
A Generic Fault Model for Quality Assurance

A. Pretschner1, D. Holling1, R. Eschbach2, and M. Gemmar2

1 Technische Universität München, Germany
{pretschn,holling}@in.tum.de

2 itk Engineering, Germany
{robert.eschbach,matthias.gemmar}@itk-engineering.de

Abstract. Because they are comparatively easy to implement, struc-
tural coverage criteria are commonly used for test derivation in model-
and code-based testing. However, there is a lack of compelling evidence
that they are useful for finding faults, specifically so when compared to
random testing. This paper challenges the idea of using coverage crite-
ria for test selection and instead proposes an approach based on fault
models. We define a general fault model as a transformation from cor-
rect to incorrect programs and/or a partition of the input data space.
Thereby, we leverage the idea of fault injection for test assessment to
test derivation.
We instantiate the developed general fault model to describe existing
fault models. We also show by example how to derive test cases.

1 Introduction

Partition-based testing [23] relies on the idea of partitioning the input domain
of a program into blocks. For testing, a specified number of input values is
usually drawn randomly from each block. The number of tests per block can be
identical, or can vary according to a usage profile. Sometimes, the blocks of the
partition are considered to be “equivalence classes” in an intuitive sense, namely
in that they either execute the same functionality, or are likely to provoke related
failures. Code coverage criteria, including statement, branch and various forms of
condition coverage, naturally induce a partition of the input domain: in a control
flow graph, every path from the entry to the exit node (or back to the entry node)
of a program represents all those input data values that, when applied to the
program, lead to the respective path being executed. Since this same argument
also applies to different forms of condition coverage, coverage-based testing can
be seen as an instance of partition-based testing.

More than twenty years ago, Weyuker and Jeng have looked into the nature of
test selection based on input domain partitions [25]. They contrasted partition-
based testing to random testing; more specifically, to test selection that uniformly
samples input values from a program’s input domain. To keep the model simple,
their criterion to contrast these two forms of testing measures the probability of
detecting at least one failure.

They show that depending on how the failure-causing inputs are distributed
across the input domain, partition-based testing can be better, the same, or worse

2 A. Pretschner, D. Holling, R. Eschbach, and M. Gemmar

than random testing. By means of example, let us assume an input domain of
100 elements out of which 8 are failure causing. Let us assume a partition of two
blocks, and that we can execute two tests.

1. Assume the failure causing inputs are uniformly distributed across the input
domain. Assume two blocks of the partition of size 50, each of which contains
4 (uniformly distributed) failure-causing inputs. Drawing one test from each
block as opposed to sampling two tests from the entire domain yields the
same likelihood of catching at least one failure-causing input: partition-based
testing and random testing have the same effectiveness.

2. Assume one block of 8 elements, all of which are failure-causing. The proba-
bility of detecting at least one failure with partition-based testing then is 1,
certainly more effective than random testing.

3. Assume one block with just 1 element which is not failure-causing, and a
second block with 99 elements, out of which 8 are failure-causing. Intuitively,
we are wasting one test in the small block; partition-based testing is less
effective than random testing.

As we have seen, code coverage criteria induce a partition of the input space.
However, in general, we do not know which of the cases (1)-(3) this induced
partition corresponds to. In other words, in general, we simply do not know if
test selection based on coverage criteria defined over a program’s syntax will
outperform random sampling. Worse, it may even be less effective than random
testing! It is then questionable if this coverage-based approach to test selection
can be justified.

Note that limit testing—the idea of picking tests from the “boundaries” of
ordered data types—seems to contradict this reasoning. In fact, the contrary is
true: limit testing is based on empirical (or at least anecdotal) evidence that
things “do go wrong” more often at the ends of intervals than in other places.
Therefore, partition-based testing based on limit analysis precisely increases the
probability that a failure will be caused by an element of the limit blocks, which
puts this scenario, on average, in the context of scenario (2) described above.

Also note that we are careful to distinguish between different methodological
usages of coverage criteria. Zhu et al. speak of adequacy criteria that can be
used as selection, stopping, or test suite assessment criteria [26]. If tests are
derived using whatever magic selection criterion but assessed using coverage
criteria, then coverage criteria have empirically been shown to lead to better
quality: they point the tester to parts of the code that has not, or insufficiently,
been tested yet [20, 17]. However, if an organization uses any kind of metric for
assessment, then there always is the risk that this metric is optimized. In other
words, it is possible that after some time, the magic selection criterion will be
substituted by the coverage criterion used for test assessment.

Goal. The above remark on limit testing motivates the research presented
in this paper. Limit testing relies on a fault model—an intuitive or empirically
justified idea that things “go wrong” at the limits of intervals. If partition-
based selection criteria are to be useful, then they must be likely to induce

A Generic Fault Model for Quality Assurance 3

partitions with blocks that have a high likelihood of revealing failures (or have
a comparatively high failure rate). Our goal is (1) to precisely capture a general
notion of fault models; (2) to show its applicability by instantiating the generic
fault model to fault models known from the literature; and (3) to use these
instantiated fault models for the derivation of tests that, by construction, have a
high likelihood of revealing potential faults—or at least a higher likelihood than
random testing.

Contribution. Both in testing practice and in the academic literature, many
fault models have been presented. Yet, we are not aware of a unifying under-
standing of what a fault model, in general, is. This paper closes the gap. It
formally defines a general fault model and shows how various fault models from
the literature can be seen as instances of our generic fault model. We consider
our work to yield a different viewpoint on fault models, partition-based testing
and fault injection.

Structure. The structure of this paper is as follows: Section 2 puts our work
in context. In Section 3 we introduce our general fault model; Section 4 presents
fault models found in the literature and illustrates how they are instances of our
general fault model. Section 5 concludes.

