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Zusammenfassung

Datennutzungskontrolle ist eine Erweiterung der Zugriffskontrolle, die zusétzlich spez-
ifiziert und durchsetzt was mit Daten passieren soll oder nicht passieren darf, sobald der
Zugriff auf diese gewdhrt wurde. In bereits existierenden Formen der Durchsetzung von
Datennutzungskontrolle lag der Fokus auf der Implementierung der Uberwachung von
Ereignissen. In diesen wurden Datennutzungsrichtlinien auf der Implementierungsebene
manuell von technisch versierten Experten spezifiziert. Diese manuelle Spezifikation von
Richtlinien auf der Implementierungsebene hat mehrere Nachteile. Erstens werden tech-
nisch unversierte Nutzer aufsen vor gelassen. Zweitens sind Richtlinien auf Implementier-
ungsebene sehr komplex, was deren Spezifikation durch technisch versierte Experten auf-
windig macht. Drittens bedingt die hohe Komplexitit eine Spezifikation der Richtlinien
mit absoluter Sorgfalt, die hierdurch fehleranfallig ist.

Zusitzlich kann die Durchsetzung von Datennutzungskontrollrichtlinien beztiglich Au-
fbewahrung, Verteilung und Loschung der Daten nicht die Anforderungen des Nutzers
widerspiegeln, da kein universeller Ansatz existiert, der abstrakten Begriffen wie Kopieren
und Loschen eine Bedeutung zuweist. Wiirde man nun eine ad-hoc Spezifikation der Se-
mantik vornehmen, so konnte dies zur Blockierung von legitimen und Zulassung von
unerwiinschten Ereignissen fiihren.

Die vorliegende Arbeit bearbeitet diese Problemstellung durch die Erstellung eines Fra-
meworks zur Ableitung von Richtlinien mit einer doménen-spezifischen formalen Seman-
tik fiir Aktionen. Die Bedeutung der Aktionen ist auf Doménenebene durch die Instanzi-
ierung eines Metamodells definiert, das die hierarchische Verfeinerung von Aktionen er-
laubt. Eine wohldefinierte Methodik zur Automatisierung dieser Ableitung wird ebenfalls
beschrieben. Menschliche Eingriffe sind nur in zwei Rollen angedacht: Als technischer Ex-
perte, der die Richtlinientibersetzung konfiguriert, und als Endnutzer, der Richtlinien zum
Datenschutz definiert.

Die Eingaben zur Ableitung von Richtlinien sind ein Domdnenmodell, eine Richtlinie
auf Spezifikationsebene und einige umgebungsabhingige Konfigurationsdetails der In-
frastruktur. Die Ausgabe ist eine Menge an Richtlinien der Implementierungsebene, die
Durchsetzungsmechanismen auf verschiedenen Abstraktionsniveaus des Systems konfig-
urieren. Der Ansatz wird in mehreren Fallstudien erkldrt und evaluiert.
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Abstract

Usage control is an extension of access control that additionally specifies and enforces
what may or must not happen to data once access to it has been granted. In existing en-
forcements of usage control policies, the focus has been on the implementation of event
monitors. Implementation-level policies have been manually specified by technical ex-
perts. Manual specification of policies at the implementation level has certain disadvan-
tages. Firstly, users who are technically not proficient, are kept out of usage control spec-
ification. Secondly, implementation-level policies tend to be very complex, lengthy and
tedious to specify, even for technical experts. Thirdly, because of the complexity of these
policies, their specification requires meticulous care. This makes the manual specification
of implementation-level policies error-prone.

In addition to this, as there is no universal way of giving meanings to high-level actions
like copy and delete, enforcements of usage control policies regarding retention, distribu-
tion and deletion of data may not adequately reflect user requirements. An ad hoc specifi-
cation of semantics might result in the inhibition of legitimate events during enforcement
while unwanted events might be allowed.

This work addresses the aforementioned issues through a policy derivation framework
with domain-specific formal semantics of actions. Meanings of actions are defined at the
domain level by instantiating a metamodel that allows for a hierarchical refinement of ac-
tions. A well-defined methodology to automate the policy derivation is also described.
Human intervention is suggested in two roles: a technical expert power user who config-
ures the policy translation and, an end user who specifies policies for data protection.

The input of the policy derivation is a domain model, a specification-level usage control
policy and some infrastructure configuration details that vary according to the environ-
ment. The output is a set of implementation-level policies that configure enforcement
mechanisms at different layers of abstraction in a system. The approach is demonstrated
and evaluated through case studies.
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Chapter 1

Introduction

The rapid growth in computing in the past decades [4, 5, 6] has ensured that data gen-
eration, storage, processing and sharing is no more confined to businesses, government
agencies and other organizations. From shopping habits, banking details to health history,
data can be available to creditors, employers, landlords, insurers, law enforcement agen-
cies, and criminals. Recent developments in pervasive computing have made this data
accessible on all sorts of hand-held devices including mobile phones, tablets, PDAs and
various other smart equipments. A trivial example is the energy usage data generated by
smart meters, which can now be accessed on a mobile phone and can be disseminated by
users via online social networks [7]. This data is open to access and interpretation by indi-
viduals and agencies across the globe. In such scenarios, a usual approach in data security
has been to limit data exposure to only those people who must get access to it. Several
type of authentication mechanisms have been proposed and implemented to ensure access
control [8,9, 10, 11].

However, even if data is accessible at a smaller scale by limiting access, it can still be
misused by the very people who legitimately access it for performing their tasks. Various
incidents of deliberate and accidental data leakages [12, 13] are well-known examples of
this. In this new paradigm, data security is no more limited to controlling access; it must
also cover post-access aspects of data protection. In the recent years, access control has
been extended to additionally specify and enforce what must or must not happen to data
once access has been granted. This extension of access control is called Usage Control [14,
15, 16].

Usage control is relevant to a number of contexts. In the above example of sharing
smart meter data on a social network, usage control enforcement can protect users’ privacy
by limiting the uncontrolled duplication and sharing of their data by other stakeholders.
Further examples of privacy protection can be found in ambient assisted living systems,
healthcare and video surveillance systems.

Usage control can also be used for the enforcement of several data protection laws that
restrict collection and usage of personal data to specific purposes and enforce mandatory
anonymization, encryption and deletion, e.g., the EU privacy directives 95/46/EC and
2002/58/EG, the Bundesdatenschutzgesetz of 1990 (with amendments of 2009 to accom-
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modate digital data protection) in Germany, the Health Insurance Portability and Account-
ability Act of 1996 (HIPAA) in the United States and the Data Protection Act 1998 in the
United Kingdom [17].

Similar requirements arise from copyright protection laws. One example of usage con-
trol enforcement for copyright and other intellectual property protection is the mandatory
check by many cloud storage providers to actively prevent copyrighted data from being
shared [18, 19]. Digital rights management is another example of usage control enforce-
ment. Some other areas of relevance are data protection for business secrets, protection of
administrative and intelligence data and military secrets.

Usage control is not only relevant for protecting data from active adversaries, but it can
also be used to hinder passive attackers who unintentionally do malicious things such as
accidental data leakage [12]. As recent reports show, in 2013 alone, various data breaches
left over 800 million records lost with almost a third of the breaches taking place due to
insider activities [13]. In fact, data leakage prevention is one of the top concerns for the
organizations that collect, process and maintain data and they are therefore legally ac-
countable to maintain the confidentiality and integrity of the data [20].

Therefore, usage control requirements come from public administrations, data protec-
tion officers, health care providers, military organizations, and numerous commercial en-
terprises [21]. In most of the cases, these users who have an understanding of "what’
they expect the system to do, neither have sufficient knowledge of the deployed techni-
cal systems nor are they concerned with "how” these requirements should be technically
met. A majority of such users would like to specify usage control requirements in form
of policies that talk of user actions and data without technical details. For example, “data

774

must be deleted after 30 days”, “access logs must be stored for 2 years”, “a movie may be
played maximum two times without payment”, “no non-anonymized data should leave
the system” and “notify the owner upon each distribution of document”. Such usage con-
trol requirements are called specification-level policies. As end users often only understand
high-level terms, usage control policies are specified at the higher levels.

However, technical systems only understand low-level technical terms like files, system
calls, methods, etc. Therefore, for enforcing specification-level policies, they must be trans-
formed to implementation-level policies that consists of low-level technical terms equivalent
to the high-level ones.

Typically, transformation of specification-level policies into implementation-specific con-
structs has been a manual activity in usage control. Although there exist several ap-
proaches for policy derivation in the related area of access control (see Chapter 8 for more
details), in the absence of a generic way to precisely describe the refinement of high-level
policy constructs in the usage control context, the behavior of concrete systems might de-
viate from the expected behavior. As a result, we might have implementations that, at dif-
ferent levels of abstraction in a system, permit executions that should be inhibited and /or
forbid others that should be allowed. Also, in the absence of a systematic, technological
and methodological framework, automated policy derivations cannot be realized.

This thesis addresses this twofold problem: the lack of a generic policy refinement ap-
proach and the absence of a technological framework to derive policies in an automated
way in the context of usage control. The solution consists of (i) formulating the generic
relationship between different policy constructs at the specification and the implementa-
tion levels, (ii) giving formal semantics to these relationships in the context of an existing
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usage control model, and (iii) using this relationship to derive usage control policies from
the specification level to the implementation level. A generic methodology to achieve the
policy derivation in an automated manner is also described.

The next section starts with the basics. At first, the distinction between access control
and usage control in the context of this work is clarified; then, the fundamental usage
control concepts relevant to this work are discussed.

1.1. Access Control vs. Usage Control

Access control provides means to specify and enforce policies about who can access data
and how. Usage control [15] extends this to include constraints upon the future usage of
data once access has been granted. Usage control policies talk about temporal conditions
(“data must be deleted after 30 days”), cardinality constraints (“a movie may be played max-
imum two times without payment”), event-defined restrictions (“if the data provider revokes
the usage right, any further usage must be inhibited”), purpose of use restrictions (“data
must be used for non-commercial purpose only”), and environmental conditions (“data must
be encrypted when used outside the company premises”) [21].

When a request to access specific data is made, two type of conditions apply. One type
of conditions are checked before the access is granted and are typically called the autho-
rization constraints in an access control (AC) system. In this work, these conditions are
called Provisions. At the moment in time when access is granted, provisions refer to the
past and concern the conditions upon whose fulfillment a requester gets access to data.
Obligations, on the other hand, concern future usage of the data item and are part of usage
control (UC). Figure 1.1 (adapted from [16]) shows the demarcation of access and usage
control control for a data ‘d” in the context of this work. Access control rules (provisions)
must be specified and activated (e.g., at time —t;) before a request for data access is made
at time —t;, while the usage control rules (obligations) must be activated anytime before
access is granted (at time #). Obligations must be checked for conformance in all future
timesteps from time ¢, onwards, including any timestep ¢, when the data is actually used.

Rules
(AC+UC) Request Access Usage
| I I S
I I I "
- tj -t to +t,

Figure 1.1.: Access control vs usage control in the context of this work
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This work distinguishes between access and usage control as shown in Figure 1.1 and
focuses on the post-access obligations. Hence, policies are sets of obligations that a data re-
ceiver must fulfill once access is granted. Further discussion on access control policies is
out of the scope of this thesis.

1.2. Usage Control Basics

The acceptability of obligations, enforcement guarantees and penalties in cases of the vi-
olations, and the scheme to handle exceptional cases are negotiated before a data provider
sends the requested data along with usage control policies [22, 23]. The data consumer there-
after, must enforce all the policies specified by the data provider, in order to use that data.
The communication between the data provider and the data consumer must be protected
so that policies cannot be changed on the fly.

The assignment of entities to the roles of data provider and consumer keeps changing
in the process of data usage. For example, let us consider the scenario shown in Figure 1.2
(adapted from [16]): in a software company, a manager sends an email to the development
team head with certain instructions about the latest project. As this mail contains infor-
mation that is classified as business secret, the manager attaches a set of policies allowing
only limited distribution and constraining printing on shared printers. The manager in
this case is the provider while the development head is the consumer of data. However,
when the development head forwards this mail along with other information to the rele-
vant persons in his team, he becomes the data provider and others, the consumers of the
data. Subjects assigned to the roles of data provider and consumer keep changing as email
conversations proceed back and forth. In order to ensure adherence to policies in such a
scenario, the usage control infrastructure keeps track of any copy or derivation of the data
item (e.g., forwarded email). If any consumer ships the data item (or a copy or derivative
of this data) to a further data consumer, the usage control infrastructure makes sure that a
policy is attached to this data item that at most strengthens the original policy.

dZI d3

data 2 =3 data
consumer data data data data provider
provider consumer provider consumer
Manager 1 > Team Head d,, d» > Dev. Team

Figure 1.2.: Data providers and consumers keep changing in a typical UC scenario

Usage control policies stipulate both rights and duties and they can be enforced in two
ways. Detective enforcement, on the lines of optimistic security [24], relies on the detection
of policy violations. Policy violations are allowed but logged, followed by penalties or
other appropriate actions. This is similar to law enforcement in the physical world where
for example, drivers cannot be prevented from speeding but based on evidence, they can
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be fined for doing so. Detective enforcement of policies is particularly useful in situations
in which imposing any kind of control on data consumer’s end is not feasible, practical,
or sensible. Companies, for example, are reluctant to let other parties control parts of their
IT infrastructure. What they might rather be willing to do is provide evidence that their
information processing indeed adheres to the stipulated policies. In these cases, deploying
observation mechanisms is a more appropriate solution [25].

In contrast, preventive enforcement works by altogether not allowing unauthorized ac-
tions. This is done by conceptually distinguishing between an attempt to perform an
action and the actual execution of that action (intended vs actual events, see Section 2.2).
Technically, the signaler intercepts events before they are completed, queries the monitor
and subsequently aborts or completes the event.

As preventive enforcement aims to block policy violations, it may hinder certain func-
tionality which in general is not desired but might turn out to be a critical requirement in
exceptional cases. For example, in a hospital, every doctor may get access to read and modify
the medical record and prescriptions of only those patients whom he treats. Additionally,
doctors must never send this information to anybody who is not employed with the hospital.
However, in case of a medical emergency outside the hospital, the medical history of the
patient might be a critical information for the attending doctor who is not employed with
the patient’s hospital. To handle such exceptional cases, a hybrid enforcement scheme
may be installed: the default being preventive enforcement with a fall-back to detective
enforcement. In the aforementioned example, this would mean that the regular doctor is
allowed to send the medical history to the attending doctor. The attending doctor may not
only read the data but also perhaps modify the data to add the medicines he administered
and prescribed.

Typically, usage control policies address data, irrespective of the various concrete technical
representations in different systems. So, when the manager in the previous example speci-
fies a policy about restricting the distribution of the confidential data, he means to apply this
policy to all copies of it. Hence, recipients of the concerned email must not only be inhib-
ited from forwarding the email to unauthorized recipients, they must also not be allowed
to forward copies of the mail. Hence, all of the following (and many other) actions that
result in the policy violation on the copies of the confidential data should be inhibited:

(a) compose a new mail with the protected content of the received mail

(b) save the mail or the confidential parts of it in a file on the disk and send this file as an
attachment to another mail

(c) copy the file in (b) on an external storage device
(d) upload the file in (b) to a remote server in form of network packets to a remote server

(e) take screenshot of the confidential data rendered on the screen (viz. pixmap) and
distribute it

However, it is not possible for an end user (the manager in this example) to enumerate
all the possible technical representations of the data and the different technical ways to
perform a high-level action addressed in a policy. So he would like to specify policies
in high-level terms and expect an infrastructure to somehow translate and enforce these
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policies. In order to specify policies in abstract terms (data) and to enforce these policies
without having to enumerate all the different possible respective technical representations
(called containers), there must be a conceptual distinction between the two.

1.2.1. Data and Containers

In the context of this work, data is an abstract concept with an intuitive semantics. E.g.,
the German national anthem, a social network profile, a patient’s medical history, an in-
dividual’s personal data, a film called “Jurassic Park”, the requirements document in a
project, etc. Data is stored in different concrete representations at and across various layers
of abstraction in a machine: as contents of files in a file system, pixmaps in a windowing
system, memory regions in an operating system, network packets in a network communi-
cation etc. One concrete technical representation of data in a specific layer of abstraction is
called a Container of data.

While there are some realistic usage control policies such as those about data integrity,
that target specific containers, e.g., “don’t edit /etc/passwd file” in the context of a Unix
operating system or “/.config file must not be moved” in the context of a java applica-
tion; it can be argued that usually it is the content of these containers and not the specific
containers themselves that a data provider is interested in protecting. So when a policy
states “do not forward or print this email”, it is most likely that the data provider wishes
to address all containers that store that data including files, sockets, email attachments,
pixmaps, data structures and so on. Therefore, policies are specified on data. But as con-
crete systems only have containers, policies are enforced on containers. For this reason,
there are at least two sets of policies corresponding to two levels in usage controlled setups:
one class of policies that talk about constraining actions on data and the other that address
the concrete representations of action and data in implementation-specific systems.

