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ABSTRACT

This paper describes a domain-limited system for speech
understanding as well as for speech translation. An inte-
grated semantic decoder directly converts the preproc-
essed speech signal into its semantic representation by a
maximum a-posteriori classification. With the combina-
tion of probabilistic knowledge on acoustic, phonetic,
syntactic, and semantic levels, the semantic decoder ex-
tracts the most probable meaning of the utterance. Any
separate speech recognition stage is not needed because
of the integration of the Viterbi-algorithm (calculating
acoustic probabilities by the use of Hidden-Markov-
Models) and a probabilistic chart parser (calculating se-
mantic and syntactic probabilities by especial models).

The semantic structure is introduced as representation of
an utterance’s meaning. It can be used as intermediate
level for a succeeding intention decoder (within a speech
understanding system for the control of a running appli-
cation by spoken inputs) as well as interlingua-level for a
succeeding language production unit (within an auto-
matic speech translation system for the creation of spo-
ken output in another language).

Following the above principles and using the respective
algorithms, speech understanding and speech translation
front-ends for the domains ’graphic editor’, ’service ro-
bot’, ’medical image visualization’ and ’scheduling dia-
logues’ could be successfully realized.

1 INTRODUCTION AND
SYSTEM OVERVIEW

Speech is the perfect and common medium for human-
to-human information exchange; it has been developed
for many centuries. Natural speech has a lot of advan-
tages for human-machine-interaction, too: Since it does
not require any learning process, speech can be used
without hands and in darkness, being a fundamental con-
tribution for ergonomic multimodality. So why do we not
speak with our technical systems in daily routine?
Speech understanding can be interpreted as the conver-
sion of a speech signal to the user’s intention, which
means to solve a huge ambiguity! An utterance can be
represented at various abstraction levels – not only at the
semantic or pragmatic level, but also as word chain, pho-
neme chain, as observation sequence, or as speech signal,
depending on the speaker, the context and environment.

If these ambiguities are solved step by step, a global op-
timization of the utterance's meaning is not possible. In-
stead of connecting a speech recognition stage and an in-
dependent syntactic and semantic analysis stage, our
approach calculates the meaning SE of the utterance in a
single semantic decoding step from the observation se-
quence O (preprocessed speech signal). For this purpose,
the speech knowledge of the domain is level-specifically
stored in acoustic, phonetic, syntactic, and semantic
models, see fig. 1.

Fig. 1: System overview: The semantic decoder operates in a single step by the help of purely probabilistic knowledge. The semantic
output SE serves as intermediate representation for speech understanding and as interlingua-level for speech translation.
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• For speech understanding, the meaning SE is proc-
essed by a rule-based intention decoder for obtaining a
code to control the behaviour of the application in the
user’s sense.

• For speech translation, ’reverse’ semantic decoding
is realized for producing a word chain Wg , using a syn-
tactic model of the target language. Possible syntactic
mistakes are corrected in the following linguistic post-
processing module and spoken output is synthesized
by a Text-to-Speech (TTS) system.

2 THE SEMANTIC STRUCTURE

The definition of the semantic representation (i.e. the
meaning of the utterance) is essential for the required ef-
fort of all modules, for the prospect of realizing it all, and
– strictly speaking – for the success of the whole system.
Hence, we look for a semantic representation, which
should be

• close to the word level to keep the dependency be-
tween the word chain and the desired meaning repre-
sentation under control,

• hierarchical to cover nested semantic constructs,

• logically correct to consistently and comprehensibly
represent semantic concepts,

• generalizing to identically represent semantically
equivalent, but different utterances, and

• close to the machine level for a simple transformation
of the classified semantic representation into machine
comprehensible commands.

2.1 Definition of the Semantic Structure

According to these requirements, we introduce the se-
mantic structure S as semantic representation of an utter-
ance within a restricted domain [12][15][20]. It is hierar-
chic like a tree, which consists of N semantic units
(abbreviated semuns) sn :

(1)

Each semun sn can be described by (X+2) components,
its type t[sn], its value v[sn] and  references to its
successors q1[sn] , …, qX[sn] ∈ {sn + 1 , …, sN , blk} :

(2)

• The type t[sn] lays down the number X of successors1)

and restricts the set of possible successor-types
t[q1[sn]], … , t[qX[sn]]. Furthermore, it makes a selec-
tion of the corresponding values v[sn].

• The value v[sn] shows the exact meaning of sn.

1) This means: X = X(t[sn]). At present, we use .

