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Abstract— We are proposing a general framework that incor-
porates multiple task definitions in the prioritized inverse kine-
matics problem. First, a mathematical description of multiple
task definitions is constructed that provides an efficient way to
show unprioritized or prioritized accumulations of tasks. Then,
smooth transitions between all task definitions are studied, so a
method, called task transition control, is developed that interpo-
lates joint trajectories using barycentric coordinates and linear
dynamical systems to overcome difficulties of interpolating task
trajectories in the conventional methods. Consequently, smooth,
arbitrary, and consecutive task transitions are achieved in a
simple, direct, and general manner and also boundedness of
joint trajectories is assured regardless of singularity. Lastly, the
idea is tested by two kinematic simulations: obstacle avoidance
with the KUKA LWR and task scheduling of a humanoid robot.

I. INTRODUCTION

There have been intensive studies to construct mathe-
matical or algorithmic structures that incorporate multiple
tasks in the inverse kinematics problem. Basically, this
is to determine smooth joint trajectories of a mechanism
that realize multiple task trajectories which are not always
realizable or consistent. Much of earlier research has tried
to assign priority between tasks [1][2][3][4] to overcome
incompatibility, also known as algorithmic singularity, be-
tween tasks. In spite of their successive achievements, there
are some cases that fixed priority structures cannot fulfill
task requirements, i.e., obstacle avoidance [5][6], joint limits
[7][8], and task scheduling [9][10], in which tasks need to
be added, removed, or switched during operations.

The majority of flexible priority structures have been
implemented by introducing a parameter for each task that
provides smooth transitions in the task activation and deacti-
vation processes. Maciejewski [2] and Zlajpah [5] added the
obstacle avoidance task at the lower-priority level when a
manipulator approaches to obstacles. A problem was that
if the secondary task is not compatible with the primary
task, then the whole operation has to be stopped to prevent
collisions. Later, Petric [6] showed a variant that adds the
obstacle avoidance task at the higher-priority level. A more
general structure was proposed by Mansard [7] that allows
activations of arbitrary number of tasks at any priority level
using the continuous inverse of the Jacobian multiplied
by the smooth activation matrix. Lee [8] also suggested
an alternative generic structure that modifies desired task
trajectories while keeping classical priority structures.

1S. An and 2D. Lee are with the Chair of Automatic Control En-
gineering, Technical University of Munich, D-80333 Munich, Germany.
sangik.an@tum.de and dhlee@tum.de

However, some difficulties are found in using the afore-
mentioned methods. First, to find the inverse mapping in
the general case is complicated because smoothness of joint
trajectories has to be assured by activation parameters defined
in the task space. Second, the parameters are coupled with
task variables in an elaborate way, such that it is hard to an-
alyze the behavior of the inverse mapping during transitions
and it becomes aggravated near singularity. Third, it seems
difficult to switch priority between tasks by interpolating task
trajectories; it has been implemented by interpolating joint
trajectories [8][9].

In this paper, we propose a simple, direct, and general
method that allows smooth, arbitrary, and consecutive task
transitions without difficulties in interpolating task trajecto-
ries. To begin with, the background of inverse kinematics
with multiple tasks is provided in Section II. Next, the
concept of flexible priority structures is expanded to multiple
task definitions by constructing an appropriate mathematical
description in Section III-A. Then, the idea of interpolating
joint trajectories by using barycentric coordinates [11][12]
is introduced in Section III-B, and a comparative study
shows that joint space representations of the conventional
methods are special forms of our proposal in Section III-C.
Later, the idea is completed by connecting barycentric coor-
dinates to linear dynamical systems for smooth, arbitrary, and
consecutive transitions between multiple task definitions in
Section III-D. Finally, the idea is tested with two kinematic
simulations in Section IV, and concluding remarks are in
Section V.

II. INVERSE KINEMATICS WITH MULTIPLE TASKS

A task T is defined in the velocity level [13] by a task
variable ẋ , J(q)q̇ ∈Rm and its desired trajectory ẋd(q, t) ∈
Rm. q∈Ωq ⊂Rn is the joint variable, •̇ is the time derivative
of •, and J , ∂ f/∂q ∈ Rm×n is the Jacobian of the forward
kinematic function. The inverse kinematics is to find q̇(q, t)
that minimizes a task velocity error ė , ẋd − ẋ. Usually,
t ∈ [t0, t f ] is assumed with its initial and final operating
times. In general, multiple tasks T1, · · · ,Tk are defined with
a task variable ẋi , Ji(q)q̇ ∈ Rmi and its desired trajectory
ẋd,i(q, t) ∈ Rmi for each task Ti where Ji , ∂ fi/∂q ∈ Rmi×n

and i∈N≤k , {1, · · · ,k}. We may consider relations between
two tasks Ta and Tb that have inverse kinematic solutions q̇a
and q̇b. 1) (equality) Ta = Tb represents ∀(q, t)∈Ωq× [t0, t f ],
ẋa = ẋb and ẋd,a = ẋd,b. 2) (equivalence) Ta↔ Tb represents
∀(q, t) ∈Ωq× [t0, t f ], q̇a = q̇b. 3) (priority) Ta ∼ Tb / Ta ≺ Tb
/ Ta � Tb represents the priority of Ta is same to / higher
than / lower than the priority of Tb.



