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1Corporate Research and Development, Siemens AG, Munich, Germany
2Inst. for Human–Machine–Communication, Munich Univ. of Technology (TUM), Munich, Germany

Udo.Bub@mchp.siemens.de

ABSTRACT

The research described in this paper focuses on possibili-
ties to avoid the tedious training of Hidden-Markov-Models
when setting up a new recognition task. A major speaker
independent cause for the decrease of recognitionaccuracy
is a mismatch of the phonetic contexts between training and
testing data. To overcome this problem, we introduced in
previous work the idea of an update of task independent
acoustic models by means of Bayesian learning. In this pa-
per we introduce the new approach of adaptively splitting
the probability density functions (pdfs) of a continuous den-
sity HMM. The goal is to model the appropriate state pdfs
better so that they can more accurately match new contexts
that are observed while the system is in service. Splitting
AND Bayesian adaptation yields a remarkable reduction of
word error rate compared to Bayesian adaptation only.

1. INTRODUCTION

Especially speech recognition systems with a small vocab-
ulary have to be trained and tuned with often tedious efforts
for a specific application. Word specific speech databases
are necessary for sufficiently high recognition rates. On the
other hand it is well–known that systems that have been de-
signed for a certain assignment perform poorly when they
are tested under conditions they have not been trained for
(e.g. [1]). A majorspeaker independentcause for these de-
teriorations is a mismatch of the acoustic phonetic contexts
between the phonemes of the training task and recognition
task respectively. That is, the dictionaries which contain the
words of a task and their phonetic transcriptions differ from
training to testing. A problem occurs when training of a spe-
cialist model is not possible because at system development
time there is not sufficient training data available or because
the phonetic dictionary is being changed by the user during
the application (type–in). In previous work [2, 3] we have
developed a set–up to overcome these problems by means
of a Bayesian re–estimation of the means of the probability
density functions (pdfs) of a continuous density Hidden–

Markov–Model (HMM). Doing so, the means are gradually
adapted so they match better the new acoustic contexts that
occur during the new application.

Using mixture Gaussians is a well–known means for ad-
equate acoustic modeling of allophones. Various training
techniques (e.g. [4]) start with a minimum number of states
which are successively split during several training itera-
tions. In the new approach shown here we start a recogni-
tion task with an HMM that has been thoroughly trained on
phonetically balanced data. Now, while in service, the sys-
tem not only adapts its means to the testing observations but
also splits the pdfs to achieve superior modeling of newly
occurring inter–phonetic contexts. The splitting criterion is
based on entropy minimization and the goal is to open a new
Gaussian whenever separate modeling of a context or an al-
lophone is favorable. The proposed algorithm works online
and is embedded in an incremental adaptation paradigm.

Our basic idea is to train first a phonetically balanced
generalist HMM which can cope with every task equally
well but which, by nature, offers a lower recognition per-
formance on a specific task than a potential specialist HMM
if this one could have been trained beforehand. Then, us-
ing the algorithms explained below, the acoustic models are
gradually enhanced with the aim to match the accuracy of a
specialist model.

2. ENTROPY BASED SPLITTING CRITERION

In previous work entropy has been applied as a good sta-
tistical estimate for expected increase or decrease of the
recognition rate (e.g. [5]) of the acoustic models of a speech
recognition system.

2.1. Entropy of approximated Gaussians

The entropy is defined as follows:
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Assuming thatp(~x) is a Gaussian distribution with a diago-
nal covariance matrix, i.e.
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In our acoustic models we approximatep(~x) with p̂(~x) =

N (~̂�; �n), where~̂� = 1

L
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l=1 ~xl is the mean ofL observa-
tions. The corresponding entropy as a function of�̂ is given
by
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p(~x)log2p̂(~x)d~x; (4)

which results in
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The expectationEf(�n� �̂n)2g equals1
L
�2n, so the expec-

tation ofHp̂(�̂) is given as
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2.2. Splitting of Gaussians

Let p̂(~x) = N (~̂�; �n) be the pdf to be split. We assume that
the two Gaussians that result from a splitting process have
the same deviation�s and are both weighted equally. This
yields new pdfs:
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Using (4) it is possible to compute the entropyHs
p̂ of the

approximated split Gaussian. Assuming that�1 � �̂1,�2 �
�̂2, and�1 is sufficiently far away from�2 yields an easier
solution of the integral because then the overlap of some
Gaussians can be neglected. This finally results into
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As splitting criterion we demand a decrease of the en-

tropy, i.e.
Hp̂ �Hs

p̂ > C; (9)

whereC (with C > 0) is a constant that indicates the de-
sired magnitude of the entropy decrease. For simplicity we
chooseL1 = L2 = L

2
and obtain following splitting crite-

rion:
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For practical purposes we simplify (10) to
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whereC 0 has to be determined empirically.

