriented toward a variety of illnesses.  

MRI scanners use strong magnetic fields and radio waves to form images of the body and have 

been applied in the imaging of neuro, cardiovascular, musculoskeletal liver and gastrointestinal 
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and oncologic systems [4-6]. Hydrogen is the most frequently imaged nucleus in MRI because it 

is present in biological tissues in great abundance. Many other nuclides with a net nuclear spin 

could potentially be imaged with MRI, such as 
3
He, 

7
Li, 

13
C, 

17
O, 

19
F, 

23
Na, 

31
P and 

129
Xe. MRI 

has been modified for specialized applications, e.g., diffusion MRI, magnetic resonance 

angiography (MRA), magnetic resonance spectroscopy (MRS), functional MRI, real-time MRI, 

interventional MRI, etc. 

Optical imaging depends on fluorescence, bioluminescence, absorption or reflectance as the 

source of contrast [7]. It is characterized by high resolution while only superficial visible region 

due to its short penetration depth [8]. The imaging agent is usually metabolic substrates or 

proteins labeled with near-infrared (NIR) fluorophores, such as NIR fluorophores labeled αvβ-

integrin, epidermal growth factor (EGF), pamidronate, glycosylphosphatidylinositol, human 

serum albumin, 2-Deoxy-D-glucose [9-12]. These infrared dye-labeled probes are used to target 

a variety of cancers, brain, osteoblasts, lymph nodes, etc. 

SPECT is a nuclear medicine tomographic imaging technique using gamma rays which enables 

the acquisition of 3D information. The gamma rays come from the gamma-emitting radioisotope 

delivered into the patient through injection into the bloodstream. There are a range of 

radioisotopes (e.g., 
99m

Tc, 
123

I, 
131

I, 
111

In, 
201

Tl) that can be used depending on the specific 

application [13-15]. Typical applications include scanning of bone, myocardial perfusion, 

sestamibi parathyroid, white cells, brain tissue, etc. [13-15].  

Similar to SPECT, PET is also a nuclear medicine imaging technique which produces a three-

dimensional image or picture of functional processes in the body [1, 16, 17]. However, it detects 

two 511 keV photons from positron annihilation to estimate the density of the original molecule 

in the measured areas. The typical isotopes include 
11

C, 
13

N, 
15

O, 
18

F, 
64

Cu, 
62

Cu, 
124

I, 
76

Br, 
82

Rb 

and 
68

Ga, with 
18

F being the most clinically utilized. PET as both a medical and research tool has 

been used heavily in clinical oncology (medical imaging of tumors and the search for metastases) 

and for clinical diagnosis of certain diffuse brain diseases such as those causing various types of 

dementias.  

Positron imaging with beta probe or camera has been developed in recent years mainly for 

preclinical applications [18-20]. They measure the positrons directly before their annihilations 

and therefore have the advantage of high sensitivity and high spatial resolution (for the beta 

camera). Using kinetic modeling for analyzing the measured activities, cellular metabolic 

processes can be monitored in real time. 
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1.2. Tumor pathophysiology  

A tumor, also known as a neoplasm, is an abnormal growth of tissue. Its physiology is uniquely 

different from that of normal tissues. It is characterized by oxygen depletion, extracellular 

acidosis, high lactate and adenosine levels, glucose and bicarbonate deprivation, energy 

impoverishment, significant interstitial fluid flow, etc. [21]. Tumors can be classified into four 

main groups: benign tumors, in situ tumors, malignant tumors, and tumors of uncertain or 

unknown behavior.
 
A malignant tumor is a cancer, which involves abnormal cell growth with the 

potential to invade or spread to other parts of the body. Its characteristics are proposed as self-

sufficiency in growth signaling, insensitivity to anti-growth signals, evasion of apoptosis, 

enabling of a limitless replicative potential, induction and sustainment of angiogenesis, 

activation of metastasis and invasion of tissue [22]. Cancer has a reputation as a deadly disease 

and therefore has attracted considerable attention for its treatment, diagnosis and prognosis to 

increase population survival. 

The tumor microenvironment is an intricate and diversified system, and characterized by a series 

of crucial features distinct from the normal tissues [21]. The severe structural and functional 

abnormality of tumor microvessels is one of these crucial features. It comprises a disorganized 

vascular network, increased intervessel distances, existence of avascular areas, large diameter 

microvessels, enlongated, tortuous vessels, arterio-venous anastomoses, the absence of flow 

regulation, etc. [21, 23, 24]. The chaotic network of microvessels results from tumor 

angiogenesis, a process by which new blood vessels develop from an existing vasculature, 

through endothelial cell sprouting, proliferation, and fusion [25, 26]. As the basis of supporting 

tumor system and channels for nutrient and oxygen supply and waste removal, tumor 

microvasculature significantly influences the tumor physiology, such as oxygenation and glucose 

metabolism. 

Tumor oxygenation status is highly homogeneous and the prevalence of hypoxic tissue areas (i.e. 

areas with O2 tensions [pO2] ≤ 2.5 mmHg) is the key pathophysiological property. They are 

found in a wide range of human malignancies including cancers of the breast, uterine cervix, 

vulva, head and neck, prostate, rectum, pancreas, brain tumors, etc. [21]. Tumor hypoxia results 

from the imbalance between the supply and consumption of oxygen. The limited oxygen supply 

arises as the result of inadequate perfusion (due to structural and function abnormalities of the 

tumor microcirculation) and increased diffusion distances. The diminished oxygen availability 

leads to substantial limitations in the efficacy of oxygen dependent treatments such as standard 

radiotherapy and O2-dependent chemotherapy. Tumor hypoxia primarily causes impairment of 

cell proliferation and eventually induces the death of both normal and most tumor cells. However, 
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a few tumor cells can escape hypoxia-induced cell death by triggering adaptions in the proteome 

and genome, thus favoring tumor progression [27]. It has been reported that tumor hypoxia 

regulates the activities and/or expressions of proteins (although some protein subtypes are not 

sensitive to oxygen status) by signaling pathways with the latter being responsible for the 

catalysis of metabolic pathways (e.g., hexokinase [HK], lactate dehydrogenase [LDH]), 

substance transport (e.g., glucose transporter [GLUT], monocarboxylate transporter [MCT]), and 

transcription and stimulation factor (e.g., hypoxia inducible factor [HIF] and vascular endothelial 

growth factor [VEGF]) [28-32].  

Hypoxia has two types based on forming mechanisms: chronic (diffusion-limited) and acute 

(perfusion-limited) hypoxia. Chronic hypoxia, the long-term hypoxia (duration > 2 h), implies 

the perivascular regions surpassing the maximum oxygen diffusion distance due to the expansion 

of the intervascular space. Acute hypoxia, transient spatio-temporally (duration < 2 h), is caused 

by the temporary shut-down of flow (ischemic hypoxia) and/or severe reduction of oxygen 

content in tumor microvessels (hypoxemic hypoxia). The vascular oxygen content reduction 

mainly results from the transient plasma flow in tumor microvessels (temporal fluctuations in red 

blood cell flux) which limits the blood hemoglobin content. Therefore the oxygen supply is 

suppressed whereas other nutrient (e.g., glucose) supply and waste (e.g., lactate) removal are 

maintained in hypoxemic hypoxia [33], in contrast to the ischemic hypoxia which abolishes the 

nutrient supply and waste removal. Acute hypoxia has been reported with insignificant influence 

on the hypoxia imaging [34] and pathophysiological factors, such as HIF and GLUT1 [28, 33], 

whereas it is of importance on promoting the tumor malignancy and generating genomic 

instability as claimed in studies [32, 35]. These conflicting viewpoints motivate further 

investigation on acute hypoxia for the in-depth insights into its physiological functions. 

The transcription factor HIF-1 is a key regulator for the induction of genes facilitating adaptation 

and survival of tumor cells and the whole organism from normoxia to hypoxia [36, 37]. It is 

exclusive with regards to oxygen availability and is stabilized by hypoxic conditions. More than 

100 genes have been identified with the regulation of HIF-1 for a variety of tumor-adaptive 

functions, such as erythropoiesis/iron metabolism, angiogenesis, glucose metabolism, cell 

proliferation/survival and apoptosis. The HIF-1 related pathways have been linked to the 

embryonic development and pathophysiology of numerous human diseases (especially cancer 

and ischemic diseases). Immunohistochemical analyses have demonstrated the detectable levels 

of HIF-1α in benign tumors and elevated HIF-1α levels in malignant tumors, in contrast to its 

absence in normal tissue. The correlations between HIF-1 overexpression and patient mortality, 

poor prognosis or treatment resistance have been noted in many studies [38]. The many aspects 
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of HIF-1 regulation provide a variety of possibilities for therapeutic intervention. The cancer 

therapy may be effective by disrupting the HIF-1 pathways and functions.  

The glucose metabolism in tumors is adapted toward glycolysis, even for normoxic cells, known 

as the ‘Warburg effect’ [39]. This genomic and proteomic adaptation is accompanied with 

enhanced rates of glucose consumption for energy purposes. Glycolysis, the metabolic pathway 

that converts glucose into pyruvate, has lower energy generation efficiency than aerobic 

respiration. Therefore the glycolysis rate is raised to compensate its inability to produce energy 

by increasing the expression and/or activities of related enzymes (e.g., HK) and transporters (e.g., 

GLUT). FDG, an analog of glucose, has been widely used for diagnosis, staging, and monitoring 

treatment of cancers, particularly in Hodgkin's disease, non-Hodgkin's lymphoma, colorectal 

cancer, breast cancer, melanoma, and lung cancer [40]. It has also been approved for use in 

diagnosing Alzheimer's disease [41]. FDG has similar transport and glycolysis kinetics to 

glucose, and competes with glucose for enzymes and transports during their uptake. Due to the 

tiny amount of FDG injected compared to glucose, the glucose uptake is not affected after the 

FDG injection. However FDG uptake depends on the glucose presence. After the 

phosphorylation of glycolysis, glucose and FDG are transformed into glucose-6-phosphate (to be 

further metabolized) and FDG-6-phosphate which is trapped in cells for radioisotope decay and 

cannot be further metabolized.  

Lactate and proton, the product of glycolysis, is accumulated in tumors and is the major reason 

for tumor acidity. The accumulation of lactic acid has been proved to correlate with increased 

metastasis and poor disease-free and overall survival [42]. Lactic acid is dissociated in tumors 

into a lactate anion and a hydrogen cation. Although more studies of lactate focus on its 

production and contribution to tumor progression, metastasis and therapy, some tumor cells (e.g., 

cervical cancer SiHa cells [43] and breast cancer MDA-MB-231 cells [44]) have been 

demonstrated to utilize lactate for energy purposes (lactate oxidation), decreasing tumor acidity 

in the presence of oxygen. Lactate oxidation requires (i) membrane-bound MCTs for lactate 

movement; (ii) LDH for lactate converting to pyruvate before it can enter into the tricarboxylic 

acid (TCA) cycle; (iii) adequate concentration of oxygen (lactate cannot be consumed 

anaerobically); (iv) healthy and functional mitochondria required for TCA cycle and electron 

transport chain (ETC). Lactate production and utilization can occur simultaneously and/or shift 

from net lactate production to net lactate uptake based on the external lactate concentrations and 

facilitated by lactate transporters: MCTs.  

MCT4, which has low lactate affinity, is responsible for lactate export in the hypoxic region. The 

extracellular lactate accumulated shuttles toward the normoxic region due to the concentration 

difference. In the normoxic region, the lactate is imported by MCT1, which has high affinity of 
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lactate. In the oxygenated cell, the lactate is converted into pyruvate with the catalyzation of 

LDH and then enters the TCA cycle. Although the lactate is proven with positive correlation 

with tumor progression and metastasis [45, 46], the evidence that lactate utilization (reduced 

lactate accumulation) lessens the negative effect of a hostile tumor microenvironment is not clear 

to date. Lactates are transported across the cell membrane in association with protons [47] (i.e. 

co-transport). The mechanism of lactate co-transport involves rapid-equilibrium lactate and 

proton binding, with the proton binding first (ordered-binding), and the lactate may bind only to 

the transporter in the proton-bound state. Only the fully unbound carrier or the fully bound 

carrier can undergo a conformational change associated with transport of substrates across the 

membrane.  

Tumor metabolism consists of complex interactions between oxygenation states, metabolites, 

ions, the vascular network and signaling cascades [42]. Since our study mainly focuses on the 

glucose and lactate metabolism and related metabolites, the mechanisms of the metabolism of 

other substances are not introduced here. 

1.3. Imaging positron labeled tracer 

1.3.1. Properties of positron 

Positrons originate from the natural radioactive decay. The proton-rich radioactive atom X (such 

as 
11

C, 
13

N, 
15

O, 
18

F and 
68

Ga) achieves stability by emitting a positron, converting a proton to a 

neutron (𝜈) and producing the daughter nucleus Y, whose atom number is one less than the 

parent. The general equation for positron decay from an atom is: 

   X → Y + β+ + ν + Q (+e-)   1
0

Z-1

A
Z
A   

where A and Z are the mass number and the atom number respectively. Since the atom number 

of the daughter nucleus is less than the parent, one of the orbital electrons is ejected from the 

atom to balance charge. The electron overcomes the binding energy by supplied energy from the 

nucleus and leaves the atom with residual kinetic energy, represented by Q in the above equation.  

The rate of the decay is characterized by the parameter called the half-life of the radionuclide 

(T0.5). The half-life is the time it takes for half of the unstable nuclei present to decay. The 

radioactivity At of the radionuclide after a time t is given by: 

 𝐴𝑡 = 𝐴0 ∗ 2−𝑡/𝑇0.5 (1.1) 
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where A0 is the original activity at the time 0. As examples, the half-lives of 
11

C, 
13

N, 
15

O, 
18

F 

and 
68

Ga are 20.4, 9.96, 2.03, 109.8 and 68.3 mins, respectively. The half-life determines the 

applicability of the tracer. Overly short half-life limits the clinical and preclinical applications of 

the tracers, whereas the longer half-life introduces additional risks on the possible nuclear 

contamination due to the improper treatment and utilization procedures.  

The positron will have an initial energy after emission, which can take a continuum of values up 

to a maximum Emax. The Emax for 
11

C, 
13

N, 
15

O, 
18

F and 
68

Ga are 0.959, 1.197, 1.738, 0.633 and 

1.898 MeV, respectively. With given Emax, the theoretical energy spectrum of a nuclide can be 

simulated by [48, 49]: 

 𝑁(𝐸)𝑑𝐸 = W𝑝𝐹(𝑍, 𝑊)(𝐸𝑚𝑎𝑥 − 𝐸)2 (1.2) 

Where N(E) is the probability of a positron at energy E (keV), W=1+E/511, p is the momentum 

of the positron:  

  𝑝 = √𝑊2 − 1  (1.3) 

 𝐹(𝑍, 𝑊) =
2𝜋𝜂

1−𝑒−2𝜋𝜂
  (1.4) 

  𝜂 = −𝑍𝑊/137𝑝 (1.5) 

The examples of simulated energy spectrum of several nuclides are shown in Figure 1.1.  

After emission from the nucleus, the positron loses kinetic energy by interactions with the 

surrounding matter. The positron interacts with the other nuclei by one of four types of 

interactions [16]: (i) inelastic collisions with atomic electrons; (ii) elastic scattering with atomic 

electrons; (iii) inelastic scattering with a nucleus; and (iv) elastic scattering with a nucleus. The 

positron energy loss is mainly attributed to the first type of interaction. And the third type of 

interaction often corresponds with Bremsstrahlung radiation. The scattering and collisions induce 

a deflection in the positron path and the positron has an extremely tortuous passage through 

matter. A positron loss its energy by inelastic scattering until it has zero kinetic energy and then 

combines with an electron (the annihilation). The ranges of positrons in the water (the main 

component of tissue) before annihilation are usually below 20 mm [16]. The annihilation of the 

positron and electron gives off electromagnetic radiation. The most probable form is the 

radiation of two photons of 511 keV, which are emitted at 180
◦
 to each other. The photons are 

emitted in opposite directions to conserve momentum. However in many cases, the photon pairs 

are not emitted strictly at 180
◦ 

due to non-zero momentum when the positron and electron 

annihilate. 
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Figure 1.1. Examples of simulated energy spectra of some nuclides 

The photon pair interacts with the atoms in an absorbing material by (i) the photoelectric effect; 

(ii) the Compton effect; (iii) pair production, depending on the energy of the electromagnetic 

energy (the photon energy). These interactions lead to ionization of the atom and liberation of 

excited electrons by the transfer of energy in the interaction. The radiation detectors are 

developed based on the interaction of ionizing radiation with matter. The radiation detector 

converts the deposited energy into a measurable electrical signal or charge. There are three broad 

categories of radiation detector: proportional chambers, semi-conductor detectors and 

scintillation detectors. Among them, the scintillation detector is most widely used for the 

detection of 511keV photons in PET. It typically consists of a scintillator (an inorganic crystal) 

emitting visible light photons after the interaction of photons within the detector. A photon 

detector (photo-multiplier tubes (PMTs) or semiconductor based photodiodes) is connected to 

the scintillator to measure the number of scintillation photons.  

1.3.2. PET imaging 

PET is a functional imaging technique the produces a three dimensional (3D) image of functional 

processes of radioactive tracer accumulation in the body. The system detects the gamma pairs 

coming from the positron-electron annihilation. The positron is emitted directly from a positron 

emitting radionuclide. A tracer is labeled with the radionuclide as the probe of PET imaging. The 

tracer is normally an analogy of the substance that is necessary for metabolism, e.g., 
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[18F]fludeoxyglucose ([
18

F]FDG), the radioactive analog of glucose, [18F]fluorothymidine 

([
18

F]FLT) [50], the analog of nucleoside thymidine.  

A PET scanner counts coincident events between pairs of detectors [16, 51]. The straight line 

connecting the centers of two detectors is a “line of response (LOR)”. Unscattered photon pairs 

recorded for a specific LOR arise from annihilation events located within a thin volume centered 

around the LOR, which is referred as a “tube of response”. Among registered events (events 

meeting the detection criteria), there are also unwanted events due to photon scattering or 

accidental detection of two photons from unrelated positron annihilations. These interruptions 

are corrected in PET image analysis. 

 

Figure 1.2.The mapping from sampling projections to sinograms [16]. 
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In PET imaging, the natural parameterization of PET data uses the indices (Da, Db) of the two 

detectors in coincidence. This parameterization method has the following disadvantages: (1) it is 

poorly adapted to analytic algorithms and (2) recorded coincidences in a given scan may be too 

small to take full advantage of the nominal spatial resolution of the scanner. To overcome these, 

individual detector elements from coincidence pairs with opposing detectors are mapped to the 

sinogram (2D) or Michelogram space (3D), as shown in Figure 1.2. In the 2D case, the radial 

variable s (signed distance between the LOR and the center of the detector ring) and angular 

variable 𝜙  (the orientation of the LOR) are used to parameterize a LOR with respect to a 

Cartesian coordinates system (the polar angles 𝜃 = 0° ). In the 3D case, this is extended to 

measuring projections at polar angles 𝜃 > 0°. Therefore, the sinograms/Michelograms formed in 

PET are composed of projection 𝑝(𝑠, 𝜙, 𝜃, 𝑧).  

With the sinogram, three sets of data are required for the image reconstruction: (1) the emission 

scan which is to be reconstructed; (2) a set of normalization sinograms (one per plane in 2D) to 

correct for differential detector efficiencies and geometric effects related to the ring detector, or a 

series of individual components from which such a normalization can be constructed; (3) a set of 

sinograms of attenuation correction factors to correct for photon attenuation (self-absorption or 

scattering) by the object. The general PET image reconstruction procedure starts with applying 

the correction for random coincidences and x-ray transform on measured data to obtain the 

sinograms. The sinograms are then corrected for attenuation and normalized for different crystal 

efficiencies. Next, the corrected sinograms are reconstructed using analytic or iterative algorithm 

to reconstruct the image (the image reconstruction process is illustrated in section 2.3). The 

filtered back projection is a typical algorithm used for PET image analytic reconstruction. The 

iterative algorithms (such as maximum-likelihood expectation maximization and ordered subset 

expectation maximization algorithms) are developed to overcome the drawbacks of analytic 

algorithms for the image reconstruction. During the final step, scalar corrections for dead time 

and decay may also be applied. 

Clinical PET imaging is being used in the areas of cancer diagnosis and management, cardiology 

and cardiac surgery, and neurology and psychiatry [16]. In clinical oncology, due to enhanced 

activities and/or expressions of GLUT (facilitating glucose transport) and HK (catalyzing 

phosphorylation), more FDG will be trapped in hypoxic regions until it decays. It results in 

intense radiolabeling of tissues with high glucose uptake, such as brain, liver and most cancers, 

Therefore, FDG PET can be used for diagnosis, staging and monitoring treatment of cancers, in 

particular in Hodgkin’s lymphoma, non-Hodgkin’s lymphoma and lung cancer. A few other 

isotopes and radiotracers are also introduced into oncology for specific purposes, such as 11C-
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Metomidate PET for detecting tumors of adrenocortical origin[52, 53], 3,4-dihydroxy-6-18F-

fluoro-L-phenylalanine (18F-FDOPA) PET for finding and localizing pheochromocytoma [54]. 

PET neuroimaging is based on an assumption that areas of high radioactivity are associated with 

brain activity. Using [
15

O]H2O PET, the flow of blood to different parts of the brain is measured 

indirectly. FDG PET can also be utilized for neuroimaging since the brain is normally a rapid 

user of glucose and brain pathologies such as Alzheimer’s disease greatly decrease brain 

metabolism of both glucose and oxygen [55]. Therefore, FDG PET has the potential to 

differentiate and diagnose Alzheimer’s disease early. Several other radiotracers have been 

developed for PET that are ligands for specific neuroreceptor subtypes [
11

C]raclopride [56], 

[
18

F]fallypride [57] and [
18

F]desmethoxyfallypride [58] for dopamine D2/D3 receptors, 

[
11

C]McN 5652 [59] and [
11

C]DASB [60] for serotonin transporters, [
18

F]Mefway for serotonin 

5HT1A receptors [60], [
18

F]Nifene for nicotinic acetylcholine receptors or enzyme substrates 

(e.g., 6-FDOPA for the AADC enzyme) [60]. These agents permit the visualization of 

neuroreceptor pools in the context of a plurality of neuropsychiatric and neurologic illnesses. 

PET has also been applied in the studies on neuropsychology, psychiatry and stereotactic surgery 

(treatment of intracranial tumors, arteriovenous malformations and other surgically treatable 

conditions). 

Cardiology, atherosclerosis and vascular disease are also studied by PET. FDG PET imaging of 

atherosclerosis detects patients at risk of stroke and can help test the efficacy of novel anti-

atherosclerosis therapies [61]. In addition, PET is a feasible technique for studying skeletal 

muscles [62]. The muscle activation data about deeper lying muscles such as the vastus 

intermedialis and the gluteus minimus can be captured by PET imaging. 

1.3.3. Direct positron imaging  

Compared with PET imaging which detects the 511 keV photons from the annihilation of 

electron-positron pairs, beta imaging involves the direct exposure of the detector to the 

irradiation of beta particles (i. e., electrons and positrons) emitted from the radionuclides. As a 

newly emerging modality, beta imaging provides higher spatial resolution and sensitivity 

compared with other imaging modalities and therefore enables the functional imaging of delicate 

biological structures in in-vitro and in-vivo experiments. The spatial resolution of beta imaging is 

largely determined by the beta particles, and the materials of imaging samples and beta detectors. 

As beta particles are multiple-scattered when traversing the beta detector, (i.e., the partial volume 

effect), the spatial resolution of beta imaging is limited in particular for high energy beta 

particles with oblique incident angles. The spatial resolution has been improved by energy 
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weighted centroid approximation [63] or classification algorithm (searching the primary incident 

sites of particles in the 2D imaging plane of beta detector as explained in Section 4.2). 

The beta camera has been applied in some clinical and preclinical applications including 

intraoperative navigation, microfluidic radioassay, digital autoradiography, and 

radioluminescence microscopy [18-20, 64, 65]. These applications are based on several 

important imaging technologies, such as charged-coupled device (CCD), complementary metal-

oxide semiconductor (CMOS) and position sensitive avalanche photodiode (PSAPD). The 

applications of a CCD for beta imaging under direct irradiation [66-69] and indirect irradiation 

via a scintillation sheet [64, 65, 69, 70] have been reported, such as β-imager coupled with a 

parallel plate avalanche chamber [71], µ-imager integrated with a scintillator sheet [69], and 

radioluminescence microscopy fitted with a scintillator plate and microscope offering a high 

resolution on single cell level [64, 65]. Position sensitive CMOS detectors have also been used in 

beta imaging, such as the series of Medipix chips: Medipix 1, 2 and 3 (including Timepix), 

which was developed by the CERN Medipix collaboration. Several applications of Medipix and 

Timepix chips under the irradiation of beta particles using various radioactive sources (
3
H, 

14
C, 

18
F, 

32
P, etc.) have been presented [63, 72-77]. 

As a powerful tool monitoring tumor metabolism, the beta camera has been coupled to the 

microfluidic chip for imaging the process of [
18

F]FDG uptake on small cell population or single 

cell level [18]. The microfluidic radioassay can provide a platform for integrated and digital 

control of small volumes of reagents suitable for bioassays of small cell populations. Although 

many techniques are available for measuring biochemical functions in microfluidic systems, the 

use of radiometric methods can provide high sensitivity for small amounts of radiotracers. The 

microfluidic radioassay platform for measuring cellular [
18

F]FDG uptake can complement 

conventional clinical techniques, such as FDG PET, and enable monitoring of glycolysis in 

response to novel clinical therapies [18]. Vu, et al. has developed an integrated beta-camera and 

microfluidic chip for quantitative imaging of glycolysis radioassays using [
18

F]FDG. This system 

is demonstrated to have the abilities of digital control and quantitative measurements of 

glycolysis of melanoma cell lines. Nevertheless, their measurement is not dynamic, which means 

the FDG uptake is only measured at certain points in time. To confront this drawback, our group 

has developed a novel system integrating a beta camera, a microfluidic chip and other 

accessories (such as a digital pump) to realize the real time FDG uptake monitoring. 
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Figure 1.3. (a) The platform of positron imaging of [
18

F]FDG uptake by SkBr3 cells. The dual 

chamber protocol (one cell chamber and the other medium chamber) is applied. The tracer is 

loaded firstly to the medium chamber and then the cell chamber. (b) The measured cell and 

medium chamber activities and their fitted activities. The medium chamber activity curve is 

corrected with delay and dispersion to obtain the modeled medium activity in the cell chamber. 

(c) An application of the dynamic positron imaging of FDG uptake (the difference of measured 

cell chamber activity and medium activity in cell chamber) on estimating protein kinetics. The 

phosphorylation rate catalyzed by HKII is estimated higher for cells treated with low glucose 

compared with that in the control (cells without low glucose treatment). This result is verified by 

comparing with the relative mRNA expression levels of the two conditions (low glucose and 

control). Images and data courtesy of Dr. Kuangyu Shi and Zhen Liu, Technical University 

Munich. 

Our tumor metabolism positron imaging platform is shown in Figure 1.3(a), where the signals 

indicating the FDG uptake process by the human breast cancer cell SkBr3 are captured in real 

time. The dual chamber protocol (one cell chamber and the other medium chamber) is utilized. 

In the measurement, the tracer is loaded first to the medium chamber and then flows through the 

cell chamber. The activities in both chambers are measured simultaneously and plotted in Figure 

1.3(b). To obtain the modeled (corrected) medium activity in cell chamber, the measured 

medium chamber activity is corrected taking into consideration of the tracer flow delay and 

dispersion caused by tube connection between the two chambers. The modeled medium activity 

in the cell chamber serves as the FDG input of the cell chamber. Therefore, the dynamic FDG 

uptake is acquired by deducting the modeled medium activity in the cell chamber from the total 

activity in the cell chamber.  

With the dynamic FDG uptake curve and the two-tissue compartment model, the kinetic 

(a) 

(b) 

(c) 
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parameters of the enzymes or transporters involved in the FDG uptake occurring within this 

imaging system can be estimated. As exhibited in Figure 1.3(c), the phosphorylation rate 

(determined by hexokinase II [HKII], the catalyst of phosphorylation in the glycolysis) of SkBr3 

cells incubated in low glucose conditions is estimated higher than that in the control. This 

phenomenon is attributed to the overexpression of HKII under low glucose conditions, which has 

been verified using quantitative real-time polymerase chain reaction (qPCR). The relative mRNA 

expression levels (measured by qPCR) of the cells treated with low and normal glucose are 

compared as displayed in Figure 1.3(c). The result from the qPCR is consistent with that from 

the kinetics estimation by microfluidic chip protocol.  

As for in-vivo application of positron imaging, a window chamber protocol is put forward as 

illustrated in Figure 1.4. The rat is implanted a window chamber which facilitates the direct 

contact of solid tumor with the positron camera in the measurement. The rat is immobilized in 

case of image disturbance by rat movement. The tumor metabolism within the window can be 

monitored in real time using this system. 

 

Figure 1.4. The sketch of window chamber protocol for in-vivo application of positron imaging 

1.4. Thesis outline  

Positron imaging has been used for monitoring tumor cellular metabolic processes. To capture 

high resolution positron images of tumor metabolisms, the in-depth understanding of the 

formation mechanisms of signals originated from the positron-emission tracers that are 
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accumulated in solid tumors is necessary. In general, the positron signals are formed by two 

steps. First, the positron-emitting probe is injected and accumulated more in the tumor regions 

due to its specific interactions with tumor microenvironment. Secondly, the positrons emitted 

from solid tumors are captured by a detector. For systematic and deep understanding of signal 

mechanisms and high resolution positron imaging, the computational modeling is introduced in 

this thesis to simulate the tumor metabolic processes and improve the spatial resolution of 

positron imaging. The thesis is organized in 7 chapters to have clear illustrations of the 

computational modeling methods and their applications. 

This chapter gives an overview of molecular imaging, tumor physiology, and principles and 

applications of PET and direct positron imaging. It is a background knowledge preparation for 

the introduction of computational modeling.  

Chapter 2 constructs a theoretical basis. The general computational methods supporting the 

molecular imaging of tumor metabolisms are presented: (1) the simulation methods to generate 

the tumor microenvironment (including the formation and angiogenesis of tumor vasculature, the 

spatio-temporal evolvement of substances, the cellular metabolism and substrate transport); (2) 

the machine learning models and algorithms (classification and regression) for image quality 

improvement; (3) the algorithms for image reconstruction (ML-EM and OSEM algorithms); (4) 

the pharmacokinetic modeling (one and two tissue compartment and Patlak models) and data 

analysis methods for metabolic parameter (such as the rates of FDG uptake and phosphorylation) 

estimation. 