1.2.2. Specification vs. Implementation -Level Policies

Because data that has to be protected comes in different representations, within a machine,
usage control policies must be enforced at and across different layers of abstraction. In
principle, all these representations eventually boil down to some representation in mem-
ory and usage control could be as well enforced only at that one layer. However, it turns
out to be generally more convenient and simpler to perform protection at higher levels of
abstraction. For instance, disabling the print command is easily done at the word proces-
sor level; taking screenshots is easily inhibited at the X11 level; prohibiting dissemination
via a network is most conveniently performed at the operating system level. Moreover, as
usage control comes into picture after the data is at the consumer side, enforcement solu-
tions must cater to specific implementations that are deployed at the consumer side. For
example, a usage control implementation for one mail client, viz. Thunderbird does not
work for another, viz. Outlook. Therefore, enforcements specific to the deployed systems
are required. As a result, each policy specified in terms of an abstract data is enforced as
multiple technical policies with implementation details of the respective concrete systems.
The former set of policies are called the specification-level policies while the latter are called
the implementation-level policies.
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Specification-level Policies (SLPs) state what must or must not happen to data, while the
Implementation-level Policies (ILPs) describe how the system should achieve that. SLPs
are composed of abstract domain-level actions, data and future-time constraints. ILPs
on the other hand can be formulated as sets of Event-Condition-Action (ECA) rules that
configure enforcement mechanisms. An ECA rule executes an action (or a set of actions),
when a trigger event takes place and the respective condition evaluates to true. One SLP
may correspond to several ILPs at different layers of abstraction in place.

1.2.2.1. Enforcement strategies

One Specification-level Policy (SLP) can be enforced in several ways. For example, “a
movie may be played maximum two times without payment” is a specification-level pol-
icy. One way to enforce it would be to inhibit all further usages when the movie has al-
ready been played two times and no payment has been made; another approach would be
to allow playing the movie at a lower quality or for a very limited time (like a preview); yet
another way to enforce the policy can be to allow playing the movie normally but log the
action so that penalties could be issued or delay playing the movie until the data provider
explicitly grants permission to do so. These various ways of enforcement are referred to as
enforcement strategies.

Technically, during enforcement, an attempt to perform an event is intercepted, and
depending upon the conditions in the policy, the attempted event is blocked, delayed,
modified, or executed along with other actions. Responses triggered by the actions may as
well be modified. Modification is used as a way to declassify data [26].

The choice of enforcement strategy may depend upon several factors including opera-
tional context, legal requirements, technical limitations and organizational goals and poli-
cies. E.g., a company enforces a policy “don’t copy document” by inhibition because the
company wants to prevent data leakage and its infrastructure supports it; or, as in the
above example, a film producer enforces “don’t play unpaid movies” by allowing corre-
sponding events with lower quality videos because either it’s technically not feasible to
inhibit the events or he wants to give a limited preview to the prospective customers.

1.2.3. From SLPs to ILPs

Ideally, policies for preventive enforcement should be specified at a high-level and through
a policy derivation process, the SLPs should be refined to enforceable ILPs. However, in
the usage control literature, policies are directly specified at the implementation level be-
cause the focus of these work is the enforcement of policies. Derivation of implementation-
level policies from specification-level policies has not been looked into. Manual policy
derivation and their specification at the implementation levels imposes some fundamental
limitations, one being the correct and consistent interpretation of high-level terms. The
next sections highlight the problems with this approach and briefly summarize the solu-
tion and the contribution of this thesis.
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1.3. Problem

In existing work on usage control, policies are specified directly at the implementation-
level as sets of ECA rules. The drawback of this approach is that firstly, end users who
are not technical experts cannot specify usage control policies to protect their data. Sec-
ondly, manual policy specification at the implementation-level or a manual derivation of
implementation-level policies from the specification level is tedious and error-prone even
for sophisticated users due to the complexity of the involved systems. Thirdly, as data
protection requirements usually arise at a much higher level i.e., in the minds of the users,
than at the levels where they are enforced, any ad-hoc policy derivation from the specifi-
cation to the implementation levels might result in gaps between the two types of policies.
This is possible due to several reasons, one of which is the problem of mapping concepts
in the end user’s domain to technical events and artifacts. Policies with user actions that
have complex technical semantics might not be captured correctly in ad-hoc ways. For
instance, semantics of basic operators such as “copy” or “delete”, which are fundamental
for specifying usage control policies, tend to vary according to the domain context. For
this reason, in ad hoc policy derivation, they might be mapped to incomplete or incorrect
sets of system events. This might wrongly allow events that should have been inhibited
and block those that should have been allowed during the enforcement of the policies.!

Thus in the absence of clear semantics of actions in an application context, it is impossi-
ble to define and enforce usage control requirements in a way that is unambiguous. As a
result, system implementations of usage control policies might not always adequately re-
flect end user requirements. This thesis aims to fill this gap. The problem can be extended
to the systematic derivation of system requirements from user requirements.

The goal of this work is to fill the gap between the user and the system
requirements in the context of usage control.

In sum, two problems are tackled in this work. The first one is the fundamental problem
of the lack of clear semantics of high-level actions in usage control policies. The second one
concerns the problem of transforming specification-level policies to implementation-level
policies in an automated manner. The solution addresses both of these aspects.

1.4. Solution

Action refinement is at the core of policy derivation in this thesis. It relies on the conceptual
distinction between high-level user actions and their technical representations, called the
transformers.

1.4.1. Actions and Transformers

High-level actions can have several technical interpretations. These depend upon the ap-
plication context, the layer of abstraction and the concrete representation of data in that

'These drawbacks need not be an issue in the case of detective enforcement as SLPs can be directly moni-
tored: see Section 2.5.
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layer and, the system implementations in place. E.g., “copying” a photo might mean
opening the file and saving it with another name (or location), taking a screenshot of the
displayed image, uploading the file to a web server, sending the photo as an email at-
tachment, cloning the java object that reads from the file and write the object into another
file or, copying blob object from one table to another in a database. Similarly, “deleting”
personal data might mean removing the FAT entry in a file system or drop the table in
a database. Even within a file system, deleting can mean several things: unlink the file,
overwrite the file, encrypt the file and erase the key, quarantine the file or erase a block of
the disk at the firmware level or by resetting the bits on an SSD chip.

Each of these different technical ways of achieving a high-level goal is called a trans-
former that “transforms” the content of the containers that it targets. Transformers are
composed of atomic or complex events. Each transformer can be recursively refined to
correspond to a set of technical events in concrete systems.

It is important to understand that there is no single “correct” definition of what a high-
level action means. Several transformers together correspond to one action. With the
distinction between data and containers and, actions and transformers in place, policies
concerning actions on data implicitly address all transformers that target containers where
data is stored.

Summary of the Solution: In a nutshell, the problem of policy derivation is addressed
in three steps:

1. A generic approach to systematically refine specification-level policy constructs viz.
data and user actions into corresponding technical artifacts is described.

2. The semantics of these refinements are formalized to derive implementation-specific
policies for usage control enforcement.

3. A methodological guidance to automate the derivation of implementation-level poli-
cies from specification-level policies is provided.

As the meanings of data and actions vary according to the domain context, any solution
that aims to refine these constructs in a generic way must address the problem at the do-
main level. For this reason, a domain metamodel is described that allows to define models
of domains where classes of data and actions are mapped to classes of respective technical
representations. In order to formally define what “refining” a data or an action precisely
means, the domain metamodel is combined with an existing usage control model.

In terms of the policy derivation methodology, the domain model of the application is
defined by sophisticated users called the power users (system administrators, architects,
etc.). Power users design and set up the policy specification and derivation infrastructure.
Besides the domain model, they also define all types of policies that could be specified,
translated and enforced and, the enforcement strategies for the SLPs. End users (man-
agers, data protection officers, online social network users, etc.) specify usage control
policies at a higher level addressing specific user actions on data. From these policies,
implementation-level policies are derived using the already-defined domain model and
enforcement strategies.

11
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Policy enforcement, evolution of policies and policy lifecycle management is
out of the scope of this work.

Policy enforcement in single and distributed systems is tackled in [27, 28, 2, 29, 30] etc.
and the evolution of usage control policies is addressed in [31]. Though not in the context
of usage control, policy lifecycle management is addressed in several other related work
[32, 33, 34].

1.4.2. A Running Example

The following scenario will be revisited and elaborated as and when necessary for the
explanation of the different concepts in this thesis:

In an Online Social Network (OSN), user Alice wants to protect her data from
being misused by other users. She wants that her friends should be able to
view everything that she shares with them, but they should not be able to copy
or distribute her data. For this, Alice wants to specify and enforce policies such
as “friends must never copy this data” for her photos, videos, etc. without
any technical knowledge. Alice’s policies must be automatically translated and
enforced at and across different layers of abstraction in her friends” machines.

This work describes the conceptual, technical and methodological aspects of the frame-
work that helps Alice. For this use case, the attacker model considers attacks on a user’s
privacy that emerge from other users. The OSN provider is trusted.

This use case is just one instance of the generic scheme and is used in this thesis for
demonstration purposes. The problem, the solution and the core of the implementation is
generic and can be applied to a variety of other cases.

1.5. Contribution

We are not aware of methodologies for translating specification-level usage or access con-
trol policies into implementation-level policies that configure usage or access control mech-
anisms at different abstraction levels in a generic, domain- and system-independent way:.
In light of this, the contribution of this thesis is threefold:

1. Technical: This work provides a generic way to model high-level user actions like
copy and delete in terms of system events. The generic semantics of domain-specific
actions has been formalized in the context of a system model. Using these two tech-
nical contributions, this work fills the gap between user and system requirements in
the context of usage control.

2. Methodological: The second contribution is the definition of a methodology for au-
tomated policy derivation. Owing to the nature of the problem (policy enforcements
can be achieved in several ways, depending upon the interpretation of the policy), a
“one fits all in all situations” type of solution cannot be designed. The contribution
therefore is the insight about the challenges and the hints to address them. Through

12
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several instantiations, the feasibility of achieving an automated policy translation for
usage control has also been demonstrated.

3. Generalizable Solution: This work proposes a generic way to define the semantics
of high-level actions like copy and delete. Though these semantics are used in this
thesis for automated policy derivation specific to usage control, the solution pre-
sented here can be easily generalized to other cases (Chapter 9). Hence the third
contribution of this thesis.

Contribution of this Thesis with respect to Related Work: In the literature, one of the
well-known approaches to policy refinement is based on modeling policies as goals and in-
crementally refining each of the high-level goals to those at the lower levels [35, 36, 37, 38].
Some other prominent work on policy derivation use resource hierarchies [39, 40]; ontol-
ogy, where policy constructs are refined according to their meanings [41, 42, 43]; decompo-
sition of actions in policies [44]; commitment/obligations analysis [45]; data classification
[46] and patterns that define some kind of best practices [47] in order to refine policies.

All these approaches are similar to this work in spirit because of the refinement of poli-
cies based on hierarchical structures. But, firstly, they refine policies for different access
control models, not for usage control. Secondly, most of the policies are refined from the
abstract level to the logical levels; further technical representations of policy elements in
concrete systems are only specific to the domain in consideration. They do not aim to pro-
vide generic ways to give semantics to actions like “copy” and “delete” in a domain and
system -independent way. In this context, different ways of secure deletion and its mean-
ings are covered in [48]. But this work also does not provide a comprehensive discussion
on all types of deletion. Besides, other actions such as copy are not considered at all.

In the context of usage control, though [49] describes a policy derivation for usage control,
it refines policy actions to business processes functions for policies to be enforced in a
BPMN engine.

In a nutshell, although there has been a lot of work in the area of automated policy
derivation in recent years, the focus has been on access control. In usage control, the related
work [21, 50, 51, 27, 7, 52] has been devoted to policy enforcement and has not looked into
the policy derivation. This has left a gap between specification and implementation -level
policies in usage control context that this work fills.

A detailed discussion of the contribution of this work with respect to the state of the art
is in Chapter 8.

1.6. Assumptions and Limitations

This work focuses on the derivation of usage control policies from specification to imple-
mentation levels. Enforcement of policies and related guarantees are not in the scope of
this work. As the solution described in this thesis integrates into the usage control in-
frastructure, a fundamental assumption is that the enforcement components are correctly
implemented, they are not tampered with and they are up and running.

One of the core contributions of this thesis is a generic language to model domain-
specific semantics of high-level user actions. However, no theorems to prove the correct-
ness of the such semantics are discussed here. The reason is that the meanings of abstract
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terms like data and actions are intuitively understood by the end users. That is, the seman-
tics of high-level propositions is not precisely defined but rather exists in the user’s mind.
It is therefore hard to establish a notion of correctness between the semantics of low-level
and high-level policies based on these semantics. Because of this, the domain model’s cor-
rectness cannot be theoretically proven. This means that the solution relies on the power
user’s capability of correctly modeling domain-specific semantics.

For this reason, the assumption is that data only moves in a usage control environment
where each layer of abstraction on every machine could be correctly modeled for the se-
mantics of the actions. If the power user wrongly models the domain, the errors would
propagate throughout the enforcement. Also, if data is stored at a layer of abstraction
which is not included in the domain model or which could not be modeled for any rea-
sons (business secret, lack of understanding of the functionality, closed source with no doc-
umentation, etc.), then no implementation-level policies would be generated for monitor-
ing data usage in that layer of abstraction. Hence corresponding usages might be wrongly
allowed during the enforcement of policies.

The second limitation is that policy distribution is not discussed. This work assumes the
communication between the data provider and the data consumer to be protected so that
policies cannot be changed on the fly. This is possible using end-to-end encryption with
appropriate key management solutions: the data consumer receives an encrypted pair of
data item and policy. The local usage control infrastructure of the consumer then decrypts
this pair, deploys the policy (see Chapter 7), and makes the data item accessible to the
consumer. This is the moment of access to data item, already shown in Figure 1.1 as time ¢.
From this point onward, the usage control infrastructure of the consumer makes sure that
the policy is enforced at the consumer’s side, one assumption being that every access to
the data item is mediated by the usage control infrastructure.

In addition to the above, this work does not address policy evolution, policy conflict
resolution and policy lifecycle management. For example, cases when specification-level
policies may also change from one receiver to another in a distributed setup have not
been taken into account. Also, issues pertaining to different administrative domains (e.g.,
conflicts in action refinements and negotiations) have not been considered.

1.7. Organization

This dissertation is structured along the following lines:

Background: This part recaps the background information required for understanding
this thesis. This includes a policy language and a system model that the core contribution
of this thesis builds upon.

Chapter 2 describes a formal usage control model and an Obligation Specification Lan-
guage (OSL) which is first-order linear temporal logic with macros for cardinality con-
straints. Policies are constraints upon events. The language description includes the syn-
tax and the semantics of a future-time and a past-time flavor of OSL for specifying SLPs
and ILPs respectively.

Chapter 3 extends the usage control model of Chapter 2 with data flow concepts to
distinguish between data and its technical representations called containers. Enforcement
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of policies on data is done through data flow tracking. Possible data flows are defined by
a transition relation on system states; actual data flows are monitored on the grounds of
this relation.

The Core: Chapter 4 lays down the foundations of the core contribution of this thesis in
form of a set of user requirements for policy derivation. Starting towards the fulfillment
of those requirements, in this chapter, a domain metamodel that distinguishes between
actions and technical transformers at the level of classes and refines the former to the latter,
is described and instantiated for three use cases.

Chapter 5 combines the domain metamodel to the extended usage control model of
Chapter 3 to give formal semantics to the refinement of actions in policies using OSL. A
set of rules to derive the past equivalents of the future-time SLP formulas is also discussed.
The approach is elaborated by showing the translation of several example policies.

Chapter 6 provides a methodological guidance to automate the policy derivation from
SLPs to ECA rules. This includes the description of the steps in the technical process and
a work flow for the involved human users.

Chapter 7 describes the overall software architecture of the usage control infrastructure.
The policy derivation components facilitate the specification, derivation and deployment
of policies to the enforcement core that monitors and intercepts events, evaluates them
against the deployed policies and triggers further events according to the result of the
evaluation.

Conclusion: Chapter 8 discusses the state of the art in policy derivation, especially the
automated policy derivation approaches and their differences with this work. The sub-
problems and their solutions presented in this thesis are also reviewed in the context of
the related literature and the contribution of this work is argued in terms of the identified
differences.

Chapter 9 concludes with a critical analysis of the results and a highlight of interesting
future work directions.
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Chapter 2

The Usage Control Policy Language

Major parts of this chapter are verbatim from our yet-to-be-published book on usage control [2]
and have not been written by the author of this thesis.

In this chapter, the formal model for usage control policies is described where usage con-
trol policies are constraints on traces of events. This is extended to constraints over system
states in Chapter 3. The language is called the Obligation Specification Language (OSL)
which is essentially linear temporal logic with first-order constructs to express require-
ments that put time conditions (“data D must be deleted after 30 days”), cardinality con-
straints (“video V may be played maximum twice before being paid for”), event-defined
conditions (“notify the author when the document is edited”), action conditions (“watermarks
must be inserted before the photo is forwarded”) and purpose of use constraints (“for ad-
vertising purposes only”) [53]. The discussion of the language includes abstract syntax and
semantics of the specification- and the implementation- level policies in Section 2.2 and
Section 2.3 respectively. A concrete syntax of the policies is described in Appendix B.

