Error-Correcting Radius of Folded Reed-Solomon Code Designs

Joschi Brauchle - joschi.brauchle@tum.de

Linear-Algebraic Multivariate Interpolation Decoding
(1) Interpolation Problem: Find an $(s+1)$-variate interpolation
polynomial $Q \in \mathbb{F}_{[}\left[x, y_{1}, \ldots, y_{s}\right]$ of w-weighted degree D_{Q}, satisfying
$Q\left(\alpha^{i}, r_{i}, \ldots, r_{i+s-1}\right)=0, \quad \forall i \in \mathcal{I} . \quad$ (5)
Interpolation Problem
The homogeneous linear system (5) has a nonzero solution, if $D_{Q} \geq D(1, s):=\left\lfloor\frac{1+s(k-1)}{s+1}\right\rfloor$
(2) Root-Finding Problem: Recover a list of candidate message polynomials $f(x) \in \mathbb{F}_{q}[x]_{<k}$ from $Q \in \mathbb{F}_{q}\left[x, y_{1}, \ldots, y_{s}\right]$ via
$Q\left(x, f(x), f(\alpha x), \ldots, f\left(\alpha^{s-1} x\right)\right)=0$.

Root-Finding Problem

According to the Polynomial Factor Theorem, $f(x)$ satisfies (7) if
the number of correct interpolation points is larger than $D(1, s)$.

How FRS Symbol Errors affect Interpolation Points

Let $E:=\left|\left\{j \in[0, N-1]: \mathbf{r}_{j} \neq \mathbf{c}_{j}\right\}\right|$ be the number of symbols errors in \mathbf{R}. Lemma (Number of Interpolation Points Affected by Symbol Error) The maximum number of interpolation points corrupted by a symbol The maximum number of interpolation
error $\mathbf{r}_{j} \neq \mathbf{c}_{j}, j \in[0, N-1]$ is given by
$A:=\max _{j}|\{i \in \mathcal{I}:[i, i+s-1] \cap[j m, j m+m-1] \neq \emptyset\}|$.

\square
\square
\square
\vdots
\square
\square
\square

Sketch of Proof:

- White boxes represent elements in \mathbb{F}_{q},
- Colored boxed are interpolation points from \mathcal{I},
- Dotted borders depict partial interpolation points,
- Gray background box denotes received symbol $\mathbf{r}_{j} \in \mathbb{F}_{q}^{m}$

Simple counting argument.

Achievable Decoding Radius τ

Lemma An (s+1)-variate polynomial $Q \in \mathbb{F}_{q}\left[x, y_{1}, \ldots, y_{s}\right]$ satisfying (5) with An $(s+1)$-variate polynomial $Q \in \mathbb{F}_{q}\left[x, y_{1}, \ldots, y_{s}\right]$ satisfying (5) with
w-weighted degree $D(1, s)$ as in (6) also satisfies (7) if the number of w-weighted degree $D(1, s)$ as
correct interpolation point is
$1-E A>D(1, s)$.
(9)

Theorem (Achievable Decoding Radius)

In case (7) suffices to recover all candidate polynomials $f \in \mathbb{F}[x]_{<k, a}$ decoding radius
路
$\tau:=\frac{E}{N} \leq \frac{s}{s+1}\left(\frac{I-k}{A N}\right)$
is achievable.
In addition to N and k, the decoding radius τ is a function of the

- Interpolation parameter $s \in[1, m]$,
- Number of interpolation points $I \in[1, n]$ used,
- Interpolation points affected by symbol error $A \in[I / N, m+s-1]$. The value of τ is maximized for $s_{\text {max }}:=m, I_{\text {max }}:=n$ and $A_{\text {max }}:=I / N$: Maximum Achievable Decoding Radius
$\tau_{\max }=\frac{m}{m+1}(1-R)$.