In Chapter 3, pathophysiological models describing the key metabolic pathways (mediated by 

enzymes and transporters) and substrate interactions in solid tumors are constructed and the 

modeling methods (parameter selection, boundary conditions, etc.) are illustrated. Several 

metabolites (e.g., oxygen, glucose, lactate, protons, bicarbonate ions), transporters (GLUT, 

MCT1 and MCT4), a key enzyme (HK), and a key transcriptional factor (HIF-1) are integrated 

into the models. The glucose and lactate metabolic pathways are the major pathways investigated. 

The quantitative relationship between the tumor phenotypes (i.e., pathophysiological factors, 

characterized by expressions of transporters, enzyme, transcriptional factor and vasculature) and 

metabolism of substrates or probe (glucose, lactic acid and FDG) are explored and parameterized 

(analytic parameters are proposed to characterize the relationship).  

Chapter 4 puts forward the methods for positron camera characterization and spatial resolution 

improvement for 
18

F positron imaging. The characterization methods (for evaluating spatial 

resolution, sensitivity, linearity and background) and Monte-Carlo simulations as theoretical 

predictions of measurements are introduced. To reduce the effect of multiple scattering on the 
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imaging with positron camera and improve the spatial resolution, a novel data-driven method is 

proposed based on the classification of primary pixels fired by positrons within the silicon 

detector (Timepix detector) using support vector machine.  

The computational models describing tumor metabolisms are validated and applied in Chapter 5. 

The proposed models are verified by comparing the simulation results with in vivo and in vitro 

literature data. The multiple influences of different pathophysiological factors on substrate 

concentrations (characterizing the metabolism), and the quantitative relationship between tumor 

phenotypes and metabolisms are evaluated by analyzing the proposed analytic parameters. We 

compare the simulation results brought from the relationship analysis with the experimental 

observations.  

Chapter 6 applies the classification algorithm (proposed in chapter 4) on the 
18

F positron imaging 

using an absorbing edge protocol and a leaf sample to assess its ability on spatial resolution 

enhancement. The measured characteristics of positron imaging are evaluated and compared with 

the predictions from Monte-Carlo simulation.  

Chapter 7 summarizes the contributions of the modelling methods proposed in this thesis. 
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2. Computational methods for molecular imaging of tumor 

metabolism 

Computational modeling and methods are widely involved in the molecular imaging procedures. 

They are useful tools assisting the interpretation of the formation mechanisms behind the 

measured signals and images. Four types of computation modeling, which support molecular 

imaging of tumor metabolisms, are introduced in this chapter. Principle-driven modeling 

simulates tumor metabolic pathways and establishes the quantitative relationship between the 

tumor metabolisms and tumor phenotypes. The principles of modeling vasculature angiogenesis, 

enzyme and transport kinetics, and ion interactions are explained. Data-driven modeling exploits 

machine learning algorithms (such as classification and regression algorithms) for molecular 

imaging analysis. This modeling may contribute to the enhancement of disease identification and 

prediction accuracy. Scanner modeling facilitates the image reconstruction, which is an 

indispensable step for molecular imaging. Pharmacokinetic modeling is used for the functional 

imaging and quantitative analysis of substrate kinetic distributions, and the evaluation and 

prediction of relevant protein expressions and activities in solid tumors. It provides a potential 

for substantial broadening the information that can be extracted from the measurements using 

PET or positron detector. 
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2.1. Simulation methods for modeling tumor metabolism 

Due to our advanced understanding of tumor physiology and computational technology, 

theoretical simulation has been developed as a complementary method for the optimization of 

cancer diagnosis and therapy. This method has been applied to model the complicated tumor 

microenvironment (TME) with multiple features and interactions [78]. Casciari et al. have 

developed a mathematical model to predict the TME and growth in EMT6/Ro multicellular 

tumor spheroids [79]. The concentration distributions of oxygen (O2), glucose, lactate, hydrogen 

ions (H
+
), carbon dioxide (CO2), bicarbonate ions (HCO3

-
) and chloride ions (Cl

-
) along the 

spheroid radial direction and their effects on cell growth and metabolism were predicted by 

solving reaction-diffusion equations. The mathematical model was then developed by Molavian 

et al. in one dimension to explain the tumor interstitial oxygen tension (pO2) and pH distributions 

as a function of distance from a single blood vessel and tumor cell glucose metabolic pathways 

[80]. They semi-quantitatively derived the experimental results of Helmlinger et al. on pO2 and 

pH distributions [81]. Daşu et al. presented a 2D computational model to simulate tumor 

oxygenation, as well as a method to emulate the effects of diffusion-limited hypoxia and 

perfusion-limited hypoxia [82]. Based on this, Kelly and Brady put forward a model to simulate 

the spatio-temporal distribution of the hypoxia-specific tracer [
18

F]fluoromisonidazole 

([
18

F]Fmiso) in tumors and generated meaningful dynamic time activity curves (TACs) for 

[
18

F]Fmiso [83]. Dalah et al. thereafter extended Kelly’s work to simulate the TACs of the 

radioactive tracer [
64

Cu]-diacetyl-bis(N
4
-methylthiosemicarbazone) (Cu-ATSM) and 

demonstrated its potential role in tumor sub-volume delineation for radiotherapy treatment 

planning [84]. Petit et al. theoretically investigated the influence of intra-voxel heterogeneity on 

optimal dose prescription in radiotherapy by modeling the oxygenation and dose distributions 

[85].  Moennich et al. simulated the [
18

F]Fmiso dynamics based on histology-derived 

microvessel maps and the influence of acute and chronic hypoxia on [
18

F]Fmiso PET imaging 

[34, 86]. The simulation methods for constructing mathematical models of tumor metabolism are 

illustrated as follows. 

2.1.1. Tumor microvasculature formation and angiogenesis  

The vasculature is the basis to sustain the tumor metabolism by supplying the tissue with oxygen 

and nutrients and deporting the waste. The formation and angiogenesis of tumor vasculature have 

been modeled mathematically in 2D or 3D manner. In many cases, the tumor vasculature is built 

by probabilistic methods with consideration of its geometrical features (e.g., microvessel 

diameters and intervessel distances) [82-85]. The ranges of these parameters (geometrical 
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features) were found by fitting experimental data [23, 24]. The microvessel distributions were 

usually characterized by mean values and coefficients of variations (CV or relative standard 

deviation) [82]. For a 2D simulation, fixed or (normal-) distributed microvessel diameters are 

assumed within the ranges reported by the literature [23, 24]. The tumor microvessels are 

assumed orthogonal to the modeling plane. Although it is reported that vascular perpendicularity 

may lead to an underestimation in pO2 [83], realistic pO2 simulation under the vascular 

perpendicularity assumption has been achieved with flow limited assumption (without the 

projection of 3D microvessels) [82]. As microvessel orientations are randomly distributed in 

reality, some studies have integrated this effect in the framework of 2D simulations. The 3D 

vasculature was projected on the modeling plane to form a 2D vascular map and the branching 

angles (characterizing microvessel orientations) have been introduced by convoluting the 

orientation operator (cosine) to the 2D vascular map [83]. Another method of vasculature 

simulation is based on the histology-derived vessel structural map [34, 86]. The microvessels, 

extracted from the digital image of immunohistochemically stained tumor sections, are 

approximated parallel with the modeling plane. 

Mathematical modeling of vascular angiogenesis has been reported [25, 35, 87]. The tumors 

exceeding some critical diameter (≈2 mm) lack of nutrients and oxygen and therefore become 

hypoxic. The hypoxia is assumed to trigger cellular release of tumor angiogenic factors. The 

simulation of angiogenesis process normally starts with the cellular release of tumor angiogenic 

factors. Then they diffuse into the surrounding tissue to activate the endothelial cells of nearby 

blood vessels. In response to angiogenic factor, the endothelial cells sprout, migrate and 

proliferate toward the tumor, forming the tumor vasculature. The proliferation and migration of 

endothelial cells in response to different signaling cues are considered in the models. 

Mathematical models of tumor-induced angiogenesis fall into three major categories [87]: (i) 

continuum models that treat the endothelial cells density and chemical species as continuous 

variables that evolve according to a reaction-diffusion system, (ii) mechanochemical models that 

incorporate some of the mechanical effects of endothelial cell and extracellular interaction on 

cell motion, in addition to the diffusible chemical species, (iii) discrete, cell-based models in 

which cells are treated as units and move, grow and divide according to prescribed rules. A 

typical continuum model can be formulated as follows: 

 
𝜕𝑛

𝜕𝑡
= −∇ ∙ 𝐽 + 𝑓(𝑛, 𝑐) (2.1) 

  
𝜕𝑐

𝜕𝑡
= 𝐷∇2𝑐 + 𝑔(𝑛, 𝑐) (2.2) 

Where 𝑛(𝑥, 𝑡) is a vector comprised of the densities of all cell types involved in the process (e.g., 
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endothelial cells, pericytes, etc.). 𝑐(𝑥, 𝑡) is a vector containing the concentrations of substances 

influencing migration and/or proliferation, such as, protease enzymes, fibronectin and angiogenic 

inhibitor. 𝐽 is the flux of endothelial cells, which comprises a random diffusive component and a 

set of tactic components, and can be written in the form: 

 𝐽 = −𝐷𝑛∇𝑛 + ∑ 𝜒𝑖(𝑐)𝑛∇𝑐𝑖𝑖  (2.3) 

The chemicals responsible for these tactic components of the flux could be tumor angiogenesis 

factor, fibronectin, etc. 𝜒𝑖(𝑐) is the tactic sensitivity of endothelial cells in response to a gradient 

of the ith tactic component. It is usually assumed that 𝜒𝑖(𝑐) depends only on the concentration of 

the corresponding tactic chemical. The function 𝑓(𝑛, 𝑐) combines the effects of cell proliferation 

and apoptosis, while 𝑔(𝑛, 𝑐) is a vector function describing the dynamics of production, uptake 

and degradation of the chemical components included in the model. D is a diagonal matrix 

containing the diffusivities of each chemical species. 

The simplest boundary conditions are no-flux condition for the endothelial cell density and 

Dirichlet boundary conditions for the chemicals:  

 𝐽 = 0     and      𝑐 = 𝑐0(𝑡) (2.4) 

The continuum models have been developed to describe both the onset of angiogenesis and the 

later stages of the angiogenic process, whereas, it cannot predict the vascular structures. In order 

to predict the vascular structures, the discrete models are proposed. It treats sprouts individually 

and tracks the motion of the tip of a growing sprout, which is characterized by the position and 

velocity of the tip cell. The evolution of the tip velocity (for the ith sprout) is governed by a 

stochastic differential equation: 

 𝑑𝑣𝑖 = −𝛽𝑣𝑖(𝑡)𝑑𝑡 + √𝛼𝑑𝑊𝑖(𝑡) + 𝜅∇𝑎sin |
Φ𝑖

2
| 𝑑𝑡 (2.5) 

This equation comprises a viscous damping term, a white noise term to model random motion 

and a chemotactic component. 𝛽 is a viscosity coefficient, 𝑊  is the Wiener process, a white 

noise process, 𝜅  is the chemotactic responsiveness, a is the tumor angiogenesis factor 

concentration. Φ is the angle between the direction the tip is moving and that towards the tumor 

angiogenesis factor source. The tip position xi is determined by the following equation: 

 
dxi(t)

dt
= vi(t) (2.6) 

Finally, the equation for the average density satisfies: 
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d𝜌𝑖(𝑡)

dt
= 𝑘𝑔

𝜌𝑚𝑎𝑥−𝜌𝑖(𝑡)

𝜌𝑚𝑎𝑥−𝜌𝑚𝑖𝑛
𝜌𝑖(𝑡) −

𝑠𝑖(𝑡)

𝐿𝑖(𝑡)
𝜌𝑖(𝑡) + 𝑘𝑏[𝜌𝑝(𝑡) − 𝜌𝑖(𝑡)] − ∑ 𝑘𝑏

𝜈𝑖
𝑗=1 [𝜌𝑖(𝑡) − 𝜌𝑗(𝑡)](2.7) 

where 𝑘𝑔 is the proliferation rate, 𝑘𝑏 is the redistribution coefficient, 𝜌𝑝(𝑡) represents the parent 

vessel density, 𝜈𝑖  is the number of branches that the ith sprout has at time t, 𝑠𝑖  is the 

instantaneous speed of the ith sprout calculated as 𝑠𝑖(𝑡) = ‖𝑣𝑖‖  and 𝐿𝑖  is the sprout length 

calculated from  

 
𝑑𝐿𝑖(𝑡)

𝑑𝑡
= 𝑠𝑖(𝑡) (2.8) 

At each time step these three ordinary differential equations (ODEs) are solved for each sprout. 

The total number of sprouts changes due to branching (birth) and anastomosis (death of sprouts). 

The above models do not consider blood flow. However, since the shear stresses generated 

within the capillary network by the flowing blood strongly influence vessel adaptation and 

network remodeling, the flow of blood as a non-Newtonian fluid in an adaptive dynamic 

capillary network is therefore considered in the recent new work [25, 35]. Due to the complexity 

of modeling angiogenesis with blood flow effect, it is not explained here. 

2.1.2. Spatio-temporal evolution of substrates in tumors 

The spatial-temporal evolvements of species in tumor interstitial space (in tumor tissue) satisfy 

reaction–diffusion equations. The reaction-diffusion equations for ions are different from those 

for neutral species, since the electric potentials caused by other ions in the system need to be 

considered. In tumor interstitial fluid, considering the migration, diffusion and convection, the 

molar flux of the component s: 𝑁𝑠
⃑⃑⃑⃑⃑  (the flux density quantity) is expressed in terms of the 

concentration [s] gradient [88]:  

  𝑁𝑠
⃑⃑⃑⃑⃑ = −𝑧𝑠𝑢𝑠F[𝑠]∇𝜑 − 𝐷𝑠∇[𝑠] + [𝑠]𝑣⃑(2.9) 𝑁𝑠

⃑⃑⃑⃑⃑ indicates the direction in 

which the species is moving and the number of moles going per unit time acorss a unit plane, 

oriented perpendicular to the flow of the species. 𝑧𝑠  is the charge, 𝑢𝑠  is the mobility, F is 

Faraday’s constant, 𝜑 is the electrical potential, and 𝐷𝑠 denotes the diagonal diffusion coefficient 

matrix. 𝑣⃑ is the bulk velocity of the species. The region of interest is assumed to be isotropix and 

uniform, where the substance diffusivities are represented by a scalar matrix, independent on 

coordinates. In the tissue (outside the blood vessels), there are no significant currents, so the 

convection term can be neglected. The movement of the species can deviate from this average 

velocity by diffusion if there is a concentration gradient ∇[𝑠], or by migration if there is an 
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electric field ∇𝜑 and if the species is charged. For neutral species,  e.g., oxygen, glucose and CO2, 

the first term of above equation is zero. Whereas, the ions (e.g., H
+
, HCO3

-
) expose to the eletric 

fields generated by other ions within the system and therefore the first term is non-zero. 

Based on the Einstein-Nernst equation and zero total charge fluxes, the flux of a species can be 

rewritten as  

 𝑁𝑠
⃑⃑⃑⃑⃑ = −𝐷𝑠∇[𝑠] + 𝑧𝑠𝐷𝑠[𝑠](∑ 𝑧𝑘𝐷𝑘∇[𝑘]𝑛

𝑘=1 )/(∑ 𝑧𝑘
2𝐷𝑘[𝑘]𝑛

𝑘=1 ) (2.10) 

where index k covers all the charged species. The second term of the above equation is zero for 

neutral species. 

Now the flux expressions can be used in the reaction-diffusion equation. The reaction-diffusion 

equation for component s is as follows:  

 
𝜕[𝑠]

𝜕𝑡
= −∇ ∙ 𝑁𝑠

⃑⃑⃑⃑⃑ + 𝑃𝑠                                           (2.11) 

After substituting equation (2.9) into equation (2.10), the final reaction-diffusion equation is 

obtained:  

 
𝜕[𝑠]

𝜕𝑡
= 𝐷𝑠∇2[𝑠] − 𝑧𝑠∇[𝑠] ∙

𝐶

𝐵⃑⃑
−

𝑧𝑠[𝑠](𝐴𝐵−𝐶∙𝐷⃑⃑⃑)

𝐵2 + 𝑃𝑠 (2.12) 

 𝐴 = ∑ 𝑧𝑘𝐷𝑘∇2[𝑘]𝑛
𝑘=1  (2.13) 

 𝐵 = ∑ 𝑧𝑘
2𝐷𝑘[𝑘]𝑛

𝑘=1  (2.14) 

 𝐶 = ∑ 𝑧𝑘𝐷𝑘∇[𝑘]𝑛
𝑘=1  (2.15) 

 𝐷⃑⃑⃑ = ∑ 𝑧𝑘
2𝐷𝑘∇[𝑘]𝑛

𝑘=1  (2.16) 

where, 𝑃𝑠 is the metabolic rate of species s. For neutral species, the distributions are not affected 

by electric potentials (i. e., the 2
nd

 and 3
rd

 term on the right of equation (2.11) are zero).  

2.1.3. Substrate cellular metabolism 

The substrate cellular metabolism in tumors can be reflected by Michaelis-Menten terms [82-84], 

which are derived from the Michaelis-Menten equations for the simplest case of an irreversible 

enzyme reaction, converting a single substrate (A) into a product (P) by enzyme (E).  
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The time-dependent variations of the individual reactants are expressed by the differential 

equations: 

 
d[A]

d𝑡
= −𝑘1[A][E] + 𝑘−1[EA] (2.17) 

 
d[E]

d𝑡
= −𝑘1[A][E] + (𝑘−1 + 𝑘2)[EA] (2.18) 

 
d[EA]

d𝑡
= 𝑘1[A][E] − (𝑘−1 + 𝑘2)[EA] (2.19) 

  
d[P]

d𝑡
= −𝑘2[EA] = 𝑣 (2.20) 

where [A], [E] and [EA] are the concentrations of substrate, enzyme and enzyme-substrate 

complex. v is the turnover rate defined as the product formation. It depends on and is therefore 

directly proportional to the amount of complex EA. The time-dependent changes of [EA] and [E] 

can be taken to be zero: d[EA]/dt=d[E]/dt=0. Then equations (2.17) and (2.18) simplify to: 

 𝑘1[A][E] = (𝑘−1 + 𝑘2)[EA] (2.21) 

Substitution of [E] according to the principle of mass conservation, [E]0 = [E] + [EA], yields the 

term 

 [𝐸𝐴] =
𝑘1[A][E]0

𝑘1[A]+𝑘−1+𝑘2
 (2.22)  

by entering this into equation (2.20) a relationship between turnover rate and substrate amount is 

obtained: 

 𝑣 =
d[P]

d𝑡
= 𝑘2[EA] =

𝑘2[E]0[A]
𝑘−1+𝑘2

𝑘1
+[𝐴]

=
𝑉[A]

𝐾m+[𝐴]
  (2.23) 

 𝑉 = 𝑘2[E]0 (2.24) 

 𝐾𝑚 =
𝑘−1+𝑘2

𝑘1
 (2.25) 

where the expression (k1+k2)/k1 contains three rate constants which are combined into a common 

constant Km, the Michaelis-Menten constant, while k2[E]0 is replaced by V, the maximum 
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velocity. This equation, based on the steady-state theory, is of fundamental importance for 

enzyme kinetics.  

In the simulation, the turnover rate is usually used to represent the substrate (such as, O2 and 

glucose) consumption rate. Moreover, modified Michaelis-Menten kinetics has been proposed to 

more approach the realistic substrate consumption rate [80]. For instance, a modification 

function plotting the measurements is multiplied to the Michaelis-Menten term. 

2.1.4. Substate transport across cell membrane 

Cell membranes act as barriers to most, but not all, molecules. The permeability of a membrane 

to different substances depends on several factors relating to the interaction of the phospholipids 

bilayer with the solute: lipid solubility, size, charge and preference of channels and transporters. 

Based on these factors, there exist three principal ways for a substance traversing the cell 

membrane: passive, active and bulk transport. The passive transport is diffusion of a substance 

across a membrane with no energy investment, no use of ATP. It contains simple diffusion, 

dialysis, osmosis and facilitated diffusion.  

Essential small molecules, such as O2 and CO2, can cross the cell membrane by diffusion, which 

is one principle method of substrate movements within cells. The diffusion is the net movement 

of a substance from an area of higher concentration to an area of lower concentration and 

therefore leads to the equal concentrations on both sides of cell membrane. Large polar 

molecules and ions cannot pass through phospholipid bilayer, so that they diffuse through a 

semipermeable membrane with the help of special proteins (channel or carrier proteins). 

Examples include glucose and radioactive tracers, which traverse the membrane largely with 

facilitation of transporters (e.g., glucose transporters). Principally, transport occurs in both 

direction (cis and trans cite of the membrane) and is regarded as a reversible process, similar to 

any chemical and thus to any enzyme catalyzed reaction. Based on this fact, instead of the simple 

Michaelis-Menten equation, the relationship derived for reversible reactions should be applied 

[89], where A1 is the substance to be transported at the cis site, and A2 the substance after the 

transport at the trans site; E is the free transport system: 

 𝑣T =
(𝑘1𝑘2[A1]−𝑘−1𝑘−2[A2])[E]0

𝑘1[A1]+𝑘−2[A2]+𝑘−1+𝑘2
 (2.26) 

Regarding only a uni-direction transport from the cis to the trans site, the term 𝑘−1𝑘−2[𝐴2] for 

the reverse transport may be disregarded and therefore the above equation reduces to: 
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 𝑣T =
𝑘1𝑘2[A1][E]0

𝑘1[A1]+𝑘−2[A2]+𝑘−1+𝑘2
 (2.27) 

If conditions are chosen, where the substrate concentration at the trans site A2 is zero, the 

transport rate 𝑣T  simplifies to the Michaelis-Menten equation, k2[E]0 being the maximum 

velocity: 

 𝑣T =
𝑘2[A1][E]0

[A1]+
𝑘−1+𝑘2

𝑘1

=
𝑉1[A1]

𝐾m1+[A1]
 (2.28) 

Generally the transport must be regarded from both sites. For each of the sites a Michaelis-

Menten equation may be taken, the net flow being the difference between both individual flows: 

 𝑣T =
𝑉1[A1]

𝐾m1+[A1]
−

𝑉2[A2]

𝐾m2+[A2]
 (2.29) 

This equation fits for the cases of both asymmetry and symmetry transports. For the symmetric 

transport, V and Km are same for both sites: 

 𝑣T = 𝑉𝐾m
[A1]−[A2]

(𝐾m+[A1])(𝐾m+[A2])
 (2.30) 

Active transport spends energy, usually in the form of ATP, to move a substance across a cell 

membrane against its natural tendency, up a concentration gradient. It requires the use of carrier 

protein, and includes protein-mediated active transport (e.g., sodium potassium pump) and co-

transport (e.g., lactate
-
 and H

+
 co-transport). As an example, the kinetics of carrier-mediated 

transport of lactate across mammalian plasma membranes involves rapid-equilibrium lactate and 

proton binding, with the proton binding first (ordered-binding), and the lactate may bind only to 

the transporter in the proton-bound state, and only the fully unbound carrier or the fully bound 

carrier can undergo a conformational change associated with transport of substrates across the 

membrane. The following elementary steps constitute a symmetric ordered-binding scheme with 

protons binding the unbound carrier (E1 or E2) and lactate binding the proton-bound carrier 

(EH1 or EH2) [47]: 
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Here the two sides of the membrane are labeled 1 and 2. The enzyme states with binding sites 

exposed to side 1 are denoted E1, EH1, and EHLAC1. Similarly, enzyme states with binding 

sites exposed to side 2 are denoted E2, EH2, and EHLAC2. Protons and lactate on side 1 are 

denoted H1 and LAC1, respectively; protons and lactate on side 2 are denoted H2 and LAC2.  

From the above scheme, the unidirectional carrier fluxes from side 1 (cis site) to side 2 (trans site) 

are (the intermediate formula induction is not presented here): 

 𝑓𝑙𝑢𝑥12 = 𝑘EHLAC[EHLAC1] = 𝑘EHLAC

𝑘f,LAC

𝑘b,LAC
[EH1][LAC1] (2.31) 

 𝑓𝑙𝑢𝑥21 = 𝑘EHLAC[EHLAC2] = 𝑘EHLAC

𝑘f,LAC

𝑘b,LAC
[EH2][LAC2] (2.32) 

Therefore, the net flux is given by 

 𝐽12 = 𝑓𝑙𝑢𝑥12 − 𝑓𝑙𝑢𝑥21 (2.33) 

where, apparent [LAC1] Km of flux12 is given by: 

 𝐾𝑚,12
LAC1 =

𝐾𝐿𝐴𝐶[
𝑘𝐸

𝑘𝐸𝐻𝐿𝐴𝐶
(1+

[𝐻2]

𝐾𝐻
+

[𝐻2][𝐿𝐴𝐶2]

𝐾𝐻𝐾𝐿𝐴𝐶
)+(

[𝐻2][𝐿𝐴𝐶2]

𝐾𝐻𝐾𝐿𝐴𝐶
+

𝑘𝐸
𝑘𝐸𝐻𝐿𝐴𝐶

)(1+
[𝐻1]

𝐾𝐻
)]

[𝐻1]

𝐾𝐻
[(1+

[𝐻2]

𝐾𝐻
+

[𝐻2][𝐿𝐴𝐶2]

𝐾𝐻𝐾𝐿𝐴𝐶
)+(

[𝐻2][𝐿𝐴𝐶2]

𝐾𝐻𝐾𝐿𝐴𝐶
+

𝑘𝐸
𝑘𝐸𝐻𝐿𝐴𝐶

)]
 (2.34) 

Apparent [LAC1] Vmax of flux12 is written by: 
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 𝑉𝑚𝑎𝑥,12
LAC1 =

𝑘𝐸𝐻𝐿𝐴𝐶[𝐸0](
[𝐻2][𝐿𝐴𝐶2]

𝐾𝐻𝐾𝐿𝐴𝐶
+

𝑘𝐸
𝑘𝐸𝐻𝐿𝐴𝐶

)

(1+
[𝐻2]

𝐾𝐻
+

[𝐻2][𝐿𝐴𝐶2]

𝐾𝐻𝐾𝐿𝐴𝐶
)+(

[𝐻2][𝐿𝐴𝐶2]

𝐾𝐻𝐾𝐿𝐴𝐶
+

𝑘𝐸
𝑘𝐸𝐻𝐿𝐴𝐶

)
 (2.35) 

Apparent [LAC2] Km of flux12 is given by: 

 𝐾𝑚,12
LAC2 =

𝐾𝐿𝐴𝐶[
𝑘𝐸

𝑘𝐸𝐻𝐿𝐴𝐶
(1+

[𝐻1]

𝐾𝐻
+

[𝐻1][𝐿𝐴𝐶1]

𝐾𝐻𝐾𝐿𝐴𝐶
)+(

[𝐻1][𝐿𝐴𝐶1]

𝐾𝐻𝐾𝐿𝐴𝐶
+

𝑘𝐸
𝑘𝐸𝐻𝐿𝐴𝐶

)(1+
[𝐻2]

𝐾𝐻
)]

[𝐻2]

𝐾𝐻
[(1+

[𝐻1]

𝐾𝐻
+

[𝐻1][𝐿𝐴𝐶1]

𝐾𝐻𝐾𝐿𝐴𝐶
)+(

[𝐻1][𝐿𝐴𝐶1]

𝐾𝐻𝐾𝐿𝐴𝐶
+

𝑘𝐸
𝑘𝐸𝐻𝐿𝐴𝐶

)]
 (2.36) 

Apparent [LAC2] Vmax of flux12 is expressed by  

 𝑉𝑚𝑎𝑥,12
LAC2 =

𝑘𝐸𝐻𝐿𝐴𝐶[𝐸0](
[𝐻1][𝐿𝐴𝐶1]

𝐾𝐻𝐾𝐿𝐴𝐶
+

𝑘𝐸
𝑘𝐸𝐻𝐿𝐴𝐶

)

(1+
[𝐻1]

𝐾𝐻
+

[𝐻1][𝐿𝐴𝐶1]

𝐾𝐻𝐾𝐿𝐴𝐶
)+(

[𝐻1][𝐿𝐴𝐶1]

𝐾𝐻𝐾𝐿𝐴𝐶
+

𝑘𝐸
𝑘𝐸𝐻𝐿𝐴𝐶

)
 (2.37) 

KH and KLAC are defined equilibrium constants: 𝐾H = 𝑘b,H/𝑘f,H, 𝐾LAC = 𝑘b,LAC/𝑘f,LAC. 

The ordered (as illustrated above) and random-binding mechanisms can be simulated by kinetic 

models, and apparent kinetic parameters for specific types of experiments are derived. Based on 

the analysis of the expressions for the apparent kinetic parameters, additional experiments can be 

proposed to be able to distinguish between ordered and random-binding mechanisms. 

Due to facilitated and active transport, most ions and molecules in tumors have unequal 

concentrations on both sides of the cell membrane, therefore the Ps in equations (2.10) and (2.11) 

representing local production/consumption of extracellular substrates [Sex] should be substituted 

by the transport term 𝑇s([𝑆ex], [𝑆in]): 

 
𝜕[𝑆ex]

𝜕𝑡
= 𝐷𝑠∇2[𝑆ex] − 𝑧𝑠∇[𝑆ex] ∙

𝐶

𝐵⃑⃑
−

𝑧𝑠[𝑆ex](𝐴𝐵−𝐶∙𝐷⃑⃑⃑)

𝐵2 + 𝑇s([𝑆ex], [𝑆in]) (2.38) 

And the evolvement intracellular substrate [𝑆in]  satisfies the reaction equation (no diffusion 

involved): 

 
𝜕[𝑆in]

𝜕𝑡
= 𝑇s([𝑆ex], [𝑆in]) + 𝑃𝑠([𝑆in])) (2.39) 

2.2. Machine learning algorithms for molecular imaging  

The machine learning methods including supervised, unsupervised and ensemble learning have 

been widely used for molecular imaging [90]. Supervised learning is the machine learning task 

of inferring a function (i.e., predictor model) from labeled training data and generating 
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reasonable predictions of the response to new data. Supervised learning splits into two broad 

categories: classification (such as support vector machine, discriminant analysis, nearest 

neighbors and naïve Bayers classification) and regression (such as linear, non-linear, generalized 

linear and decision tree regression). The regression model is more computationally efficient that 

classification model. Unsupervised learning tries to find hidden structure in unlabeled data and it 

comprises hierarchical, k-Means and k-Medoids clustering, and Gaussian mixture and Hidden 

Markov models for clustering.  

