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Abstract A general formula for the error-correcting radius of linear-algebraic mul-
tivariate interpolation decoding of folded Reed–Solomon (FRS) codes is derived.
Based on this result, an improved construction of FRS codes is motivated, which
can be obtained by puncturing Parvaresh–Vardy codes. The proposed codes allow
decoding for all rates, remove the structural loss in decoding radius of the original
FRS design and maximize the fraction of correctable errors.
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1 Introduction

Decoding Reed–Solomon (RS) codes can be seen as reconstructing a message poly-
nomial of limited degree from a set of noisy evaluation points. There exist a mul-
titude of univariate and multivariate interpolation decoding (MID) algorithms solv-
ing this problem. The classical bounded minimum distance decoder of Berlekamp–
Welch (BW) [11] can be interpreted [1, 6] as a starting point for most MID algo-
rithms. For an RS code of rate R the BW decoder recovers a list-of-1 candidate
polynomial at minimum Hamming distance from the received word up to a fraction
of (1−R)/2 errors. Extending this idea, Sudan in [9] allowed for a list of l ≥ 1
candidate polynomials to be recovered up to a radius of 1−

√
2R via bivariate inter-

polation. Guruswami–Sudan [3] increased the radius to 1−
√

R by means of multi-
plicities of the interpolation points. Parvaresh–Vardy (PV) codes [8] improve upon
this value using MID of multiple algebraically correlated polynomials.

Simple linear-algebraic decoding of `-order PV codes allows to correct up to a
fraction of `/(`+1)(1− `R) errors, but with a strong rate limitation. Through a
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puncturing pattern, Guruswami–Rudra [2] deduced m-folded Reed–Solomon (FRS)
codes from PV codes which are linear-algebraically decodable [10] up to a fraction
of s/(s+1)(1−mR/(m− s+1)) errors with a lesser rate restriction. By allowing
higher degree interpolation and interpolation points with multiplicities (which shall
not be considered here for the sake of simple linear-algebraic decoding), a fraction
of 1− (mR/(m− s+1))s/(s+1) errors may be corrected using these codes.

In this paper, a general formula for the decoding radius of linear-algebraic MID in
terms of code and decoder parameters is derived, showing that FRS codes are not de-
signed optimally. An improved version called “low-order” m-folded Reed–Solomon
(LOFRS) codes with a decoding radius up to m/(m+1)(1−R) is motivated by this
result. The term LOFRS was coined in a recent paper by Guruswami–Wang [4], who
present a similar design that we wish to explicitly acknowledge. The contribution of
this paper is to present LOFRS codes from a different perspective and to illustrate
their relationship to PV codes.

The paper is organized as follows. Section 2 introduces notation and defines RS,
PV and FRS codes. In Section 3, a general formula for the decoding radius of linear-
algebraic MID is derived and applied to RS, PV and FRS codes. Section 4 analyzes
the parameters of this formula such that an optimal decoding radius is achieved. It is
shown that FRS codes can not make use of these parameters, so an improved design
for FRS codes is presented and evaluated. Section 5 concludes the paper.

2 Review of (Folded) Reed–Solomon and Parvaresh–Vardy Codes

Let Fq be a finite field of order q, and F∗q := Fq\{0} its multiplicative group with
generating element α ∈ F∗q. A vector space of dimension ` over Fq is denoted by F`

q
and the ring of polynomials in indeterminate x with coefficients in Fq by Fq[x].
Let Fq[x]<k :=

{
f ∈ Fq[x] : deg f < k

}
be the vector space of polynomials in Fq[x]

of degree less than k. The set of integers {1, . . . ,n} =: [1,n] and let E ( j, i, `) :={
α j,α j+i, . . . ,α j+i(`−1)

}
be an ordered set of ` distinct multiples of α i, starting at α j.

Definition 1 (Evaluation Map). The evaluation map evE ( j,i,`) : Fq[x]<k→ F`
q is de-

fined as f 7→
(

f
(
α j
)
, f
(
α j+i

)
, . . . , f

(
α j+(`−1)i

))
.

Definition 2 (Reed–Solomon Code). Let E be an evaluation set of n distinct el-
ements from Fq called code locators. A RS code of length n = |E | and dimension
k ∈ [1,n] is the image of all message polynomials f (x) = f0+ f1x+ · · ·+ fk−1xk−1 ∈
Fq[x]<k under the evaluation map evE , i.e.,

RS[q,E ,k] :=
{
(evE ( f )) : ∀ f ∈ Fq[x]<k

}
(1)

and rate RRS = k/n =: R. If E = F∗q, n = |F∗q|= q−1, the code is called primitive.

