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Abstract—Active learning has gained a high amount of attention
due to its ability to label a vast amount of unlabeled collected earth
observation (EO) data. In this paper, we propose a novel active
learning algorithm which is mainly based on employing a low-rank
classifier as the training model and introducing a visualization
support data point selection, namely, first certain wrong labeled
(FCWL). The training model is composed of the logistic regression
loss function and the trace-norm of learning parameters as regu-
larizer. FCWL selects those data points whose labels are predicted
wrong but the classifier is highly certain about them. Our exper-
imental results performed on different extracted features from a
dataset of SAR images confirm at least 10% improvement over
the state-of-the-art methods.

Index Terms—Active learning, synthetic aperture radar (SAR),
trace-norm regularized classifier, visualization.

I. INTRODUCTION

T ODAY, we are dealing with a phenomenon, the so-
called big data, where the amount of collected data has

been increasing exponentially since the last decade [1]. For
instance, the volume of collected earth observation (EO) data
is in the order of several terra-bytes per day. Additionally, the
complexity of the data is very high such that in most cases,
very high-dimensional features are used to represent the data.
Automatic storage and retrieval of this data require large-scale
learning algorithms, which need a large set of labeled data to
train. On one hand, providing labeled data is expensive and time
consuming. On the other hand, the unlabeled data are available
in a large scale for free and cheap. Therefore, active learning
has gained high attention due to its ability in labeling the data
and training the classifier simultaneously [2]–[6].

The works in [2]–[4] give an overview of some popular active
learning methods. Each active learning method uses a differ-
ent heuristic to select the most informative sample for labeling.
Some popular heuristics are empirical risk reduction, uncer-
tainty sampling, query by committee, expected model change,
and spatial structure-based sample selection. Persello et al.
[5] argue that an active learning algorithm should also take
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the different annotation costs for each sample in account, as
is the case in a dynamic system. They address this issue in
the framework of a Markov decision process, which tries to
minimize the cumulative cost of training. In [6], a method is
proposed, which combines the popular uncertainty criterion
of the SVM classifier with structure information, gained by
training a self-organizing map on the dataset.

In an active learning system, first, a small set of labeled data
is used to train a multiclass classifier (e.g., SVM). Then, a sub-
set of unlabeled data along with their predicted label is selected
to query the true labels from the user. The user examines the
predicted labels and relabels the data points (if necessary) and
adds them to the pool of labeled data for retraining the clas-
sifier. This loop continues until all unlabeled data are labeled
and also the classifier is trained. One challenge in active learn-
ing, which has gained much attention from researchers, is to
select the most informative samples for labeling. However, as
the amount of data increases, the performance of the classifier
improves only slowly. In other words, the challenge of sample
selection is important only when the amount of training data is
low. When labeled data grows, the main issue in active learning
switches to overfitting of the optimization of the classifier.

In this paper, we propose a novel active learning frame-
work to annotate the massive amount of synthetic aperture radar
(SAR) image repositories. Precisely, we employ a recently pro-
posed classifier for large-scale datasets, as training model, to
tackle the problem of overfitting. Our proposed algorithm is
based on the work in [7] and [8]. In [7], an algorithm for large-
scale multiclass image classification is proposed, which adds a
trace-norm regularization penalty to the L2 regularized mul-
ticlass logistic loss function in order to avoid overfitting of
the learning parameters. Furthermore, the objective is trans-
formed into a convex function, which can be minimized with
a coordinate-descent algorithm. Additionally, we introduce a
visualization-based sample selection algorithm to query the
labels. This method, the so-called first certain wrong labeled
(FCWL), is based on a ranked list of the sample images, ordered
by confidence. The images are visualized in tabular form, where
each column of the table represents one of the categories of the
dataset. The algorithm places the images predicted in each cate-
gory in the corresponding column and sorts them by decreasing
classifier confidence. The classifier confidence is measured by
the distance of the sample to the class separating hyperplane,
which is defined by the corresponding classifier parameters W .
After the images have been presented, the user looks for the first
wrong labeled image in one class and relabels it. Here, the user
in each interaction corrects one sample, whose label is predicted
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incorrectly with high confidence by the classifier. This has the
effect of introducing the maximum correction to the training
model in each iteration. Precisely, the higher the classifier con-
fidence is about a sample, the further away this sample is from
the hyperplane defined by the classifier parameters. This means
that the classifier hyperplane has to move the most in order to
predict a different label for this sample which is equivalent to
introducing a high correction to the classifier parameters. The
process continues until a desirable accuracy of the classifier is
achieved.

The main contributions of our work are as follows:
1) employing a trace-norm regularizer classifier as the train-

ing model in an active learning framework to annotate the
SAR images.