The regression and classification algorithms have been applied in molecular image analysis for 

improving diseases (e.g., lesions and brain diseases) identification and prediction [91-94]. For 

example, the supervise machine learning has been used to derive the system matrix for the image 

reconstruction of radiotracer uptake in lesions. The system matrix is adapted by learning the 

simulated lesion features. The method improves the quantitative accuracy of lesion metabolism 

analysis and makes the lesion identification more precisely [95]. In order to select a more 

accurate model for pharmacokinetic analysis, the machine learning method (temporal difference 

reinforcement learning) is also used for model selection and parameter estimation [96]. 

Regression models describe the relationship between a dependent variable y (i.e., response 

variable), and independent variable or variables, X (i.e., predictor variables). The matrix, X, of 

observations on predictor variable usually called the design matrix. A multiple linear regression 

model can be expressed as [97, 98] 

 𝑦𝑖 = 𝑏0 + 𝑏1𝑋𝑖1 + 𝑏2𝑋𝑖2 + ⋯ + 𝑏𝑝𝑋𝑖𝑝 + 𝜀𝑖       𝑖 = 1, ⋯ , 𝑛 (2.40) 

where 𝑦𝑖 is the ith response. 𝑏𝑗 is the jth coefficient and 𝑏0 is the constant term in the model. 𝑋𝑖𝑗 

denotes the ith observation on the jth predictor variable, 𝑗 = 1, ⋯ , 𝑝. 𝜀𝑖 is the ith random noise 

term. 

The general form of a linear regression model is  

 𝑦𝑖 = 𝑏0 + ∑ 𝑏𝑘𝑓𝑘(𝑋𝑖1, 𝑋𝑖2, ⋯ , 𝑋𝑖𝑝)𝐾
𝑘=1 + 𝜀𝑖       𝑖 = 1, ⋯ , 𝑛 (2.41) 

where f(.) is a scalar-valued function of the independent variables 𝑋𝑖𝑗. The functions f(X) might 

be in any form including nonlinear functions or polynomials 

The multivariate linear regression model expresses a d-dimensional continuous response vector 

as a linear combination of predictor terms plus a vector of error terms with a multivariate normal 

distribution. The multivariate linear regression model is  
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 𝒚𝒊 = 𝑿𝒊𝒃 + 𝜺𝒊 (2.42) 

where 𝒚𝒊 = (𝑦𝑖1, … , 𝑦𝑖𝑑)′ denote the response vector for observation i, 𝑖 = 1, … , 𝑛. b and 𝑿𝒊 is 

𝐾 × 1  coefficient vector and 𝑑 × 𝐾  design matrix. The d-dimensional vector of error terms 

follows a multivariate normal distribution 

 𝜺𝒊 ∼ 𝑀𝑉𝑁𝑑(0, Σ) (2.43) 

Parametric nonlinear models represent the relationship between a continuous response variable 

and one or more continuous predictor variables in the form  

 𝑦 = 𝑓(𝑋, 𝑏) + 𝜀 (2.44) 

where, y is an n×1 vector of observations of the response variable. f is any function of X and b 

that evaluates each row of X along with the vector b to compute the prediction for the 

corresponding row of y. X is an n×p matrix of predictors, with one row for each observation, and 

one column for each predictor. b is a p×1 vector of unknown parameters to be estimated. ε is an 

n×1 vector of independent, identically distributed random noises. 

To estimate the values of the parameters b in regression models, the mean squared differences 

between the observed responses y and the predictions of the model f(X, b) are minimized by 

algorithms such as least squares estimation, maximum likelihood estimation [99]. The parameter 

estimations by ordinary least squares (OLS) and covariance-weighted least squares (CWLS) 

algorithms, two types of least squares estimation, are illustrated here.  

The coefficients are estimated using iterative least squares estimation for non-linear regression 

model. While as to linear regression model, the OLS estimate for the coefficient vector b that 

minimizes 

 ∑ (𝒚𝒊 − 𝑿𝒊𝒃)𝑁
𝑖=1 ′(𝒚𝒊 − 𝑿𝒊𝒃) (2.45) 

The 𝐾 × 1 vector of OLS regression coefficient estimates is  

 𝒃OLS = (𝑿′𝑿)−1𝑿′𝒚 (2.46) 

The CWLS introduces a diagonal matrix 𝑪0, whose inverse matrix 𝐶0
−1 contain weights for each 

dimension to model heteroscedasticity. Given 𝑪0 , the CWLS solution is the vector b that 

minimizes 

 ∑ (𝒚𝒊 − 𝑿𝒊𝒃)𝑁
𝑖=1 ′𝑪0(𝒚𝒊 − 𝑿𝒊𝒃) (2.47) 
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In this case, the 𝐾 × 1 vector of CWLS regression coefficient estimates is  

 𝒃CWLS = (𝑿′(𝑰𝑛⨂𝑪0)−1𝑿)−1𝑿′(𝑰𝑛⨂𝑪0)−1𝒚 (2.48) 

where 𝑰𝑛  is unit diagonal matrix. Because of the length limitation, the thesis is not going to 

extend the introduction of regression algorithms.  

Among a variety of classification models, the support vector machine (SVM) is widely used due 

to its high predictive accuracy [100-102]. For instance, neurodegenerative diseases, such as 

Alzheimer’s disease and mild cognitive impairment, are classified and predicted with SVM using 

the brain-region specific features from molecular image (MRI or fMRI image) [103, 104]. An 

SVM classifies data by finding the best hyperplane that separates all data points of one class 

from those of the other class. The best hyperplane for an SVM means the one with the largest 

margin between the two classes. Given some training data: a set of n points (vectors) 𝒙𝑖 along 

with their categories 𝑦𝑖, 𝑖 = 1, ⋯ , 𝑛. The 𝑦𝑖 is either 1 or -1 indicating the class to which the 

point 𝒙𝑖 belongs. The aim of the SVM is to maximum margin hyperplane that divides the points 

having 𝑦𝑖 = 1 from those having 𝑦𝑖 = −1. The equation of any hyperplane is  

 𝒘 ∙ 𝒙 − 𝑏 = 0 (2.49) 

where w denotes the normal vector to the hyperplane. The parameter 𝑏/‖𝒘‖ determines the 

offset of the hyperplane from the origin along the normal vector w 

Two hyperplanes are selected in a way to separate the data and then their distance is maximized. 

The region bound by them is called “the margin”. This hyperplanes are described by the 

equations: 

 𝒘 ∙ 𝒙 − 𝑏 = 1    and     𝒘 ∙ 𝒙 − 𝑏 = −1 (2.50) 

The distance between these two hyperplanes is 2/‖𝒘‖, the ‖𝒘‖ is minimized to obtain the 

largest distance under the constraint to prevent the date points falling into the margin: 

 𝑦𝑖(𝒘 ∙ 𝒙𝒊 − 𝑏) ≥ 1,          𝑖 = 1, … , 𝑛 (2.51) 

Considering the mathematical convenience, the optimization problem of SVM is usually given as 

the equivalent problem of minimizing ‖𝒘‖2/2: 

 argmin(𝒘,𝑏)
‖𝒘‖2

2
           subject to 𝑦𝑖(𝒘 ∙ 𝒙𝒊 − 𝑏) ≥ 1 (2.52) 

By introducing the Lagrange multipliers α, the above constrained problem can be expressed as: 
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 argmin max(𝒘,𝑏)   𝛼≥0 {
1

2
‖𝒘‖2 − ∑ 𝛼𝑖[𝑦𝑖(𝒘 ∙ 𝒙𝒊 − 𝑏) − 1]𝑛

𝑖=1 }  (2.53) 

A modified maximum margin ideal that allows for mislabeled examples has been developed [101] 

and this algorithm deals with the data sets which cannot be split completely. In this case the soft 

margin method is put forward will choose a hyperplane that splits the examples as cleanly as 

possible. Therefore, the objective function is increased by a function which penalizes non-zero 𝜉𝑖, 

and the optimization becomes a tradeoff between a large margin and a small error penalty. The 

optimization problem becomes: 

 argmin(𝒘,𝑏) {
‖𝒘‖2

2
+ 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1 }            subject to 𝑦𝑖(𝒘 ∙ 𝒙𝒊 − 𝑏) ≥ 1 (2.54) 

The optimization with Lagrange multipliers is therefore modified into: 

arg min (𝒘,𝑏,𝝃)max𝜶,𝜷≥0  
{

1

2
‖𝒘‖2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1 − ∑ 𝛼𝑖[𝑦𝑖(𝒘 ∙ 𝒙𝒊 − 𝑏) − 1 + 𝜉𝑖] − ∑ 𝛽𝑖𝜉𝑖

𝑛
𝑖=1

𝑛
𝑖=1 } (2.55) 

The SVM optimization will be illustrated later in section 4.2.1. 

2.3. Image reconstruction algorithms for molecular imaging 

The 2D and 3D imaging reconstruction algorithms used in PET mainly include the classical 

analytic algorithm and the iterative algorithm. The typical analytic algorithm is filtered-back-

projection (FBP) algorithm, which is characterized by its linearity and easier control of the 

spatial resolution and noise correlations in the reconstruction and therefore it still remains 

important in a number of reconstruction algorithms. The iterative algorithm is of increasing 

importance. Using the iterative algorithm, the image quality can be improved by more accurate 

modeling of the data acquisition. Among the variety of iterative methods, the maximum-

likelihood expectation maximization (ML-EM) algorithm and its accelerated version: ordered 

subset expectation maximization (OSEM) are most original and popular.   

The number of coincident events detected by a pair of detectors Da and Db (associated with an 

LOR: ℒ𝐷𝑎,𝐷𝑏
) is a Poisson variable with a mean: [16] 

 〈𝑝𝐷𝑎,𝐷𝑏
〉 = 𝜏 ∫ 𝑑𝑟𝑓(𝑟)𝜓𝐷𝑎,𝐷𝑏FOV

(𝑟) (2.56) 

where τ is the acquisition time and 𝑓(𝑟) denotes the tracer concentration. FOV is the field of 

view with the radium 𝑅F and 𝑓(𝑟) is assumed as zero out of FOV. Recovering 𝑓(𝑟) is the aim of 

reconstruction. 𝜓𝐷𝑎,𝐷𝑏
(𝑟)  indicates the sensitivity function ( 𝑟 = (𝑥, 𝑦, 𝑧) ). The analytic 



Computational methods for molecular imaging of tumor metabolism 

35 

 

algorithms model each tube of response as a mathematical line joining the center of the front face 

of the two crystals. Thus the sensitivity function is zero except when 𝑟 ∈ ℒ𝐷𝑎,𝐷𝑏
. With this 

approximation, the detected coincident events can be expressed by a line integral of the tracer 

distribution [16]: 

 〈𝑝𝐷𝑎,𝐷𝑏
〉 = ∫ 𝑑𝑟𝑓(𝑟)

ℒ𝐷𝑎,𝐷𝑏

 (2.57) 

Using indices (𝐷𝑎 , 𝐷𝑏) to parameterize PET data often induces adapting problem. An alternative 

sinogram parameterization is therefore used, where the variables s and 𝜙 represent the location 

and orientation of the LOR (the transaxial sonogram coordinates), respectively. The line integral 

of the tracer distribution in 2D space is then defined as  

 𝑝(𝜙, 𝑠, 𝑧0) = ∫ 𝑑𝑡
+∞

−∞
𝑓(𝑥 = 𝑠cos𝜙 − 𝑡sin𝜙, 𝑦 = 𝑠sin𝜙 + 𝑡cos𝜙, 𝑧 = 𝑧0) (2.58) 

where t is the coordinate along the line. 0 ≤ 𝜙 < 𝜋 and |𝑠| < 𝑅F. The above equation indicates 

the x-ray transform, which transforms the function 𝑓(𝑟) into its sinogram 𝑝(𝑠, 𝜙) by operator X: 

𝑝(𝑠, 𝜙) = (𝑋𝑓)(𝑠, 𝜙). 

Tomographic reconstruction relies on Fourier analysis. The Fourier transform of a function 

𝑓(𝑥, 𝑦) is defined: 

 (ℱ𝑓)(𝑣𝑥, 𝑣𝑦) = 𝐹(𝑣𝑥, 𝑣𝑦) = ∫ 𝑑𝑥𝑑𝑦𝑓(𝑥, 𝑦)exp (−2𝜋𝑖(𝑥𝑣𝑥 + 𝑦𝑣𝑦))
ℝ2  (2.59) 

And the inverse Fourier transform is  

 (ℱ−1𝐹)(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) = ∫ 𝑑𝑣𝑥𝑑𝑣𝑦𝐹(𝑣𝑥 , 𝑣𝑦)exp (2𝜋𝑖(𝑥𝑣𝑥 + 𝑦𝑣𝑦))
ℝ2  (2.60) 

where 𝑣𝑥 and 𝑣𝑦 denote the frequencies associated to x and y, respectively. 

The central section theorem states that the 1D Fourier transform of x-ray transform with respect 

to the radial variable s is related to the 2D Fourier transform of the image f. 

 𝑃(𝜈, 𝜙) = 𝐹(𝑣𝑥 = 𝑣cos𝜙, 𝑣𝑦 = 𝑣sin𝜙) (2.61) 

where  

 𝑃(𝜈, 𝜙) = (ℱp)(𝜈, 𝜙) = ∫ 𝑑𝑠𝑝(𝜙, 𝑠)exp (−2𝜋𝑖sν)
ℝ2  (2.62) 
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𝜈 is the frequency associated to the radial variable s. 

Combing equations (2.59)-(2.61), the tracer concentration 𝑓(𝑥, 𝑦)  can be estimated by FBP 

inversion, which has two steps of inversions: 

 𝑓(𝑥, 𝑦) = (𝑋∗𝑝F)(𝑥, 𝑦) = ∫ 𝑑𝜙𝑝𝐹(𝑠 = 𝑥cos𝜙 + 𝑦sin𝜙, 𝜙)
𝜋

0
 (2.63) 

where the filtered projections are 

 𝑝F(𝑠, 𝜙) = ∫ 𝑑𝑠′𝑝(𝑠′, 𝜙)ℎ(𝑠 − 𝑠′)
𝑅𝐹

−𝑅𝐹
 (2.64) 

And the ramp filter kernel is defined as: 

 ℎ(𝑠) = ∫ 𝑑𝜈|𝜈|exp (2𝜋𝑖𝑠𝜈)
+∞

−∞
 (2.65) 

The operator 𝑋∗ mapping 𝑝F onto f is called the back projection. (𝑋∗𝑝F)(𝑥, 𝑦) is the sum of the 

filtered data 𝑝F for all lines that contain the point (x, y). 

As to the iterative algorithms, the mean number of events detected for one LOR is written as 

 〈𝑝⃑〉 = {〈𝑝𝑗〉 = 𝜏 ∫ 𝑑𝑟𝑓(𝑟)𝜓𝑗(𝑟), 𝑗 = 1, … , 𝑁LORFOV
} (2.66)  

where j represents the detector pair (𝑑𝑎, 𝑑𝑏) for the simplification, and 𝑁LOR is the number of 

detector pairs in coincidence. The sensitivity function 𝜓𝑗(𝑟) depends on attenuation and scatter, 

gaps in the detectors, non-uniform resolution of the detectors, etc. 

Iterative algorithms model the image as a linear combination of the basis functions: 

 𝑓(𝑟) ≈ ∑ 𝑓𝑖𝑏𝑖(𝑟)𝑃
𝑖=1  (2.67) 

Therefore the mean number of the events detected by the jth detector pair: 

 〈𝑝𝑗〉 = ∑ 𝑎𝑗,𝑖𝑓𝑖
𝑃
𝑖=1              𝑗 = 1, … , 𝑁LOR (2.68)  

where the elements of the system matrix are  

𝑎𝑗,𝑖 = 𝜏 ∫ 𝑑𝑟𝑏𝑖(𝑟)𝜓𝑗(𝑟)
FOV

            𝑗 = 1, … , 𝑁LOR; 𝑖 = 1, … , 𝑃  
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In order to reconstruct the tracer image, the objective function 𝑄(𝑓 = (𝑓1, … , 𝑓𝑝), 𝑝⃑) is defined, 

which is determined by the unknown imaging coefficients and the measured data. The estimated 

tracer distribution f* can be obtained by optimizing the objective function. The general ways for 

tracer image estimation is: 

 𝑓∗ = argmax𝑓, 𝑓𝑖≥0  𝑄(𝑓, 𝑝⃑) (2.69)  

The objective function in the ML-EM and OSEM algorithms is the Poisson likelihood: 

 𝑄(𝑓, 𝑝⃑) = ∑ {− ∑ 𝑎𝑗,𝑖𝑓𝑖
𝑃
𝑖=1 + 𝑝𝑗log (∑ 𝑎𝑗,𝑖𝑓𝑖

𝑃
𝑖=1 )}

𝑁𝐿𝑂𝑅
𝑗=1  (2.70) 

The optimization of the objective function can be achieved by a variety of methods, such as 

Gradient-based methods, methods using subsets of the image vector, methods based on surrogate 

cost functions, block-iterative methods. The ML-EM can be derived using surrogate functions.  

The EM iteration is a mapping of the current image estimate 𝑓𝑛 onto the next estimate 𝑓𝑛+1 until 

the equilibrium (convergence) is reached: 

 𝑓𝑖
𝑛+1 = 𝑓𝑖

𝑛 1

∑ 𝑎𝑗′,𝑖

𝑁LOR

𝑗′=1

∑ 𝑎𝑗,𝑖
𝑁LOR

𝑗=1

𝑝𝑗

∑ 𝑎𝑗,𝑖′𝑓𝑖′
𝑛𝑃

𝑖′=1

         𝑖 = 1, … , 𝑃 (2.71) 

This objective function increases monotonically at each iteration and converges for 𝑛 → ∞ to an 

image 𝑗∗ maximizing the loglikelihood. 

The OSEM algorithm is the modification of ML-EM algorithm. The LOR data is divided into S 

disjoint subsets 𝐽1, … , 𝐽𝑆 ⊂ [1, … , 𝑁LOR]. Each subset is processed in a well-defined order and the 

iterations have the form: 

 𝑓𝑖
𝑛+1 = 𝑓𝑖

𝑛 1

∑ 𝑎𝑗′,𝑖𝑗′∈𝐽n, mod S

∑ 𝑎𝑗,𝑖
𝑝𝑗

∑ 𝑎𝑗,𝑖′𝑓𝑖′
𝑛𝑃

𝑖′=1
𝑗∈𝐽n, mod S

        𝑖 = 1, … , 𝑃 (2.72) 

where 𝐽n, mod S indicates the subset at iteration n. 

2.4. Data analysis and pharmacokinetic modeling 

Pharmacokinetics describes how the body affects a specific drug (such as biomarkers in 

molecular imaging) after administration through the mechanisms of absorption and distribution, 

as well as the chemical changes of the substance in the body (e.g. by metabolic enzymes), and 

the effects and routes of excretion of the metabolites of the drug [16, 105]. A number of different 
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models have been developed in order to simplify conceptualization of the many processes that 

take place in the interaction between an organism and a drug. One of these models, the 

compartment model, gives the best approximation to reality. In the application of PET or 

positron imaging, one tissue compartment model and two tissue compartment model are usually 

used for modeling the blood blow and tracer accumulation in tumors, respectively.  

2.4.1. One and two tissue compartment models 

The one tissue compartment model has been used to describe the bidirectional flux of tracer 

between blood and tissue, as shown in Figure 2.1. The model is characterized by time-dependent 

tracer concentration in tissue, Ct(t), and arterial blood, Ca(t) and two first-order kinetic rate 

constants (K1, k2). It is assumed that within each compartment (blood and tissue) the tracer is 

homogeneously distributed. The unidirectional tracer flux from blood to tissue is K1Ca, and the 

flux from tissue to blood is k2Ct; therefore, the net tracer flux into tissue is [16]: 

 
𝑑𝐶t

𝑑𝑥
= 𝐾1𝐶a − 𝑘2𝐶t (2.73)  

This equation can be solved for Ct to obtain: 

 𝐶t = 𝐾1𝐶a ⊗ exp (−𝑘2𝑡) (2.74)  

where the symbol ⊗ denotes one-dimensional convolution. If Ca and Ct are radioactivity 

concentrations, then k2 implicitly includes a component for radioactive decay. For a PET scan, Ct 

is the radioactivity concentration that is measured in a given tissue region. Blood samples may be 

drawn during a PET scan in order to measure Ca. If the tracer distribution in a tissue region is 

adequately described by the one-tissue model, then with serial measurements of Ct and Ca, can be 

applied using standard nonlinear regression techniques to estimate the values of K1 and k2 for 

that region. 

 

Figure 2.1. One-tissue compartment model describes the bidirectional flux of tracer between 

blood (Ca) and tissue (Ct). 
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The model for the measurement of glucose with [
18

F]FDG in a homogeneous tissue includes two 

tissue compartments as shown in Figure 2.2 [16]. Tracer is taken up (K1) from arterial plasma 

into compartment C1. A fraction of it diffuses back to plasma (k2), another fraction moves further 

to compartment C2 (k3). Unless tracer is trapped in the C2 compartment (k4=0), transfer back to 

the intermediate compartment is also going on. Therefore, the kinetic parameters: K1, k2, k3 and 

k4 reflect cellular influx, efflux, phosphorylation and de-phosphorylation of the tracer, 

respectively. So the differential equations for the two tissue compartment model are: 

 

Figure 2.2. The two-tissue compartment model 

 
𝑑𝐶1(𝑡)

𝑑𝑡
= 𝐾1𝐶𝑝 − (𝑘2 + 𝑘3)𝐶1(𝑡) + 𝑘4𝐶2(𝑡) (2.75) 

 
𝑑𝐶2(𝑡)

𝑑𝑡
= 𝑘3𝐶1(𝑡) − 𝑘4𝐶2(𝑡) (2.76) 

The solution to these coupled differential equations is as follows: 

 𝐶1(𝑡) =
𝐾1

𝛼2−𝛼1
[(𝑘4 − 𝛼1) exp(−𝛼1𝑡) + (𝛼2 − 𝑘4)exp(−𝛼2𝑡)] ⊗ 𝐶𝑝(𝑡) (2.77) 

 𝐶2(𝑡) =
𝐾1𝑘3

𝛼2−𝛼1
[exp(−𝛼1𝑡) − exp(−𝛼2𝑡)] ⊗ 𝐶𝑝(𝑡) (2.78) 

 𝐶i(𝑡) =
𝐾1

𝛼2−𝛼1
[(𝑘3 + 𝑘4 − 𝛼1) exp(−𝛼1𝑡) + (𝛼2 − 𝑘3 − 𝑘4)exp(−𝛼2𝑡)] ⊗ 𝐶𝑝(𝑡) (2.79) 

where 𝐶i(𝑡) =  𝐶1(𝑡) + 𝐶2(𝑡) is the total FDG activity in tissue. ⊗  denotes the operation of 

convolution.  𝛼1 and 𝛼2 are functions of the model rate constant K1, k2, k3 and k4 

 𝛼1 = (𝑘2 + 𝑘3 + 𝑘4 − √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4)/2 (2.80) 

 𝛼2 = (𝑘2 + 𝑘3 + 𝑘4 + √(𝑘2 + 𝑘3 + 𝑘4)2 − 4𝑘2𝑘4)/2 (2.81) 
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2.4.2. Graphical analysis: Patlak plot 

The two tissue compartment model for analyzing tracer kinetics is relatively complex and may 

be not suitable for certain human populations. Therefore, this model is simplified by model-

based method [106-108]. The basic concept of this method is converting measured data into a 

straight-line plot whose slope and/or intercept has physiological meaning. The parameters in the 

method can be determined for functional imaging by non-iterative linear regression methods on a 

pixel-by-pixel basis. The graphical analysis is the most commonly used model-based method and 

usually uses the Patlak plot to deal with the two tissue compartment model with irreversible or 

nearly irreversible trapping step (k4 is zero or small) [106, 107].  

In the two tissue compartment model, the solution for the total tissue tracer concentration C(t) 

with an arbitrary input function Cp(t) is given by equation (2.79). If k4 is zero and input function 

Cp(t) is constant, the solution would be  

 𝐶(𝑡) = 𝐶𝑝{
𝐾1𝑘2

(𝑘2+𝑘3)2 (1 − exp[−(𝑘2 + 𝑘3)𝑡]) +
𝐾1𝑘3

𝑘2+𝑘3
𝑡} (2.82) 

After an appropriate time, the exponential term of the above equation becomes sufficiently small, 

the ratio of tissue to blood activity becomes: 

 
𝐶(𝑡)

𝐶𝑝
=

𝐾1𝑘2

(𝑘2+𝑘3)2 +
𝐾1𝑘3

𝑘2+𝑘3
𝑡 (2.83) 

where 𝐾 = 𝐾1𝑘3/(𝑘2 + 𝑘3) denotes the net uptake rate of tracer into the irreversibly bound 

compartment 2, and 𝑘3/(𝑘2 + 𝑘3)  is the fraction of the tracer in the tissue the reaches the 

irreversible compartment. 

For the case when the input function Cp(t) is not constant, the ratio of tissue to blood activity is: 

 
𝐶(𝑡)

𝐶𝑝(𝑡)
= 𝑉0 + 𝐾(

∫ 𝐶𝑝(𝑠)𝑑𝑠
𝑡

0

𝐶𝑝(𝑡)
) (2.84) 

where 𝑉0 means the initial volume of distribution. ∫ 𝐶𝑝(𝑠)𝑑𝑠
𝑡

0
/𝐶𝑝(𝑡) is the stretch time and it 

distorts time based on the shape of the input function. By plotting the ratio of tissue to blood 

activity versus stretch time, the parameters K and 𝑉0 are obtained. In order to use the Patlak plot, 

the linearity of the data over the range of time used should be verified. The parameters can also 

be estimated by multiple linear regressions to fit the measured tissue data directly: 

 𝐶(𝑡) = 𝑉0𝐶𝑝(𝑡) + 𝐾 ∫ 𝐶𝑝(𝑠)𝑑𝑠
𝑡

0
  



Computational methods for molecular imaging of tumor metabolism 

41 

 

2.4.3. Parameter estimation 

Given the measurements of tissue activity and the input function and a proposed model 

configuration, one can produce estimates of the underlying rate constants. There are many ways 

to accomplish the estimation of model parameters and the most commonly used method of 

parameter estimation is called least-squares estimation. The goal of this technique is to find 

values for the model rate constants that, when inserted into the model equations, produce the 

“best” fit to the tissue measurements. Quantitatively, the goal is to minimize an optimization 

function, specifically the sum of the squared differences between the measured tissue 

concentration data and the model prediction. 

 min ∑ (𝐶𝑖 − 𝐶(𝑇𝑖))2𝑁
𝑖=1  (2.85)  

where there are N tissue measurements, Ci, i=1,…,N, at times Ti, and C(Ti) is the model 

prediction of tissue activity at each of these times. 

Figure 1.3(b) and (c) present an example of kinetic constant estimation using pharmacokinetic 

model in our microfluidic chip protocol. The Cp is measured and corrected (the modeled medium 

chamber activity). The difference of measured cell chamber activity and modeled medium 

chamber activity is taken as Ci. By fitting the Ci curve with time, the K1, k2, k3, k4 are obtained. 

The constant k3 indicating the FDG phosphorylation rate is estimated for the SkBr3 cells treated 

with and without low glucose supply. The SkBr3 cells incubated in low glucose condition has 

higher k3 by least-square estimation, which involves the phosphorylation rate is up-regulated 

under low glucose situation. 



Computational methods for molecular imaging of tumor metabolism 

42 

 

  



Computational modeling of metabolism mechanism for molecular imaging of solid tumor 

43 

 

3. Computational modeling of metabolism mechanism for 

molecular imaging of solid tumor 

Molecular imaging such as PET detecting [
18

F]FDG, hyperpolarized MRI detecting [
13

C]lactate, 

or MRS assessing pH has been applied for the characterization of tumor phenotypes through 

measurement of the related metabolism of certain substrates. On the other hand, certain proteins 

such as cluster of differentiation 31 (CD31), GLUT1 or MCT1 are usually stained or analyzed in 

pathophysiology for the characterization of tumor phenotypes. However, the interpretation of 

substrate metabolism with regard to pathological understanding is not straightforward and less 

quantitative. Substrate metabolisms are usually regulated by several factors of the sophisticated 

tumor metabolome, such as enzymes of metabolic pathways and transporters. The higher levels 

of certain types of enzymes and transporters are considered to be correlated with tumor 

malignancy [28, 109-111] and consequently influence the tumor metabolism. Quantitative 

investigation of the relationship between enzyme (over)expression and the relevant metabolism 

may assist the development of corresponding diagnostic, therapeutic, and prognostic strategies.   

Glycolysis followed by lactic acid formation (even in the presence of oxygen) is a predominant 

metabolic pathway of glucose in malignant cancer (Warburg effect). The production and 

metabolism of lactate are closely associated with glucose metabolism and involve a series of 

interactions between oxygenation status, enzymes and substrates. Glucose is primarily taken up 

(mediated by GLUT, in particular GLUT1) and metabolized (catalyzed by HK, especially HKII) 

in hypoxic tumor cells for glycolytic energy production and the provision of building blocks for 

anabolic pathways. The pyruvate produced is subsequently converted into lactic acid. The 

accumulation of lactate renders the tumor acidic, especially in hypoxic regions. Many tumor 

studies on lactate have predominantly focused on its presence, accumulation and possible 

triggering of tumor progression and metastasis [112]. However, it has been shown that lactate 

can also be utilized as an energy source [113]. The lactate generated in hypoxic/glycolytic cells 

can be exported, shuttled interstitially, taken up and used by normoxic tumor cells in some 

cancer types such as human cervix cancer or breast cancer MDA-MB-231 cells [43, 114]. 