2 Related Work

Fault Models. Fault models are a common concept in the field of software
and hardware testing. Many fault models have been described in the literature
(among others, those of Section 4). These fault models usually describe what
the fault is and how to test for it, or provide a method to define the input part
of the test cases. Although the descriptions exist, we are not aware of a compre-
hensive definition that encompasses all existing fault models, and enables their
unified instantiation. Martin and Xie state that a fault model is “an engineering
model of something that could go wrong in the construction or operation of a
piece of equipment, structure, or software [18].” Harris states that a fault model
associates a potential fault with an artifact [12]. Both definitions are rather
abstract and describe faults of any activity during the software engineering pro-
cess or even during deployment. However, the aforementioned descriptions are
too general to allow an operationalization of fault models in quality assurance.
In contrast, the definition by Bochmann et. al. [4] is related to testing. It says
that a fault model “describes a set of faults responsible for a failure possibly at a
higher level of abstraction and is the basis for mutation testing.” This definition
is similar to our definition of α in the general fault model (see Section 3).

Effectiveness of partition-based testing. Gutjahr observed that the as-
sumption of fixed failure densities (number of failure causing inputs divided by
number of elements in the respective block) in Weyuker’s and Jeng’s model is
rather unrealistic [11]: It seems impossible to state for a given program and a
given partition what the failure rates of the single block are. He suggests to rather
model failure rates as random variables. To do so, he picks one fixed specification
and a corresponding input space partition, and considers a (hypothetical) class

4 A. Pretschner, D. Holling, R. Eschbach, and M. Gemmar

of programs written to that specification. On the grounds of knowledge w.r.t. de-
velopers, organizations, programming language, implemented functionality, etc.,
it appears then possible to state, for each block of the partition, what the distri-
bution of failure rates for the programs of the hypothetical class would be. This
then gives rise to expected failure rates for each block of the partition. Using
this construction, he can show that under specific assumptions, if the expected
failure rate for all blocks is the same, then partition-based testing is, in general,
better than or the same as random testing. While we consider the assumption
of equal expected failure rates to be inacceptably strong in practice, we will use
Gutjahr’s construction as a pillar for defining fault models.

In the same paper, Gutjahr also formulates shortcomings of the model of
Weyuker and Jeng. This includes “at least one detected failure” to be a ques-
tionable criterion for comparing testing strategies. He suggests alternatives that
relate to faults rather than failures and to their severity, and can show that his
results are not impacted by these modifications. For simplicity’s sake, we stick
to the model of Weyuker and Jeng here when assessing the effectiveness of fault
models, and leave the formally precise generalization to future work.

Random testing. It is important not to misread the results of Weyuker and
Jeng to be advocating uniform random testing; for a recent discussion, see the
work of Arcuri et al. [1, 2]. In addition, the quality of tests is not only determined
by their probability of detecting faults or failures, but also by their cost. This
cost includes many factors, one of which is the effort of determining the fault
that led to a failure. In our experience [24, 8], failures provoked by random tests
are particularly hard to analyze because the way they execute a program does
not follow any “intuitive” logic.

Coverage criteria. In spite of the above argument, one cannot overlook that
coverage criteria for test case selection are popular. We conjecture there are two
main related reasons. The first is that standards like DO-178B require coverage
(MC/DC coverage) for a specific class of software, even though there is little
evidence that MC/DC increases the quality of tests in terms of failure detection
[13, 9]. Secondly, code (and model) coverage criteria naturally lend themselves
to the automated generation of test cases, which then appears a promising field
of research and development. We are also aware that coverage criteria provide
numbers which are, from a management perspective, always useful. We would
like to re-iterate that a-posteriori usages of coverage criteria have been shown to
be useful [20, 17].

3 A Generic Fault Model

3.1 Preliminaries

Behavior descriptions and specifications: Programs, models, and architec-
tures all are behavior descriptions. We assume they are developed w.r.t. another
behavior description (BD), a so-called specification. Syntactic representations of
BDs form the set B; syntactic representations of specifications form the set S. Of

A Generic Fault Model for Quality Assurance 5

course, B and S are not necessarily disjoint. Given universal input and output
domains I and O, both BDs and specifications give rise to associated semantics
[[·]] : I → 2O.

Correctness of behavior descriptions: A BD b ∈ B is correct w.r.t. or
satisfies a specification s ∈ S iff dom([[b]]) ⊇ dom([[s]]) and ∀i ∈ dom([[s]]) :
[[b]](i) ⊆ [[s]](i). This is denoted as b |= s.

Faults and Failures: Faults are textual (or graphical) differences between
an incorrect and a correct BD. Faults may or may not lead to failures in the
semantics of BDs, which are observable differences between specified and actual
behaviors. We do not consider errors here, that is, incorrect states of a BD.

Faults as textual mutations; fault classes: Because faults are defined
as textual or graphical differences between incorrect and correct BDs, we may
assume that there is a textual or graphical transformation α : B → 2B that maps
a BD that is correct w.r.t. a specification s into the set of all BDs that are not
correct w.r.t. specification s. These latter incorrect BDs in the codomain of α
may contain one or multiple faults; these faults may or may not lead to failure;
and some of the faults in one BD may be of the same class (see below).

Furthermore, we assume for a subset of all BDs that parts of α can be
characterized w.r.t. a set of recurring problems. αK describes textual or graphical
transformations on B w.r.t. a fault class K. Examples for fault classes include
textual problems (“> where ≥ would have been correct”) and typical faults
such as problems at the boundaries of loops or ordered data types. Note that
this definition does not say how to define K or αK—it is possible (yet arguably
not too useful) to have K capture all possible faults.

BsK =
⋃

b∈{b′∈B:b′|=s}

αK(b)

is the set of all BDs, written to specification s, that contain instances of fault class
K. Note that BsK is of a hypothetical nature, similar to the construction used
by Gutjahr [11]. The elements in αK(b) may contain one or multiple instances
of fault class K.

