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Abstract—The incapability of virtual agents to analyze the
irrational behavior in human-virtual agent interactions urges to
develop efficient mechanisms to capture the irrationality. Irra-
tional actions in cognitive interactions are employed to attract the
opponent’s trust or to make future actions harder to anticipate.
Recent works mostly investigate interactions of multiple decision
makers with perfect knowledge which select optimal actions, a
scenario that is not applicable when irrationality comes in. In
this paper, the social interaction between a human and a virtual
agent over a known utility function is considered while irrational
actions are allowed. The existence of correlated equilibria is
shown under some mild assumptions. Using the action history
of both players, a measure of irrationality, which is variance-
optimal, is proposed. Exploiting the irrationality measure, a
probabilistic mechanism for decision making is suggested and
it is shown that the sequence of decisions chosen under this
mechanism leads to equilibria for sufficient number of iterations.
Restating the interaction as an iterative game, the existence of
equilibria is shown for two types of games i.e. simultaneous
games and leader-follower (Stackelberg) games. Even though our
method considers human-virtual agent interaction, the results
extend to any two-player finite discrete game. An HCI experiment
validates our proposed approach and corroborates the efficiency
of the proposed method.

I. INTRODUCTION

Technological advances in intelligent machines such as
computers, robots, and virtual agents have led to an increased
interest in forming joint tasks by human. In such a partnership
various simplifications are imposed due to the highly complex
aspects of human characteristics i.e. full information access
or rational decision makers. In real interactions though, these
ideal assumptions do not often hold. Irrationality of decision
makers is one of the unexplored aspects of social interactions
in majority of studies, and is rather untouched from the birth
of the concept in half a century ago.

The early works utilizing virtual environments started in
60’s by introducing graphical interfaces, operation systems,
and physical devices. During recent years though, focus is
turned to physical and cognitive interactions between hu-
man and intelligent machines [7] and [9]. Human-machine
interaction is studied from different perspectives, such as
social human behavior and decision making, establishment
of different ways of communication and data interpretation,
and implementing proper autonomous behaviors for physical
and verbal/non-verbal interaction with the human. Numerous
psychological and neurological works consider the first aspect
and try to recognize human decision making mechanisms and

978-1-4673-1567-8/12/$31.00 ©2012 Crown

map them out to intelligent machines, see e.g. [8] and [3].
In [4], studies show that human naturally tends to share the
information resources and cooperate with the partners during
an interaction, but not always doing that. Moreover, human
mostly starts with a positive belief about the other agents, so
tries to be cooperative unless receives any contentious reaction.
Significant efforts are made on how to establish data commu-
nication and interpretation between human and autonomous
agents. Audio-visual communication with the human is widely
considered, e.g. in [10]. More recently, physical interaction
between human and robots received a substantial interest [12],
[6]. Recently, Game Theory is emerged as a powerful tool
to model human-machine interaction, investigate the agents’
decisions, their consequences on utility, and strategy manage-
ment. In [2] a game theoretic solution in competitive social
interaction is found by developing continuous versions of
Prisoner’s Dilemma' and Rope-Pulling’ games. A machine-
learning approach to identify human preferences considering
social factors in one-shot games is proposed in [13]. In
majority of studies about human-virtual agent interaction,
rationality assumption holds to simplify the interpretation of
human behavior, since irrationality makes it excessively hard
to anticipate human intention during an interaction. In [14],
a computational model of emotion-focused irrational behavior
is developed to design virtual humans. Qualitative discussions
in [15] investigate the role of irrational factors, but in strategic
and financial management. Rationality assumption may seem
reasonable in cooperation, but is restrictive in non-cooperative
interactions. The necessity of considering irrationality is of
great interest in economics, but also in any competitive game
scenarios. The design and implementation of intelligent virtual
agents capable of coping with irrationality is of high impor-
tance for advance human-computer interaction.