MCT4 - which has a lower affinity for lactate - has been reported to be responsible for lactate 

export from cells, and MCT1 (which has a higher affinity for lactate) has been identified as the 

transporter for lactate uptake [42, 115]. Therefore, lactate is considered as being an “ambivalent” 

compound since hypoxic/glycolytic and normoxic tumor cells mutually regulate their access to 

energy metabolites [43]. However, detailed quantitative information on glucose metabolism and 

lactate oxidation in the sophisticated tumor microenvironment (TME) remains elusive. 
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This chapter will establish a platform to investigate the quantitative relationship between 

expressions of several transporters, a key enzyme and a transcriptional factor: GLUT, MCT1, 

MCT4, HK, HIF-1, and the metabolisms of glucose and lactate, and pH distribution (including 

FDG uptake). And the co-influence of multiple pathophysiological factors on the tumor 

microenvironment will be estimated. To reach these goals, computational models of glucose 

metabolism and lactate oxidation were established. 
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3.1. Model design  

To investigate the relationship between imaging features (glucose, lactate and pH) and relevant 

pathophysiological factors (microvascular density, GLUT, HK, MCT1 and MCT4 expressions), 

a computational simulation model was set up on an artificial 2D TME [34, 82-86]. The 

simulation model takes into account the pathways of glucose metabolism and lactate oxidation. 

The considered substrates, regulating enzymes and transporters and their interactions are 

illustrated in Figure 3.1. The premature and chaotic tumor microvasculature causes 

heterogeneous distributions of oxygen and glucose [21]. In regions remote from the vessel, 

hypoxic cells have a high rate of glycolysis and take up great amounts of glucose through GLUT, 

producing lactate and increasing (extracellular) acidity. The excessive intracellular lactate 

produced by hypoxic cells is exported by the transporter MCT4, shuttled partly toward normoxic 

cells and then imported via MCT1 [42, 43]. In normoxic cells, lactate will be oxidized together 

with glucose turnover, which is a combination of glycolysis and respiration [80]. To model these 

procedures, the concentrations of substrates, including oxygen, extra- and intracellular glucose, 

extra- and intracellular lactate, carbon dioxide (CO2), hydrogen (H
+
) and sodium cations (Na

+
), 

bicarbonate (HCO3
-
) and chloride (Cl

-
) anions, are considered during the computational 

simulation. The flow chart of the model implementation is presented in Figure 3.3, where the 

analysis of the quantitative relationship between enzymatic, vascular phenotypes and substrate 

distributions as the aim of the study is highlighted by yellow box.  

In addition, since HIF-1 is reported to regulate the expressions of key enzyme and transporters 

involved in the glucose and lactate metabolism, the above model can be driven by HIF-1.  

Therefore a model driven by HIF-1 is constructed to investigate HIF-1 influence on the tumor 

metabolism. As the glucose metabolism in tumors is usually reflected by FDG imaging, the FDG 

accumulation is integrated into the established TME with consideration of FDG competition with 

glucose for enzyme (HK) and transporter (GLUT). As shown in Figure 3.2, after cellular import, 

glucose and FDG are phosphorylated into glucose-6-phosphate (G6P) and FDG-6-phosphate 

(FDG6P), respectively. FDG6P cannot be further metabolized (the 2' hydroxyl group (-OH) in 

normal glucose is needed for further glycolysis, but FDG is missing this 2' hydroxyl) and trapped 

in cells, waiting for positron decay, while G6P may be used for further glycolysis and/or enter 

the mitochondria for TCA cycle and other applications. This FDG uptake (transport and 

phosphorylation) process is modeled with implementation procedure illustrated in Figure 3.4. 
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Figure 3.1. Schematic presentation of the physiological processes considered in the simulation. 

Only the glucose and lactate metabolic pathways and related transporters, and the key enzyme 

HK involved in the model are depicted. 

 

 

Figure 3.2. Schematic presentation of the physiological processes of FDG and glucose uptake by 

tumor cell. They compete for GLUT and HK for transport and metabolism. 
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Figure 3.3. Flow chart of the model implementation. The analysis of quantitative relationship of 

enzymatic (expressions of GLUT, HK, MCT1&4), vascular phenotypes and substrate (glucose, 

lactate
-
 and H

+
) distributions as the study aim is highlighted by yellow box. 

 

Figure 3.4. Flow chart of FDG model implementation. The glucose and FDG uptakes are 

mediated by GLUT and HK, which are regulated by HIF-1.  
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3.1.1. Tumor vasculature 

For the artificial 2D TME in the current simulation model, the microvessels are assumed to be of 

a uniform dimension and to be randomly distributed in the 2D domain [82, 116]. The 2D domain 

of the simulation is tessellated into 35×35 grids with a grid size of 10 µm. Each microvessel 

occupies one grid in the 2D domain. The grids without mirovessels are assumed to be possessed 

by cells [83, 85]. Blood shunting and temporary collapsing/occlusion of tumor microvessels are 

not taken into account.  

The intervascular distance was used to characterize the microvascular distribution in the artificial 

2D simulation. The mean intervascular distance is used as a surrogate parameter of 

microvascular density. The intervascular distances of tumor microvessels were shown to have a 

log-normal distribution as seen in quantitative tumor microvascular corrosion casting [23, 24]. 

We formed a 2D vasculature, with the distribution of the intervascular distances following a 

statistically logarithmic normal distribution and extracted the parameters by fitting the data 

presented by [24]. To restrict the random distribution of 2D microvessels, the intervascular 

distances of the randomly distributed 2D microvessels were further controlled by adopting the 

Kolmogorov-Smirnov test to examine the log-normal distribution. Only if the intervascular 

distances of the randomly distributed microvessels satisfied the log-normal distribution was the 

2D tumor microvasculature considered for the further simulation. 

3.1.2. Oxygenation status 

In this study, the glucose metabolism and lactate oxidation are assumed to be partly driven by the 

oxygenation status [79]. The spatio-temporal distribution of oxygen can be described by a 

reaction-diffusion equation [82, 83, 117]. Convective oxygen transport in the TME is not 

considered and a constant diffusion coefficient is employed for all of the tumor tissue, i.e., 

oxygen can freely diffuse through tissue. Similarly, oxygen can traverse cell membranes freely 

due to low molecular mass and dimension and tumor vessel leakage. The oxygen concentration 

is therefore described by [82]: 

 
𝜕[O2]

𝜕𝑡
= 𝐷O2

∇2[O2] − 𝑃([O2]) (3.1) 

 𝑃([O2]) =
𝑉max, O2

∙[O2]

𝐾m, O2
+[O2]

 (3.2) 
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where [O2] is the local concentration of oxygen. P([O2]) is the oxygen consumption rate 

(Michaelis-Menten term of oxygen), 𝑉max, O2
 represents the maximum oxygen reaction rate, 

𝐾m, O2
 is the oxygen concentration at half maximum consumption rate (i. e., the Michaelis-

Menten constant of oxygen consumption). [O2] (unit: mol/L) can also be converted into oxygen 

tension pO2 (unit: mmHg) by Henry’s law with the transfer constant for oxygen: 769.2 

L·atm/mol [83].  is the diffusivity of oxygen (oxygen diffusion constant). 

3.1.3. Glucose metabolism 

Cellular glucose uptake is facilitated by the transporter GLUT. Subsequently, intracellular 

glucose is metabolized with catalyzation by HK and then transformed into glucose-6-phosphate 

(G6P) before being metabolized. In this model, glucose is divided into three physiological 

compartments: extracellular, intracellular and metabolized glucose. The spatio-temporal 

evolution of their concentrations is described by: 

 
𝜕[Gex]

𝜕𝑡
= 𝐷G∇2[Gex] − 𝑇([Gex] − [Gin])GLUT (3.3) 

  
𝜕[Gin]

𝜕𝑡
= 𝑇([Gex] − [Gin])GLUT − 𝑃([Gin])HK    (3.4) 

 
𝜕[Gme]

𝜕𝑡
= 𝑃([Gin])HK (3.5) 

 𝑇([Gex] − [Gin])GLUT =
𝑉max, GLUT𝐾m, GLUT([Gex]−[Gin])

(𝐾m, GLUT+[Gex])(𝐾m, GLUT+[Gin])
            (3.6) 

 𝑃([Gin])HK =
𝑉max, HK[Gin]

𝐾m, HK+[Gin]
  (3.7) 

where [Gex], [Gin], and [Gme] are the concentrations of extracellular, intracellular and 

metabolized glucose, respectively. T([Gex]−[Gin])GLUT is the transmembrane transport term of 

glucose, which is determined by the concentration difference and kinetic parameters of GLUT. 

Vmax,GLUT and Km,GLUT are the maximum transport rate and Michaelis-Menten constant of GLUT 

for glucose transport. In this study, the kinetics of GLUT are assumed to have identical 

parameters at both sides of the cell membranes [89]. This is based on the consideration that the 

transmembrane transport of glucose uses facilitated diffusion (i.e., carrier mediated transport) in 

most cases rather than active (directly ATP-dependent) transport [47, 89, 118]. P([Gin])HK 

represents the metabolic rate of intracellular glucose; Vmax,HK and Km,HK are the maximum 

reaction rate and the Michaelis-Menten constant of HK for glucose phosphorylation. 

2OD
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3.1.4. Lactate oxidation 

In the current model, the presence of lactate is distinguished as being extra- and intracellular 

lactate. The excessive intracellular lactate produced as a result of the high rate of glycolysis in 

hypoxic cells is exported by MCT4 [119], forming a positive gradient of extracellular lactate 

between hypoxic and normoxic regions and promoting extracellular lactate shuttling towards 

normoxic regions. In normoxic regions, the accumulated extracellular lactate is imported mainly 

by MCT1 and oxidized for energy production [43]. The movement of ions in the TME can be 

modeled with a reaction-diffusion scheme [79]. The diffusion of charged species is determined 

by both the concentration gradient and the electric potentials generated by interactive ions within 

the model. Based on the reaction-diffusion equations of ions, the evolvement of the 

concentration of extracellular lactate [Lex] and intracellular lactate [Lin] can be described as: 

 
𝜕[Lex]

𝜕𝑡
= 𝐷L∇2[Lex] − 𝑧L∇[Lex] ∙

𝐶

𝐵
−

𝑧L[Lex](𝐴𝐵−𝐶∙𝐷⃑⃑⃑)

𝐵2 − 𝑇([Lex] − [Lin]) (3.8) 

  
𝜕[Lin]

𝜕𝑡
= 𝑇([Lex] − [Lin]) + 𝑃([Lin]) (3.9) 

where A, B, ,  - in relation to the electric potential effect - depend on the charges and 

concentrations of the interacting ions (H
+
, HCO3

−
, Na

+
 and Cl

−
) involved in the model, whereby 

their specific expressions are listed in the Section 2.1.2. T([Lex]−[Lin])MCT is the transmembrane 

transport term of lactate by MTCs. MCT1 expression and hypoxia have been reported to be 

mutually exclusive in SiHa human cervix squamous carcinoma cells and WiDr human colorectal 

adenocarcinoma cells [43], and MCT4 is strongly expressed in glycolytic tissues and is 

upregulated by hypoxia [30]. Thus, it is possible to assume that MCT1 is prevalent in normoxic 

regions and is responsible for lactate import whereas MCT4 is expressed in hypoxic regions and 

is responsible for the export of excessive intracellular lactate. The overall transmembrane 

transport term of lactate is described by the following function: 

𝑇([𝐿ex] − [𝐿in])MCT = {
𝑇([𝐿ex] − [𝐿in])MCT1,       in normoxic regions (𝑝O2>2.5 mmHg)

𝑇([𝐿ex] − [𝐿in])MCT4,     in hypoxic regions (𝑝O2≤ 2.5 mmHg)
(3.10) 

 𝑇([Lex] − [Lin])MCT1 =
𝑉max, MCT1𝐾m, MCT1([Lex]−[Lin])

(𝐾m, MCT1+[Lex])(𝐾m, MCT1+[Lin])
 (3.11) 

 𝑇([Lex] − [Lin])MCT4 =
𝑉max, MCT4𝐾m, MCT4([Lex]−[Lin])

(𝐾m, MCT4+[Lex])(𝐾m, MCT4+[Lin])
 (3.12)  

where T([Lex]−[Lin])MCT is the transmembrane transport term for lactate, equal to MCT1-

facilitated transport T([Lex]−[Lin])MCT1 in normoxic regions or MCT4-facilitated transport 

C


D

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T([Lex]−[Lin])MCT4 in hypoxic regions. Vmax, MCT1 and Vmax, MCT4 are the maximum transmembrane 

transport rates of MCT1 and MCT4. Km, MCT1 and Km, MCT4 represent the Michaelis-Menten 

coefficients of the transmembrane transport of lactate by MCT1 and MCT4, respectively [119-

121].  

In tumor tissue, the lactate distribution is the result of lactate production and lactate consumption 

and is determined by the availability of glucose and oxygen [42, 43]. Thus, the metabolic rate of 

lactate P([Lin]) is balanced by the consumption rates of oxygen P([O2]) and glucose P([Gin])HK 

and is estimated by the following equation [79]:  

 𝑃([Lin]) = 2𝑃([Gin])HK − 𝑃([O2])/3 (3.13) 

This relation is derived by considering the overall effect of glucose metabolism and lactate 

oxidation. The production and oxidation of lactate follow the reactions: 

C6H12O6→2C3H5O3
-
+2H+ 

2C3H5O3
-
+2H++6O2→6CO2+6H2O 

While the oxidation of glucose can be written as follows:  

C6H12O6+6O2→6CO2+6H2O 

If the lactate production and oxidation were to take place entirely within the same cell, the 

overall metabolic rate of glucose vs. the overall metabolic rate of oxygen during lactate 

production and oxidation would fulfill the relative relation 1:6, which is equivalent to the relative 

relation during glucose oxidation. Thus, without the shuttling of lactate (export and import 

between the cells), the metabolic rate of glucose and the consumption rate of oxygen would be 

kept at a ratio of 1:6 (other pathways which consume oxygen are not considered here). The 

excessive production of lactate caused by the higher (“extra”) glucose uptake in conjunction with 

the high-rate glycolysis, depends on the imbalance of the availability of glucose and oxygen. In 

hypoxic regions, more glucose is available than oxygen [21] and the ratio of the glucose 

metabolic rate vs. the oxygen consumption rate is larger than 1:6. The additional turnover of 

glucose leads to the production of lactate [80]. In normoxic regions, the glucose metabolic rate 

vs. the oxygen consumption rate is less than 1:6. The additional consumption of oxygen is due to 

the oxidation of lactate [43]. In the current simulation, a positive metabolic rate of lactate 

represents the production of lactate and a negative metabolic rate of lactate refers to its oxidation.  
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3.1.5. Distribution of extracellular pH 

To model the distribution of extracellular pH, we only considered two pathways of the proton 

(H
+
) metabolism in the simulation model. The first is the production and consumption of protons 

during lactate metabolism. The second is the interconversion of carbon dioxide (CO2) and 

bicarbonate, which regulates tumor acidity [80]. The overall reversible reaction of CO2 hydration 

can be written as: 

                                                        CO2 + H2O  H
+
 + HCO3

-
    

The direction of this reaction is -inter alia- greatly dependent on the pH of the medium [122, 

123]. The rate constant for the hydration reaction is kf (kf = 0.146 s
−1

) and the rate constant for 

the dehydration reaction is kr (kr = 17.3 × 10
−4

 (M·s)
−1

) [124]. 

The extracellular distribution of the protons [H
+
] can be described using the reaction-diffusion 

equation of an ion [79]: 

 
𝜕[H+]

𝜕𝑡
= 𝐷H+∇2[H+] − 𝑧H+∇[H+] ∙

𝐶

𝐵
−

𝑧
H+[H+](𝐴𝐵−𝐶∙𝐷⃑⃑⃑)

𝐵2 − 𝑃([H+]) (3.14) 

 𝑃([H+]) = 𝑃1([H+]) + 𝑃2([H+]) (3.15) 

 𝑃1([H+]) = 2𝑃([Gin]) − 𝑃([O2])/3 (3.16) 

 𝑃2([H+]) = 𝑃([O2]) + 𝑘𝑓[CO2] − 𝑘𝑟[H+] [HCO3
-
]          (3.17) 

where [H
+
], [CO2] and [HCO3

-
] represent the extracellular concentrations of the protons, carbon 

dioxide and bicarbonate ions, respectively. DH and zH are the diffusion constant and the charge of 

protons. P([H
+
]) is the production rate of protons which includes the rate accompanied by lactate 

metabolism P1([H
+
]) and the rate for the hydration of carbon dioxide P2([H

+
]). 

Based on oxidation, glycolysis, lactate oxidation and buffering system, the production or 

consumption rates of the bicarbonate ion P([HCO3
-
]), the chloride ion P([Cl

-
]) and carbon 

dioxide P([CO2]) are given as follows [79, 80]: 

 P ([HCO3
-
]) = 𝑃([O2]) + 𝑘𝑓[CO2] − 𝑘𝑟[H+] [HCO3

-
] (3.18)  

 P([CO2]) = 𝑘𝑟[H+] [HCO3
-
] − 𝑘𝑓[CO2] (3.19)  
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 P ([Cl
-]) = 0 (3.20) 

where [Cl
-
] is the extracellular concentration of chloride ions. 

The Na
+ 

concentration: [Na+] is obtained by the electro-neutrality principle: 

   ∑ 𝑧ion[ion]ion = 0 (3.21) 

where the summation covers all the ions assumed in the TME. The product of [Na
+
] and Na

+
 

charge is represented by the minus summation of the products of the concentrations and charges 

of other ions (lactate, H
+
, HCO3

-
, Cl

-
).  

The no-flux boundary condition is applied on the edge of the region of the simulated domain.    

3.1.6. Regulation of HIF-1 on tumor metabolism 

Tumor cells shift a large part of their metabolisms toward glycolysis, some of which are 

regulated by HIF-1. HIF-1 acts as a critical intermediator between tissue oxygenation and 

stimulation factors (e.g., metabolic enzymes and transporters, signal proteins) [30, 125, 126]. 

The negative correlation with oxygen and HIF-1 concentration has been reported [127]. In the 

downstream of oxygenation (e.g., glucose and lactate metabolism) HIF-1 regulates the 

expression of transport and catalyzing proteins in a positive (e.g., GLUT1, HKII and MCT4) or 

negative way. To explore the effect of HIF-1 mediation, the preceding model is developed by 

introducing the HIF-1. The expressions of investigated enzyme (HKII) and transporters (GLUT1, 

MCT1 and MCT4) depend on HIF-1 level. Although the influence of HIF-1 on MCT1 has not 

been persuasive yet, the MCT1 expression is assumed HIF-dependent here. As to the upstream 

signaling pathway, HIF-1 level is assumed only dependent on local oxygen content. It has been 

reported that the HIF-1 levels change exponentially over a physiologically relevant range of 

oxygen tension in vitro [127]. HIF-1 protein has a half-maximal response between 1.5% and 2% 

oxygen and a maximal response at 0.5% oxygen. Here an oxygen-HIF curve is fitted to measured 

data to obtain the normalized HIF-1 level [HIF]n as the function of oxygen tension f([O]) as 

shown in Figure 3.5. For oxygen tension below 3.6 mmHg and above 42 mmHg, the HIF-1 

responses have not presented in the literature, so the HIF-1 is assumed to be at highest 

expression (normalized value=1) and lowest expression (normalized value = 0.1), respectively.  
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Figure 3.5. The normalized HIF-1 level (∈ [0, 1]) as the function of local oxygen tension. 

Except for mapping method using experimental data, the HIF-1 distribution can also be given by 

an analytic model. Production of cellular HIF-1 is dependent on both the intrinsic capability to 

synthesis, which is assumed constant, and the degradation due to oxygen existence [128] [117]: 

 
𝑑[HIF]

𝑑𝑡
= 𝑟H − 𝑉max,  HIF(

[O2]

[O2]+𝐾m, HIF
)[HIF] (3.22)  

where [HIF] is the cellular HIF-1 concentration. 𝑟H is the HIF synthesizing rate. 𝑉max,  HIF and 

𝐾m, HIF indicate the maximum HIF-1 degradation rate and the HIF concentration at which the 

degradation rate is half-maximal. The equilibrium HIF-1 distribution can be acquired when 

𝑑[HIF]

𝑑𝑡
= 0 . In the model implementation, the spatial-varying [HIF] is normalized by the 

maximum value in the field of interest. 

In order to include the HIF-1 regulation in the current model, the glucose transport and metabolic 

terms are adjusted by multiplying a HIF-1 regulation term:  

 𝑇([Gex] − [Gin])GLUT =
𝑉max,GLUT

0 𝐾m,GLUT([Gex]−[Gin])

(𝐾m,GLUT+[Gex])(𝐾m,GLUT+[Gin])
∙ (1 + 𝑘GLUT[HIF]n) (3.23) 

  𝑃([Gin])HK =
𝑉max,HK

0 [Gin]

𝐾m,HK+[Gin]
∙ (1 + 𝑘HK[HIF]n) (3.24) 
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where kGLUT is the overexpression factor of GLUT, which indicates the maximum increased folds 

of transport rate promoted by HIF-1. 𝑉max,GLUT
0  and 𝑉max,HK

0  are the maximum GLUT transport 

and HK catalyzing rates in normal tissues. And kHK is the overexpression factor of HK, 

representing the maximum enhancement of phosphorylation rate caused by HIF-1 upregulation. 

𝑇([Gex] − [Gin])GLUT and 𝑃([Gin])HK are adjusted by (1 + 𝑘GLUT[HIF]n) and (1 + 𝑘HK[HIF]n) 

respectively, which are linearly correlated with HIF-1 level. Therefore, the expressions of 

transporters and enzymes are deemed as non-uniform over the field of simulation. HIF-1 

expression can maximumly enhance the glucose transport and metabolic rates by kGLUT and kHK 

folds, respectively.  

MCT4 is more expressed in hypoxic region and resposible for lactate export, and MCT1 is 

exclusive with MCT4 in expression and facilitates lactate import. The transport term of lactate 

T([Lex]−[Lin])MCT is assumed to be a superposition of MCT1 transport 𝑇([Lex] − [Lin])MCT1  and 

MCT4 transport 𝑇([Lex] − [Lin])MCT4, considering the adjustment of HIF-1: 

 𝑇([Lex] − [Lin])MCT = 𝑇([Lex] − [Lin])MCT1 + 𝑇([Lex] − [Lin])MCT4 (3.25) 

  𝑇([Lex] − [Lin])MCT1 =
𝑉max, MCT1

0 𝐾m, MCT1([Lex]−[Lin])

(𝐾m, MCT1+[Lex])(𝐾m, MCT1+[Lin])
∙ {1 + 𝑘MCT1(1 − [HIF]n)} (3.26) 

  𝑇([Lex] − [Lin])MCT4 =
𝑉max, MCT4

0 𝐾m, MCT4([Lex]−[Lin])

(𝐾m, MCT4+[Lex])(𝐾m, MCT4+[Lin])
∙ (1 + 𝑘MCT4[HIF]n) (3.27) 

where kMCT1 and kMCT4 are the overexpression factors for the transport by MCT1 and MCT4, 

respectively. 𝑉max, MCT1
0  and 𝑉max, MCT4

0  are the maximum MCT1 and MCT4 transport rate usually 

appeared in normal tissues. 

3.1.7. FDG accumulation  

[
18

F]FDG, the most commonly used tracer for clinic and pre-clinic applications of positron 

emission tomography (PET), is essentially a kind of glucose analog and as a result, its transport 

and intracellular metabolism procedures are similar with those of glucose. [
18

F]FDG and glucose 

are both absorbed by tumor cells with the help of GLUTs, among which GLUT1 has been 

documented elevating its expression in most cancers [129]. One of the factors responsible for the 

upregulation of GLUT1 in tumor cells is HIF-1, and a more than 2-fold increase of FDG uptake 

due to GLUT upregulation was observed [130]. After being transported inside cells, FDG and 

glucose are subsequently metabolized in a reaction mediated by enzyme HK and get 

phosphorylated, producing FDG-6-phosphate (FDG6P) and glucose-6-phosphate (G6P) [130]. 
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G6P serves as the intermediate product of tumor respiration and glycolysis, while FDG6P 

undergoes very slow degradation compared in the time frame of PET imaging. HK I and II 

belonging to HK family are especially involved in tumor metabolisms and they have different 

kinetic properties. HK II are quite sensitive to oxygenations and its expression will be promoted 

almost 3-fold under hypoxic conditions [110], also resulting from the influence of HIF-1.  

To simulate the uptake procedure, FDG is divided into extra- and intra-cellular FDG and trapped 

(or phosphorylated) FDG (FDG6P), whose concentrations are [FDGex], [FDGin] and [FDGtr], 

respectively. The FDG competition with glucose for GLUT and HK is integrated (glucose is 

almost not influenced by the addition of FDG since its concentration is normally several orders 

higher than FDG concentration). The evolutions of extra- and intra-cellular FDG and trapped 

FDG satisfy [89, 117]: 

 
𝜕[FDGex]

𝜕𝑡
= 𝐷FDG∇2[FDGex] − 𝑇([FDGex] − [FDGin])GLUT (3.28) 

  
𝜕[FDGin]

𝜕𝑡
= 𝑇([FDGex] − [FDGin])GLUT − 𝑃([FDGin])HK    (3.29) 

 
𝜕[FDGtr]

𝜕𝑡
= 𝑃([FDGin])HK (3.30) 

 𝑇([FDGex] − [FDGin])GLUT = (𝑇𝑐𝑖𝑠 − 𝑇𝑡𝑟𝑎𝑛𝑠)(1 + 𝑘GLUT
F [HIF]n) (3.31) 

  𝑇𝑐𝑖𝑠 =
𝐾m,GLUT𝑉max,GLUT

F [FDGex]

𝐾m,GLUT[FDGex]+𝐾m,GLUT
F [Gex]+𝐾m,GLUT𝐾m,GLUT

F  (3.32) 

  𝑇𝑡𝑟𝑎𝑛𝑠 =
𝐾m,GLUT𝑉max,GLUT

F [FDGin]

𝐾m,GLUT[FDGin]+𝐾m,GLUT
F [Gin]+𝐾m,GLUT𝐾m,GLUT

F   (3.33) 

 𝑃([FDGin])HK =
𝐾m, HK𝑉max, HK

F [FDGin]

𝐾m, HK[FDGin]+𝐾m, HK
F [Gin]+𝐾m, HK𝐾m, HK

F (1 + 𝑘HK
F [HIF]n) (3.34) 

where 𝑇([FDGex] − [FDGin])GLUT  and 𝑃([FDGin])HK  are the transport and metabolic rate of 

FDG with consideration of its competition with glucose. 𝑇([FDGex] − [FDGin]) is determined 

by the difference between 𝑇𝑐𝑖𝑠 (import rate) and 𝑇𝑡𝑟𝑎𝑛𝑠 (export rate). 𝑉max,GLUT
F  and 𝐾m,GLUT

F  are 

the maximum transport rate and the Michaelis-Menten constant, respectively. The term implying 

the HIF-1 upregulation (1 + 𝑘GLUT
F [HIF]n ) is applied on the FDG transport term with 

overexpression factor 𝑘GLUT
F . 𝑉max,HK

F  and 𝐾m,GLUT
F  are maximum phosphorylation rate and 

Michaelis-Menten constant of FDG, respectively.  𝑘HK
F  is the HK overexpression factor for FDG 

phosphrylation. 
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3.2. Modeling methods 

3.2.1. Simulation settings and model parameters 

All simulations are programmed in C++ (Microsoft Visual Studio 2008) and the reaction-

diffusion equations were solved using finite-difference methods (FDM). The region of interest 

was a 350 μm × 350 μm micro-tissue-phantom, which is tessellated into 35×35 grids with a grid 

size of 10 μm. The matrix size and grid size of the tissue phantom are selected considering the 

compromise between the computation time and the capability to generate stable results. The 

temporal iteration step size was set to 1 ms. The partial differential equations were iterated until 

the system converged to equilibrium. Approximately, 5×10
6 

(low heterogeneous phantoms with 

60 µm mean intervascular distance) to 9×10
6
 (high heterogeneous phantoms with 180 µm mean 

intervascular distance) iterations are required for result convergence. The no-flux boundary 

condition is applied on the edge of the region of the simulated domain. 

The random distribution of tumor microvessels on a tissue phantom is the key reason for TME 

heterogeneity. The over-heterogeneous vasculature, whose standard deviation (SD) of 

intervascular distances beyond ±5% of the mean intervascular distance, is discarded. The 5% 

threshold is selected in consistency with the statistical experiment data [24]. The influences of 

heterogeneity on simulation results are largely reduced by averaging 20 repeated simulations 

with same parameters. With considering the heterogeneity control on tumor vasculature, the 20 

repetition is tested to be sufficient to obtain constant result errors over a range of intervascular 

distances.  

In the simulation of FDG uptake by tumors, the modeling results were compared with the 

dynamic PET measurements of 1 h of 2 nude mice with lymphoma xenograft tumors. The 

plasma input functions were extracted from left ventricle with partial volume correction and 

spillover correction using addition blood samples.  

Substance concentrations and the pH value in the blood of tumor microvessels assumed in the 

simulation are listed in Table 3.1. The oxygen tension pO2 is 75-100 mmHg at the arterial end 

[21, 131] and 10-30 mmHg at the venous end of microvessels [21, 132]. The plasma pO2 used in 

the simulation was chosen to be 40 mmHg, a value halfway between the arterial and the venous 

end (more prone to the venous end). The substrate diffusivities (diffusion constants) in the tumor 

interstitial space are given in Table 3.1. 