Failure domains and induced failure domains: BDs have failure do-
mains. Let a BD b be written to a specification s. The failure domain of b,
F b,s ⊆ dom([[s]]), consists of precisely those inputs that cause incorrect outputs,
i ∈ F b,s iff i ∈ dom([[s]]) ∧ [[b]](i) 6⊆ [[s]](i).

ϕ(αK , s) =
⋃
b∈Bs

K

F b,s

then defines the failure domain induced by fault class K on specification s. Note
that the induced failure domain is independent of any specific BD but rather
defined by specification s and fault class K (or rather αK which is needed for
the computation of F b,s). ϕ(αK , s) is the set of all those inputs that potentially
provoke a failure related to a fault of class K for any BD written to s. The
failure domain of every specific BD is a subset of this ϕ(αK , s), and this failure
domain may very well be empty or contain only very few elements of ϕ(αK , s).

6 A. Pretschner, D. Holling, R. Eschbach, and M. Gemmar

3.2 Fault models

Fault models: Intuitively, a fault model is the understanding of “specific things
that can go wrong when writing a BD.” In a first approximation, we define
fault models to be descriptions of the differences with correct BDs that contain
instances of fault class K. More precisely, for a class of specifications S ⊆ S, we
define a fault model for class K to be descriptions of the computation of αK .
Sometimes, αK cannot be provided but the respective induced failure domain
can, using the definition of α̃K (see below). A fault model for class K therefore
is a description of the computation of αK or a direct description of the failure
domains induced by αK , ϕ(αK , s) for all s ∈ S.

Approximated fault models: In general, a precise and comprehensive def-
inition of the transformations αK or the induced failure domains ϕ(αK , s) is not
possible and can only be approximated. For a given BD b and a specification
s, let α̃K describe an approximation of αK , and let ϕ̃ describe an approxima-
tion of the computation of failure domains. They are approximations in that
dom(αK)∩dom(α̃K) 6= ∅ and ∃b ∈ B : αK(b)∩ α̃K(b) 6= ∅. This formal definition
is rather weak. The intuition is that α̃K should be applicable to many elements
from dom(αK) and that, for a large class of BDs B′, the result of applying
α̃K to b′ ∈ B′ coincides largely with αK(b′). Similar to αK , α̃K gives rise to a
partition of the input domain of every BD w.r.t. fault class K. Because α̃K is
an approximation, these induced partitions may or may not be failure domains
w.r.t. the considered specification.

Example: Approximations α̃K can be over-approximations that may con-
tain mutants that do not necessarily contain faults or even are equivalent to the
orginal BD; under-approximations that yield fewer mutants due to the omis-
sion of some transformations; or a combination of both. As an example, con-
sider the class of off-by-one faults k, where a boundary condition is shifted by
one value due to a logical programming mistake. For off-by-one faults an ex-
emplary αk transforms a relational operator into a different one or transforms
the afterthought of a loop such that the loop is executed once too often. To
demonstrate over-approximation, α̃k transforms the BD b with the fragment
“if (x<=50) { if (x==50) {” into a set of BDs. This set includes the BD b′,
in which only the aforementioned fragment was transformed into “if (x<=50)

{ if (x>=50) {”. b′ is semantically equivalent to b and not faulty. Thus, the
set of BDs created by α̃k is larger than the set of BDs created by αk (which
by definition, contain faults of class k). To demonstrate under-approximation,
one possibility is to limit α̃k to consider only relational operators and not af-
terthoughts. Then, the set of BDs created by α̃k is smaller than the set of BDs
created by αk.

Approximated induced failure domains and test selection strate-
gies: The intuition behind the input space partitions induced by an approxi-
mated α̃K is that it computes hypotheses about input blocks with associated
failure rates that, overall, lead to good test effectiveness (formally defined be-
low). While ϕ implicitly computes two blocks for every BD—one where every
input is potentially causing a failure related to class K, and another one where

A Generic Fault Model for Quality Assurance 7

every input certainly is not—the approximations of ϕ, called ϕ̃ in the sequel,
may compute multiple of these blocks. In order to capture relevant fault models
from the literature, we augment the definition by stipulating that ϕ̃ computes
a number of tests to be drawn from each block (if this number is not known, a
constant number n of tests may be assumed for every block). ϕ̃ then is a test
selection strategy.

Formally, for the set J of index sets and appropriate J ∈ J , we require
ϕ̃K : B → (J → 2I × N) to define a partition of the input domain of a BD
together with the number of tests to be drawn from each block.

3.3 Effective Fault Models

Comparing fault models: So far, fault models describe anything that could
go wrong. They arguably are more useful if they capture problems that do go
wrong in practice. In order to define useful fault models, we will simplify matters:
We will compare testing strategies w.r.t. the likelihood of detecting at least one
failure. We can now use the model introduced by Weyuker and Jeng that we
described in Section 1. When randomly (uniformly) sampling n elements from
the input space of a BD b written to specification s, the probability of causing
at least one failure with n tests (with redrawal) is [25]

Prnd(b, s, n) = 1−
(

1− |F b,s |
|dom([[b]])|

)n
.

Let �1 () and �2 () denote the left and right projections on pairs. Again using
the model introduced in Section 1, in terms of partition-based testing, if possibly
different numbers of tests are drawn from each block defined by a given selection
strategy ϕ̃K(b) = π with π : J → 2I × N for some index set J ∈ J , then the
likelihood of detecting at least one failure is [25]

Pprt(b, s, π) = 1−
|dom(π)|∏
j=1

(
1− |F

b,s∩ �1 (π(j))|
| �1 (π(j))|

)�2(π(j))

because |F
b,s∩�1(π(j))|
|�1(π(j))| is the failure rate of the j-th block of the partition.