The contribution of this paper is to propose a methodol-
ogy to establish the interaction under possible irrationalities,
and study the existence of equilibria. We first remodel the
interaction as a game, then prove the existence of equilibria
for general interactions in presence of irrational actions under
some mild assumptions. We introduce an approach for mea-
suring irrationality, and exploit it to construct a Probability

IPD is a two-player non-zero-sum game revealing the importance of
cooperation in iterative interactions. It shows that cooperation is more tied
to mutual trust than to utility function.

2For more description see [1].



Distribution over the virtual agent’s strategy set. Subsequently,
we prove the sequence of decisions taken under the pdf is the
optimal reaction against irrationality. Finally, an experiment in
a human-virtual agent game corroborates the results.

The reminder of the paper is structured as follows: In
section II, we state the problem, mathematical notation, and
assumptions. Section III derives the game theoretical model of
the interaction. Existence of equilibria for rational interaction
is shown in section IV. The main contribution of the paper
is presented in section V by introducing the irrationality
measure and proposing a probability distribution under which
the sequence of decisions made by computer is at equilibrium.
Section VI validates the approach by an experiment.

II. PROBLEM STATEMENT, NOTATION AND ASSUMPTIONS

Consider a discrete time finite human-virtual agent interac-
tion over a known utility function . Each player competes to
get the most out of the utility by selecting proper strategies
from a finite strategy set S. At every iteration, the awarded
utilities are mappings from both players’ strategies into the set
of positive real numbers, i.e. J&(S5,S%):S x S — RT and
Ji(SE,S4) S x S — RT, where S5 and S%, denote the
selected strategies at time step <. The objective is to construct a
proper strategy profile for the virtual agent against the human,
who also tries to maximize the own reward, such that within
a finite number of iterations the maximum utility is achieved.
Notably, both players being maximizers does not necessarily
mean that their interaction is competitive. Since both players
jointly determine the individual utilities, the maximum utility
might be achieved by cooperation. Here rationality plays an
important role to build up the reciprocal trust which is the
essential factor for cooperation. If rationality is violated, the
mutual trust between the players would easily be faded and
cooperation stops. Rationality imposes two assumptions on
strategic behaviors [5]: first, players make decisions based on
some belief about opponent’s behavior. Second, belief should
be consistent with other players being rational, being aware of
each other’s rationality and so on, in an infinite cycle. Acting
irrationally decreases the level of trust between the players and
leads them to employ more competitive strategies.

The following assumptions enable a simplified decision
making design to capture the irrationality by the virtual agent:
Aj: Players are able to keep the action history of each other
during earlier iterations.

As: Strategy and action sets are finite and bounded.

As: Players are allowed either to employ a pure strategy
from the strategy set S or to mix between possible strategies,
rationally or irrationally at each iteration.

Ay: Players are rational in employing irrational strategies.
It means irrationality is purposely employed to mislead the
opponent, and irrational actions are chosen according to some
belief about the opponent’s behavior. This assumption clarifies
the difference between an irrational action, and a foolish
action. In a foolish action the actor deviates from rationality
having no specific reason behind.

The above assumptions are not severely restrictive. For
example A, declares that the players have limited alternatives
to choose and act based upon, which seems quite reasonable.

Remark 1: A direct consequence of utilities being known
for both players at each iteration is that they are able to easily
detect the irrational actions employed by each other.

IITI. INTERACTION AS A GAME

Human-Computer Interaction, as a special form of human-
virtual agent interaction, can be effectively restated within the
game theoretic framework. Variety of games then exist theo-
retically correspond to various class of bilateral interactions.
Here, we consider two types of dynamic interactions; one at
which players act simultaneously, and the other with players
acting sequentially. In what follows, the game theoretic models
for both scenarios are derived, and well-defined games which
reflect the specific properties of each type are introduced. First,
we start with some basic game theoretic definitions [1].