 



Computational modeling of metabolism mechanism for molecular imaging of solid tumor 

58 

 

Table 3.1. Parameters used in the simulation 

Symbol Parameter Value References 

Substance levels in the blood plasma of tumor vessels 

 plasma O2 concentration 
6.8×10

-2
 mM* (40 

mmHg) 
[82] 

 plasma glucose concentration 5.5 mM [21] 

 plasma lactate concentration 15 mM [133] 

 plasma CO2 concentration 2 mM (45 mmHg) [134] 

 plasma HCO3
-
 concentration 25 mM [134] 

 plasma Cl
-
 concentration 105 mM [133] 

 plasma Na
+
 concentration 140 mM [133] 

pH plasma pH 7.4 [80] 

Substance diffusivities (diffusion constants) in the tumor interstitium 

𝐷
O2

 O2 diffusivity 1.75×10
-5

 cm
2
/s [80, 82] 

DG glucose diffusivity 4.5×10
-7

 cm
2
/s [135] 

DL lactate diffusivity 1.9×10
-6

 cm
2
/s [80] 

𝐷
CO2

 CO2 diffusivity 8.9×10
-7

 cm
2
/s [80] 

𝐷
H

+  H
+
 diffusivity 1.9×10

-6
 cm

2
/s [136] 

𝐷
HCO3

-  HCO3
-
 diffusivity 2.2×10

-7
 cm

2
/s [136] 

𝐷
Cl

- Cl
-
 diffusivity 2.26×10

-7
 cm

2
/s [80] 

𝐷
Na

+ Na
+
 diffusivity 3.14×10

-7
 cm

2
/s [80] 

Kinetic parameters for substrate metabolism and transport 

𝐾m,O2
 

Michaelis-Menten constant for O2 

consumption 
2.5 mmHg [83] 

𝑉max,O2
 Max. consumption rate of O2 15 mmHg/s [83] 

Km, GLUT 
Michaelis-Menten constant of glucose 

transport via GLUT 
6.5 mM [137-139] 

Km, HK 
Michaelis-Menten constant for glycolysis 

catalyzed by HK 
0.19 mM [130, 140] 

𝐾m, GLUT
F  

Michaelis-Menten constant of FDG transport 

via GLUT 
9.8 mM [130] 

𝐾m, HK
F  

Michaelis-Menten constant for FDG 

phosphorylation catalyzed by HK 
0.29 mM [130] 

Km, MCT1 
Michaelis-Menten constant for lactate 

transport via MCT1 
6.8 mM 

[30, 43, 

141] 

Km, MCT4 
Michaelis-Menten constant for lactate 

transport via MCT4 
22 mM [42, 43] 

𝑉max, GLUT 
Max. glucose transport rate by GLUT (on 

average) 
1.7 µM/s [137-139] 

𝑉max, HK Max. glucose glycolytic rate by HK (on 7.9 µM/s [138, 142] 

2OC

GC

LC

2COC

-
3HCO

C

-Cl
C

Na
C
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average) 

𝑉max,GLUT

F

 

Max. FDG transport rate by GLUT (on 

average) 
1.7 µM/s [137-139] 

𝑉max,HK

F

 

Max. FDG phosphorylation rate by HK (on 

average) 
7.9 µM/s [138, 142] 

𝑉max, MCT1 
Max. lactate import rate by MCT1 (on 

average) 
0.36 mM/s 

[30, 43, 

141] 

𝑉max, MCT4 
Max. lactate export rate by MCT4 (on 

average) 
0.20 mM/s [121, 143] 

Parameters for HIF-1 synthesis and degradation 

𝑟H HIF-1 synthesis rate 1.2×10
-4

 s
-1

 [117] 

Vmax, HIF Max. HIF-1 degradation rate 2.3×10
-3

 s
-1

 [117] 

Km, HIF 
Michaelis-Menten constant for FDG 

degradation 
2.5 mmHg [83, 117] 

* M: molar (unit), 1 M =1 mol/L. 

 

The kinetic parameters for transporters and enzymes involved in the model are listed in Table 1.4. 

They are assumed as being uniform within the tissue phantom. For glucose transport facilitated 

by GLUT1, Km, GLUT has been reported to be 2.6-9.3 mM for 3 different tumor cell lines: T47D, 

HeLa and MCF7 [137-139, 144] and we have chosen a mean Km, GLUT of 6.5 mM in the 

simulation. Km, HK of glucose phosphorylation catalyzed by HKII has been reported as lying 

between 0.11 and 0.33 mM for T47D, A431 and human glioma cells [130, 144], so that we have 

chosen the average value of 0.19 mM as Km, HK in the simulation.   

MCT1 has a higher affinity for lactate and is strongly expressed in the plasma membrane of 

oxidative muscle fibers. Its Km, MCT1 =3.5-10 mM was found for the oocyte and mouse Ehrlich-

Lettre tumor cells [42, 43, 141]. The Km, MCT1 in this simulation is taken as being 6.8 mM. MCT4 

has a lower affinity for lactate and exists in highly glycolytic cells, such as white muscle cells. It 

has been reported that Km, MCT4 varies between 17 and 34 mM for heart and muscle fibers [42, 43, 

115]. In the current simulation, the Km, MCT4 value is chosen as being 22 mM.  

The maximum transport rate of glucose via GLUT, Vmax, GLUT is considered to be based on the 

measurements of the cell lines T47D, HeLa and MCF7 [137-139, 144]. A range of 0.3 to 3.9 

µM/s with an average of 1.7 µM/s has been reported. The Vmax of the phosphorylation (catalyzed 

by HK) rate has been reported to lie within the range of 0.58 to 11 µM/s (mean 7.9 µM/s) for 

hepatocarcinoma AS-30D and HeLa cells [138, 142].  

The maximum transport rate of lactate by MCT1 Vmax, MCT1 was around 0.36 mM/s for mouse 

Ehrlich-Lettre tumor cells [120, 145]. The maximum transport rate of lactate by MCT4 Vmax, MCT4 
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was reported as 0.11-0.32 mM/s (mean: 0.2 mM/s) for the bovine kidney cell line NBL1 and 

COS cells [121, 143]. 

3.2.2. Influence of different pathophysiological conditions on metabolism  

To investigate the influences of the expressions of GLUT, HK, MCT1 and MCT4 on the 

distribution of glucose, lactate and extracellular pH, a series of different Vmax values were tested. 

This was based on the consideration that Vmax is linearly related to the concentration of 

enzymes/transporters [89]. In this study, we extended the adaptive range of Vmax to half of the 

minimal and double the maximum of the range, as listed in the literature considering the possible 

existing biological/metabolic variability of the tumors. The test ranges of Vmax for GLUT, HK, 

MCT1 and MCT4 are listed in Table 3.2. To the best of our knowledge, the range of Vmax for 

MCT1 is scarcely available in the literature. In the current study, we have assumed a similar 

range compared to that of MCT4. Within the adaptive range, we assumed that Vmax had an 

interval of 0.25 µM/s for GLUT and HK and an interval of 0.025 mM/s for MCT1 and MCT4.  

The influence of microvessel density on the distribution of glucose, lactate and extracellular pH 

were explored by adjusting the mean intervascular distance of tumor microvasculature. It was 

adapted from 60 µm (corresponds to high microvessel density and may exist in tumor normoxic 

regions) to 180 µm (indicates low microvessel density and can be found in hypoxic tumor 

regions) [24]. 

Table 3.2. Adaptive parameters of Vmax of enzymes and transporters assumed in the model 

Adaptive Parameter Meaning Value scale References 

 Max. glucose transport rate for GLUT 0.15-7.8 µM/s [137-139, 144] 

 Max. glucose glycolysis rate for HK 0.3-22 µM/s [138, 142] 

 Max. lactate import rate for MCT1 0.05-0.64 mM/s [121, 143] 

 Max. lactate export rate for MCT4 0.05-0.64 mM/s [121, 143] 

 

In the adjusted model driven by HIF-1, the overexpression factors are defined for GLUT, HK, 

MCT1 and MCT4 and they are adapted from 1 to 10 to analyze the variations of substrate 

concentrations. In most cases, the mRNA and protein expressions of GLUT, HK and MCT4 are 

upregulated <10 folds with the mediation of HIF-1 in tumors (or in hypoxic condition) as 

reported [125, 146]. Although the MCT1 upregulation driven by HIF-1 has not been proven, 

MCT1 is overexpressed in hypoxia. It is assumed that MCT1 overexpression is generated by 

GLUT max,V

HK max,V

MCT1 max,V

MCT4 max,V
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HIF-1 and the influence of MCT1 overexpression on TME is also studied here. Therefore, the 

protein expressions (characterizing the transport and catalyzing rates) are determined by the Vmax 

in normal tissues and the overexpression factors. Considering the range of Vmax for each protein 

(Table 3.2), the 𝑉max
0  are chosen: 2 μM/s, 2 μM/s, 0.2 mM/s and 0.2 mM/s for GLUT, HK, MCT1 

and MCT4, respectively.  

The Pearson correlation coefficient is calculated for the substrate concentration and the Vmax of 

the enzyme/transporter in order to investigate the dependence of substrate concentrations on 

enzyme/transporter expressions.  

For the quantification of the responses of glucose, lactate and pH to the different expressions of 

GLUT, HK, MCT1 and MCT4, we defined the response sensitivity (S) of a substrate as its 

concentration change ΔC (including the pH change ΔCpH) in response to the adaption ΔVmax of 

Vmax of a certain enzyme/transporter. 

𝑆 =
∆𝐶

∆𝑉𝑚𝑎𝑥
                                                              (3.35) 

S has the dimension of [s] (ΔC dimension: [M], ΔVmax dimension: [M/s]) for glucose and lactate, 

and the dimension of [s/M] (ΔCpH dimension: 1) for pH.  

The response sensitivity to the mean intervascular distance Sv was also evaluated, which was 

defined as the substrate concentration variation ΔC (including the pH alteration) caused by 

changes in the intervascular distance ΔDv: 

 𝑆v =
∆𝐶

∆𝐷v
 (3.36) 

Sv has the dimension of [M/m] (ΔDv dimension: [m]) for glucose and lactate, and the dimension 

of 1/[m] for pH. 

In order to quantify the influence of HIF-1 on tumor glucose metabolism, the sensitivities of 

glucose and FDG concentration/activity in responses to the unit change of overexpression factors 

ΔOF are proposed: 

 𝑆OF =
∆𝐶

∆𝑂𝐹
 (3.37) 

 𝑆OF has the same unit with substrate concentration or activity. 
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4. Computational modeling of positron absorption in silicon 

detector for high resolution positron imaging 

Positron imaging indicates the direct exposure of the silicon detector to positrons. It may suffer 

from resolution problems caused by multiple scattering of positrons in the silicon and its 

application in imaging tumor cellular metabolism is therefore constrained. The (spatial) 

resolution problem cannot be overcome satisfactorily by either hardware (due to limited time 

resolution) or principle-based modeling (exploiting measured information). Therefore, a 

supervised learning model and method are proposed with the attempt to improve the spatial 

resolution of positron imaging. As the Timepix silicon detector is used for the imaging and is 

capable of recording deposited energies resulting from positron multiple scattering in the 

detector, the energy information is integrated in learning the model to classify the primary 

incident position from multiple interaction positions for each positron.  
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4.1. Principles of positron imaging using Timepix detector 

Positron imaging signifies capturing positrons directly before their annihilations and it is of 

increasing interest in many applications including intraoperative navigation, microfluidic 

radioassays, digital autoradiography and radioluminenscence microscopy [18-20, 64, 65]. Some 

technologies have been developed for real-time imaging of positron distributions, such as 

charged-coupled detector (CCD) with scintillator (and microscope) [19, 64, 65], position 

sensitive avalanche photodiode (PSAPD) [18], and complementary metaloxide semiconductor 

(CMOS) [20]. 

The high resolution imaging is realized by positron camera in our study, which encompasses the 

Timepix chip as main component (as shown in Figure 4.2(a)). This positron camera is featured 

by its high sensitivity and spatial resolution, enabling the imaging of dedicated biological 

structures in in vivo and in vitro applications.  

4.1.1. Timepix detector 

The hybrid silicon pixel device Timepix [147] has evolved from Medipix2 [148]. It shares many 

of the physical dimensions of the Medipix2 chip but has a different functionality at the level of 

the single pixel. Similarly with Medipix2, the Timepix device consists of a pixelated 

semiconductor detector chip bump-bonded to a CMOS readout chip. The detector chip contains a 

300 µm sensitive layer whose backside is coated with a 5 µm passivation layer. The front-side 

sensor electrode is divided into a matrix of 256×256 square pixels with a pitch of 55 μm. Each 

sensor pixel is connected to its preamplifier, discriminator and digital counter integrated on the 

readout chip. The chip is designed to accept either positive or negative charge input in order not 

to restrict the choice of the sensor material (Si, GaAs, CdZnTe, etc.). The exposure times can be 

chosen arbitrarily. The counts are accumulated in a 13-bit counter per pixel. The pixel overflows 

at 11810 counts. In single particle counting mode each pixel can handle count rates of about 100 

kHz of randomly arriving particles. Read-out is performed after exposure to avoid dead time. 

Different from Medipix chip operated only in single photon counting mode, each pixel of 

Timepix chip can work in one of three modes: Medipix mode (counter counts incoming 

particles), Timepix mode (counter works as a timer and measures the time when the particle is 

detected) and Time over threshold (TOT) mode (counter is used as a Wilkinson type ADC 

allowing direct energy measurement in each pixel). In the TOT mode, Timepix measures the 

radiation-induced charge collected in the pixel via measurement of the width of the preamplifier 
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signal, which is proportional to the deposited energy [77]. The Timepix silicon detector has been 

applied for detection of 
14

C electrons [63, 77], X-ray [149] and ultra-cold neutrons [150], etc.  

In this study, our positron camera tests the imaging of 
18

F positron signal (half-life 109.77 min, 

continuous beta energy up to 633 keV) of a typical PET tracer [
18

F]FDG. The measurement 

results are compared with theoretical predictions using Monte-Carlo simulations with Geant4.  

4.1.2. Monte-Carlo simulation of positron passing through Timepix detector 

Monte-Carlo simulation utilizing Geant4 [151] was carried out for theoretical analysis of 

experimental results. It models the physical processes of a particle passing through the silicon 

detector. Its kernel encompasses tracking; geometry description and navigation; material 

specification; abstract interfaces to physics processes; management of events; run configuration; 

stacking for track prioritization; tools for handling the detector response; and interfaces to 

external frameworks, graphics and user interface systems. Geant4 physics processes cover 

diverse interactions over an extended energy range, from optical photons and thermal neutrons to 

the high energy reactions at the Large Hadron Collider (LHC) and in cosmic ray experiments. 

Particles tracked include leptons, photons, hadrons and ions. Various implementations of physics 

processes are offered, providing complementary or alternative modeling approaches. Moreover 

Geant4 provides interfaces to enable its users to interact with their application, and save their 

results. Visualization drivers and interfaces, graphical user interfaces and a flexible framework 

for persistency are included in the toolkit.  

In the simulation of 
18

F positron tracking in Timepix detector, simulation parameters and 

physical processes are set according to the experimental settings. The position and deposited 

energy of each interaction/hit in the sensitive layer after incidence of a positron are recorded. The 

interactions are then assigned to corresponding pixels and formed into a cluster. Simulated data 

are post-processed by considering the charge diffusion effect [152, 153] and energy threshold on 

the pixels. Timepix has one global discrimination threshold (THL) for all pixels, however its 

threshold energy will vary among all pixels. For every pixel the threshold energy can be shifted 

up or down within a small interval around the threshold energy calibrated from the THL. In the 

simulation, each pixel of the detector is assigned with a nonuniform energy threshold following 

normal distribution (mean=4 keV, variance=4 keV) to filter out the energy deposition below it.  
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4.2. Enhancing spatial resolution of 
18

F positron imaging 

The spatial resolution is a key property to characterize the detector performance. A beta camera 

is characterized by its high spatial resolution and sensitivity, which facilitates its applications in 

some delicate in-vivo and in-vitro experiments. Beta imaging systems with a CCD detector have 

spatial resolutions of a few tens of μm for several investigated radionuclides. For example, the 

spatial resolution of μ-Imager is reported to be 15 µm for 
3
H imaging [69]; a lens-coupled CCD 

camera with a thin phosphor film placed next to the sample is estimated to have a spatial 

resolution of 60 µm (full width at half maximum, FWHM) for a 
90

Y/
90

Sr quasi-point source and 

70 µm (FWHM) for a 
99m

Tc disk source [19]; A radioluminescence microscope fitted with a 

CCD detector has been developed recently for 
18

F positron imaging and has an excellent spatial 

resolution of 6.5 μm [64, 65]. The spatial resolution of a PSAPD detector for 
18

F positron 

imaging was evaluated to be 0.4 mm (FWHM) for a line source [18].  

As to CMOS detectors, 
18

F positron imaging with a Medipix2 detector (a hybrid CMOS imaging 

chip) has been reported with the spatial resolution of ≈230 µm [20]. The Timepix detector, 

evolved from Medipix2, enables the acquisition of incidence deposited energy when working in 

the time-over-threshold (TOT) mode. Using acquired energy information, the spatial resolution 

of 
14

C and 
90

Sr/
90

Y electron imaging has been reported to be improved by energy weighted 

centroid approximation (spatial resolution ≈79.6 µm for 
14

C electrons and ≈27.5 µm for 
90

Sr/
90

Y 

electrons) [63, 77]. 

Due to consecutive inelastic interactions with atomic electrons of the detector sensitive layer, an 

incident beta particle may excite a number of successive pixels in the imaging plane. The energy 

weighted centroid approximation of each cluster (the collection of all pixels excited by one 

incidence) has been used as the readout position of the incident particle [63, 77]. However, it 

may not be effective for higher energy charged particles. The changes of energy deposition in 

long positron trajectories are not monotonic with their firing sequences and positrons do not 

necessarily deposit more energy in the first pixels fired during a track [48]. Thus, the exploration 

for appropriate surrogates of readout positions may enhance the spatial resolution. This study 

developed a data-driven method to find the primary positions of incident positrons in a Timepix 

detector based on a classification algorithm to improve the spatial resolution of 
18

F positron 

imaging.  
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4.2.1. Computational modeling of positron absorption by machine learning 

The incident positrons emitted from a radioactive source are scattered in multiple steps in the 

silicon detector before absorption or penetration. The 2D projection of a positron trajectory 

within the detecting layer on the pixelized imaging plane forms a ‘cluster’ (see Figure 4.1(b)), 

which may include several fired pixels. Multiple scattering is the reason for degraded spatial 

resolution of positron (in particular 
18

F positrons) imaging. In order to improve the spatial 

resolution of an 
18

F positron image, we propose a method, which selects the primary excited 

pixels from clusters (the pixels labeled with number “1” in Figure 4.1(b)). In this way, the 

influence of scattering can be reduced. The interactions of a positron within a silicon detector 

happen typically within 300 ps [154] and it is impossible to differentiate the primary pixels from 

other pixels with the current time resolution (≈10 ns) of Timepix. We suggest identifying the 

primary pixels using a classification algorithm. The classification utilizes the model learned by 

the training set to predict the class of testing set. The training set is built up by a Monte-Carlo 

simulation and includes the simulated energy and topological characteristics of successively fired 

pixels. The method was tested on both simulation and experimental data.  

The SVM method is applied here to distinguish pixels fired by each incident positron into classes. 

The SVM constructs supervised learning models with associated learning algorithms that analyze 

data and recognize patterns. Given some training vectors 𝒙𝒊 ∈ 𝑅𝑛, 𝑖 = 1, … , 𝑙 , and an indicator 

vector 𝒚 ∈ 𝑅𝑙 , the aim of SVM classification is to solve the following optimization problem 

[155]: 

 min𝝎,𝑏,𝜉  
1

2
𝝎𝑇𝝎 + 𝐶 ∑ 𝜉𝑖

𝑙
𝑖=1   (4.1) 

subject to   𝑦𝑖(𝝎𝑇𝜙(𝒙𝒊) + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑙 

where, the vector (or the point in n-dimensional space) xi contains the quantitative values of n 

features. yi indicates the class to which the point xi belongs.  𝐶 > 0  is the regularization 

parameter; 𝜉𝑖 is the variable which measures the degree of misclassification of point 𝒙𝒊; ω is the 

normal vector to the hyperplane in 𝑙-dimensional space, which maximally divides the training 

points, and the parameter 𝑏/‖𝜔‖ determines the offset of the hyperplane from the origin along 

the normal vector ω; 𝜙(𝒙𝒊)  maps 𝒙𝒊  into a higher-dimensional space. SVM finds a linear 

separating hyperplane with the maximal margin in this higher dimensional space. 

Due to the possible high dimensionality of the vector variable ω, the optimization problem 

described by above equation is usually transformed into solving its dual form problem: 
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 min𝜶  
1

2
𝜶𝑇𝑄𝜶 − 𝒆𝑇𝜶 (4.2) 

subject to   𝒚𝑇𝜶 = 0, 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, … , 𝑙 

where Q is an 𝑙 × 𝑙  positive semidefinite matrix, 𝑄𝑖𝑗 ≡ 𝑦𝑖𝑦𝑗𝐾(𝒙𝒊, 𝒙𝒋) , and 𝐾(𝒙𝒊, 𝒙𝒋) ≡

ϕ(𝒙𝒊)
𝑇ϕ(𝒙𝒋) is the kernel function. The radial basis function (RBF): 𝐾(𝒙𝒊, 𝒙𝒋) ≡ exp (−𝛾‖𝒙𝒊 −

𝒙𝒋‖
2

) , 𝛾 > 0 is chosen as the kernel function here. γ is kernel parameter. In order to realize the 

SVM classification, an integrated software LIBSVM is used in this study [102, 155]. 

 

The fired pixels of a cluster are classified into 4 classes in the proposed method:  (1) the pixel 

primarily excited; (2) the second excited pixel if it exists (for clusters whose size ≥ 2 pixels); (3) 

the third excited pixel if it exists (for clusters whose size ≥ 3 pixels); (4) other following pixels if 

they exist (for clusters whose size ≥ 4 pixels). And they are labeled with class “1”, “2”, “3” and 

“4”, respectively, which correspond to 𝑦𝑖 ∈ {1, 2, 3, 4} in equations 1 and 2. 

Based on the observation made by the Monte-Carlo simulation and intrinsic differences among 

classes, 17 features of a pixel are considered for training the classification model: 

(1) The number of nearest neighbors (distance ≤ 1 pixel): N1, N1 ∈ [0, 4] ⊆ Z; 

(2) The number of nearest neighbors (distance ≤ 1.5 pixels): N2, N2 ∈ [0, 8] ⊆ Z; 

(3) The relative energy E1: the energy deposited on the pixel divided by the cluster energy 

(the cluster energy is the summation of deposited pixel energies belonged to a cluster ); 

(4) The relative energy E2: the energy deposited on the pixel divided by the average pixel 

energy; 

(5) The relative energy E3: the total energy of the pixel and its neighbors (distance ≤ 1 pixel) 

divided by the cluster energy; 

(6) The relative energy E4: the total energy of the pixel and its neighbors (distance ≤ 1.5 

pixels) divided by the cluster energy; 

(7) The relative energy E5: the total energy of the pixel and its neighbors (distance ≤ 1 pixel) 

divided by the average pixel energy; 

(8) The relative energy E6: the total energy of the pixel and its neighbors (distance ≤ 1.5 

pixels) divided by the average pixel energy; 

(9) The normalized pixel distance from the energy-weighted centroid of the cluster 

(normalized by cluster size); 

(10) The 3-order moment of the fired pixel distribution over the pixel and its neighborhood 

(distance ≤ 1.5 pixels); 
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(11) The 3-order moment of the pixel deposited energy distribution over the pixel and its 

neighborhood (distance ≤ 1.5 pixels); 

(12) The skewness of the fired pixel distribution over the pixel and its neighborhood (distance 

≤ 1.5 pixels); 

(13) The skewness of the pixel deposited energy distribution over the pixel and its 

neighborhood (distance ≤ 1.5 pixels); 

(14) The kurtosis of the  fired pixel distribution over the pixel and its neighborhood (distance 

≤ 1.5 pixels); 

(15) The kurtosis of the pixel deposited energy distribution over the pixel and its 

neighborhood (distance ≤ 1.5 pixels); 

(16) The entropy of the fired pixel distribution over the pixel and its neighborhood (distance ≤ 

1.5 pixels); 

(17) The entropy of the pixel deposited energy distribution over the pixel and its 

neighborhood (distance ≤ 1.5 pixels). 

 

The classification results are not proportional to the feature number. The classification 

performance may be saturated or even reduced with excessive features due to feature mutual 

dependence, so that the principal component analysis (PCA) was implemented before the 

learning procedure to choose the independent and principal features mostly determinant for the 

classifier. The principal feature sets with summed eigenvalues (of the covariance matrix of all 

feature sets) taking up more than 95% of total eigenvalues were selected for the learning process.   

After preprocessing of the training and the testing set, the classification mainly follows 4 steps: 

(1) scale the training and testing set to avoid attributes in greater numeric ranges dominating 

those in smaller numeric ranges and avoid numerical difficulties during the calculation [102]; (2) 

identify the optimal parameters (C, ɣ) of radical basis function (RBF) kernel by cross validation 

so that the classifier can provide high accuracy for classification. (3) learn the classification 

model (i.e., the classifier) based on the training set obtained by Monte-Carlo simulation; (4) 

apply the classifier to predict the classes of investigated pixels.  

4.2.2. Monte-Carlo simulation for training data 

The 
18

F positron passing through and interacting with the Timepix chip is simulated by Monte-

Carlo simulation using Geant4, a toolkit modeling the physical processes of particles passing 

through matter [151]. The training set of the proposed algorithm is built up using the simulation. 

A general source emitting 
18

F positrons arbitrarily from a box region: 5 cm × 1.4 cm × 1.4 cm 

(H×L×W) directly on top of the detector surface in air is used. The energy of the emitted 

http://en.wikipedia.org/wiki/Principal_component_analysis
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positrons follows the theoretical 
18

F positron energy spectrum (maximum energy Emax=633 keV). 

The general source is considered to cover a wide scenario of positron angle and energy of 

incidence. Other sources with different geometries and positions were tested to evaluate the 

robustness of the proposed algorithm for different training sets. The size of the training sets 

(different numbers of positron emissions) was tested to further study the stability of the classifier. 

 

Figure 4.1. (a) The simulated positron trajectories generated by 100 positrons emitted from a 

specific 
18

F point source (on the center of detector surface) in a Timepix detector; (b) Examples 

of simulated clusters of 
18

F positrons. The pixel colors indicate the pixel deposited energy 

normalized by the corresponding maximum pixel energy within a cluster, and the numbers on the 

pixels represent the pixel firing sequence. The cluster energies are given beneath each cluster. 
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Figure 4.1(a) shows the positron trajectories from 100 
18

F positron emissions in the Timepix 

detector (only a part of the detector is shown here) simulated by Geant4. A specific source (a 

point source placed on the center of detector surface) is utilized here to demonstrate the positron 

trajectories. The sequences, positions and deposited energies of positron interactions within the 

detector sensitive layer were recorded by simulation. A cluster is composed of a set of successive 

pixels, which are the projection of the 3D particle trajectory on the 2D imaging plane [20, 77, 

156]. Examples of clusters are displayed in Figure 4.1(b). The pixel colors indicate the pixel 

deposited energy normalized by the corresponding maximum pixel deposited energy within a 

cluster. The numbers labeled on the pixels represent the pixel firing sequence. The energy 

deposition of a positron is complicated and the energy changes along the long trajectories are not 

monotonic. Thus, the assumption of highest pixel energy deposition in first firing pixels by the 

energy weighted centroid method may be violated in some cases. Electronic noise of Timepix 

detection has been filtered by setting a threshold in the measurement. For the simulation, a 

randomly generated pixel-wise energy threshold following a Gaussian distribution is applied for 

consistency with measurements [157]. 

4.2.3. Experiments using Timepix for testing data 

To estimate the spatial resolution of 
18

F positron imaging, measurements were prepared using the 

Timepix positron camera (Figure 4.2 (a)) working in TOT mode. The bias voltage and sampling 

rate were chosen to be 100 V (the sensitive layer is over-depleted) and 9.6 MHz, respectively.  

The absorbing edge method (AEM) was adopted to assess the spatial resolution [20, 63, 77]. As 

shown in Figure 4.2(b), a 300 μm thick aluminum plate covered half of the detector surface. A 

10 μl droplet of [
18

F]FDG (activity: 30 Mbq/ml) was pipetted on the Mylar placed 5 cm above 

the aluminum plate. Totally 36000 frames of 0.2 s (frame width) were acquired (about 2 hours 

data acquisition). The short frame width effectively reduced the overlap of clusters. The edge 

response function was determined by averaging 100 columns perpendicular to the edge of the 

positron image and the corresponding line spread function is derived by differentiation of edge 

response function. The spatial resolution was assessed by the FWHM of the line spread function. 

The maximum value of the line spread function was acquired by a parabolic fit using the peak 

point and its two nearest neighboring points respectively. FWHM was then determined by linear 

interpolation between adjacent pixels at half the maximum value of the response function. For 

the assessment of spatial resolution, the values assigned to the pixels in a positron image can be 

the cluster number or deposited energy. 
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Figure 4.2. (a) the positron (beta) camera; (b) the sketch of the measurement of edge profile for 

spatial resolution. 

The parallel alignment of the edge (edge parallel with the detector pixel columns) was evaluated 

on the acquired images [157]. Only the edge with parallel alignment (error < 0.5 degree) was 

considered for the estimation of spatial resolution (5 qualified edges selected). To determine the 

real energy deposited in each pixel, the energy calibration of the TOT signal was performed 

[158]. Due to fabrication limitations, the boundary pixels usually have larger dimensions than the 

other pixels, so that stronger signals are recorded there. Therefore, three rows and columns in the 

neighborhood of boundaries were not considered in the classification. The camera contains 10 

defective pixels. They were removed from the data by preprocessing. A negligible influence of 

background was observed during the whole measurement: 3.1×10
-6

 cps/pixel and 1.3×10
-4

 

keV/s/pixel in TOT mode. 

4.2.4. Classification verification and classification error assessment 

The feature spectra (i.e., the feature distribution function) were compared with the measured 

ones to verify that the simulated features are suitable to serve as training data. The t-test was 

applied on simulated and measured spectra to estimate their similarities.  

The classifier may fail for some clusters (classifier failure). They are explicitly classified with no 

primary pixel or more than one primary pixel. These clusters can be excluded before spatial 

resolution evaluation, leading to sensitivity loss. Instead, the sensitivity loss can be compensated 

by introducing the energy weighted centroid approximation for these clusters. However, the 

sensitivity compensation will sacrifice some enhancement of spatial resolution. 

Misclassification may happen during the procedure and false primary pixels may be identified in 
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real measurements. Using the simulated data as testing set (the actual pixel firing sequences 

within clusters are known), the classification accuracies are assessed on cluster sets with 

different sizes: 2 pixels, 3 pixels, 4 pixels, 5 pixels and more pixels, respectively. For each 

cluster set, the accuracies of class j (j=1, 2, 3) pixel predicted as primary pixel are estimated. The 

second pixels or the third pixels are mixed in the primary pixels to some extent and their 

influences on spatial resolution are evaluated. 

4.2.5. Imaging of a leaf sample uptake with [
18

F]FDG  

To test the application of the proposed algorithm, we applied it on the imaging of a leaf sample 

with fine veins. The image of a parthenocissus tricuspidata leaf with [
18

F]FDG uptake was 

acquired with the positron camera. The acquired positron image was then processed with the 

proposed method to examine its performance on obtaining an image of the leaf vein network. 

