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Abstract—We consider a sum mean square error (SMSE) based
transceiver design for the multi-user downlink with multiple
linear transmit power constraints. Since the multi-antenna trans-
mitter has only imperfect channel state information (CSI), the
average SMSE is minimized via an alternating optimization (AO).
For fixed equalizers, the average SMSE minimizing precoders
are found via an uplink-downlink SMSE duality. The precoder
update therewith transforms to an uplink max-min average
SMSE problem, i.e., a minimum mean square error (MMSE)
equalizer design and an outer worst-case noise search. This
dual problem is optimally solved, e.g., by a gradient projection
approach, and strong duality is shown.

Index Terms—uplink-downlink sum MSE duality; imperfect
CSI; general power constraints; per-antenna constraints

I. INTRODUCTION

Uplink-downlink duality is an utmost useful tool to trans-
form precoder optimizations in multi-antenna broadcast chan-
nels (BCs) to less complex filter designs and power allocations
in the dual multiple access channels (MACs). We focus on an
average SMSE transceiver design via AO in this context, where
the downlink precoder update becomes a simple MMSE filter
calculation in the dual uplink. This result was revealed in [1]
using SINR uplink-downlink duality (e.g., see [2]). Simplified
versions of this duality and AO approach were shown in [3]
and depend on the required mean square error (MSE) term,
i.e., SMSE, per-user MSE, or per-stream MSE.

Note that these references impose a sum power constraint
and perfect transmitter CSI (TxCSI). In contrast, we explore
an AO transceiver design for imperfect TxCSI and extend the
work in [4] to multiple linear power constraints, including
per-beam and per-antenna constraints as special cases. This
formulation corresponds to the scenario, where the antennas
cannot negotiate on their payload, e.g., either due to their
distributed locations or due to the radio-frequency hardware.

A similar problem was considered by Bogale and Van-
dendorpe in [5], [6]. They introduced an uplink-downlink
duality for the precoder design step within the AO based on
an algorithmic argumentation and for special types of power
constraints, e.g., per-antenna and per-precoder constraints.
In contrast, we derive the uplink-downlink duality for the
average SMSE precoder optimization problem concisely via
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Lagrangian duality theory and for generalized power con-
straints, which include above constraints as special cases. Due
to strong duality, the computationally attractive uplink filter
and power allocation solutions lead to an optimal precoder
update for the locally optimal alternating convex search.

This work shall give the main idea of the SMSE precoder
optimization via (Lagrangian) uplink-downlink duality. We
show that the duality holds for single-antenna and multi-
antenna receiver scenarios. Furthermore, we show that the
average SMSE measure varies only a little for Gaussian
channels if a per-antenna, per-array, or a sum power constraint
are imposed in the optimization, even though the dynamic
power range of each antenna is increasing in this order.

We remark that similar uplink-downlink duality based
transceiver designs are applicable for other optimization prob-
lems as well, e.g., an average MSE balancing which we
recently presented in [7]. Moreover, even though the shown
AO considers only imperfect TxCS], i.e., the receivers exploit
perfect CSI to calculate their equalizers, the method is applica-
ble when the receivers have also imperfect CSI (e.g., see [6])
and the transmitter knows the receivers’ strategies.

II. SYSTEM MODEL

First, we consider a K-user vector downlink with single-
antenna receivers and an /N-antenna transmitter. The k-th
user’s MSE in this system reads as

K
MSE =1-2Re{fihilbx} +>_ [fil?|hib:i* +|fi0} (1)
i=1
when mutually independent zero-mean unit-variance data sig-
nals are linearly precoded with b;, i = 1,..., K, and sent over
the channel h;, € CV. The receivers are subject to zero-mean
additive noise with variance o7 and filter the obtained signal
with f, = vfy, € C.!
As mentioned above, we consider imperfect TxCSI. The
transmitter shall only be aware of some channel statistics. For
example, we may assume the error model

hi, = hy, + hy, 2)

with the estimated channel mean h;, and the Gaussian error
hj ~ N¢(0, Cy) with known covariance matrix C},.

