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Abstract— This paper presents a method for learning nonlin-
ear rigid body dynamics in the special Euclidean group SE(3).
The method is based on the Gaussian process dynamical
model (GPDM), which combines two Gaussian processes (GPs),
one for representing unknown dynamics in a space R

d with
reduced dimensionality and the other for transforming the
reduced space back to the state space of the high dimensional
measurements R

D. We introduce in this paper an enhanced
GPDM, which extends the dynamics modeling space from Eu-
clidean space to the special Euclidean group SE(3). This allows
for accurate modeling of unknown dynamics incorporating
rotation and translation. Therefore, the unknown dynamics are
described by a GP over dual quaternions, denoted by GPHD

,
which extends the state of the art GP to a non-Euclidean input
space SE(3). Further, we provide a proof that the squared
exponential kernel used in the GPHD

defines a valid covariance
function. In conclusion we illustrate how the GPDM over dual
quaternions outperforms the traditional GPDM depending on
the amount of training data and rotation magnitude.

I. INTRODUCTION

In this work, we consider nonlinear dynamics on the

special Euclidean group SE(3), the group of relative distance

and orientation preserving transformations in 3D space. An

application domain is human robot interaction, where human

motion modeling is required. A main challenge for such a

task lies in finding a model that can capture the nonlinearities

of the dynamics. Well known models, such as switching

linear dynamical systems (SLDS) [1] or nonlinear dynamical

systems (NLDS) [2] can account only to a certain extend for

nonlinearities in the dynamics and require a large training

data set for accurate maximum a posteriori estimations.

Classical system identification methods assume that the

structure of the differential equations is known [3], which in

general can’t be provided in applications of human motion

modeling tasks. Therefore, we propose a Bayesian approach

for modeling an unknown nonlinear dynamic, namely a

Gaussian process (GP) based model. Its main advantage,

compared to the aforementioned models or neural networks,

lies in accounting for the uncertainty in the model. GP based

models nominate a best estimator for the predictions and

provide the uncertainty of each prediction.

However, a drawback of all GP based models is that

they are only defined in Euclidean space. The GP model

is based on the inverse of a Gram matrix [4], which only

exists if a Euclidean vector space structure is available. In

an application where orientations are required, Euler angles

are typically used as a rotation representation, see [5], as

this representation is approximately Euclidean for rotations
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close to zero. This approach is appropriate, if one assumes

sufficiently small rotation angles. However, when the rate of

orientation change becomes significantly large due to high

angular speed, low sampling frequency or temporary loss of

input data, another rotation parametrization is required. We

propose to use unit quaternions S3 to parametrize rotations

and dual quaternions HD to parametrize transformations

consisting of rotations and translations, i.e. rigid motions.

The dual quaternion representation is advantageous, as it rep-

resents rigid motions in a unified manner, provides smooth

motions [6] and is close to a minimal representation. In

our previous work [7] we introduced a GP in the special

Euclidean group SE(3) parametrized by dual quaternions.

The contribution of this paper is the enhancement of the

Gaussian process dynamical model (GPDM) to a GPDM

over dual quaternions by introducing a GP over dual quater-

nions for modeling rotational and translational dynamics

in the reduced dimensional space of hidden variables. We

introduce a modified distance measure defined on the special

Euclidean group SE(3). It is used in the covariance function

of the introduced GP. We prove that this covariance function

over dual quaternions is valid. The differences between the

GP over dual quaternions and the traditional GP incorporat-

ing Euler angles are empirically evaluated inside the GPDM.

The paper is organized as follows. In Section II the

problem is formulated. Section III briefly explains the GP on

the special Euclidean group SE(3). Section IV introduces the

enhanced GPDM over dual quaternions. Finally, in Section V

the estimation quality of the enhanced GPDM for nonlinear

dynamics is examined.

Notation. In the remainder of the paper we denote the set

of vectors that are perpendicular to vector q by q⊥; ∼ stands

for distributed as; ≃ denotes an isomorphism; ≈ means

approximately equal and ⋊ is the semi-direct product.

II. PROBLEM FORMULATION

The objective of this paper is to develop a data-driven

modeling approach for nonlinear dynamics in the special

Euclidean group SE(3). As human robot interaction is a

main application area, we require the model to be suitable for

human behavior modeling incorporating significant rotations.