In this paper, all considered RS codes are primitive.
Parvaresh–Vardy Codes generalize RS codes by evaluating more than just one

polynomial of degree less than k at a common set of evaluation points E .
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Definition 3 (General Parvaresh–Vardy Code). Let e(x) ∈ Fq[x] be an irreducible
polynomial over Fq of degree a≥ k. Let f0(x)∈ Fq[x]<k denote the message polyno-
mial as for RS codes. Choose integers a,d, ` so that fi(x) := ( fi−1(x))

d mod e(x) ∈
Fq[x]<k. A PV code of dimension k is defined as all matrices in F`×n

q such that

PV
[
q,E ,k,d, `,e(x)

]
:=


 evE ( f0)...

evE ( f`−1)

 : ∀ f0 ∈ Fq[x]<k

. (2)

If `= 1, only the message polynomial f0 ∈ Fq[x]<k is used and PV codes (2) reduce
to RS codes as in (1). For ` > 1, additional algebraically correlated polynomials
fi ∈ Fq[x]<k carrying no further data are evaluated for i ∈ [1, `−1], so the rate of PV
codes is limited to RPV = k/(`n) = RRS/`.

In the following, the parameters of PV codes are restricted: Let e(x) = xq−1−α

and d = q, such that fi(x) = ( fi−1(x))
q mod

(
xq−1−α

)
= fi−1(αx) = f0(α

ix),
i ∈ [1, `−1], allowing for a simplified definition of PV codes:

Definition 4 (Simple Parvaresh–Vardy Code). For the choice of E = F∗q, e(x) =
xq−1−α and d = q, the PV codeword symbols

c j =
[
evα j( f ),evα j+1( f ),...,ev

α j+`−1( f )
]T

=
[
evE ( j,1,`)( f )

]T ∈ F`
q (3)

are based on evaluating a single polynomial f ∈ Fq[x]<k at E ( j,1, `).

Note that simple PV codes use repeated evaluation points in their codewords. For
example, the neighboring symbols

c j =
[
evE ( j,1,`)( f )

]T
=
[

f
(
α

j), f (α j+1), . . . , f
(
α

j+`−1) ]T and

c j+1 =
[
evE ( j+1,1,`)( f )

]T
=
[

f
(
α

j+1), . . . , f
(
α

j+`−1), f
(
α

j+`
)]T

have `−1 evaluation points α j+1, . . . ,α j+`−1 in common. In general, every evalu-
ation point is used in ` consecutive code symbols, therefore reducing the rate by a
factor of 1/̀ .

Folded Reed–Solomon codes avoid this rate loss by transmitting only codeword
symbols at code locators α j`, j ∈ [0, n/̀ −1], eliminating repeated evaluation points.
Hence, FRS codes are PV codes where symbols ci, i 6= j`, are punctured.

Definition 5 (Folded Reed–Solomon Code). Let the folding parameter m≥ 1 be an
integer satisfying m|n and α be a primitive element of Fq. Choose N = n/m disjoint
ordered sets of evaluation points E ( jm,1,m) =

{
α jm,α jm+1, . . . ,α jm+m−1

}
, j ∈

[0,N−1]. An m-FRS code of dimension k and length N consists of symbols

c j =
[

f (α jm), . . . , f (α jm+m−1)
]T

=
[
evE ( jm,1,m)( f )

]T ∈ Fm
q . (4)

In case m= 1, FRS codes reduce to RS codes. For n= q−1 and
⋃N−1

j=0 E( jm,1,m) =
F∗q, FRS codes are essentially primitive RS codes, where m consecutive RS symbols
are grouped into vectors from Fm

q . Due to this close relationship, the rate RFRS =
k/n =RRS and minimum distance dmin = n−k+1 of FRS and RS codes are identical.
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3 Decoding Radius of Linear-Algebraic MID

This section reviews linear-algebraic MID of PV, RS and FRS codes and derives a
general formula for an achievable decoding radius (fraction of correctable errors)
τ in terms of code and decoder parameters. The restriction to linear-algebraic al-
gorithms allows for a much simpler presentation, but naturally leads to a slightly
reduced decoding radius as well as an exponential list-size of the decoder output.
The former consequence is negligible for high rate codes of practical interest and
mitigation of the latter is possible [2, Sec. 4], but outside the scope of this paper.