The stem beneath the fresh leaf was immersed in a water solution of [
18

F]FDG tracer (activities: 

10MBq/ml) for 2 hours to take up tracer. The leaf was washed 3 times after stem immersion to 

eliminate the possible tracer contamination on the leaf surface. Then a part of leaf sample was 

put directly on top of the detector for measurement in the TOT mode for 1 hour (frame width = 

0.2 s).  

Afterwards, the same sample was transferred to an autoradiography cassette for storage phosphor 

screen (Fuji phosphor imaging plate, a film-like radiation image sensor) exposure of 6 hours for 

phosphor image (as the reference). The screen provides a spatial resolution of 100 µm or lower, 

and high image contrast. Then it was scanned by a CR 35 Bio Image Plate Scanner (Duerr 

Medical GmbH) for 10 min with 25 µm pixel resolution. An optical image was obtained as 

another reference by scanning the leaf with the scanner (EPSON Perfection 1650) at 1200 dpi. 
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5. Validation and applications of computational modeling in 

investigations of tumor metabolism 

Molecular imaging can characterize tumor phenotypes by assessing the related metabolism of 

certain substrates. However, the interpretation of the substrate turnover in terms of a 

pathophysiological understanding is not straightforward and only semiquantitative. The model 

proposed in chapter 3 sets up a platform to explore the quantitative relationship between tumor 

metabolism and pathophysiological factors (such as expression levels of GLUT, MCT1, MCT4, 

HK, HIF-1 and microvessel distribution). The proposed model is validated in this chapter by 

comparing the simulation data with in vivo and in vitro literature data, and is then applied in 

assessing the quantitative relationship by analyzing parameters: the sensitivities of substrate with 

respect to the variations of pathophysiological factors and the correlation coefficients between 

the substrate concentrations and pathophysiological factor levels. This computational modeling 

may assist the generation of hypotheses to bridge the discrepancy between the tumor metabolism 

and the functions of transporters and enzymes. It has the potential to accelerate the development 

of multi-modal imaging strategies for assessment of tumor phenotypes. 
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5.1. Implementation and validation of HIF-independent model 

The model independent of HIF-1 is implemented on a tumor tissue phantom. Figure 5.1 displays 

an example of the model implementation. The distributions of the parameters are investigated, 

including O2 tensions, extra- and intracellular glucose concentrations, extra- and intracellular 

lactate levels, pH, CO2 tensions and HCO3
-
 concentrations. They are simulated by the proposed 

model for a tissue phantom with a mean intervascular distance of 160 µm. The black arrows 

point to the average values of the parameters investigated over the displayed simulation results. 

The concentrations (or partial pressures, respectively) of these parameters as a function of the 

distance up to 170 µm from a selected vessel (distribution-to-distance curve) are illustrated in 

Figure 5.2. Meanwhile, the indirect model verification is performed on the simulated parameter 

distributions by comparing with the in vivo and in vitro data reported in the literature in the 

following paragraphs. 

 

Figure 5.1. Substrate distribution maps of a tumor tissue phantom with an intervascular distance 

of 160 µm. Figure (a) to (i) are maps of O2 tension (mmHg), extra- and intracellular glucose 

concentration (mM), extracellular pH, extra- and intracellular lactate concentration (mM), CO2 
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tension (mmHg) and HCO3
-
 concentration (mM), respectively. The black arrow points to the 

average value of each parameter. conc. = concentration. 

 

Figure 5.2. Substrate distribution curves as a function of distance from a single vessel. Parameter 

distributions: oxygen tension (figure a), extra- (blue solid curve) and intracellular (green dash 

curve) glucose concentrations (figure b), extra- (blue solid curve) and intracellular (green dash 

curve) lactate levels (figure c), extracellular pH (figure d), extracellular CO2 tension (figure e) 

and extracellular HCO3
-
 concentrations (figure f). conc. = concentration 

As displayed in Figure 5.2a, the oxygen tension pO2 decreases monotonically as the distance 

from the vessel increases, and the tissue reaches hypoxic levels (pO2<2.5 mmHg [80]) at 45 µm 

from the vessel. The region farthest away (>70 µm) from the vessel becomes anoxic (pO2<0.5 

mmHg [81]). The average pO2 over the whole phantom, with a 160 µm mean intervascular 

distance is 3.3 mmHg (Figure 5.1a), which is within the range of pO2 Eppendorf data: 0-60 

mmHg for tumors (the measured tumor pO2 values) [159, 160]. The average pO2 (over the 

phantom) under different pathophysiological conditions assumed in this study varies from 0.8 to 

34 mmHg, which means all simulated average pO2 can fall in the range of Eppendorf data.  

Figure 5.1e & f show the distribution of extra- and intracellular lactate levels and Figure 5.2c 

exhibits their concentrations as functions of the distance from the vessel. A higher intracellular 

lactate concentration than the extracellular lactate concentration was observed in hypoxic regions, 

which promotes lactate export from the cells. In normoxic regions, extracellular lactate is higher 
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than that of intracellular lactate, and interstitial lactate tends to be imported into the cells for 

oxidation. The “crossing point” of the extracellular and intracellular lactate curves occurs at 50 

µm from the vessel, which is almost the boundary between hypoxia and normoxia. The mean 

extra- and intracellular lactate concentrations over the displayed tissue phantom are 14.9 and 

15.3 mM, respectively. The experimental lactic acid content in rat tumor tissue using a millipore 

chamber was shown to be 17.5 mM [133]. The mean concentration of extracellular lactate in a 

cancer of the uterine cervix was 15 mM [21].  

The distribution of extracellular pH is shown in Figure 5.1d and its distribution-to-distance curve 

is plotted in Figure 5.2d. The pH in this simulation decreases from 7.4 within the vessel to 6.75 

at a distance of 170 µm. The average pH over the simulated tissue phantom is 6.95. In tumors in 

vivo, the extracellular pH normally ranges from 6.6 to 7.1 [161, 162]. 

The extracellular CO  tension (pCO2) increases from 45 mmHg (blood) to 127 mmHg at a 

distance of 170 µm away from the vessel as shown in Figure 5.2e. The latter  pCO2 is up to 2.8 

times that of the plasma pCO2 in the simulation. The simulated average pCO2 is 74 mmHg across 

the displayed tissue phantom (Figure 5.1g), which is 1.65 times that of plasma pCO2. For tumors 

in vivo, the pCO2 was reported to be more than twice as high as that in plasma [134]. The 

extracellular HCO3
-
 levels decrease accordingly from 25 mM (blood) to 14.7 mM (Figure 5.2f).  

The Henderson-Hasselbalch equation is an empirical equation used for estimating the pH in the 

bicarbonate buffering system [134, 162]: 

  𝑝𝐻 = 𝑝𝐾𝑎 + log
10

(
[HCO3

-
]

𝑆CO2
∙ 𝑝CO2

) (5.1)  

where pKa is the co-logarithm of the acid dissociation constant of carbonic acid, pKa ≈ 6.15, 𝑆CO2
 

is the Henry’s law solubility constant of carbon dioxide ( 𝑆CO2
≈ 0.03). We compared our 

simulation results with the results predicted by the Henderson-Hasselbalch equation. The 

distribution-to-distance curves of the simulated pH and the calculated pH values using the 

Henderson-Hasselbalch equation are shown in Figure 5.3. They generally follow the same 

tendency by paired t-test (P<0.05, n=17). The average pH obtained directly from the simulation 

is 6.84, and the average pH calculated by the Henderson-Hasselbalch equation is 6.86. The mean 

and the max difference of the two pH curves are 0.3% and 0.7% of the average pH from 

Henderson-Hasselbalch equation, respectively. 

2
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Figure 5.3. The curve (extracellular pH as a function of the distance from the vessel) comparison 

between pH values obtained by direct simulation (blue solid curve) and pH calculated by the 

Henderson-Hasselbalch equation (green dash curve). 

5.2. Implementation of HIF-1 driven model  

As HIF-1 has been reported to influence the tumor metabolism by regulating the expressions of 

certain enzymes and transporters, a developed model integrating HIF-1 has been put forward in 

section 3.1.6. The local expressions of GLUT, HK and MCT4 are assumed negatively correlated 

with HIF-1 level, while the local MCT1 expression is determined by HIF-1 level in a positive 

way. The 1D oxygen and HIF-1 distribution (oxygen-dependent) as the function of the distance 

from the vessel are plotted by blue solid and green dash curves in Figure 5.4(a), respectively. 

HIF-1 reaches and maintains the maximum since 50 μm from the vessel. Figure 5.4(b)-(h) show 

the 1D distributions of extracellular pH, extra- and intra-cellular glucose concentration, extra- 

and intra-cellular lactate concentration, extracellular HCO3
-
 concentration and CO2 tension based 

on the model driven by HIF-1. The overexpression factors of GLUT, HK, MCT1 and MCT4 are 

all supposed to be 4. Meanwhile, the substrate distributions obtained from the HIF-1 driven 

model (blue solid curves) are compared those from the HIF-1 independent model (green dash 

curve) in Figure 5.4. More lactic acid is produced (22.1% and 29.4% more extra- and intra-

cellular lactate are produced and pH decreases 3.5% on average over the curves of Figure 5.4) 

and more glucose (47.0% and 51.0% more extra- and intra-cellular glucose are consumed) is 

consumed with the promotion of HIF-1. Due to the accumulation of protons and the bicarbonate 

buffering system, the CO2 tension is forced to rise (25.9% CO2 tension is raised) and HCO3
-
 

concentration decreases (26.6% decrease) accordingly in the HIF-1 driven model. 
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Figure 5.4. The influence of HIF-1 on the substrate distributions. Figure (a) represents the 1D 

oxygen tension (blue solid curve) and corresponding HIF-1 (green dash curve) as the function of 

distance from the vessel. Figures (b) to (h) exhibit the extracellular pH, extra- and intra-cellular 

glucose concentration, extra- and intra-cellular lactate concentration, the extracellular HCO3
-
 

concentration and CO2 tension as the functions of the distance from the vessel, respectively. The 

substrate concentrations emulated from the model driven by HIF-1 (blue solid curves in figures 

(b) to (h)) are compared with those from the model independent of HIF-1 level (green dash 

curves in figures (b) to (h)).  

5.3. Implementation of FDG uptake model  

The FDG uptake model driven by HIF-1 is implemented on tumor tissue phantoms with different 

microvessel densities, and expressions of GLUT and HK. An example of model implementation 

is shown Figure 5.5, where the phantom (1×1 mm
2
, 100×100 pixels) has a microvessel density of 

40 vessels/mm
2
, and 3-fold maximum overexpressions for both GLUT and HK (kGLUT = kHK = 3). 

Figures (a) and (b) are the maps of oxygen (unit: mmHg) and normalized HIF-1 distributions, 

respectively. Figures (c) to (e) present the distributions of extra-, intra-cellular glucose (unit: mM) 

and glucose metabolic rate (unit: µM/s), respectively. The corresponding extra-, intra-cellular 

FDG (unit: mM) and FDG trapping rate (unit: µM/s) are exhibited in figures (f) to (h), 

respectively.  

The average oxygen tension over the selected phantom is 3.5 mmHg, which fall in the range of 

published tumor pO2 values (Eppendorf data): 0-60 mmHg [159, 160]. Based on the proposed 

model, the average oxygen tensions simulated in different pathophysiological conditions vary 

from 1.6 to 23.5 mmHg, which also falls into the range of Eppendorf data. The average 

extracellular glucose concentration is 2.9 mM, which is much higher than the intracellular 

glucose concentration (0.02 mM on average). The extracellular glucose in tumor tissue has been 

reported within the range of 0.5-3.7 mM for several types of tumor cells [163].  

In addition, the average values for normalized HIF-1, glucose metabolic rate, extra- ad 

intracellular FDG concentration and FDG trapping rate are 0.26, 0.75 µM/s, 4.6×10
-9

 mM, 

7.0×10
-11

 mM and 2.8×10
-8

 µM/s, respectively. They are marked by black arrows pointing to the 

colorbars of each map in Figure 5.5. 
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Figure 5.5. Substrate concentration maps. Figures (a) and (b) are the 2D oxygen (mmHg) and 

normalized HIF-1 distributions. Figures (c) to (h) present the 2D distributions of extra-, intra-

cellular glucose (mM) and glucose metabolic rate (µM/s), and extra-, intra-cellular FDG (mM) 

and FDG trapping rate (µM/s), respectively. The average values of these parameters are marked 

by black arrows pointing to the colorbars of each map. 

Figure 5.6(a) shows the simulated TACs (blue curves) of tumor tissue phantoms with different 

vascular densities (20-200 vessels/mm
2
). They are compared with the measured curve (red 

curve), which shares the same plasma input function displayed in Figure 5.6(b). The tissue-to-

blood (T/B) ratios for simulated TACs change from 1.4 to 4.6 as compared to 4.4 for measured 

TAC. Using other parameters (such as higher vascular density) promoting the FDG retention, the 

T/B can reach 6.5 in this model. The T/B measured in clinical and preclinical studies have been 

reported within the range of 1.3-17.2 for different types of tumors [164, 165]. 
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Figure 5.6. (a) simulated TACs (blue curve) under different vascular densities (20-200 

vessels/mm
2
) as a comparison with measured TAC (red curve) using the plasma input function 

displayed in figure (b). 

5.4. Results of the HIF-1 independent model 

5.4.1. The influences of pathophysiological conditions on substrate metabolism 

The substrate metabolism is affected by pathophysiological conditions. Thus, the influences of 

pathophysiological parameters: the expressions of GLUT, HK, MCT1 and MCT4, and the mean 

intervascular distance on the substrate concentrations are quantitatively investigated for the HIF-

1 independent model. Figure 5.7 illustrates the average concentrations of glucose and lactate, and 

the extracellular pH in relation to the adaption of Vmax of GLUT and HK, and the adaption of 

mean intervascular distance. Each curve plots the parameter changes with regard to alterations of 

Vmax for the tissue phantoms whose microvascular distributions have same mean intervascular 

distance. The different colors of the curves represent varying mean intervascular distances (from 

60 to 180 µm) of the simulated tissue phantoms. Here, the glucose and lactate concentrations are 

the sum of extra- and intracellular concentrations. The glucose concentration and extracellular 

pH both decrease as the Vmax values of GLUT and HK increase, whereas lactate concentration 

increases with higher Vmax. On the other hand, the glucose concentrations and extracellular pH 

increase as the mean intervascular distances decrease (i.e., when microvascular density 

increases). In contrast, the concentration of lactate drops with increasing microvascular density. 
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Figure 5.7. The response curves of glucose and lactate concentrations and extracellular pH to 

different Vmax, GLUT, Vmax, HK and intervascular distances. Each curve has a certain intervascular 

distance (60 to 180 µm) which is color-coded. The color blue indicates a short intervascular 

distance; red corresponds to a larger intervascular distance.  

In addition to the influence of GLUT and HK, lactate is also sensitive to MCT1 and MCT4. 

Figure 5.8 displays the average concentrations of lactate in relation to the adaption of Vmax of 

MCT1 and MCT4, and the adaption of mean intervascular distance. Lactate concentration rises 

with the increase of Vmax values of MCT1 especially for tissue phantoms at small mean 

intervascular distances. In an opposite way, lactate concentration diminishes with Vmax values of 

MCT4 increase, and the tendency is more obvious for tissue phantoms at large mean 

intervascular distances. 
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Figure 5.8. The response curves of the lactate concentration to different Vmax, MCT1, Vmax, MCT4 and 

intervascular distances. Each color-coded curve represents a selected intervascular distance (60 

to 180 µm). Color transition from blue to red corresponds to an enlargement of intervascular 

distances. 

5.4.2. The quantitative relationships between substrate metabolism and tumor 

phenotypes 

The quantitative relationships between tumor metabolism and phenotypes (i.e. 

pathophysiological conditions) are characterized mainly by two parameters: the response 

sensitivity and the correlation coefficient. The response sensitivity to Vmax values of GLUT, HK, 

MCT1 and MCT4 is estimated using equation 𝑆 = ∆𝐶/∆𝑉𝑚𝑎𝑥 . The response sensitivities of 

glucose and lactate levels and extracellular pH to Vmax of GLUT, HK, are displayed in Figure 

5.9a-c as a function of mean intervascular distance. The errorbars of each curve point attributable 

to tissue phantom heterogeneities are exhibited in Figure 5.9. Moreover, the main results from 

the sensitivity analysis are compared with experimental findings. The absolute sensitivities of 

glucose, lactate and extracellular pH to Vmax of HK and GLUT all increase with enlarging mean 

intervascular distance.  The response sensitivities of lactate to Vmax of MCT1 and MCT4 are 

presented in Figure 5.9d as a function of the mean intervascular distance. A negative influence 

was observed as to MCT1, indicating that lactate concentration of more oxygenated phantoms is 

more sensitive to MCT1 expression. While, the absolute sensitivity of lactate to Vmax of MCT4 is 

positively influenced by mean intervascular distance, which implies the lactate concentration 

drops more steeply with increased MCT4 expression as to more hypoxic phantoms.  

The overall sensitivity (average over different microvascular distributions/microvessel densities) 

of glucose and lactate concentrations and extracellular pH in response to Vmax of GLUT and HK 

is listed in Table 5.1. Glucose is more sensitive to HK than GLUT (≈ 25% higher sensitivity), 

while GLUT has a 4.5-fold higher substrate sensitivity than HK for lactate and extracellular pH. 
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Although GLUT and HK are both functional in regulating glucose concentration, GLUT exerts a 

more dominant control on glycolytic flux (lactic acid production) than HK, which is consistent 

with the reported experimental results using cancer cells [138]. Extracellular pH shows almost no 

sensitivity to the expressions of MCT1 (SpH=-0.001 s/mM) and MCT4 (SpH=0.005 s/mM). The 

glucose and the lactate sensitivities (in response to the adaption of a certain Vmax) are compared 

by t-test and the test results imply that the two sensitivities have no significant similarities.   

The response sensitivity to the mean intervascular distance is estimated using equation 𝑆v =

∆𝐶/∆𝐷v. The overall sensitivity to the mean intervascular distance (average of different enzyme 

and transporter expressions) is listed in Table 5.1.   

Table 5.1. The average glucose, lactate and pH sensitivities (SG, SL and SpH, respectively) to 

alterations of Vmax of enzyme and transporters, and mean intervascular distance 

 SG* SL* SpH* 

GLUT -114.1 s 142.9 s -14.2 s/mM 

HK -143.5 s 30.5 s -3.0 s/mM 

MCT1 ≈0** 3.1 s -0.001 s/mM 

MCT4 ≈0** -2.1 s 0.005 s/mM 

Mean intervascular distance -0.02 mM/µm 0.14 mM/µm -0.001 /µm 

* SG, SL and SpH represent the average glucose, lactate and extracellular pH sensitivities in 

response to the changes of Vmax of GLUT, HK, MCT1, MCT4 or mean intervascular distance, 

respectively.   

** The glucose metabolism is not dependent on the expressions of MCT1 and MCT4 based on 

the proposed model, so glucose sensitivity in response to changes of Vmax, MCT1 and Vmax, MCT4 

equals to zero.  

The average correlation coefficients between substrate concentrations and Vmax of GLUT, HK, 

MCT1 and MCT4 (average of different microvascular distributions), and between substrate 

concentrations and mean intervascular distance (mean values over different enzyme and 

transporter expressions) are presented in Table 5.2. The substrate concentrations correlated better 

with Vmax of GLUT (r=-0.97, p=0.0005) than with that of HK (r=-0.69, p=0.017). Lactate 

concentration has a relatively strong correlation with MCT1 (r=0.75, p=0.05) and a weak 

correlation with MCT4 (r=-0.64, p=0.13). In-vitro studies on tumor, heart and muscle tissues 

have reported a correlation between lactate concentration and MCT expression [115, 120]. 

Extracellular pH shows almost no correlation with MCT1 (r=-0.18, p=0.64) and MCT4 (r=0.15, 

p=0.39), a finding which is in line with the results reported for extracellular pH not primarily 

being attributed to lactate or the transport through MCTs within the tumor [42]. Moreover, the 
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substrate concentration shows a strong dependence on intervascular distance. A correlation 

between substrate concentration and tumor vasculature has been documented earlier [111, 166]. 

Table 5.2. The average correlation coefficients between substrate concentration (conc.), 

extracellular pH (pHe), and Vmax of enzyme and transporter expression and mean intervascular 

distance 

 Glucose conc. Lactate conc. pHe 

Vmax of GLUT -0.97 0.97 -0.98 

Vmax of HK -0.69 0.69 -0.70 

Vmax of MCT1 ≈0* 0.75 -0.18 

Vmax of MCT4 ≈0* -0.64 0.15 

Mean intervascular distance -0.81 0.92 -0.88 

* The glucose concentration is not correlated with Vmax, MCT1 and Vmax, MCT4 because the glucose 

metabolism does not depend on the expressions of MCT1 and MCT4 based on proposed model. 

 

Figure 5.9. (a) Sensitivity of glucose in response to alterations of the Vmax of GLUT (blue solid 

curve) and HK (green dash curve) as a function of the mean intervascular distance; (b) 

Sensitivity of extracellular pH in response to changes of Vmax of GLUT (blue solid curve) and 

HK (green dash curve) as a function of mean intervascular distance; (c) Sensitivity of lactate to 

changes of Vmax of GLUT (blue solid curve) and HK (green dash curve) as a function of mean 

intervascular distance; (d) Sensitivity of lactate to alterations of Vmax of MCT1 (blue solid curve) 
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and MCT4 (green dash curve) as a function of mean intervascular distance. The error bars are 

given on each curve. 

5.4.3. The influence of some parameters on the simulation 

In the section, the influences of matrix size, plasma oxygen tension and the phantom pixel size 

on the simulation are investigated for the HIF-1 independent model. The matrix size of the 

tessellated phantom is selected by compromising the computational time and the 

representativeness of the results. Some tests of the influences of matrix size on the modeling 

results are performed. Three different matrix sizes 35×35, 50×50 and 100×100 are tested here. 

For the phantoms with same parameters (except matrix size), it is found that the matrix size 

weakly influence the results including the average substrate concentrations and substrate 

sensitivities for the investigated matrix sizes. The differences of results caused by different 

matrix sizes are less than 5% on average as observed in the Figure 5.10. Figure 5.10(a)-(c) 

presents the curves of glucose and lactate concentrations and extracellular pH as the function of 

HK expression. The curves are generated by the models implemented on the tissue phantoms 

with different matrix sizes and microvessel densities (MVDs) (40, 200, 400 vessels/mm
2
), 

respectively. The phantom heterogeneity will influence the simulation results. However, it is 

largely reduced by averaging 20 repeated simulations to obtain each curve point in the Figure 

5.10. Meanwhile, the number of iterations for result convergence is dependent on the matrix 

sizes. The dependences of iterations on matrix size and MVD are presented in figure Figure 

5.10(d). The iteration decreases with MVD due to reduced phantom heterogeneity, while it 

generally increases with the matrix size. Therefore considering the matrix size and the area for 

iteration, the phantom of 100×100 matrix size is estimated to cost at least 10 times computation 

time more than the phantom of 35×35 matrix size. 

The substrate sensitivities to the plasma pO2 are also analyzed here. Based on the proposed 

model, the glucose concentration is not dependent on the oxygen tension, without considering 

the oxygen regulation on transporters and metabolic enzymes. So that the sensitivity of glucose 

concentration on plasma pO2 is 0, as shown in Figure 5.11(a). While the lactate concentration 

and extracellular pH are sensitive to plasma pO2, as displayed in Figure 5.11(b) and (c). The 

simulations are implemented on the phantoms with low, medium and high MVDs (40, 200, 400 

vessels/mm
2
) respectively. The sensitivities of glucose, lactate and pH are displayed in  

Table 5.3. The absolute sensitivities of lactate and extracellular pH decrease with the MVD.  
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Figure 5.10. (a)-(c) Influence of matrix size (35×35 matrix, 50×50 matrix and 100×100 matrix) 

on the substrate concentrations as a function of MVD and HK expression; (d) Iterations required 

for result converge as a function of MVD and matrix size. Some curves in the figures may 

overlap.  

 

Figure 5.11. (a) glucose concentration as a function of plasma oxygen tension; (b) lactate 

concentration as a function of plasma oxygen tension; (c) extracellular pH as the function of 

plasma oxygen tension. The function curves under different MVDs (40, 200, 400 vessels/mm
2
) 

of the tissue phantom are displayed here.  
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Table 5.3. The sensitivities of glucose and lactate concentration and extracellular pH in response 

to the plasma pO2 under different MVDs 

 MVD=40 vessels/mm
2
 MVD=200 vessels/mm

2
 MVD=400 vessels/mm

2
 

Glucose ≈0 mM/mmHg ≈0 mM/mmHg ≈0 mM/mmHg 

Lactate -0.022 mM/mmHg * -0.015 mM/mmHg -0.007 mM/mmHg 

Extracellular pH 0.0014 /mmHg* 0.0008 /mmHg 0.0003 /mmHg 

* Sensitivity unit: [ΔConcentration]/[ΔTension]=mM/mmHg for glucose and lactate; 

[ΔpH]/[ΔTension]=1/mmHg for pH. 

The sensitivity study investigating pixel size of the tessellated phantom has been conducted. It is 

found that the simulation results are influenced by phantom pixel size. Figure 5.12 shows the 

examples of the influences of pixel size (5 µm, 10 µm, 12.5 µm, 20 µm and 25 µm) on the 1D 

substrate (oxygen, extracellular glucose and lactate) distributions. Figure 5.13 presents the 

glucose and lactate concentrations and extracellular pH as the functions of the MVD (80, 120, 

200 vessels/mm
2
) and the pixel size (3.5-30 µm). The sensitivities of glucose and lactate 

concentrations and extracelluar pH to pixel size under different MVDs are listed in Table 5.4. 

Theoretically, the discrete results generated by more delicate grid partition are more approaching 

the desired simulation results, however brings more computation efforts. The selection of 10 µm 

pixel size results from the compromise between the simualtion accuracy and the computational 

time.  

 

Figure 5.12. Examples of the influences of pixel size on the 1D substrate distributions. Figures 

(a)-(c) display oxygen, extracellular glucose and lactate as the functions of the distance from the 

vessel and the phantom pixel size (5 µm, 10 µm, 12.5 µm, 20 µm and 25 µm), respectively. 
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Figure 5.13. The average (over the phantom and different heterogeneities) glucose (figure (a)) 

and lactate (figure (b)) concentrations and extracellular pH (figure (c)) as the functions of the 

MVD (80, 120, 200 vessel/mm
2
) and the pixel size (3.5-30 µm). 

Table 5.4. The sensitivities of glucose and lactate concentration and extracellular pH to phantom 

pixel size under different MVDs 

 MVD=80 vessels/mm
2
 MVD=120 vessels/mm

2
 MVD=200 vessels/mm

2
 

Glucose 0.022 mM/µm* 0.014 mM/µm 0.008 mM/µm 

Lactate -0.064 mM/µm -0.077 mM/µm -0.099 mM/µm 

Extracellular pH 0.002 /µm* 0.0019 /µm 0.0017 /µm 

* Sensitivity unit: [ΔConcentration]/[ΔPixelSize]=mM/µm for glucose and lactate; 

[ΔpH]/[ΔPixelSize]=1/µm for pH. 

5.5. Results of the HIF-1 driven model 

The overexpression factors proposed indicate the maximum folds of the investigated enzyme and 

transporter expressions that can be upregulated by HIF-1 particularly in hypoxic region. Their 

influence on the substrate distributions and concentrations are investigated by adapting them 

from 1 to 10 as to each enzyme or transporter. In the conditions of different mean intervascular 

distances and overexpression factors, enzyme and transporters get overexpressed to different 

extents. From the evaluation of their average levels over the tumor tissue phantom in relative to 

the levels in normal tissue, they are largely overlapped with the ranges reported by the literature 

as shown in Table 3.2. 

The glucose and lactate concentration and extracellular pH as the functions of overexpression 

factors of GLUT and HK, and mean intervascular distance are displayed in Figure 5.14. The 

Figures (a), (c) and (e) present the concentrations of glucose and lactate and extracellular pH 

change with the GLUT overexpression factor and mean intervascular distance, respectively; 
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figure (b), (d) and (f) exhibit the variation of glucose and lactate concentrations and extracellular 

pH as the HK overexpression factor and mean intervascular distance.  

 

 

Figure 5.14. The substrate concentration as the functions overexpression factors of GLUT and 

HK and mean intervascular distance in the HIF-driven model. Figures (a), (c) and (e) present the 

concentrations of glucose and lactate and extracellular pH change with the GLUT upregulation 

and increased mean intervascular distance, respectively; figure (b), (d) and (f) exhibit the 
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influences of HK overexpression and mean intervascular distance on the glucose and lactate 

concentrations and extracellular pH, respectively. 

Figure 5.15 exhibits the lactate concentration as the functions of overexpression factors of MCT1 

and MCT4. The lactate concentration is raised by MCT1 expression for the phantom with higher 

microvessel density, while for the phantom with sparse microvessels, the lactate concentration is 

not affected significantly as the MCT1 expression level is low and less sensitive to the MCT1 

overexpression factor (Figure 5.15(a)). As shown in Figure 5.15(b), the lactate concentration 

decreases with MCT4 expression at higher mean intervascular distance, while less sensitive to 

MCT4 expression at lower mean intervascular distance. 

 

Figure 5.15. The lactate concentration as the function of MCT1 (a) and MCT4 (b) 

overexpression factor and mean intervascular distance 

The substrate (glucose, lactate and extracellular pH) sensitivities in response to the unit 

alterations Vmax of transporters and enzymes are evaluated (Table 5.5). Glucose concentration 

was found with similar sensitivity to the expression levels of GLUT and HK, while lactate and 

extracellular pH are more (≈8 folds) sensitive to GLUT than HK in the HIF-1 driven model. 

Compared with the results concluded from the HIF-1 independent model, the introduction of 

HIF-1 increases the GLUT effect on the glycolytic flux with respect to HK. 

The influences of GLUT and HK overexpressions in terms of overexpression factor adaptions on 

the glucose concentration and FDG activities are investigated using the tumor tissue phantoms 

containing different vascular densities, as shown in Figure 5.16. The FDG activity indicates the 

tissue activity that can be imaged by PET and contains the extra- and intra-cellular FDG 

activities and FDG activity that are accumulated in tumor cells over the time span of plasma 
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input function [3300 s; the plasma input function is displayed in Figure 5.6(b)]. Similar with 

FDG, the glucose concentration encompasses the extra- and intra-cellular glucose concentrations 

and the integral concentration of glucose that are metabolized during the past 3300 s. Each curve 

point takes the average of 20 repeated simulations to decrease the heterogeneity of 

microvasculature. The error-bars are added on each data point in the figures. The glucose 

concentrations and FDG activities as the functions of the overexpression factors are presented in 

the conditions of low, medium and high vascular densities: 20 (blue curve), 60 (green curve) and 

100 (red curve) vessels/mm
2
. 