Our approach to this problem is to enhance the GPDM to

a GPDM over dual quaternions, which can handle these

rotations.

We consider a time series of states xt in the special

Euclidean group SE(3) with time index t ≥ 0. Each state xt

consists of a relative distance and orientation preserving

transformation parametrized by a dual quaternion. We as-

sume a system on SE(3) to be evolving according to some



general nonlinear but unknown dynamics f : SE(3)→ SE(3),

xt+1 = f (xt)+nxt , (1)

where nxt , t ≥ 0 is a noise process in SE(3). Our objective

is to find an approximation of the dynamics based on

observed data, employing a Gaussian process (GP) based

modeling approach. It should be noted, however, that a

Euclidean vector space structure is required for defining a

Gaussian distribution, the output of a GP model. As on the

considered special Euclidean group SE(3), this structure isn’t

provided, the dynamics (1) is not directly amenable to a

GP based modeling approach. In consequence, we propose

to reformulate the problem in the following way: Let the

mapping f̃ be a vector field on SE(3) with dynamic

vt = f̃ (xt)+ ñxt , (2)

where vt ∈ Txt SE(3) is a velocity vector in the tangent

space of SE(3) at state xt . We assume the noise to be

some white Gaussian noise ñx ∼ N(0,Σx) in the tangent

bundle T SE(3). The function f̃ can now be modeled by

a GP over dual quaternions, abbreviated in the following

by GPHD
. In addition, we define h : T SE(3) → SE(3) to

map from the tangent bundle TSE(3) back to the initial

group SE(3) such that f = h ◦ f̃ holds. The mapping h is

determined analytically. The pair (vt , xt) ∈ T SE(3) defines

a vector vt ∈ Txt SE(3) inducing hxt : Txt SE(3)→ SE(3) such

that,
xt+1 = hxt (vt). (3)

A mapping from the special Euclidean group SE(3) to the

observation space R
D is required additionally, to complete

the Gaussian process dynamical model (GPDM). It is given

by a function g : SE(3)→R
D with

yt = g(xt)+nyt , (4)

where yt ∈R
D, D ∈N a high dimensional vector-valued ob-

servation. We denote by nyt ∈R
D, t ≥ 0 zero-mean Gaussian

noise. Together, we obtain a GPDM over dual quaternions,

which is suitable to model nonlinear rigid body dynamics in

the special Euclidean group SE(3).
The observation space R

D of the human motion is

parametrized by translation vectors and rotation angles to

match state of the art sensing devices, that mostly provide

3D rotation angles and 3D positions. Note, Euler angles close

to zero are approximately Euclidean and with high sampling

rates, the incremental orientation changes are sufficiently

small. However, in the latent space with reduced dimen-

sionality we require the dual quaternion parametrization.

Therefore, the GPDM over dual quaternions is required for

nonlinear dynamics in the special Euclidean group SE(3).

III. GP OVER DUAL QUATERNIONS

This section illustrates the problem of including orienta-

tion into a GP. First, relevant background information about

GP modeling is provided. Then, the GPH for pure rotations

is recapitulated before the GPHD
defined in [7] is briefly

explained. We provide a proof for the squared exponential

covariance functions in GPH and GPHD
to be valid.

A. Background on GP Models

A GP is defined as a set of random variables, such that

every finite subset is jointly Gaussian distributed [8]. The GP

is fully specified by a mean function m(x) and a covariance

function k(x, x′). Hence, a GP is given by

f (x) = GP(m(x),k(x, x′)). (5)

This covariance function k(x, x′) is required to generate a

symmetric and positive semi-definite Gram matrix K [9],

which is specified by (K)i j = k(xi, x j) for xi and x j elements

of any finite set of realizations {x1, . . . , xn}. The Gaussian

Process dynamical model (GPDM) [10] is an unsupervised

learning method for high dimensional data. It models the

joint distribution of the observed data in the high dimensional

observation space and the corresponding latent variables in a

low dimensional latent space. Further, the GPDM comprises

a dynamical model in the latent space. Principal component

analysis (PCA) is interpreted as GP prior on the mapping

from latent to observation space.