3. COMBINING SPLITTING WITH
INCREMENTAL ADAPTATION

Due to simplicity we are going to discuss the the formulae
in the 1–dimensional space. A Bayesianupdate of the mean
�̂ of a normal density after adaptation stepl is achieved by

�̂l = (1� �l)�̂l�1 + �lxl; (12)

with

�l =
1

l + �2

�20

: (13)

xl is the lth observation mapped to a specific state during
the Viterbi decoding and�2 is the variance of the adapta-
tion material. This recursive adaptation formula is initial-
ized with �̂0 and�20 which are mean and variance of the
previously trained task independent model. In our experi-
ments we use

�t = const: (14)

Please refer to [3] for an explanation of the implications that
come along with this simplification.

The splitting of densities is carried out in contextual
domain and can be also interpreted as parallel state split-
ting [4]. Now, a key question is how to choose the location
of the means of the two new densities resulting from a split.
In this case we choosê�s1 to stay as�̂ and �̂s2 to be the
mean value of the adaptation material mapped to�̂ during
the Viterbi path. Splitting is done for fine tuning when nec-
essary. After every utterance the criterion (11) is evaluated
and splitting is carried outaccordingly. The adaptation and
splitting processes are initialized with a seed HMM model
with already approximately 6000 densities.

4. BASELINE SYSTEM

For both training and recognition telephone speech data is
sampled at 8 kHz. Every 10 ms a feature vector is computed
based on the data of an overlapping 25 ms Hamming win-
dow. A feature vector consists of 51 elements of which are
24 cepstrally smoothed spectral coefficients, 12�cepstral,
and 12��cepstral components as well as 1 energy, 1�en-
ergy, and 1��energy component.

In order to take occurring channel variations into ac-
count we apply a short–term maximum likelihood channel
compensation to the feature extraction. During training we



carry out the computation of a Linear Discriminant Analy-
sis (LDA) resulting in a superior class separation capability.
Before LDA we build a 2–frame super vector from which
we retain after transformation only the 24 most significant
components as input for the Viterbi search. We use 6–state
continuous density HMMs.

5. APPLICATION AND RESULTS

The splitting is implemented for long–term, incremental adap-
tation processes. The adaptation is supposed to work in an
unsupervised mode in real world applications. However,
here we are using supervised adaptation for the evaluation
of the algorithms. An application in the field of speaker
adaptation might be thinkable but is not straightforward be-
cause many adaptation data is needed and the contextual or
allophonicdifferences are rather task dependent than speaker
dependent.

For these experiments we first train a monophone seed
model that covers general German task–independently. This
model is called thegeneralistin the further text. It is used as
the model with which the process is initialized. To carry out
the training for the generalist we use the phonetically bal-
anced sentences from the German part of the SpeechDat–
1 database [6] and from the database SieTill. Please refer
to [7] for further information. Altogether we have 16500 ut-
terances from 1500 speakers for training. We use standard
Viterbi training and the generalist model has 6000 mixture
densities overall. Because the pdfs have been trained iter-
atively on phonetically varying utterances the model can
cope with every phonetic contexts equally well, but offers
a lower recognition performance on a specific task than a
specialist.

As target of the adaptation we use a German isolated
word task with a vocabulary perplexity of 62 (our internal
database VM). We choose this task because we have plenty
of speech material available for this database. So we can
train a specialist model whose performance we can compare
to the adapted model’s performance in order to get an idea
of the viability of the algorithms. The pdfs are iteratively
trained and thus highly specialized in the acoustic contexts
given by the training material.

