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ABSTRACT
Interactive visual data mining, where the user plays a key role
in learning process, has gained high attention in data min-
ing and human-machine communication. However, this ap-
proach needs Dimensionality Reduction (DR) techniques to
visualize image collections. Although the main focus of DR
techniques lays on preserving the structure of the data, the
occlusion of images and inefficient usage of display space are
their two main drawbacks. In this work, we propose to use
Non-negative Matrix Factorization (NMF) to reduce the di-
mensionality of images for immersive visualization. The pro-
posed method aims to preserve the structure of data and at the
same time reduce the occlusion between images by defining
regularization terms for NMF. Experimental validations per-
formed on two sets of image collections show the efficiency
of the proposed method in respect to controlling the trade-off
between structure preserving and less occluded visualization.

Index Terms— Immersive visualization, Non-negative
matrix factorization, entropy

1. INTRODUCTION

Interactive data mining has gained high attention in Human-
Machine Communication (HMC) for pattern recognition
problems. One of the main challenges here is to develop an
interface between the human and machine to interact effi-
ciently. Immersive visualization of visual data might be a
good option to enable the user to explore a large set of images
and navigate inside the data [1, 2]. However, the main prob-
lem is how to arrange the images in this environment such
that:

• Similar images are close together (i.e., data structure is
preserved);

• Images are less occluded by each other;

• The display space is used as much as possible;

To address this problem, we propose to formulate a NMF al-
gorithm that takes into account the aforementioned require-
ments. There is no harm in non-negativity constraint of NMF,

since basically each image is represented by a Bag-of-Words
(BoW) model of local features. Therefore, the representative
feature vectors are non-negative values. In our approach, we
compute the graph of similarity in high dimensional space
and use it as the structure of the data to be preserved. It has
been shown that the Laplacian of the graph as a regulariza-
tion term can significantly preserve the similarity in a NMF
framework [3]. To decrease the overlap among the images,
we propose to use entropy as the second regularization term
of NMF. A good visualization is a trade-of between similar-
ity and occlusion. This trade-of is controlled by a parameter
λ. By increasing the entropy, we have less occlusion but the
structure of data vanishes.

The rest of paper is organized as follow: Section 2 reviews
related works in the area of visualization of image collection.
Sections 3.1 briefly explains the concept of immersive visu-
alization. In Section 4 we explain the proposed NMF for
dimensionality reduction. Experimental validations are rep-
resented in Section 5. Finally, in Section 6 we draw our con-
clusions.

2. RELATED WORK

The NMF was introduced in [4] as method for dimen-
sionality-reduction, where the low-dimensional structure is
presented by two non-negative matrices. Due to the non-
negativity of the matrices the vectors in the low-dimensional
representation are the additive combinations of the basis
vectors, which leads to a parts-based representation. This
representation has been shown to correspond to the way im-
ages are represented in the human brain. As an extension to
the NMF, Graph regularized NMF (GNMF) was proposed
that tries to preserve the similarity of the feature vectors in
the low-dimensional space [3]. This technique applies the
manifold learning technique LLE [5] and adds an additional
term to the main objective function.

In the area of image visualization, previous work has been
done in [6], where the authors choose the two-dimensional
locations of the images by minimizing a cost function con-
sisting of a structure-preserving and an overlap term. For the



overlap all images are represented as circles with the same ra-
dius and the overlapping area of the circles is computed. Ad-
ditionally, in [7] an algorithm has been proposed, that spreads
images equally in a given area. This is achieved by minimiz-
ing a cost function, which consists of a structure-preserving
term, an entropy term and a term that penalizes locations of
images outside the predefined layout. In summary, All the
aforementioned methods first reduce the dimensionality of the
data, and then change the position of the data points to fulfill
the other requirements.

