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This short write-up introduces notation and summarizes a few basic results about discrete-
time linear systems. It is meant to be read as an appendix to [1], where this material could
not be included due to page limitations. For further reference, the reader is referred to [2, 3].

The theory of discrete-time linear systems has been developed in the context of digital
filter construction in signal processing (applications are typically communications, speech pro-
cessing, speech or music synthesis, etc.), but is also related to control theory. The connection
to continuous (real-world) processes is obvious — sampling of continuous (experimental) data
produces a sequence of discrete (equally-spaced in time) data values. Transient numerical
simulations, preferably with fixed time step dt, also produce such sequences.

Basic definitions

A discrete-time system may be defined as any algorithm which takes an input sequence s(n)
(the signal) and converts it into an output sequence r(n) (the response),

s(n) — r(n).
A linear, time-invariant system has the following property: if s1(n) — r1(n) and sa2(n) —
ro(n) for two arbitray input sequences 1, s9, then for arbitrary constants a,b and for all ng
asy +bsy — ary+ bry,

si(n—mno) — r1(n—no).

Impulse Sequence & Impulse Response

The impulse sequence (or unit sample) is defined as follows:

1 n=0,
The response to this particular signal is known as the impulse response (or wunit sample

response) and the following important relation between signal s(n), response r(n) and impulse
response h(n) holds for linear, time-invariant (LTI) systems:

“+oo
r(n) = Z h(m)s(n —m). (2)
m=—0Q
which implies that the sequence h(n) completely characterizes an LTI system. A formal proof
of this result is given in [2]. Note the obvious analogy to continuous-time systems, where
Green’s function is the response to the Dirac-§ signal.
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Figure 1: Representation of an LTI system.

Causality / Realizability

An LTI system is causal or realizable if the output at n = ng is dependent only on values
of the input for n < ng, i.e. the present state of the output depends only on present and
previous states of the input. This implies that h(n) = 0 for n < 0.

Frequency Response of LTI systems

Consider now a special class of inputs, s(n) = ewAtn i order to investigate the frequency

domain representation of LTI systems. Such a signal may be regarded as a sinusoid of fre-
quency w sampled with a time step At. When applied to an LTI system, the resulting output
is
+00 too
T’(’I’L) — Z h(m)eiwAt (n—m) _ eiwAtn Z h(m)e—iwAtm‘
m=—0oQ m=—0oQ

With .
F(w) = Z h(m)e wAtm, (3)

m=—o00
we see that indeed for this particular type of input signal, the response is equal to the signal
up to a complex-valued multiplicative factor F'(w), which depends solely on w, i.e.

r(n) = F(w)s(n). (4)

This multiplicative factor F(w) is called the frequency response of the system and has the
following properties

e The frequency wAt appears in the term exp(—iwAt¢m) on the right hand side of (3),
therefore the frequency response F' is periodic in w with period 27 /At.

e if the signal s(n) is purely real, then the absolute value of the frequency response F
is symmetric about the points w = 0 and w = 7/At, while the phase of the frequency
response is antisymmetric.

For real-valued signals, it suffices therefore to specify the frequency response in the interval
wAt = 0 — 7 (normalized angular frequency) or f = 0 — 1/2At¢ (frequency). The upper
limit of this frequency range is the well-known Nyquist frequency.



z-Transform
The z-Transform of a sequence s(n) is defined for a complex number z as
A +m
S(z) = Z s(m)z""™. (5)

m=—00

From (3) we see that the frequency response F' of an LTI system is equal to the z-transform

of its impulse response h(n) with argument z = ¢™¢:
A~ - +Oo .
Flw)=H(3) = Y h(m)e ™2, (6)
m=—o0

In principle, an infinite number of coefficients h(m), —oo < m < 400 is required to fully
specifiy the frequency response. Of course, in practice a good estimate of the frequency
response can often be obtained with a rather small number of coefficients (”low order filter”).
For a causal system, only coefficients h(m), m > 0 are required.

Inverse z-Transform

Since the frequency response is periodic in [—7/At, w/At], Eqn. (3) suggests that the coeffi-
cients h(n) of the impulse response may be interpreted as the series coefficients of the Fourier
series representation of the frequency response F'(w). This implies the following definition for

an inverse z-transform
At [HT/At
= F

h(n) w) WA iy, (7)

21 oA
(actually just the inverse Fourier transform of the frequency response).

One concludes that both the unit impulse response h(n) and the frequency response F'(w)
characterize completely a discrete time linear system and can be converted into each other
with the (inverse) z-transform.
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