Decoding Radius of FRS Codes - Algorithm B [1, Sec. 3.2]

Strategy: Use all interpolation points. Parameters:
$N=n / m$
$\mathcal{I}=[0, n-1]$
$I=n=I_{\text {max }}$
$A=m+s-1>A_{\text {max }}$
Problem: Symbol errors cause extra erroneous interpolation points to affect

Decoding Radius of Algorithm B

$\tau_{\text {FRS }}=\frac{s}{s+1}\left(\frac{m}{m+s-1}\right)(1-R)$
for $0 \leq R \leq 1$. Note that $\tau_{\text {FRS }}>\tau_{\text {FRS }_{A}}$ if $R>(m-s+1) / 2 m$.

Low-Order Folded Reed-Solomon Codes [4]

Objective:

- Achieve optimal parameters $I_{\max }=n$ and $A_{\text {max }}=m$.
- Prevent erroneous interpolation points to affect correct neighboring symbols in case of a symbol error.

Solution:

(1) Make transboundary interpolation points "wrap around" into the
same code symbol instead of a neighboring one.
(2) Recall that α^{N} is an element of low order $N=(q-1) / m$ over \mathbb{F}_{q}.
(3) Choose $N=n / m$ disjoint ordered sets of evaluation points
$\mathcal{E}(j, N, m)=\left\{\alpha^{j}, \alpha^{j+N}, \alpha^{j+2 N}, \ldots, \alpha^{j+(m-1) N}\right\}, \quad j \in[0, N-1]$. (14)

Definition (LOFRS Code)

A m-LOFRS code of dimension k, length N, rate $R=k / n$ has symbols $\mathbf{c}_{j}=\operatorname{ev}_{\mathcal{E}(j, N, m)}(f)=\left[f\left(\alpha^{j}\right), f\left(\alpha^{j+N}\right), \ldots, f\left(\alpha^{j+(m-1) N}\right)\right]^{T} \in \mathbb{F}_{q}^{m} \quad$ (15) for $j \in[0, N-1]$ such that
$\operatorname{LOFRS}[q, k, m]:=\left\{\left(\mathbf{c}_{0}, \mathbf{c}_{1}, \ldots, \mathbf{c}_{N-1}\right) \in\left(\mathbb{F}_{q}^{m}\right)^{N}: \forall f \in \mathbb{F}_{q}[x]_{<k}\right\} .(16)$

\section*{Decoding Radius of LOFRS Codes

Decoding Radius of LOFRS Codes

$\tau_{\text {LOFRS }}=\frac{m}{m+1}(1-R)$
(17)

Comparison of Decoding Radius

The following plot shows the decoding radius τ versus code rate R of a
$m=5$-FRS and $m=5$-LOFRS codes for

- FRS - Algorithm A: $\quad \tau_{\text {FRS }_{A}}=\frac{s}{s+1}\left(1-\left(\frac{m}{m-s+1}\right) R\right)$
- FRS - Algorithm B: $\quad \tau_{\text {FRS }}^{B}=\frac{s}{s+1}\left(\frac{m}{m+s-1}\right)(1-R)$
- LOFRS: $\quad \tau_{\text {LOFRS }}=\frac{m}{m+1}(1-R)$
and parameter $s \in[2,5=m]$ (in increasing order along black arrows).

Note: For any fixed value of the folding parameter $m>1$ and interpolation parameter $s \in[1, m]$, we have

$$
\tau_{\text {LOFRS }}>\max \left\{\tau_{\text {FRS }_{A}}, \tau_{\text {FRS }_{B}}\right\}
$$

for all rates $0<R<1$.

References

 Crior-correction with optimal
no. 1, pp. 135-150, Jan. 2008.
[2] S. Vadhan, "Pseudorandon
Computer Science, 2011.
[3] V. Guruswami and C. Wang, "Linear-alseeraic list decoding for Reed-SNa, Reed-Solomon codes," IIEEE Trans. Inf. Theory, vol. 59, no. 6, pp. 3257-3268,
Jun. 2013.

Institute for
Communications Engineering