'Here, v is a normalization variable for the precoder design in the AO.



A. Multi-Antenna Receivers

In the second scenario, the receivers have multiple antennas
and support a multi-stream data transmission, such that the
k-th user’s MSE reads as

MSE}, = M, —2Re{tr(F{ HI By)} (3)
K
> IFH B ||E+tr(F 2 Fr).
i=1

To obtain (3), we assumed that M} independent zero-mean
unit variance data signals are linearly precoded by Bj and
transmitted to the k-th receiver, which filters the signals with
F. = vF,.! If we additionally substitute by, = vec(B)) and
fr = vec(Fy) in (3), we obtain the equivalent beamformer-
like MSE representation [cf. (1)]

MSE;, = My, —2 Re{ i (1n;, ® Hi )by, } 4

K
3 |(Iar, @ B HED b3 15+ £ (Lag, © ) e
i=1
Similar to the vector channel case, the transmitter shall only
be aware of the channel statistics for the multi-antenna receiver
scenario. The matrix equivalent of the channel model in (2) is

H, = H,, + H,, )

with ~the channel mean H) and the Gaussian error ka =
vec(Hy) ~ Ng(0, Cy) with covariance matrix Cl,.

B. Transmit Power Limitations

In either of the two scenarios, the transmitter shall be subject
to general power limitations of the form

K K
ool A b =Y lAb R < Py (=1,...,L (6
=1 i=1

where A;, € CN*N A, , = 0 has the square root repre-
sentation A;, = ASZ/QA;/f and rank{zszl A} =N.
Important examples from wireless communications in vector
channels are a sum power constraint, per-beam constraints, and
per-antenna constraints. Depending on the imposed transmit
power constraint(s), the matrices A; ¢ have different forms:

o sum power: A; ;=Iy forall i=1,..., K and L=1;

o per-beam: A; ;=Iy and A; y=0nxn, {#i with L=K;

e per-antenna: A; g :egeg with L=N.

Besides these special cases, the formulation in (6) also in-
cludes power constraints per antenna array, e.g.,

o per-array: A;¢=blockdiag{0, Aj,0} and L<N,
where the matrices A; > 0 may have full rank, that is,
1 <rank{A;,} < N. These per-array constraints are impor-
tant for systems where several multi-antenna transmitters, e.g.,
WiFi stations, cooperatively supply several mobile devices.

We remark that the power constraints in (6) are also suitable
for the scenario with multiple streams per user. Then, the
matrices A; , for the sum, per-beam, per-antenna, and per-
array constraints are blockdiagonal with replications of above
matrices on the diagonal, i.e., A;, = Iy, ® A'Ii,f'

III. AVERAGE SUM MSE MINIMIZATION

The goal is the minimization of the average downlink SMSE
SMSEp;, = 2521 E[MSEg] for perfect RxCSI, imperfect
TxCSI, and subject to above transmit power constraints, i.e.,

K
min SMSEp; s.t.: Y blA; b, <Py, (=1,...,.L (7
six DL 1:21 i Aieb; < Py )

where we substitute b = [b],...,b%]T and write f =
[fi,ooo f)Tor f=[fE, ..., £F]T for the single- or multi-
antenna receiver scenario, respectively, to simplify expositions.

