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Abstract

The idea of model-based testing is to compare the I/O behavior of an explicit
behavior model with that of a system under test. This requires the model to be
valid. If the model is a simplification of the SUT, then it is easier to check the
model and use it for subsequent test case generation than to directly check the SUT.
In this case, the different levels of abstraction must be bridged. Not surprisingly,
experience shows that choosing the right level of abstraction is crucial to the success
of model-based testing. We argue that models for specification purposes, models for
test generation, and models for full code generation are likely to be different. The
paper classifies and discusses different abstractions. It is intended as a step towards
guidelines for those who build behavior models to the end of testing.

1 Introduction

The basic idea of verification is to compare an abstract specification to a
concrete implementation. If the two systems are given by means of formalized
transition systems, then the aim of formal verification is to establish or refute
some simulation relationship, or show that both satisfy certain properties.
The specification may also be given as a set of properties. In this case, formal
verification amounts to checking whether or not the implementation satisfies
these properties. If specification and implementation aren’t too complex, then
techniques like model checking or deductive theorem proving can be applied.

In addition to technical challenges, this gives rise to two observations.
First, it is not clear how fine-grained a specification should be. Obviously,
it must be detailed enough to yield meaningful results when compared to an
implementation. Furthermore, it must reflect the customer requirements, i.e.,
it must be valid. In the following, we stick to the terminology that validation
is concerned with checking an artifact against requirements in the customers’
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Fig. 1. Model-based test process

heads whereas verification is concerned with the comparison of two more or
less formal artifacts. This is regardless of whether or not the comparison is
achieved with mathematical rigor.

Second, techniques like model checking and theorem proving are performed
on abstractions. These are given in some form of formalized transition sys-
tems, or, more general, behavior models. 3 The assumption then is that the
piece of software that is to be checked is embedded into a correctly functioning
environment that meets the tacit assumptions in the model. Now, the environ-
ment may be very complex, and formal verification technology cannot ensure
whether or not the environment behaves the way it is anticipated in the system
to be checked. The point is that verification technology like model checking or
deductive theorem proving necessarily operates on abstractions. (Our notion
of) testing operates on actual devices in their actual environments, and both
activities are necessary.

The fundamental issue boils down to abstraction: checking the abstrac-
tion of a system is not enough if the environment is not well-understood, and
abstraction must be employed with care in order to provide useful specifica-
tions. Note that we use the term “abstraction” in two senses. One denotes
the simplified artifact, or model. The other use is concerned with the activity
of establishing this simplification. We address these issues in the context of
model-based testing.

Our understanding of model-based testing is that we use an abstract be-
havior model to test a concrete implementation. Abstract models are simpli-
fications, and they are hence easier to grasp. It seems therefore likely that
validating such an abstract model is easier than validating the concrete imple-
mentation itself. Once the model is considered valid, we use it for automatic
test case generation. This means that certain—possibly more than one could

3 In some cases, these abstractions can be automatically extracted from code.
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manually create—traces of the model are automatically generated. The neces-
sary selection criterion is given by a test case specification, and it is concerned
with functional, structural, and random tests (Fig. 1, left; cf. [11]). As a con-
sequence of the different abstraction levels, these test cases cannot be applied
directly to the implementation. The input part of the traces is concretized
and applied to the implementation. The implementation’s output is abstracted
and then compared to the output of the model as given by the trace (Fig. 1,
bottom). Complexity is hence distributed between the abstract model and
the component that takes care of concretizing and abstracting signals (Fig. 1,
right).

Some case studies that we cite and discuss in Sec. 3 conform to the above
approach. In this paper, we address the question of which abstractions (in
the sense of structuring and simplifying systems) may be chosen to the end of
testing. The idea is to present a first step towards an engineering discipline
of model-based testing. While we believe that abstractions for testing are
similar to the abstractions that may be used for code generation, we’ll argue
that behavior models for testing are different from behavior models for code
generation and specification.

Contribution and organization

The contribution of this paper is a catalog and discussion of applicable ab-
stractions for model-based testing. We also relate models for testing purposes
to other models in the development process. Sec. 2 sheds light on the nature
of abstraction in the context of model-based development and model-based
testing. Sec. 3 reviews abstractions for testing that are used in the literature.
Sec. 4 discusses limitations of different abstractions, and Sec. 5 concludes.
Related work is cited in the respective context.