2.1. Preliminaries

2.1.1. Events

Events are defined by a name (set EName) and a set of parameters. Parameters are defined
by a name (set PName) and a value (set PValue). Formally,

E C EName x P(PName x PValue).

For an e € &, let e.n denote the event’s name, e.p the set of its (parameter, value) pairs
and e.p.pn the value of the event’s parameter pn where pn € PName. Parameter name
obj € PName denotes the primary object of an event. Similarly, subject € PName can be
a reserved parameter to express the subject who executes the event. One example for an
event and the notation adopted is copy — {obj — myphoto.jpg, quality — 100, subject —
Alice} € & that specifies that photo myphoto.jpg is copied with 100% quality by Alice.
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In policies, events may occur with variables that map names to possible values, Var =
VName — VVal for VVal = P(PValue U EName). Given a set of variables, the set of
possibly variable events is defined as

VE C (EName U VName) x P(PName x (PValue U VName))

where variables are assumed to respect the types, i.e., to range over event names or pa-
rameter values. For instance, for Var = {v — {photoy, photos}, v2 — {51,...,100}}, the
variable event copy — {obj — v1, quality — v} € VE represents all copy events of photos
photo; and photoy with a quality greater than 50%.

2.1.2. Event Refinement

It is convenient to not have to specify all possible event parameters in policies but rather
concentrate on those that are relevant in a specific context. As an example, the quality
with which a photo p is copied may be irrelevant but not that it is photo myphoto.jpg that
is copied. To capture this, refinesEv C € x £ defines a refinement relation on non-variable
events. e; refinesEv ey iff e; and ey have the same name and the parameters (names and
values) provided for e; are a superset of those provided for e;. In the above example,
copy — {obj — myphoto.jpg, quality — 80} refinesEv copy — {obj — myphoto.jpg} but
=(copy — {o0bj — myphoto.jpg, quality — 80} refinesEv copy — {obj — myphoto.jpg,
quality — 100}) because of the disagreement on the quality parameter. Formally,

Ve, e €E: e refinesbv ea < ej.n = ex.n A ej.p 2 es.p.

The actual execution of a system produces maximally refined events only: all parameters
are determined by the system run. Maximum refinement, mazRefEv, is defined as

mazRefEv =E\{ec & |Te € E: e # e A e refinesEv e}.

2.1.3. Semantic Model of Events and System Runs

In order to model realistic systems, the distinction between actual and intended events
is useful. At some layers of the system, it is possible to make this distinction. Examples
include system calls at the operating system layer, commands in a user interface, and API
calls in a Java virtual machine: there is the intention to execute a system call/GUI com-
mand/API method; and the execution of the system call/command/method that leads
to a state change and/or an output message. The distinction is necessary for preventive
enforcement via inhibiting and modifying implementation-level policies: if an event has
already happened, it is in many cases impossible to undo it. Syntactically, the distinction is
relevant for the specification of implementation-level policies in Section 2.3 and irrelevant
in specification-level policies.

Since all parameters are provided if an event takes place in a system run, the set of
system events is defined as,

S C mazRefEv x {intended, actual}
System runs are modeled as traces,

Trace : N — P(S),
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that map abstract moments in time to sets of system events. The next section uses these
basic concepts of the formal model to describe the specification-level policy language.

2.2. Specification-Level Policies

Specification-level policies (SLP) are specified in the Obligation Specification Language
(OSL) which is first-order linear temporal logic with cardinality operators to express re-
quirements upon the number of times an action could be executed. E.g., “copy at most
three times”. As SLPs describe constraints upon future usage of data, they use the future-
time OSL.

2.2.1. Propositions

The first order propositional part of policies is defined by

I':= VE|N|String |TopT|...
V= (V)] false | ¥ implies ¥ | E(VE) | I(VE) | eval(I") | forall VName in VVal : U

plus the usual shortcuts in U: true for false implies false, not(y) for ¢ implies false,
1 or o for (not 1) implies 1o, 101 and 19 for not (i implies not 12), and exists vn in VS :
1 for not(forall vn € VS : not 1)). Whenever no confusion between semantics and syntax is
possible, in the following, the symbols —, =, A, V,V, 3, € will be used for implies, not, and,
or, forall, exists, in.

I(-) and E(-) syntactically capture the distinction between intended and actual events
introduced in Section 2.1.3.

2.2.2. Quantification

Quantifications range over the values of the type of the respective variables. For instance,

Vony € PHNAME : ¥ vng € TIME
E(copy — {obj — wvny, time — vna}) — E(log — {obj — vny, time — vny})

stipulates, for a set of photos PHNAME and time points TIME, that “the fact that a photo
is copied must be recorded”. In the following, with the exception of implementation-
level policies as described in Section 2.3, let us assume that all variables are bound by
a quantifier and that all bound variables are renamed in a way that makes sure which
quantifier binds them. Related work [21] introduced the additional distinction between
first and ongoing events to the end of distinguishing between the possible semantics of
events that last longer than one timestep duration. For instance, if there is a policy about
playing a video like “play video at most twice”, this can be understood as (1) play the
video twice (regardless of how long it is) and (2) play the video for at most two moments
in time. For brevity’s sake, however, this distinction is not made in this thesis.
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2.2.3. Conditions outside Temporal and First-Order Logic

eval is used for the specification of such conditions. A full language for the respective
computation, I' with possible operations op, is not provided here. One choice is XPath
that is also used in the implementation-specific concrete syntax described in Appendix
Section B.2. As an example, with vnq, vnp € VName,

Vony € TIME :Vong € {EU, US,JP,AU} :
E(print — {obj — myphoto.jpg, time — wvnq, location — vny})
— (ﬁeval(9 < wng < 17) A eval(vng # EU) —
E(log — {obj — myphoto.jpg, time — vny, location vng})>

specifies that “the fact that the specific photo is printed outside Europe and the time of
printing does not fall between 9 to 17 hours must be logged”.

The use of eval makes it possible to specify conditions on (absolute) time and location,
one of the type of policies described in the beginning of this chapter. This has, for instance,
been implemented for mobile phones to the end of enforcing requirements such as “do not
use outside company premises” [52].

The semantics of eval(7) is left unspecified and referred to as

[eval()] evai-

2.2.4. Formal Semantics of Events

The semantics of events is defined by |=.C S x ¥ as follows. For a variable event e that
contains a variable v € Var with vn € dom(v) and for z € Var(vn), let e[vn — z] denote
the result of replacing all occurrences of the variable’s name vn in e by the value z. There
may be more than one substitution in square brackets. For a term ¢, let VarsIn(t) denote
the set of variables in ¢. Then, let Inst. : VE — P(€) define a function that generates all
ground substitutions of an event with variables, i.e.,

VarsIn(e) = {vny — VSi, ..., v — VSi}
= Inst.(e) = {e[ony — vur, ..., vng — o] : AX_ vv; € VS

The semantics of possibly variable events is defined as

Ve € mazRefEv; e € VE Je” € &
(¢/,actual) |=. E(e) < € refinesEv e’ A e” € Inst.(e)
A (€, intended) =, I(e) < € refinesEv e’ N e € Inst.(e).

2.2.5. First-Order Future-Time Formulae

Overloading the propositional operators, the abstract syntax of the future temporal logic
for specifying usage control requirements is defined as

O = ()| V| false | D implies @ | forall VName in VVal : P |
O until @ | ¢ after N | replim(N, N, N, ¥) | repuntil(N, ¥, @)
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with the macros true, not(y), g1 and @2, p1 or w2, vn € VV : . Whenever no confusion
between semantics and syntax is possible, in the following the symbols —, =, A, V,V, 3, €
will be used for implies, not, and, or, forall, exists, in. The intuitive semantics of the
propositional and first-order operators is as usual. until is the weak until operator of LTL:
w1 until ps is true iff ¢ is true until 2 eventually becomes true, or ¢; is true eternally.
@ after n is true iff ¢ becomes true after n timesteps. replim(i, m, n, ) is true iff ¢ is true
in-between m and n times in the next i steps. Finally, repuntil(n, 1, x) is true iff ¢ is true at
most n times until y eventually becomes true, or until eternity if y never becomes true. It is
convenient to add four further shortcuts to the syntax: Oy for ¢ until false specifies that ¢
will always be true in the future. i repmaz 1, defined as repuntil(, 1, false), specifies that
1 should be true at most 7 times in the future. ¥ within i for replim(i, 1,4,v) and ¥ during i
for replim(i, i,1,1) for i € N, € ®,9 € ¥ describe that 1) will become true at least once
or continuously in the next ¢ steps.

Lifting the notation for substitutions of events, for a formula ¢ € @ that contains a
variable vn € Var, p[vn — vv] will denote the result of substituting all occurrences of vn
in ¢ by value vv € Var(vn).

Formal Semantics The formal semantics is defined by =¢C (Trace x N) x @ as follows.!

Vs e Trace; t €eN; p € O o (5,1) = ¢ & @ # false N
(EIeGVS e (p=F(e)Vp=1I(e)NTe' €s(t): e Eecop
V3P, x € P o =1 implies x A =((s,1) Fr ) V (5,1) Fy X
VIy el o ¢ =-eval(y) A [¢] evar = true
Vdoun € VName; vs € VVal; ¥ € O o
@ = (forall vn in vs : ) ANV vv € vs ® (s,t) =7 Y[vn — vv]
VA, x €D o <P:¢MX/\<VU€N o t<v=(s5,v) =
ViueNet<uAn(s,u)EfxAVveN e t<v<u=(s,0) ):fdj)
vineN; e ® o p=19aftern A(s,t+n) =9
VAdn eNy; ,reN; peUe
© = replim(n,l,r,19) A
I<H#GeEN[F<nA(s,t+)) Ery}<r
VdneN; v e U, x € ® o ¢ = repuntil(n,ip, x)
/\((EIuENl o (s,t+u)=rx AN NVveN e v<u= ((s,t+v) =f X))
NG €N |G < uns(t+5) by 6}) < n)
VE#{j € Ny | s(t+4) r ¥}) < n))

This section described a future-time policy language that will be used in this thesis for
the specification of policies. The next section describes a past-time variant of this language
for the implementation-level policies.

!Counting has been simplified for just one event per timestep. E.g., in the semantics of replim, we evaluate in
how many timesteps the specified formula is true. The advantage of such semantics is that 1) is not limited
to intended and actual events, but may contain any proposition. The disadvantage is that this way, we are
not able to count how often the same event happened within one timestep. For real implementations, this
is not a limitation because there is usually only one event per timestep.
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2.3. Implementation-Level Policies

Specification-level policies specify what may or must not be done with data. Implementat-
ion-level policies (ILP), specify how this should be done. In general, this can be achieved
by inhibition, modification, and execution, as introduced with examples in Section 1.2.2.1.
ILPs for preventive enforcement (detective enforcement is discussed in Section 2.5) can
be described as event-condition-action rules [54]. The trigger event is an intended event,
I(z); the condition is a formula in a past variant of the specification language (¢ € 7,
introduced and described in Section 2.3.1); and the action inhibits or modifies the trigger
event or executes additional events [25]. Formally, an ILP is defined as follows. In case
the trigger is detected—an intended event /(z)—and if turning the intended event into an
actual event made the condition ¢ true, then one of the possible actions is performed.

e Inhibition is specified as —E(z).

e Modification means E(z) is inhibited, but further events, A*, I(z;) , may be per-
formed. Since these events themselves can be subject to treatment by ILPs, they are
specified as intended and not actual events.

¢ Finally, execution means the trigger may be executed if no other ILPs prohibit this,
and a further set of events, A%, I(z;), is executed in addition.

2.3.1. Past-Time Conditions

Conditions for ILPs are specified in a past temporal logic, ~ defined as

O = (®7) | V| false™ | D~ implies™ O~ | forall VName in VVal : &~ |
O~ since™ @~ | &~ before™ N | replim™ (N, N, N, ¥) |
repsince” (N, ¥, )

plus the shortcuts true™, not~, and™, or~, ezxists. Once again, if no confusion between
semantics and syntax is possible, in the following the symbols —, -, A, V,V, 3, € will be
used for implies™, not™, and™, or~, forall, exists, in. [y is true if ¢ is true in all
timesteps before and including the current timestep. As in the future case, it is con-
venient to add three further shortcuts to the syntax: for i € N, € ® and v € V¥,
Y repmaz” i <> repsince (1,1, false™) stipulates that 1) must have happened at most i
times in the past; ¢ within™ i <> replim™ (i,1, i,4) stipulates that ¢ has happened at least
once in the past i steps; and ¢ during™ i <> replim™ (1,1, i,1)) stipulates that ¢» must have
been true in each of the past i steps.

Lifting the notation for substitutions of events, for a formula ¢ € ®~ that contains a
variable vn € Var, p[vn — vv] will denote the result of substituting all occurrences of vn
in ¢ by value vv € Var(vn). The semantics of ®~ is defined by |=;-C (Trace x N) x &~
that will be used in an infix manner:
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Vs € Trace; t €Ny m€ @ o (s,t) Fp- w6 (7 # false™) A
(EeEVEO(ﬂ:E(e)VW:I(e))/\He’Es(t):e/):eﬂ
3, x € ®; o =1 implies™ x N —((s,t) Fp- ¥) V (s, t) Fp- X
vy el o m=eval(y) A [7]evar = true
vV Jovn € VName; vs € VVal; p € O o
7 = (forall vn in vs : ) AV ov € vs @ (s,1) - Ylvn = vv]
v Elw,xe@i_o7r:¢m_x/\((VU€NoUgté(s,v)’:f—w)
VEueN e u<tA(s,u) - xAVvEN e u<v<t=(s,0) - ¢))
V dneN; e em=1before” n ANt >nA(s,t—n)E- 1
vV o 3n,l,reN; e U; ep=replim™ (n,l, 1)
A< (L €N |j < min(n,t) A s(t—3) =y 9} <7
V dneN;pel; xyed; ec& o p=repsince (n,v,x)
AN(BueN; o t>un(s,t—u) - xA(VveEN o v <u=—((s,t—v) =4~ X))
NG EN | < uns(t—j) v} < n)
V#{GEN|j<tAs(t—]) - ¢} <n)))

< <

As already mentioned, implementation-level policies are of the form event-condition-
action (ECA) rules described next:

2.3.2. ECA Rules
Let ¢t C V& x &, defined as
t(ve, p) & (I(Ue) A (E(ve) — 90)) (2.1)

denote the situation (trigger event ve and condition ¢ € ®~) under which a specific ILP
is supposed to fire. Three different kinds of ILPs are typed as m,;, € VE x @7, myeq C
VE X &7 x P(VE), Mege € VE x @~ x P(VE). Using V Varsin(p) as shortcut for Vony €

VVi ... Yoy € VViif Varsin(p) = {vny,...,vng} and Var(vn;) = VV; forall i <k,
ILPs are defined as
Minh (ve, ) & VYV Varsin(ve) : t(ve, ) — —E(ve)

Mmod (ve, @, Mod) < ¥ VarsIn(ve) : t(ve,p) — (—E(ve) A Mege(ve, p, Mod))
Mexe(ve, o, Bre) & ¥V Varsin(ve) = t(ve, @) = Acppe L(7i)-

Note that inhibitors can be expressed as modifiers via mj,;(ve, ©) < Mpod(ve, @, ). For
the sake of readability, a slightly redundant notation has been adopted here. For fixed sets
of n; inhibiting, np modifying and n3 executing ILPs, their composition computes to

ny n2 n3
M < /\ My (v T A /\ Mimod (V€™ ™4 Mod;) A /\ Meze (VeSS @7, Bxey). (2.2)

7
=1 =1 =1
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2.3.3. Default Behavior

The final step is the conversion of intended to actual events in case no other ILP forbids
them (in other words, the default policy is allow on all events). If there is an intended event
I(e), in a real system, it is always maximally refined, e € mazRefEv. It should be allowed,
i.e.,, E(e) should be executed, if no modifying or inhibiting ILP fires. Such an ILP fires
if e refines any ground substitution of its trigger event and, at the same time, makes the
ILP’s condition true. Taken together, the default rule is expressed as follows. If there is a
maximally refined intended event, then there either must be a corresponding actual event;
or a modifying or inhibiting ILP is triggered, which would prohibit the corresponding
actual event. Formally,

M aefaur < /\ I(e) — (E(e) v \/ 3 VarsIn(ve) :

eemazRefEv (ve, )t M — my,;, (ve, @)
Vo M = mpeq(ve, @, Mod)

e refinesEv ve A 90)
(2.3)
where the ILP definitions are assumed to contain pairwise mutually disjoint set of vari-
ables.

2.3.4. Composition and Mechanisms

The composition of a set of ILPs is defined by
Mcomplete < M A Mdefault- (24)

In terms of the architecture described in Chapter 7, the Policy Decision Point (PDP)
evaluates the instantiations of Equation 2.1 (which in part also occur in Equation 2.3), and
the Policy Enforcement Point (PEP) implements the right hand sides of the instances of
Equation 2.3 and the “allow” case—where an intended event is transformed into an actual
event—in Equation 2.3.