Let s ∈ [1, `] be an integer and (s+ 1) the dimension of an interpolation point
(x,y1, . . . ,ys). Let Q(x,y1, . . . ,ys)=Q0(x)+Q1(x)y1+· · ·+Qs(x)ys ∈Fq[x,y1,...,ys]
be an (s + 1)-variate interpolation polynomial of degree 1 in the indeterminates
y1, . . . ,ys. The codeword length shall be denoted by N and the received matrix
by r = (r0,r1, . . . ,rN−1) ∈

(
F`

q
)N, with symbols r j = [r j`,r j`+1, . . . ,r j`+`−1]

T ∈ F`
q,

for j ∈ [0,N− 1]. Let the w = (1,k− 1, . . . ,k− 1)-weighted degree of a monomial
xd0yd1

1 · · ·y
ds
s be defined as degw

(
xd0yd1

1 · · ·y
ds
s
)

:= d0 +(k−1)∑
s
i=1 di. Consequently,

degw(Q) is the w-weighted degree of its leading monomial under w-weighted lex-
icographic ordering. Let σ ∈ [1, `] denote the step size between two consecutive
interpolation points within the received vector r. Let I ⊆ [0,n− 1] denote the set
of indices i∈I of all (s+1)-dimensional interpolation points (α i,rσ i, . . . ,rσ i+s−1)
used by the decoding algorithm and let I := |I | be its cardinality.

Linear-algebraic MID consists of an interpolation step and a root-finding step:
In the interpolation step, the decoder finds a nonzero (s+ 1)-variate polynomial
Q ∈ Fq[x,y1,...,ys] of minimal degw(Q) = D and degree 1 in y1, . . . ,ys, satisfying

Q(α i,rσ i, . . . ,rσ i+s−1) = 0, ∀i ∈I , (5)

giving a total of I constraints on at most (s+1)(D+1)− s(k−1) coefficients of Q.
If D is large enough, the resulting homogeneous linear system of (5) has a nonzero
solution for Q. The minimal such w-weighted degree is given in terms of I and s as

D(I,s) :=
⌊

I + s(k−1)
s+1

⌋
. (6)

In the root-finding step a list of candidate message polynomials f ∈ Fq[x]<k is
recovered from r. For the codes and algorithms considered in this paper, it suffices
to find all y-roots f0 ∈ Fq[x]<k of Q, such that fi, i ∈ [0,s−1], satisfies

Q(x, f0(x), f1(x), . . . , fs−1(x)) = 0. (7)

Denote by E :=
∣∣{ j ∈ [0,N−1] : r j 6= c j

}∣∣ the total number of received symbols
in error. An interpolation point (α i,rσ i, . . . ,rσ i+s−1), i ∈I , is said to agree with a
message polynomial f0 ∈ Fq[x]<k if rt = ft mod `(α

i), t ∈ [σ i,σ i+ s−1].

Lemma 1. The maximum number of interpolation points corrupted by a single re-
ceived symbol error r j 6= c j, j ∈ [0,N−1], is given by

A(I , `,s,σ) := max
j

∣∣{i ∈I : [σ i,σ i+ s−1]∩ [ j`, j`+ `−1] 6= /0
}∣∣. (8)
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Proof: An (s+1)-dimensional interpolation point (α i,rσ i, . . . ,rσ i+s−1), i∈I ,
corresponds to indices [σ i,σ i+ s− 1] in the received vector r. A received symbol
r j ∈ F`

q uses indices [ j`, j`+ `−1]. The j-th symbol r j affects the i-th interpolation
point if and only if the intersection [σ i,σ i+ s−1]∩ [ j`, j`+ `−1] is not empty.

Lemma 2. An (s+ 1)-variate polynomial Q ∈ Fq[x,y1,...,ys] of degw(Q) = D(I,s)
satisfying (5) will satisfy (7) if the number of agreements I−EA(I, `,s,σ)>D(I,s).

Proof: According to the Polynomial Factor Theorem [7, Cor. X.1.4], the num-
ber of roots of a non-constant univariate polynomial P(x)=Q(x, f0(x), . . . , fs−1(x))∈
Fq[x]≤D(I,s) cannot exceed its degree, implying Q(x, f0(x), f1(x), . . . , fs−1(x))≡ 0.

Theorem 1. In case (7) suffices to recover all candidate polynomials f0 ∈ Fq[x]<k,
a fraction of correctable errors τ is achievable if

τ ≤
(

s
s+1

)(
I− k

A(I , `,s,σ)N

)
. (9)

Proof: Combining (6) and Lemma 2, we can choose any

τ ≤ E
N

<
1

A(I , `,s,σ)N

⌈
s(I− k)+1

s+1

⌉
.