Depending on the priority relations, T1, · · · ,Tk can be
accumulated in the unprioritized or prioritized manner. An
unprioritized task (T1, · · · ,Tk) is an unordered set of tasks
such that ∀i, j ∈ N≤k, Ti ∼ Tj. The unprioritized inverse
kinematics (UIK) for (T1, · · · ,Tk) is to find q̇ that minimizes
the total task error ‖ė‖, (∑k

i=1 ‖ėi‖2)1/2 where ėi , ẋd,i− ẋi
and ‖ • ‖ is the Euclidean norm of •. A prioritized task
[T1, · · · ,Tk] is a totally ordered set of tasks such that ∀i, j ∈
N≤k, Ti≺ Tj if i< j. The prioritized inverse kinematics (PIK)
for [T1, · · · ,Tk] is to find q̇ that minimizes task errors, ‖ėi‖,
1≤ i≤ k, on the condition that the minimum task errors of
the higher priority tasks, ‖ė j‖, 1≤ j < i, are not changed.

The minimum norm solution of the UIK is given by

q̇ = J†(q)ẋd (1)

where ẋd ,
[
ẋT

d,1 · · · ẋT
d,k
]T ∈ Rm, m , ∑

k
i=1 mi, and J† ,

VΣ
†UT ∈ Rn×m is the Moore-Penrose pseudoinverse [14]

defined from the singular value decomposition (SVD) J ,[
JT

1 · · · JT
k

]T
= UΣVT ∈Rm×n. The solution of the PIK has

been proposed in many ways [1][2][3][4] and recently meth-
ods using the QR decomposition (QRD) and the Cholesky
decomposition (CLD) have been proposed that eliminate
the inteference between orthogonalization and inversion pro-
cesses [15] as shown in the following two propositions.

Proposition 1 (An’s First Method). The recursive form (2)
or the closed form (3) can be a solution of the PIK

q̇ = q̇k, q̇i = q̇i−1 + ĴT
i C†

ii(ẋd,i−CA
i,i−1ĴA

i−1q̇i−1), q̇0 = 0
(2)

q̇ = ĴT (Im +C‡
DCL)

−1C‡
Dẋd (3)

where J(q), C(q)︸︷︷︸
m×m

Ĵ(q)︸︷︷︸
m×n

=


C11 0 · · · 0
C21 C22 · · · 0

...
...

. . .
...

Ck1 Ck2 · · · Ckk




Ĵ1
Ĵ2
...

Ĵk

 is the

reduced QRD JT = QR = ĴT CT , CA
i j ,

[
Ci1 · · · Ci j

]
,

ĴA
i ,

[
ĴT

1 · · · ĴT
i
]T , CD , diag(Cii), C‡

D , diag(C†
ii), CL ,

C−CD, and Im , diag(1) ∈ Rm×m.

Proposition 2 (An’s Second Method). The recursive form (4)
or the closed form (5) can be a solution of the PIK, as well
as reconditions the QRD such that |c j j| ≤ 1, 1≤ j ≤ m

q̇ = R̃−1q̇k, q̇i = q̇i−1 + ĴT
i C†

ii(ẋi−CA
i,i−1ĴA

i−1q̇i−1), q̇0 = 0
(4)

q̇ = R̃−1ĴT (Im +C‡
DCL)

−1C‡
Dẋ (5)

where W , JT J+δ 2In = R̃T R̃ is the CLD and JR , JR̃−1 =
CĴ is the reduced QRD of JT

R .

An’s solutions have shown more accurate task executions
compared to the conventional solutions with the similar
boundedness of joint velocities. Since we will interpolate
multiple inverse solutions, the quality of each solution will
directly affect to the final performance. Also, the closed form
solutions will ease the proof of Theorem 1 in Section III.

III. PRIORITIZED INVERSE KINEMATICS WITH MULTIPLE
TASK DEFINITIONS

A. Mathematical Description of Multiple Task Definitions

We define a basic task T , (T1, · · · ,Tk) as an unprioritized
task that is given before the initial operating time with basic
subtasks Tj and assume that the definition of T is consistent
during operations. Then, we may define an (induced) task
T i , [T i

1 , · · · ,T i
ki ] as a prioritized task induced from the

basic task by accumulating a part of basic subtasks on the
condition that mi ≤ min{m,n} and T i

a 6= T i
b if a 6= b. Also,

an (induced) task set T , {T 1, · · · ,T l} can be defined as
a set that contains all tasks considered where l ∈ N is the
number of tasks. For each T i, there exists a prioritized
inverse solution q̇i given by Proposition 1 or 2. We define a
prioritized inverse solution set Q , {q̇1, · · · , q̇l} as a set that
contains inverse solutions of all tasks. For the mathematical
completion, we introduce a null task ∅ that has an inverse
solution q̇∅ = 0. Usually, the mapping T 7→Q is surjective
because there could be tasks that are equivalent to each other.

Theorem 1 (Equivalent Induced Tasks). Equivalent tasks
appear in the following cases:

1) ∀A , {a1, · · · ,aα} ⊂ N≤k, let T a , (Ta1 , · · · ,Taα
) and

T b be an unprioritized task generated by changing the
order of basic subtasks in T a; then, T a↔ T b.