Effectiveness: Not every class of faults is relevant for every set of specifica-
tions. For instance, rounding issues are unlikely to occur in text processing con-
texts. We therefore characterize effective fault models for a domain-, company-
or technology-specific set of specifications S′ ⊆ S by using a (hypothetical) set
of BDs BS′ ⊆ B written to these specifications. We want to capture the fact that
a fault model – α̃K and the induced ϕ̃, or some provided ϕ̃ – is useful. We do this
by defining when a fault model is applicable in the sense that the respective fault
class typically happens in practice. When comparing partition-based testing to
random testing, it is reasonable to overall use the same number of test cases,

8 A. Pretschner, D. Holling, R. Eschbach, and M. Gemmar

i.e., n =
∑
j∈dom(π) �2 (π(j)).

nS′ =
∣∣∣{s ∈ S′ :

∣∣{b ∈ BS′ : Pprt(b, s, ϕ̃K(b))� Prnd(b, s, n)
}∣∣

�
∣∣{b ∈ BS′ : Pprt(b, s, ϕ̃K(b)) 6� Prnd(b, s, n)

}∣∣}∣∣∣
is the number n′S of specifications from S′ for which the number of BDs that can
effectively be tested using partition-based testing via ϕ̃K is significantly higher
than the number of BDs for which random testing is performing equally well or
better. If ϕ̃K is defining a fault model or is induced by some αK , the respective
specifications are those to which the fault model is applicable. A fault model is
effective if this number is high.

In order to define an effective fault model, we say that nS′ must be far
larger than the number of specifications from S′ to which the fault model is not
applicable:

nS′ �
∣∣∣{s ∈ S′ :

∣∣{b ∈ BS′ : Pprt(b, s, ϕ̃K(b))� Prnd(b, s, n)
}∣∣

6�
∣∣{b ∈ BS′ : Pprt(b, s, ϕ̃K(p)) 6� Prnd(b, s, n)

}∣∣}∣∣∣.
Remark I: This definition of fault models is based on the intuition that a fault
model is “better” if it is more generally applicable, that is, if many realistic BDs
potentially contain an instance of the respective fault class. If used retrospec-
tively, this notion is thus ideally based on empirical evidence that a specific fault
class is relevant in a specific setting. However, it is noteworthy that this idea of
a fault model can, without any modifications, also be used prospectively for one
BD and therefore without empirical evidence about many BDs: If it is decided
that an instance of a fault class may be present in a specific BD, then this fault
class can be tested for. The effectiveness of this model is then based on a notion
of likelihood that is not based on frequency in the past (“typical fault”) but
rather on the possibility that the fault may occur. This insight could have been
gained on the grounds of a hazard analysis, for instance.

Remark II: We could model failure rates as random variables, in the spirit
of Gutjahr’s work [11]. We could then compute their expectations, and also
the expectations of the probabilities. We do not do this here. Note, however,
for the characterization of the effectiveness of fault models, it does not really
matter which precise numbers we use—the point is rather about comparing the
cardinality of different sets of specifications and BDs.

4 Instantiation

To demonstrate the usefulness of our general fault model, we now show existing
fault models to be an instance of it. We performed a literature survey and con-
sidered existing fault models explicitly stated as such. This list is not intended
to be exhaustive but to demonstrate the instantiation process using examples.

A Generic Fault Model for Quality Assurance 9

The instantiationsare described using the respective α, ϕ, and their approx-
imations. α̃ describes a fault as a (possibly higher order) mutant. ϕ̃ defines pos-
sible input space partitions induced by α̃. We assume that the BDs are correct
w.r.t. their specification before the transformation α̃ and incorrect afterwards.
Intuitively, this reflects a transformation of specifications rather than BDs and
can be seen as a transformation of the system model in a model-based engineer-
ing approach: test case derivation is then performed at the level of the models.
By using our definition of specification, both the correct and incorrect BD can
be derived.

Since the failure domain varies due to functions applied to the input before
the faulty part of the BD is executed, no general partition of the input space can
be given. However, a general schema to derive the partition can be given. The
generic definition of ϕ will partition the input space into one block of inputs for
which the output is different after the application of α, and one block for which
this is not the case. In practice, the applied functions may only be approximated
using the approximation ϕ̃.

α and α̃ are set-valued functions. Let α′ and α̃′ denote modifications of
these functions that pick one arbitrary element from the codomain of α and
α̃, respectively. If α′ or α̃′ occur more than once in one definition, then each
instance is supposed to pick the same element.

4.1 Stuck-at

The stuck-at fault model [19] is known for automated test pattern generation in
the hardware industry. It assumes that a manufacturing defect is present in one
or multiple logic gates or subcircuits such that regardless of their input, their
output is always the same. The transformation α for stuck-at is the transfor-
mation of one circuit into another circuit where one subcircuit is replaced by 1
or 0. For our purposes, this replacement can equivalently be performed at the
level of logical formulas f that represent equivalent circuits. For each applica-
tion of α, that is, each element that is picked by α′, ϕ then creates one block of
inputs {i : [[f]](i) 6= [[α′(f)]](i)} and one block of inputs {i : [[f]](i) = [[α′(f)]](i)}
(and it does this for each element of the codomain of α that is picked by α′).
Consequently, ϕ̃(f) = {1 7→ ({i : [[α′(f) XOR f]](i) == 1}, n1), 2 7→ ({i :
[[α′(f) XOR f]](i) == 0}, n2)} where the overall number n of tests is assumed
to be fixed, n = n1 + n2 and n1 = n if n ≤ |{i : [[α′(f) XOR f]](i) == 1}| and
n1 = |{i : [[α′(f) XOR f]](i) == 1}| otherwise. Operationally, depending on the
formalism used, a SAT solver is adequate to compute ϕ̃ for a specific circuit.

As an example, assume a function (a circuit) f = (a ∧ b) ∨ (b ∧ c). As one
exemplary stuck-at-0 fault, α introduces a permanent output of 0 for the sub-
formula (the gate) b ∧ c, that is, α′(f) = (a ∧ b) ∨ 0. It is easy to verify that
the first block of the input partition is (a = 0, b = 1, c = 1) with one test to be
drawn, and the second block of all remaining valuations with n − 1 tests to be
drawn.