B. GP on the Hypersphere S3

For better understanding, the GP on S3 parametrized by

unit quaternions is briefly explained in this section. Follow-

ing our previous work [7], we model the mapping f̃ by a

GP on unit quaternions. Hence, the state xt in eq. (2) is

a rotation quaternion qrott = qw + qxix + qyiy + qziz ∈H, with

parameter entries qw, qx, qy, qz ∈R such that ‖qrott‖= 1. The

output velocity vt is denoted by vT Sqrott
for T Sqrott

the tangent

space of the corresponding orientation quaternion qrott . In

GP modeling a Gaussian distribution is provided for any

output vt . In the following we explain how to transfer

this Gaussian to a distribution over states as in (3). A

visualization of the projected Gaussian is provided in Fig. 1.

Central Projection: We model the prediction uncertainty

on the unit sphere S3 by projecting the Gaussian distribution

from the tangent space to the sphere.

Fig. 1. The Gaussian distribution in the tangent space at the north pole is
projected to the sphere S2 via central projection.

To propagate the 3D prediction uncertainty of velocity vTSt

to the state space S3, function h is defined to be the central

projection
Πqrott

: TSqrott
→ S3

Πqrott
(vT St ) = {− v

‖v‖ ,
v

‖v‖}, (6)

where v = qrott + BvT St . The basis B is the canonical

representation of the 3D tangent space T Sqrott
in the 4D

space R
4 [11]. As claimed in eq. (3), we obtain a unit

quaternion qrott+1
= Πqrott

(vTSt ) from the velocity vTSt such

that f = h ◦ f̃ holds. A probability density on the sphere



is obtained by projecting the set closure {∞} of the tan-

gent space T Sqrott
to the set of orthogonal vector-valued

points q⊥
rott

on the sphere,

Πqrott
(∞) = q⊥

rott
:= {q ∈ S3|q ⊥ qrott}. (7)

As the set closure {∞} has probability 0, we obtain a con-

tinuous completion of the probability distribution projected

to the sphere.

Remark 3.1: The unit quaternions are a double coverage

of the 3D orientations, i.e. opposing points ±q on the

sphere S3 represent the same orientation. Thus, the special

Orthogonal group SO(3) is isomorphic to the group S3/{±1}
with quaternion multiplication as a group operation. Infor-

mally speaking, the unit sphere S3 is reduced about the

equivalence class {±1} of opposing unit quaternions.

Squared Exponential Covariance Function: It is com-

mon to set the mean function to zero in GP applications,

as the essential part in GP model learning is modeling

the covariance function k(x, x′). The squared exponential

covariance function

k(x, x′) = σ2
f exp

(

−d2(x, x′)
2λ 2

)

, (8)

where d(x, x′) = ‖x− x′‖ the Euclidean L
2 distance and the

hyperparameters σ f , λ > 0 signal variance and length scale,

is widely used in state of the art GP modeling [4]. In the

following we provide a squared exponential kernel function

for unit quaternions, based on the length of the arc section

between two quaternions q and q′

darc(q, q′) = min arccos(〈q,±q′〉), (9)

where 〈q, q′〉 = 1
2
(qq′ + q′ q) is the scalar product over

quaternions and q denotes the quaternion conjugate. The arc

length defines a metric on the hypersphere S3 [12]. To be

able to proof Theorem 3.3, we need a conditionally positive

definite covariance function [13], which is defined as follows.

Definition 3.2: Let X be a nonempty set. A real-valued

symmetric function k : X×X→ R is called a conditionally

positive definite (cpd) covariance function, if the Gram

matrix K ∈ R
n×n satisfies c⊤Kc ≥ 0 for any vector c ∈ R

n

with 0 = c⊤1 = ∑n
i=1 ci.

Theorem 3.3: The function k : S3 × S3 → R
+
0 over unit

quaternions q, q′ ∈ S3, given by

karc(q, q′) = σ2
f exp

(

−darc(q, q′)2

2λ 2

)

, (10)

where darc as in (9) and the hyperparameters σ f , λ > 0,

defines a covariance function, i.e. is symmetric and positive

definite.

Proof of Theorem 3.3: From [13] we know that exp(ck) is

a positive definite covariance function for all constants c > 0

iff k is cpd. Further, [14] proves that any finite constant c̃ > 0

is a positive definite covariance function and the product of

valid kernels defines a positive definite covariance function.