The formula O(Mcompiete) defines the semantics of all combined ILPs in a system.

ILPs and default rules can be implemented using runtime verification or complex event
processing technology. When deployed in a usage control context, such monitoring tech-
nology will be referred to as “mechanism” in the remainder of this article. While strictly
speaking the composition of ILPs (predicates M ,mpiete) configures mechanisms, we will
use the two terms interchangeably in the following. This also explains why we denote
ILPs by M and m.

For the sake of conciseness, the above definition of ILPs slightly simplifies the original
definition [23]: The original definition allows for the specification of multiple subsequent
events to be performed by modifying or executing ILPs.

2.3.5. Free Variables

In contrast to specification-level policies, ILP specifications may contain free variables.
When containing free variables, their semantics is undefined. However, they can then
be configured by replacing all free variables by constants which makes sure a semantics
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is defined. ILPs with free variables act as templates for an entire set of ILPs that can be
configured, among other things, at runtime.

The next section shows by example how one SLP corresponds to several ILPs with dif-
ferent enforcement strategies.

2.3.6. Policies by Examples

The following subsections demonstrate the different enforcement strategies for the use
case of the running example introduced in Section 1.4.2.

2.3.6.1. Example 1

In the first example, Alice specifies a policy for controlling the copies of her personal data
by her friends. The specification-level policy is “don’t copy my personal data”, formally
expressed as

V v € PERSDATA : O(—(E(copy — {0obj — v})))

¢ Enforcement by inhibition can be performed by blindly blocking all attempts to copy
personal data. Formally, for v € VN,

minh(copy — {obj — v})

¢ For enforcement by modification, let us assume for simplicity’s sake that personal
data contain two fields, email and birth date, and that anonymization means that
these fields have been replaced by XXX, as expressed by proposition anonymized(-).
Enforcement by modification can be performed by transforming the email and birth
date fields of non-anonymized data into XXX. Formally, with v € VN,

Mmod(  copy — {obj — v}, eval(anonymized(v) == false),
{copy — {obj — eval(removeEmailBirthday(v))}})

where proposition removeEmailBirthday performs the anonymization. Note that the
condition could also be set to true which would make the ILP anonymize data that
may well have been anonymized before.

¢ Enforcement by execution can be performed by sending a notification message to
Alice whenever data is to be copied. Formally, with v € VN,

Mege(  copy — {obj — v},
{notify — {rcor — Alice, obj — v}}).

2.3.6.2. Example 2

In the second example, Alice wants to stipulate that a video shared by her, myvid.mp4,
must be paid for in order to be played with good quality. A respective specification-level
policy is

(Vq e{ly,...,Tp}: —(E(play — {obj — myvid.mp4, qual — q}) A eval(g > 50)))
until E(pay — {obj — myvid.mp4, amount — 10})
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where L, and T, are respectively the bottom and top elements of the lattice (P Value, <,)
imposed on parameter values.

An inhibiting ILP that makes sure an unpaid video is not played with good quality is

min( play — {obj — myvid.mp4, qual — q},
eval(q > 50) A ((—E(pay — {obj — myvid.mp4})) before™ 1)).

A modifying ILP that reduces quality to 50% is defined by

Mmod(  play — {o0bj — myvid.mp4, qual — q},
eval(q > 50) A D(—E(pay — {obj — myvid.mp4})) before™ 1,
{play — {obj — myvid.mp4, qual — 50}}).

Finally, an executing ILP could trigger the automated payment of the video:

Meze(  play — {0bj — myvid.mp4},
B(—E(pay — {obj — myvid.mp4})) before™ 1,
{pay — {obj — myvid.mp4, amount — 10}}).

2.4. Policy Activation and Violation

Defining the semantics of combined ILPs as O(M ompiete), as suggested in Section 2.3.4,
does not state from which point onwards this formula should hold. A simplistic approach
is to assume that all ILPs are active from time point 0 onwards. In reality, with policy
livecycle management, for an ILP 7 with name 7, there would be activation and deactiva-
tion events parameterized by the name of the ILP and an abstract moment in time, ¢. The
semantics of a ILP would then amount to

O(activate(T,t) = 7 until deactivate(T)),

starting at activation time ¢, and the operators of ®~ would have to be augmented by a
further parameter ¢ and adjusted to “look back” only until max (0, ¢). In deriving past-
time rules from future-time SLPs, a construct Start is used to represent policy activation
in Section 5.2.

In terms of policy violation, it must be stated what should happen if a policy has been
violated for the first time. For instance, we could assume that once a policy is violated (that
is, the formula evaluates to false), it remains violated forever; or we could issue penalties
and upon payment, reset the state of the formula to start “fresh” monitoring and allow fur-
ther violations; or we could specify meta-policies that would specify constraints upon the
maximum number of times a policy could be violated before either the violation becomes
anorm (create new usage control rules learning from policy violation patterns) or the data
consumer is blacklisted.
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2.5. Detective and Preventive Enforcement

Inhibitors and modifiers are used for preventive enforcement: their goal is to ensure that a
policy is adhered to. Executors can be used for both preventive and detective enforcement.
Examples for preventive enforcement have been provided in Section 2.3.6. Executors can
be instrumental for detective enforcement as well: the event to be executed then is a mere
logging event. There also is a second possibility to implement detective enforcement that
directly uses specification-level, i.e., future-time policies rather than the ILPs. For safety
properties—and all realistic usage control properties are safety properties because in real-
istic systems all duties are time-bounded—there exists an earliest moment in time when a
policy is violated or satisfied forever. The respective shortest “good” and “bad” prefixes
can be precisely defined and detected at runtime [55, 56]. If the violation of a specification-
level policy is detected by using this technology, then any kind of compensating action
can be undertaken. These include undoing an action, lowering trust ratings, implement-
ing penalties, etc. Formal details are provided elsewhere [53].

2.6. Discussion

In this work, though the policies are specified in the future variant of OSL, it is also possible
to express usage control requirements in past-time OSL. Let us consider an SLP “do not
use outdated data” where outdated data means that the data was not updated in the last 3
days. This SLP can be expressed in future OSL as:

O(E(update — {obj — d}) A within(3, E(use — {obj — d})) V ~E(use — {obj — d}))
The same policy can be expressed in past OSL as:
B(E(use — {obj — d}) — within™ (3, E(update — {obj — d})))

Specification-level policies are described in future-time OSL because intuitively it makes
more sense to use future tense to talk about events that will take place only later. However,
a decision to use future over past temporal logic for the specification of policies is driven
by intuition and taste. We know that the two (the future logic and the past logic) are
equivalent in the sense that everything that can be expressed in one can also be expressed
in the other [57, 58]. Therefore, the specification of usage control policies is not limited to
using future-time OSL.
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Chapter 3

Data Flow Tracking for Usage Control

Major parts of this chapter are verbatim from our yet-to-be-published book on usage control [2]
and have not been written by the author of this thesis.

As introduced in Chapter 1, data (e.g., a photo) exists within a machine in form of several
representations that possibly reside at different layers of abstraction (e.g., a file at the oper-
ating system layer, a set of pixels at the windowing manager layer, a browser object at the
application layer etc.). These representations are called containers. However, from an end
user’s point of view, data is an abstract concept with an intuitive set of actions relevant to
it (copy, print, delete, etc. a photo). Therefore, it is natural for end users to specify usage
control policies that address data (“delete this photo”) rather than events on layer-specific
representations (“unlink file;, filey,..., file,, empty clipboard, delete mail,,, from archive,
erase backupgy., etc.”). For enforcement of policies on data, a system must distinguish
between data and containers. Usage control decisions should then take into account the
dissemination of data among different containers. For instance, “delete this photo” should
be enforced by deleting every container that contains this photo.

In the previous chapter, usage control policies were specified as constraints on events
that target objects without distinguishing between the abstract data and its concrete rep-
resentations. In this chapter, a formal distinction between the two is introduced (in Sec-
tion 3.2) and the usage control model is augmented with data flow tracking capabilities at
one arbitrary layer of abstraction in a machine (in Section 3.3). Building upon this distinc-
tion, the policy language is extended to also specify usage control policies as constraints
upon system states (in Section 3.4).

3.1. Data Flow Preliminaries
Data flows are considered in systems that are described as tuples (P,D,S,C, F,%,0;,R)

where P is a set of principals triggering system events, D is a set of data elements, S is the
set of system events introduced in Section 2.1.2, and C is a set of containers.
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Data flow states ¥ are defined by three mappings: a storage function of type C — P(D)
that describes which set of data is potentially stored in which container; an alias function
of type C — P(C) that captures the fact that some containers may implicitly get updated
whenever other containers do; and a naming function that provides names for containers
and that is of type F' — C for a set of identifiers, . We need identifiers to correctly model
renaming activities. Thus the data flow state of an arbitrary system is defined as:

S = (C = P(D)) x (C— P(C)) x (F - C).

o; is the initial state of the system where containers are mapped to empty sets of data,
containers and identifiers.

The transition relation R C ¥ x P(S) — X is the core of the data-flow tracking model.
It encodes how the execution of events affects the dissemination of data in the system.
At runtime, the usage control infrastructure maintains the data state ¥. Events are inter-
cepted, and the information state is updated according to R. In the following, it is assumed
that the principals executing events are provided as a parameter of the event itself.

For simplicity’s sake, let us assume that the events happening at the same timestep are
independent of each other such that any possible serialization of them would lead to the
same state:

VoeX:R(o,8)=0
VoeX; te Trace,n € N; Es Ct(n); e € t(n): R(o, Es) = R(R(o,{e}), Es\ {e})

This is to say that if the order in which some events take place matters (e.g., “copy A
to B” and “delete A”), it is assumed that such events take place in different subsequent
timesteps.!

In the usage control model of Chapter 2, data is addressed by referring to specific rep-
resentations of it as event parameters. For instance, the policy described in Example 2,
Section 2.3.6.2 stipulates that if a file (a specific representation and a specific container)
called myvid.mp4 has not been paid for, it cannot be played with good quality. With data
flow concepts, the situation where a copy of that file, myvid2.mp4, should not be played
either is addressed. To this end, the semantic model is extended by data usages that allow
to specify protection requirements for all representations rather than just one. Using the
data flow tracking model, at each moment in time ¢, the current data state of the system
is computed as follows: the usage control model’s system trace is considered until ¢, the
respective events in each step are extracted, the successor data states for each data state is
iteratively computed and eventually we get the data state at time ¢. In an implementation,
of course, the recursive computation is done using state machines to record the data state
of a system at each moment in time (Chapter 7).

IThis assumption may sound restrictive, but when it comes to concrete implementations, it is seldom the
case that multiple events take place at the same time; usually each event has a unique timestep that allow
us to establish a clear order between them.
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3.2. Data, Containers and Events

We need to distinguish between data and containers for data. At the specification level, this
leads to the distinction between two classes of events according to the “type” of the obj
parameter: events of class datallsage define actions on data objects. The intuition is that
these pertain to every representation of the data. In contrast, events of class containerUsage
refer to one single container. In a real system, only events of class containerUsage can hap-
pen. This is because each monitored event in a trace is related to a specific representation
of the data (a file, a memory region, etc). dataUsage events are used only in the specifi-
cation of policies (SLPs), where it is possible to define a rule abstracting from the specific
representation of a data item. There also a third class of events, noUsage events, that do
not define usages of containers or data. noUsage events include notifications, penalties,
etc. A function getEclass that extracts if an event is a data or a container usage or neither
is defined as:2

EventClass = {dataUsage, containerUsage, noUsage}
getEclass : € — FventClass
DUCC PValue N CND=g

The system must satisfy the following conditions:

Ve €& : getEclass(e) = dataUsage <= T par € D : (obj — par) € e.p
Ve € & : getEclass(e) = containerUsage <= Ipar € C : (obj — par) € e.p.

We have seen in Section 2.1.2 that unmentioned parameters are implicitly included in
events specified in policies by using relation refinesEv. For example, if an obligation pro-
hibits the event copy — {obj — objB}, then the event copy — {obj — objB, device —
dev123} is prohibited as well. Now this definition of event refinement can be extended as
follows: an event of class dataUsage can be refined by an event of class containerUsage if
the latter is related to a specific representation of the data the former refers to. As in the
original definition, in both cases the more refined event can have more parameters than
the more abstract event. An event ey refines an event e; iff

* ¢; and ey both have the same class (containerUsage or dataUsage) and
® e refinesEv eq;

or
¢ if ¢; is a dataUsage and e a containerUsage event,

® ¢; and ey have the same event name,

% Note that a datallsage event addresses all the different representations of data at once. Therefore, a
dataUsage event could be seen as a special case of a variable event with the condition that the variable
object can take only those values from the set of containers where the concerned data resides. On the other
hand, the set of values over which the codomain of a variable ranges in a variable event, is fixed by defini-
tion. Whereas, in case of a dataUsage event, the set of containers from which the object can take its value
varies according to the data and container mappings.
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¢ in the current data flow state, there exists a data item d stored in a container ¢ such
that (obj — d) € e;.p and (obj — ¢) € ez.p, and

¢ all parameters (except for obj) of e; have the same value in e, and e; may possibly
have additional parameters.

Formally, relation
refinesEv; C (€ x X) x €

checks whether one event e; refines another event e; also w.r.t. data and containers. ¥ is
needed to access the current data state:

Vey,e €& VoeX: (e,o0)refinesbu; e <~
(getEclass(e1) = getEclass(e2) N ey refinesEv e1) V
(e1.n = ez.n A getEclass(e1) = dataUsage N getEclass(e2) = containerUsage N
(3deD,3ceC: deo.s(c)A
obj — d € er.p Aobj— c € expAerp\{obj— d} Cexp\{obj— c})).

where o.s denotes the storage function of state o.

3.3. Computing the Data State

We use the function states : (Trace x N) — X to compute the data flow state ¢ at a given
moment in time.

states(t, 0) = o
n >0 = states(t,n) = R(states(t,n — 1),t(n — 1))

Note that states(t, n) does not consider events in ¢(n) because the policy decision of events
at time n requires the data-flow state of the system after the execution of all events in
t before time n. With the help of refinesEv; and states, the satisfaction relation for event
expressions in the context of data and container usages is defined by adding one argument
to |=. and obtaining =, ;C (S x X) x U as follows:

Ve' € mazRefEv; e € VE; c € X; Fe’ €& :
((¢', actual), o) f=c.i E(e) < (€,0) refinesEv; " N e” € Inst.(e)
A ((€¢,intended), o) |=ei I(e) <= (€,0) refinesEv; " N e € Inst(e).

3.4. State-Based Operators

In the semantic model, policies are defined on sequences of events. The motive is to de-
scribe certain situations that must be avoided or enforced. However, in realistic scenarios,
there might be infinitely many sequences of events that lead to the same situation, e.g., the
copy or the deletion of a file. Instead of listing all these sequences, it appears more conve-
nient in situations of this kind to define a policy based on the description of the (data flow
state of the) system at that specific moment. To define such type of policies, a new set of
state-based operators, O, are introduced:
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&, ::= isNotIn(D,P(C)) | isCombined With(D, D)
plus the macro isOnlyIn(D,P(C)) with isOnlyIn(d, Cs) < isNotIn(d,C \ Cs), and define
O, =P | D,

Intuitively, isNotIn(d, Cs) is true if data d is not present in any of the containers in set
Cs. This is useful to express constraints such as “video v must not be distributed over the
network,” which becomes O(isNotIn(v, {cpe: })) for a network container (any socket) cye;.
isCombinedWith(d;, d2) checks if data items d; and dp are combined in any container. This
is useful to express simple Chinese Wall policies. isOnlyln, the dual of isNotln, is used to
express concepts such as “data d has been deleted:” isOnlyIn(d, @).

Leveraging the states function defined before, the semantics of the specific data usage
operators in @, is defined with semantics [=sC (Trace x N) x ®:

Vte Trace; n €N; o € &g; 0 €X: (t,n) |Es ¢ < o = states(t,n) A
3d e D,Cs CC:p=1isNotln(d,Cs) ANV €C:
deos(d) = ¢ Cs
V 3di,dy € D: = isCombinedWith(dy, d2) N3 €C:
dy € 0.5(") N\ dy € 0.5().

The language ® is now augmented with the state based operators in ®;, obtaining the
new language @,

O, = (D) | V| false | ®; implies ®; | forall VName in VVal : @ |
O, until ®; | ®; after N | replim(N,N, N, U) | repuntil(N, ¥, ®;) |
P,

and its semantics |=¢ ,C (Trace x N) x ®;

Vse Trace; t eN; o € O; o (s,t) F=p5 < ¢ # false A
(EIeGVE e (p=F(e)Vp=1I(e)NTe' €s(t): e EFeo
V3, x € ®; o o =1 implies x A =((s,t) Fr ) V (s,1) Frs X
VIy el o ¢ =-eval(y) A [¢] evar = true
Vdun € VName; vs € VVal; ) € O; o
@ = (forall vn in vs : ) ANV vv € vs ® (s,t) =7 s Y[vn = vv]
VY, x € P, o ap:me/\(VUEN o t<v=(s5,0)=ps ¥
ViueNet<uAn(s,u)Frs x ANVveEN e t<v<u=(sv) ):f,s¢)
VineN; Y e ®; o p=1pafter n A (s, t+n) =1
VIneNy; LreN; €U o o =replim(n,l,r,) A
I<#{jeNi[j<nA(st+]) Frs} <7
VdneN; Y e U, x € ®; o ¢ = repuntil(n,, x)
/\((EIuENl o (s,t+u) s x N(VveN e v<u==((s,t+v) Efs X))
AN#TeENL[]<unst+])Epsv)) <n)
V#{j € Ni | s(t+7) Frs ¥}) < n))
Vi € Q5 A (s, t) s
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Similarly, a past variant of the language (®;") and its semantics |=; ;C (Trace x N) x ®;°
is also defined.