2) ∀A , {a1, · · · ,aα} ⊂ N≤k, let T a , [Ta1 , · · · ,Taα
] and

T b be a prioritized task generated by changing the
order of basic subtasks in T a; then, T a↔ T b if ∀t ∈
[t0, t f ], rank(

[
JT

a1
· · · JT

aα

]T
) = ma1 + · · ·+maα

.
3) ∀A , {a1, · · · ,aα} ⊂ N≤k and ∀B , {b1, · · · ,bβ} ⊂

N≤k with A ∩ B = ∅, let T a , (Ta1 , · · · ,Taα
), T b ,

[Tb1 , · · · ,T a, · · · ,Tbβ
], T c be an unprioritized task gen-

erated by changing the order of basic subtasks in T a,
and T d be a prioritized task generated by switching
T a to T c in T b; then, T b↔ T d .

Proof. See Appendix I.

It is preferable to remove equivalence relation between
tasks explained in Theorem 1 to reduce l. However, the
difficulty arises on Case 2) that requires to know whether
a task will meet singularities or not before the initial time.
Originally, priority has been introduced due to singularity.
If there is no singularity, the unprioritized and prioritized
inverse solutions are identical as shown in the proof of Case
2); therefore, priority is not neccessary. We assume that
if a prioritized task is defined, then there is singularity or
possibility to meet unknown singularity during operations.
To better understand Theorem 1, an example of all possible
tasks is shown in Fig. 1. Task accumulations are done as
discussed above and we assume Ti = (Ti) = [Ti] = [(Ti)].

B. Barycentric Coordinates of Inverse Solutions

In the case that a task definition needs to be changed
during operations, a smooth transition between tasks is
necessary to prevent discontinuous jumps in the joint tra-
jectory. In order to explain the concept of our proposal,
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Fig. 1. All possible tasks when k = 3 and mi ≤ m≤ n.
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Fig. 2. Multiple inverse solutions of a two-link manipulator.

we show a simple case with a two-link manipulator that
derives our basic idea. Let’s suppose that the basic task
is given by T = (Tx,Ty) which are the x- and y-directional
motions of the end-effector and the task set is defined as
T = {Tx,Ty,(Tx,Ty), [Tx,Ty], [Ty,Tx]} along with the inverse
solution set Q = {q̇x, q̇y, q̇(x,y), q̇[x,y], q̇[y,x]}. Then, we may
consider smooth task transitions in three cases: 1) without,
2) with, and 3) near the algorithmic singularity between Tx
and Ty as shown in Fig. 2. If there is no singularity, Case 2)
in Theorem 1 gives q̇(x,y) = q̇[x,y] = q̇[y,x]. If there is sigularity,
two inverse solutions q̇x and q̇y align on the same line and
the priority relation gives q̇x = q̇[x,y] and q̇y = q̇[y,x]. q̇(x,y)
is determined somewhere between two inverse solutions.
The inverse solutions near singularity have to be calculated
considering boundedness of solutions. The damped least-
squares pseudoinverse (DLPS) [15][16][17] provides smooth
shaping of the inverse solutions near singularity and it may
separate all solutions similarly to (c) of Fig 2.

Now, let’s think of a method that gives smooth task
transitions between all tasks regardless of singularity. Addi-
tionally, we consider consecutive transitions, such that new
transition is required during transitions. If we try to do it by
interpolating task trajectories, it is not a trivial problem even
in this simple case and the difficulty increases exponentially
as the number of tasks grows. Instead, we can interpolate
joint trajectories directly; then, for any kind of transitions, the
inverse solution should be found inside of polygons formed
by connecting inverse solutions of tasks, i.e., triangle for (a),
line for (b), and pentagon for (c) of Fig 2, in order to prevent

unnecessary transition motions. We introduce the barycentric
coordinate [11][12] which is a popular way in the computer
graphics that parameterize points inside of a convex polytope
given by a set of vertices, but there are differences in using it.
First, we are designing smooth transitions of the barycentric
coordinates instead of calculating the coordinates of points
from the verticies. Also, the inverse solutions of tasks will
not always form a convex polytope. It could be a concave
polytope or just a set of points in the joint space.

Definition 1 (Barycentric Coordinates). The barycentric
coordinates of q̇ with respect to Q is defined as any set
of real coefficients w1, · · · ,wl depending on (q, t), such that,
∀(q, t) ∈Ωq× [t0, t f ], all the following properties hold:
• Nonnegativity: wi ≥ 0,
• Linearity: q̇ = ∑

l
i=1 wiq̇i with ∑

l
i=1 wi = 1, and

• Smoothness: wi ∈Cs(q, t)
where s∈N≥0 depends on the degree of smoothness needed.

Theorem 2 (Boundedness of Barycentric Coordinates). The
inverse solution q̇ given by the barycentric coordinates with
respect to Q is a point inside of the minimum enclosing
convex polytope of Q and ‖q̇‖ ≤max{‖q̇1‖, · · · ,‖q̇l‖}.
Proof. See Appendix II.