By choosing c̃=σ2
f and c= 1

2λ 2 in kernel karc(q, q′) defined

as in (10), we have the proof completed, if we can show

that the function k2
negd(q, q′) :=−(darc(q, q′)2) defines a cpd

covariance function. Therefore, let φ : [−1,1]→ [− π
2
, π

2
],

given by φ(x) = π/2− arccos(x) and ψ : [−1,1]→ [ 3
2
π , π

2
],

given by ψ(x) = π/2+arccos(x) be two auxiliary functions.

The procedure is to prove that both auxiliary functions define

valid covariance functions and then, to show that k2
negd(q, q′)

can be constructed from these auxiliary functions.

The arccos function can be expressed in terms of the arcsin

arccos(x) =
π

2
− arcsin(x). (11)

Further, it is well known, that arcsin can be represented as

infinite series via Taylor expansion

arcsin(x) =
∞

∑
j=0

c j x2 j+1, where c j =
2Γ
(

j+ 1
2

)

√
π(2 j+ 1) j!

(12)

are constants depending on the index j and Γ(x̃) the

gamma function. The constants c j > 0 ∀ j = 0,1,2, . . . be-

cause Γ(x̃)> 0 ∀x̃ > 0. Together, we obtain that the func-

tion φ(x) reduces to arcsin(x), an infinite polynomial with

non-negative coefficients and the function ψ(x) to

ψ(x) =
π

2
+

π

2
− arcsin(x) = π + arcsin(−x). (13)

On introducing 〈q, q′〉 for x ∈ [−1,1] into the auxiliary

functions φ and ψ we obtain φ(〈q, q′〉) = arcsin(〈q, q′〉)
and ψ(〈q, q′〉) = π + arcsin(〈q,−q′〉), because −〈q, q′〉 =
〈q,−q′〉. According to Theorem 4 in [13] we know that the

Taylor series expansion of a function defined on the unit

sphere, such as (12) defines a valid covariance function, iff

all coefficients are non-negative. Further, we know from [14]

that the sum of valid covariance functions defines a positive

definite covariance function. Hence, we obtain that both

auxiliary functions define valid covariance functions.

Now, we define a new auxiliary function, depending on

the former two, θ : [−1,1]→ [− 3
4
π2, 1

2
π2], θ (x) = φ(x)ψ(x).

Introducing 〈q, q′〉 provides

θ (〈q, q′〉) = π2

4
− arccos2(〈q, q′〉), (14)

what defines a valid covariance function according to [14].

The squared negative distance kernel k2
negd =−d2

arc can be

rewritten as

k2
negd =−π2

4
︸ ︷︷ ︸

⋆

+
︸︷︷︸

⋄

θ (〈q, q̃′〉)
︸ ︷︷ ︸

△

, (15)

where q̃′ ∈ {±q′} chosen such that arccos(〈q, q̃′〉) minimal.

From [13] we know that

⋆ any constant c ∈ R is cpd

△ any valid covariance function is also cpd

⋄ the finite sum of cpd covariance functions is a cpd

covariance function

and hence, obtain that k2
negd(q, q′) is a cpd covariance

function as defined in Definition 3.2.

�

C. GP on the Special Euclidean Group SE(3)

In this section, we introduce the GPHD
over the special Eu-

clidean group SE(3), parametrized by dual quaternions HD

HD = {dq | dq = qre + ε qdu & qre, qdu ∈H}, (16)



where ε 6= 0 is a dual unit, i.e. it satisfies ε2 = 0 [15]. A

state configuration with 6 degrees of freedom (DoF) can be

represented by a dual quaternion

dq := qrot +
ε

2
qtra qrot, (17)

where a unit quaternion qrot describes the orientation and an

imaginary quaternion qtra = q′xix + q′yiy + q′ziz, with parame-

ters q′x, q′y, q′z ∈ R the position.

Remark 3.4: The representations

SE(3)≃ S3/{±1}⋊R
3 (18)

are isomorphic with dual quaternion multiplication as group

operation on S3/{±1}⋊R
3. The special Euclidean group

is homeomorpic to SO(3)×R
3, where × denotes the direct

product. As the space of rotations with quaternion represen-

tation is S3/{±1}, we require the semi-direct product ⋊ to

link rotation and translation space.