10 A. Pretschner, D. Holling, R. Eschbach, and M. Gemmar

4.2 Division by zero

Division by zero is a classic fault in many BDs. It typically happens if developers
do not perform input sanitization (i.e. check for a value of 0 for the divisor) prior
to a division, or when the value 0 for the divisor was not assumed possible in
the BD’s context. Let us concentrate on the former case (and this in itself is
an example of how to under-approximate α by some α̃). The transformation α̃
removes the sanitization mechanisms from BD p and induces two blocks of inputs
for ϕ̃. The first block of inputs is {i : [[p]](i) 6= [[α̃′(p)]](i)} and the second block is
{i : [[p]](i) = [[α̃′(p)]](i)}. Note that for the first block of inputs the divisor will be
0 at the point of the division, while for the second it will be different from 0. Thus,
ϕ̃(p) = {1 7→ ({i : [[p]](i) 6= [[α̃′(p)]](i)}, n1), 2 7→ ({i : [[p]](i) = [[α̃′(p)]](i)}, n2)}
where the overall number n of tests is assumed to be fixed, n = n1 + n2 and
n1 = n if n ≤ |{i : [[p]](i) 6= [[α̃′(p)]](i)}| and n1 = |{i : [[p]](i) 6= [[α̃′(p)]](i)}|
otherwise.

For a BD pd with input parameter i and pd = fx(i)/fy(i) developed to
divide two integers, let α̃′(pd) = fx(i)/fz(i) be the replacement of the function
fy including some sanitization mechanism by an fz without sanitization. Then
ϕ̃(pd) = {1 7→ ({i : [[f−1z]](i) == 0}, 1), 2 7→ ({i : [[f−1z]](i) 6= 0}, n−1)} where the
overall number n of tests is assumed to be determined. Operationally, depending
on the formalism used, a symbolic execution tool is an adequate tool to compute
some ϕ̃ for a specific BD and a specific set of mutation operators.

4.3 Mutation Testing

While mutation testing aims at assessing test suites and targets small syntac-
tic faults, mutation operators do describe fault models that we can use for our
purposes (for instance, Ma et al. provide several direct relationships between
some mutation operators and faults [16] where the coupling hypothesis appears
immediately justified). Mutation operators are intuitively captured by our trans-
formation α—in fact, we see α as a reasonable higher order mutation operator.
Since α is applied to a program, the general considerations of Section 4.2 with
the two blocks {i : [[p]](i) 6= [[α′(p)]](i)} and {i : [[p]](i) = [[α′(p)]](i)} also apply
here. Consequently, symbolic execution tools are promising for computing ϕ.

As an example, take a program pm with input parameter x and pm = 1
if x < 10 and pm = 0 otherwise. Using a mutation that transforms < to ≤,
let α′(pm) = 1 if x ≤ 10 and α′(pm) = 0 otherwise. Then ϕ̃(pm) = {1 7→
({10}, 1), 2 7→ (I − {10}, n− 1)} for the input domain I.

4.4 Finite state machine testing

In finite state machine (FSM)-based testing, typical fault models are based on
output and transfer faults. As one typical example that easily generalizes, let
us consider BDs in the form of deterministic Mealy machinesM such that each
M ∈ M is a sextuple (Σ,Γ, S, s0, δ, γ) where Σ and Γ are input and output

A Generic Fault Model for Quality Assurance 11

alphabets, S is the set of states, si ∈ S is an initial state, δ : S ×Σ → S is the
transfer and γ : S ×Σ → Γ the output function.

Output faults occur when a transition yields a different output than specified
in the output function. This deviation is the result of the transformation αo :
(S × Σ → Γ) → 2S×Σ→Γ

′
which models faults in the same way as in the

stuck-at fault model (see Section 4.1: for a given transition, the correct output is
mapped to another, incorrect output from a set Γ ′ ⊇ Γ). Analogously, transfer
faults lead the FSM into a different state than specified in the transfer function,
αt : (S × Σ → S) → 2S×Σ→S

′
with S′ ⊇ S since the destination state of a

transfer fault may be a new state not in the design of the original FSM [4]. In
the following, we assume that the definitions of αo and αt are lifted to entire
machines in the obvious way, that is, αo and αt are of type M → 2M. In the
remainder of this paragraph, α refers to both αo and αt.

Finite traces [[M]] ∈ Σ∗ → Γ ∗ for a M ∈ M are pairs of (input, output)
sequences that we assume to respect the transfer and output functions in an
intuitive way (that is, they induce state changes that are captured by δ, and
they model γ). ϕ then defines two blocks of input sequences. The first block,
{i ∈ Σ∗ : [[M]](i) 6= [[α′(M)]](i)}, defines all those traces that are different in M
and α(M) – these are the traces that exhibit faults. The second block is the set of
traces for which no difference can be observed: {i ∈ Σ∗ : [[M]](i) = [[α′(M)]](i)}.

Generally speaking, model checkers and dedicated algorithms on graphs are
adequate tools for computing approximations ϕ̃.

Several related fault models have been described in the area of object-oriented
testing [3] that model objects as finite state machines. One of them is sneak path,
which describes that a message (i.e. a composite input) is accepted although it
should not be. In the notion of an FSM, a sneak path is a an additional transition
in the transfer function and can be modeled by αt : (S × Σ → S) → 2S×Σ→S

′

as described above.

Similarly, a trap door is the acceptance of an undefined message (i.e. a new
letter in the alphabet), which causes the system to go to an arbitrary state.
Intuitively, αt : (S ×Σ → S)→ 2S×Σ

′→S′
reflects a trap door by introducing a

new character to the alphabet Σ′ ⊇ Σ and a new transition leading to a possibly
new state in S′ ⊇ S.