S s1 s2 … sn … sN, , , , ,{ }=

X 1≥

sn t sn[ ] v sn[ ] q1 sn[ ] … qX sn[ ], , , ,⎝ ⎠
⎛ ⎞=

1 X 5≤ ≤

• Each successor qx[sn] specifies a certain fact of the se-
mun sn. If the utterance contains that certain specifica-
tion, the successor qx[sn] is identical with another se-
mun within S. In that case, the successor is denoted as
successor semun

qx[sn] ∈ {sn+1, … , sN}. (3)

If the utterance does not contain that certain specifica-
tion, then it is a blank successor

qx[sn] = blk. (4)

For the consistent description of our stochastic ap-
proach, it is necessary to allow a type for the blank
successor:

t[blk] = blk (5)

The types of all successors q1[sn] , …, qx[sn] , …, qX[sn]
with  of the semun sn are denoted as successor
group

tq(sn) = (t[q1[sn]] , …, t[qx[sn]] , …, t[qX[sn]]). (6)

A semun sn together with all references to its X succes-
sors q1[sn] , …, qx[sn] , …, qX[sn] can be graphically de-
picted as shown in the following figure. The successors
are numbered from 1 to X from top to bottom. The refer-
ence to a successor semun is marked by the edge " ".
In contrast to this, the edge " " marks the reference to
a blank successor:

The whole semantic structure S forms a ’tree’ with the se-
mun s1 as ’root’ and the blank successors as ’leaves’. All
other semuns  belong to exactly one predeces-
sor semun.

A branch, denoted as S(sn), is formed by a semun
with (recursively regarding) all its successor se-

muns down to all terminating blank successors. The se-
muns within each branch S(sn) are consecutively indexed
starting from n, blank successors are not included.

(7)

Hence, each branch is a subset of the semantic structure:

for (8)

According to the previous explanations, the branch S(s1)
of the root semun s1 is identical to the whole semantic
structure S.

(9)

Fig. 2: Illustration of a semun sn with X successors
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Each single semun represents a small semantic part of the
whole utterance. The significance of a semun is specified
by its successors, which are in a fixed relation to each
other. Each branch  represents a connected part
of the total meaning.

A line is a direct sequence of m+1 semuns
within a branch, each one with respectively X=1 succes-
sor. A line starts with the successor semun of a semun
with  successors and is terminated by a semun,
which has X=1 blank successor, or by the predecessor se-
mun of a semun with  successors. The order of the
semuns within a line has no influence on the meaning of
the whole semantic structure – clearly spoken:

The order of semuns within a line is optional!

Two semantic structures are equivalent, if they contain
the same information. An equivalent semantic structure
comes into being (apart from the restrictions of the syn-
tactic model) by semun permutations within a line.

Fig. 3 shows an example for a semantic structure S1
(’graphic editor’ domain) in a graphic depiction:

Basically, the structure is quite similar to the notation in
Valence/Dependence Grammar [25]. As central part, the
respective "ruling" command verb forms the root of the
semantic structure. Compared to first order predicate
logic [8][10], a single semun can be seen as an X-place
relational constant, in which a 0-place relational constant
is modelled by X=1 blank successor. However, the con-
nection of single semuns to a semantic structure essen-
tially differs from the representation by predicate logic.
Although mathematically not as exact, the semantic
structure offers the following advantages:

• The semantic structure S is a meaning representation
close to the word level and allows an immediate and
probabilistic correlation to a word chain W. It only
considers the semantic content of the utterance with-
out any respect of the pragmatic constellation or the
dialogue status. Since the semantic structure has not
any knowledge about previous utterances, ellipses, an-
aphoric or kataphoric references cannot be resolved –
this must happen in a postprocessing stage.

• For the connection of semuns, there is only one single
mechanism, namely referencing to other semuns as re-

Fig. 3: Semantic structure S1 corresponding to the utterance
"move all red spheres five centimetres to the right"
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spective successor semuns. Therefore, only this one
kind of connection has to be considered during the de-
sign of the models.

2.2 Relation to the Word Chain

The semantic structure is a meaning representation close
to the word level. Its structure is dependent on the word
choice and, although conditionally, on the word order of
the corresponding word chain. Nevertheless, it has the
capability for generalization: Different, but semantically
equivalent word chains correspond to identical semantic
structures. For this purpose, the following determinations
are established:

• Each word of the word chain W corresponds to exactly
one semun sn of the semantic structure S.

• Each semun sn of the semantic structure S is assigned
to exactly one significant word w+[sn] and at most one
insignificant word w−[sn] of the word chain W. In this
manner, two or more words (in morphological sense)
can possibly be combined to one contiguous "word".
Since only the corresponding semantic structure is im-
portant as final result, a morphologically correct word
representation is not absolutely necessary. Therefore,
the design of the syntactic model (estimation of the
probability  for the occurrence of the word
chain W given the semantic structure S) is possible
without any further representation levels.