Table 5.5. The sensitivities of glucose and lactate concentration and extracellular pH to the 

alterations of Vmax of GLUT, HK, MCT1 and MCT4 and the mean intervascular distance in the 

HIF-1 driven model 

 SG* SL* SpH* 

GLUT -13.4 s 31.5s -4.9 s/mM 

HK -16.3 s 3.9s -0.6 s/mM 

MCT1 ≈0** 0.07 s -0.001 s/mM 

MCT4 ≈0** -0.62 s 0.004 s/mM 

Mean intervascular distance -0.019 mM/µm 0.020 mM/µm -0.004 /µm 

* SG, SL and SpH represent the average glucose, lactate and extracellular pH sensitivities in 

response to the unit changes of Vmax of GLUT, HK, MCT1, MCT4 or mean intervascular 

distance, respectively.   

** The glucose metabolism is not dependent on the expressions of MCT1 and MCT4 based on 

the proposed model, so the glucose sensitivity in response to changes of Vmax, MCT1 and Vmax, MCT4 

equals to zero.  

Both glucose concentration and FDG tissue activity are more activated by altered overexpression 

factors of GLUT than that of HK. HK upregulation exerts little influence on glucose and FDG 

uptake using the current pathophysiological parameters. The sensitivities of glucose 

concentration and FDG tissue activity in response to the unit adaption of GLUT and HK 

overexpression factors are presented in Table 5.6. The sensitivity values are also associated with 

vascular densities. In particular for GLUT, higher response rate is found for phantoms with 

higher vascular densities. 

As the transport and metabolic kinetics of glucose and FDG are very similar in tumors, we 

evaluate the correlations between glucose metabolism and FDG uptake to validate the efficacy of 

FDG PET images in reflecting the glucose metabolism. The Pearson correlation coefficient 

between FDG tissue activity and glucose concentration that are accumulated over a same period 
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is 0.97 (P<<0.05) with consideration of various pathophysiological conditions (such as different 

GLUT and HK upregulating levels, and vascular distributions). 

 

Figure 5.16. Glucose concentrations as the functions of GLUT (figure (a)) and HK (figure (b)) 

overexpression factors, and FDG activities as the functions of GLUT (figure (c)) and HK (figure 

(d)) overexpression factors. The curves are plotted in different vascular densities (blue curves: 20 

vessels/mm
2
; green curves: 60 vessels/mm

2
; red curves: 100 vessels/mm

2
). The error bars for 

each data point are added on each curve. 

Table 5.6. The sensitivities of glucose and FDG with respect to the GLUT and HK upregulations 

in terms of overexpression factors (OF) under different vascular densities 

Metabolite Glucose FDG 

Vascular density (vessels/mm
2
) 20 60 100 20 60 100 

Sensitivity to GLUT OF (mM) 0.06 0.12 0.13 11.2 30.0 31.6 

Sensitivity to HK OF (kBq/ml) 0.003 -0.01 -0.03 0.48 -0.71 -0.51 



Validation and applications of computational modeling in investigations of tumor metabolism 

97 

 

5.6. Discussions  

Alterations in metabolism and modified expressions of several enzymes and transporters are two 

hallmarks of malignant tumors [21]. They can be detected using molecular imaging (e.g., PET, 

hyperpolarized MRI) and analyses of molecular biology (e.g., staining of CD 31, GLUT, MCT1), 

respectively. Within the reaction-diffusion scheme, we established a mathematical model to link 

the substrate metabolism to the regulating enzymes, transporters involved and microvascular 

densities. The simulated substrate concentrations in the tumor tissue phantoms can fall into the 

ranges of experimental data reported in the literature. Using this model, we analyzed the 

influence of GLUT, MCT1, MCT4, HK and mean intervascular distance on the metabolism of 

glucose and lactate, and extracellular pH. The main findings from the relationship analysis are 

supported by in vivo and in vitro experiments. This quantitative investigation may add to our 

knowledge for the interpretation of the discrepancy between the tumor metabolism (reflected by 

substrate images) and the underlying tumor pathophysiological conditions (e.g. transporter and 

enzyme expressions). 

5.6.1. Lactate-fueled respiration  

The accumulation of lactate in tumors has been reported to correlate with tumor malignancy and 

can have an influence on therapy outcome [46, 167]. Recent studies revealed that lactate in 

tumors can also be utilized for energy supply [43]. This mechanism is possible due to the 

shuttling of lactate via MCT transporters [43]. In turn, shuttling and metabolism of lactate can 

impact tumor acidity. This study constructed a reaction-diffusion model to describe this complex 

procedure involving several interactions. From the simulated results (Figure 5.2c), the lactate 

shows higher intracellular than extracellular concentration in hypoxic regions due to high-rate 

glycolysis (P([Lin])=2P([Gin])-P([O2])/3>0). The lactate gradient between the two sides of the 

cell membrane promotes excessive lactate to be exported via MCT4. As a consequence, lactate 

primarily accumulates in hypoxic regions and is then shuttled towards oxygenated (normoxic) 

areas. In oxygenated regions, shuttled extracellular lactate (as a result of diffusion from hypoxic 

to normoxic subvolumes) can be imported via MCT1 for oxidation (P([Lin])<0).  These findings 

are consistent with previous experimental results [43, 114]. 

5.6.2. Regulation of enzymes and transporters 

The expressions and activities of enzymes and transporters (e.g. GLUT, HK) are controlled by a 

series of molecular pathways (e.g., HIF-1α, PI3K/mTOR) and can be upregulated during 



Validation and applications of computational modeling in investigations of tumor metabolism 

98 

 

carcinogenesis and tumor progression [29, 38, 110, 168-170]. For example, the activation of 

hypoxia-inducible factor 1α (HIF-1α) under hypoxic conditions (and a series of other factors) has 

been reported to correlate with the overexpression of GLUT1, HKII and MCT4 [171, 172]. In the 

current model, the influence of upstream processes on the upregulation of the investigated 

enzymes and transporters was not considered.   

The current study focused on the influences of enzymes or transporters by adapting Vmax. The 

function of enzymes or transporters is influenced by both their expressions and activities. In the 

Michaelis-Menten formulation, Km reflects more of the enzyme/transporter activity. The 

concentration of the enzyme/transporter explicitly relates to Vmax rather than Km [47, 89]. 

Furthermore, the covariation of Km and Vmax depends on many unknown factors and its 

quantification remains elusive. Thus, Vmax was only adapted for the investigation of the influence 

of enzymes/transporters on the substrate metabolism. Nevertheless, the analysis can be extended 

to investigate the influences of adapting Km on metabolism with the proposed simulation model.        

It has been found that the intra- and extra-cellular glucose concentrations positively and 

negatively correlate with GLUT expression (Vmax of GLUT), respectively. And because of rapid 

glucose turnover, glucose has quite lower concentration in cells than in interstitium as shown in 

Figure 5.1(c) and Figure 5.2(b). Thus, glucose concentration (composed of intra- and extra-

cellular parts) presents a negative correlation with GLUT expression as displayed in Figure 5.7a. 

The expression of HK (Vmax of HK) has negative impact on intra- and extra-cellular glucose 

concentrations simultaneously, so that the decrease of glucose concentration as HK expression 

was observed in Figure 5.7b. The high expressions of GLUT and HK both promote the glucose 

supply for glycolysis, which is the reason for lactic acid production. Therefore the lactate 

concentration is positively correlated with GLUT and HK expressions, while the extracellular pH 

performs an opposite relation with GLUT and HK expressions as exhibited in Figure 5.7c-f. 

In the current simulation model, the actions of GLUT and HK on glucose metabolism, and 

MCTs on lactate shuttling and metabolism were considered. Although GLUT and HK have 

several subtypes, which are expressed in different tumor types and have distinctive kinetics, they 

were configured generally without specifying the subtypes, tumor types and experimental 

conditions. The adaptive range in the current simulation may not mirror exactly the in vivo 

situation in all instances, although the results should be able to represent the in vivo situation in 

general. In addition, the model presented here can be extended to specified types of enzymes or 

transporters within the proposed framework.  
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5.6.3. Regulation of microvessel distribution 

In the artificial 2D simulation, the distribution of microvessels may not represent the 3D 

microvasculature in vivo. In particular, it is difficult to directly translate the 2D microvascular 

density (number/mm
2
) to 3D conditions (number/mm

3
). In the present study, the mean 

intervascular distance (µm) was used as a surrogate parameter of the microvascular density. 

Tumor metabolism is strongly influenced by the poor supply conditions which occur due to 

premature, chaotic microvessels [21]. From the pathophysiological point of view, tumor 

microvasculature may also have indirect impacts on metabolism by creating subvolumes 

exhibiting hypoxia which - through changes of the genome and proteome - can influence the 

expression of related enzymes and transporters [28, 109, 173, 174]. In this study, the microvessel 

distribution correlated strongly with substrate concentrations. The influences of enzymes and 

transporters on the substrate distribution are also dependent on the microvascular density. The 

absolute sensitivities of glucose and lactate, and extracellular pH to HK and GLUT decrease as 

the microvascular density increases. The transport and metabolism of a substrate were co-

influenced by two factors: (i) the supply via the microvasculature and (ii) the activities of the 

enzymes and transporters. For a phantom with a higher microvascular density, an optimal 

microvascular supply may suppress the action of enzymes and transporters on regulating 

substrate concentration. Thus, the substrate concentrations are less dependent on the enzyme and 

transporters at high microvascular densities.  

Our results show that the lactate concentration correlates positively with the MCT1 expression, 

but negatively with MCT4. This phenomenon can be explained by lactate shuttle and uptake. 

Tumors with a poor vascular supply contain more hypoxic regions and express more MCT4. 

This promotes the cellular lactate export, and meanwhile, the extracellular lactate concentrations 

maintain relatively constant. Therefore, higher MCT4 expression leads to more lactate reduction 

in more hypoxic regions. In well-vascularized tumor tissues areas, most of the cells are 

oxygenated (normoxic). In this case, higher expressions of MCT1 facilitate lactate (shuttled from 

normoxic regions) uptake by oxygenated cells, so that the lactate concentration correlated 

positively with MCT1 expression especially for more oxygenated regions.  

5.6.4. Molecular imaging versus underlying pathophysiological features 

In this study using computational simulation, we were able to map metabolic situations described 

earlier on the basis of experimental in vivo data. The tumor microvasculature was found to play a 

crucial role for the microregional distribution of glucose, lactate and extracellular pH. Lactate 
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levels are influenced to a greater extent by the microvascular density than by glucose 

concentration. The governing factors of the tumor microvasculature on the metabolism of 

glucose and lactate, and pH distribution have been reported in many studies [111, 163, 175-177]. 

The tumor microvasculature directly determines the substrate supplies to tumor tissue. 

Meanwhile, the imbalance between demand and supply due to malfunction of the premature 

tumor microvasculature indirectly influences the function of transporters and enzymes. In the 

TME the two effects may counter-act with each other, such that the tumor metabolism may pivot 

between balance and imbalance. For instance, the supply of glucose to tumor tissue with low 

microvasculature density is limited. On the other side, (even normoxic) tumor cells can switch to 

glycolysis coupled with enhanced expression/activities of related enzymes and transporters (the 

‘Warburg effect’). The counteraction of two aspects may reduce the effect of the microvascular 

distribution on glucose metabolism. Lactate is not supplied by the microvasculature. Its 

metabolism is strongly influenced by the imbalanced tumor oxygenation due to the 

inhomogeneous supply through the chaotic microvasculature. In this situation, the lactate 

concentration is mainly influenced by one of the counteracted effects, thus it is more sensitive to 

the TME than glucose.  

The results presented here show that GLUT expression correlated significantly with 

concentrations of glucose and lactate, and extracellular pH. GLUT has a greater influence on 

glucose metabolism than HK. GLUT function is a critical factor in cellular glucose supply, i.e., 

before the intracellular breakdown of glucose occurs. It can influence the further reactions during 

glucose metabolism and may form a bottleneck for the downstream metabolic steps. Studies on 

FDG (a glucose analogue) uptake have confirmed that glucose metabolism is more determined 

by GLUT than by HK [178, 179]. For lactate and pH, studies usually focus on the regulation of 

MCT1 and MCT4. Our results show that the lactate metabolism and the extracellular pH are also 

influenced by the “upstream regulators” GLUT and HK, in addition to MCT1 and MCT4. 

Tumor metabolism is co-regulated by many factors. Our results indicate that the interpretation of 

molecular imaging results is not straightforward. For example, the interpretation of lactate 

imaging may also need a consideration of the microvascular density and the expression of GLUT 

and HK. In practice, multi-modal imaging may provide a full spectrum of underlying 

pathophysiological features. 

This model is expected to provide a tool for the development of multimodal imaging strategies. 

This is a hypothesis at the current stage and certainly needs more efforts with the support of 

other experiments and tests to make this development promising. As an assumption, the 

regression is made to relate the pathophysiological factors (response observations) to substrate 

concentrations (predictor variables). Using the simulation data, the regression results indicate 
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that the expression of GLUT depends on glucose and lactate concentrations and pH. The HK 

expression is only a function of glucose concentrations. Both MCT1 and MCT4 expressions are 

strongly dependent on lactate concentrations. The MVD (or intervascular distance) can be 

reflected by the combination of glucose and lactate concentrations. In addition, in view of the 

results of sensitivity analysis, glucose is obviously sensitive to both GLUT and HK expressions; 

whereas lactate and pH are 4.5-fold more sensitive to GLUT than HK. GLUT expression may be 

assessed by the combination of glucose and lactate concentration and pH, which is consistent 

with the regression findings. Based on regression and sensitivity analysis, the phenotypes on a 

microscopic scale may be reflected by one or a combination of substrate distributions imaged on 

a macroscopic scale. 

A basic assumption of molecular imaging is that the distributions of the applied detection 

substrates (tracer, probe or contrast agent) correlate with the investigated intrinsic property. In 

reality however, their relation is not straightforward. In these studies, we have not only 

considered the in-system distributions of metabolites, but extended to model the distributions of 

imaging probes, such as ([
18

F]FDG) by introduction of the modulation of HIF-1 and competition 

with metabolites (e.g., glucose) for enzymes (e.g., HK) and transporters (e.g., GLUT). 

5.6.5. Regulation of HIF-1  

HIF-1, as one of the critical mediators between tumor hypoxia and metabolism, is introduced in 

the model to investigate its influence on the tumor microenvironment. The spatial distribution of 

HIF-1α is partially regulated by the oxygen content (HIF-1β is a constitutively expressed 

subunit). It is accepted that HIF-1α is rapidly degraded under normoxia, whereas hypoxia leads 

to stabilization and accumulation of HIF-1α [180]. In the proposed HIF-1 driven model, the HIF-

1 distribution is mapped from the oxygen distribution based on the experimental relationship 

between oxygen and HIF-1 exhibited in Figure 3.5 [127] or is obtained by solving the evolution 

equation of HIF-1. Although the relationship between HIF-1 level and oxygen content may not 

be unique due to diversified tumor types and experiment conditions, the simulated HIF-1 

distribution derived from the measurements or model equation can reflect its tendency in tumors. 

In the simulation of enzyme/transporters response to HIF-1 level, the ideal approach is plotting 

the curve of measured enzyme/transporter expression as the function of measured HIF-1 level. 

However, there is limited quantitative information reported about the spatial relationship 

between the two aspects. In the simulation, the expressions of enzyme and transporters are 

assumed to correlate linearly with local HIF-1. Although the assumed relationship may not be 

ideal, it reflects the basic relationship tendency in tumors. More specific relationship between 

enzyme/transporter expression and HIF-1 level will be explored to approach the simulation to the 
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measurement.  

5.6.6. Model complexity and limitations 

In contrast with the ordinary differential equation (ODE) based imaging analysis models [25], 

the proposed model is relatively complex by modeling the three synergistically functioning 

pathways hypoxia, glycolysis, and lactate fueled respiration. These investigated pathways are 

strongly related to several emerging molecular imaging methods. For the interpretation of these 

molecular imaging to pathophysiological phenotype and the development of corresponding 

quantitative strategies, it is necessary to include the relevant substrates and the influencing 

pathophysiological factors for the understanding of their interactive relations. Nevertheless, only 

the major factors can be included in the current simulation model after compromising between 

the computational efficiency and fidelity. The current model only considers the intracellular 

concentrations of glucose and lactate and describes the intracellular and extracellular 

distributions of these substrates and the respective transporters (GLUT and MCT) involved. It 

does not include the intracellular concentrations of the relevant anions, cations and CO2, which 

are also transported across the cell membranes (passively or actively) and which form 

concentration gradients across membranes. Some of the ions involved in the current model are 

symported (lactate
-
/H

+
, Na

+
/HCO3

-
) and antiported (HCO3

-
/Cl

-
). For example, lactate

-
 and H

+
 are 

co-transported via MCT across the membrane. The H
+
 and lactate

-
 are subsequently bound to 

MCT on both sides of the cell membrane and the substrate-bound MCTs on both sides exchange 

until equilibrium is reached. The kinetic parameters for H
+
 and lactate

-
 co-transport are 

determined by the concentrations of H
+
 and lactate

-
 simultaneously [47]. However, the 

quantitative knowledge of these co-transport procedures is limited and has not been considered 

for the co-transports in the model. Nevertheless, the distributions of extracellular substrates in 

the current simulation reflect the in vivo situation.  

In the current simulation, oxygen is assumed to be only used for glucose and lactate oxidation. 

This may not represent the realistic in vivo condition and oxygen consumption may also be used 

in other metabolic pathways. Consequently, the metabolic rate of lactate determined by oxygen 

and glucose consumption rates may be under- or over-estimated. However, it is reported that 90% 

of the oxygen consumption is used for glucose breakdown [181] . As a result, we did not 

consider any other metabolic pathways in this study.   

The tumor hypoxia includes the chronic and the acute hypoxia. In the proposed model, we only 

consider the chronic hypoxia as the objective of the model is to investigate the relationship 

between the imaging signals and the expressions of the relevant enzymes and transporters at the 
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imaging time. Although the transient hypoxia can happen even within the imaging period, the 

influence of the acute hypoxia can hardly be detected in hypoxia imaging [34]. Also several 

pathophysiological factors (e.g. the expressions of GLUT, HIF-1) have been reported to be stable 

under acute hypoxia [28, 33]. Due to the restriction of complexity, the acute hypoxia is not 

considered in the current model. 

Continuing as the previous studies [83, 85], a square phantom is considered for the modeling, 

and the vessel and cell shapes are assumed to be square. Nevertheless, our aim is to assist the 

development the strategies of imaging analysis strategies, which is expected to not to be 

influenced from the phantom geometry. The simplified geometries make the exploration and 

analysis of the underlying relations more straightforward.  

To verify a simulation model, it would be ideal to simulate from realistic tumor geometry with 

onsite calibrated physiological and biochemical parameters and compare the simulation results 

with real measurements. However, it is difficult to achieve this with the restriction of current 

measurement technologies. It is very challenging to get all the required data from the same intact 

in vivo tissue. Also a direct comparison between macroscopic molecular imaging and 

microscopic tumor imaging such as immunohistochemical (IHC) is limited by the bottleneck of 

co-registration. Although several co-registration methods have been developed, there still exists 

a large deformation during the tumor resection and cutting and a large resolution gap between 

microscopic feature and macroscopic feature. In addition, the interpretation of ex vivo staining 

data (e.g. IHC) to quantitative values of kinetics of the proteins is still difficult. Therefore, the 

direct comparison of the modeling data with clinical or preclinical imaging data is not achieved 

in this study. At the moment, the modelled data is validated by indirect comparisons with the 

empirical data in the literature. Although not all the investigated properties has quantitative 

values in the limited availability of literature data, we try our best to verify that most simulated 

substrate concentrations fall in the range of experimental data reported in the literature, and the 

main simulation findings (e.g. GLUT controls the glycolytic flux in tumors, and extracellular pH 

has little correlation with MCT levels) are consistent with the experimental results in the 

literature.  

5.7. Conclusions 

In this study, computational simulation models are proposed to investigate the quantitative 

relationship between glucose and lactate metabolism and pathophysiological features in the 

microenvironment of solid tumors. The main simulation results are in agreement with the in-vivo 

and in-vitro literature data. The influences of several physiological factors (e.g., expression 
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levels of HIF-1, GLUT, HK, MCT1 and MCT4, plasma oxygen tension, vascular distribution) 

and simulation factors (e.g., pixel size of tumor tissue phantom, iterations) on the simulation 

results are evaluated. The FDG uptake is also integrated in the proposed model. The FDG model 

is validated by comparing simulated TACs with the measured one. And the influences of 

pathophysiological factors (e.g., vascular density and perfusion, GLUT and HK expressions) on 

the FDG uptake are assessed. The quantitative relationship established by the proposed models 

may allow the theoretical interpretation of the co-influence of multiple factors and the systematic 

understanding of principles behind molecular imaging. The computational simulation may assist 

the hypothesis generation to bridge the discrepancy between the substance imaging on the 

macroscopic scale and the tumor pathophysiological factors on the cellular scale. It has the 

potential to accelerate the development of multi-modal image analysis strategies for tumor 

phenotype estimation.   
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6. Validation and applications of positron imaging: imaging 

characterization and spatial resolution improvement by 

classification algorithm 

To improve the spatial resolution of positron imaging, a classification model is proposed in 

chapter 4 by learning the advanced features of simulated positron trajectories in a silicon detector. 

This chapter validates the method on the [
18

F]FDG imaging using an absorbing edge protocol 

and a leaf sample. The positron imaging characteristics are evaluated by both measurements and 

Monte-Carlo simulations in advance of model validation to have a comprehensive understanding 

of the imaging system, which can assist the classification method implementation and imaging 

setup optimization.  
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6.1.  Positron camera characterization: a comparison between 

measurements and Monte-Carlo simulation 

The Timepix chip is operated with a global discrimination threshold (THL) corresponding to 

digital-to-analog converter (DAC), which is obtained by threshold equalization over pixels. The 

THL is individual for each Timepix chip. The DAC number in TOT model is calibrated to real 

energy [158]. In both modes, the bias voltage and clock are chosen to be 100 V and 9.6 MHz, 

respectively.  

The key characteristics of the positron camera are evaluated in this section. The simulated and 

measured characteristics are compared. Figure 6.1(a) displays simulated trajectories (yellow dots) 

in the Timepix detector of 100 positrons emitted from an ideal point source (orange dot on top of 

passivation layer). Figure 6.1(b) compares the simulated energy spectrum of energy deposition in 

the Timepix detector after incidence of a positron compared with measurement.  

 

Figure 6.1. (a) The trajectories of 100 positrons passing through Timepix simulated by Geant4; 

(b) The measured and simulated deposited energy spectrum of 
18

F positrons. 

In most cases, adjacent pixels excited by one incident particle in a single short frame compose a 

cluster. Figure 6.2 displays the histogram of cluster sizes. The average experimental cluster size 

is 5.2 pixels. The average simulated cluster size is 5.1 pixels (without energy threshold, without 

charge diffusion) and 4.7 pixels (with energy threshold, without charge diffusion), 4.8 pixels 

(with energy threshold, with charge diffusion). The experimental settings and simulation 

parameters for energy spectrum and cluster size distribution are consistent with those for spatial 

resolution. 

(a) 
(b) 
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Figure 6.2. The experimental (a) and simulated (b) cluster size distribution 

6.1.1. Sensitivity and linearity 

 

Figure 6.3. The linearity of the 
18

F positron detecting system. Counts detected (blue ‘×’) and 

simulated (green ‘*’) with respect to 9 different activities of a 1 ml radioactive source are fitted 

linearly (blue solid and green dashes line). 

In order to test sensitivity and linearity, nine FDG samples with different radioactivities: 0.1, 0.3, 

0.6, 1, 3, 6, 10, 30, and 60 MBq/ml were prepared and measured. The exact radioactivities at the 

moment of measurement were calibrated by reference to a measurement in a gamma counter 

(WALLAC 1480 Wizard). A 10 µl droplet taken from the FDG samples by pipette was dropped 

on the detector surface. The detector surface is protected by a 6 µm thick Mylar foil (Pütz GmbH 

(a) (b) 
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+ Co. Folien KG). Positron interactions with the detector were recorded for each sample by the 

positron camera operated in TOT mode. All the pixels excited by one incident particle compose a 

cluster, which we regard as one count received by detector. The detecting frame width was 

chosen short and adapted to the source activities to avoid cluster overlap. The frame widths of 10 

ms, 5 ms, 1 ms, 0.5 ms, and 0.1 ms were tested before the experiment with the source of highest 

activity and a frame width of 1 ms was selected for the acquisition of the data. Figure 6.3 shows 

the measured counts (blue) of 9 
18

F samples of different activities as well as the theoretical 

prediction from simulation (green). The sensitivity for measurement and simulation is 0.35 

cps/Bq and 0.38 cps/Bq from linear fitting, respectively. The linearity and sensitivity of the 

measurement is close to the simulation.  

 

Figure 6.4. The sensitivity affected by the Mylar (a) and glass slide (b) between sensor and 

sample. The measured sensitivity curves (blue) are compared with simulated ones (green). 

(a) 

(b) 
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The detector is sealed with a thin layer of aluminum (thickness 1μm) and a layer of Mylar 

(thickness 6 µm) for detective surface protection and the sensitivity of the detector was defined 

with all the covers. However, the imaging of positron is strongly influenced by the medium 

between the imaging object and the detector The influence of medium between detector and 

sample on sensitivity is evaluated. Various layers of glass slides (thickness 170 µm, 0~5 layers) 

and Mylar with different thicknesses (6, 12, 15, 19, 23, 30, 36, 42, 50 µm) as the medium are 

inserted between the detector and the source to assess the influence of additional medium on 

sensitivity. The sensitivity curves in relation to medium thickness are plotted in Figure 6.4, 

where measured and simulated sensitivity curves are compared. Every 10 µm increase of Mylar 

or glass will lead to 0.025 and 0.015 cps/Bq sensitivity loss, respectively (the range out of the 

quasi-linear region is not considered for sensitivity loss evaluation).  

6.1.2. Spatial resolution 

The spatial resolution for positron measurements is affected by multiple scattering of positrons, 

charge diffusion effect of generated electrons in detector crystals, and system noise [68, 152]. 

The spatial resolution was obtained by absorber edge method (AEM) [20] and its measuring 

process is shown in Figure 6.5. Half of the detector surface was covered by a 300 µm thick 

aluminum whose edge is straight and sharp to reduce border scattering (Figure 6.5(b)). A 10 µl 

droplet of FDG (activity: 30 Mbq/ml) was dropped on the Mylar held 5cm above the detector 

(Figure 6.5(c)). 30000 frames with 0.1 s width were detected in TOT mode, which records the 

energies deposited in pixels. Before calculating spatial resolution, the edge alignment was 

controlled by estimating the edge on the acquired image. This was achieved by fitting a line on 

the gradient image obtained using a Sobel operator.  

 

Figure 6.5. The process of measurement for spatial resolution. 

The energy weighted centroid approximation has been demonstrated to improve the spatial 

resolution in the imaging of other radio-isotopes (such as 
90

Sr/
90

Y and 
14

C electrons) [63, 77]. 
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This method is tested here for its ability to enhance the spatial resolution of 18F positron imaging. 

The centroid of the cluster was calculated to assess the incident position of the positron. The 

recorded energy deposited in each fired pixel within a cluster was taken as weight for the 

estimation of the centroid of the cluster. The cluster energy is the summed energy of all pixels 

involved in the event. It is not equivalent to the energy of the incident positron, since the positron 

may not be completely absorbed in the detector’s sensitive layer.  

An image of an 
18

F positron edge profile for the measurement for spatial resolution is shown in 

Figure 6.6(a). The edge response function (ERF) is determined by averaging 100 columns 

perpendicular to the edge and the corresponding line spread function (LSF) is derived by 

differentiation of ERF as shown in Figure 6.6(b) and (c). The system spatial resolution was 

estimated by the FWHM of the peak of the LSF at the edge region. The spatial resolution based 

on the measurement shown in Figure 6.6(a) is 155.5±3.1 µm (with energy centroid 

approximation) and 177.1±4.1µm µm (without energy centroid approximation).  

 

Figure 6.6. The process of obtaining the spatial resolution using AEM: (a) the image of FDG 

edge profile; (b) the ERF of positron image; (c) the LSF: the differentiation of ERF. 

6.1.3. Influence of background 

Although Timepix is sensitive to charged particles, it can still capture some gamma rays of 

positron annihilation. To evaluate the ratio between positrons and gamma rays, measurements 

with and without a covering Cu plate (500 µm thick) of detector surface are performed. A 10 µl 

FDG droplet source (activity: 10 MBq/ml) was dropped on the center of detector. The Cu plate is 

expected to block positrons without influencing gamma rays. In Medipix and TOT mode 

100,000 frames (width 1 ms) are recorded. A 50 pixels × 50 pixels region in the center was 

chosen to count the clusters and calculate the ratio between the signals covered and not covered 

by the Cu plate. 
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To investigate the background from electronic noise and other possible surrounding radioactive 

sources, the background signals were recorded for 8 hours with 2880 frames (width 10 s) in 

Medipix and TOT mode, respectively. The background is supposed to be homogeneous over 

field of view of the detector. The signal-to-noise ratio (SNR) of detecting system is evaluated by 

selecting a region of interest (ROI) and an equivalent background area [156, 182]. The SNR=μ/σ0, 

where μ is the mean value of counts in ROI and σ0 is the standard deviation of counts in 

background region. 

The ratio between detected gamma rays and positrons is ~1.9% for both Medipix and TOT mode, 

and it’s consistent with simulated ratio. A negligible influence of background was observed 

during the whole measurement (Medipix mode: 3.1×10
-6 

cps/pixel, TOT mode: 1.3×10
-4

 

keV/s/pixel). 

6.1.4. Ex-vivo mouse tissue sample imaging 

FDG uptake images of a heart tissue slice of a C57B1/6 mouse was measured by the positron 

camera. The mouse experiments described here have been approved according to German animal 

welfare regulations. The 17 weeks old mouse received T-NHL cells intravenously 18 days before 

imaging. It was fasted overnight before the injection of FDG (activity: ~4 MBq).  After sacrifice, 

the heart was taken out, rinsed for three times, frozen and then cut into slice of 20 µm thickness 

(Leica CM1950 freezing microtome). 