4.5 Object-oriented testing

In addition, there are fault models catering to subtyping and polymorphism [22]
in object-oriented programming. These are, for example, state definition anoma-
lies (pre or post conditions are possibly violated by subtypes) or anomalous
construction behaviors (i.e. the subtype shadows variables used by the construc-
tor of the supertype). The general considerations for both fault models can be
described by using transformations similar to α from Section 4.2, but at the level
of pre- and post conditions rather than at the level of code.

For a state definition anomaly, let a class C contain a method pC
sda(x) = f (x);

s := x{s 6= NULL}; with post condition s 6= NULL for some instance variable s,

12 A. Pretschner, D. Holling, R. Eschbach, and M. Gemmar

and a method qC
sda(x , z) = pC

sda(x); if z then {s 6= NULL} g(s); where the pre-
condition of function g is assumed to require the argument to be different from
NULL. Class C ′ is a subclass of C where pC ′

sda(x) = pC
sda(x); h(x){true}; overrides

method pCsda in C ′. If the post condition of h in the definition of pC ′

sda(x) does

not imply s 6= NULL, then the inherited qC
′

sda(x, z) = pC
′

sda(x); if z then {s 6=
NULL} g(s); causes problems if the precondition of g is not met.

There are many different ways of violating pre or post conditions, and it
seems unlikely that these can be comprehensively captured by patterns of tex-
tual modifications of code. However, the modification of explicitly provided or
inferred pre- or postconditions can be specified using α, the domain of which is
inherited functions only; in our example, qC

′

sda(x) is the only one. One possibility

then is that α′(qC
′

sda(x)) computes to pCsda(x); if z then {s == NULL} g(s); by
modifying the precondition of function g. Intuitively, this models the possibil-
ity that an inherited function leads to a state where the specified precondition
of g cannot be satisfied. If they exist, test cases representing the second block
of ϕ̃ = {1 7→ ({(x 7→ i, z 7→ false) : i ∈ N}, n − 1), 2 7→ ({(x 7→ i, z 7→
true) : i ∈ N and s == NULL before g is executed from within qC

′

sda(x))}, 1)}
would then provoke a failure when applied to method pC

′

sda of an object of class
C ′. Possible technology for computing ϕ̃ includes symbolic execution.

4.6 Aspect-oriented testing

The use of AOP has been shown to induce specific faults [6]. One such fault
model concerns the failure to establish expected post-conditions and preserve
state invariants. The post-conditions and state invariants introduced in the basic
functionality are contracts that should be preserved in the weaved code. This
fault is analogous to object-oriented testing where it can be caused by inheritance
(see Section 4.5).

A second fault model consists of incorrect changes in the exceptional con-
trol flow. Whenever features having their own exception handling are intro-
duced, an exception may trigger the execution of a different catch block than
the one intended by the basic functionality. For this fault model, let pa =
try{fx(x); } catch (Exception e){fe(e); } try{fy(x); } catch (Runtime−
Exception ex){fex(ex); } with input parameter x be a program with exception
handling fe for the original functionality fx and exception handling fex of an
introduced feature fy. Also let α̃′(pa) = {try{fx(x); fy(x); } catch
(RuntimeException ex{fex(ex); } catch (Exception e){fe(e); }} be the transfor-
mation of pa, which merges both try/catch blocks and extends the exception
handling. Then, the first block of ϕ̃ must contain inputs triggering a runtime
exception (or one of its subtypes) in fx to let fx use exception handling fex
instead of the intended fe. The second block contains all other inputs.

4.7 Performance testing

One fault model—there are multiple others—for performance testing [21] de-
scribes one or multiple hardware component failures or malfunctions causing

A Generic Fault Model for Quality Assurance 13

the BD to have a degraded performance. Such failures or malfunctions could be
related to hard drive, network or memory problems. If we model the hardware
and software as an FSM, then the transformation α can simulate a malfunction
by removing states and transitions to these states. Thus, α requires the system
to take more transitions thereby taking more steps for the same computation or
blocks the system from ever reaching its desired state causing a failure. Precisely
this modification of the transfer function is shown in the FSM fault model in
Section 4.4.

4.8 Concurrency testing

Fault models used in testing concurrent systems regard atomicity and order vi-
olations [15], in addition to deadlock and livelock problems. For an atomicity
violation the developer did not implement a monitor (or implemented it in the
wrong way). Let m be a monitor and patom = monitor lock(m); fx(x);
monitor unlock(m); ||monitor lock(m); fy(x); monitor unlock(m); with input pa-
rameter x be a program using this monitor and f ||g be defined as the execution
of f and g in parallel. Also let α′(patom) = fx(x); ||fy(x); be a transformation
of patom removing its usage of monitors. With the usage of concurrency, the
semantics of the program are also influenced by the schedule of execution. An
atomicity violation typically changes the output of the program when using dif-
ferent schedules while the input remains the same. Thus, the input space must
be extended by adding the schedule to the input vector. Then, the first block
of ϕ̃ contains those inputs for which the output is different when only using a
different schedule. The second block contains all other inputs.

For order violations the developer made a wrong assumption about the order
of execution of statements. No α is required as the developer assumed an execu-
tion order s0, but did not enforce it. Thus, the first block of ϕ aims to break the
assumption by executing all schedules different from s0 and checking whether
the semantics have changed. Thus, the first block of ϕ̃ contains all inputs for
which the output is different when only a different schedule is used. The second
block contains all other inputs.

4.9 Security testing

In security testing, one approach to find faults w.r.t. given security properties
(e.g. confidentiality and integrity) using a formal system model is presented
by Büchler et al. [5]. The transformation α is reflected in semantic mutation
operators (see Section 4.3) for a model of the system. These operators modify
the model such that an assumed vulnerability in the respective implementation
is present. α is therefore described by these mutation operators. The idea to
induce the input space partition ϕ is to have a sequence of actions (i.e. a trace)
that violate the security property. Practically, this is performed by using a model
checker to find this trace τ and executing τ on the implementation of the system.
Since the model checker may not return all traces in useful time, ϕ must be

14 A. Pretschner, D. Holling, R. Eschbach, and M. Gemmar

approximated by ϕ̃ and the first block of ϕ̃ also contains these unknown traces.
Thus, ϕ̃ can be constructed in the same way as in Section 4.4.