• Each branch  corresponds to an unbroken
phrase .

As an example, the relation between the German word
chain "bitte den schönen grünen quader neben der ähm
roten kugel löschen" ("please delete the nice green
cuboid besides the ahm red sphere") and its semantic

Fig. 4: Semantic structure S2 and corresponding phrases W(sn)
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structure S2 is shown in fig. 4. The significant words
w+[sn] of the semuns sn are marked by dark arrows
" ", the insignificant words w−[sn] ("bitte",
"schönen", "ähm") by bright arrows " ". The
phrase W(sn) belonging to the respective branch S2(sn) is
shown below. Please note, that the alignment of these
phrases depends on the hierarchy of the underlying se-
muns.

3 SIGNAL PREPROCESSING

To obtain speaker independence and high performance of
the acoustic models, the observation sequence O (input
of the semantic decoder) should obtain highly discrimi-
native information about the content of the utterance, but
it should not be influenced by the speaker’s personality,
by the input channel or noise. The next fig. 5 shows the
signal preprocessing, which can be well used with Hid-
den-Markov-Models (HMMs) [1][9][16][19].

The signal preprocessing (or ’feature extraction’) mod-
ule creates 64-dimensional observation vectors (or ’fea-
ture vectors’ or ’input frames’) oj in intervals of 10 ms,
each of them describing the spectral characteristics of
the speech signal contained in a 25 ms-wide window [2].
The time alignment of these observation vectors oj is the
observation sequence . Similar to
the task of stochastic word chain decoding (speech rec-
ognition), the semantic decoder uses this observation se-
quence as input for stochastic pattern matching.

4 SEMANTIC DECODING

Our semantic decoder converts a spoken utterance (given
as observation sequence O) into its semantic representa-
tion (in our approach denoted as semantic structure S).
From the set of all possible S, that one SE has to be found
which is the most probable given the observation se-
quence O, i.e. which maximizes the a-posteriori-proba-
bility P(S|O). The resulting term can be transformed us-
ing the Bayes formula.

(10)

Fig. 5: Block diagram of the signal preprocessing module
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Since P(O) is not relevant for maximizing, it can be ne-
glected:

(11)

Due to the high variety of S and O, it is not possible to es-
timate P(O|S) directly. Therefore, additional representa-
tion levels are necessary. Well defined are the word chain
W and the phoneme chain Ph, which can be used for the
calculation of SE [18]:

(12)

Eq. (12) is the maximum a-posteriori (MAP) classifica-
tion formula, which is implemented ’top-down’ for find-
ing that semantic structure SE, which is included in the
most likely combination of a semantic structure S, a word
chain W, a phoneme chain Ph and the given observation
sequence O.

In the above equations, we assume statistical independ-
ence of all probabilities, which are stored in four stochas-
tic knowledge bases (called "models"):

• The semantic model delivers the a-priori probability
P(S) for the occurrence of a semantic structure S.

• The syntactic model delivers the conditional probabil-
ity  for the occurrence of a word chain W given
a certain semantic structure S.

• The phonetic model delivers the conditional probabil-
ity  for the occurrence of a phoneme chain Ph
given a certain word chain W.

• The acoustic model delivers the conditional probabil-
ity  for the occurrence of an observation se-
quence O given a certain phoneme chain Ph. It con-
tains parameters used in a multi-dimensional HMM.

Fig. 6: The ’top-down’ principle for semantic decoding
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Phonetic and acoustic models are not necessary to de-
code written text, since in case of written input (i.e. word
chain W) eq. (12) can be simplified to

. (13)

These probabilities have to be estimated by counting the
occurring frequencies over a large set of training data,
which are authentic limited-domain utterances, each rep-
resented by semantic structure, word chain, phoneme
chain and observation sequence. A detailed description
of the semantic decoder, which is implemented as an in-
cremental ’top-down’-parser combining a modified Ear-
ley-parsing [3] and a Viterbi-beam-search [26] algo-
rithm, and the consistent integration of all stochastic
knowledge can be found in chap. 4.2 and in [24].

4.1 The Stochastic Grammar

4.1.1 Probabilities in the Semantic Model

If statistical dependencies are assumed only inside of
each semun, P(S) can be calculated as product of certain
first order probabilities.

with: (14)

• The root probability f0 denotes the a-priori probabil-
ity that the root semun s1 has the type t[s1]:

(15)

The semantic model has to provide f0 for all types.