The multiplication of dual quaternions dq and dq′ is defined

as

dq∗ dq′ = qre q′
re + ε

(
qre q′

du + qdu q′
re

)
. (19)

The GPHD
over dual quaternions models the vector field f̃

on SE(3) defined in (2). The input is parametrized by dual

quaternions, the output is a vector consisting of rotational

velocities vTSt in the tangent space concatenated with transla-

tional velocities vpt . To obtain a dual quaternion as in eq. (3),

we define the mapping h to be the central projection for the

rotation and the identity function for the translation,

h(vt) =

{
Πqrott

(vT St ) for rotational velocites

id(vpt ) for translational velocities.
(20)

To define a covariance function for GPHD
we require a

magnitude measure between input states, which is calculated

from the transforming dual quaternion: To arrive in dq′

we apply to the configuration dq the transformation ~dq =
dq ∗ dq′, where dq denotes the dual quaternion conjugate.

From the transforming dual quaternion ~dq = ~qre + ε ~qdu,

rotation qrot and translation qtra are obtained by dual quater-

nion decomposition using (17). We define the transformation

magnitude measure as

dmag(dq, dq′) =
√

darc(q0,~qrot)
2 + ‖~qtra‖2, (21)

where q0 = (1,0,0,0)⊤ denotes the zero rotation. Similar

to the case, where the GP is restricted to the sphere S3, a

valid covariance function is defined based on this magnitude

measure in the following theorem.

Theorem 3.5: The function k : (S3×R
3)×(S3×R

3)→R
+
0

over dual quaternions dq, dq′ ∈ S3 ×R
3, given by

kmag(dq, dq′) = σ2
f exp

(

−dmag(dq, dq′)2

2λ 2

)

. (22)

where dmag as in (21) and the hyperparameters σ f , λ > 0,

defines a valid covariance function.

Proof: The function kmag can be rewritten as

kmag(dq, dq′) = σ2
f exp

(

− d2
arc

2λ 2

)

︸ ︷︷ ︸

⋆

exp

(

−‖~qtra‖2

2λ 2

)

︸ ︷︷ ︸

⋄

. (23)

According to Theorem 3.3 ⋆ is a covariance function. The

proof for ⋄ to be a covariance function is identical the one for

the standard squared exponential kernel provided in [14] Sec-

tion 6.2 for eq. (6.23). Hence, it follows that kmag(dq, dq′)
defines a positive definite covariance function.

�

IV. GPDM OVER DUAL QUATERNIONS

In this section we introduce a GPDM, in which the low

dimensional space of latent dynamics is S3/{±1}⋊R
3 or

a subset of it. This latent space is parametrized by dual

quaternions HD. The GPHD
over dual quaternions is used

for learning the dynamical model in the latent space, as

well as for the mapping from the latent space HD to a high

dimensional observation space. In applications of full body

human motion modeling the dimension of the observation

space generally exceeds the number of dimensions where

calculations are reasonably fast such that dimension reduc-

tion is required to obtain a GP prior for the dynamics in the

latent space S3/{±1}⋊R
3.

A. GPDM Dynamics

We consider a mapping g : HD×R
r×s →R

D, with r, s ∈N

from the latent to observation space

yt+1 = g(dqt+1,B)+nyt , (24)

where yt+1 ∈ R
D the observations at the subsequent time

step and nyt , zero-mean white Gaussian noise The dual

quaternion dqt+1, is obtained using function h as defined

in eq. (20),

dqt+1 = h(vdqt
). (25)

By slight abuse of denotation, we continue to refer to the

dynamics in the latent space with f̃ even though we restrict

the input to a time series of dual quaternions dqt , t ≥ 0

and include unknown function parameters A ∈ R
r′×s′ (re-

spectively B ∈ R
r×s for mapping g) written in matrix form

into the parametrization.

vdqt
= f̃ (dqt ,A)+ ñdqt

(26)

where vdqt
the latent velocities and ñdqt

zero-mean white

Gaussian noise. Following [16], the mappings f̃ and g are

considered to consist of linear combinations of possibly

nonlinear basis functions. Using this dynamics represen-

tation, we are able to ”marginalize” over the parameter

matrices A and B specifying the unknown weights of the

basis functions. Marginalizing means to reformulate the GP

densities conditioned to the parameters. This is required to

insert the GP describing the latent dynamics into the GP

modeling the latent mapping.