Theorem 2 reveals us an important feature of the proposed
method that boundedness of barycentric coordinates can be
achieved by bounding each inverse solutions of tasks usually
treated by the DLPS, regardless of the existence of singular-
ity and the consecutive task transitions. In other words, we
may decouple two complex problems which are to stabilize
the inverse solutions and to generate smooth task transitions
that is difficult to get by interpolating task trajectories.
However, there is still an issue related to convergence of
q̇ because wi depends on (q, t); wi can chatter if two tasks
are inconsistent in the switching manifold. We may consider
the smooth initialization and finalization, starting from and
ending to q̇ = 0; then, we can include the null task ∅ to T
that induces Q to include additional point q̇∅ = 0.

C. Comparative Study

It is interesting to see how the conventional methods can
be represented in the joint space. Three examples are listed in
a simple case that two tasks T1 and T2 are given. Maciejewski
[2] and Zlajpah [5]’s method is given by

q̇ = J†
1ẋd,1 +h(J2N1)

†(ẋd,2−J2J†
1ẋd,1)

= (1−h)J†
1ẋd,1 +h

[
J†

1ẋd,1 +(J2N1)
†(ẋd,2−J2J†

1ẋd,1)
]

= (1−h)q̇1 +hq̇[1,2]

where h ∈ [0,1] is the activation parameter that insert T2
on the lower-priority level. On the other hand, Petric [6]’s
method given by

q̇ = hJ†
1ẋd,1 +(I−hJ†

1J1)J†
2ẋd,2

= (1−h)J†
2ẋd,2 +h

[
J†

1ẋd,1 +(I−J†
1J1)J†

2ẋd,2

]
= (1−h)q̇2 +hq̇[1,2]



inserts T1 on the higher-priority level. When calculating
q̇[1,2], the former used Nakamura [1] and Maciejewski [2]’s
method and the latter used Chiaverini [3]’s method. Lee [8]’s
method is given by

q̇ = J†
1ẋ∗1 +(J2N1)

†(ẋ∗2−J2J†
1ẋ∗1) (6)

ẋ∗1 = h1ẋd,1 +(1−h1)J1J†
2h2ẋd,2 (7)

ẋ∗2 = h2ẋd,2 +(1−h2)J2J†
1h1ẋd,1 (8)

and can be modified into

q̇ = h1(1−h2)q̇1 +h2(1−h1)q̇2 +h1h2q̇[1,2]+w∅q̇∅ (9)

with w∅ , 1− h1 − h2 + h1h2 and {h1,h2} ⊂ [0,1]. The
derivation is shown in Appendix III.

We can see that the inverse solutions of the listed methods
can be represented as the barycentric coordinates in the joint
space. Indeed, the first two methods show no differences of
interpolating task trajectories or joint trajectories except for
the computation methods, but those are difficult to generalize.
The third method provides more general structure, but we
cannot say that (6) ∼ (8) and (9) will give the same results
if there is singularity because the derivation of (9) requires
[JT

1 JT
2 ]

T has its full rank. Additionally, the barycentric
coordinates given by (9) has a constraint in determining their
values: there are four inverse solutions (q̇1, q̇2, q̇[1,2], q̇∅) but
only three parameters (h1,h2,w∅), so transitions between two
tasks could be influenced by others; for example, transitions
between q̇1 and q̇2 are always influenced by q̇[1,2].

It could be also helpful to see methods for the transition
between different priority hierachies: T[1,2] and T[2,1]. Keith
[9] directly interpolated two joint trajectories

q̇ = hq̇[2,1]+(1−h)q̇[1,2] (10)

, while Lee [8] kept a similar structure of (6) ∼ (8)

q̇ = J†
1ẋ#

1 +(J2N1)
†(ẋ#

2−J2J†
1ẋ#

1)

ẋ#
1 = hJ1q̇[2,1]+(1−h)J1q̇[1,2]

ẋ#
2 = hJ2q̇[2,1]+(1−h)J2q̇[1,2]

and showed that it can be modified into (10). However, the
full rank of [JT

1 JT
2 ]

T is still required: if there is singu-
larity, N1

(
I− (J2N1)

†(J2N1)
)
6= 0 breaks the proof in [8].

Both methods allow the transition between only two task
definitions and, as far as we know, a method that provides
transitions between all possible task definitions has not yet
been proposed. When a basic task is defined as T = (T1,T2)
with m ≤ n, all possible task definitions become T =
{∅,T1,T2,(T1,T2), [T1,T2], [T2,T1]} and the general form of
q̇ can be given with the barycentric coordinates as

q̇ = w∅q̇∅+w1q̇1 +w2q̇2

+w(1,2)q̇(1,2)+w[1,2]q̇[1,2]+w[2,1]q̇[2,1].

From this comparison, we can observe that to interpolate
joint trajectories is much more simple, direct, and general
than to interpolate task trajectories and removes difficulties
discussed in Section I. However, there is still an unsolved
problem: how to change barycentric coordinates to achieve
smooth, arbitrary, and consecutive transitions.

D. Smooth Task Transitions

The nonnegativity and linearity properties of barycentric
coordinates give us all possible task transitions along with
boundedness of inverse solutions. Meanwhile, the smooth-
ness property is for the smooth transitions and there could
be infinite number of ways to smoothly traverse between
inverse solutions of tasks. Therefore, this is a design problem
of wi(q, t) that produces smooth task transitions.