• The value probability en denotes the conditional
probability that the value v[sn] occurs with a semun sn
of the type t[sn]:

(16)

The semantic model has to provide this probability for
all combinations of any type t[sn] and any value v[sn].

• The succession probability fn denotes the conditional
probability that the successor group tq(sn), which con-
sists of the types t[q1[sn]] , …, t[qX[sn]] as defined in
eq. (6), belongs to a semun sn with the type t[sn]:

(17)

The semantic model has to provide this probability for
all combinations of any type t[sn] and all possible suc-
cessor groups tq(sn) = (t[q1[sn]] , …, t[qX[sn]]).

4.1.2 Probabilities in the Syntactic Model

For each semantic structure, a syntactic network (a prob-
abilistic finite state automaton) can be set up with states
for emitting words and transitions between these states.

SE P W S( ) P S( )⋅[ ]
S

argmax=

P S( ) f0 en fn⋅( )
n 1=

N

∏⋅=

f0 P t s1[ ]( )=

en P v sn[ ] t sn[ ]⎝ ⎠
⎛ ⎞

=

fn P tq sn( ) t sn[ ]( )=

The word choice is directly influenced by the emissions,
the word order by the transitions within the syntactic net-
work.

The semantic structure is a hierarchic tree consisting of N
semantic units (semuns) sn with . Correspond-
ing to that fact, the respective semantic network is also
hierarchically built of N syntactic modules (SM) A(sn)
with . Each semun sn corresponds to exactly
one SM A(sn).

Each SM A(sn) controls the choice and the alignment of
the words, which are assigned to the semun sn. A SM is a
probabilistic state automaton, which consists of (X+4)
states or nodes beg(sn), A[q1(sn)], ..., A[qX(sn)], B(sn),
C(sn), and end(sn). X marks the number of successors of
sn, which is fixed by the respective type t[sn].

• The node beg(sn) is entered by the predecessor SM.
All other states of the SM can only be entered after
beg(sn). For n=1, beg(s1) is the starting point of the
path through the whole syntactic network.

• Each state A(qx[sn]) with  must distinguish:
– If qx[sn] is a successor semun, this state represents

(as denoted by the expression) the SM A(qx[sn]) of
the corresponding successor semun qx[sn]. Entering
the state A(qx[sn]) is equivalent to entering the start-
ing node beg(qx[sn]). As soon as the terminal node
end(qx[sn]) is reached, A(qx[sn]) can be regarded as
processed and can be left.

– If qx[sn] is a blank successor, A(qx[sn]) can be re-
garded as processed immediately after entering and
can be left, without touching any other SM.

• The state B(sn) emits a significant word w+[sn] of the
word chain W with the emission probability bn.

• The state C(sn) emits an insignificant word w–[sn] of
the word chain W with the emission probability cn.

• The node end(sn) terminates the path and jumps to
this state of the predecessor SM, from where the ac-
tual SM has been reached. For n=1, end(s1) terminates
the path through the whole syntactic network.

The transition between two consecutive states is prima-
rily determined by the respective transition probabilities,
e.g. the transition probability an,B,C marks the probability
for the transition from the state B(sn) to the state C(sn).
Due to the determinations made in chap. 2.2, the follow-

Fig. 7: Synt. module A(sn) for a semun sn with X=1 [12][15]
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ing conditions must be additionally kept along the path
from beg(sn) to end(sn):

• None of the states A1(sn), ..., AX(sn), B(sn) or C(sn) can
be entered twice.

• The node end(sn) must not be entered before the states
A(q1[sn]), ..., A(qX[sn]) and B(sn).

This guarantees that each of the states A(q1[sn]), ...,
A(qX[sn]) and B(sn) is entered precisely once and the state
C(sn) at most once, with the consequence, that each suc-
cessor is entered exactly once as well as one significant
word and at most one insignificant word are generated.
With these additional conditions, a SM cannot be a first
order stochastic automaton.

For the calculation of the conditional probability P(W|S)
in a good approximation, we need the following first or-
der conditional probabilities:

• The path probability an denotes the conditional
probability that a certain path is followed within a SM,
which corresponds to a semun of the type t[sn]. It is
the product of all transition probabilities an,μ,ν along
the path through the SM A(sn) from beg(sn) to end(sn),
which results in the maximum P(W|S):

(18)

This probability depends only on the type of the re-
spective semun. The syntactic model has to provide a
matrix of (X+2)(X+3) transition probabilities an,μ,ν for
each type.