If the receivers have instantaneous CSI, they can employ
MMSE filters. These filters are

hilby,
K
Yiz1 [hibil? + of

for the case of vector channels resulting in the average SMSE

[ R 11D |2
K
K Rb|? + o2

Unfortunately, this objective is non-convex in the precoders
and contains an expectation whose closed-form expression
is only known for very simple channel models, e.g., zero-
mean Gaussian channels [8], and whose evaluation requires
either numerical integration or Monte-Carlo methods for other
standard models. The same properties hold for the matrix
channels, where the MMSE equalizers read as

®)

fk,MMSE = Ufk,MMSE =

K
SMSEp; = K — Z E 9)

k=1

Fi.mvise = vF mvse = Y, 'HY By, (10)

with Y, = Y5 HIB,BYH, + X}, and result in the
average SMSE expression
K
SMSEpL = » My —E [tr (B{'H,Y, 'H{'By)|. (11)
k=1

Since SMSEp in (11) is non-convex in By, minimizing the
average SMSE directly w.r.t. the precoders is difficult if the
closed form MMSE equalizers are incorporated into (7).

However, as the original MSE expressions in (1) and (3) are
convex in the precoders for fixed equalizers and vice versa, i.e.,
the MSEs and also the SMSEs are biconvex functions [9] in
b and f, an alternating convex search of the precoders and
filters converges to locally optimal transceivers in the multi-
user downlink (cf. [10]). The following two steps would be
performed in each iteration of the alternating convex search
for f and b if perfect CSI were available (cf. [1]):

1) The equalizers in f (from f = v f) are first found in
the downlink for fixed precoders in b as in (8) or (10).

2) Second, the downlink precoders in b are optimized as
equalizers in the dual uplink system for given f.

Note that the employed uplink-downlink duality in Step 2
of the AO can reduce the complexity for implementation
and computations. Otherwise, the precoder update requires a
convex solver for including the generalized constraints.

Also average SMSE minimizations can be based on uplink-
downlink duality [4]. Then, the resulting precoders in b
minimize an upper bound for the minimum achievable average



SMSE for fixed f, which is reduced in each AO step and hence
converges (cf. [9, Theorem 4.5]). For a further extension to
the generalized power constraints in (6), we derive the uplink
formulations of the precoder design optimization in Step 2 of
the AO concisely via Lagrangian duality in what follows.

IV. PRECODER DESIGN VIA UPLINK-DOWNLINK DUALITY

If the downlink equalizers f = v f are fixed up to v, the
downlink precoder optimization step within the AO can be
written for both antenna scenarios in the generalized form

min SMSEpy, s.t.:b"Ab < Py, 0=1,...,L

i 12)

where the generalized average SMSE reads as
SMSEp. = M — 2Re{v*hb} + [v*b" Rb + |v|?0? (13)

and the generalized power constraints are equivalent to those
in (7) if A, = blockdiag{Aiy,..., Ak }. To obtain (13),
we introduced the effective channel mean

h =E[Hf], (14)

the effective noise variance
o* = E[f'2f], (15)

and the second-order matrix
R =1, @ E[HFFYH"), (16)

which shall have full-rank.? The expressions for the substitutes
M, H, H, F, and X depend on the considered scenario:

« for single-antenna receivers, we have M = K,

H = blockdiag{h,..., hx},

H =[hi,... hgl,

N [.1 bl (17)
F:dlag{f17"'1fK}7

¥ = diag{o?,...,0%}

. . K
« and for multi-antenna receivers, we have M = ) w1 M,

H = blockdiag{Iy;, ® Hy,..., Iz, @ Hg},
H =[H,,...,Hg|,
1 =[H <o (18)
F = blockdiag{F1, ..., Fx},
X = blockdiag{IMl ® 2,... ,I]\JK X EK}.

Note that the expectations to compute h, R, and o2 require
numerical evaluations for the considered imperfect TxCSIL, i.e.,
with known channel mean and error statistics. We computed
the expected values in (14)-(16) via the corresponding sample
means for the simulations.

Before deriving the dual uplink problem of (12), we first
present a primal solution based on consecutive power mini-
mizations. The power minimization problem is required for
proving strong (uplink-downlink) duality in Section IV-B.

2If R is degenerate, we can find an equivalent representation of (13) and
the power constraints in (12) via replacing b by b = V'b, where V is an
orthonormal basis for the span of R. The SMSE minimization (13) needs
then to be performed w.r.t. b instead of b.