Theorem 3 (Task Transition Control (TTC)). The TTC given
by (11) ∼ (15) provides smooth, arbitrary, and consecutive
task transitions within T = {T 1, · · · ,T l}, as well as bounds
the inverse solution such that ‖q̇‖ ≤max{‖q̇1‖, · · · ,‖q̇l‖}

q̇ = Qw =
l

∑
i=1

wiq̇i (11)

w(s+1) =−
s

∑
j=1

k jw( j)+ k0(wd−w) (12)

wd(q, t) ∈ {ê1, · · · , êl} ⊂ Rl (13)

w(t0) ∈ {a ∈ Rn : 1T a = 1, a≥ 0} (14)

w( j)(t0) = 0, ∀ j ∈ N≤k (15)

where Q , [q̇1 · · · q̇l ]∈Rn×l , w , [w1 · · · wl ]T ∈Rl , w( j) ,
d jw/dt j, s∈N≥0, 1, [1 · · · 1]T ∈Rl , {ê1, · · · , êl} is a set of
the standard basis in Rl , and {k0, · · · ,kk}⊂R are stabilizing
control gains that do not generate overshoot of the (s+1)-th
order linear dynamical system.

Proof. See Appendix IV

Task transitions are triggered by the discrete value of wd
and the smooth transitions are achieved by the (s + 1)-th
order dynamics of (12). The convergence behavior of w can
be tuned by the control gains {k0, · · · ,kk}; for example, if
k = 2, the typical choice could be k1 = 2ζ ωn, k0 = ω2

n , and
ωn = 2π fn with ζ ≥ 1 to prevent overshoot of the response.
A simple way to design task transition rules is to divide the
domain Ωq× [t0, t f ] into multiple partitions P1, · · · ,Pl where
Ωq × [t0, t f ] =

⋃l
i=1 Pi and Pi

⋂
Pj = ∅ if i 6= j; then, the

desired barycentric coordinates can be determined by wd = êi
if (q, t) ∈ Pi. There could be anxiety about the numerical
stability that w may leave the simplex ∆l−1 by the numerical
inaccuracy of the machine, but the convergence behavior of
the (s+1)-th order linear system always pulls a state to the
vertices of ∆l−1, such that the variation of w is always toward
∆l−1 even if it is outside of ∆l−1. To efficiently implement the
TTC, we do not need to calculate inverse solutions of inactive
tasks (wi ≈ 0). Also, the computation of inverse solutions of
all active tasks can be easily parallelized if needed.

IV. SIMULATION RESULTS AND DISCUSSIONS

Two simulations are conducted. The first simulation shows
an application of the obstacle avoidance control with the
KUKA LWR and the second simulation tests the task
scheduling of a humanoid robot. In both cases, the joint
limit is a hard constraint that has to be considered, so we
first explain how to handle this in the proposed method.
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TABLE I
TASK TRANSITION RULE FOR THE KUKA LWR

t < t0 t0 ≤ t < t1 t1 ≤ t < t f t f ≤ t

d ≥ db ∅ [Tp,To] [To,Tp] ∅
dc ≤ d < db ∅ [Tp,To,Tc] [To,Tp,Tc] ∅

d < dc ∅ [Tc,Tp,To] [Tc,To,Tp] ∅

Let’s say the joint limit is given as q ∈ [q, q] ⊂ Rn and
we are looking for the PIK solution of the i-th induced
task T i that prevents the robot from approaching to the joint
limit. The basic idea comes from [18] that penalizes joints
heavily when the joints approach to the limit closely by using
the weighting matrix H , diag(ha) ∈ Rn×n where a ∈ N≤n,
δha(t), ha(t)−ha(t−δ t), and

ha(qa),


(qa−q

a
)2

4(qa−qa)(qa−q
a
)

δha ≥ 0

1 δha < 0
.

The penalized forward kinematic equation for T i can be
written as ẋi = Jiq̇ = (JiH−1)(Hq̇) , Ji

H q̇H and q̇i
H can be

calculated from Proposition 1 or 2 with Ji
H . Since we have

found the inverse solution on the penalized joint space, we
need to come back to the original joint space by q̇i =H−1q̇i

H .
For each time step, all induced tasks share the same H, there-
fore (11) can be written as q̇ = ∑

l
i=1 wiq̇i = H−1

(
∑

l
i=1 wiq̇i

H
)

and the joint limit avoidance is assured by the TTC. On
the discrete time domain, discontinuity of ha can generate a
chatter in q̇, so it is better to filter out ha.

A. Obstacle Avoidance with the KUKA LWR

The end-effector posture control is the most crucial task
of manipulators and either the position or the orientation can
have priority. For example, if a robot is required to bring
a glass, priority can change whether the glass is empty or
filled with water. Also, the obstacle avoidance control is one
of the fundamental tasks [2][5][6] that the task transition
is required. Therefore, we have constructed a simulation
scenario for the 7-DOF manipulator, KUKA LWR IV+, as
shown in Fig. 3. We define the basic task T =(Tp,To,Tc) with
position control (Tp), orientation control (To), and obstacle
avoidance control (Tc). The task set is defined as T =

x

y

z

xe

ye

ze

required trajectory

calculated trajectory

trajectory of 

the closest point

to the obstacle

Fig. 4. Trajectories of the end-effector and the closest point.