5.1. Baseline

The baseline performance of the system can be seen in ta-
ble 1. The test set consists of 1500 utterances from VM
database that have not been involved with any other train-
ing/adaptation process described in this paper. During train-
ing of the monophone specialist we investigated also the in-
fluence on the error rate of the amount of the training mate-
rial and the number of parameters that constitute the HMM.
As can be seen in figure 1 the recognitionaccuracy improves

generalist specialist specialist
(monophone) (monophone) (diphone)

93.1% 97.1% 97.9%

Table 1: Baseline performance.

the more data are available for training. Furthermore, the
minimum error rate is found at a higher pdf number the
more data has been used, i.e. the more data is available the
more pdfs should be used for the acoustic modeling. The ef-
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Figure 1: Word error rate corresponding to the number of
training utterances and pdfs.

fect can be explained as follows: the more pdfs are available
(provided there is enough training data) the moreaccurate
the modeling for the context can be realized. For example,
different allophones can be modeled more precisely now.
In the next step we would like to make use of this fact for
boosting the re-estimation process.

5.2. Adaptation without Splitting

The new task contexts are given by the new recognition vo-
cabulary. It is always ensured that the utterances of the
adaptation set have random order so that no implicit speaker
adaptation is possible. Adaptation and test sets are both
recorded on identical channel characteristics. We use� =
0:1 for the adaptation. Looking at the regular monophone
adaptation (table 2) we observe an improvement of the recog-
nition accuracy, especially during the first adaptation steps.
Adding more adaptation material in this case does not seem
to improve the accuracy. In order to get an idea how better
adaptive context modeling can improve the re–estimation
process we try also a diphone adaptation: First we deter-
mine the occurring diphone contexts from the dictionary
of the new task. Then we fill the state distributions with



the distributions from the monophone generalist model, so
that the middle states represent the same phoneme. This di-
phone model has 17700 densities now. That is, from the
monophone seed model we create an equivalent diphone
seed model which, besides the diphone modeling, has more
parameters ready for adaptation. As can be seen, diphone

no. of adaptation words 0 2000 7000

acc. monophone adapt. 93.1% 95.4% 95.4%
acc. diphone adapt. 93.1% 96.4% 97.3%

Table 2: Word accuracy using regular adaptation.

adaptation outperforms the monophone adaptation remark-
ably and does not get saturated as early as the monophone
model. After 7000 utterances the performance is close to
the one of the specialist.

5.3. Influence of Splitting

Now, we evaluate the influence of splitting on the adapta-
tion. First we carry out splitting without any underlying
adaptation process of the kind of formula (12). Table 3
shows that splitting alone already yields an improvement. A
limitation of the total number of pdfs might be useful if the
real time performance of the system cannot be guaranteed
for large numbers. The results of a combination of the split-

no. of adaptation words 0 2000 7000

word accuracy 93.1% 93.4% 93.5%
number of densities 6000 6048 6354

Table 3: Splitting only (monophone modeling).

ting technique together with regular adaptation are shown in
table 4. Applying splittingand regular monophone adapta-

no. of adaptation words 0 2000 7000

word accuracy 93.1% 95.7% 96.3%
number of densities 6000 6028 6148

Table 4: Splitting with Bayesian adaptation (monophone
modeling).

tion during 7000 adaptation words yields an improvement
from 95.4% to 96.3% as compared to regular adaptation
only.

6. CONCLUSION AND FUTURE WORK

We have introduced the new idea of adaptive online splitting
and have derived an entropy based splitting criterion. The
ultimate goal is to adapt the acoustic modeling of phoneme
contexts and allophones to a new task while the system is in
service. Provided enough training data, modeling by means
of a higher number of pdfs is preferable. The proposed sys-
tem uses new incoming data to gradually learn new contexts
and increase the number of used pdfs accordingly. Splitting
AND Bayesian adaptation on 7000 adaptation words yields
a 19.6% reduction of word error rate compared to Bayesian
adaptation only. As a next step, we are looking into the pos-
sibility to merge two pdfs whenever another one is split. The
advantage would be that there would always be a constant
number of parameters of the HMM. The above algorithms
are currently being tested for unsupervised adaptation. The
first results confirm the quality of the results shown before,
but with a lower overall recognitionaccuracy.
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