Please note: If the optional state C(sn) is entered and
an insignificant word w–[sn] is emitted, there are
(X+3) transitions along the path from beg(sn) to
end(sn). If C(sn) is missed and no insignificant word is
emitted, the number of transitions is reduced to (X+2).
For any blank successor qx[sn], several paths exist
within the SM A(sn), because the respective successor
module A(qx[sn]) does not cause any further action.
Hence, A(qx[sn]) can be entered at any time. In this
case, that path with the maximum P(W|S) is preferred.

• The emission probability bn denotes the conditional
probability that the state B(sn) of a SM, which corre-
sponds to a semun sn of the type t[sn] and the value
v[sn], emits the significant word w+[sn]:

(19)

This probability depends on both the type and the
value of the respective semun. The syntactic model

an P certain path maximizing P W S( ) t sn[ ]⎝ ⎠
⎛ ⎞

=

an μ ν, ,
all transitions
from μ to ν

along a certain
path through A sn( )

∏=

bn P emission of w+ sn[ ] t sn[ ] v sn[ ],⎝ ⎠
⎛ ⎞=

has to provide this emission probability for all combi-
nations of any type, any value and any significant
word.

• The emission probability cn denotes the conditional
probability that the state B(sn) of a SM, which corre-
sponds to a semun sn of the type t[sn] and the value
v[sn], emits the insignificant word w–[sn]. For simpli-
fying eq. (21), cn is equal to one, if the path through
the SM does not contain the optional state C(sn).

(20)

If C(sn) is entered, this probability depends only on
the type of the respective semun. The syntactic model
has to provide this emission probability for all combi-
nations of any type and any insignificant word.

The module probability dn of the SM A(sn) can be cal-
culated by multiplying the path probability and both
emission probabilities of the SM:

(21)

With the assumption of statistical independence of all
module probabilities dn, the conditional probability
P(W|S) results in the product of the module probabilities
of all N SMs within the syntactic network:

(22)

4.2 The Search Algorithm

For the search, an active chart parser [3] is applied. The
parsing algorithm (see [22][24]) consists of two layers:

• The grammar layer is an active chart-parser which
was augmented by a probabilistic dynamic program-
ming mechanism to satisfy the MAP-classification in
eq. (12). The parser is consequently realized in a top-
down strategy and incrementally processes the input
left to right. In this layer, the probabilities P(S) and
P(W|S) are evaluated by using the semantic and the
syntactic models.

• The pronunciation layer contains word hypotheses,
each represented by one HMM-trellis, which is proc-
essed by Viterbi beam-search [16][26]. In this layer,
the probabilities P(Ph|W) and P(O|Ph) are evaluated
by using the phonetic model and the acoustic Hidden-
Markov-Models on the observation sequence.

The grammar layer is tightly coupled to the pronuncia-
tion layer, the edges in the chart predict potential word
hypotheses in the pronunciation layer by push-word op-
erations. After having consumed a certain part of the ob-
servation sequence, each word hypothesis acquires a

cn

P emiss. of w– sn[ ] t sn[ ]⎝ ⎠
⎛ ⎞

1

, if C sn( )

, else⎩
⎨
⎧

=

dn an bn cn⋅ ⋅=

P W S( ) dn
n 1=

N

∏ an bn cn⋅ ⋅( )
n 1=

N

∏= =



score for matching the respective number of feature vec-
tors. Every time the end state of the respective word
HMM is reached, a pop-word operation is invoked to ex-
tend those edges, which formerly triggered the affiliated
push-word operation.

4.2.1 Representation of Hypotheses in the Search

During the search, the knowledge about open hypotheses
is kept in so-called items [17], each representing a certain
subparse referring to a certain SM A(sn). An item con-
tains information about the matching between input
frames  and one single semun sn:

• Syntactic features:
– The type t[sn],
– the set of states within A(sn), which have been al-

ready encountered, and
– the set of states, which still have to be encountered

before leaving A(sn).

• Position features:
– The start index and the end index of the frames of

the observation sequence, which already have been
matched to the semun sn, and

– the indices in the observation sequence, which were
matched to the successor semuns q1[sn] ... qX[sn].

• Semantic features:
– The value v[sn] and
– the successor group tq(sn).

• Probabilistic features:
– The inside-score denotes the score2) summed up in-

side A(sn). It includes all partial probabilities con-
tributing to the MAP estimation of eq. (12), accu-
mulated along this subparse since the start frame.

– The overall-score contains the inside score as well
as the accumulated score for the left context of the
item, i.e. the complete history to enter A(sn).

2) Each probability is transformed into its negative logarithm,
which is the score, to replace multiplications by faster addi-
tions.

