Off-Road Automation Technology in European Agriculture - State of the art and expected trends -

Prof. Dr. Hermann Auernhammer

Center of Life Sciences Weihenstephan Department of Bio Resources and Land Use Technology **Crop Production Engineering**

Automation Technology for Off-road Equipment (ATOE)

Keynote Lecture

Kyoto (Japan) October 7-8, 2004

Off-Road Automation Technology in European Agriculture

- 1. Europe
- 2. Agriculture in Europe
- 3. Agricultural mechanization in Europe
- 4. Off-road automation in European agriculture
- 5. Future trends
- 6. Conclusions

Off-Road Automation Technology in European Agriculture

1. Europe (just a view words)

- 2. Agriculture in Europe
- 3. Agricultural mechanization in Europe
- 4. Off-road automation in European agriculture
- 5. Future trends
- 6. Conclusions

Unification of Europe

EU₁₅ in 1995, 330 million citizens

Unification of Europe

EU₁₅ in 1995, 330 million citizens

EU₂₅ in May 1st, 2004, 10 more countries 105 million more citizens

Unification of Europe

EU₂₅ in May 1st, 2004, 10 more countries 105 million more citizens

EU₂₇ in 2007,

2 additional countries 31 million more citizens

In total 466 million citizens

Currencies in Europe

<LANDTECHNIK>

Currencies in Europe

Own currencies old members

Currencies in Europe

Euro zone

Own currencies old members

Old currencies, new members

Mention:

- Switzerland

- Norway

belong not to the EU !

Population density 1997

Low and very low density regions

High density regions

Interpretation:

Low = need for automation ?

High = no need for automation ?

Cross domestic product per capita 1997

Fairly well developed CDP in a wide area of Europe

Interpretation:

- = money for more automation ?
- = money for more comfort ?

Unemployment ratio 1998

Very large area (about 50 %) with high and very high unemployment

Interpretation:

- = no need for automation?
- = no money for automation?

Economic sectors 1998

Two regions:

- Large agricultural area
- Large industrial area

Off-Road Automation Technology in European Agriculture

1. Europe

2. Agriculture in Europe

- 3. Agricultural mechanization in Europe
- 4. Off-road automation in European agriculture
- 5. Future trends
- 6. Conclusions

Crop Production Engineering

© 2004

Farms partitioned due to sizes in 1999/00

Size (area) from up to ha							
less than 5	5 - 10	10 - 20	20 - 30	30 - 50	50 - 100	100 or more	Overall
Number of Farms in 1,000							
3,902.1	834.1	691.2	349.0	389.3	369.0	234.4	6,769.1
Relative Number of Farms based on Overall Number in %							
705to 80	% will di	sappear	5.2	5.8	5.5	3.5	100
Area of Farms in 1,000 ha							
6,593.4	5,885.8	9,822.7	8,548.1	15,063.8	25,687.0	55,196.7	126,797. 5
Quota of Agricultural used area in %							
5.2	4.6	7.7	6.7	11.9	20.3	43.5	100

Relative area and relative farm number of EU₁₅ members

Auernhammer, 30.09.2004

A04-24 (16)

Average farm size in the EU₁₅ 1999/00

Farm decline of each member country (EU₁₅) between 1989/1990 and 1999/2000

Auernhammer, 30.09.2004

Relative quota of working family members and ownership quota of EU₁₅ members 1999/00

Number of farms and tractors per EU₁₅ member

Off-Road Automation Technology in European Agriculture

- 1. Europe
- 2. Agriculture in Europe

3. Agricultural mechanization in Europe

- 4. Off-road automation in European agriculture
- 5. Future trends
- 6. Conclusions

Typical European tractor-implement combination for high performance

Small-scale farming

- Extending in length (combination)
- Self propelled unit
- Fast on road (40 km/h; 50 km/h)
- High concentration at field end
- High concentration during work
- Large demands to the driver

Large-scale farming

- Extending in width
- Towed implements
- Lower max. speed
- Lower concentration during work
- Lower demands to the driver

Self propelled off-road vehicles

(Relative sales figures of tractors and self-propelled harvesters in

Germany)

Auernhammer, 30.09.2004

First self-propelled tillage unit (LEMKEN Brilliant, 2003)

Crop Production Engineering

, 30.09.2004

Off-Road Automation Technology in European Agriculture

- 1. Europe
- 2. Agriculture in Europe
- 3. Agricultural mechanization in Europe

4. Off-road automation in European agriculture

- 5. Future trends
- 6. Conclusions

The Agricultural BUS System (LBS) in accordance to DIN 9684 / ISO 11783

Crop Production Engineering

A04-24 (26)

N-online fertilization systems

(regime: 3 to 4 dressings)

High-tech for environment protection!