2) studying in depth the trace-norm classifier.
3) introducing a novel active learning algorithm based on

visualization.
4) conducting experiments to study the performance of the

proposed active learning algorithm.
The rest of the paper is organized as follows. In Section II, we

review the state-of-the-art active learning algorithms. We illus-
trate the concept of multiclass classification with the trace-norm
regularized classifier in Section III. Here, we first study the
proposed classifier and compare it in depth with support vec-
tor machines (SVMs). Then, we formulate one active learning
algorithm solely based on this classifier. Finally, in Section IV,
we explain our visualization-based active learning algorithm.
Section V demonstrates our experiments conducted on real
SAR image datasets. Finally, we draw our conclusion and
describe future works in Section VI.

II. RELATED WORK

Active learning is a widely used approach for the annotation
of multimedia and EO data [2], [3], [9]. Active learning frame-
works could be categorized in three different groups, namely:
1) membership query synthesis; 2) stream-based selective sam-
pling; and 3) pool-based active learning [2].

Membership query synthesis is the first scenario considered
in active learning [2]. In this scenario, the learning program
might query any instance from the input space, included syn-
thesized samples, which do not actually exist in the training
data. In stream-based selective sampling, the samples are often
drawn from the dataset one at a time. Here, the main challenge
is how to decide whether to query a sample or not. One popu-
lar method for doing this is based on the prediction certainty of
a trained classifier for this sample, e.g., by defining a certainty
threshold and querying all samples, whose certainty is below
that threshold [2].

Pool-based active learning, as the most common active learn-
ing framework, is based on the assumption that a big pool
of unlabeled data U is available for free and that all data
can be accessed at the same time [2]. This is the case in
many real-world applications (e.g., image or document clas-
sification and EO data annotation). The goal in pool-based
active learning is to select the most informative samples from
the unlabeled data and add it to the pool of labeled data L.
Therefore, different criteria for optimum experimental design
(OED) have led to the development of different active learning

Fig. 1. Overview of active learning scenarios and sample selection strategies.

algorithms. For instance, OED [10] selects the points based
on their spatial distribution. A-optimal design defines a cost
function by the trace of the covariance matrix of the classifier
parameters W and iteratively selects samples that minimize the
value of this cost function. Transductive experimental design
(TED) [11] minimizes the average predictive variance of the
classifier on a test set. Finally, manifold adaptive experimen-
tal design (MAED) [12] extends the TED algorithm with a
manifold adaptive kernel.

In addition to treating the active learning as an experimental
design, there are some works which select the points based on
other criteria such as diversity [13], risk reduction [14]–[16],
reconstruction error [17], uncertainty [8], [18], [19], density
[20], or a combination of several criteria [21]. For exam-
ple, an active learning algorithm, the so-called LLRActive, has
been proposed based on locally linear reconstruction of data
points, which shows impressive results when the dataset is
coming from a low-dimensional manifold embedded in a high-
dimensional space [17]. This method is inspired by a popular
manifold learning algorithm, the so-called locally linear embed-
ding [22], in which each point is reconstructed by a linear
combination of its neighbor points. In this method, the most
informative sample points are those points that can be better
reconstructed by their neighbor points. Some works consider
the selection of points from high density regions. Another pop-
ular active learning algorithm is SVMActive[8], which selects
samples for labeling based on their distance to the boundary of
an SVM classifier [23]. This algorithm fits into the framework
of uncertainty sampling [24], which involves selecting samples
based on the uncertainty of a trained classifier. Fig. 1 provides
an overview of the different active learning scenarios.

In addition to different sample selection strategies, different
classification algorithms can be applied in an active learning
framework. Many different classification algorithms have been
used, such as k-NN, SVM, Gaussian mixture model [25], max-
imum entropy classifier [26], and graph-based semi-supervised
learning [27].

In remote sensing, active learning has been intensively used
to annotate the data [28]–[30]. The majority of works use
SVM as classifier and use different aforementioned selection
strategies to query the labels.

III. TRACE-NORM REGULARIZED CLASSIFIER (TC)

The motivation for using a low-rank regularizer in classifica-
tion comes from the observation that when the SVM classifier
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is trained on large datasets, the singular values of the learning
parameters (matrix W ) have an exponential decay [7]. By look-
ing at the dimensions of W , this can either be interpreted as the
samples lying on subspace of lower dimension or as the classes
being linear combinations of a smaller set of underlying pro-
totype classes. Therefore, Harchaoui et al. [7] have proposed
to leverage this property (i.e., the singular values of W have an
exponential decay) by minimizing the rank of the matrix W and
therefore keeping only the singular values with high magnitude.