Fig. 8: Integration of word HMMs in an active chart
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4.2.2 Item Lists and Agendas

All items, which have been generated after processing
frame , form the item list . Each item list is split
into two parts: An agenda (the active part) contains items
which still have to be processed by the control structure,
a passive part contains items which already have been
processed. Items can be checked in and retrieved from
the list:

Whenever an item is checked in, it is tested for recombi-
nation with another item in the list. Items are equivalent,
if they concur in all their properties except the scores.
Equivalent items can recombine! That item with the
lower overall-score (i.e. the higher probability) survives,
the other is discarded. Instead of attaching each item to
be checked in, the following strategy is chosen to maxi-
mize the efficiency:

After retrieving an item, the pointer on the location to re-
trieve the next one is incremented. Actually, the item lists
can be seen as FIFO, implementing a breadth-first search.

4.2.3 Time Synchronous Construction of the Chart

Fig. 11 illustrates the function of item lists and the oper-
ations on them. First, item list L0 is generated by the ini-
tialization . Subsequently, one item at a time is re-
trieved from the agenda of list L0 and is processed by in-
list operations . New items are checked in again in the
same item list. This process continues until the agenda is
empty, i.e. no items remain to be processed by in-list op-
erations.

Afterwards, all items in the list L0 are processed to start
up new words in the pronunciation layer. We call this op-
eration push-word . As a counterpart to this, the pop-
word operation  pops out words which have been com-

Fig. 9: Organization of an item list and operations on it

Fig. 10: Strategy for recombination of items to be checked in
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pletely matched to a sequence of frames by the pronunci-
ation layer. From these words, the next item list L1 is then
initialized.

Now, another round of , , and  is time-synchro-
nously repeated for each of the input frames, generating
one item list after another, until all J frames are con-
sumed. All inactive item lists , which remain af-
ter processing frame  are kept back in the chart for the
completion steps (in ) and .

Note that recursive constructs in the grammar do not
cause any problem for the parser, since they will be
caught as equivalent subparses, which can recombine to
avoid a loop! In contrast to the easy task of parsing deter-
ministic input, both the words itself and their boundaries
are ambiguous with our task. Without countermeasures,
the search space grows unimaginably huge already after
a few input frames.

4.2.4 Improving Efficiency

To reduce both computation and memory effort down to
manageable values, we applied a beam search technique
[16]. Our incremental algorithm guarantees that all paths
ending in the items contained inside one item list Lj have
consumed exactly the same number j of input frames.
This is an important claim for a direct comparison of the
items’ overall-scores for pruning, which is carried out
both in the grammar layer and in the pronunciation layer.

The number of word hypotheses to be started up, can be
further reduced, if the grammar layer is not activated for
each frame index. The search effort (computation time)
can be significantly reduced by this process, as shown in
fig. 12 and fig. 21. In practice, after finishing the push-
word operations , a number of frames is skipped be-
fore invoking the next pop-word operations . How-
ever, this practice is no longer consistent, since it con-
strains the words to be forced into a fixed temporal grid.

Fig. 11: Illustration of the main steps of the algorithm: The in-
itialization step , the in-list operations , the push-word

operation , and the pop-word operation .
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5 INTENTION DECODING

Generally, it is not possible to use the semantic structure
as application input immediately. Hence, it is necessary
to transform the semantic structure into an application-
specific code, denoted as user’s intention I. For that pur-
pose, we suggest an application-specific combination of
a preprocessor and a compiler:

5.1 Preprocessor

The preprocessor is necessary to correct inconsistencies
in the semantic structure, which occur due to the assump-
tion that each word in the word chain has to be assigned
to one single semun. This module provides

• insertion of missing and necessary information (e.g.
the semun of the recently modified object),

• deletion of redundant information (e.g. all semuns af-
ter an irrelevant "garbage semun"),

• splitting – if possible – a semantic structure S into sep-
arate semantic structures S’, S’’, ... each stating an in-
dependent and complete command. E.g. in fig. 14, S3
corresponding to the word chain "create a yellow
sphere and two cones" is divided into S3’ and S3’’:

The preprocessed semantic structure(s) S’, S’’, ... can be
seen as programs in the source language of the compiler,
its output I is a program in the application-specific lan-
guage. We call the latter the user’s intention I, since it
does not only reflect semantic and pragmatic aspects in
the utterance, but it is also influenced by the present sta-
tus of the application.

Fig. 12: Scheme of semantic decoding without (a)
and with (b) discontinuous grammar activity.

The grammar activity interval (GAI) indicates the number
of Viterbi steps (input frames) without grammar activity.