A. Algorithmic Solution of the Primal Problem
If the SMSE minimizing v = bYh/(B"Rb + o2) is
substituted in (13), the downlink objective, which reads as
|h"'b|?
bERb + 02’
becomes quasiconvex in b. The lower level set

S = {b IS (CMN|E > WDL}

SMSEp;, = M — 19)

is convex, i.e., € > SMSEp; has the convex second order
cone (SOC) representation v M — ¢||[b" RM/2 6]H||; < hMb,
where w.lo.g. we restrict hjlby to be real and positive.
Since, moreover, the power constraints have the SOC form
|\Ag,/52b||2 < /Py, (12) can equivalently be rewritten as

min ¢ s.t.:|A; %], < VP, =1,...,L,
b,e

_ (20)
ht'p
M—¢"

I R™2, o]"||2 <

This problem may be solved in the downlink via a bisection
over € € [0, M], where it is tested in each iteration whether
there exists a feasible b that achieves the target ¢.

We test feasibility using the strictly monotonically decreas-
ing function +p (), which we define as the power factor that
minimizes the convex SOC power balancing problem

min o? s.t.:||A§/2b||2§a P, (=1,...,L,
b,a Q1)

HpH/2 H r'b
IR, o], < A

Note that this function is the inverse function to epp (%))
that denotes the minimum of (20) if we substitute P, with
WPy, that is, epL(¢¥pL(e)) = e. Therefore, if ¢¥pp(c) < 1,
the corresponding precoder b can attain the target £ without
violating the power constraints in (20), and if we finally
achieve ¢pL(¢) = 1, the corresponding ¢ and b are the
solutions of the SMSE minimization in (20).

B. Dual Uplink SMSE Problem

Based on Lagrangian duality, we next show that the down-
link precoder design problem in (12) can be transformed into
a dual uplink max-min average SMSE optimization.

Theorem 1. The strongly dual uplink SMSE optimization of
the downlink SMSE minimization in (12) reads as
L

max min SMSEy. s.t:0?A <1, > P <1

22
1>0 wA>0 — @2)

where the uplink SMSE is given by

L
SMSEy; = M —2V\ Re{ﬁHu}+uH()\R+Z MgAg)U,
=1
i.e., an inner equalizer design and power allocation and
an outer worst-case noise covariance search w.r.t. the dual
variables p = [y, ..., )T corresponding to the downlink
power constraints in (12).

The strong duality proof between the SMSE minimizations
in (12) and (22) is based on the downlink power balancing
problem in (21) and its dual uplink SMSE formulation.



Lemma 1. The strongly dual uplink max-min problem to the
downlink power balancing in (21) can be written as

L
st pePr <1, £ > SMSEyL.
=1

max min o>

1>0 u >0 @3)

In the appendix, this dual uplink problem is derived via
similar steps as in [11], which is based on SINR constraints.

Proof of Theorem 1. We show that the optimal value of the
primal SMSE minimization in (12) is also the optimum of the
dual problem (22). Let ¢ denote the primal optimal average
SMSE value. Then, we know that the optimum value of (21)
is one [cf. Subsection IV-A], which is also the optimum
of (23) due to zero duality gap (cf. Lemma 1), i.e., ¢pL(g) =
1uL(e) = 1. Finally, it remains to prove that ¢yL(e) = 1 is
an identifier to declare € as the solution for (22).
If ¥y (e) = 1, the corresponding power allocation

A= % 24)
o
and the corresponding variables p* satisfy the SMSE con-
straint ¢ < SMSEy in (23) with equality [cf. Appendix Al].
Next, we prove that these parameters are also optimal for (22)
in order to conclude that the optimum of (22) is ¢.
To show that (24) is optimal for (22), we substitute the

SMSE minimizing uplink equalizer

L —
USMSE = \&(AR + ZMeAe) 1’_1,
—1

(25)

which is an optimizer for both problems (23) and (22), into the
uplink SMSE. The resulting uplink SMSE reads as [cf. (38)]