We consider the set of n feature vectors X = {x1, . . .,xn}
of dimension d and the corresponding class labels Y =
{y1, . . ., yn} with a total number of k classes. The general
linear multiclass classification problem involves learning a clas-
sifier g(x) = argmaxl=1,...,kw

T
l x that predicts a class l, for

each point x. The classifier is specified by the k weight vec-
tors wl. The general procedure to train the classifier involves
minimizing the regularized empirical risk function

min
W∈Rdxk

λΩ(W ) +
1

n

n∑
i=i

L(W ;xi, yi) (1)

with the regularization penalty Ω, the loss function L, and
the weight matrix W = [w1, . . .,wk]. One popular method for
training the classifier is the one-versus-rest (OVR) strategy [31],
which involves splitting the problem into l binary classification
problems, where for each class, the labels corresponding to this
class are set to 1 and the labels corresponding to other classes to
−1. The binary problems can then be solved by an SVM clas-
sifier [23]. The first problem, which arises when trying to apply
the low-rank regularizer to the OVR optimization problem, is
that each of the columns of W is trained independently on the
corresponding binary problem, while the low-rank constraint
requires to treat the matrix W as a whole. Therefore, Harchaoui
et al. [7] proposed to use the multinomial logistic loss func-
tion, which treats all classes simultaneously. Introducing the
low-rank enforcing penalty and the multinomial logistic loss
function into (1) leads to the following objective function for
minimization:

min
W∈Rdxk

λ1rank (W ) + λ2 ‖W ‖22 +Rn (W ) (2)

with

Rn (W ) =
1

n

n∑
i=1

L (W ;xi, yi) (3)

and

L(W ;x, y) = log

⎛
⎝1 +

∑
l∈Y\{y}

exp
{
wT

l x−wT
y x

}
⎞
⎠. (4)

This is a nonsmooth nonconvex optimization problem, which
is difficult to solve. However, in [7], a solution is provided,
where the low-rank penalty is replaced by its convex surro-
gate the trace-norm. The whole algorithm is summarized in
Algorithm 1.

The algorithm so far has only been described for the linear
case. Even though it is possible to introduce a high-dimensional

Algorithm 1. Solving trace-norm-regularized optimization
problem (Summary of Algorithm in [7])

Input: regularization parameters λ1 and λ2 initial point
Wθ0

, convergence threshold ε training points X
and labels Y

Output: ε-optimal Wθ

Algorithm:

for t = 0, 1, 2, . . . do
Compute top singular vector pair {ut,vt} of −∇R̃n (Wt)
Let gt = λ1 + (∇R̃n(Wt),utv

T
t )

if gt ≤ −ε/2 then
Wt+1 = Wt + δutv

T
t with δ found by line-search

θt+1 = δ
θt+1 = [θt, θt+1]

else
Check stopping conditions:

∀i ∈ I : ∂R̃n(θ)
∂θi

+ λ1 ≥ −ε

∀i ∈ I|θi �= 0 :
∣∣∣∂R̃n(θ)

∂θi
+ λ1

∣∣∣ ≤ ε

if stopping conditions satisfied then
stop and return Wt

else
Compute θt+1 as a solution of the following restricted
problem:

min
θ1,...,θs

λ1

∑s
j=1 θj + R̃n

(∑s
j=1 θjujv

T
j

)

subject to θj ≥ 0, j = 1, . . ., s
end if

end if
end for

mapping for datasets with nonlinear mappings, as shown for
SVM, this method is not used here. The reason is that the trace-
norm regularized classifier was specifically developed for real
datasets with high-dimensional feature spaces. In state-of-the-
art methods high-dimensional image descriptors are used in
combination with linear classifiers [7].

A. Comparison to the SVM Algorithm

The introduced low-rank base classifier has some similarities
to the SVM algorithm. Both estimate the classification bound-
ary through the matrix W by minimizing the regularized loss
over the set of samples. However, there are also some important
differences. These are related to the way multiclass problems
are treated, to the type of loss functions and regularizers used
to the existence of support vectors.

1) Multiclass Problem: The first difference is that the SVM
algorithm cannot deal with multiple classes, simultaneously,
and therefore has to resort to the OVR strategy, which involves
solving multiple binary training problems, simultaneously. One
problem of this approach is the resulting binary problems are
imbalanced. By increasing the number of classes, the degree of
imbalance increases. The second problem is that the matrix W
is not treated as a whole. Instead, each column of W is esti-
mated independently by training on the specific problem. Thus,
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the matrix W cannot be regularized as a whole and its columns
might be imbalanced relative to each other.

2) Loss Function and Regularizer: The next difference is
the type of loss function and regularizers used by the two
algorithms. The SVM algorithm is a constrained optimization
problem with the hinge loss function [32]. The hinge loss for
the vector w and a sample xi with label yi is defined as

lh(w) = max{0, 1− yiw
Txi} (5)

with the help of the hinge loss, the SVM optimization problem
can be transformed into the following unconstrained optimiza-
tion problem [32]:

min
w

λ ‖w‖2 + 1

n

n∑
i=1

max{0, 1− yiw
Txi}. (6)

This makes it possible to highlight the differences between the
two classifiers more clearly. The TC uses a weighted combi-
nation of the L2 norm and the trace-norm of W . Additionally,
as mentioned in SVM, the L2 norm of each column of W is
minimized independently, while for the TC, the two norms are
minimized as a whole. Regarding the loss function, SVM uses
the nonsmooth hinge loss function for the binary problem of
whether a sample belongs to that class or not. Instead, the TC
uses the multiclass logistic loss function, which is smooth and
considers the difference of a sample class to all other classes,
simultaneously.