Marginalizing the parameter B over g yields a Gaussian

density for the mapping from latent to observation space [10],

which can be expressed as a product of l GPs

p(Y|DQ,β ) =
1

√

(2π)nl |KY|l
exp

(

−1

2
∑

i
∑

j

(K−1
Y )i j y j y⊤i

)

,

(27)



where DQ = {dq1, . . . , dqn} the n latent states, correspond-

ing to the n D-dimensional observations Y = {y1, . . . , yn},

further KY a covariance matrix determined by (KY)i j =
kmag(dqi, dq j) for i, j ∈ {1, . . . , n} and kmag the covariance

function defined as in (22). The parameter β = (σ f ,λ ) com-

bines the hyperparameters of the covariance function kmag.

The density of the joint dynamics mapping in the latent

states DQ is obtained by marginalizing over the unknown

parameter matrix A, while assuming an isotropic Gaussian

prior on the columns of A. Denoting the set of dual quater-

nion velocities by VDQ we calculate the probability density

p(VDQ|DQ,α) =
p(dq1)

√

(2π)(n−1)m|KDQ|m

· exp

(

−1

2

n

∑
i=2

n

∑
j=2

(K−1
DQ)i j |〈dq j, dqi〉|

)

,

(28)

where we assume dq1 to have an isotropic projected Gaus-

sian prior. This prior is obtained by projecting separately

defined Gaussian priors for rotational and translational part

to SE(3) via h, see (20). The rotational Gaussian prior

is required to be defined in the tangent space of the

rotational part qre1
. Further, KDQ denotes the covariance

matrix over the latent states dq1, . . . , dqn−1 with matrix

entries (KDQ)i j = kmag(dq j, dq j), where the covariance

function defined as in (22) and α is a vector containing

the hyperparameters of covariance function kmag. Note, the

matrices KY and KDQ differ solely in the values of the hyper-

parameters α and β inside the covariance function kmag. The

exponent m ∈ {1, . . . ,6} is the maximum number of nonzero

imaginary entries of any dual quaternion in the latent space.

The absolute value of 〈dq j, dqi〉 is obtained on exploiting

the linearity of the bilinear form in both arguments and the

dual unit properties |ε|= 1 and ε2 = 0.

Remark 4.1: The density function (28) of the dynamics

in S3 ×R
3 is not Gaussian, because the latent state dq1

appears outside the exponential covariance function.

Following [17], on the hyperparameters uninformative

priors p(α) ∝ ∏{σ f ,α ,λα ,σl,α} and p(β) ∝ ∏{σ f ,β ,λβ}
are placed to avoid overfitting. Subsequently, we obtain

the priors, the latent mapping and the dynamics over dual

quaternions, which together define a generative mapping for

high dimensional time series observations

p(DQ,Y,α ,β ) = p(Y|DQ,β ) p(VDQ|α) p(α) p(β ). (29)

This probability distribution comprises the composed infor-

mation of both GPs, one for modeling the latent dynamics in

the state space with reduced dimensions S3/{±1}⋊R
3 and

one for describing the mapping from the latent space to the

high dimensional observation space.

B. GPDM Learning

In this paragraph concerning hyperparameter learning, we

focus on to the optimization method maximum a poste-

riori estimation. The learning is performed by minimiz-

ing the negative log-posterior of the hyperparameters L =

− ln(p(DQ,α,β |Y)), which according to [16] is approxi-

mated to an additive constant by

L= LY +LDQ +∑ ln{σ f ,β ,λβ}+∑ln{σ f ,α ,λα ,σl,α},
(30)

where

2LY = |KY|+∑
i

∑
j

(K−1
Y )i j y j y⊤i

2LDQ = m|KDQ|+
n

∑
i=2

n

∑
j=2

(K−1
DQ)i j |〈dq j, dqi〉|+ 〈dq1, dq1〉.

The minimization is performed numerically using a gradient

descent algorithm.

V. NUMERICAL EVALUATION

In this section we evaluate the approximation properties of

an underlying ground truth dynamic f̃ incorporating trans-

lation and rotation for the GPHD
over dual quaternions and

the state of the art GP, where rotation is parametrized using

Euler angles. In [10] it is argued, that mean-prediction [18],

a method ignoring process noise, is advantageous compared

to a prediction within noise. However, on propagating a

mean-prediction error of latent dynamics to the observation

space, the GPDM output accuracy is limited to the error

magnitude. Thus, we investigate the root-mean-square error

(RMSE) in mean-prediction in the latent dynamics model.