2 Abstractions

Arguably, abstraction is the most important tool computer engineers possess.
Its aim is the simplification of a complex problem or system. Simplification
takes place w.r.t. certain goal, be it analysis, generation, or basis for com-
munication. Again, we’ll call the result of an abstraction process a model. In
this sense, Stachowiak [13, p.131-132] identifies three characteristics of mod-
els : mapping—models are models of something, simplification—models do not
catch all attributes of the original they represent, and pragmatics—models
aren’t related to the respective original in a unique sense but fulfill certain
goals. Models are images or archetypes. Before turning to some concrete ab-
stractions in the context of testing in the next section, we discuss the role of
abstractions in a more general manner. Throughout this paper, we won’t be
concerned with concrete modeling languages.
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Information that can be inserted automatically

A system description at the abstract model level contains considerably less
information than at the detailed realization level. Today’s most successful
abstraction techniques are based on compilers or libraries that support the
automatic translation of the model to a realization by relying on some form
of macro mechanism. For instance,

• procedures abstract from concrete stack frames in programming languages,

• the Swing-API in Java abstracts from the plethora of instructions which
were formerly necessary to program GUIs,

• the ISO-OSI model abstracts from communication details—an instruction
on a higher layer corresponds to a complex interaction at the lower layers,

• J2EE and Corba are further examples for abstraction from communication
details that are inserted by the respective compilers.

Domain specificity

The abstraction gap that is resolvable by compilers and linkers is more or
less specific to a domain. While the concept of procedures is common to all
programming languages, the Swing API is restricted to the domain of GUI
programming, the ISO-OSI stack applies to communication, and the MDA is
arguably concerned with business information systems rather than embedded
real-time systems. It is certainly one of the most challenging and demanding
tasks to develop abstraction techniques which are more or less domain specific
and can be automatically translated to the concrete level using compilers,
linkers, and the like.

Actually missing information

There are abstractions in models that cannot be resolved automatically
by a compiler but are nevertheless useful. There is an inherent complex-
ity in systems which cannot be simplified and abstracted away by means of
languages/compilers only—a variation of the popular remark by Brooks that
complexity is an essential rather than an accidental property [3].

It is obvious that no full code generation is possible from structural ab-
stractions (architectures), and this also applies to many behavior abstractions
that have been built to a well-defined end. For instance, the model of a chip
card described by Philipps and Pretschner [11] concentrates on the protocol
flow and abstracts from the content of files and the impact of operations on
them. This information is simply not included in the model to keep the model
manageable. Without further information, a static compiler cannot instan-
tiate an abstract file to a concrete one and its dynamic evolution over time.
Clearly, this does not mean that domain-specific languages cannot exist where
“file system handling” is one predefined concept and where a compiler inserts
all necessary information. A further example for actually missing information
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is that some models abstract from concrete timing behavior. Static translation
by a compiler generally cannot instantiate the most diverse timing behavior
of a realization at the concrete level.

Purposes

To summarize, abstractions occur in two forms. They can be simplifica-
tions where missing information can be inserted automatically, and they can
be simplifications where information is deliberately missing in order to keep
the model simple. Simplifications tend to be domain-specific, and the ultimate
goal of model-based development seems to lie in finding these abstractions that
are applicable to all systems of a given domain.

Abstracting from certain details makes sense only with a given purpose in
mind. Different abstractions are used for different purposes. Abstraction takes
place to the end of (a) obtaining or enhancing knowledge of a system—which
entails abstractions of both a model and its environment, (b) specification of
a system, (c) encapsulated access to parts of a system (e.g., via library calls
or binding with external components or services), (d) communication between
developers, (e) generation of code, and (f) testing systems.

Model-based testing

Model-based testing makes use of both kinds of abstractions, those that
involve an actual loss of information and those that don’t. If a (behavior)
model is used to the end of testing, then it must be valid. That is to say, it
must be a faithful image of the requirements. Now, if the model contains suf-
ficient information for (production) code generation, then validating the model
is likely to be as resource-consuming as directly validating an implementation
that has been built without a model. The reason is that under these conditions,
modeling languages actually are programming languages. Models become ben-
eficiary when they are amenable to intellectual mastery or automatic analysis,
and this is usually the case if they are less complex than the systems—if they
are actual abstractions.