3. APPROACH

3.1. Immersive Visualization

For the visualization of the image collections we utilize a
Cave Automated Virtual Environment (CAVE). The cave con-
sists of four room-sized walls, which play the role of four dis-
play screens. They are aligned to form a cube-shape space.
This configuration allows the user to have a 180 degree hori-
zontal view. The computer generated scene is projected onto
the walls, using two projectors per wall, in order to have
stereoscopic scenarios. Furthermore, a real-time tracking sys-
tem comprising six infrared cameras, mounted on top of the
walls, computes the position and orientation of the user inside
the cube. This system provides the user with the ability of ex-
ploring and interactivity with the data. The user is allowed to
navigate inside the data and gain valuable information about
the structure of data. A snapshot of immersive visualization
of image collection in the CAVE is depicted in Figure. 1.

Fig. 1. Immersive visualization of image collections in a Cave
Automated Virtual Environment

4. REGULARIZED NMF

We consider a data matrix X = [x1, ...,xN ] ∈ RM×N ,
where xi is a feature vector, N is the number of samples
and M is the dimension of the feature vectors. Given a new
reduced dimension K, the NMF algorithm approximates the
matrix X by a product of two non-negative matrices U =

[uik] ∈ RM×K and V = [vjk] ∈ RN×K .

X ≈ UV T. (1)

Thereby, in the new representation, U can be considered as
a set of basis vectors and V as the coordinates of each sam-
ple with respect to these basis vectors. There are two cost
functions, that quantify the quality of the approximation, the
square of the Frobenius norm of the matrix differences and
and the divergence between the two matrices [8]. During the
rest of the paper we will focus on the divergence cost func-
tion:

OD =
∑
i,j

(
xij log

xij
yij
− xij + yij

)
(2)

where
Y = [yij ] = UV T (3)

Many extensions have been proposed to the NMF algo-
rithm, which introduce different regularizers into the objec-
tive function in order to enforce additional favorable proper-
ties for the new representation. For example, the GNMF adds
a similarity term to the objective in order to preserve the local
neighbor structure in the new representation:

G =
M∑
i=1

N∑
j=1

(
xij log

xij∑K
k=1 uikvjk

− xij +
K∑

k=1

uikvjk

)

+
λ1
2

N∑
j=1

N∑
l=1

K∑
k=1

(
vjk log

vjk
vlk

+ vlk log
vlk
vjk

)
Wjl

(4)

with the regularization parameter λ1 and the weight matrix
W . While the GNMF algorithm makes it possible to reduce
the dimensionality of the data for visualization and keep simi-
lar objects close to each other, it has the disadvantage that the
resulting distribution does not use the entire available space
and therefore the occlusion between the images is still high.
To remedy this, we propose to extend the GNMF with an en-
tropy term, which enforces the points in the new representa-
tion to be spread across the available space. The entropy term
we use, is the generalized entropy term.

−H =

N∑
j=1

K∑
k=1

(vjk log vjk − vjk) (5)

which reduces to the Shannon entropy, when the condition∑
jk vjk = 1 holds true. In order to maximize the entropy

of the system, we introduce the negative of the entropy term
into the minimization objective (4), which leads to the new
objective:



O =
M∑
i=1

N∑
j=1

(
xij log

xij∑K
k=1 uikvjk

− xij +
K∑

k=1

uikvjk

)

+
λ1
2

N∑
j=1

N∑
l=1

K∑
k=1

(
vjk log

vjk
vlk

+ vlk log
vlk
vjk

)
Wjl

+ λ2

N∑
j=1

K∑
k=1

(vjk log vjk − vjk) ,

(6)

with the regularization parameter λ2. In order to find a local
minimum of this objective function we follow the principles
proposed in [8] to derive update rules for U and V . Introduc-
ing the Lagrange multipliers ψik and ϕik for the constraints
uik ≥ 0 and vik ≥ 0, respectively, and setting Ψ = [ψik] and
Φ = [ϕik] leads to the Lagrange L:

L = O + Tr(ΨUT) + Tr(ΦV T) (7)

with the KKT conditions

∂L
∂U

= 0,
∂L
∂V

= 0 (8)

and

ψikuik = 0, ϕikuik = 0 (9)

we come up with the following update rules for U and V :

uik ← uik

∑
j (xijvjk/

∑
k uikvjk)∑

j vjk
(10)

vk ←

((∑
i

uik + λ2

)
I + λ1L

)−1

R (11)

with

R =

 v1k
∑

i (xi1uik/
∑

k uikv1k) + λ2
...

vNk

∑
i (xiNuik/

∑
k uikvNk) + λ2

 (12)

where L = D−W and D is a diagonal matrix, whose entries
are column sums of W , Djj =

∑
lWjl. For the derivation

of the update rule for V (11) we used an approximation for
the resulting logarithmic functions, which is based on the 1st
order Taylor expansion:

log x ≈ 1− 1

x
. (13)

The update rule for U remains the same as in the original al-
gorithm [8], since the newly introduced terms in the objective
(6) depend only on the variable V .

5. EXPERIMENTS

5.1. Datasets

The two real datasets used in our experiments are: 1) SAR
dataset; 2) Merced dataset.
SAR dataset contains 3434 SAR (Synthetic Aperture Radar)
images of the size 160x160 in 15 classes, such as presences of
forests, water, roads and urban area density. From this dataset
we extracted 64-dimensional SIFT [9]feature vectors.
Merced dataset contains 2100 images in 21 different groups.
From these images we also extracted SIFT feature vectors,
leading to 64-dimensional feature vectors.

5.2. Setup

For the experiments we selected a random subset of 1000
samples from each dataset. We run the optimization algo-
rithm 10 times with different random starting points for each
experiment and selected the best result. In order to analyze
the trade-off between similarity and entropy maximization
we introduced the parameters α and λ and set λ1 = αλ,
λ2 = α(1 − λ). In this way, α represents the scaling of the
similarity and entropy terms relative to the NMF-term and λ
represents the trade-off between similarity and entropy, where
λ = 1 corresponds to max. similarity and λ = 0 to max. en-
tropy. For the weighting matrix W we used a heat kernel
matrix with the number of neighbors k = 7. We compute
the similarity preservation of the resulting representation by
using the inverse of the similarity term in the cost function
(6). For the occlusion we represent all images as cubes with
edge size s = max (b, h), where b and h are the width and
height of the images, respectively, to measure the overlapping
volume of all cubes.

5.3. Results

Figures 2a and 3a depict the 3D-visualization of the im-
ages for α = 100 and λ = 1, figures 2b and 3b the 3D-
visualization for α = 100 and λ = 0.2 for the different
datasets. As can be seen, with a decreasing value of λ the im-
ages are better distributed in the available space, while similar
images are still placed close to each other. The behavior of
the algorithm is analyzed in figures 2c and 3c. The plots
show, that in general for a value of α ≥ 100 good results can
be achieved in respect of similarity and occlusion. Figures 2d
and 3d show, that the algorithm converges fast and finds the
local minimum for the two datasets in about 40 iterations.

6. CONCLUSIONS AND FUTURE WORK

We presented a novel method to find a low-dimensional rep-
resentation of an image dataset for 3D-visualization in an im-
mersive virtual environment. By extending the GNMF al-
gorithm with an entropy-maximizing term, we are able to
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Fig. 2. SAR dataset: (a) Visualization of images for α = 100
and λ = 1 (b) Visualization of images for α = 100 and λ =
0.2 (c) absolute occlusion and similarity for different values
of α and λ = 0.2 (d) Convergence rate.

achieve a similarity-preserving representation, which spreads
out in the available space and minimizes the occlusion be-
tween images. Experimental results confirm this behavior.

One disadvantage of the proposed algorithm is the addi-
tional parameter introduced by the entropy term. Therefore,
one possible direction for future work is to reduce the number
of parameters by finding the optimal relationship between λ1
and λ2. Furthermore the definition of a similarity term, that
is independent of the number of neighbors k, is another area
open to further exploration.
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