Fig. 13: Block diagram of the intention decoder

oj

pronunciation layer

grammar layer

pronunciation layer

grammar layer

GAI

(a)

(b)

oj+1 oj+GAI input frames

Viterbi steps

343434

3
4

semantic
structure

compilerpre-

user’s
intention

preprocessed
sem. structure(s)

processorS S ’, S ’’, ... I



5.2 Compiler

The task of the compiler therefore is to translate a nested
semantic structure tree into a linear code within the appli-
cation-specific language. Since a main part of a semantic
structure’s information is held in the topology of the tree,
it is not possible to transform each semun individually
into one block of the output code. Instead, a top-up ap-
proach is introduced, by propagating context knowledge
down into the tree from the root to the leaves and subse-
quently collecting the information required for generat-
ing the intention in the reverse way, see [4][5] and fig. 15.
Note the three main steps ’DESCEND’ for descending the
semantic structure, ’CONSTRUCT’ for constructing the
linearized commands and ’FINISH’ for terminating.

Fig. 14: The preprocessor: Splitting a semantic structure S.

Fig. 15: Flowchart for linearizing the basic command tree [5]
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The generated intention I for the semantic structure S3’ is
shown in the following table. The commands for specify-
ing colour (as RGB-components), form, and quantity as
well as the insertion into the database can be easily seen:

6 LANGUAGE PRODUCTION

6.1 Word Chain Generator

The word chain generator converts a semantic structure
into the corresponding word chain of the target language.
For this purpose, we make use of the generative power of
our syntactic models by creating just the most likely
word chain given a certain semantic structure. In fact, we
utilize the same algorithms as in the semantic decoder!
Each semun sn corresponds to a SM A(sn), which is ac-
cording to the given semantic structure SE hierarchically
connected with other SMs to a syntactic network as ex-
plained in chap. 4.1.2. As in the decoding process, the
transitions within the syntactic network affect the word
alignment, the emissions affect the respective word
choice. P(W|S) is calculated as the product over all path
and emission probabilities along a certain path through
the entire syntactic network, see also eq. (22):

(23)

Unlike the word chain generator in the ’top-down’ se-
mantic decoder (see fig. 6 – described in [24]), which has
to produce many word chain hypotheses, this one deliv-
ers only the most probable word chain Wg given the se-
mantic structure SE. The concerning syntactic model
considers that word chain Wg , which maximizes eq. (23):

(24)

Fig. 16 depicts one selected path through such a syntactic
network, consisting of four SMs.

Since the semantic structure does not contain any gram-
matical information, case, number, and gender of words
in Wg may be wrong. Nevertheless, Wg is usually com-
prehensible by humans. According to eq. (24), a German
word chain

Wg: "erzeuge zwei rot kugel"

("create two red sphere") might be generated. In this
case, the emission probabilities for the singular words
"rot" and "kugel" is according to the syntactic model
higher than those for the correct plural words "rote" and
"kugeln".

Table 1: Intention I for the semantic structure S3’ of fig. 14

set r 255
set g 255

setstring form sphere
set num 1
insertset b 0

P W S( ) an bn cn⋅ ⋅( )
n 1=
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Wg P W SE( )
W
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Because choice (i.e. the uninflected word) and alignment
of the generated words in Wg  are fixed by the transitions
and the emissions of the syntactic model and cannot be
re-changed in a later stage, it is advisable to use manually
created instead of trained syntactic knowledge bases for
the target language.

6.2 Linguistic Post-Processing

The post-processing module converts the grammatically
wrong word chain Wg into a correct word chain Wopt by
changing the inflection of some words using the follow-
ing knowledge bases:

• The grammar rules specify the grammatical features
(case, number, gender) of a certain word by the help of
both the word chain Wg and the semantic structure SE.

• The inflectional model delivers the correct inflection
of a word given its grammatical features.

The semantic structure SE is recursively examined semun
by semun. If the affiliated word of the current semun is a
noun, an adjective, or an article, the correct inflection has
to be found according to the respective grammatical fea-
tures. The gender is extracted depending on the emitted
noun, but case and number are extracted depending only
on the semantic structure SE (which is a different and
new approach compared to classic linguistics). As an ex-
ample, we look at following word chain Wg and semantic
structure SE:

Fig. 16: Origination of a word chain along a certain path by
transitions and emissions within the syntactic network [21]

Fig. 17: Word chain Wg and semantic structure SE
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• The semun ’ ’ corresponds to the word
"erzeuge". As a verb, it remains unchanged.

• The semun ’ ’ corresponds to the word
"kugel". As a noun, the grammatical features are de-
termined as follows:

• Since the predecessor-semun is ’ ’, the case
is accusative. Since the first successor-semun is
’ ’, the number is plural. Since the emitted
noun is "kugel", the gender is feminine.