O = (D) | V| false™ | ©; implies™ ®; | forall VName in VVal : @, |
O since” ©; | . before™ N | replim™ (N,N,N, U) | repsince™ (N, U, &) |
F

Vs € Trace; t €N; m€ @ o (s,t) = < (m # false™) A
(EIeEVSo(W:E(e)Vw:I(e))/\Ele'ES(t):e’|:e7r

V 34X € B o 1= implies™ x A((5,0) 7, ¥)V (5,8) T X

dy el o m=eval(y) A [7]evar = true

vV Joun € VName; vs € VVal; p € O o
T = (forall vn in vs : ) AV vv € vs o (s,1) =, Plvn — vo]

Y Hw,xeq)i_OW:wm_xA((VUENoUgté(s,v)}:isw)
\/(EueNougt/\(s,u)):;sx/\VUENou<v§t:>(s,v)):]773¢))

v EInEN;@ZJECI);OW:@ZJM*n/\th/\(s,t—nﬂzisd)

Vo dAn,l,reN; e U; e =replim™ (n,l,r )
AN L<(FHI eN[J < min(n,t) Ns(t—j) v} <r

V dneN;peU; xed;, ec o ¢ =repsince” (n,,x)
/\((EIuGNlotZu/\(s,t—u)}:f_,sx/\(VveNo’U<u:>ﬂ((s,t—v)|:;5x))
NEFIEN]T<uns(t—j) Fp, v} <n))
V(#{EN[F<tAs(t—)) Er, v} <n)))

Vop €PN (s,t) s

Leveraging |=; ; the ILP definitions of Section 2.3.2 are augmented to allow for state-

<

based operators in the conditions (¢ € ®,").

This chapter together with Chapter 2 recaps a usage control model that specifies and
enforces policies on data and their concrete representations using data flow tracking con-
cepts. With this background, the following chapters present an in-depth description of the
core contribution of this thesis.
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The Core
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Chapter 4

Generic Modeling of Abstract Data and
Actions

The results discussed in this chapter have already been published in [54], co-authored by the
author of this thesis.

Specification-level policies (SLP) describe what must and must not happen to data through-
out the execution of a system. Implementation-level policies (ILP) refine the SLPs by stat-
ing how they will actually be enforced. One major challenge in deriving the latter from the
former is that there is not one correct meaning of data and action in SLPs. Instead, they
have several meanings depending upon the context and it is not sufficient to capture their
semantics in an ad hoc manner.

Let us consider a simple usage control policy that Alice wants to enforce: “Friends must
not copy my photo”. A photo can be a pixmap in a windowing system, a file in an operating
system, a memory area that an application writes to, a java object, a blob in a database, a
stream of packets in a network connection, an email attachment and so on. Similarly, copy
might be understood as taking a screenshot, copying the photo via context menu or file
menu items, copying the file to another location on the disk or external storage, reading
the file via a java process and serializing it after cloning the java object, uploading the file
to an Internet location and downloading it on another machine, cloning database tables,
sending the photo as an attachment in an email etc. Which events and related containers
capture “copy photo” correctly, depends upon the domain and technical systems in place.

This simple example shows the need of a generic and systematic approach to refinement
of data and actions for policy derivation in the usage control context. The following section
describes the requirements for policy derivation at a high-level. These requirements will
act as a benchmark to assess the achievements of this work. The rest of this chapter and
the following chapters are structured along the fulfillment of these requirements.
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4.1. Policy Derivation Requirements

The overall goal of this work is to derive implementation-level policies from specification-level
policies in the context of usage control. Intuitively, this high-level goal can be decomposed
to three sub-goals, each of which could be achieved by meeting a corresponding set of
requirements.

R1) Refinement of constructs: There must be a generic way to refine the basic policy con-
structs viz. data and action into technical equivalents.

R2) Policy derivation: SLPs must be translated to ILPs using the refinement of data and
action.

R3) Automation of policy derivation: Policy derivation from the specification to the imple-
mentation levels must be automated.

Refinement of constructs: The intuitive meanings of data and action are domain-specific.
For instance, in the above example, which events and related containers capture “copy
photo” correctly, depends upon the domain structure. So, the first user requirement en-
tails the definition of a language for modeling domains with at least two levels of details:
one that represents the end user’s view and is used in the SLPs; the other which describes
in detail the technical systems where the SLPs are actually enforced after being translated
to ILPs (®1.1). As technical systems can be described in various ways depending upon
the level of details captured in the model, the language must allow for hierarchical refine-
ment (%1.2). For refinement purposes, the language must have mechanisms to connect the
different levels of details in the domain model that describes data and action (®1.3).

Policy derivation: As the motive of this work is the derivation of usage control policies,
there must be a generic way to use the data and action refinements in the policy derivation.
For this, the domain modeling language from R1.1 — 1.3 needs to be brought to the usage
control context (2.1). The semantics of policy derivation must be defined in this combined
scenario (R2.2).

As the preventive enforcement mechanisms in the usage control infrastructure make
decisions based on the current state of the system, and, as specification-level policies tend
to be formulated in terms of the future usage of data (see Chapter 2), we need to transform
the constraints into enforceable conditions that are defined on the past (%2.3). Otherwise, the
system would need to be able to look into the future. Moreover, enforcement of some
policies might require system information that can be known only at the runtime, e.g.,
process ID at the OS layer, user session identification at the web browser layer and subject
attributes at different layers in a distributed system. It must be possible to add this type of
context-specific information in the derived policies (®2.4).

If the ILPs contain events that take place in a machine at different layers of abstraction
(as is expected from the fulfillment of the aforementioned requirements), then some of
these events might be interdependent in the sense that one high-level goal can be achieved
in the system through several events. E.g., saving a webpage triggered at the web browser
layer includes writing a file at the OS layer. If such interdependent events are not con-
nected to each other either during policy derivation or enforcement, then, policies related
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to counting high-level actions will be wrongly enforced. For instance, in this example, a
single attempt to copy data via saving a webpage would be recognized as two copy events:
one, because copy is refined as save page event and the other, because copy is refined also
as write file events. Therefore, policy derivation must somehow include the connection of
relevant events across different layers of abstraction (%2.5).

Automation of policy derivation: The disadvantages of manual policy refinement are
discussed in Section 1.3. In light of this, we need an automated policy derivation frame-
work. So a well-defined methodology to automate the policy derivation must be described.
This must include identifying and putting all the different activities of the involved users
(®3.1) and relevant system processes in a well-defined order (%3.2).

Additionally, policy derivation must include the transformation of the policies to the
Event-Condition-Action (ECA) format (%3.3) so that the derived policies could be auto-
matically deployed. This includes the specification of enforcement strategy in each policy.
Intuitively, this can be non-trivial because one SLP can be enforced in several ways as
shown by examples in chapters 1 and 2.

As SLPs are to be specified by end users who are not supposed to know the syntax
and the semantics of the policy language OSL, there must be a solution for OSL-agnostic
specification of usage control policies (%3.4). Policy specification also needs to address the
concern that it is not trivial for end users to fully understand and specify security policies
in general [59, 60] (R3.5).

The above requirements will serve as a guideline for the design and implementation
of the solution and the evaluation of the achievements of this thesis (Chapter 9). The
next sections and the following chapters describe in detail how these requirements are
met. To start with the first high-level requirement, a domain metamodel that distinguishes
between abstract actions and technical transformers and refines the former to the latter, is
described and instantiated in the rest of this chapter.

4.2. The Domain Metamodel

As the meanings of data and actions vary according to the domain context, any solution
that caters to the semantics of data and actions must address the problem at the domain
level. This chapter describes a domain metamodel that distinguishes the abstract data
and actions from their technical representations and refines the former to the latter in a
systematic way. This approach of modeling domains is evaluated by instantiating the
metamodel in several example scenarios in Section 4.3.

The domain metamodel, shown in Figure 4.1 is defined using a UML class diagram. It
consists of three levels: the platform-independent (PIM) level that captures the end user’s
view of the domain and is independent of any technical details; the platform-specific (PSM)
level that represents the technicalities of the corresponding systems from a conceptual
viewpoint; and the implementation-specific (ISM) level, that reflects the implementation de-
tails of the systems in which the policies are to be enforced.
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P.I.M
£ DataMetaclass ] ActionMetaclass

P.S.M
E PsmContMetaclass PsmTransfMetaclass ] PsmSysMetaclass ]

I.S.M
[; IsmContMetaclass IsmTransfMetaclass ] IsmSysMetaclass ]

Figure 4.1.: The domain metamodel

4.2.1. The Platform-Independent Model

The Platform-Independent Model (PIM) has DataMetaclass and ActionMetaclass
which are, as the names suggest, metaclasses of data and actions. Instances of these meta-
classes are classes of data and actions. E.g., Photo, an instance of DataMetaclass, is a
class of data; further instance of Photo is the specific data d stored in mypic.jpg and it is
referred to as data item. An action copy data d is an instance of the class of actions copy
photo, which is modeled as instance of Act ionMetaclass. Each action class is associated
with at least one data class that represents the data that is the target of the corresponding
action: actions target specific data while classes of actions target data classes.

Associations and generalization-specialization relationships among data classes define
the abstract data-model of the domain (an example of data model can be seen in a case
study of online social networks in [61]). They represent the fact that in a domain, certain
data are seen as aggregation/ composition of, or associated with (set of) other data, or
as generalization/specializations of other data. In the OSN context, some examples of
such relationships are as follows: a profile photo is a special type of photo; an album is
a UML composition of photos (deleting the last photo deletes the album automatically in
some OSNs where an empty album is not allowed); a profile is an aggregation of personal
data, photos and posts; posts are associated to each other through links and tags, a user’s
profile is associated with all blog posts that the user writes and so on.

Inheritance and association relationships among data classes also suggest if certain user
actions on one data have cascading effects on the other data. For example, deleting a
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profile means also deleting all associated posts, or denying copies of the album means that
no picture in the album can be copied individually irrespective of the difference in the
technical representations of the two.

If one data class specializes another data class, all actions associated with the general
data are also valid for the specific data. E.g., if Comment is specialized as Post and all
posts can be edited, then comments are also editable. The technical semantics of actions
on the generic data are included in the technical semantics of those actions on the specific
data. For example, if BlogAccount is a specialization of a GeneralAccount, then the
technical semantics of actions like copy and delete for BlogAccount is the same as for the
GeneralAccount if no semantics of those actions is specified for the blogs.

4.2.2. The Platform-Specific Model

The Platform-Specific Model (PSM) captures the technical details of systems at a concep-
tual level without any implementation details. PsmContMetaclass is the metaclass of
all containers that are platform-specific. PsmTransfMetaclass is instantiated to model
all classes of transformers that read and write data among containers at different layers of
abstraction in the system at the platform-specific level.

Conceptually, transformers are functions that use sets of (atomic and /or complex) events
in corresponding systems to transform the content of containers. Transformers can be recur-
sively decomposed till each transformer corresponds to a single event. Some examples of
domain-specific classes of transformers that target classes of containers are: TakeScreen-
shot in WindowingSystem, Copy&Paste in WebBrowser and CopyFile in File-
System. A screenshot on a specific window, a copy & paste on a selected text and one
specific command to copy a file from a given filepath are instances of the respective trans-
former classes. Transformers target containers while the classes of transformers target
classes of containers. This relationship is shown via an association between PsmTransf-
Metaclass and PsmContMetaclass in the metamodel.

PsmSysMetaclass is the metaclass of all the systems at the PSM level. Systems are
seen as collections of transformers, e.g., operating system is a collection of transformers that
read and write data among files and memory locations. Systems denote the locations of
the different containers which are read, written and modified by the transformers, e.g.,
a specific write system call targets a file myphoto.jpg in one running Linux distribution.
Without the system part, it would not be possible to model the location where the system
call is executed. As the domain model will be used in refining policies (in the following
chapters), the system information in the domain model would help in the enforcement of
policies that mandate execution of certain events in systems, e.g., for enforcing “data must
be deleted from all systems”.

Classes of containers, transformers and systems at the PSM level can be associated with
and/or generalize sets of other classes of containers, transformers and systems at the PSM
level. For instance, Dat abase is a specialization of Fi1e: this means that databases are seen
as special files. Similarly, copy file transformers are associated with a set of transformers for
opening, reading, writing and closing files, and an OSN system is a collection of multiple
layers of abstractions over many servers and client machines.

Because PSM classes model technical concepts without implementation details, we can-
not directly instantiate these classes into concrete entities. For example, a concrete file does
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not exist in a system without its implementation details. Without implementation details,
we can only refer to the notion of a file. Similarly, transformers cannot exist in concrete sys-
tems without implementation details. In the earlier example of a screenshot on a specific
window, a copy & paste on a selected text and one specific command to copy a file from
a given filepath as instances of the respective transformer classes implicitly subsume the
implementation details.

Therefore, for instantiating a PSM class into concrete entities, it must be specialized
with implementation details. E.g., transformer class CopyFile is specialized to cp, a
class of concrete commands in Unix-based operating systems that read data from one file
and write it to another file using system calls. An instance of the cp class is cp source.txt
dest.txt. Similarly, a generic class FileSystem at the PSM level is modeled with the set
of transformer classes that are common in all file systems without implementation details.
Class UnixFilesystem specializes it with implementation details of all those transformer
classes and might have additional classes of transformers.

4.2.3. The Implementation-Specific Model

As there is more than one way of implementing different systems, multiple implementa-
tions of containers and transformers exist. This is shown at the third level in the meta-
model, the Implementation-Specific Model (ISM).

IsmContMetaclass, IsmTransfMetaclass and IsmSysMetaclass are instanti-
ated to define domain-specific classes of containers that are modified by classes of trans-
formers in classes of system implementations. Running systems with concrete containers and
transformers are instances of these classes of system implementations.

Classes of systems represent all the following at the PSM and the ISM levels: the physical
host (e.g., server hardware), the logical layers of abstraction in a machine (e.g., database,
operating system and word processor) and the applications that comprises of several log-
ical systems and physical hosts (e.g., file sharing application which is a part of OSN).

ISM transformer classes in the domain model and their instances in the concrete systems
in the domain have the same name; the only difference is that transformer classes target
container classes while the instances of the ISM transformers target specific containers in
running system. For example, the class of write system calls targets the class of files while
a specific write system call targets a concrete myphoto.jpg file. The association between
IsmTransfMetaclass and IsmContMetaclass in the metamodel represents this rela-
tionship.

As mentioned earlier, PSM classes are specialized with implementation details into class-
es at the ISM level. We also see in Figure 4.1 that different ISM classes can be further refined
using associations and inheritance. Therefore, a platform-specific class can be specialized
at both the PSM and the ISM level, depending upon the type of detail added. For exam-
ple, class File can be specialized as Ext 3File at the PSM level and Ext3File can be
specialized as LinuxFile and BSDFile classes at the ISM level. Alternatively, all spe-
cializations of File can be at the ISM level (as in Figure 4.2). Actually, technical systems
can be modeled with recursive refinements of classes both at the PSM and the ISM levels
and the demarcating lines between the refinements across the levels are not crisp. In the
first case, all the intermediate refinements of File are at the PSM level and the last level
of implementation details are added at the ISM level. In the second case, the refinements
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are split across the levels. This blurring of lines between the layers is unavoidable and
well-recognized. However, it is not a limitation: it adds flexibility and makes it possible
for a power user to model a domain in several ways.

The data, containers and the events described in chapters 2 and 3 are the instances of
the classes of data, containers and transformers in any domain model which is drawn as an
instance of the metamodel shown in Figure 4.1. Refinement of data and action is captured
by the associations among classes at and across levels in the domain model. Mapping
data classes and action classes to classes of containers and transformers respectively at the
PSM level gives the conceptual meanings to user actions on data in terms of transformers
applied to containers. The semantics are extended to the ISM level with the recursive
refinement of classes of containers, transformers and systems from the PSM to the ISM
level. Altogether, this tells us which transformers are executed on what containers when
certain actions are performed on data.

For illustration, let us consider an instantiation of our metamodel shown in Figure 4.4.
The semantics of “Copy Photo” in the context of an OSN are given by classes Screenshot
in the Windowing System, Copyé&Paste in the Web Browser and CopyFile in the Oper-
ating System at the PSM level. Mapping classes of containers and transformers to their
implementation-specific forms gives the semantics of classes of action on data classes in
terms of low-level technical implementations. Instantiating the classes to specific data,
containers etc. results in the semantics of specific actions in terms of concrete transformers
in running systems. E.g., in this example, the semantics of “copying a photo” would be
“getlmage on a Drawable object” in a X11 Windowing System, “cmd_copy on an HTML
image object” in a Mozilla Firefox Web Browser, and executing “open, read, write and close
system calls on a file” in a Ubuntu Unix distribution.