L
min SMSEy, = M — ARH </\R +3 WAZ) h 6)
“ =1

which is decreasing in A > 0. Therefore, the SMSE is
minimized by maximizing A, which is upper bounded by
02X\ < 11in (22). This shows that (24) is also optimal for (22).
Now, we prove that the optimizer p* for (23), which exactly
meets ¢, is also the SMSE maximizer in (22). To prove achiev-
ability, we remark that p* is feasible for (22), i.e., it satisfies
the constraint 25:1 u; Pe < 1. Therefore, the optimum ey,
of (22) satisfies eyp, > €. For the converse, we assume that
there is another SMSE maximizing g for (22), which satisfies
the constraint set and achieves an SMSE ey > ¢ for the
power allocation in (24) and the equalizer in (25). However,
since this p’ would also be feasible for (23), it contradicts the
optimality of A* for (23), which was assumed to achieve the
SMSE target €. Therefore, we have ey, < ¢ for all feasible
p in (22). Together with the achievability result, this converse
proof indicates that p* is indeed an SMSE maximizer for (22)
if and only if it is an optimizer of (23) and that the max-min
SMSE value is € for (22) if ¥y (e) = 1. O

If we know the optimal w and )\, the downlink variables are
obtained via a scaling of these variables, i.e., (cf. [3])

b=/Bu, v=vV\+/5 (27)

The squared transformation factor reads as

B Ao?

SRS
> et heutt Agu

and follows from inserting (27) into (13) and equating the
SMSE terms, i.e., SMSEy;, = SMSEp;.. How to obtain « and
A together with the dual variable p is detailed next.

B (28)

C. Algorithmic Solution of the Dual Problem

In contrast to the complex NM x 1 complex-valued beam-
former search presented in Section IV-A, which is suited for
the primal SMSE minimization problem (12), we next present
a semidefinite programming (SDP) solution and a gradient
projection (GP) approach for the dual problem (22) that search
only for the L non-negative reals in pu.

The solutions for the power allocation and the SMSE min-
imizing equalizer for the inner minimization in (22) are given
in (24) and (25), respectively. Inserting these expressions, the
outer maximization in (22) transforms to the convex problem

B L 1 L
maXM—hH<R+O'QZ,U,gAg) h s.t.:z,ung <1.
=1 =1

120
(29)
Note that the constraint in (29) is tight at the optimal point
since the objective is elementwise increasing in p.

We may solve the worst-case noise search in (29) by means
of a standard interior-point solver (e.g., CVX [12] with [13]).
Using Schur’s complement, (29) can be rewritten into the SDP
problem formulation

‘i [M —c htl
o il R+02 ZéLzl /.LgAg

L
Z ePp <1
=1

with a semidefiniteness constraint that is affine in p.

Alternatively, we find the optimizer of (29) iteratively, e.g.,
with a GP algorithm. The ¢-th component of the gradient § =
[61, N ,(SL]T is

~0

max & Y

e,u>0
(30)

6o =0’hIX"1A, X 1h, (31)

where X = R+ 02 Zle oAy, and a GP step reads as
pI ) P (u + a;0)

where a; denotes the step size in iteration j. The orthogonal
S L

projection onto C = {p € RE|>,, wP, < 1} can be

expressed as

Pe(x) =[x —vp|* (32)

where p = [P, ..., P]T, []T performs an elementwise pro-
jection onto the non-negative orthant, i.e., [z]T = max(0, z)
for a scalar z € R, and + is chosen to satisfy the constraint
in (30) with equality (cf. [14]).

Bogale and Vandendorpe proposed a fixed-point (FP) update
in [5] and [6] to find the optimizer p*, which leads to the



primal optimal beamformer update in the AO. In our notation,
this update rule reads as

G PeY 57 g

¢ STl P, ’
The normalized power iteration may be motivated via the
complementary slackness conditions for the power constraints
in (12), i.e., pePy = pueb™ Ayb for £ = 1,..., L, that need to
be satisfied for any locally optimal KKT point of (12).