{∅, [Tp,To], [Tp,To,Tc], [Tc,Tp,To], [To,Tp], [To,Tp,Tc], [Tc,To,Tp]}
with the task transition rule listed in Table I. d is the
minimum distance between the robot and the obstacle,
db is the boundary distance for Tc to be triggered, and
dc is the critical distance for Tc to be handled primarily.
Priority between Tp and To is switched at time t1 and warm
starting and ending (q̇(t0) = q̇(∞) = 0) are considered.
The end-effector position is planned to follow a circle
with a constant rotatating velocity and the orientation is
supposed to stay in its initial value. We use the first order
linear system for the smooth transition of the barycentric
coordinates and the parameters are set as follows: k0 = 5,
db = 0.3m, dc = 0.2m, t1 = 6s, and t f = 12s. The obstacle
avoidance control is implemented based on [5] with the
nominal velocity v0 = 0.1m/s and the rotation vector is used
for the orientation representation. Also, the closed-loop
inverse kinematics is used with the feedback gain kCLIK = 5.

Fig. 4 shows paths that the end-effector and the closest-
point to the obstacle traversed. The original path was mod-
ified when the manipulator was near the obstacle while the
accuracy was preserved in other places. This result can be
clearly observed in Fig. 5 where parts A and B are the
periods when the modification occurred in the only lowest-
priority task. During these periods, the minimum distance
between the manipulator and the obstacle was maintained
near the critical distance and the frequent switching of
priority appeared. As a result, chattering was generated.
Nevertheless, smoothness of the transition has been achieved
because the transition has occurred as planned by the first-
order linear system. Indeed, the frequent switching of priority
stems from two inconsistent task definitions: the desired
trajectory of the end-effector violates the obstacle avoidance
control. As we mentioned in Section III-B, there is an issue
related to convergence of barycentric coordinates and we
remain this problem as a future work. Finally, we can check
that the joint trajectories are bounded inside of the joint limit.

B. Task Scheduling of a Humanoid Robot

Humanoid robot is a general-purpose system that has capa-
bilities to perform multiple tasks on the same time. Usually, a
scenario for the robot consists of sequence of multiple tasks
as shown in Fig. 6. When we design scenarios for a complex
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Fig. 5. Simulation results of the TTC with the KUKA LWR. The joint
angles and the velocities are rescaled on the region [−1,1] using the limit
values listed on the robot datasheet.

Fig. 6. Scenario: the robot stands while maintaining the projection of the
COM on the center of the supporting polygon, drawing a circle on the wall
with the right hand, and taking an object on the table with the left hand.

robotic system, it is not easy to check compatibility of all
tasks beforehand and also to generate smooth transitions
between tasks during operations. We may tackle this problem
with the proposed method. For the simulation, we have con-
structed a 32-DOF humanoid kinematic model with 3-DOF
in the waist, 3-DOF in the neck, 7-DOF in each arm, and
6-DOF in each leg. The joint limits are determined manually
and it is assumed that 1kg masses are attached on the center
of all joints. Based on the scenario in Fig. 6, the basic tasks
are determined as COM x and y (TBC); feet relative posture
(TFR); torso height and orientation (TTO); right hand (TRH );
and left hand (TLH ). Both TFR and TTO are assumed to stay on
the initial values. The induced tasks are defined as T 1 =∅,
T 2 = [(TBC,TFR),TTO], T 3 = [(TBC,TFR),TRH ,TLH ,TTO], and
T 4 = [(TBC,TFR),TLH ,TRH ,TTO]. The task schedule is given
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Fig. 7. Simulation results of the TTC with the humanoid.

TABLE II
TASK TRANSITION RULE FOR THE HUMANOID ROBOT

t < t0 t0 ≤ t < t1 t1 ≤ t < t2 t2 ≤ t < t f t f ≤ t

T 1 T 2 T 3 T 4 T 1

in Table II with t1 = 1s, t2 = 5s, and t f = 11s.
Fig. 7 and Fig. 8 show the simulation results. Due to the

limited space, task errors of (TBC,TFR) are not shown. Note
that both are performed accurately for the whole operation
time. In the beginning, the robot has sufficient DOFs, so all
tasks are executed correctly, but, when the left arm is fully
stretched toward the object, it cannot move further because of
the higher-priority tasks. At t = t2, priority between TRH and
TLH is switched; then, the left hand can reach to the object,
while the right hand leaves from the desired trajectory to
maintain the COM on the center of the supporting polygon.
Later on, the robot recovers the lost DOFs when the left hand
moves to the initial postures and the right hand can come
back to the desired trajectory. The simulation results show
that the proposed method allows smooth task transitions and
also provides a convenient way to design sequence of tasks.

V. CONCLUSIONS

The value of this study is to open new possibilities to
handle multiple task definitions more effectively. To find
smooth inverse mappings on the existence of discrete task
definitions, most of previous studies have focused on the task
space in which discontinuity occurs, but we have turned our
attention to the joint space in which continuity should be as-
sured. So joint trajectories were interpolated to separate two
complicated problems: to find inverse mappings and to make
inverse mappings smooth. As a result, the task transition
control has been developed that allows smooth, arbitrary, and
consecutive transitions between all possible task definitions
in a simple, direct, and general manner and verified by two
kinematic simulations with the 7-DOF manipulator and the



(a) t = 2.5s (b) t = 5.0s (c) t = 7.5s (d) t = 10.0s

Fig. 8. Snapshots of the humanoid robot simulation.