The next section discusses several instantiations of the proposed domain metamodel.
Let’s start with a metamodel instantiation for the case of our running example (OSN),
introduced in Section 1.4.2.1

4.3. Evaluation

The approach of modeling domains using the proposed metamodel is evaluated using
case studies. In this section, the instantiation of the domain metamodel is depicted at two
levels. At first, we see from a high level, how each metaclasses could be instantiated to
model a domain (Figure 4.2). The example domain is of the running example. For space
reasons, only parts of the complete OSN model could be shown in Figure 4.2.

Thereafter, meaningful refinements of two actions namely copy and delete are modeled
in the OSN context. For simplicity, only a few layers of abstraction are included in these
refinements. The examples could be easily extended with further refinements at other
layers of abstraction. Two more scenarios are used for the illustration of action refinement:
Third-party Platform Applications in OSNs and Mobile Applications domain.?

L All instantiations of the domain metamodel are UML class diagrams. For space reasons, here onwards, all
classes throughout this thesis are depicted as rectangles (without the UML class diagram notation).

2In’cuitively, the result of a high-level action, as understood by an end user, cannot alone be captured in terms
of corresponding transformers. One reason can be that the high-level action corresponds to infinitely many
sequences of transformers. For this reason, another type of action refinement, that captures how system
states are affected by the high-level user action, is needed. More details are in Section 5.1.2.2.
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Figure 4.2.: An OSN instance of the metamodel of Figure 4.1

4.3.1. Example One: Online Social Network

A partial model of an OSN is shown in Figure 4.2. The metaclasses (DataMetaclass,
ActionMetaclass,PsmContMetaclass etc.) that are instantiated by a class of the OSN
domain model are indicated as stereotypes with guillemets (<< >>) on top of the basic
class name (OSNDataClass, OSNActionClass, OSNPSMContClass etc).

The PIM level contains the data model of the OSN and related action. The respective
classes model the following: all data is classified into two: payload data and traffic data.
Payload data is all data posted by end users: personal profile data, videos, photos, mes-
sages, etc. Traffic data is all data generated by users’ activities in the social network: user’s
IP address, browser and OS specifications, search terms, etc. Traffic data is classified as
primary and secondary data, according to perspectives. Primary traffic data is all traffic
data generated by the user while surfing. E.g., the profiles visited by the user. Secondary
traffic data is all traffic data generated when other users visit this user’s profile, view his
pictures, videos etc. Payload data can also be classified as primary and secondary. Primary
payload data would be all data posted about a user by himself. E.g., the data posted by
user while creating his profile on the website. Secondary payload data is all data posted
about the user, by other users. E.g., another user can post a picture of this user in his album
and link it to him. A detailed data model of an OSN is given in [61]. Some OSN actions
are copy, delete, distribute and send, shown via respective action classes.
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At the PSM level, the respective classes model containers such as web browser con-
tainer, windowing system container, operating system container, etc. The corresponding
classes are specialized as WebpageObject, Window, File, etcclasses. Copy&paste,
Screenshot, DeleteFile and other transformer classes model the transformers at the
PSM level. Systems can be logical systems (i.e., layers of abstraction like web browser,
windowing system and operating system), physical hosts/locations (e.g., caches, backups
and other servers and client machines) and applications that comprise of both logical and
physical systems (e.g., photo sharing application and mail system). This is shown via an
inheritance hierarchy among classes of systems.

At the ISM level, classes of system implementations include Picasa (logical systems +
physical hosts), Firefox, X11, Ubuntu, MySQL etc. with connections to ISM trans-
former classes to model concrete systems with corresponding containers and transformers.
Some examples of implementation-specific transformers are cmd_copy command in Firefox
web browser, getImage function in X11, write and unlink system calls in Ubuntu operat-
ing system and INSERT INTO statement in MySQL. These are shown by similarly-named
classes in the model diagram.

A multi-level refinement of containers at the ISM level is also shown. Drawable is-a
OSN container at the ISM level which is a collection of windows and pixmaps. So the
corresponding classes are shown in an inheritance hierarchy with associations. Another
example shown is a bitmap, a 1-bit monochrome pixmap that is commonly used as a stencil
or mask. Therefore Bitmap is shown specializing the class Pixmap.

The definition of the domain models and the mappings provides the refinement of data
classes in terms of structure and the containers that store the data. They also refine actions
to transformers. The mappings in Figure 4.2 are shown collectively for clarity purposes: in
order to focus on the classes of the domain model at the PIM, PSM and ISM levels. In the
next set of examples, the refinement associations are separated from each other to show
how model components are connected to each other at and across the three levels. Two
actions from the above model of the OSN are refined for illustration. For simplicity, only a
few layers of abstraction are considered.

4.3.1.1. Refining Copy Photo

A simplified refinement of copy photo at two layers of abstraction, X11 windowing system
and Firefox web browser, is shown via a class diagram in Figure 4.3. It represents the
refinement of copying a photo as executing cmd_copy command on an HTML object at the
Firefox level and via getlmage function call for a drawable from an X11 client.

Adding another layer of abstraction to this refinement, we see in Figure 4.4 how multiple
transformers corresponding together to a high-level action can be modeled.

All the nodes in these models are classes and the fact that certain transformers together
correspond to a higher-level transformer or action is expressed using class attributes. In
Figure 4.4, as simple rectangles are used instead of UML classes, this is shown using an
AND-gate that groups the transformers together. Intuitively, there should be an order over
the transformers (parallel system events can be modeled as transformers with the same
order number attribute in the respective classes); this is depicted in Figure 4.4 with an S
(for sequence) inside the AND-gate notation and the spatial layout denoting the order.
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Figure 4.3.: Refinement of copy photo in Firefox and X11
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Figure 4.4.: Refining copy photo: multiple ISM transformers refine one PSM transformer

4.3.1.2. Refining Delete Data

Another example action is “delete” that targets songs and videos. Figure 4.5 shows the
refinements of copy and delete actions together. It also gives an impression of how the

domain model quickly grows with new elements.

Delete is first refined to transformer DeleteFile (shown by an association between Delete
and DeleteFile classes). Further refinements of delete are shown by associating Delete-
File to Remove and Overwrite classes capturing the fact that deletion of files can be
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Figure 4.5.: Refinement of copy and delete in OSN

achieved in general by either removing the file from the file system or by overwriting
the existing file. Classes of system call unlink and Unix command shred (the instances
would be specific executions of the unlink and shred) respectively refine the two classes
via associations at the ISM level.

4.3.2. Example Two: Mobile Applications Domain

The second use case is from mobile applications domain. Typical actions at the end user
level are: share photos, edit contacts, send SMS, allow request for phone ID, share lo-
cation, etc. Refinements of three user actions: “send SMS”, “allow location requests”
and “allow phone identification” are shown in Figure 4.6 via the association of Send,
AllowRequest, SMS, Location and PhonelID classes to classes at the lower levels.

The mobile platform is Android OS. SMS is represented as textMessage at the ISM
level, while the location and identification of the phone and is stored as GPS_DATA and
IMEI_DATA respectively. Thus, “sending an SMS” means executing “sendTextMessage”
while “allowing location and phone ID requests” corresponds to “httpRequest on GPS
_DATA and IMEI_DATA” in the Android application.

4.3.3. Example Three: A Java Application

The last example is from the domain of third-party platform applications in OSNs. The
example third-party application is a Birthday Reminder that requests the friendlist of Alice
in order to notify her of the current and upcoming birthdays of her friends. In order to do
so, the application must obtain the latest list of Alice’s friends periodically so that she does
not receive irrelevant notifications or that she does not miss any of the birthdays. From
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Figure 4.6.: Refining send SMS and allow requests in mobile applications
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an end user’s perspective (PIM), two actions in the application periodically update Alice’s
friendlist. Figure 4.7 shows a straightforward refinement of these user actions “create text
data” and “update text data”.
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Figure 4.7.: Refining create data, update data and use data in a Java application

All text data are stored as String objects. Containers and transformers at the PSM and the
ISM levels are modeled based on the following signatures of the methods createData (),
updateData () and useData():
java.lang.String createData(java.lang.String str)
java.lang.String updateData(java.lang.String str)
java.lang.String useData(java.lang.String str)
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Instead of “application”, the term “program” is used in the domain model in Figure 4.7
to avoid confusion with the “application domain”. The domain model is simplified for
illustration and can be easily extended for refining other user actions.?

As part of automating the policy derivation, a framework was designed with an intu-
ition of the needed infrastructure components. In the first step towards the realization of
the concepts presented in this thesis, the next section describes a prototypical implemen-
tation of a tool for modeling domains. The output of this tool, a domain model in concrete
syntax, is used to configure the infrastructure for action refinement in policy derivation.
The implementation is independent of the modeled domain and demonstrates the domain-
and system- independence of the approach of data and action refinement.

4.4. Implementation

Eclipse model-driven development technologies Eclipse Modeling Framework (EMF) and
Graphical Modeling Framework (GMF) were used to develop a graphical tool for model-
ing domains. The implemented tool is called the Domain Model Editor.
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Figure 4.8.: The domain model editor with an example graphical model

Technical details of the implementation are in Appendix A. The corresponding Ecore
metamodel diagram is given in appendix Figure A.1. The output of the domain model

3This scenario is explained in detail in Section 6.4.3
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editor is a domain model in XML format. The XML model of the domain can also be
generated without using this graphical editor, using the XML schema given in appendix
Listing A.1. A snapshot of the domain model editor with a simple refinement of copy
photo action is shown in Figure 4.8

The editor generates two files corresponding to the drawn domain model. A file with
_diagram extension stores the model with all the information needed to load it in a graph-
ical format. The second output is an XML file with the domain model without graphical
details. As an example, Listing 4.1 shows the corresponding XML representation of the
domain model that is shown in Figure 4.8, automatically generated by the editor.

<?xml version="1.0" encoding="UTF-8"?>
<model:domain xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns:model="
http://model/1.0">
<pims name="OSN_PIM">
<pimactions executedas="//@psms/(@psmtransformers.l //Q@psms/@psmtransformers
.0 //@psms/@psmtransformers.2" name="Copy"/>
<pimdata validactions="//@pims/@pimactions.0" storedin="//Q@psms/
@psmcontainers.0 //@psms/@psmcontainers.l //@psms/@psmcontainers.2 //
@psms/@psmcontainers.3 //@psms/@psmcontainers.4" name="Photo"/>
</pims>
<psms name="OSN_PSM">
<psmcontainers contimplementedas="//@isms/@ismcontainers.2" name="
WebpageObject"/>
<psmcontainers contimplementedas="//Q@isms/@ismcontainers.0" name="Window"/>
<psmcontainers contimplementedas="//@Qisms/@ismcontainers.1l" name="Clipboard"
/>
<psmcontainers contimplementedas="//@isms/@ismcontainers.3" name="File"/>
<psmcontainers contimplementedas="//@isms/@ismcontainers.4" name="
ProcessMemory" />
<psmtransformers outputcontainer="//@psms/@psmcontainers.2" inputcontainer="
//@psms/@psmcontainers.0" transimplementedas="//Qisms/@ismtransformers.0
" name="Copyé&amp;Paste"/>
<psmtransformers outputcontainer="//@psms/@psmcontainers.2" inputcontainer="
//@psms/@psmcontainers.l" transimplementedas="//Qisms/@ismtransformers.1l
" name="Screenshot"/>
<psmtransformers outputcontainer="//@psms/@psmcontainers.2" inputcontainer="
//@psms/@psmcontainers.3" transimplementedas="//@isms/@ismtransformers.2
" name="CopyFile"/>
<psmsystems systemtransformers="//Q@psms/@psmtransformers.l" sysimplementedas
="//QRisms/@ismsystems.0" name="WindowingSystem"/>
<psmsystems systemtransformers="//@psms/@psmtransformers.0" sysimplementedas
="//QRisms/@ismsystems.1l" name="WebBrowser"/>
<psmsystems systemtransformers="//@psms/@psmtransformers.2" sysimplementedas
="//@isms/Q@ismsystems.2" name="OperatingSystem"/>
</psms>
<isms name="OSN_ISM">
<ismcontainers name="Drawable"/>
<ismcontainers name="XClipboard"/>
<ismcontainers name="HTMLObject"/>
<ismcontainers name="File"/>
<ismcontainers name="ProcessMemory"/>
<ismtransformers inputimplecontainer="//@isms/@ismcontainers.2"
outputimplecontainer="//@isms/@ismcontainers.1l" name="cmd_copy"/>
<ismtransformers inputimplecontainer="//@isms/@ismcontainers.0Q"
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outputimplecontainer="//@isms/@ismcontainers.1l" name="getImage"/>

<ismtransformers inputimplecontainer="//@isms/@ismcontainers.3"
outputimplecontainer="//@isms/@ismcontainers.4" name="open"/>

<ismsystems implesystemtransformers="//Qisms/@ismtransformers.l" name="X11"
/>

<ismsystems implesystemtransformers="//Qisms/@ismtransformers.0" name="
Firefox"/>

<ismsystems implesystemtransformers="//Qisms/@ismtransformers.2" name="
Ubuntu"/>

</isms>
</model : domain>

Listing 4.1: XML Output of the domain model editor: refinement of copy photo in OSN

4.5. Summary

In this work, no proofs are given for the correctness of the domain model that is defined
using the proposed metamodel. So, even though we hope for the domains to be modeled
correctly, it is possible that the resulting models are incorrect and /or incomplete. This can
be problematic for the correct enforcement of the policies because action refinement based
on the domain model is central to the policy derivation in this thesis. This limitation is
discussed in detail in sections 1.6 and 9.2.

In this chapter, classes of data and actions are refined to classes of transformers that
target container classes in classes of system implementations. However, usage control
policies are enforced in concrete systems with transformers that target specific containers.
In order to use the domain models (defined using classes) for usage control policy transla-
tion, we must connect the classes of data, containers, transformers, etc. to their instances.
Also, we must specify the semantics of the refinement associations within and across the
PIM, PSM and ISM levels. The next chapter addresses these issues.
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Chapter 5

Formal Semantics of Action Refinement

The results discussed in this chapter have already been published in [62], co-authored by the
author of this thesis.

In the previous chapter, a domain metamodel that distinguishes between abstract actions
and technical transformers and refines the former to the latter, was described and instanti-
ated. This domain metamodel has, however, certain limitations. Firstly, the domain meta-
model gives an intuition of the relationship between a high-level action and the more con-
crete transformers. But it does not explain the exact relationship between the two: classes
of actions are mapped to classes of transformers using UML associations, but no semantics
has been given to these associations. So we do not know what high-level actions like copy
mean in terms of transformers. For example, looking at the system calls executed in a Unix
operating system, we cannot know if a copy action has indeed taken place because we do
not know if copy corresponds to the set or the sequence of these system calls (Figure 4.4
on page 46). Even if we know that it is the sequence, we do not know how the sequence
is to be interpreted: if the system calls must happen one after the other or if some other
executions can take place between any two of them.

Secondly, the domain metamodel is a UML class model. When we instantiate it for
modeling a domain, the resulting domain model shows the static structure of the domain;
it is not capable of capturing one specific snapshot of the runtime. This means that the
domain model alone cannot be used to relate high-level actions to system states in order to
understand how user actions at a higher level affect the runtime of the concrete systems.

Intuitively, modeling user actions in terms of system states is useful in those cases where
the effect of the user action can be achieved by infinitely many sequences of systems events
and it might either not be possible to list all of those sequences or it might be just much
more convenient to instead mention the resultant system state for the action.

In order to give formal semantics to action refinement and to model user actions also in
terms of system states, the domain metamodel is combined with the usage control model
described in Chapter 3. The relationship among the elements of the two models is shown
in Figure 5.1.
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Figure 5.1.: The domain metamodel w.r.t. the OSL model of Chapter 3

Using the Meta Object Facility (MOF) notations, the domain metamodel is a M2-model
which describes an M1-level domain model that consists of domain-specific classes of data,
actions, containers etc. The data flow model, which has data and container elements (e.g.,
the abstract data d1, stored in container myphoto.jpg) is at the MO level. The data and con-
tainer elements of the data flow model are instances of the instances (let us call these 2"
level instances from now on) of the members of the PIM and the ISM levels in the domain
metamodel. This is shown in Figure 5.1 with labels “2"? level instance” and “2"¢ level in-
stance name” on associations. The two models are combined formulating this relationship
between the model elements. A specific example of corresponding elements at all the three
levels is shown in Figure 5.2.

The formalization of action refinement is described in two steps: in the first step, one
high-level action is refined into sets/sequences of transformers, both at the PSM and the
ISM levels using the recursive function 7¢.