- closed-loop control
- easy-to-use

Emulates farmers work !

3 years after introduction still only a small number in use!

- to expensive ?
- to less financial benefit ?
- no extra benefit for environment protection?

Automated headland control with "Teach-In" (FENDT)

Recording - Editing - Storage - Play-back - Control

of up to 16 different functions and 5 devices

Steering controller in self propelled combine harvesters

Auernhammer, 30.09.2004

© 2004

Automation fully accepted in serialized products

Electronic Hitch Control (EHR) in tractors >40 kW Four-wheel and anti-slip management (tractors > 80 kW) VRT (variable rate transmission) with about 40.000 units Auto-Contour in combine harvesters (> 4 m working width)

Reasons again:

- simple to use (just push a button) !
- offers comfort !
- increases performance !
- increases profit !

Off-Road Automation Technology in European Agriculture

- 1. Europe
- 2. Agriculture in Europe
- 3. Agricultural mechanization in Europe
- 4. Off-road automation in European agriculture

5. Future trends

6. Conclusions

Crop Production Engineering

A04-24 (33)

Trends for Automation

Large agricultural area

Large industrial area

Interpretation:

Two regions !

- Low density population, high unemployment and less income
- = no pressure for automation
- High density population, low unemployment and high income
- = pressure for automation

Improvement of Average Farm Sizes

Crop Production Engineering

A04-24 (35)

Auernhammer, 30.09.2004

Cross compliance in the EU

From 2005 onwards EU agricultural policy will change !

- subsidies may be given only in conjunction with documentation

- environment friendly sound measures get an extra value

These are new driving forces for "Precision Farming" with extra values

- in fertilizing
- in spraying
- in mechanical weed control

Crop Production Engineering

© 2004

Traceability and Precision Farming

The administration is one side of the medal,

Traceability and Precision Farming

The administration is one side of the medal, the consumer is the other !

Traceability and Precision Farming

The administration is one side of the medal, the consumer is the other !

and the Society is more and more sceptical against farming !

Crop Production Engineering

A04-24 (40)

Self-declaration and self-explanation

Crop Production Engineering

Auernhammer, 30.09.2004

A04-24 (41)

Self-declaration and self-explanation

Crop Production Engineering

© 2004

Off-Road Automation Technology in European Agriculture

- 1. Europe
- 2. Agriculture in Europe
- 3. Agricultural mechanization in Europe
- 4. Off-road automation in European agriculture
- 5. Future trends

6. Conclusions

Crop Production Engineering

A04-24 (43)

Conclusions I

Agriculture in Europe is highly heterogeneous.

To a great extent, agricultural cultivation is done in disadvantageous small structures (about 1 ha field size).

The structural changes towards larger cultivation units are rising.

The differences within the member countries are increasing because of the extension of the EU.

Crop Production Engineering

© 2004

Conclusions II

The mechanization has reached a very high level with various cutting edge technologies.

The trend of self-propelled machinery is advancing. For this, electronics is used to relieve the driver in combination with enhancements in performance and safety.

Nevertheless, the tractor will still be the central machine for farming.

Crop Production Engineering

A04-24 (45)

Conclusions III

Precision farming concentrates on high yields using optimized nitrogen fertilization strategies.

Site specific farming will overcome the small structures by virtual land consolidation.

Crop Production Engineering

A04-24 (46)

Conclusions IV

All in all, environmental protection is the driving force in precision farming. When having additional investments in technology, at first requirements of the society will be addressed.

The public claims continuous documentation which therefore defines the challenges of automation in future.

Crop Production Engineering

A04-24 (47)