If one wants to test only certain parts of the system, then one can omit
others from the model. For instance, this is the case for the above mentioned
file system of a chip card. However, not all simplifications will be defined by
omitting entire parts of the functionality of a system. In the chip card example,
cryptographic operations have not been implemented in the model for they’d
be too complex for automatic analysis. Instead, they were abstracted in a way
that an external driver component could insert the missing information. The
model is hence simple, but it is too simple to be directly usable for testing.
In this case, missing information is hence not inserted by a compiler or linker,
but by the driver component.
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Test models and specification models

Systems under development tend to be described by specification docu-
ments that are comprehensive but informal, incomplete and sometimes am-
biguous. Theoretically, one would like to have a—possibly executable—and
complete specification model that comprehensively, precisely and completely
specifies the system. This specification model could be the basis for test case
generation to the end of verifying conformance between specification and im-
plementation.

Now, real world specifications become very large so that it would be too
expensive to build and maintain specification models which contain all spec-
ification aspects—these models would already constitute prototypical imple-
mentations. To deal with this dilemma, one builds test models in addition to
informal and incomplete specifications. Test models reduce the comprehensive
specification to crucial parts which are implemented abstractly, completely,
unambiguously. Exactly which parts or aspects are crucial for testing is a
result of engineering experience.

By abstractly specifying the crucial parts, e.g., those that are error-prone
by experience, in rather small test models, one gains the advantages of small
and manageable models. Models that can be used for full production code
generation, on the other hand, can be seen as implementations, and it is a
dubious endeavor to extract code and test cases from the same model.

3 Application

In this Section, we present different abstraction principles that are applied in
the literature on model-based testing. We reviewed case studies on model-
based testing of processors [5,12,7], smart cards [11,4], protocols [9,1], Java
and POSIX [6], by taking into account related work [2,10,8]. We identified
five principles: functional, data, communication, and temporal abstractions.
These principles cannot always be distinguished sharply, and so they are often
applied in combination. The following overview may serve as a reference for
modelers who face the challenging task of finding adequate abstractions that
reflect crucial parts of the SUT’s model which, in turn, serves as reference
for verifying the SUT’s behavior. Being used for testing, all of the following
abstractions involve a loss of information and can therefore test only those
parts that are specified.

3.1 Functional Abstraction

The purpose of functional (or behavior) abstraction is to concentrate on the
“main” functionality of the SUT which has to be verified. This leads to an
omission of cumbersome details in the model that are not in the focus of the
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verification task. 4 By doing so the model often implements only parts of the
complete behavior determined in specification documents, i.e., the model does
not completely define the intended behavior of the SUT but models significant
aspects only. In other words the model specifies the behavior of the SUT under
a constrained environment. In addition, functional abstraction supports the
model-based testing process: if the SUT’s functionality can be divided into
independent parts, one can build a separate model for each part in order to
verify each functionality separately.

Examples for functional abstraction

The case study described in [11] concentrates on testing the protocols be-
tween a smart card and its environment, a terminal. Therefore the model
abstracts from the complex realization of all cryptographic functions imple-
mented by a smart card. These functions and their responses are represented
only symbolically by yielding data of type encryptedData when a command
encrypt(data) is issued. No cryptographic computations are performed in
the model. Instead, these computations are performed at the level of the
driver component (see above).

The approach described in [6] uses separate models for testing different
functionalities of the POSIX standard. The first model was developed for
testing the byte range locking interface fcntl. This interface provides control
over open files in order to deal with processes which are accessing the files. The
model restricts the POSIX standard by allowing the extension of a file only
once. The paper mentions a second model which was developed for testing
the POSIX fork() operation.

Other examples for partial modeling of the behavior of the SUT are that
the model does not determine its behavior in certain states for some input
values, or the model abstracts completely from exception handling.

3.2 Data Abstraction

The idea of data abstraction is to map concrete data types to logical or ab-
stract data types in order to achieve a compact representation or a reduction
of data complexity at the abstract level. A frequently cited example for data
abstraction is to represent binary numbers by integers at the abstract level.
However, this example changes only the representation of numbers but does
not cause any information loss between the levels of abstraction. A common
data abstraction technique with information loss is to represent only equiv-
alence classes of concrete data values in the model. Examples that involve
information loss are described below. As mentioned above the key of data ab-
straction is to construct a mapping between concrete and abstract data types

4 This does not necessarily mean that special cases are omitted—if these have to be tested,
they have to be modeled.
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and their elements. Since the abstract data types are used to specify the be-
havior of the model one test goal is that the operations performed by the SUT
on concrete values are correctly implemented with respect to the (abstract)
operations on abstract values in the model.