3) Support Vectors: Another difference between the two
classifiers is the existence of support vectors. In the SVM clas-
sifier, due to the nonsmooth hinge loss function only a subset
of the vectors contributes to the training of the classifier. These
vectors are the support vectors. The existence of support vec-
tors makes it possible to reduce the training time of the SVM
significantly, since the computations have to be performed only
over this subset of vectors. In the TC, support vectors do not
exist explicitly, due to the smooth multiclass logistic loss func-
tion. However, it might be desirable to find an approximation
of support vectors for some applications, e.g., reduction of the
number of samples for training. In the following, an approach
for approximating the support vectors is presented.

The approach is based on the hinge loss function of the SVM
classifier (5). Let yi denote the true label of sample xi. Then,
for each column wl of W , the hinge loss is computed by

lh;l = max{0, 1− ŷiw
T
l xi} (7)

where ŷi = 1, if l = yi and ŷi = −1, otherwise. If any of the
resulting hinge loss terms is greater than zero, i.e.,

lh;l ≥ 0, l = 1, . . ., k (8)

then sample xi is selected as support vectors of TC. Fig. 2
shows an example of the support vectors computed from a syn-
thetic dataset. The dataset consists of three classes, with 100
samples per class. The positions of the samples are computed
by Gaussian distributions. The support vectors are denoted by
black crosses. Fig. 2(a) shows the support vectors of the SVM
classifier and Fig. 2(b) shows the support vectors of the TC

Fig. 2. Visualization of support vectors for a synthetic dataset. Black crosses
denote the support vectors. (a) Support vectors of SVM classifier. (b) Support
vectors of the TC, approximated by hinge loss function. In the TC, more
features are considered as support vectors.

computed by inserting the columns of W into the hinge loss
function. In the SVM classifier, the support vectors come up
due to the nonsmooth loss function. The number of support
vectors is controlled by the regularization parameter and with
an increasing amount of support vectors over-fitting occurs.
In the TC classifier, the smooth multiclass logistic loss func-
tion is used instead, which takes all samples into account and
therefore by default has no support vectors. The usage of this
loss function is required in order to use the trace-norm regu-
larization term, which treats the matrix W as a whole. This
is not possible with the OVR approach and the usage of the
SVM hinge loss, which treats the multiclass problem as mul-
tiple binary problems. However, even though the TC classifier
takes all samples into account, the over-fitting problem here is
avoided with the added trace-norm regularization term. The dis-
advantage of taking all samples in account in the TC classifier
is the increased computation time; however, a higher accuracy
is achieved through this. The support vectors shown in Fig. 2
for the TC classifier are an approximation, which are estimated
by introducing the hinge loss function into the matrix com-
puted by the TC classifier and can be used in order to determine
which vectors have the highest contribution to the optimization
problem.

4) Computational Complexity: The computational com-
plexity is an important factor for the comparison of the SVM
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TABLE I
COMPUTATIONAL COMPLEXITY AND ACTUAL TRAINING TIMES OF

CLASSIFIERS ON SAR DATASET REPRESENTED BY BOW OF SIFT
FEATURE DESCRIPTORS

to the TC. For the solution of the SVM optimization problem,
many different optimization techniques have been developed
over the years. Therefore, it is difficult to estimate the overall
computational complexity. For the LibSVM library [33], which
is the SVM implementation used in this work, the overall com-
putational complexity has been estimated to be O(ndp) for the
binary problem, where n is the number of samples, d is the
dimension of the feature vectors, and p is the number of itera-
tions. For the extension of the binary problem to the multiclass
problem with k classes, the binary problem has to be solved
k times in total. This leads to an overall time complexity of
O(kndp).

For the TC, the most expensive steps are the computation
of ∇R̃n(W ) and of the top singular vector pair of ∇R̃n(W ).
The top singular vector pair can be computed by the Lanczos
method [34], which has a time complexity of O(dk). The com-
putation of ∇R̃n(W ) involves two steps: the matrix products
wT

l xi, which have a computational complexity of O(ndk) and
the summation of the logistic function over all terms, which
has a computational complexity of O(nk). Thus, the overall
computational complexity of the TC is also in the order of
O(kndq), with q denoting the number of training iterations. It
should be noted, however, that the TC requires more training
iterations in total and more computations are performed during
each training iteration. In this work, the training of the trace-
norm regularized classifier was implemented on the scientific
programming package MATLAB. The most expensive calcu-
lations, like ∇R̃n(W ), have been implemented in C++ in the
format of mex files. Table I summarizes the training complex-
ities and the measured training times on a real dataset for the
different implementations. The real dataset consists of 500 sam-
ples of the SAR dataset, grouped in 15 classes. Each image is
represented by the Bag-of-Word (BoW) model of SIFT local
descriptors extracted from images.