In the second step, the refinement of an action is given by modeling the state that the
system reaches when the high-level action is performed by an end user. The resultant state
is expressed as an OSL formula with state-based operators. Function 7, is used for this
type of action refinement. Later both the refinements are combined to get the complete
refinement of a high-level action using function 7.4.
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Figure 5.2.: An example depicting the relationships among the elements of the domain
metamodel, the domain model and the usage control model. DataMetaClass
is instantiated to the data class Phot o which is instantiated to a specific photo
(data d in the usage control model).

5.1. The Combined Model

Chapters 2 and 3, formally introduced the instances in a domain, e.g., data and containers.
In this chapter, formal notations for the sets of UML classes of these instances are intro-
duced. These UML classes of data, containers etc., are elements of the class diagram model
that represents the domain. For instance, Photo in a model of an online social network
(OSN), shown in Figure 4.2 on page 44, is a data class whose instances are all individual
photos in different runs of the OSN.

In order to distinguish the classes from the instances, a different font style and a
“breve” notation is used in the symbols representing the classes and their sets (as in
d € D to denote data class d as member of set ©). A complete list of all symbols used in
this chapter is in Appendix Table C.1.

D is the set of all classes of data at the PIM level, 2l is the set of all classes of user ac-
tions at the PIM level, épgm is the set of all classes of containers at the PSM level, fpsm
is the set of all classes of transformers at the PSM level, éism is the set of all classes
of containers at the ISM level and T, is the set of all classes of transformers at the
ISM level. In other words, these sets are collections of the domain model instances of
DataMetaclass, ActionMetaclass, PsmContMetaclass, PsmTransfMetaclass,
IsmContMetaclassand IsmTransfMetaclass respectively, e.g., referring to Figure 4.2,
{Profile, Post, Photo, Comment, ...} is a set of classes of photos, posts, com-
ments etc. in the OSN; each member of this set is an instance of DataMetaclass.

In Chapters 2 and 3, there has been no distinction between high-level user actions and
system events: policies could be specified on both. But as we have seen in Chapter 4, the
end user view of the domain only consists of high-level user actions. So let us split the set
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of all events £ into two sets so that we can refer to actions and transformers separately,
when needed. £4 is the set of all user actions while £ is the set of all transformers in a
system:

EAUETCENEANET =D

Each action is defined by a name (set AName) and a set of parameters. Ditto for the
transformers, where the set TName represents transformer names:

Ea C AName x P(PName x PValue)
Er € TName x P(PName x PValue)
AName U TName C EName

Recall from Chapter 4 that each action class is associated with at least one data class that
represents the data that is the target of the corresponding action. Therefore, an action class
is defined by a name (set AName) and a set of target data classes.

2 C AName x P(D)

Similarly, classes of transformers at the PSM and the ISM levels are expressed using
their names (sets T Name and set T Name' respectively) and the respective target container
classes.

9

fpﬁm C T Name x P( )
Tpom C

psm
Tpsm C TName' x P(Cign)

Before moving on, a recap of the oft-used terms:

* Actions refer to specific user actions at the PIM level. Each action is a member of £ 4.
Actions are instances of the members of set 2l that appear in the domain model, e.g.,
specific actions of copying data are instances of the action class Copy shown in the
domain model of Figure 4.2 on page 44.

e Transformers are technical events. The term is generic in the sense that transformers
are both the technical concepts (at the PSM level) and the implementation-specific
concrete events in technical systems (at the ISM level), unless the model level is ex-
plicitly specified (as in 'PSM tranformer” and 'ISM transformer’). Each transformer
is a member of £7 and an instance of a member of (‘ipsm U fism) that is depicted
in the domain model, e.g., unlink myphoto.jpg is an instance of unlink transformer
class that appears in Figure 4.2.

¢ In order to distinguish them from the user actions of PIM level, the Action part of ECA
rules is called “Authorization Action”.

e The term Event and the set £ hereafter refers to the union of all user actions and
transformers, as mentioned above.

* In order to distinguish them from &, the Event part of ECA rules is called “Trigger
Event”.
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Following is an overview of the policy specification and derivation:

o Step 0 — Domain model specification: This must take place before the policies are
derived using action refinement. The domain model contains UML classes that
represent domain elements like data, container etc. for all runs of the systems.

e Step 1 — Policy specification: As already mentioned in Chapter 3, data does not
exist in running systems, only corresponding containers exist. Therefore poli-
cies are specified only in terms of containers with an indication if the policy
applies to that specific container or all copies of it, to be interpreted as data (via
datalsage, containerUsage). Although policies are specified in one specific run
of a system, they address the protection of data in all the system runs.

e Step 2 — Policy derivation: After specification, policies are translated and de-
ployed in either the same system run or in a different system run as the spec-
ification, but the policies are to be enforced for all the subsequent runs of the
system (until they are revoked). Steps 2a — 2¢ take place in one arbitrary run of
the system; the outputs of these steps are applicable to all system runs.

— Step 2a — Connecting instances to classes: Policies are specified on instances,
but the domain model used for policy refinement contains only corre-
sponding UML classes. The instances in the policies therefore need to be
connected to their classes (details in Section 5.1.1). Though this connec-
tion takes place in that one specific run of the system when the policies
are translated, the class of a specific data, container etc. remains the same
across all the system runs.

— Step 2b — Future to past derivation: needed for monitoring of policies for
preventive enforcement, details to come in Section 5.2.1.

— Step 2c — Action refinement: takes place after the future to past translation;
details are in Section 5.1.2. If data moves across machines, the containers
(and possibly their names) change. This is reflected in that system run
when the policies are translated, e.g., if a data is downloaded from the
internet and stored in a specific file on a machine, this information can
be known only after the data is downloaded (or at the earliest when the
download starts). The complete path of the file, reflected in the corre-
sponding policy remains valid for all system runs thereafter. Any changes
in data storage mappings are taken care of on grounds of the data flow
definitions. The output of this step is a policy that applies to all system
runs, per machine.

— Step 2d — Information specific to system runs: Policies might require some
additional information that varies according to the different system runs,
e.g., user login session. This type of information is added as a last step
in policy derivation. Policies need not be re-translated from scratch, only
the runtime-specific information part in policies is updated in each run
(details in Section 6.2).

57



5. Formal Semantics of Action Refinement

For action refinement in SLPs using the domain model, data, containers, actions and
transformers must be connected to their classes. A generic function getclass that returns
the class of the given instance is used for this purpose. getclass is overloaded with dif-
ferent signatures for data, containers, actions and transformers. The connection of data,
containers etc. to their classes applies to all runs of the systems. For this reason, when-
ever a specific data, container etc. is addressed in the following sections, it refers to all the
system runs.

5.1.1. Connecting Instances to Classes

Although one data, container or action can belong to multiple classes because of the in-
heritance hierarchies in the domain model,! we are here interested in computing the most
specialized class which was instantiated to get the specific object (data, container etc.) for
all systems runs. For this reason, the getclass function maps an element (data, container,
etc.) to exactly one class from the domain model.

Function getclass : D — ® returns the class of a specific data. The exact definition of
getclass for data varies according to the domain and its implementation. The following
simple example illustrates this: in the OSN context, a specific image (data 'd") can be an
instance of ProfilePhoto, Logo, Banner or CoverPhoto (data classes). Different
data classes might mean different storage format and different technical refinements of the
instances, e.g., (small) logos stored as blobs vs. (large) photos stored as links in a table.
Relevant data classes and assignment of data elements to one or many of them is intuitive
and is driven by the domain design. This is because of two reasons: firstly, data classes
describe how users understand different types of data in a particular context/domain and
there is no rule for coming up with these classes. Secondly, even if the domain is fixed,
there are several ways of implementing a domain and so a generalization of technically
connecting specific data to their classes is not feasible. Therefore, it is not possible to give
a generic definition of getclass that formally connects data elements to their classes for all
domains and their implementations.

Similarly, connecting specific containers to their ISM classes is implementation-depen-
dent and the definition of the function getclass : C — Cism, that returns the class of a
given container, cannot be generalized. Therefore, a formal definition of these functions is
not provided. Instead, a methodological guidance in Section 6.4 illustrates how data and
containers could be connected to their classes in one particular domain implementation.

Building upon the two getclass functions that connect data and containers to their classes,
the getclass functions that connect actions and transformers to their classes are formally de-
fined. Recall from Section 4.2.1 that actions have the same name as their classes, the only
difference is that the former target specific data while the latter target classes of data at the
PIM level. For each & € 2l let &.in denote the set of target data classes for the action class
in the domain model. Then, getclass : E4 — 2l is defined as:

1Because of multi-level inheritance in the domain model, a specific data, container or transformer can belong
to several classes. E.g., myphoto.jpg is both a File and an OS-Container at the PSM level in Figure 4.2. Simi-
larly, rm myphoto.jpg is an instance of ISM transformer class rm File which inherits from the class removeFile
File at the PSM level.

58



5. Formal Semantics of Action Refinement

Vae&y,Vac Qv(:getclass(a) =4 <=
an=anA3deD,IdeD:
obj — d € a.p Ad € d.in A getclass(d) = d)

where a.n refers to the name and a.p are the parameters of a; G.n is the name of a.

Similarly, transformers and their classes at the ISM level have the same name with the
instances targeting containers and the classes targeting container classes (Section 4.2.3).
Additionally, in our language, a transformer may also target a specific data (dataUsage
events, i.e., 3t € &r,3d € D : obj — d € t.p). A transformer class ? is the class of
“transformer ¢ with data d as object” iff the classes of the containers where d is stored
in any data state, are in the set of targets of { in the domain model. For each € fism
let 7.in denote the set of target container classes for the transformer class. Then, function
getclass : E — Tiem is defined as:

Vte&Er Vie ‘iism s getclass(t) =1 < tn=1tnA
(BeeC,At € gy :0bj = c€tp At e lin A getclass(c) =
V(3deD:obj—detpN(3del,FoeX:deos(d)
A getclass(c') € t.in)))

‘)

where ¢.n refers to the name and ¢.p refers to the parameters of ¢; a.n is the name of @ and
0.5 denotes the storage function of state o.

Because the computation of classes for actions and transformers uses their names and
the values of their object parameters, we can only compute the classes of non-variable
events (actions and transformers) and those variable events whose names and object pa-
rameters are known.

Function getinstance is the dual of getclass that computes all instances of a given class
of data, container etc. for all system runs. For example, all instances of a data class can be
computed as

getinstance : D — 2P

Vd e® : getinstance(d) = {D' € 2P |Vd e D:d € D' = getclass(d) = d}

Function getinstance is overloaded to compute the instances of classes of actions, con-
tainers and transformers in a similar way, leveraging the respective getclass functions.

5.1.2. Action Refinement

By now we have a model that consists of both data, actions, containers, transformers and
their respective classes. We have seen how the instances connect to their classes and vice
versa. Now that we also have the distinction between abstract user actions and their con-
crete representations called the transformers, policies that talk of the former can be refined
to policies that talk of the latter. And these refinements can be performed based on the
relationships between the classes of actions and transformers.

Besides this, as we already have the notion of system states and a set of state-based OSL
formulas that hold true under certain conditions, we can also refine actions in terms of
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states. That is, for each action, we can define which state-based formula should hold true
after the action is performed by the user. The motivation for this type of action refinement
is already introduced in the start of this chapter and is recapped in Section 5.1.2.2. In the
next subsections, we will see both these types of action refinements.

Defining Action Refinements in OSL: Remember that formulas of the form E(-) and I(-)
denote actual and intended events (see Section 2.1.3). Therefore, refinement of actions and
transformers using the aforementioned class-level refinement relationships corresponds to
the translation of OSL formulas of the form F(-) and I(-). Let us start with the refinement
of actions to transformers.

5.1.2.1. Actions Refined to Transformers

Actions can be refined to transformers in two ways: an action refined to a set of trans-
formers means that any of the resulting transformers correspond to the action. An action
can also be refined to a sequence of transformers implying that all of the corresponding
transformers, in the particular sequence, together refine the action. Further refinement of
transformers to other transformers also works the same way.

As it is impossible to predict the length of executions between any two members of a se-
quence of transformers in running systems, we assume arbitrary executions between any
two members of a sequence of transformers in sequence refinements. But this assumption
introduces future-time liveness in the action refinement definitions if they are defined in
future OSL.Therefore, the future OSL formulas of the SLPs are first translated to their past
forms and then action refinement is performed on the resulting formula. Past-time live-
ness is not a problem for enforcement because indefinite past can be checked in a running
system as opposed to the indefinite future. Indefinite past is expressed using eventually™
(represented as <) from now on), semantically equivalent to not~ (EJ(not ™)) in the language
. Intuitively, & () is true if the formula ¢ was true at least once in the past.

This way, executing action refinement on an SLP becomes a two-step process. In the first
step, a translation function 7p : ® — @, that works along the lines of the methodological
guidance provided in Section 5.2, translates a formula in ® to an equivalent formula in ®; .
In the second step, actions are refined to transformers and also in terms of system states.

As mentioned earlier, both actions and transformers are refined to transformers via set
and sequence relationships. Because action and transformer refinement works the same
way, the distinction among them is not needed in the definition of action refinement. The
refinement function is therefore defined on a set that is a collection of all the actions and
transformers (set £). For this, the objects of actions and transformers, i.e., data and con-
tainers, are put together in a set O. Then, at the class level also, a set é, that is a union of
the sets of all the action and transformer classes is defined, to be used in the definition of
action refinement.

OcDucC
¢ =AU Zpem UTiem
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The translation function 7¢ : ®; — ®; recursively refines an action or a transformer on
the object addressed in the corresponding SLP. Recall that the way the getinstance function
has been defined, it computes all the instances of a class. To get an instance of a class of
actions or transformers that targets a specific object, function getinstance is overloaded to
compute exactly one instance of a given class:

getinstance : ExO—E
VoeOVee €: getinstance(¢, 0) =
{e € £ getclass(e) = & A obj — o0 € e.p}

At the class level, Ry.; maps a class of user actions to a set of PSM transformer classes
with the intuitive semantics that instances of any one of the mapped transformers corre-
sponds to the instance of the high-level action. R,., maps an action class to a sequence of
transformer classes at the PSM level: instances of all of the specified transformers in the
particular sequence correspond to the high-level action instance.

Additionally, as PSM and ISM transformers can be further refined, both within and
across their respective model levels, their refinement functions are overloaded to express
both of these refinements. R,.; and R, express refinements within the same level and,
Rset and Rseq express cross-level refinements (from PIM to PSM and from PSM to ISM):

Reet : Tpom = P(Zpem)  Rset : A = P(Spem)
Rget - iism — P(i(iﬁm) Rset : ipsm — ]P)(irwm)
Rgeq ‘ipsm — seq ‘ipﬁm Rseq 2A — seq‘Zpgm
Rseq : ‘iism — seq ‘iism Rseq Tpsm — seq ‘Ilsm

With this intuition, 7¢ is formally defined as follows:

VoeO;Vee& Ve, . én} CE:1e(E(e— {obj — o}) =

(7 (E(getinstance(é,, 0)) and™ if(3e € €: getclass(e) = &
1 &(1e(E(getinstance(é,-1,0))) and™ & (... A (Rgeq(€) = <61, vy En) V
.. &(1e(E(getinstance(éy, 0))))...) Roeq(2) = (81, .., &)
jTg(E(getinstance(él, 0))) or~ if(3e € €: getclass(e) = &
(te(E(getinstance(ég, 0))) or™ ... A (Rser(e) = {e1,..,en} V
1 ... or~ Te(E(getinstance(éy, 0))) Reei(8) = {e1, .., 8,}))
LE(e — {obj — o}) otherwise

As & (1) expresses that ¢ must have been true at least once sometime in the past, the
above definition covers the case of arbitrary number of events in a sequence (as in (open,
write+, close)).

The events are underspecified in the translation definitions. The existence of parame-
ters other than the object parameter is implicit. As object (0bj € PName) is a part of the
definition of the translation function, it is explicitly mentioned in the events above.
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The above definition refines only actual events. Refinement of intended events works on
similar lines: 7¢ on formulas of form I(-) gives the above output with each E(-) replaced

by I(-).

5.1.2.2. Action Refinement using System State

Intuitively, expressing the semantics of high-level user actions only in terms of sets/se-
quences of transformers might not be sufficient in many cases because one high-level ac-
tion can be refined to infinitely many sequences of transformers in different systems. It is
therefore sometimes more useful and convenient to also refine user actions in terms of the
effect that they cause in running systems with all the infinite sequences of transformers.
To this end, another refinement of action, 7, using state-based operators (Section 3.4) is
defined. It is called the state-based refinement of actions. This translation captures the
state a system reaches when a user performs a high-level action on some data. Therefore,
for each action, the power user defines which state-based OSL formula must hold when
the high-level action is performed. By default, when no such such formula is defined for
an action, its state-based refinement is given by the proposition: false.

State-based operators specify storage relationships among specific data and containers
in running systems. But the state-based refinement for an action must be defined for
classes of actions because specific actions in policies (that target specific data items) are
earliest known at the policy specification time. Also, the concrete containers that poten-
tially store specific data are known only when a policy is deployed in a concrete system.
For these reasons, state-based operators that address unknown data and container classes
(ISM containers) are needed.

