DISCRIMINATIVE FEATURE LEARNING FROM SAR IMAGES

Mohammadreza Babaee®>, Stefanos Tsoukalas?®, Gerhard Rigollz, Mihai Datcu'*

'Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Oberpfaffenhofen
?Institute for Human-Machine Communication, TU Miinchen, Germany
3Munich Aerospace Faculty, Germany

ABSTRACT

Clustering of Earth Observation (EO) images has gained a
high amount of attention in remote sensing and data mining.
Here, each image is represented by a high-dimensional fea-
ture vector which could be computed as the results of coding
algorithms of extracted local descriptors or raw pixel values.
In this work, we propose to learn the features using discrimi-
native Nonnegative Matrix factorization (DNMF) to represent
each image. Here, we use the label of some images to pro-
duce new representation of images with more discriminative
property. To validate our algorithm, we apply the proposed
algorithm on a dataset of Synthetic Aperture Radar (SAR)
and compare the results with the results of state-of-the-art
techniques for image representation. The results confirm the
capability of the proposed method in learning discriminative
features leading to higher accuracy in clustering.

Index Terms— Feature Learning, Nonnegative Matrix
Factorization, Clustering

1. INTRODUCTION

Data representation and features learning is considered as a
challenging problem in data mining and pattern recognition.
The problem is how to represent a data term that in one side it
has discriminative property and on the other side it is a com-
pact lower dimensional representation. Matrix factorization
techniques are intensively employed in data analysis due to
their capability in capturing the most useful representation
of the data. Perhaps, the most well-known matrix factor-
ization techniques are Principal Component Analysis (PCA),
Singular Value Decomposition (SVD), and Nonnegative Ma-
trix Factorization [1]. The goal of these methods is to provide
a compact low dimensional representation of original data for
further processes such as learning and visualization. NMF is
an unsupervised learning algorithm, that decomposes a non-
negative data matrix into two (or three) nonnegative factors,
one of which is considered as a new representation of original
data [1]. This factorization leads to a parts-based represen-
tation of data, which is widely used in different applications
such as face recognition [1] and clustering [2]. Since the in-
vention of NMF, many variants of this algorithms have been

proposed to get a customized representation of data. For ex-
ample, Graph regularized NMF (GNMF) [3] preserves the lo-
cality property of data by utilizing the Laplacian of neighbor-
hood graph in its regularization term. In Constrained NMF
(CNMF) [4] those points which have the same label informa-
tion are forced to have the same representation.

In this paper, we propose a label constrained NMF, namely
Discriminative Nonnegative Matrix Factorization, which uti-
lizes the label information of a fraction of data in a regulariza-
tion term. The key idea of our approach is to use the raw data
in order to create a discriminative representation of image for
clustering. This regularizer increases the discriminative prop-
erty of data points in the new representation space, controlled
by a parameter.

The rest of paper is organized as follows: In Section 3 the
details of our proposed approach is provided. Section 4 some
preliminary experimental results applied on a dataset of SAR
images are presented.

2. RELATED WORK

Feature learning or image representation has been intensively
considered in data mining and machine learning [5]. A va-
riety of techniques such as matrix factorization [6], dictio-
nary learning [7], neural networks [8] are used to represent
the data. Additionally, feature learning methods could be cat-
egorized in supervised or unsupervised methods. K-means
clustering is considered as an unsupervised feature learning
by producing K cluster centers and using them to create fea-
ture of the size K to represent the data [9]. It has gained
a high amount of attention in object recognition and image
classification. However, it is an unsupervised method and the
leaned features dont have necessarily discriminative property.
In order to learn discriminative features, some works have uti-
lized the label information of a fraction of data points in the
body of learning process. For example, in [10] the label in-
formation are used to form a regularized coupled to the main
objective function of K-SVD. Nonnegative matrix factoriza-
tion (NMF) has been successfully applied on data to gain a
part based representation. However, the main NMF frame-
work does not consider any semantic information in the new
representation. In this work, we couple a regularizer to the



main function of NMF in order to increase the discriminative
property of features.

3. APPROACH

In an optimal NMF factorization we would expect each of
the dataset classes to be placed in a clearly separated cluster
in the resulting vector V. To enforce this property, based on
the available label information, we introduce the matrix @ €
RS*N as follows:

1 if sample j is labeled and belongs to class ¢
Qij = :
0 otherwise.
ey

For example, consider the case of NV = 8 samples, out of
which N; = 5 are labeled, with the sample categories ¢; = 1,
co =2,¢c3 =1,¢4 = 3, c5 = 2. In this case the matrix ()
would take the form:

10100000
Q=(01 001 0 00 2)
0001 0O0O0O0
Based on the introduced matrix we add the following term to
the Frobenius-NMF objective:

O =a|Q—AVS|", 3)

with V; = [v1,..,vn,,0,...,0]T € RY*K and the matrix
A € RS*K which linearly transforms and scales the vectors
in the new representation, in order to obtain the best fit for
the matrix . The matrix A is allowed to take negative values
and is computed as part of the NMF minimization. We arrive
at the following minimization problem:

min0 = | X —UVT|* + o ||Q — AV/||?
st U= [ug] >0 @
V= [Ujk] > 0.

3.1. Update rules

For the derivation of the update rules we expand the objective
to

O =Tr(XX") - 2Tr (XVU") + Tr (UV'VUT)
+aTr (QQT) — a2Tr (QVIAT) + aTr (AV;"V,AT)
&)
and introduce Lagrange multipliers ® = [¢;], ¥ = [¢;] for
the constraints [u;;] > 0, [v;5] > 0 respectively. Adding the

Lagrange multipliers and ignoring the constant terms leads to
the Lagrangian:

L£=-2Tr(XVU") + Tr (UVTVUT) + Tt (BU) + Tr (TV)

— a2Tr (QVZAT) + oTr (AVZTVZAT) .