• The inflectional model delivers for the word "kugel"
with the grammatical features "accusative, plural,
feminine" the correct word "kugeln".

• The semun ’ ’ corresponds to the word
"zwei". As a number, it remains unchanged.

• The semun ’ ’ corresponds to the word "rot".
As an adjective, the grammatical features are deter-
mined as follows:

• Since the predecessor-semun is ’ ’, case,
number, and gender are identical to the corresponding
word of the predecessor-semun.

• The inflectional model delivers for the word "rot" with
the grammatical features "accusative, plural, femi-
nine" the correct word "rote".

After gone through the whole semantic structure, the op-
timized word chain Wopt with the correct inflections can
be composed as

Wopt: "erzeuge zwei rote kugeln"

("create two red spheres"). Note, that neither the choice
nor the alignment of the words is changed during the
postprocessing [14].

7 IMPLEMENTED DOMAINS

Due to the separation of domain-specific and domain-in-
dependent knowledge, we attained an easy portability to
various domains. Up to now, we developed semantic
structures for four different applications:

• NASGRA (natural speech understanding graphic
editor) for creating, modifying or deleting three-di-
mensional objects on the screen (understanding Ger-
man and Slovenian as well as translation into German,
English, French, Slovenian) [14][23][24]. An online
version of NASGRA for natural German text input is
available on WWW. Please be aware of OOV errors:
http://www.mmk.e-technik.tu-muenchen.de/~mue/nasgra/

• ROMAN3) (roving manipulator), speech understand-
ing service robot for doing jobs like fetching and
bringing things (understanding German) [6][7].

3) In collaboration with the Institute of Automation Control
Engineering, Munich University of Technology, Germany.
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• invitoVR4) (interactive visualization tool for virtual
reality), speech interaction within a virtual environ-
ment for medical image visualization (understanding
German) [11] and

• TERMINator (Termin is the German word for date or
appointment) for the translation of spoken scheduling
dialogues from German into English and Greek – in
principle, the domain is similar to that one of the
project VERBMOBIL [27].

8 RESULTS

8.1 Semantic Decoding

As with HMM speech recognizers, the semantic accu-
racy stands in direct concurrence with memory and com-
puting effort. A very sensitive parameter is the pruning-
offset, which influences the beam width within the search
process. Fig. 20 clearly shows the trade-off between the
semantic accuracy and the search effort for our one-stage
decoder. Maximum accuracy is gained by choosing a
pruning offset of 200, taking on average about 22 secs of
CPU workload (on a SUNTM-UltraSPARCTM, 168 MHz)
for semantic decoding.

4) In collaboration with the Institute of Medical Informatics
and Health Services Research, National Research Center for
Environment and Health (GSF), Neuherberg, Germany.

Fig. 18: Typical scenario
from the NASGRA domain

Fig. 19: Speech-understand-
ing service robot ROMAN

Fig. 20: System performance depending on beam width [23]
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Another important parameter to control the search proc-
ess is the grammar activity interval (GAI), which has
been explained in chap. 4.2.4. Search effort can be
halved by setting GAI = 8 with a relatively small loss of
accuracy. Hence, the discontinuous grammar activity has
proven to be an effective method to improve the perform-
ance of our semantic decoder as well as of all speech
processing systems based on probabilistic models.

8.2 Intention Decoding

The intention decoder has been tested with 1843 seman-
tic structures of spoken utterances, which have been col-
lected from 33 subjects during a Wizard-of-Oz simula-
tion within the NASGRA domain [13]. The rate for the
correct conversion of a semantic structure into its inten-
tion (application-specific code) amounts to 97.3% [4][5].

8.3 Language Production

The language production was tested with 307 real exist-
ing semantic structures within the NASGRA domain pro-
ducing four different target languages German, English,
French, and Slovenian. We asked human subjects to
judge the semantics (whether it is comprehensible or in-
comprehensible) and the syntax (whether it is correct,
unusual, or wrong) for each optimized word chain Wopt .

The above results with an average comprehensible se-
mantics of 93.2% and an average not-wrong syntax of
91.0% confirm that the introduced translation approach
based on the semantic structure can be an alternative to
other much more complex rule-based and word-based
approaches, if short sentences within a limited domain
should be translated.

Fig. 21: System performance depending on the GAI [24]

target language semantics syntax

comprehensible correct unusual

German 95.9 % 84.4 % 5.2 %

English 94.8 % 81.1 % 10.4 %

French 93.8 % 82.4 % 9.8 %

Slovenian 88.3 % 82.1 % 8.5 %

Table 2: Language production performance [14]
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