The result of Theorem 1 is applied to the following codes and decoding algorithms:
1) Decoding of RS Codes (BW Algorithm): RS codes use `= 1 message poly-

nomial, N = n symbols c j ∈ Fq and σ = 1. The decoder finds a bivariate polynomial
Q(x,y)=Q0(x)+Q1(x)y∈Fq[x,y] of minimal w=(1,k−1)-weighted degree, pass-
ing through all (s+1) = 2-dimensional points (α i,ri), i∈I = [0,n−1]. Due to (6),
degw(Q) ≥ D(n,1) =

⌊ n+k−1
2

⌋
is needed to satisfy all I = n conditions. A symbol

error affects A(I ,1,1,1) = 1 interpolation point. Theorem 1 guarantees a fraction
of correctable errors

τBW = (1−R)/2 (10)

up to which the message polynomial f ∈ Fq[x]<k can be recovered [6, Thm. 5.2.2].
2) Decoding of PV Codes: A rate RPV PV code uses N = n symbols c j ∈ F`

q.
An (`+1)-variate polynomial Q(x,y1, . . . ,y`) = Q0(x)+Q1(x)y1 + · · ·+Q`(x)y` ∈
Fq[x,y1,...,y`] of w = (1,k−1, . . . ,k−1)-weighted degree is found, passing through
(`+1)-dimensional interpolation points (α i,ri`, . . . ,ri`+`−1), for i ∈I = [0,n−1].
Hence, I = n and degw(Q)≥D(n, `) =

⌊ n+`(k−1)
`+1

⌋
. In case r j 6= c j, A(I , `, `,`) = 1

due to σ = `. Theorem 1 states that an achievable fraction of correctable errors is

τPV = `/(`+1)(1− `RPV) (11)

such that a list of message polynomials f0 ∈ Fq[x]<k can be recovered [8, Lem. 6–9].
3) FRS Decoding Scheme A: FRS codes are punctured PV codes with ` = m,

σ = 1, symbols c j ∈ Fm
q and N = n/m. In the linear-algebraic decoding scheme

by Vadhan [10, 5], I is chosen so that all points (α i,ri, . . . ,ri+s−1) are strictly
contained inside the received symbols, i.e., i ∈

⋃N−1
j=0[m j,m j +m− 1]. Therefore,

I = N(m− s + 1) and A(I ,m,s,1) = m− s + 1. An (s + 1)-variate polynomial
Q∈ Fq[x,y1,...,ys] is found if degw(Q)≥D(N(m−s+1),s) =

⌊
N(m−s+1)+s(k−1)

s+1

⌋
.
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Fig. 1 FRS decoding schemes
A (left) and B (right) using
3-variate interpolation. White
boxes represent symbols from
Fq, grouped into interpolation
points with code locator ex-
ponent in square boxes. Gray
boxes denote received sym-
bols r j ∈ Fm

q , j ∈ [0,N− 1].
Dotted borders with arrows
depict overlapping interpola-
tion points between neighbor-
ing symbols.

Due to [5, Lem. 6] and (9), we can achieve a fraction of correctable errors

τFRSA =
s

s+1

(
1−
(

m
m− s+1

)
R
)

for 0≤ R≤ (m− s+1)/m. (12)

4) FRS Decoding Scheme B: Another scheme suggested by Justesen [2, Sec. 3.2]
uses all I = n interpolation points, thus requiring degw(Q) ≥ D(n,s) =

⌊
n+s(k−1)

s+1

⌋
.

Due to the FRS code design, the cost of increasing I is that interpolation points over-
lap into neighboring code symbols. A symbol error affects A(I ,m,s,1) =m+s−1,
i.e., an extra 2(s−1) points over Scheme A. An achievable decoding radius is

τFRSB =
s

s+1

(
m

m+ s−1

)
(1−R) for 0≤ R≤ 1. (13)

Note that τFRSB > τFRSA if R > (m− s+1)/(2m).