The partial derivatives of £ with respect to U, V and A

are:
oL T

%772XV+2UV V+o (6)

oL T T T T
W =2X"U+2VU U -2aQ" A+2aViA* A+ ¥ (7)
0% — —2Qi + 24V ®
For the derivation of the update rules for U and V we
solve the equations % = 0 and % = 0 in terms of ¢ and

¥ respectively and apply the KKT-conditions ¢;xu;x = 0,
Ykvjr = 0 [11]. For A, since we have no Lagrange multi-
plier, the update rules can be derived directly by setting g—ﬁ =
0 and solving for A. We arrive at the following equations:

Uik < Uik [UVTV]zk 9

| XU + a(VATA)” + a(QTA) M
Uk U T alGATA + (@A) O
A= Qi)™ (1D

where for a matrix M we define M, M~ as M+ = (|[M|+
M)/2 and M~ = (|]M| — M)/2. As expected, the update
rule for U remains the same as in the original algorithm [12],
since the newly introduced terms depend only on the variables
V and A. We have the following theorem, that guarantees
convergence to a local minimum:

4. EXPERIMENTS

4.1. Dataset

To validate our approach on EO images, we use a dataset of
SAR images. The used SAR dataset contains 3434 TerraSAR-
X satellite images of size 160 x 160 which are grouped in 15
classes. We use two different types of representation as orig-
inal data. In the first representation, we use the pixel values
(raw data) and in the second representation, we use the Bag-
of-Word model of SIFT features.

4.2. Setup

In order to quantify the accuracy of the proposed algorithm,
we label a fraction of the data points and use DNMF to get
a discriminative representation of all data. Then we apply
Kmeans clustering algorithms on original and new represen-
tation and compare the results by computing the Accuracy
(AC) and Mutual Information (MI), as evaluation metrics, of
clustering result. We run the experiment with different num-
ber of classes and each time we set the dimension of new
representation equal to the number of classes. We change the
number of classes from 2 to 10. Since Kmeans algorithm is
an heuristic algorithm, we run it 10 times and compute the



average of results. Additionally, we apply PCA, NMF, and
GNMF to get other representations of the data and apply the
Kmeans on these representations. The results of experiments
are depicted in Fig. 1. In Fig. 1.a and Fig. 1.b sample images
of dataset and the corresponding learned based using DNMF
are presented. The results of clustering applied on new rep-
resentation based on raw data is given in Fig.la-b. Fig.l.e-f
show the result of clustering on new representation based on
SIFT features.

4.3. Evaluation Metrics

We use two metrics to evaluate the performance of the com-
pared algorithms, namely accuracy (AC) and normalized mu-
tual information (nMI) [13]. The accuracy computes the per-
centage of correctly predicted groups, compared to the true
labels. The normalized mutual information is based on the
mutual information, which is used in clustering applications,
to measure the similarity of two clusters. Given two sets of
clusters C = {cy,...,cx} and C = {c’l, ...,é,;} , the mutual
information metric is computed by

p(Ci, éj)

MI(C,C) = i, ¢i) log ———22_ (12
©C)= 3 plené)los rargs (1)

C{,EC,C’]' EC’

where p(c;),p(¢;) represent the probability, that an arbi-
trarily selected data point belongs to the clusters C' or C.,
respectively and p(c;,¢;) represents the joint probability,
that the point belongs to both clusters simultaneously. As
the similarity of the two clusters increases, the mutual in-
formation M I(C, (') takes increasing values between 0 and
max {H(CLH(C)} There, H(C), H(C) represent the
entropy of the clusters C, C respectively. Dividing the the
mutual information by max{H (C),H (C)} leads to the

normalized mutual information, which takes values between
Oand 1:

MI(C,C)

nMI(C.C) :max {H(C),H(C)} .

13)

4.4. Discussion

As it can be inferred from the results, the proposed method
outperforms the others in terms of clustering accuracy. It is
clear that the learned representations using DNMF in differ-
ent dimensions have more discriminative property than the
others. However, the accuracy decreases by increasing the
dimension and also the number of clusters. Additionally,
the learned representation based on raw data outperforms
the learned representation based on extracted SIFT features.
This is quite useful since we can skip the feature extraction
process and use the raw data directly into the algorithm. All
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Fig. 1. (a) Sample images of dataset; (b) the corresponding
learned bases using DNMF; (c)-(d) Accuracy and MI of clus-
tering on DNMF using raw data as original representation.
(e)-(f) Accuracy and MI of DNMF result based on SIFT data
representation.

plots confirm that the NMF algorithm has the worst perfor-
mance compare to other, which means that introducing a
proper regularizer to the NMF can increase its performance
significantly.

5. CONCLUSIONS

We presented a variant of NMF algorithm, the so-called
discriminative NMF (DNMEF), to learn discriminative fea-
tures from SAR images in order to increase the performance
of clustering. We provided the main objective function of
DNMF along with its updating rules. Experimental results
on both raw SAR data and extracted SIFT features confirm
the performance of algorithm in comparison to others. Ad-
ditionally, we found that running DNMF algorithm on raw
data results in more discriminative features than on extracted
SIFT features. This readily implied the power of algorithm
even on raw data. As future work, it could be suggested to
run the DNMF on other features such as Gabor or Weber.
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