All evaluations are performed directly on GPs.

We evaluate the mean-prediction quality of GPHD
and the

traditional GP depending on the sample size of the training

data and the rotation range in the dynamic f̃ . The training

data set and the ground truth data set are generated using the

arbitrary nonlinear function

vx = f̃ (x) =











cos(x)+ sin(y+R)
1− x sin(Y +R+ z)

π
8
− sin(Yz− 1)

2ccos(xy) sin(R+ x)+R

sin(tan( z
3
+ 1

2
)− 2cy)

3ccos(RY )− y
4c











, (31)

where every input state x = (x, y, z, R, P, Y ) can be isomor-

phically converted to a dual quaternion dq according to (18)

and c > 0 a constant. An artificial white Gaussian noise

with arbitrarily picked standard deviation σ = 3 · 10−2 is

added to the training data set as recommended in [19], to

assure numerical stability. To evaluate the quality of the

GPHD
and the traditional GP, we use the RMSE between

the GP predictions for vx and the true function value f̃ (x).
To obtain reliable testing results, the RMSE is calculated

for 10000 iid testing states, where every entry of the input

state x is within the interval [−3,3]. We distinguish between

the average RMSE of the GP prediction for translation vxtra

respectively rotation vxrot for both GP models.

For the translational velocities vxtra we found in our exper-

iments no significant difference in the prediction quality of

GPHD
and the traditional GP. For growing training data sets,

the average RMSE in translational GP prediction converges

around 10−2 for both models and the difference in the

RMSEs ranges in magnitude 10−4. Therefore, we concentrate



in the remainder of the paper on the quality of the rotational

part of GP predictions vxrot.

A. RMSE Depending on Rotation Magnitude

In a first experiment we compare the prediction quality

of the GP models, depending on the rotation magnitude

in (31). We increase stepwise the constant c in the dynamic f̃

from 0.25 to 4. The number of training samples is fixed

to 103 for all repetitions and the learning is performed each

time with the same set of uniformly drawn random samples.

In case the rotational velocity is small, the RMSE of the

GPHD
and the traditional GP prediction are also small. When

the rotation magnitude is increased, the performance of the

traditional GP is hindered while accuracy of the GPHD
is

significantly less affected as visualized in Figure 2.

0.25 0.5 1 2 4

0

2

4

6
·10−2

Rotation Magnitude

R
M

S
E

GPHD
vrot

GP
R6 vrot

Fig. 2. The prediction quality is visualized for a fixed sample size of the
training data, but increasing rotation magnitude in the dynamic f̃ . The red
bars depict the average RMSEs in the rotational velocity prediction, where
solid colors show the GPHD

and striped bars the traditional GP.

B. RMSE Depending on Number of Samples

In a second numerical evaluation we illustrate the GP

prediction quality for GPHD
and the traditional GP depending

on the number of training samples. The model learning is

performed on increasing training data sets from 500 to 8000

samples over the 6D space, while the constant c is fixed to 1.

Figure 3 shows, that the GPHD
approximates the underlying

ground truth dynamics better than the traditional GP.
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Fig. 3. For increasing numbers of samples used in GP training the
prediction quality is visualized. The solid red bars depict the RMSE in
the rotation prediction of GPHD

and the striped bars of traditional GP.

VI. CONCLUSION

In this paper we introduce the GP over dual quaternions

and the GPDM over dual quaternions. The extension of the

GP input space to S3/{±1}⋊R
3 allows for modeling dynam-

ics in the special Euclidean group SE(3), which describes

relative distances and orientation preserving transformations.

We prove that the functions k, defined in Theorem (3.3) and

Theorem (3.5), define valid covariance functions. Introducing

these covariance function into the GPDM density, enhances

the GPDM to allow for modeling dynamics in the latent

space S3/{±1}⋊R
3 or a subspace of it. Through the rigid

motion representation using dual quaternions, we demon-

strate how the ground truth approximation accuracy of the

GPHD
outperforms the traditional GP on modeling strongly

nonlinear dynamics.
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