Definition 3.1: Zero-Sum vs. Non-Zero-Sum Games: In zero-
sum games, sum of the players’ gain and loss is zero, while in
non-zero-sum games this sum is a nonzero constant. Notably,
cooperation happens in non-zero-sum games only, since there
is no obligation on players’ costs and rewards to be identical.
In zero-sum games only competition occurs.

Definition 3.2: Finite vs. Infinite Games: In a finite game,
each player selects a strategy from a limited number of alter-
natives, while in infinite games, infinite choices are possible
to be selected.

Definition 3.3: Simultaneous vs. Leader-Follower: In simul-
taneous games, players make their decisions simultaneously at
each iteration such that neither side could would know it as a
priori. In contrast, the game in which one player, called leader,
declares his strategy first and the other player, called follower,
has to react to the leader’s strategy, is called leader-follower,
or Stackelberg game.

In the following sections, we focus on non-zero-sum games
which enable us to consider cooperation in the interactive
loop. Moreover, only finite games are considered according to
assumption A5, which automatically excludes the continuous-
kernel games from the discussions. In the next section, we
preliminary study the existence of equilibria in constant-
sum finite simultaneous games, and then continue with its
Stackelberg counterpart both under rationality assumption.

I'V. NASH EQUILIBRIUM IN RATIONAL INTERACTION

Before going through the irrationality in the games of
interest, we shortly review the existence of equilibria in
rational interactions. In the following, the existence of Nash
equilibrium for two-player non-zero-sum finite simultaneous
and Stackelberg games with rational players are summarized.
By relaxing rationality though, the results are no longer valid.



A. Equilibrium Strategies in Finite Simultaneous Games

To make the discussions in this section explicit, the differ-
ence between two mathematical representations of finite games
is clarified first, i.e. normal and extensive representations. An
extensive description explicitly reflects the correspondences
between different strategies and their outcomes, and provides
primary information such as order of play, dynamics evolution,
or information exchange. A normal description however, is a
compact form which suppresses the dynamic character of a
game. Conclusively, a game with same strategies, outcomes,
and equilibria can be represented by either model.

Definition 4.1: Non-Cooperative Equilibrium: In an iterated
two-player non-zero-sum finite game, the sequence of discrete
strategies {S};, cey S{{(* , S}; Yy Sg*}, with final iteration
K, is a non-cooperative equilibrium if the following two
inequalities are satisfied for all the available strategies:

Jir = Ju (S, S¢) = Ju(Su, S¢)
J& = Jo(Sy, SE) = Ja (S, Sc)

where, S* = {S',..., S} is the profile of dominating
strategies. K =1 defines the static equilibrium strategy [1].

(1

Proposition I: Every N -player non-zero-sum finite sequen-
tial game in extensive form admits a non-cooperative equilib-
rium solution in mixed strategies. (Proof in [1]).

Proposition 2: Every N-player finite sequential game in
normal form necessarily admits a perfect equilibrium, and
every perfect equilibrium is a Nash equilibrium. (Proof in [1]).

Therefore, competitive finite simultaneous games with ratio-
nal players necessarily admit a Nash equilibrium, either pure
or mixed. Furthermore, rational cooperation always improves
the outcome of a game compared to the Nash equilibrium [11].
In other words, under the worst case possible situation that
players make no cooperation, Nash equilibrium still exists.

B. Stackelberg Strategies in Leader-Follower Games

We first introduce the concept of Stackelberg equilibrium,
and then discuss the existence of equilibria in finite Stack-
elberg games. Human (H) and computer (C) represent the
leader and follower, respectively.

Definition 4.2: Let S denotes the pure strategy space of
the players in a finite Stackelberg game, and Jy(SH,Sc)
and Jo(Su,Sc) represent the utilities incurred to them,
corresponding to strategy pair {Sg,Sc € S}. Then set
RY(Sy) C S defined for each Sy C S by

RY(Sy) ={Sc € S:Jc(Swu,Sc) > Jo(Su, Sc), ¥Sc € S}

is the optimal response (rational reaction) set of the follower
to the strategy Sgr € S of the leader.