B. Active Learning With TC

The TC can be employed in an active learning framework as
the training model. For instance, it can be based on iteratively
training the classifier on the available subset of labeled samples
and selecting as the next sample for labeling, the point which
is closest to the current boundary of the classifier, similar to
the SVMActive algorithm [8]. Let X denote the set of all avail-
able samples and L denote the set of labeled samples. With the
current weight matrix W = [w1, . . .,wk], the margin of each
sample is

μi = max
l=1,...,k

wT
l xi. (9)

The index of the next sample for labeling is then given by

il = argmin
i

{μi|xi ∈ X\L}. (10)

Training the classifier with each new labeled sample can be
done efficiently by storing the matrix W and setting it as the
starting point for the next training iteration. The whole active
learning algorithm is summarized in Algorithm 2.

Algorithm 2. Active learning with TC

Input: training points X and labels Y initial set of labeled
samples L0 total number of points to label m

Output: new set of labeled samples L weight matrix W
Algorithm:

for t = 0, 1, 2, . . . do
obtain Wt by applying Algorithm 1 on Lt with initial
weight matrix Wt−1

if |Lt| = m then
stop and return Wt, Lt

end if
Compute margin μi for each sample according to (11)
Select point xi with smallest margin according to (10) and
set Lt+1 = Lt ∪ {xi}

end for

IV. VISUALIZATION-BASED INSTANCE SELECTION

In this section, a novel active learning method is introduced,
which is based on the principles of uncertainty and expected
model change. Compared to existing active learning algorithms,
the difference here is that the sample selection strategy is also
coupled to the visualization method in addition to the classifier.
In the visualization, a ranked list of predictions ordered by con-
fidence is shown to the user and the user is asked to select the
first incorrectly predicted sample from one class. The algorithm
can be used in combination with any classifier, for which a con-
fidence metric can be computed, including the SVM and the TC
introduced in the Section III.

For the description of the algorithm, we consider the set of n
samples with feature vectors X = {x1, . . .,xn} of dimension
d and the corresponding class labels Y = {y1, . . ., yn} with a
total number of k classes. Additionally, let L denote the set of
samples whose correct label is available to the algorithm.

The main idea of this algorithm is to select samples for
labeling, which introduce the highest change into the model
of a trained classifier. This is achieved by letting the algorithm
predict labels during each iteration and asking the user to cor-
rect a label, which the algorithm is certain about, but predicts
incorrectly. As the measure of certainty, we use the exten-
sion of the margin as suggested in the SVMActive algorithm
[8] to a multiclass classifier. Given the current weight matrix
W = [w1, . . .,wk] of the classifier, we define the margin μi of
each sample as

μi = max
l=1,...,k

wT
l xi (11)
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TABLE II
PREDICTED SAMPLES IMAGES PRESENTED

TO THE USER DURING EACH ITERATION

and the predicted label ỹi of each sample as

ỹi = argmax
l=1,...,k

wT
l xi. (12)

Let Il̃;i denote the image of the unlabeled sample xl̃;i ∈ X\L,

predicted with label l̃. Then the algorithm during each iteration
arranges these images in a table with increasing margins for
each class, i.e.,

i ≥ j ⇔ μl̃;i ≥ μl̃;j (13)

as suggested in Table II and lets the user select the first sample
xl̃;m in a class that is labeled incorrectly, i.e.,

yl̃;m �= ỹl̃;m and yl̃;i = ỹl̃;i for i = 1, . . .,m− 1 (14)

and relabel it. Since the samples are sorted with decreasing cer-
tainty, we can expect to achieve a big correction in the model
by selecting the first incorrectly labeled sample. For the next
iteration, the relabeled sample and the correctly predicted sam-
ples before it in the corresponding class are added to the set of
labeled samples

L = L ∪
{
xl̃;1, . . .,xl̃;m

}
. (15)

This is repeated for the desired number of iterations. Since the
algorithm lets the user select a sample in the wrong class in
each iteration, it is called FCWL. The algorithm is summarized
in Algorithm 3.

Algorithm 3. FCWL-active learning with incorrect label cor-
rection by user

Input: training points X and labels Y initial set of
labeled samples L0 total number of iterations p

Output: new set of labeled samples L
Algorithm:

for t = 0, 1, 2, . . ., p do
Obtain Wt by training classifier on Lt

Compute margin μi for each sample according to (11)
Predict label ỹi for each sample according to (12)
Present samples to user according to Table II and equa-
tion (13)
Let user relabel first sample xl̃;m with incorrect predicted

label from one class and set Lt+1 = Lt ∪
{
xl̃;1, . . .,xl̃;m

}

end for
return Lt

A schematic diagram of the FCWL algorithm for an optical
dataset is presented in Fig. 3. On the top row, we see images

Fig. 3. Example list of images presented by the algorithm for an optical dataset.
The first row contains images representing each class. The sample images
are arranged in the columns, which correspond to the predicted class, with
decreasing margin.

representing the different categories of the dataset. Then, below
them, the algorithm places the images based on their predicted
labels in the corresponding categories. In this example, the
algorithm has already many correct predictions in class 2 with
the only incorrect prediction being the last one. So, by select-
ing this image the user can label all previous images from this
category as correct and relabel the incorrect one.

