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Capacity-reaching LDPC codes exist

The optimal parameters are known for long block lengths

Finite-length scaling laws are conjectured for regular codes

Can we calculate the scaling laws for
even more structured ensembles?

Which design criteria hold for finite block lengths?

Spatially coupled (/,r,L)» LDPC Codes [1]

Definition: Low-density Parity-Check Code [2]

Low-density parity-check codes are codes specified by a matrix
containing mostly 0's and only a small number of 1's.

Small Tanner graphs are used as a “blueprint” of the structure.

@ Choose a simple (/, r) protograph
® Couple L protographs to a spatially coupled protograph

© Lift the coupled protograph with the “copy-and-permute”
operation (similar connections of several copies are randomly
permuted to obtain larger girths)

The convolutional-like band matrix H consists of submatrices H; ;
which are permutation matrices for edge permutations:
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Advantages

@ Systematic encoding is possible

@ The MAP threshold can be reached with iterative belief
propagation (BP) decoding [3]

(gq,a,L) SC-ARA Construction

ARA graphs with message and accumulator nodes are coupled and
terminated. The message node is connected to g check nodes.

@ low error floor for the uncoupled graph J

@ linearly growing minimum Hamming distance

SC-TAR4JA Construction

TAR4JA structures are coupled by spreading some edges to the
following block. This scheme includes punctured nodes.
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&1(7) for the ensembles (g, a, L) SC-ARA, TAR4JA and (4,8,100)p.

Mean Evolution of Deg-1 Check Nodes

4

@ excellent decoding threshold J

Peeling Decoding

If variable nodes are erased after the transmission over a binary erasure
channels (BEC), they can be iteratively restored using the known part
of the code graph. The decoding can only proceed as long as check
nodes with only 1 unknown edge remain in the residual graph. This is
used as stability criterion.

o 7: Decoding iterations normalized by M
@ &i(7): Sum of mean of deg-1 check nodes normalized by M

&(r) = 4 Ly R(0,7)
@ 91(7): Variance of deg-1 check nodes of all processes

Var[er(7)] = 7701(7) = 7 71 2511 000,

@ ¢1(7,(): process covariance with time

¢1(7, ¢) = E[er(T) ()] — &) (<)

Scaling law for LDPC codes using an iterative erasure decoder:
(eL—7%) >
MO(Mu €, l7 r)

(eL — 7*) is the duration of the steady-state phase. The average
survival time po during the steady-state phase depends on &;(7), 01(7).
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Finite length scaling predictions (solid lines) and simulated error rate (dashed lines)
for different SC-LDPC codes with L = 100 and M = 4000.

@ The (4,8)p code outperforms the other structures.

Finite-length Scaling Conjecture [4]

Matching Codes

P* is dominated from M and 7/,/67 depending on the codes. We
exploit this to match the performance of a code with another code
ensemble.
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(4,8)p codes matched to (3,6)7 ensembles with M = 2000 and M = 4000.

Increasing Chain Lengths

For large L, P* scales linearly with L which is exploited for the
performance prediction.
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Prediction for L = 200 by multiplying the L = 150 curve by 4/3.
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