Definition 4.3: In a two-player finite Stackelberg game,
strategy S7; € S is called a Stackelberg equilibrium strategy
for the leader, if

JH(S;I,SE)ZH;aXJH(SH,SE) 2)

Proposition 3: Every two-player finite Stackelberg game
admits a Stackelberg equilibrium for the leader.

Proof: : Since S is a finite set, and R (Sy) is a subset
of S for each Sy € 5, the proof readily follows from (2). ®

Definition 4.4: Let S7; be a Stackelberg strategy for the
leader. Then any element S¢, € R(S};) is an optimal strategy
for the follower that is in equilibrium with S%. The pair
{S}, S&} is a Stackelberg solution of the game, and cost pair
(Ju(S3,88), Jo(Sy, SE)) is the corresponding Stackelberg
outcome.

Remark 2: Uniqueness of equilibria in either simultaneous
or Stackelberg game is not of interest, since in the latter case,
the leader’s utility is unique even if the strategy is not. For
simultaneous games also, uniqueness can be discussed only in
very simple class of information patterns. So, it is generally
infeasible to be studied, especially when decisions are made
based on a probabilistic chance mechanism.

V. A MEASURE OF IRRATIONALITY AND EXISTENCE OF
CORRELATED EQUILIBRIA

This section offers the main contribution of the paper by
studying the reactive policy of computer against the irrational-
ity in human behavior. At first, a probabilistic measure is
proposed to quantify the level of rationality in human behavior.
Then, we show if computer react against the human actions by
mixing between the available strategies, according to a well-
defined pdf, the correlated equilibria exist.

A. A Measure of Irrationality

It is essential for computer to have a quantitative under-
standing of human rationality. To satisfy this, a cumulative
variance-optimal probabilistic measure is proposed based on
the mutual action history of the players. Since, the human
decision making mechanism depends on a lot of internal fac-
tors, and cannot be deterministically captured by mathematical
models, we model the human policies by discrete random
variables chosen under any proper probabilistic mechanism.
Computer, as human opponent, needs to successfully measure
how far the actual behavior of the human is from the rational
behavior. Then, computer employs proper strategies to react
against human behavior in future. The following theorem
facilitates this by introducing a method to optimally measuring
the distance of two random variables.

Theorem 5.1: Suppose that computer’s expectation of human
rational strategy at ¢’th iteration of the game, given the utility
at steak, is defined by EC[S%;|.Ji;]. Let S, represent the actual
strategy taken by human, either rational or irrational. Then, the
smallest possible mean square error resulting from computer’s
expectation of human’s rational strategy and human’s actual
strategy at time step ¢ is

E[(Sy — B[Sy T4))’) (3)

where, J}I is utility function for human at ¢’th iteration.



Proof: We show that the square error in (3) is the smallest
quadratic error function between human’s actual strategy and
computer’s expectation of human’s rational strategy than any
other function g expecting the latter. As already stated, S%; and
Ji; are discrete random variables. Assume their Probability
Mass Functions are represented by Ps,, (S%) and Py, (J%),
with conditional PMF PSHIJH (SH|JH) Suppose g : R =+ R
is any measurable function i.e. Si;g(J) is either nonnegative
or integrable. Then, for any spemﬁc event Jg = Ji; such that
Py, (Ji) > 0 we have

EE[SulJulg(Ju)]
= Y ElSuldn=Thla(J}) Pr, (T)

JJ j

= Zngg

si. 73,
= E[Sug(Ju)].