In [2], active learning algorithms are categorized based on
the sample selection heuristic, such as uncertainty sampling,
expected model change, query by committee, and variance
reduction. Our proposed active learning algorithm fits into the
categories of uncertainty sampling and expected model change.
However, the difference in which these principles are applied in
this algorithm is that the samples are presented to the user in an
ordered fashion and then the user selects which sample to label.
Instead, in previous active learning algorithms, the sample for
labeling was directly selected by the algorithm. Additionally,
the expected model change of the classifier in the previous
algorithms is estimated based on the gradient magnitude of
the classifier optimization function for each sample. Here, the
samples with the highest expected model change based on the
correction introduced by the user are selected.

For the training of a classifier with the FCWL algorithm, a
user interface was developed during this work. The user inter-
face presents the list of ranked images to the user, as described
in Section III, and asks the user to select the first incorrectly
predicted image from one category and relabel it. Additionally,
some information about the training progress is given. An
example screenshot of the user interface on training with the
SAR dataset is presented in Fig. 4. In this example, the training
is currently at iteration 40 and 209 images have been labeled so
far. Additionally, the plots show that the prediction accuracy on
the test and training set is currently at about 50%.

V. EXPERIMENTAL RESULTS

After introducing two novel methods for active learning,
experiments are conducted to compare the introduced methods
to state-of-the-art algorithms. The dataset used for evaluation is
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Fig. 4. Screenshot of user interface for FCWL algorithm on SAR dataset after
40 iterations.

Fig. 5. Sample images of the SAR dataset.

the SAR dataset, from which different types of feature vectors
are extracted. In the experiment, the accuracy of the different
active learning algorithms will be presented for an increasing
number of samples. Additionally, some results will be presented
that show the effects of the different regularization parameters,
used in the algorithms.

A. Dataset

The SAR dataset consists of a collection of 3434 images of
the size 160× 160 pixels, which are grouped in 15 classes con-
sisting of various factors such as presences of forests, water,
roads, and urban area density. Three different features, namely
BoW model of SIFT [35], BoW model of Weber local descrip-
tors (WLDs) [36], and Gabor [37] were extracted from the
images to represent each image with a feature vector. Each
feature vector is of length 64, which leads to a matrix of size
3434× 64. Furthermore, the whole feature matrix is normal-
ized to the range of [−1, 1] for each experiment. Some sample
images are depicted in Fig. 5.

B. Setup

In addition to our proposed method, the following active
learning methods were also applied on the dataset.

1) TED [11], which defines a cost function, based on the
covariance of the prediction error of a least squares

classifier. Then, in each iteration, the sample which min-
imizes the value of the cost function, is selected for
labeling.

2) MAED [12], which extends the TED algorithm with
a manifold adaptive kernel, in order to incorporate the
manifold structure into the selection process.

3) LLRActive [38], which minimizes the error of recon-
structing the whole dataset based on the selected samples
and the matrix describing the locally linear embedding.

4) SVMActive [8], which iteratively adds points closest to
the boundary of an SVM classifier to the training set and
trains the classifier on the new set. To extend this algo-
rithm to multiple classes, an OVR classifier is used and
the margin of each point is computed based on its distance
to the corresponding winning classifier.

5) Random sampling method, which randomly selects a
given number of points.

For the compared active learning algorithms, SVM with
OVR scheme was used for training and classification. Linear
kernel is used with the SVM. However, other kernels such as
Gaussian and Chi-square were used, but the best results were
achieved by using linear kernel. The metric used for compar-
ison is the classification accuracy of the associated classifier.
In order to obtain stable results, multiple tests were performed
on different subsets of the dataset and the average accuracy
over all subsets computed. During each experiment, a random
subset was chosen from the whole dataset for training and test-
ing. For the classifier parameter selection, we performed cross
validation on each dataset, by increasing each parameter expo-
nentially from the value 10−4 to to the value 104 and training
the classifier for each parameter. Then, the parameter for which
the classifier achieved the highest prediction accuracy was cho-
sen for each dataset. Similarly, we performed cross validation
for the parameter selection of the active learning algorithms.
Each active learning algorithm was applied on each dataset for
exponentially increasing parameter values between 10−4 and
104 and selected 10 samples for training. Then, the parameter,
for which the highest prediction accuracy was achieved in each
dataset, was chosen for the experiments.

C. Experiment 1: Active Learning Using TC

In this experiment, the performance of the TC-based active
learning method is compared to the introduced algorithms.
In addition to the proposed algorithm, which selects samples
based on their distance to the TC boundary, the TC is also
applied on the samples selected by the other active learning
algorithms.