32-DOF humanoid robot. Also, it was successfully applied to
a real example of the incremental kinesthetic teaching [19]
in which the method enables human to physically interact
with the KUKA LWR during operations to iteratively refine
learned movements. One of our future plans is to find a way
that guarantees convergence of barycentric coordinates when
there are conflicting task definitions.
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APPENDIX I
PROOF OF THEOREM 1

Case 1): For any change in the order of basic subtasks in
T a, there exists a permutation matrix P, such that the UIK of
T b is given by q̇b = (PJa)†Pẋa

d using (1). Let Ja , UaΣ
aVaT

be the SVD; then, we get (PJa)† =VaΣ
a†UaT PT from P−1 =

PT and therefore q̇b = (VaΣ
a†UaT )(PT P)ẋa

d = Ja†ẋa
d = q̇a.

Case 2): Let Wa , JaT Ja + δ 2In = R̃aT R̃a be the CLD,
Ja

R , JaR̃a−1 = CaĴa be the QRD of JaT
R , and suppose ∀t ∈

[t0, t f ], rank(Ja) = ma , ma1 + · · ·+maα
; then, Ca‡

D = Ca−1
D ,

Ja†
R = JaT

R (Ja
RJaT

R )−1 = ĴaT Ca−1, and the PIK given by (5)
can be rewritten as q̇a

R , R̃aq̇a = ĴaT Ca−1ẋa
d = Ja†

R ẋa
d which

is the solution of the UIK in the transformed coordinate by
R̃a. Consider a permutation matrix P similarly to the case
1); then, Wb = (PJa)T (PJa)+δ 2In = Wa or R̃b = R̃a which
means that the coordinate transformation is invariant to the
permutation of basic subtasks. Therefore, q̇b = R̃b−1q̇b

R =
R̃b−1(PJa

R)
†Pẋa

d = R̃b−1Ja†
R ẋa

d = R̃a−1q̇a
R = q̇a. If the PIK is

given by (3), then we can let W = In.
Case 3): Suppose T a is the i-th subtask of T b and let P

be a permutation matrix for T c, ẋb = Jb
Rq̇R be the coordinate

transformation by R̃b, and Jb
R = CbĴb be the QRD of JbT

R ;
then, T d is given as

ẋd
d,1
...

ẋd
d,i
...

ẋd,kd

=


ẋd,b1

...
Pẋa

d
...

ẋd,bβ

and


ẋd

1
...

ẋd
i
...

ẋd
kd

=


JR,b1 q̇R

...
PJa

Rq̇R
...

JR,bβ
q̇R

=


CbA

11 ĴbA
1 q̇R
...

PCbA
ii ĴbA

i q̇R
...

CbA
kbkb ĴbA

kb q̇R



where CbA
i j and ĴbA

i are defined in the same manner of
Proposition 1. Consider the recursive formulation of the PIK
given by (4) and remind R̃d = R̃b; then, q̇d

j = q̇b
j , ∀ j ∈N≤i−1

because the recursions up to i− 1 are not affected by the
order change of T a. Also, the i-th recursion becomes q̇d

i =
q̇d

i−1 + R̃b−1ĴT
i (PCb

ii)
†(Pẋa

d −PCbA
i,i−1ĴbA

i−1q̇d
i−1) = q̇b

i because
q̇d

i−1 = q̇b
i−1 and (PCb

ii)
†P = Cb†

ii PT P = Cb†
ii ; therefore, the

recursions up to the kd-th step are identical and we get
q̇d , q̇d

kd = q̇b
kb , q̇b. We can let R̃b = In for (2).

APPENDIX II
PROOF OF THEOREM 2

The proof consists of three parts. First, we prove that the
barycentric coordinates of a convex polytope is an internal
point. Then, we show that the barycentric coordinates of a
set of points is an internal point of the minimum enclosing
convex polytope. Lastly, we find the boundedness condition.

Part 1: Suppose that Q , {q̇1, · · · , q̇l} ⊂ Rn −∅ is a
set of vertices of a convex polytope P ⊂ Rn; then, by
the definition of convexity, ∀q̇a, q̇b ∈ P and ∀wa,wb ∈
R≥0 with wa + wb = 1, we get waq̇a + wbq̇b ∈ P which
means that a line segment connecting two internal points
is also included by the convex polytope. ∀w1, · · · ,wl ∈ R≥0

with ∑
l
i=1 wi = 1, we can assume that q̇1 and q̇2 are two

adjacent vertices without loss of generality; then, q̇ with the
barycentric coordinates can be rewritten by q̇ = ∑

l
i=3 wiq̇i

if w1 + w2 = 0 and q̇ = w̄1 ˙̄q1 + ∑
l
i=3 wiq̇i if w1 + w2 > 0

where w̄1 , w1 +w2 and ˙̄q1 , w1/w̄1q̇1 +w2/w̄1q̇2. In both
cases, new coordinates form the barycentric cooridinates of
q̇ with the smaller number of points because ∑

l
i=3 wi = 1

if w1 +w2 = 0 and w̄1 +∑
l
i=3 wi = 1 if w1 +w2 > 0. Also,

a polytope generated by the smaller number of vertices is
convex enclosed by P because ˙̄p is a point on the edge
connecting two adjacent vertices q̇1 and q̇2 (w1/w̄1 ≥ 0,
w2/w̄2 ≥ 0, w1/w̄1 +w2/w̄2 = 1); therefore, we can repeat
this process until only one point remains inside of P .