Now, suppose E[(S4,)?] < co. Since, E[Sk|Jx] is a function

PSH JH(SHN]J)

of JH, E[E[SH|JH}E[SH‘JHH = E[SHE[SH|JHH, then:
E[(Su — g(JH))Q]
= E[(Su [SHlJH])Q]
+ E[(E [5H|JH] Im))’]
+ E[(Su [5H|JH])(E[SH|JH] 9(Jm))]
> E[(Su — E[SulJul)’],

where the inequality is ensured considering the facts that
E[(E[Su|Ju] — 9(Ju))?] > 0 and the term E[(Sy —
E[SH|JH])(E[SH|JH] — g(JH))] is zero. |

Exploiting theorem 5.1, we introduce the following
variance-optimal measure which enables computer to quantify
human’s rationality during the interaction:

= ZES7

(4) measures the average mean square error between human’s
actual and rational strategies from the initial time step up to
the current ’th one. The measure is applicable for both games
considered in this paper, with only difference being n =7 —1
in simultaneous games, and n = ¢ in Stackelberg games.

— EC[S%|T4])). (4)

Theorem 5.2: For sufficiently large number of interactive
iterations in a finite two-player game, the irrationality measure
Ug% starts permanently decreasing after a finite iterations.

Proof: Consider the situation under which the human se-
lects his strategies rationally at all the iterations, then E[S%,] =
EC[$%,]J%,] and according to (4), O’ is zero. On the other

hand, every irrationally selected strategy leads to quadratic
expected error E[(S%, — EC[S%]J%])%] > 0 at corresponding
time step j. Since, both Sy and Jy are bounded finite discrete

random variables, then E[(S3, — E€[S%,|J%])?] < oo and
eventually there exists a finite integer m > 0 such that

E

" Bl(S}y ~ (5}
1

E[(Sf — B[SH1TE]?) <

<.
I

for all £ > m, implying that Ug,- is a decreasing sequence for
H

C

all kK > m. Moreover, aSl

is a positive sequence, then

lim ¢, —0

i
n—0o0 S

which declares that, if a finite game with possibility of
irrational actions under A;-A,4 assumptions repeats infinitely,
the error between computer’s expectation of human’s rational
and actual strategy tends to zero. It means, although human
can employ irrational strategies, computer can perfectly predict
it. If a — 0 applies, the equilibria studied in Section IV
are agaln feamble [ ]
Qualitatively explaining, by every irrational action human
shows, the computer is informed about human decision making
mechanism. In other words, their information sets having no
intersection initially, start to possess some common space with
each non-zero ag Then, after a finite number of iterations
(m), the maccuracy of computer in expecting human’s next
move will be less than all the previous ones, which have
been kept in computer’s memory. Clearly, this specific iteration
would be further if human employs less irrational strategies.
Remark 3: The necessity of the assumption As can be seen
from the theorem 5.2. Otherwise, the monotonicity of ¢,
H

cannot be ensured with finite iterations.

B. Existence of Correlated Equilibria

Here we show the existence of Correlated Equilibria for
two-player non-zero-sum finite simultaneous and Stackelberg
games with possibility of irrational actions and under the
assumptions A; — A4. We derive the results only for simul-
taneous games, since showing the existence of equilibria for
Stackelberg games is exactly the same. The formal definition
of correlated equilibria is as follows [5]:

Definition 5.1: Correlated Equilibria: Consider a finite
game G with J;(s;, s—;) denotes the utility function for player
i, where s_; = [s;];; represents the strategy profile of all
players except i’th one. Suppose A(\S) is the set of all discrete
probability measures over the set .S, then the joint distribution
meA(S) is a correlated equilibrium if and only if

ZW(S)[Ji(SZ‘,S_i) — Ji(§i,s_i)] >0 )
for all players ¢ and all s;,5; € S i.e. s; # §;.

Next theorem shows 7(s) is a correlated equilibrium if it
represents a discrete normal distribution over the joint strategy
set S with standard deviation Ugl and mean p’ defined in (6).