The experiments were repeated 10 times for each dataset and
during each test a subset of 500 random samples was selected
from the dataset. Then each active learning algorithm selected
an increasing number of samples from 20 to 200. For classifi-
cation, the samples selected by each active learning algorithm
were used as a training set and all samples of the subset as a test
set. The classification results are presented in Figs. 6(a)–8(a).
Additionally, the stability of employed techniques is depicted
in Fig. 9 as the standard deviation of accuracy over the number
of trials.
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Fig. 6. Results on SAR Gabor. (a) Classification accuracy for different active learning algorithms. (b) Analysis of matrix rank and trace-norm for changing
parameter λ1. (c) Singular value spectrum for different values of λ1.

Fig. 7. Results on SAR SIFT. (a) Classification accuracy for different active learning algorithms. (b) Analysis of matrix rank and trace-norm for changing
parameter λ1. (c) Singular value spectrum for different values of λ1.

Fig. 8. Results on SAR WLD. (a) Classification accuracy for different active learning algorithms. (b) Analysis of matrix rank and trace-norm for changing
parameter λ1. (c) Singular value spectrum for different values of λ1.

The results show that the overall accuracy of the algorithms
depends on the feature descriptors chosen. Best results are
achieved with the WLD feature descriptor, where some algo-
rithms achieve an accuracy of about 90%. Next comes the
Gabor feature descriptor, which has on average 10% lower
accuracy and finally the SIFT feature descriptor, which again
leads to 10% less average accuracy. For all active learning
algorithms, we notice that coupling the algorithm with the TC
nearly always leads to a higher accuracy compared to cou-
pling the algorithm with the SVM-classifier. For the proposed
active learning algorithm, based on choosing the samples based
on their distance to the TC boundary, we notice that it per-
forms poorly on the SIFT feature descriptors, but improves in

performance on the Gabor feature descriptors and outperforms
the other algorithms for an increasing number of samples on the
WLD feature descriptors, which are the most important, since
overall the highest accuracy is achieved here.

In general, we notice that algorithms based on the sample dis-
tribution, like LLRActive and MAED, perform well for a small
number of samples and that algorithms based on the available
label information and trained classifier perform better as the
number of samples increases. This property can be explained
by the fact that at the beginning the trained classifier usually
lies still far away from the real classification boundary and
therefore the samples it selects as informative, might actually be
samples that do not contribute much information for training.
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Fig. 9. Stability of different active learning algorithms on SAR dataset defined by the standard deviation of accuracy over the number of trials. (a) SAR Gabor.
(b) SAR SIFT. (c) SAR WLD.

Fig. 10. Classification accuracy of different active learning algorithms on SAR dataset. (a) SAR Gabor. (b) SAR SIFT. (c) SAR WLD.

However, as the number of samples increases and the classi-
fier finds the position of real boundary, the samples it selects
for labeling are also samples that have a high probability of
becoming support vectors in the next training iteration. On the
other hand, algorithms that select samples based on the sam-
ple distribution, might achieve high accuracy at the beginning,
since selecting those samples provides a good overall picture
of how the samples are aligned in space. However, as the num-
ber of training samples increases, selecting samples in this way
provides less new information, since those samples are usually
located further away from the class boundary in the spatial point
distribution and therefore have a lower probability of becoming
support vectors.

1) TN Parameter Analysis: In order to analyze the behavior
of the TC associated to the proposed active learning algorithm,
experiments were also conducted on each dataset with different
values of λ1 and λ2. For these experiments, a random subset of
1000 samples from each dataset was selected as a test set and
a smaller randomly selected subset of 100 samples as a train-
ing set. Then, the TC was trained with different values of the
parameters λ1 and λ2. The results have shown that the param-
eter λ2 has less effect on the behavior and in general, the best
results are achieved when λ2 scales similarly to λ1. Therefore,
in the figures showing the behavior of the classifier with respect
to the parameters, λ2 was always chosen as λ2 = 0.1λ1.

Figs. 6(b)–8(b) show the resulting matrix rank and trace-
norm of the matrix W for different values λ1 around the area,
where the matrix rank drops from the maximum rank to zero

for Gabor, SIFT, and WLD features, respectively. The results
show that an increase in the value of λ1 leads to a decrease in
the trace-norm and therefore the rank of the matrix from the
maximum value to zero. Figs. 6(b), 7(c), and 8(c) additionally
show the resulting singular values of W for different values of
λ1. Again, we see that as the value of λ1 increases, the average
value of the singular values decreases and more singular values
become zero.

D. Experiment 2: Visualization-Based Active Learning

Similar experiments were performed for the analysis of the
interactive visualization-based active learning. The proposed
active learning algorithm was applied in conjunction with the
TC and SVM classifier, while for the other algorithms, the SVM
classifier was trained on the selected points. The experiments
were repeated again 10 times for each dataset, but here in order
to keep the results objective due to the multiple point selec-
tion of the proposed active learning classifier, different subsets
were used for training and for testing. Specifically, during each
experiment, a subset of 500 samples was selected as a train-
ing set and a different subset of 500 samples as a test set.
Making the test set completely separated from training set leads
to a reduction in accuracy for all algorithms. The classification
results are presented for the three datasets in Fig. 10(a)–(c).
Additionally, the stability of algorithms is depicted in Fig. 11.
Again, we see a dependence of the overall accuracy on the
choice of feature descriptors with WLD leading to the highest
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Fig. 11. Stability of different active learning algorithms on SAR dataset defined as the standard deviation of accuracy over the number of trials. (a) SAR Gabor.
(b) SAR SIFT. (c) SAR WLD.