(33)

V. NUMERICAL RESULTS

The main simulation setup consist of an N antenna trans-
mitter and K = 2 users, each equipped with either a single
antenna or M; = M, = 2 antennas for the multi-user
vector and MIMO channel examples, respectively. The noise
variances are fixed to 0,% =1 and X'y = I, and the power is
varied between —10dB and 20 dB.

We created the channels’ means for a Gaussian model and
for an exponential channel model.? For the previous model, we
have drawn channel mean realizations hj, and hj = vec(Hy)
from a standard Gaussian distribution and the channels covari-
ance matrices are Cy, = Iy and Cy, = M ~ L, v for vector
channels and matrix channels respectlvely, with k = —10dB.
For each of the channels’ means, we have drawn another
1.000 channel realizations to compute the average SMSE for
imperfect TxCSI and perfect RxCSI results with the alternating
optimization for an accuracy of € < 1074,

For the latter exponential channel model, we used an
exponential power profile, i.i.d. uniformly-distributed phase
coefficients, and i.i.d. slow log-normal shadow-fading, i.e.,
h, = \/ﬁtk where [ti]; = el \/pli=kl ¢, ;. € [0,27) and
In(7®) ~ N(0,1) and C, = == dlag( 1= k',..., IN=KI)
for the vector channels. Due to the exponential model, the
transmitter prefers to serve the k-th user with the k-th antenna
element, while the shadow fading factors 73, are a measure for
the users’ link quality. This model is used to analyze multi-
spotbeam SatCom setups, where the antenna directivity plays
an important role (e.g., see [15]).

An extreme case for the exponential model is p = 0. Each
transmit antenna exactly serves one user if K = N and the
channels are orthogonal. Then, per-antenna constraints and a
sum power constraint result in the same SMSEs when 7, = 7
forall k =1,..., K. In contrast, per-antenna constraints result
in larger SMSEs than a sum-power constraint, e.g., when 73 >
7; for at least one receiver pair k and j. For the numerical
simulations we used p = 0.1.

In Fig. 1, we plotted the average achievable minimum
SMSE for Gaussian channel mean realizations in the vector
and MIMO case and for the exponential vector channel model
with N = 4. Four lines can be seen for each of these
models that correspond to a sum power limitation P (solid line
with square marks), per-array power constraints for antennas
1,2 and 3,4 with P, = P/2 (dashed line), and per-antenna
constraints with P, = P/N (dash-dotted line). For the lines for
the per-array and per-antenna constraint, we used the AO with

3 An exponential power profile is amongst others used for analyzing intercell
effects in multi-spotbeam SatCom communications (e.g., see [15]).
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Figure 1: average SMSE vs. SNR for per-antenna, per-array,
and a sum power constraint in a vector and MIMO BC with
N = 4 transmit antennas and K = 2 users (with My = 2
receive antennas per user) for kK = —10dB
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Figure 2: average SMSE vs. SNR for per-antenna, per-array,
and a sum power constraint in a vector BC with N = 4 and
K =4 users and for N = 8 and K = 2 users for k = —10dB

the GP based dual beamformer update. The other beamformer
update methods lead to the same SMSE performance curves.

With the choices for Py, the per-antenna constraints are
stricter than the per-array constraints and the sum power
constraint, resulting in an increased average SMSE. This is
best visible for the exponential vector channel model, but
results in only slight SMSE differences for the Gaussian vector
model. In the Gaussian MIMO channel model, the multi-
stream equalizers additionally compensate for the multiple
transmit power restrictions with per-array and per-antenna
constraints. In other words, the sum power limitation gives a
tight lower bound for the achievable average SMSE with per-
array or per-antenna constraints, which require more complex
beamformer designs. An upper bound is obtained by assuming
that the RxCSI equals the imperfect TxCSI (green solid line).