Theorem 5.3: In a two-player finite simultaneous game,
with possibility of irrational actions from human, 7*(s) :=



N(pt, ah. ) distributed over the strategy set S is a correlated

equlhbrlum in response to human strategies, with ;* defined
as o
At wpSe, 6)

where, w's are weights assigned to each strategy Sc, € S
according to priority of that strategy for computer, and w? +

.+ wi =1 at each time step 4, with L being the finite
number of available strategies.

= wiSg, +wiSe, +

Proof: Let TI(s) be the set of all normal distributions
over the set .S, with different standard deviations, including
7*(s). Since w;s can be regulated by computer independent
of human at each time step, according to the more preferred
strategy to respond human decisions, let assume all the normal
distributions in II have the same mean for each specific
strategy profile of the human. Now, we need to show that
the following inequality holds for all the strategies S%;:

ZW $)[J6(S6s Sy) — J&(S6: Sl = 0

where, Slc € m*(s) is the strategy chosen under 7*(s),
Si, € II(s) — m*(s) is any strategy chosen under the other
distributions in II(s) than 7*(s). Now consider for a specific
human strategy S%, either rational or not, J(S&,S%) —
JE(SE, Si) < 0. It means there should be a normal distribu-
tion 7(s) € II by which computer gets more utility choosing its
strategy profile under. Since, the mean values for all the normal
distributions in II are identical for each specific St and also,
computer acts rationally, 7(s) should have a better expectation
of human’s strategy. In the other words, 7(s) should make a
narrower distribution over the strategy set S¢ for computer,
which practically means it should have smaller variance than
7*(s). However, this is in contradiction with the theorem 5.1,

since o€, captures the smallest error of expecting human’s

§i,
strategy, therefore, from the moment that the sequence of o<,
starts permanently decreasing, which is a finite moment m
according to the theorem 5.2, J& (S%, S%) — J& (S, Siy) > 0
always holds. On the other hand, 7*(s) is a normal distribution
which always assigns a non-negative probability to different
strategies, so m*(s)[J5(SE, SY) — JE(SL, Si)] is always
non-negative for time steps greater than m, and hence (5) is
fulfilled, and 7*(s) is a correlated equilibrium. [ ]

Remark 4: We do not claim 7*(s) is the only equilibrium,
or even it is the ever-best solution. We show a specific way to
deal with irrationality in finite games, and prove the existence
of equilibria by establishing a probabilistic mechanism.

Remark 5: The correlated equilibrium is a more general
concept than Nash, i.e. every Nash equilibrium is a correlated
equilibrium, but not the other way around. So, the type of
equilibria we derived is weaker than the concept of Nash
equilibrium. However, in these types of problems where coop-
eration exists, and rationality assumption is relaxed, looking
for Nash equilibrium is impracticable.

The proof of theorem 5.3 can be repeated for the Stackelberg
games, almost the same, with the only difference again the
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upper limit of the summation in (4) i.e. n = ¢. In the next
section, the results of an experiment are presented as a finite
Stackelberg game, to validate the theorems.

VI. EXPERIMENTS AND RESULTS

In this section, we will validate our results in a two-player
discrete finite binary decision making Stackelberg game, as
depicted in Fig. 1. The game are played by a human as
leader, and computer as follower. At the start of each new
iteration, two coin values appear at either sides, and game’s
goal would be to collect as much as possible coins, based on
the announced coin values. Every player has two alternatives
to act and should choose between either left or right. Only if
both of the players agree on one specific side, the utility on the
corresponding chosen side will be awarded to them. If they do
not agree on a particular side, then neither side’s utilities would
be awarded, therefore, the players need to cooperate to achieve
some utilities. The utilities are awarded according to a rule, i.e.
the whole amount of one side’s utility is awarded to the player
on the corresponding side, and the player on the other side gets
half of this amount. For example, let human plays in the left
side which value 10$ is appeared, and computer is in the right
side with utility 4$. Thus, the rational action for both players
is to cooperate and choose left side, so human and computer
are awarded 10$ and 58, respectively, while agreement on the
other side would end them up with 4$ and 2$.