Fig. 12. Matrix rank and trace-norm of FCWL algorithm with TC on SAR dataset. (a) SAR Gabor. (b) SAR SIFT. (c) SAR WLD.

accuracy and SIFT to the lowest. For the FCWL algorithm, the
plots show that for both SVM and TC it outperforms the other
active learning algorithms with all feature descriptors for an
increasing number of interactions, with the TC doing best in the
end. The improved performance of the FCWL algorithm with
TC compared to FCWL with SVM can be explained again by
the ability of the TC to deal with a high dimension of the feature
space and a high number of samples. This gets amplified even
more in the case of FCWL, where multiple samples are selected
per iteration, leading to an overall higher number of samples.
Thus, the FCWL with TC can repeatedly make more accurate
predictions, which lead to even more samples being labeled cor-
rectly and thus an even higher performance after training. This
property becomes clear in the plots, where the FCWL with TC
significantly outperforms the other algorithms, as the number of
selected samples increases beyond 200. However, the effect of
the increasing speed of performance improvement due to the
increased accuracy and therefore higher amount of correctly
predicted labels, can also be observed with the FCWL and SVM
classifier, where we see again that for 200 samples it has a high
difference in performance, compared to the other algorithms.

For a small number of samples, we notice that the FCWL
algorithm does worse than the other algorithms. The reason for
this can be found as before in the difference between classifier
based on sample distribution-based algorithms. When the num-
ber of samples is small, the predictions of the FCWL are still
inaccurate and therefore the samples labeled by the user might
not be the most informative. Additionally, it is possible that at
the initial steps, the FCWL algorithms know only a part of the

classes and therefore do not predict some classes at all, which
can lead to a further decrease in accuracy. However, as the num-
ber of samples increases, all classes can be predicted and the
overall accuracy increases faster. On the other hand, algorithms
like MAED and TED perform well at the beginning due to the
selection of a more diverse set of samples, which usually con-
tains all classes, but keep increasing slower in accuracy later, as
a high sample diversity is no longer coupled to a high increase
in classifier performance at this point.

Fig. 12(a)–(c) shows the evolution of the matrix rank and
trace-norm for the FCWL algorithm with trace-norm classifier
and an increasing number of samples. These plots make the
behavior of the FCWL algorithm with the trace-norm classifier
more clear. At the beginning we see a low matrix rank, which
means that only a small subset of classes are known. The num-
ber of samples required, until all classes are identified varies
for each feature descriptor. For example, for the Gabor descrip-
tor all classes are known after 80 samples have been selected,
for the SIFT descriptor 40 samples are necessary and for the
WLD descriptor 70. However, even at this point some of the
new classes might still be represented only weakly. Therefore,
the accuracy plots show that the FCWL algorithm with trace-
norm classifier achieve good performance, after the number of
samples is beyond the point, where all classes have been iden-
tified. The plots of the trace-norm value in Fig. 12(a)–(c) show
how the trace-norm behaves as a relaxation of the matrix rank.
It keeps increasing fast at the beginning as the rank of the matrix
is growing and has a lower slope in the end when the rank of
the matrix is constant.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BABAEE et al.: VISUALIZATION-BASED ACTIVE LEARNING 11

Fig. 13. Screenshots of user interface for FCWL algorithm on SAR dataset. (a) After two iterations. (b) After 120 iterations.

VI. CONCLUSION

We have introduced a novel active learning algorithm that
with an increasing number of samples to label, the effects of
overfitting can be reduced by minimizing the rank of the matrix.
This property is confirmed by the experiments, where the pro-
posed algorithm achieves the highest accuracy for an increasing
number of samples. However, a disadvantage of the algorithm is
the increasing computational effort required to solve the objec-
tive with a coordinate descend algorithm. Developing more
efficient methods to solve the optimization problem is there-
fore one possible direction for future work. Additionally, as the
experimental results show, for a small number of selected sam-
ples, the proposed algorithm is outperformed by algorithms,
which select points based on the sample distribution, e.g.,
MAED. Therefore, another possible direction for future work is
to combine the two approaches in order to develop an algorithm
that takes sample distribution and label information in account
and consistently provides high accuracy.

APPENDIX A
USER INTERFACE SCREENSHOTS

Fig. 13 shows two screenshots of the FCWL algorithm user
interface on the SAR WLD dataset, to illustrate the training
process. In Fig. 13(a) after two iterations only two classes of
the dataset have been learned and therefore, all images are pre-
dicted in these two classes. However, as the training progresses
the predictions become more diverse and overall more images
get predicted correctly. This can be seen in Fig. 13(b) after 120
iterations, where the predictions are more correctly distributed
over all classes.
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