After the preparation of the heart tissue cyro-sliced sample, it was measured by the positron 

camera in TOT mode for 20 min by placing it 1mm above the camera surface. Afterward, to 

compare the difference between heart tissue slice images acquired in TOT mode and in Medipix 

mode, we detect a phosphor image as reference. The same sample was transferred to an 

autoradiography cassette for film (Kodak phosphor imaging plate) exposure of 16 hours. Then it 

was scanned by CR 35 Bio Image Plate Scanner (Duerr Medical GmbH) for 10 min with an 

intrinsic resolution of 25 µm spatial resolution. 

Figure 6.7(a) and (c) are the results of positron imaging of a mouse heart tissue slice in Medipix 

mode: normalized hits and normalized counts (without energy weighted centroid approximation) 

respectively. Figure 6.7(b) and (d) show the same heart images obtained in TOT mode: 

normalized deposited energy and normalized counts (with energy weighted centroid 

approximation) respectively. An incident positron traverses the detector depositing energy in 

each inelastic collision, which is defined as a hit here, and all the pixels excited by deposited 

energies compose a count. For the comparison with the phosphor reference image, the absolute 
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pixel values of Figure 6.7(a)-(d) are normalized by the global mean (mean value over all image 

pixels). The RMSE of Figure 6.7(a)-(d) relative to reference image is evaluated. Before RMSE 

evaluation, phosphor image were firstly interpolated and sampled to the same pixel size (55µm) 

as positron camera images and then co-registered using a mutual information algorithm (Fiji 

Image J).  

To compare the positron images in Figure 6.7(a)-(d), the geometry of the heart is identified in the 

reference phosphor image and the outline is displayed in the figure. The mean normalized hits 

and normalized deposited energy over the outlined region are 7.6 (Figure 6.7(a)), 7.7 (Figure 

6.7(b)), 6.7 (Figure 6.7(c)) and 6.8 (Figure 6.7(d)) in comparison with the mean of normalized 

particles 9.7 in reference image. The RMSE to the reference phosphor image of outlined heart 

region is 2.9, 2.8, 3.8 and 3.7 for images Figure 6.7(a)-(d).  

For the purpose of evaluating the SNR of positron imaging, two regions of interest (ROIs) of the 

same size (45 × 30 pixels) were chosen in the heart region as well as in the background region 

distant from the heart. We obtained SNR (between ROI and background area): 103.6, 115.7, 39.0 

and 39.7 for Figure 6.7(a), (b), (c) and (d) respectively.  
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Figure 6.7. Positron camera images of a mouse heart tissue slice with [
18

F]FDG uptake. The 

amplitude in image (a) and (c) is normalized hits and normalized counts (without energy 

weighted centroid approximation) obtained in Medipix mode, and the amplitude in image (b) and 

(d) is normalized deposited hit energies and normalized counts (with energy weighted centroid 

approximation) obtained in TOT mode. The heart region composed of pixels with normalized 

amplitudes above 5 in reference image is outlined in image (a), (b), (c) and (d) by red curves 

respectively. 

6.2. Validation of classification algorithm on spatial resolution 

improvement for 
18

F positron imaging 

6.2.1. Verification of Monte-Carlo Simulation 

The simulated pixel energy spectrum and cluster size distribution has presented similar 

tendencies with the measured ones as exhibited in Figure 6.1(b) and Figure 6.2 [157]. The 

average cluster size for measurement and simulation were 5.2 and 4.7 pixels, respectively, under 

the setting of absorption edge protocol.  

Seventeen selected classification features were analyzed with PCA. Five independent features 

(the newly formed features after PCA) were found with highest contributions to the classifier. By 

testing, the classification results generated by them turned out to be consistent with the results 

obtained by only using the features of E1, E2, N1, N2 and the normalized pixel distance from the 

cluster energy-weighted centroid. These 5 features also bring the highest classification sensitivity. 

This phenomenon indicates that E1, E2, N1, N2 and the normalized pixel distance are the most 

functional features within the current feature selections. The simulated spectrum of features: E1, 

E2, N1 and N2 were compared with the measured ones as shown in Figure 6.8. The differences 

between simulated and measured features are not significant (H=0, P=1). The simulated features 

have similar behavior as the measured ones, thus we can transfer the simulation data to the 

learning procedure. 

6.2.2. Verification of the classification using simulated data 

10
5
 positrons emitted from the 

18
F general source were simulated to pass through the detector 

and generate the training data. This number of positrons was found to generate stable results 

within the tested range of 5×10
3
 to 10

6
 emitted positrons. 
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The classification accuracies were estimated and listed in Table 6.1. Three types of accuracies 

were assessed on each set of clusters (2-pixel cluster, 3-pixel cluster, 4-pixel cluster, 5-pixel 

cluster and more-pixel cluster): Accuracy 1 ― correctly classified primary pixels / the classified 

primary pixels; Accuracy 2 ― secondly fired pixels misclassified as primary pixels / the 

classified primary pixels; Accuracy 3: thirdly fired pixels misclassified as primary pixels / the 

classified primary pixels.  

 

Figure 6.8. The comparison of feature spectrum between simulated and measured data. 

Table 6.1. The classification accuracies using simulated testing data 

 
2-pixel 

cluster 

3-pixel 

cluster 

4-pixel 

cluster 

5-pixel 

cluster 

more-pixel 

cluster 

Accuracy 1 (%) 64.5±1.7 74.2±2.3 80.8±1.9 75.9±2.4 76.2±2.2 

Accuracy 2 (%) 35.5±1.7 17.4±1.3 8.1±1.0 9.7±1.1 1.7±0.2 

Accuracy 3 (%) 0 8.4±0.9 6.5±1.0 4.3±0.3 0.7±0.1 
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Cluster percentage* 19.5±1.3 15.5±0.7 12.5±0.9 9.8±0.8 32.9±1.1 

*cluster percentage: proportion of a certain type of clusters within the total clusters. 

Figure 6.9 shows an example of a classification result using simulated data as testing set. The 

classified map of clusters is compared with the original map (ground truth) with pre-knowledge 

of the pixel sequences in clusters (field of view, FOV: 60×60 pixels). The classes 1 to 4 are 

marked by color red, orange, green and blue, respectively. In the FOV, 19 clusters are ready for 

classification, within which 4 clusters are misclassified with primary pixels (red circle) or suffer 

from classifier failure (green circle). 

 

Figure 6.9. An example test on the simulation data: the left is the ground truth of the simulation 

and the right is the result of the classification. The classes 1 to 4 of both ground truth and 

classification results are labeled with colors red, orange, green and blue, respectively. The 

misclassification and classifier failure are marked with red circle and green circle, respectively.  

6.2.3. Verification of the algorithm in measurements using absorbing edge 

method 

The spatial resolution of 
18

F positron imaging is evaluated by AEM. Uniform and energy 

weighted centroid approximations were applied to the positron edge image, respectively, as 

shown in Figure 6.10(a) and (b). Figure 6.10(c) is the classified image considering the sensitivity 

loss compensation. While the classified image without the sensitivity loss compensation is 

shown in Figure 6.10(d). For Figure 6.10(a) to (d), the amplitude of the images is the number of 

counts, which can be the clusters (Figure 6.10(a) and (b)) or primary pixels (Figure 6.10(c) and 

(d)). The red box in figure (d) outlines the columns (as to all images) on the edge which was used 
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for averaging the edge response function. Figure 6.10(e) shows the edge response function of the 

4 images above. The spatial resolution is obtained by calculating the FWHM of the line spread 

function given in Figure 6.10(f). The spatial resolution for the edge image applying the 

classification algorithm is 136.3±1.6 µm with sensitivity compensation and 128.4±3.8 µm 

without sensitivity compensation, as compared with that of edge images processed with uniform 

and energy weighted centroid approximation: 160.0±3.1 µm and 156.6±4.0 µm, respectively. 

The current method enhances the spatial resolution by 24.2%. This spatial resolution 

improvement is accompanied by 23.8% sensitivity decrease. With sensitivity loss compensation, 

the spatial resolution improves by 17.6% compared with the energy weighted centroid method. 

Using cluster energy or primary pixel energy as the image values instead of counts in Figure 

6.10(a) to (d), the spatial resolutions of the corresponding images are 151.9±5 µm, 147.7±5 µm, 

135.0±4 µm, and 126.9±4 µm, respectively, which are slightly higher compared to the cases in 

which the image amplitudes are the counts. 

 

Figure 6.10. An example of obtaining spatial resolution by AEM.  Figures (a) and (b) are the 

edge images with uniform and energy weighted centroid approximation respectively; figures (c) 

and (d) are the edge images obtained by classification method with and without consideration of 

the sensitivity compensation respectively; Figures (a) to (d) have same amplitude color scale. 

Figure (e) shows the edge response function curves of figures (a) to (d); figure (f) presents the 

corresponding curves of line spread function and the spatial resolution are marked on each curve. 
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The red box in figure (d) outlines the columns on the edge to be averaged for the edge response 

function. 

6.2.4. Verification of the algorithm for positron imaging 

The positron images of the leaf sample were assessed by calculating the root mean square error 

(RMSE) relative to the phosphor image and the Dice coefficient relative to the optical image. 

Since the pixel size of the positron image from the Timepix detector (55 µm) is not consistent 

with that of the phosphor image (25 µm) and the optical image (21.2 µm), the phosphor and the 

optical image were resampled to have the same pixel size as the positron image for quantitative 

assessment. Then the phosphor and the optical image were registered to the positron image by 

Fiji Image J.  

The positron and the phosphor images were then normalized by their global means, respectively. 

For a positron image, RMSE in relation to the phosphor image is given by:  

 𝑅𝑀𝑆𝐸 = √∑ (𝐴𝑖 − 𝑃𝑖)2
𝑖∈𝛺 /𝑛 (6.1) 

Where, Ai and Pi are amplitudes of pixel i, 𝑖 ∈ 𝛺  in the normalized positron image and 

normalized phosphor image. The Ω denotes the leaf vein region (i.e., the region of interest), 

which is segmented by Otsu thresholding in the phosphor image.  

The leaf vein structure was segmented by k-means clustering (5 clusters) in the optical and the 

positron images. The Dice coefficient, which characterizes the similarity of two images [183], 

was then calculated using the segmented images over the region with the major part of the leaf 

vein structure (150 × 150 pixels).  

The positron image of a part of a leaf sample after applying the proposed method was compared 

with that based on energy weighted centroid method (Figure 6.11). Figure 6.11(a) is the positron 

image processed with energy weighted centroid method. Figure 6.11(b) is the image processed 

with the proposed method. Figure 6.11(c) shows the phosphor image as a reference. The 

amplitudes of all images are normalized by the global mean. The global mean for Figure 6.11(a) 

and (b) is 22.2 counts, compared with 178.4 counts in Figure 6.11(c). The region with highest 

amplitudes of Figure 6.11(c) presents the main vein containing the tracer. The RMSEs of Figure 

6.11(a) and (b) are calculated relative to the phosphor image over the main vein region. The 

RMSE for Figure 6.11(b) is 1.59 compared with 1.83 for Figure 6.11(a). Figure 6.11(d) is the 

optical leaf image. The Dice coefficients of the segmented vein structure of Figure 6.11(a) and 

6(b) in relation to Figure 6.11(d) were: 0.60 and 0.65, respectively.  
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Figure 6.11. Imaging of the vein network of a leaf sample with [
18

F]FDG uptake. Figure (a) is 

the positron image applied with energy weighted centroid method applied; figure (b) is the 

positron image using classification method; figure (c) is the reference phosphor plate image; 

figure (d) is the optical image of the leaf sample. Figures (a) to (c) are normalized by the global 

mean and have the same amplitude display limits [0, 10].   

6.3. Discussions  

A data-driven classification algorithm is put forward to improve the spatial resolution of 
18

F 

positron imaging. The proposed algorithm has been tested on the imaging of absorbing edge 

protocol and a leaf sample. In the absorbing edge protocol designed for observing delicate 

alterations of spatial resolution, our proposed method can enhance the spatial resolution by 24.2% 

maximally compared to the former methods. The positron leaf image processed with the 

proposed algorithm is more similar with the reference images, which have high spatial resolution 
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and contrast. The proposed method may extend to other particles with similar long trajectories as 
18

F positrons in the detector, while the advantage of this method may diminish as for particles 

with relatively short trajectories (e.g., 
3
H and 

14
C electrons). 

6.3.1. Camera characterization  

Several characteristics of 
18

F positron detection were evaluated by simulation and measurement. 

The system sensitivity, linearity, energy spectrum and cluster size from the measurements are 

consistent with the theoretical expectation from simulations. The comparison between 

experiment and simulation can serve as a valuable tool to improve both the experimental 

condition and simulation setting.  

The Timepix device running in the TOT mode measures the charge collected by individual pixels 

via the measurement of the width of the preamplifier signal, proportional to the deposited energy 

[63]. The Timepix operated in the TOT mode outputs a DAC value. As the device contains 

65536 independent spectrometric channels and their response is not uniform, energy calibration 

for each pixel is necessary and implemented. The dependence of DAC value on energy can be 

modeled by a surrogate function with four parameters, which are determined by measurement 

and evaluation of the response of each pixel in at least four calibration points [158].  

The energy weighted centroid approximation depends on the assumption that more energy is 

absorbed in the first steps of a particle interacting with the detector than in the later steps, so that 

the energy weighted centroid can approach to the initial incident position. However, this 

assumption does not hold for all of the particles, especially for higher energy particles with long 

track in the detector. The relation of average energy loss of an ionizing particle and the traversed 

distance in a material made of independent atoms is described by the Bethe-Bloch formula [48]. 

Based this equation, positrons may also lose their energy mainly in the late steps due to varying 

incoming angles and velocity. Although it’s more appropriate to process the data based on 

Bethe-Bloch equation, it is not possible to identify the sequence of the fired pixels along the 

track. Thus this method is not feasible in current measurements.  

The sensitivity of positron imaging system is strongly influenced by the medium between the 

imaging object and the detector. The ability of positron traversing medium is severely limited 

(up to 2.4 mm in water) due to energy absorption. However, in practice, medium such as Mylar 

or glass need to be included to protect the detector or to fix the imaging objects. For the analysis 

of positron imaging or detector properties, the influence of the intermediate medium must be 

considered. The sensitivity decreases linearly as the thickness of medium increases within a 
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certain range. According to the simulation, this linear range is up to ~140 µm for Mylar and up to 

~100 µm for glass.  The decrease of the sensitivity slows down as the thickness of medium 

increases further. Thus, it is necessary to carefully consider these influences before designing a 

positron imaging protocol. 

6.3.2. The classification feature selection 

The training and classification procedures are sensitive to selected features. Improper selection 

of the features may limit the performance of the algorithm. In this study, seventeen features were 

selected based on the observable and intrinsic differences of energy and topology among classes. 

Positrons lose their energy through inelastic collisions with the atomic electrons when traversing 

the detector [48]. The average energy lost per distance traversed by an ionizing particle in a 

material made of independent atoms and due to only inelastic processes (ionization and 

excitation), is given by the Bethe–Bloch formula. It is found that the speed of energy loss 

increases as the ionizing particle slows down by analyzing the Bethe-Bloch formula and 

therefore more energy will deposit in last steps along particle tracking. In this condition, it can be 

predicted that more pixels excited later can have higher relative energy E1 and E2 instead of front 

pixels (see Figure 4.1(b)).  

The topologies of different classes show distinctions as well. A higher energy positron can 

generate a cluster with the end containing 2×2 groups of pixels, which is caused by the Bragg 

peak in the energy deposition curve versus track path length [156]. The primary pixels usually 

appear in the opposite end to the 2×2 groups and are observed with fewer excited neighbors. The 

primary and the later pixels tend to have different distributions of neighborhood numbers. Thus, 

the distributions of pixel neighborhood numbers: N1 and N2 are chosen as features. Similarly, the 

features E3, E4, E5, E6, characterizing the combination of deposited energy and neighbor number, 

are also selected for learning the classifier. Moreover, considering the Bethe-Bloch formula and 

Bragg peak, the primary pixels tend to be more distant from the energy weighted centroid of the 

clusters. Therefore, the normalized pixel distance from the energy-weighted centroid of the 

belonged cluster is also considered as a classification feature. 

In addition, some texture and descriptive indices such as the moment, skewness, kurtosis and 

entropy of the energy and fired pixel distribution over the neighborhood of the investigated 

pixels (pixel itself included), which integrate the energy and topology information of the 

investigated pixels, are adopted to characterize the pixels.  
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The features selected in this thesis are descriptive indices which have some physical meaning in 

practice. However, they are still far away from the physics-relevant features. Ideally these 

features should be derived from the energy scattering principles of positrons in a semiconductor 

detector. However, such principles can be only described statistically and it is very difficult to 

find a suitable and quantifiable feature. Although we have selected the features with our best 

efforts, other suitable features or feature combinations should be explored in future studies. The 

improvement on the feature selection can further enhance the performance of the proposed 

algorithm. 

6.3.3. Influence of training set on the results 

The classification accuracy is affected by the construction of the classifier, which is influenced 

by the training set. The training set is determined by several factors: the feature selection (as 

discussed above in section 4.1), the source and the size of training set. A general box-shaped 

source (dimension: 5 cm × 1.4 cm × 1.4 cm), from which the positrons are emitted randomly, 

was chosen in the current study to generate the training set. The general source thickness (5 cm) 

is selected with the consideration that the detector is normally set less than 5 cm from the source 

due to the short range of beta particles in the medium in most cases of beta imaging. Other 

sources have been tested to investigate their influences on the classification results, such as box 

sources (e. g., dimension: 2.5 cm × 1.4 cm × 1.4 cm), plane sources (ultra-thin cubic, parallel to 

the detector) and point sources. The results have shown that they can generate similar feature 

spectra and classification results as the proposed general source. Therefore the classifier 

originating from the proposed source can provide relatively stable results and can be applied to 

variable measurement protocols.  

The classifier stability depends on the size of the training set. The detected clusters should be 

over-sampled due to sensitivity loss. Different numbers of positron emissions (5×10
3
, 10

4
, 5×10

4
, 

10
5
, 5×10

5
 and 10

6
) have been tested by simulation. The simulated detection sensitivity is 

assessed to be ≈0.056 cps/Bq using the general source proposed. It is found that the classifier 

reaches equilibrium (i.e., obtain stable results) starting at ≈5×10
4
 positrons emissions. In this 

study, the classifier is learned by topological and energy information induced by 10
5
 incident 

positrons.  

The classification model built in the current study covers a wide scenario of beta imaging. For 

some special applications (e.g., positron traversing another medium before entering the positron 

camera), the training set can be adapted for the specific situation.  
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6.3.4. Charge diffusion effect 

The electron-hole pairs, generated by deposited energy in the detector, diffuse before their 

collection by the electrodes. The deposited energy diffusion is a surrogate of the diffusion of 

electron-hole pairs. For a fired pixel, the detector output energy does not indicate the energy 

deposited completely within this pixel, but also includes partial energies deposited in neighbor 

pixels, which diffused into the current pixel. The charge diffusion effect may change the pixel 

energy spectrum and pixel topology. Its influence on the classification has been evaluated [152].  

Timepix is operated under high bias voltage (100 V) and the sensitive layer is over-depleted. The 

electron-hole pairs generated in the sensitive layer can be collected by electrodes within a short 

time. The maximum possible collection time of the Timepix detector is estimated to be 36.8 ns 

by simulation (suppose the interaction happens at 300 µm from the collection electrode, the 

mobility of holes in silicon is 250 cm
2
/V/s [184]). It is concluded that more than 97% of the 

energy is deposited within one pixel due to the short collection time. Even for the possible 

maximum energy deposition (633 keV), the energy diffused to neighbor pixels is below the 

energy threshold (≈3.4 keV). Thus, the charge diffusion effect is expected to be less than one 

pixel. The energy spectrum and topology of pixels are almost unchanged. Thus, the charge 

diffusion effect does not influence the detection and simulation results significantly and was 

therefore not included in the simulation. 

6.3.5. Spatial resolution vs. sensitivity 

It is estimated by simulation that (5.8±1.2)% of 3-pixel clusters, (21.4±0.6)% of 4-pixel clusters, 

(24.6±2.1)% of 5-pixel clusters, and (32.3±2.2)% of more-pixel clusters are not correctly 

classified. The imaging sensitivity decreases by 16.6% on average as observed in the absorbing 

edge protocol. This sensitivity loss can be compensated by energy weighted centroid 

approximation in the proposed method, although the compensation worsens the spatial resolution 

by 6.3%. In the application of imaging a radioactive leaf sample, the compensation maintains the 

sensitivity (the sensitivity decreased by ≈23.9% without compensation), while the spatial 

resolution did not show obvious degradation. Therefore, we suggest compensating the sensitivity 

in particular for the measurements with low radioactive doses and dynamic imaging (short image 

acquisition time). 

The misclassification, in particular the mixture of second and third pixels, limits the 

improvement of spatial resolution and the influence was estimated by simulation. An ideal 
18

F 

point source was used for the theoretical spatial resolution assessment. The spatial resolution of 
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the image composed of only primary pixels is 58.9 µm, composed of both primary and second 

pixels is 69.6 µm, and composed of the mixture of primary, second and third pixels is 71.0 µm, 

in comparison with 138.4 µm spatial resolution of the image formed by all pixels. The 

proportions of second and third pixels are mixed here in consistency with measurements. 

Theoretically, the spatial resolution of an 
18

F positron image can be enhanced 2.35-fold by 

selecting only primary pixels and the mixture of second and third pixels adds another 7.7% and 

8.7% loss in spatial resolution. The involvement of second and third pixels helps to maintain the 

sensitivity, while it imposes relatively low influence on the spatial resolution. 

Clusters with 2 fired pixels have shown lower classification accuracy than those with more fired 

pixels as their classification depends only on the energy features. For these clusters, simulations 

have shown a higher probability of the pixel with higher energy being the second pixel (67.6% of 

all 2-pixel clusters). In spite of a more frequent misclassification, the spatial resolution is 

influenced insignificantly since only 7.7% spatial resolution degradation can be introduced 

maximally for 2-pixel clusters. The treatment of 2-pixel clusters is more flexible. The energy 

weighted approximation can be an option. The hybrid method (energy weighted approximation 

for 2-pixel cluster and classification for longer clusters) may bring some advantages. The major 

reason responsible for spatial resolution loss is the misclassification and classifier failure on 

pixel-rich clusters.  

6.3.6. Limitations 

The proposed method is based on the assumption that the classifier learned by simulation data 

can be transferred to predict the measured data. However, discrepancies may exist between the 

Monte-Carlo simulation of a positron passing through the detector and the realistic physical 

procedure. The procedures of electron-hole pair collection and signal output also introduce 

deviations of simulation from the measurement. Therefore, the model learned by simulation data 

may introduce errors on the classification results. The optimal spatial resolution may not be 

achieved. However, it is impossible to acquire the experimental training data from direct 

measurements due to the hardware limitation. As Monte-Carlo simulation using Geant4 is widely 

validated in many applications [151], the construction of training sets using this realistic 

simulation is practical to transfer the theoretical knowledge in measurements.  Improvement of 

the Monte-Carlo simulation may further enhance the performance of the proposed method.  

Although there are statistics (i.e., RMSE and Dice coefficient) to support the improvement of the 

algorithm on the leaf positron images, this improvement is hardly visible. The leaf veins have no 

clear sharp boundaries to sufficiently demonstrate the advantages of the proposed algorithm. 
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Nevertheless, this example with relatively fine structures could already explore the improvement 

with better preservation of the algorithm.    

Around 10%~15% difference of normalized amplitude between the imaging using the positron 

camera and phosphor plate has been observed. The spatial resolution and contrast of a phosphor 

image are higher with direct exposure of the plate to beta particles or gammas [185] and smaller 

scanner pixel size. The scattering of positrons decreases the spatial resolution of the positron 

camera images and introduces partial volume effect, which is possibly one reason for the 

amplitude difference on the two types of images. Another reason may lie in the nonlinearity of 

phosphor imaging when the phosphor screen is exposed to low radioactivities. In addition, the 

errors from registration of positron and phosphor images and segmentation of field of interest 

may also lead to image amplitude difference. Here we used the phosphor image as a reference 

for the assessment of the effect of energy information from Timepix. It is not expected that the 

Timepix could outperform phosphor imaging plate. Nevertheless, the Timepix detector 

characterized by its high time resolution and capability of particle energy information acquisition 

has shown its potential for in-vitro and in-vivo dynamic imaging.   

The scanned optical image as another reference has high spatial resolution. The similarity 

(characterized by Dice coefficient) between the positron and the optical image was employed to 

evaluate the spatial resolution of positron image. The differences between the optical and the 

positron image may still exist due to the following reasons: (1) The leaf cannot absorb the tracer 

thoroughly, so the positron radiation cannot be detected throughout the whole leaf; (2) the 

positron image is more affected by multiple scattering/partial volume effect; (3) image 

registration and segmentation errors.  

6.4. Conclusions 

In this chapter, Timepix was tested for positron measurement and the contributions of energy 

information were assessed experimentally and theoretically. Our results show that a slight 

enhancement of sensitivity and resolution can be achieved when recording the deposited energy 

in Timepix detector. Thus, a positron camera based on Timepix chip is proposed for positron 

imaging. As an imaging device with real-time single pixel read out (100 kHz), this positron 

camera based on Timepix has the potential to capture dynamic signals (e.g., signals of 

microfluidic radioassays [18]).   

With the characteristics knowledge of positron imaging, we have proposed a classification-based 

method to enhance the spatial resolution of 
18

F positron imaging. By classifying the primarily 
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fired pixels of incident positrons, this method can reduce the influence of positron multiple-

scattering on the spatial resolution of the positron camera. Enhancement of spatial resolution (up 

to 24.2%) has been achieved with the proposed method. Although these improvements only lead 

to slight visual advantage, it is encouraging to investigate the proposed algorithm further for the 

enhancement of sophisticated positron imaging in clinical and preclinical applications. The 

proposed classification method may be further extended to the imaging of other particles, which 

have high maximum energies and long trajectories with hardly recognizable primary pixels in the 

detector. 
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7. Summary 

Molecular imaging has been used extensively on the investigation of tumor metabolism. 

However the physiological and systematic interpretations of tumor metabolism images are 

limited. The thesis interprets the signal mechanisms of positron imaging of tumor metabolism by 

advanced computational modeling methods. Computational modeling was systematically applied 

on the whole procedure of positron detection in solid tumor for the comprehensive understanding 

of signal formation mechanisms. The in-depth understanding of positron signals supports the 

development of tumor detection, therapy planning and monitoring. In particular, this thesis made 

the following two theoretical contributions: (I) a novel computational modeling method of tumor 

pathophysiology; (II) the first machine learning algorithm in the processing of positron signals 

for the enhancement of spatial resolution.  

I. Computational models of tumor pathophysiology are proposed for the deep 

understanding of fundamental molecular pathways and metabolites interaction inside tumors. 

Compared with previous models, the current models integrate the mediations of physiological 

regulators (such as enzymes and transporters) into the tumor microenvironment to explore the 

quantitative relationship between the metabolism behind molecular imaging and the underlying 

phenotypes. More comprehensive substrates are introduced in the proposed models, which 

enables the explanation of complicated tumor metabolic phenomenon. The contributions of this 

computational modeling are listed as follows: 

 

 Theoretical advancements have been made to model the complex interactions of a wide 

spectrum of metabolites (such as oxygen, glucose, FDG, lactate, protons, and other key ions) 

relating to tumor metabolism. In particular, for glucose, lactate and FDG, both extra- and 

intra-cellular components are simulated in the mediations of transporters (GLUT and MCTs). 

The majority of simulated substrate concentrations are validated to fall in the range of 

reported experimental data. 

 Reaction-diffusion schemes incorporating with protein regulation kinetics are developed to 

enable the modeling of the influences of key transporter (GLUT) and enzyme (HK) during 

FDG uptake simulation. The simulated spatio-temporal FDG uptake and tissue activity 

curves are analyzed under different GLUT and HK kinetic parameters, and they can serve as 

the predictions of FDG PET measurements after the validation. The influences of vascular 

density on FDG uptake are also estimated. 

 It is the first time to establish the quantitative relationship between the tumor phenotypes (i.e., 

pathophysiological factors, such as transporter and enzyme expression levels, and 
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microvessel distributions) and metabolisms (represented by substrate distributions) using the 

proposed models. Analytic parameters are introduced to quantify the influences of multiple 

pathophysiological factors on tumor metabolisms.  

 The computational models bring in-depth insights into the physiological phenomena 

observed in the experiments. For example, GLUT is more influential to glycolytic flux than 

HK; extracellular pH is not correlated with MCT expressions, etc. 

 The computational modeling of tumor pathophysiology assists the generation of hypotheses 

to bridge the discrepancy between tumor metabolism and tumor phenotypes. It has the 

potential to accelerate the development of multi-modal imaging strategies for assessment of 

tumor phenotypes. 

 

II. In order to reduce the effect of multiple scattering on the imaging with position-sensitive 

positron camera and improve the spatial resolution, a novel data-driven method is proposed 

based on the classification of primary pixels fired by positrons within the (Timepix) detector 

using support vector machine. A classification model is introduced to learn the features of fired 

pixels based on the data derived from Monte-Carlo simulations using Geant4. The primarily fired 

pixels along positron tracks in the measurements are estimated using the proposed classification 

method. The contributions of the method are as follows: 

 

 We formulate the scattering-degraded resolution problem in a silicon detector into a   

classification problem and solve it using a supervised learning strategy. The proposed algorithm 

can be integrated into hardware to improve the spatial resolution of particle imaging. 

 Monte-Carlo simulation is introduced to solve the problem where no training data is 

possible to obtain using current measurement technologies. The Monte-Carlo simulation 

systematically emulates the positron passing through and firing pixels in the silicon detector, and 

provides all the characteristics of positron scattering.   

 Advanced topological and energy features are extracted for the supervised learning of 

classification model.  

 A set of physical experiments are designed and carried on for systematic validation of the 

proposed algorithm. The positive results from the validation support the further investigation of 

the proposed classification algorithm for the enhancement of positron imaging performance in 

clinical and preclinical applications, and promote the direct positron imaging put into more 

delicate preclinical applications (such as cell metabolism monitoring). 
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