There are six different strategies (I = 6) under which the
players can choose how to react with respect to each other,
namely Cooperative, Non-cooperative, Tit-for-Tat without For-
giveness®, Tit-for-Tat with one Shot Forgiveness (TFTF)*,
Tit-for-Tat with a fixed Probability of Forgiveness’, and the
last one is our derived strategy based on the irrationality

3Tit for Tat is a strategy under which a player starts with cooperation and
will always cooperate unless provoked by the other player. If provoked the
player will retaliate.

4TFTF considers forgiveness just once in response to non-cooperative action
of the opponent.

5This strategy considers a fixed probability to forgive non-cooperative
behavior of the opponent at each iteration of the game.



TABLE I
HCI IN A BINARY-DECISION-MAKING GAME AND UTILITY AWARDED
UNDER DIFFERENT STRATEGIES

Strategies Irrational Actions Zj’il J}I Z§i1 Jé
Cooperative 23.3% 71.7% 58%
Non-cooperative 16.7% 57.7% 46%
Tit-for-Tat 20% 60.8% 59.4%
TFTF 20% 60% 58%
20% TFTF 26.7% 53.5% 56%
™*(s) 20% 61.5% 62.4%
Rational Nash Eq. 0% 69.6% 67.3%

measure in (4). To compare the equilibria obtained under
different strategies with the pure Nash equilibrium, the latter
is also calculated. Clearly, N.E. is superior since it takes place
under rationality assumption. In table I, we demonstrate that
interacting human with computer under the proposed decision
making mechanism 7*(s), and with rationality assumption re-
laxed, provides better solution than employing pure strategies.
We have repeated each game for 30 iterations, and utilities
are bounded between [0 — 8]$ and randomly distributed for
different time steps. Moreover, each game is played by ten
people, each five times. The participants were given the basic
information about the game and that they can employ irrational
decision wherever they could take advantage of, but they did
not know about the strategies taken by the computer.

As it can be seen, computer’s final utility is maximized by
choosing the strategies, against human’s irrationality, under
the pdf N'(ut, o€, ) distributed over the whole set of feasi-
ble strategies, and with all the different strategies weighted
uniformly. The “Trrational Actions” column shows how much
human acts irrationally at those 30 iterations. Zg’il J& and
Zfﬁl Ji; are also the achieved values out of the maximum
achievable utility for each player. According to the first row
in Table I, when computer acts based on cooperation, the
most difference between their utilities occurs. It is sometimes
called Blind Cooperation. TFT strategies however, are more
reasonable, since it reacts to human’s unfriendly actions. This
is shown by making the achieved utilities closer to each other.

Here the results are a small step towards studying irra-
tionality in more complex interactions between human and
intelligent machines. Human-involved interactions without
considering the possibility of strange behaviors from human
is far from reality, and necessity of more studies to detect and
manage those behaviors, specially when intelligent machines
try to follow the human decision making mechanism, seems
inevitable. We show that for simple interactions, irrational-
ity can be treated, however, dealing with more complicated

interactions such as human-robot interaction, and continuous
interactions need much more studies.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we investigate the human-virtual agent in-
teraction by taking the irrationality in decision making into
account. We first remodel the interaction as a two-player game,
and discussed the existence of equilibria holding the rationality
assumption. Then, a variance-optimal approach to measure the
irrationality of human’s behavior is proposed which is based
on the interaction’s history and known utility function. After-
wards, we show that this measure is a decreasing sequence for
sufficiently large number of interactive iterations. Finally, the
existence of correlated equilibria is proved by introducing a
probabilistic mechanism, and experiments validate results.

Since, irrationality in HCI and more generally in game
theory has not been considerably discussed, it could potentially
be a novel research line. As future works, the extension from
discrete decision making process to continuous interaction,
including multi-modal communication is planned. Developing
new experimental setup, such that the game can be played
by haptic devices, will also be a further step helping a lot in
studying continuous interactions.
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