Examples for data abstraction

In [5], the SUT is the Store Data Unit (SDU) of a Digital Signal Processor
(DSP). The behavior of the DSP depends heavily on the fill level of an SDU’s
queues. Therefore the status of a queue has been represented in the model
by the abstract data type empty, valid, quasifull or full. Then testing
discovered a performance bug in the SUT because it turned out that the SDU
fills its queues only to quasifull status and does not exploit the full capacity
of the queues.

The radical abstraction from files for smart card testing [11] was described
above. Another example for data abstraction can be found in [12,11]. There,
the data types of operands are abstracted to equivalence classes used in the
model. For test case instantiation, these symbolic operands are substituted
by concrete values which are randomly selected or determined by means of a
configuration file.

Data abstraction is often motivated by functional abstraction. Hudak et
al. describe a network system [8]. At the concrete level a network package
consists of destination address, source address, message body, checksum etc.
The functional abstraction is determined by the goal of verifying the routing
mechanism. Consequently, the contents of a network package is reduced to
destination address and checksum at the abstract level, by ignoring the other
contents of a package.

3.3 Communication Abstraction

The most prominent application of the communication abstraction principle
is the ISO-OSI reference model. Here a complex interaction at a concrete
level is abstracted to one operation or message at the more abstract level. At
the abstract level, this operation is treated atomically. This is even though
in general the corresponding operation at a concrete level can be interleaved
with other operations. Using this abstraction principle, one can aggregate
handshaking interactions or sequences of causally dependent operations to
one operation at an abstract level. For test case instantiation these abstract
operations can simply be substituted by the corresponding interaction. For
building models, communication abstraction is often combined with functional
abstraction.

Examples for communication abstraction

In hardware verification [2] and processor testing [5], a concrete aggrega-
tion of pin values, several consecutive signals of different buses, or recurring
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sequences of processor instructions are abstracted to one symbolic operation
in the model.

In protocol testing [9], causally dependent operations concerning the same
transaction are collapsed into one atomic operation in the model although the
concrete representation can be interrupted by other operations.

Sometimes communication abstraction is combined with data abstraction:
in [11] the concrete byte string commands of a smart card (represented by
sequences of hex numbers) are abstracted to symbolic and human readable
messages in the smart card model.

3.4 Temporal Abstraction

The idea of temporal abstraction is that only the ordering of events is rele-
vant for modeling, i.e., the precise timing of events at the concrete level is
deemed irrelevant. We consider abstractions in which the ordering of certain
events is irrelevant—as used with partial order reductions—as communication
abstractions.

One kind of temporal abstraction is that the model and the SUT use
different granularities of discrete time. Then the granularity of time at the
abstract level is coarser than it is at the concrete level. Ideally, a mapping
between abstract time steps and the corresponding intervals of lower level
time steps is given. This can be a challenging task because in many cases one
abstract step does not always correspond to a constant or predictable time
interval at the concrete level. This form of temporal abstraction is often used
in hardware verification and testing [5,12,2,10] by relating one clock cycle
in the model to many clock cycles at the implementation level. Temporal
abstraction can be effectively combined with communication or/and functional
abstraction.

Another form of temporal abstraction is that the model abstracts from
physical time. For example, the concrete implementation may depend on
using a timer of 250 ms duration. This timer is abstracted in the model
by introducing two symbolic events—one for starting the timer, and one for
indicating expiration of the timer. By doing so, the physical duration of the
timer is abstracted away even if the duration of certain timers changes over
runtime at the concrete level.

One might well argue that this kind of abstraction is the special case of a
more general abstraction, namely abstraction from quality-of-service.

4 Limitations

In this Section, we illuminate the limitations and consequences that come up
with using abstractions in models for testing a SUT’s behavior. It is crucial
that the modeler is aware of the limitations, and therefore decides for the right
trade off between abstraction and precision when building appropriate models
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for testing the critical aspects of the SUT. As stated in Section 2, there is
an inherent complexity in real systems. If some of them are abstracted in
the model there is no direct way to detect faults in the SUT concerning these
abstractions. In the following we mention a few limitations and consequences.