Part 2: ∀Q ⊂ Rn −∅, ∃A , {a1, · · · ,aα} ⊂ N≤l , such
that QA , {q̇a1 , · · · , q̇aα} ⊂ Q is a set of vertecies of the
minimum enclosing convex polytope P ⊂ Rn of Q. Let
B , {b1, · · · ,bβ}=N≤l−A; then, QB , {q̇b1 , · · · , q̇bβ } ⊂Q
becomes a set of points enclosed by P and q̇ with the
barycentric coordinates can be rewritten by q̇ = ∑

β

i=1 wbi q̇bi



if ∑
α
i=1 wai = 0 and q̇ = ∑

β+1
i=1 wbi q̇bi if ∑

α
i=1 wai > 0 where

wbβ+1 , ∑
α
i=1 wai and q̇bβ+1 , ∑

α
i=1 wai/wbβ+1 q̇ai . In both

cases, new coordinates form the barycentric coordinates of
q̇ with the smaller number of points enclosed by P by
definition and we can repeat this process until only one point
remains inside of P .

Part 3: ∀Q ⊂ Rn − ∅, there exist r ∈ R≥0 and the
minimum enclosing convex polytope P ⊂ Rn, such that
P ⊂ {a ∈ Rn : ‖a‖ ≤ r} and the minimum r is given by
max{‖q̇1‖, · · · ,‖q̇l‖}. Therefore, based on the proof of the
second part, ∀w1, · · · ,wl ∈ R≥0 with ∑

l
i=1 wi = 1, we get

q̇ = ∑
l
i=1 wiq̇i ∈P ⊂ {a ∈ Rn : ‖a‖ ≤max{‖q̇1‖, · · · ,‖q̇l‖}.

APPENDIX III
JOINT SPACE REPRESENTATION OF LEE [8]’S METHOD

Substitute (7) and (8) into (6) and rearrange it as:

q̇ = h1J†
1ẋd,1 +h2Aẋd,2 +h1h2(Bẋd,1 +Cẋd,2)

A = J†
2−N1JT

2

[
(J2JT

2 )
†− (J2N1JT

2 )
†(I−J2J†

1J1J†
2)
]

B =−(J2N1)
†J2J†

1

C =−J†
1J1J†

2 +(J2N1)
†J2J†

1J1J†
2.

If we assume that [JT
1 JT

2 ]
T has its full rank, A and C can

be simplified to:

A = J†
2−N1JT

2

[
(J2JT

2 )
†− (J2N1JT

2 )
†(J2N1J†

2)
]
= J†

2

C = N1J†
2−J†

2 +(J2N1)
†(I−J2N1J†

2) = (J2N1)
†−J†

2

and q̇ can be rewritten as

q̇ = h1(1−h2)J†
1ẋd,1 +h2(1−h1)J†

2ẋd,2

+h1h2

[
J†

1ẋd,1 +(J2N1)
†(ẋd,2−J2J†

1ẋd,1)
]

= h1(1−h1)q̇1 +h2(1−h2)q̇2 +h1h2q̇[1,2]+w∅q̇∅

where w∅q̇∅ = 0, ∀w∅ ∈ R.

APPENDIX IV
PROOF OF THEOREM 3

Let’s define ∆l−1 , {a ∈ Rl : 1T a = 1, a ≥ 0} as the
standard simplex in Rl ; then, the vertices of ∆l−1 are
given by {ê1, · · · , êl} and, ∀(w, i) ∈ ∆l−1 ×N≤l , êi −w is
a tangent vector of ∆l−1. From the initial condition w(t0) ∈
∆l−1, w( j)(t0) = 0 and the input condition wd ∈ {ê1, · · · , êl},
we get w(s+1)(t0) = kp(wd(t0)−w(t0)) which is also a tan-
gent vector of ∆l−1. Therefore, the variation of w( j) becomes
parallel to ∆l−1 right after the initial time and w remains on
the hyperplain H , {a∈Rl : 1T a= 1} because (12) does not
generate normal directional variations once w( j) and wd−w
are parallel to ∆l−1.

Consider the i-th linear system of (12), ds+1wi/dts+1 +
ksdswi/dts + · · ·+ k0wi = k0wi

d , that corresponds to the i-th
varycentric coordinate where wi

d ∈ {0,1}. Since we assumed
that {k0, · · · ,kk} ⊂ R are stabilizing control gains that do
not generate overshoot, any discontinuous variations of wi

d
will not make wi leave the boundary [0,1]; therefore, w ∈
∆l−1 ⊂H for all arbitrary and consecutive changes of wd

and, by Theorem 2, the inverse solution is bounded such that
‖q̇‖ ≤max{‖q̇1‖, · · · ,‖q̇l‖}.

In (12), all discontinuities occur in the (s+1)-th derivative
of w, so continuity is assured for all lower derivatives. It
guarantees smooth task transitions.
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