We further remark that the larger K (for constant V) the
more likely the Gaussian channel characteristics does not
prefer certain (groups of) antennas and the tighter the SMSE
with a sum power constraint approximates the SMSE with
the stricter per-array or per-antenna constraints (see Fig. 2).
However, if we increase N (for constant K), the difference
between sum-power-constrained minimum SMSE and the per-
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Figure 3: empirical CDF of largest per-antenna power in dB
(normalized to P) of the SMSE minimizing results with a sum
power constraint and xk = —10dB

antenna and per-array constrained minimum SMSEs increases
for the exponential channel model but remains the same or
even decreases for the Gaussian channel model.

Even though above SMSE results imply only a minor loss
when we use more realistic per-antenna or per-array con-
straints compared to the less complex sum power constraints,
we dramatically decrease the dynamic range of the per-antenna
or per-array gains. In Fig. 3, we depict the empirical CDF of
the largest per-antenna power for the given vector channel
models when minimizing the average SMSE with a sum
power constraint. The antenna power in dB is normalized such
that an associated per-antenna power limitation P, = P/N
represents 0 dB.

For the vector BC with N = 4 and K = 2 users, a
double of the per-antenna bound P (i.e., 3dB) is surpassed in
more than 20% of the channel realizations for the exponential
and the Gaussian model. This 20% bound decreases to about
2dB for an increasing number of receive antennas (or users)
and fixed N = 4. This observation is in accordance with
the conclusion that the SMSE with a sum-power constraint
well approximates the achievable SMSE performance with
per-antenna constraints for large K (see also Fig. 2).

In contrast, the normalized 20% largest per-antenna powers
of the sum-power constrained optimization increase when
increasing the number of transmit antennas to N = 8. While
the increase is only to about 4 dB for the Gaussian model, 6 dB
are surpassed with the exponential model. Because it prefers
to serve the two users with only two of the eight antennas, the
sum-power constraint SMSE optimization focuses most of the
power to these two antennas. Since, moreover, the channels are
subject to shadow fading, their gains are likely to differ, which
results in an unbalanced power distribution for the users’ main
serving antennas. This unbalanced power is finally the reason
for the increased SMSE gap between the sum power and the
per-antenna constrained optimization results in Fig. 2.

To obtain an impression about the average SMSE precoder
optimization via AO and the complexity of the dual beam-
former updates, we plotted the empirical CDF for the required
number of iterations until convergence of the outer AO and
the inner (dual) beamformer design for the average SMSE

iteration number x

Figure 4: empirical CDF of required number of outer and inner
iterations of the average SMSE minimization for the Gaussian
channel model with N =4, K =2, and k = —10dB

minimization in the Gaussian channel setup with N = 4,
K =2, and k = —10dB in Fig. 4. For the chosen setup, the
number of AO iterations is almost independent with respect to
the power constraints, i.e., four per-antenna constraints, two
per-array constraint, or one sum power constraint, but the
complexity of the inner beamformer updates increases with
the number of power constraints L.

Both interior-point based solution approaches (dashed
lines), i.e., the primal beamformer update with a bisection over
SOCPs and the dual worst-case noise SDP, require almost the
same number of interior-point iterations for per-antenna and
per-array constraints (see Fig. 4). The SOCP based interior-
point problem has a slightly lower worst-case complexity than
the dual SDP method, but a sequence of these SOCPs needs to
be solved in contrast to one SDP. Therefore, we experienced
the dual SDP based beamformer update to be much faster than
the SOCP based beamformer update. Note that the worst-case
complexity of the conic programs is increasing in the number
of power constraints L [16]. The number of SOCs and non-
negative variables is L + 1 in (21) and in (30), respectively.