Often enough, models suffer from a more or less distinct and implicit
“happy world assumption” which stems from functional abstraction. A typical
example is that models assume that parameters of input messages or input
operations are within allowed bounds or have the permitted length or arity.
With the aid of such models, it is not possible to test the SUT’s behavior if it
receives messages with illegal parameters. For example, in the smart card do-
main, an operation including its operands is represented by a byte string at the
concrete level. In the model, an operation and its operands are conveniently
symbolized by a string (a name). With this kind of model, the behavior of the
smart cannot be tested directly if it receives byte string which are for example
one byte too short or too long, respectively. It is up to the test engineer to
decide whether to cope with such illegal input at the level of the model, or at
the level of the driver component.

Intense data abstraction can lead to information loss that cannot be coped
with for test case generation. For example we recall the smart card model
abstracting from file contents [11] already discussed in Sec. 2. With this
model only static properties like file length but not the dynamic evolution of
file contents could be verified.

It is hard to detect feature interaction when functional abstraction is ap-
plied to build separate models for testing distinct functionalities. For instance,
in [6], separate models are used to test different operations of the POSIX stan-
dard. These models help to verify the correct functioning of these operations
in a stand-alone manner, but leave open the detection of unmeant behavior
caused by feature interaction of these operations.

Finally, problems can arise if temporal abstraction is intensively used in the
model. Obviously, in the domain of distributed real time systems a rigorous
use of temporal abstraction can prohibit the detection of faults which stem
from the intricate interleaved timing behavior of the separate components. As
a counterexample, in [5], temporal abstraction is explicitly not used to test a
processor. In order to trace generated test cases and to check the expected
performance a clock cycle in the model corresponds exactly to a clock cycle
in the real processor design.

Nevertheless, w.r.t. these limitations, we believe that model based testing
is one of the most promising methodologies which will scale up for verification
of complex systems in the near future and additionally provide a well struc-
tured process for increasing the quality of hard- and software systems. Note
that some see testing as model-based by definition: testing is always performed
with a more or less explicitly defined intended behavior, i.e., a model.
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5 Conclusion

Many activities of software engineering involve abstractions. Today, abstrac-
tions are predominantly used as language constructs (e.g., procedures), trans-
parently moved into the runtime environment (garbage collectors), used in
the form of interfaces to libraries, components, or communication infrastruc-
ture, and as architectures. Abstractions related to the behavior of a system
begin to play a more prominent role when explicit models are used. Loss of
information can sometimes be compensated with suitable code generators or
linkers. For many purposes, consciously discarding information that cannot
be inserted automatically is also necessary.

For rather comprehensive testing, models are often too vague for they
specify only partial behaviors. If they are more precise, they can be used to
the end of testing. If these test models are sufficiently concrete to generate
(production) code from them, then one must ask why validating the model and
generating test cases from it is preferable to directly validating the SUT. As
a consequence, the level of abstraction of test models lies somewhere between
specifications and models for full code generation (i.e., a faithful representation
of the implementation itself).

On the one hand, the specification describes the system under development
in an abstract and comprehensive way. This is usually done in an informal
and incomplete manner. The informal and incomplete specification is needed
to build test models in the first place: test models are then refinements of
the specifications. On the other hand, test models abstractly implement only
parts of the more comprehensive specification, but these parts are implemented
completely and unambiguously (functional abstractions, cf. Sec. 3). Test
models can then be perceived as a supplement to specification documents
which completely specifies the crucial parts of the system for verification. In
principle, specifications and test models could be built at the same level of
abstraction, completeness, and precision, but then one must solve the question
whether a supplier or an OEM builds the model. This is, for instance, the
situation in the automotive industries.

We have provided a list of abstractions that are used to the end of model-
based testing in the literature. They can be summarized as related to func-
tion, data, communication, and time (or, more general, quality-of-service).
The purpose of this catalog is to equip model-based testers with some guid-
ance when building their models. We did not address the hard question of
which traces (test cases) to select, i.e., the question of quality of a test suite.
Building adequate models and identifying relevant properties appear to be the
key challenges with model-based testing, not test case generation technology.
Whether or not the use of dedicated explicit test models pays off economically
appears likely, but empirical evidence is still lacking.
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