4.10 Limit testing

The well-known fault model of boundary value analysis (based on the category
partition method [23]) is underlying limit testing and, like the fault model of
Section 4.5, differs from the rest of the introduced fault models in that the
transformation α is unknown (or, analogously, models all those possibilities to
get a BD’s treatment of limit values wrong). It is, however, possible to create the
partition of the input space ϕ. This creation requires a partition γ, which can
use control flow or data flow-based criteria for example. ϕ then takes the blocks
of γ and splits them such that a new block is created for each block boundary
including its closest inputs.

An integer block containing the number 1 to 100 would, for example, be split
into 3 blocks. The first block contains 0 and 1, the second block contains the
number 2 to 98 and the third block contains 99 and 100. Note that, in some
cases -1 and 101 are included in the first and last block respectively. This fault
model is considered useful, as there is anecdotal evidence that the failure causing
inputs are more likely to be in the first and third blocks.

4.11 Combinatorial testing

The fault model of combinatorial, or n-wise, testing [14] states that only a combi-
nation of 2, 3 or n parameters causes a failure, but not all possible combinations
of parameters. It thus provides a test selection criteria requiring fewer test cases
than exhaustive testing (i.e. all combinations). The transformation α is again
unknown, but the partition of the input space ϕ̃ (i.e. the partition of the 2-way,
3-way or n-way interactions) can be derived by adhering to the parameter com-
binations. ϕ̃ can be computed using known algorithms on the grounds of Latin
squares, for instance. One block of the partition will contain a minimal set of
test cases covering all 2-way, 3-way or n-way interactions and the other block
will cover all other possible interactions. Note that there are multiple possible
partitions and an arbitrary minimal partition can be selected (e.g. in the case of
3 parameters with 3 values and all 2-way interactions to be tested, there exist
12 possibilities to select the minimal number of test cases being 9).

As an example, reconsider function f from Section 4.1. One exemplary set of
inputs testing all pairwise combinations for f is (0,0,0), (0,1,1), (1,0,1), (1,0,0).
This set of inputs would find, but is not limited to, the faults described by the
stuck-at fault model.

5 Conclusion

The contribution of this paper is a general characterization of fault models that
encompasses fault models found in practice and the literature. The aim of using

A Generic Fault Model for Quality Assurance 15

fault models in testing is to derive good test cases. We consider a test case to
be good if it detects a potential, or likely, fault.3 Our fault models consist of
syntactic transformations (higher-order, or semantic, mutants), and/or an input
space partition. Using several different technologies, this allows us to derive test
cases that address the potential faults. We have instantiated our generic fault
model to several fault models found in the literature. We do not claim that we
capture all fault models but consider our choice to be representative.

By defining fault models with a transformation that is essentially a cleverly
chosen higher order mutant, we connected the notion of using fault injection for
test case assessment to using mutants for test case derivation. In addition, we in-
troduced an experience model creating a relationship between classes of systems
and class of faults, which we consider helpful in creating adequate fault models,
improving risk assessment and test derivation for fault tolerance mechanisms.

Although we have not evaluated the effectiveness of operationalized fault
models yet, we see multiple advantages with respect to risk assessment in testing.
Coverage criteria and random testing are unable to state whether the system still
contains a class of faults after testing. The use of fault models can increase the
probability of a particular targeted class of faults to not be present in the system
after testing. In addition, fault tolerance can be evaluated by using fault models
that target faults handled by the fault tolerance systems. It is also noteworthy
that classes of faults in fault models can be associated with the impairment of
quality attributes in the system. Thereby, testing using these fault models can
reduce the risk of impairment in the final product. Lastly, when using fault mod-
els with an inherent transformation, the fault localization effort can be estimated
and reduced since the transformations describe what to look for and where. The
cost effectiveness of fault models cannot be determined in general as it varies
from instance to instance. The cost factors involved, however, can be named and
are the test level, class of systems (including its context) and the likely class of
faults.

We elaborated fault models in testing, but have not limited our general defi-
nition to it. Fault models may also be used in other quality assurance techniques
such as reviews or inspection performed on non-executable artifacts. Because
specifications are BDs themselves, it is straightforward to generalize the trans-
formation α to the level of specifications, thereby allowing it to transform re-
quirements, architecture and design artifacts among others.

We do not believe that the use of fault models is the silver bullet. By its
very definition, faults for which no model exists cannot be targeted with our
approach. However, for a class of recurring and typical faults in specific contexts,
we consider our work to be useful in practice.

Future Work. Our current research focuses on creating a prototype to
(semi-) automatically generate test cases using underlying fault models, using
the different mentioned technologies. In the future we wish to complete this
prototype and to empirically evaluate our introduced fault models with it. In

3 In fact, it should do so with good cost effectiveness, including debugging cost, but
this is not the subject of this paper.

16 A. Pretschner, D. Holling, R. Eschbach, and M. Gemmar

addition, we are also exploring the sources of experience data for fault models.
We see many promising areas inside and outside software testing. A promising
method to gain knowledge common faults in software testing is orthogonal defect
classification [7]. Using this method faults can be classified according to criteria,
which in turn can be leveraged to select faults to test for. We also plan to inves-
tigate whether fault models can be created from faults found during reviews and
inspections [10]. This investigation will particularly focus on the comparison of
effectiveness of quality assurance techniques per created fault model.