For the GP approach with an Armijo step size rule and
the fixed-point (FP) update from [6], the number of iterations
and, therewith, the computational complexity of the worst-case
noise search increases from the per-array to the per-antenna
constraint scenario (see Fig. 4). For example, while the GP
converges in less than 20 iterations for 80% of the performed
simulations with the two per-array constraints, more than 40
iterations are required for the per-antenna constraints. This
effect is even more dramatic for the FP update rule, whose
convergence speed is much slower than that of the GP with the
Armijo step size rule. Especially, when some power constraints
are inactive at the optimal point, the FP may require far more
than a hundred iterations if convergence can be detected at all.
While more than a hundred iterations are required in 10% of
the simulations for per-array constraints, this number increases
to about 19% for the per-antenna constraints. For this reason,
we experienced that the GP based beamformer update is faster
on average than the FP method [6], even though each FP
iteration is less complex than a GP iteration with an Armijo
step size rule.



VI. CONCLUSION

This paper provided an uplink-downlink duality for the (av-
erage) SMSE based precoder design with generalized power
constraints by means of an alternating optimization. Similar
to the standard SMSE minimizing AO approach, the precoder
update in each AO step is transformed to a dual power
allocation and filter design, which, however, also includes
additionally a worst-case noise covariance search. Therewith,
the complex search for an NM dimensional precoder is
reduced to a worst case noise search over L non-negative reals
that are the dual variables to the imposed power constraints.
The solution is found via an SDP and a GP approach. The
computational complexity of these approaches is increasing
with the number of power constraints.

The simulations showed that the achievable SMSE with
an imposed sum power constraint can give a good lower
bound approximation of the performance with per-array or per-
antenna power constraints for Gaussian channels. This good
match of the SMSE is surprising since the dynamic range of
the required per-antenna powers for the sum power constrained
optimization is much larger compared to the restrictions with
per-array or per-antenna constraints. A remarkable difference
in the SMSEs is visible for the used exponential channel
model, when the number of antennas is much larger than the
number of users in the system and the channels are subject to
different multiplicative fading, i.e. they have different norms.

APPENDIX
A. Proof of Lemma 1

Note that & = &(||z|l2 + z) with & > 0 can be used
as a Lagrangian multiplier for the convex SOC constraint
|lz||2 < z without loss of optimality and strong duality [17,
Appendix A]. Hence, is the Lagrangian function of the convex
power balancing problem in (21) can be written as

L
Lia,b,\, p) = Xo? +a?(1 =Y P,
( ;:: ‘ 2) (34)

H A
+0 (Y -

RR™)b

where Y = AR + ZzL:l weAy and A > 0 and pp > 0,
¢ =1,...,L, are the multipliers to the SMSE and power
constraints in (21), respectively.

The dual objective results from the unconstrained minimiza-
tion of (34) w.r.t. v and b, i.e., g(A, ) = min, p L, b, A, ).
Since « and b are unconstrained, g(A, ) — —oo unless

L
Z ePp <1
=1
and Y — ;2—hh" = Oy n. With Schur’s complement [18,
Appendix A.5.5], we can recast the latter condition as (cf. [11])

(M —¢) = AhPY'h > 0. (36)

(35)

Therewith, the dual problem of (21) reads as

L
2 Lt < < —\hH —1h.
”g)a;(zom s.t ;/Lgpg_LE_M MY TR, (37)

The SMSE constraint upper bounds the objective in (37)
since its right hand side is decreasing in A when g is fixed. In
other words, \* satisfies the SMSE constraint with equality if
¢ is attainable. Hence, jointly reversing the maximization over
A into a minimization and the direction of the inequality in the
SMSE constraint does not affect the solution. Since, moreover,

M — AhPY ~'h = min SMSE,, (38)

with the SMSE minimizing equalizer w given in (25), (37) is
equivalent to the uplink power minimization in (23).

We remark that we started from a convex formulation of
the primal power balancing problem and, therefore, preserved
strong duality within the derivation of the dual problem [18].
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