4 Optimal Design of FRS Codes in Terms of Decoding Radius

According to Theorem 1, τ is a function of the interpolation parameter s∈ [1,m], the
number of interpolation points I ∈ [1,n] used, code length N = n/m and maximum
number of interpolation points A(I ,m,s,σ) ∈ [I/N,m+ s−1] affected by one sym-
bol error. The range of parameters s and I is straightforward. The minimum value
of A(I ,m,s,σ) results from uniformly distributing I interpolation points among N
code symbols. The maximum results from the maximum number of distinct (s+1)-
dimensional points touching a symbol from Fm

q . In order to maximize the decoding
radius in (9), the optimal parameters are sopt = m, Iopt = n and Aopt = m, such that

τopt = m/(m+1)(1−R). (14)

Neither FRS decoding scheme A (using only I = N(m− s+ 1) < Iopt interpolation
points) nor scheme B (with A(I ,m,s,1) = m+ s− 1 > Aopt interpolation points
affected by a symbol error) use these optimal values. In order to achieve the optimal
parameters Iopt = n and Aopt = m, FRS codes shall be adapted as follows: Based on
FRS scheme B, the 2(s−1) transboundary (s+1)-dimensional interpolation points
shall “wrap around” into the same code symbol instead of a neighboring one. This
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Fig. 2 MID of m-LOFRS
code using 3-dimensional
interpolation points. Dotted
boxes with arrows depict
interpolation points wrap-
ping around into the same
codeword symbol.

prevents crosstalk of erroneous interpolation points between neighboring symbols
in case of symbol errors. The rate increase of an `= m-FRS over an `-order PV code
is due to the use of disjoint evaluation sets in (4), which shall be retained.

Definition 6 (Low-Order FRS Code). Let the folding parameter m ≥ 1 be such
that m|n for n = q− 1 and let α be a primitive element of Fq. Choose N = n/m

disjoint sets of evaluation points E ( j,N,m) =
{

α j,α j+N ,α j+2N , . . . ,α j+n−N
}
, j ∈

[0,N−1] such that
⋃N−1

j = 0 E ( j,N,m) = F∗q. Note that αN is an element of low order.
A low-order m-FRS (LOFRS) code of dimension k and length N consists of symbols

c j =
[

f (α j), f (α j+N),..., f (α j+n−N)
]T

=
[
evE ( j,N,m)( f )

]T ∈ Fm
q . (15)

For m = 1, LOFRS codes reduce to RS codes.
As for regular m-FRS codes, the decoder finds an (s+ 1)-variate interpolation

polynomial Q ∈ Fq[x,y1,...,ys] passing through all I = n interpolation points, i.e.,
satisfying (5) for i∈I =

⋃N−1
j=0{ j+N[0,m−1]}. Using (6), a w=(1,k−1, ..,k−1)-

weighted degree degw(Q) ≥ D(n,s) =
⌊ n+s(k−1)

s+1

⌋
is required. Due to the choice of

I and σ = 1, inter-symbol crosstalk of interpolation points is avoided in case of
r j 6= c j and so A(I ,m,s,1) = m = Aopt, see Figure 2 for (s+ 1) = 3. In the root-
finding step, a list of message polynomials f ∈ Fq[x]<k is recovered [4, Prop. 5.3]
from Q(x, f (x), f (αNx), . . . , f (α(s−1)N)) = 0 if the agreement between r and f is
larger than D(n,s). Hence, it is possible to achieve a fraction of correctable errors

τLOFRS = s/(s+1)(1−R)> max{τFRSA ,τFRSB} for 0≤ R≤ 1. (16)

By choosing the maximum interpolation parameter sopt = m, the optimal decod-
ing radius τLOFRS = τopt is reached. In contrast, for FRS schemes A and B we have

τFRSA = m/(m+1)(1−mR) = τPV (17)
τFRSB = m/(m+1)(m)/(2m−1)(1−R)≈ τBW. (18)

Figure 3 compares the decoding radius of the BW algorithm for RS codes (10),
linear-algebraic decoding of order ` = 5 PV codes (11), m = 5-FRS decoding
scheme A (12), decoding scheme B (13) and m= 5-LOFRS codes (16) for s∈ [2,m].
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Fig. 3 Linear-algebraic MID
radius τ versus code rate R of
` = 5 PV codes, m = 5-FRS
decoding schemes A and B,
and proposed m = 5-LOFRS
codes for parameter s ∈ [2,m]
(increasing along arrows).

5 Conclusion

A general formula for the error-correcting radius of linear-algebraic MID of RS, PV
and FRS codes was derived and analyzed. Through this formula, an improved design
of m-FRS codes called Low-Order m-FRS codes was motivated, which was recently
introduced by [4]. The proposed codes can be viewed in the context of punctured
PV codes and they reach the optimal decoding radius τopt = m/(m+1)(1−R).
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