References

1. Arcuri, A., Iqbal, M., Briand, L.: Random testing: Theoretical results and practical
implications. Software Engineering, IEEE Transactions on 38(2), 258–277 (2012)

2. Arcuri, A., Briand, L.: Formal analysis of the probability of interaction fault de-
tection using random testing. IEEE Transactions on Software Engineering 38(5),
1088–1099 (2012)

3. Binder, R.V.: Testing Object-Oriented Systems: Models, Patterns, and Tools. Ob-
ject Technology Series, Addison-Wesley (1999)

4. Bochmann, G.v., Das, A., Dssouli, R., Dubuc, M., Ghedamsi, A., Luo, G.:
Fault models in testing. In: Proceedings of the IFIP TC6/WG6.1 Fourth
International Workshop on Protocol Test Systems IV. pp. 17–30. North-
Holland Publishing Co., Amsterdam, The Netherlands, The Netherlands (1992),
http://dl.acm.org/citation.cfm?id=648126.747577

5. Buchler, M., Oudinet, J., Pretschner, A.: Semi-automatic security testing of web
applications from a secure model. In: Software Security and Reliability (SERE),
2012 IEEE Sixth International Conference on. pp. 253–262 (June 2012)

6. Ceccato, M., Tonella, P., Ricca, F.: Is aop code easier or harder to test than oop
code? In: In on-line Proceedings of the First Workshop on Testing Aspect-Oriented
Programs (WTAOP 2005) (March, 2005)

7. Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S.,
Ray, B.K., Wong, M.Y.: Orthogonal Defect Classification-A Concept for In-
Process Measurements. IEEE Trans. Softw. Eng. 18(11), 943–956 (Nov 1992),
http://dx.doi.org/10.1109/32.177364

8. Ciupa, I., Pretschner, A., Oriol, M., Leitner, A., Meyer, B.: On the number and
nature of faults found by random testing. Softw. Test., Verif. Reliab. 21(1), 3–28
(2011)

9. Dupuy, A., Leveson, N.: An empirical evaluation of the mc/dc coverage criterion
on the hete-2 satellite software. In: Digital Avionics Systems Conference, 2000.
Proceedings. DASC. The 19th. vol. 1, pp. 1B6/1–1B6/7 vol.1 (2000)

10. Fagan, M.E.: Design and code inspections to reduce errors in program development.
IBM Syst. J. 15(3), 182–211 (Sep 1976), http://dx.doi.org/10.1147/sj.153.0182

11. Gutjahr, W.J.: Partition testing vs. random testing: The influence
of uncertainty. IEEE Trans. Softw. Eng. 25(5), 661–674 (Sep 1999),
http://dx.doi.org/10.1109/32.815325

12. Harris, I.G.: Fault models and test generation for hardware-
software covalidation. IEEE Des. Test 20(04), 40–47 (Jul 2003),
http://dx.doi.org/10.1109/MDT.2003.1214351

A Generic Fault Model for Quality Assurance 17

13. Heimdahl, M., Whalen, M., Rajan, A., Staats, M.: On mc/dc and implementa-
tion structure: An empirical study. In: Digital Avionics Systems Conference, 2008.
DASC 2008. IEEE/AIAA 27th. pp. 5.B.3–1–5.B.3–13 (2008)

14. Kuhn, D.R., Wallace, D.R., Gallo, Jr., A.M.: Software fault interactions and impli-
cations for software testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (Jun 2004),
http://dx.doi.org/10.1109/TSE.2004.24

15. Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes: a comprehensive study
on real world concurrency bug characteristics. In: Proceedings of the 13th inter-
national conference on Architectural support for programming languages and op-
erating systems. pp. 329–339. ASPLOS XIII, ACM, New York, NY, USA (2008),
http://doi.acm.org/10.1145/1346281.1346323

16. Ma, Y.S., Kwon, Y.R., Offutt, J.: Inter-class mutation operators for java. In: IS-
SRE. pp. 352–366 (2002)

17. Malaiya, Y., Li, M., Bieman, J., Karcich, R.: Software reliability growth with test
coverage. Reliability, IEEE Transactions on 51(4), 420–426 (2002)

18. Martin, E., Xie, T.: A fault model and mutation testing of access con-
trol policies. In: Proceedings of the 16th international conference on World
Wide Web. pp. 667–676. WWW ’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1242572.1242663

19. McCluskey, E., Clegg, F.W.: Fault equivalence in combinational logic networks.
Computers, IEEE Transactions on C-20(11), 1286–1293 (Nov 1971)

20. Mockus, A., Nagappan, N., Dinh-Trong, T.T.: Test coverage and post-verification
defects: A multiple case study. In: Proceedings of the 2009 3rd International Sym-
posium on Empirical Software Engineering and Measurement. pp. 291–301. ESEM
’09 (2009)

21. Nagaraja, K., Li, X., Bianchini, R., Martin, R.P., Nguyen, T.D.: Using fault in-
jection and modeling to evaluate the performability of cluster-based services. In:
Proceedings of the 4th conference on USENIX Symposium on Internet Technolo-
gies and Systems - Volume 4. pp. 2–2. USITS’03, USENIX Association, Berkeley,
CA, USA (2003), http://dl.acm.org/citation.cfm?id=1251460.1251462

22. Offutt, J., Alexander, R., Wu, Y., Xiao, Q., Hutchinson, C.: A fault
model for subtype inheritance and polymorphism. In: Proceedings of the
12th International Symposium on Software Reliability Engineering. pp. 84–
. ISSRE ’01, IEEE Computer Society, Washington, DC, USA (2001),
http://dl.acm.org/citation.cfm?id=851028.856258

23. Ostrand, T.J., Balcer, M.J.: The category-partition method for specifying
and generating fuctional tests. Commun. ACM 31(6), 676–686 (Jun 1988),
http://doi.acm.org/10.1145/62959.62964

24. Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M.,
Sostawa, B., Zölch, R., Stauner, T.: One evaluation of model-based testing and
its automation. In: Proceedings of the 27th international conference on Software
engineering. pp. 392–401. ICSE ’05 (2005)

25. Weyuker, E., Jeng, B.: Analyzing partition testing strategies. Software Engineering,
IEEE Transactions on 17(7), 703 –711 (jul 1991)

26. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy.
ACM Comput. Surv. 29(4), 366–427 (Dec 1997)