To specify unknown data in the state-based operators, variables are used and these vari-
ables are substituted by actual data when a policy is specified. To use classes of containers
in operators, the language @, is extended to also include state-based operators on set ;.
The semantics of the new operators are defined using the getclass function discussed ear-
lier.

ISM Containers in State-Based Operators: The language @, is extended by overloading
two existing operators: isNotIn(D, P(Cig)) and isOnlyln(D, P(Cigp)).

Intuitively, isNotIn(d, Cl) is true if data d is not in any container whose class is in set CI.
This operator is useful for defining state-based refinement of actions like copy or print. For
example, if print is refined as not(isNotIn(d,{ Cprint })) Where Cppins represents the class of
printer containers. When data d flows into any container that belongs to this class, a high-
level print action is recognized. Similarly, isOnlyIn(d, Cl) is true when data is restricted to
specific classes of containers. This is useful to express semantics of weak deletion where data
is not actually deleted but only quarantined. No use case was found where the semantics

of isCombined With(d, d) needs to be specified using container classes.

The Special Case of the Copy Action: While modeling different high-level actions as
transformers and system states, we recognized that the “copy” action is the trickiest. Not
only is it hard to define a “one-fits-all” meaning of this action, it is also non-trivial to de-
scribe this action for well-known cases with the OSL operators we have as yet. Therefore,
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two new state-based operators were added to the language @ to better model copy action:
isNewIn(D, P(€igm)) and isMazIn(D, P(Cism), N).

isNewIn(d, Cl) is true when in the current state, data is in at least one such container
where it was not stored in the previous state and the class of that new storage container
is in set Cl. This operator is useful in modeling copy action as the effect that moves data
to new containers (of specific types). The possibility to specify a restriction on the type of
container is given so that policies that inhibit copies of data do not render the data or the
system useless. For example, modeling copy as “data moves to any new container” would
render the data useless in case of policies that inhibit copy as nothing could be done with
data. In that case, it would make more sense to say “copy data” means that data is in new
files (file system level copies) or that data is in new memory locations (opened by new
applications or written to new buffers) etc.

isMazIn(d, Cl, n) is true when data d is in at most n containers of classes belonging to
set Cl. Using this operator, we can express copy as the restriction on the maximum number
of copies of data in a system. So if “copy d” is defined as not(isMazIn(d, F'ile,2)), then a
third copy of d in files will be counted as a new copy. If one of the two files is deleted, then
data d can be stored in a new file.

Variable Data in State-Based Operators: We already have the notion of variables Var =
VName — VVal for event names and event parameters in our language (see Section 2.1.1).
As data exists as object parameter in events (0obj € PName), the set of possible variable
values VVal = P(PValue U EName) includes data. Variable data are therefore variables
that map variable names to data:

VD = VName — D
VD C Var

In order to specify state-based formulas without mentioning the specific data, state-
based operators with variable data, in a language ®,, are introduced:

9

By, = isNotIn(VD, P(Ciem)) | isOnlyIn(VD, P(Cigm)) |
isNewIn(VD,]P’(éism)) | isMaxIn(VD,P(éism),N)

Elements from @, are instantiated into elements from @ using the substitution of vari-
ables in formula as defined earlier (Section 2.2.5): a formula ¢ € ®g, that contains a vari-
able v € Var is instantiated by substituting all occurrences of vn in ¢ by value vv € Var(v).
@[vn — vv] denotes the result of substitution. There may be multiple substitutions in the
square brackets. Recall that Varsin(t) denotes the set of variables in a term t. Using it,
function Insts, : ®5, — P(®P;) generates all ground substitutions of a formula with vari-
ables:

Vo e Dy Varsin(p) = {vm — VS1,...,ong — VSi}
= Insty,(p) = {p[ong — ooy, ..., ong — vog] - A ooy € VS;}

Finally, the language ®, of Section 3.4 is redefined as follows:

v

O, = Dy, | isNotIn(D,P(C)) | isNotIn(D,P(Cism) |
isNewIn(D,P(Cigm)) | isMazIn(D,P(¢igm), N) |
isCombined With(D, D)

63



5. Formal Semantics of Action Refinement

plus the macros isOnlyIn(D,P(C)) and isOnlyIn(D, P(Cisy)) with isOnlyIn(d, CI)
& isNotIn(d, Cigm \ CI).
The semantics of @, given by |=;C (Trace x N) x @, is redefined:

Vte Trace; n€N; p € &g; d',oeX: (t,n) Es ¢ —
o = states(t,n) A o' = states(t,n — 1) A (
JieN,vd € VD, Cl C Cigm : (¢ = isNotIn(vd, Cl)
V ¢ = isNewln(vd, Cl) V ¢ = isMazIn(vd, Cl, 7)) A
dx € O, : x € Instsy (@) A (t,n) Es X
dd € D,Cs CC: ¢ =isNotIn(d, Cs) N
VeeC:deos(c) = c¢Cs
V3deD,ClC Eim: ¢ = isNotIn(d, Cl) A
VeeC:deos(c) = (getclass(c) ¢ Cl)
V 3dy,dy € D:p=isCombinedWith(dy, d2) N
deeC:d €o.s(c)Ndy €0.5(c)
V3deD,ClC i : = isNewln(d, Cl) A
{ceC|deoaos(c)A getclass(c) € Cl}\
{eC|ded.s(c)N getclass(c') € Cl} # @
V3ieN,deD,ClC Cim : ¢ = isMazIn(d, Cl,i) A
#{ceC|deos(c)N getclass(c) € Cl} < 1)

where 0.5 the storage function of state o.
The semantics of ®;, thatis, = ,C (Trace x N) x ®;, and the past variant of the language
(@), =7 € (Trace x N) x ;" is as defined earlier in Section 3.4.

Event Declaration: To enable the power user to express the potential state-based refine-
ment of a user action, and to define all possible events and their parameters that can be
used in all policies in the domain, we introduce the concept of Event Declaration. An event
declaration is given by the event name, a set of parameter names, and the state-based
formula that must hold when the high-level action is performed.

EDecl C AName x P(PName) x ®

The relationship between an event and its declaration is bijective. One example for an
event declaration is copy — {obj, quality, subject} — not~ (isMaxIn(z,{ UnizFile},2)). It
says that the action copy can be used in policies with three parameters: obj, that denotes
the primary object (data or container), quality and subject; and the state-based refinement
of copy is modeled as not~ (isMazIn(z,{ UnizFile},2)) where x is a variable.

Action is a subset of the set of events that can be used in policies. For the state-based
refinement of action, a function getref fetches the state-based formula from the declaration
of the specific action:

getref : E4— @
Vae€ &y ed € EDecl : getref(a) = ed.p <= a.n = ed.n
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where a.n and ed.n refer to the names of a and ed respectively; ed.p refers to the state-
based formula part of the event declaration ed.

The refinement of action in terms of states is therefore achieved using 7, : ®; — @,
which essentially looks for the variable state formula in the declaration and each variable
in the respective state formula is substituted by the actual data value from the parameter
of the user action. The other parameters of the action are evaluated alongside.

Vae &y, deD,vd e VD, pc @ :
To(E(a — {obj — d,pny — puy,...,png — pug})) =

-{go vd — d /\I-“: eval(a.p.pn; = pv; if = getref(a
=1
L false otherwise

where a.p.pn is used to access the parameter value for parameter name pn in a.

By now we have the refinement of a high-level action in terms of sets/sequences of
transformers (using function 7¢) and in terms of system states (using function 7). Now
both functions are combined to express the “complete” refinement of a high-level action,
given by 74 : @, — ®; . Intuitively, at least one of the refinements is needed to express a
high-level action in a concrete system. Hence the disjunction (or~) over the refinements:

VdeD;ec& ped ; ped; i141) =¢p <<
YePNp=1
V) € {true, false} N o =1
VIyeTl:y=-ecval(y) Np =1
Vi =E(e) Ay =or (1,(E(e)), 7e(E(e)))
Vip=T(e) Ao =or (1,(T(e)),7e(T(e)))
V Jun € VName; vs € PValue \ D; x € ®; :
Y = (forall vn in vs : x) N\ @ = (forall vn in vs : T4(X))
V3x € d; 19 € {not(x),not™ (x)} A (¢ = not™ (14(x)))
Vax,£e @ 1€ {or(x,§), or” (X, )} A (¢ = or™ (1a(x), 7a(£)))
VIx,§ € 1y € {and(x,§), and” (x, )} A (¢ = and™ (14(x), T4(£)))
Vax, £ € P, ¢ € {implies(x,§), implies™ (x, &)} A (¢ = implies™ (1.4(x), 7.4(£)))
VIx,§€ P ¢ =since (x,§) A (¢ = since™ (T(x), Ta(§)))
V3ieN; x € ®; :1p = before (i,x) A (o = before™ (i, 7.4(x)))
VIlLz,yeN; x € ®; 1 =replim™(I,z,y,x) A (¢ = replim™ (I, z,y,74(X)))
V3ieN; x, &€ ®; ¢ =repsince” (i, x,&) A (¢ = repsince™ (1, 74(x), 74(£)))

The goal of refining actions in SLPs is to derive ECA rules to be deployed for enforce-
ment. The informal semantics of ECA rules is that when a trigger event is attempted and
the corresponding condition holds true, some authorization action is taken. In other words,
the trigger event and the condition parts together refer to a violation of the policy upon
which, the authorization action takes place. For preventive enforcement, the propositions

2We can only refine those variable events where event name and the value of the object parameter is known.
Hence VVal = PValue \ D
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to be checked in the condition part must refer to the past otherwise they cannot be checked
at the enforcement time because running systems cannot look into the future. Therefore,
an important requirement to be met for deriving ILPs from SLPs is to get those past-time
equivalents that express the violations of the respective future-time policies. The next sec-
tion describes a set of rules to derive the past-time formulas.

From these past-time formulas we get the conditions to be checked in corresponding
ECA rules. It is not trivial to derive the trigger event from most of these formulas in
an automated way. Also, the authorization action depends upon the enforcement strategy
and needs to be specified additionally. The next chapter on policy derivation methodology
discusses how past-time formulas are converted to ECA form. In this chapter we limit the
discussion to the derivation of these formulas.

5.2. Future to Past Translation

For deriving past-time formulas that refer to the violation of a future-time OSL formula,
a special proposition Start is used. Start denotes the moment in time when the policy
is deployed and activated. This can be a policy activation event, the universally valid
proposition true, or any other propositional formula described in OSL.

In the paragraph that follows, a methodological guidance for converting future-time
formulas into past-form conditions to be checked in ECA rules is provided. The ECA rule
is assumed to be applicable at the first violation of an obligation formula checked at any
timestep ¢t > 1; further violations are not considered. The first violation of a formula at
timestep ¢t means that the formula is false at ¢ and after ¢, irrespective of what is added
to the trace, the formula cannot be true. As policies with liveness properties cannot be
enforced, we assume that liveness formulas are already filtered out from the set of formulas
for whom the past violations are computed.

Note: The results in Section 5.2.1 were first published in [63] and were not written by
the author of this thesis. Though these results have been modified by the author since the
original version of [63], the core contribution of this author in this context is the proof of
correctness in Section 5.2.2.

5.2.1. Deriving Past-Time Conditions

The translation function 7p : ® — @7, that gives the first violation of any arbitrary formula
is defined as follows:

* The violation of propositions ¢ € ¥ is given by simple negation: 7p(¢) is transformed
into —¢. Tp(p A1) for b € VU is transformed into —¢ V —1p; Tp(—¢) is transformed
into ¢; all other propositional operators can be expressed by virtue of conjunction
and negation.

e 7p(0(¢)) for ¢ € V¥ gives the condition before™ (1, since™ (¢, Start)) A —¢; the ECA
rule is applicable if ¢ has been true at every timestep since Start except in the current
timestep.
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o 1p(until(¢,)) for ¢, € ¥ gives the condition before™ (1, since™ ((¢ A =), Start)) A
—(¢V1); the ECA rule is applicable if, ¢ has been true (and 1 false) at every timestep
since Start but in the current timestep, both ¢ and 1) are false.

e 7p(after(n,¢)) for ¢ € U gives the condition before™ (n, Start) A —¢; the ECA rule is
applicable if Start was true n timesteps ago and in the current timestep, ¢ is false.

o 7p(replim(i, m,n,$)) for ¢ € ¥ gives the condition before™ (i, Start) A(repsince™ (m—
1, ¢, Start)V—(repsince™ (n, ¢, Start))). Replim restricts the repetition of a formula in
a range (from m to n) for i timesteps. So the ECA rule is triggered when Start was i
timesteps back and in the last i timesteps, there have been at most m — 1 occurrences
of the propositional formula (via repsince™ (m — 1, ¢, Start)) or, there have been at
least n + 1 occurrences of the propositional formula (via —(repsince™ (n, ¢, Start))).
For m = 0, the past-form condition is before™ (i, Start) A —(repsince™(n, ¢, Start)).

o 1p(repuntil(n,1, ¢)) for ¢, € ¥ gives the condition since ™ (—¢, Start) A

—repsince” (n — 1,1, Start) A ¢; the ECA rule is applicable if ¢ has always been false
since Start (via since™ (—¢, Start)); if furthermore, there have been at least n occur-
rences of the propositional formula ¢ (via —repsince™ (n —1,v, Start)); and if there is
another occurrence of the propositional formula ¢ in the current step (where usually
one distinguished proposition will correspond to the triggering event; this translates
into a respective intended event in the transformation of 1)). Note that the semantics
of since™ includes the current timestep.

e 7p(repmax(n,)) for ¢p € W is transformed via the equivalence with the respective
repuntil operator: repmaz(n, ) = repuntil(n, 1, false)

As there is no known general explicit translation procedure from past to future tem-
poral logic, we restrict ourselves to propositional arguments for temporal operators. In
practice, this is often sufficient because policies do not seem to contain many nested tem-
poral operators. In those cases where there are nestings, these are either factored out by
decomposition or they are so simple that they can be directly transformed on grounds of
the transformation rules embodied in 7p.

5.2.2. Proof of Correctness

For the purely propositional ¢ € ¥, the violation conditions are intuitive. For the temporal
operators with propositional operands, let

* prefiz(s, t) denote the prefix of a given trace s from the beginning of the trace till the
given timestep ¢ (including t)

¢ ® denote trace concatenation

* [~ and j%;- denote the negation of =y and |=;- respectively

and

e min{.} denote the minimum value in a set
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To refer to the first violation of a formula ¢, we build a set with those moments in time
after which, ¢ cannot be true, irrespective of any concatenations to the trace. Such a set
might be empty in case of formulas with unbounded eventuality, i.e., for formulas that
express liveness properties. We argue that as liveness properties are not enforceable, they
are filtered out (by an “oracle”) from the set of formulas for whom the first violation is
computed. So, the first violation time of ¢ is given by min{t € Ny | Vs’ € Trace,t’ € Ny :
(prefiz(s,t) @ s',t") =5 ¢}. The correctness of the derivation of the past-time conditions is
proven by showing that

¢ if the equivalent past-time condition is true, then the future-time formula does not
hold,

¢ if the equivalent past-time condition is false, then the future-time formula must be

The correctness argument for the temporal operators with propositional operands is as

follows:

e To prove that the first violation of O(¢) for ¢ € W is correct according to the definition
in Section 5.2.1, the following must be proven to be true:

— if the equivalent past-time condition is true, then the future-time formula does

not hold:

Vs € Trace; t € Ni; ¢ € Wi (s,t) =p- before™ (1, since™ (¢, Start)) A ~¢ —
((s, t) er O(p) At = min{t’ € Ny | Vs’ € Trace : (prefiz(s,t') @ s, t') ¢ D(qb)})

Let us assume that (s, ¢) =y O(¢) holds. This means that (s,t) |=; ¢ is true,
which in turn means that (s,t) ;- ¢ is true, because ¢ is propositional. But
this contradicts the antecedent. Hence, (s, t) & O(¢).

If t = min{t' € Ny | Vs' € Trace : (prefix(s,t') @ s',t') =y O(¢)} is false, then
3t" e Ny t" <t A (Vs' € Trace : (prefiz(s,t”) ® s',t") r O(¢)). This means
that t” <t A (s,t" [~; ¢) and so, " < t A (s,t" [=r- ¢) as ¢ is propositional.
But this contradicts the antecedent (s, t) =7~ before™ (1, since™ (¢, Start)).
Hence, the consequent is proven true by contradiction.

if the equivalent past-time condition is false, then the future-time formula must
be true:

Vs € Trace; t € Ny; ¢p € U : ((s,t) Fr O(o) A
t = min{t’' € Ny | Vs' € Trace : (prefiz(s,t') @ s',t') ¢ D(¢)})
— (8, 1) =y~ before™ (1, since™ (¢, Start)) A —¢

(s,t) FFf- —¢ follows directly from (s, t) |=f —¢ because of t = min{t’ € Ny |
Vs' € Trace : (prefiz(s,t') ® s',t") =p O(@)}.

Proving that (s, t) |=p- before™ (1, since™ (¢, Start)) holds, means to show that
(s,t = 1) |5y~ since™ (¢, Start) holds. We prove this by contradiction. Let us
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assume that (s, — 1) |=p- since™ (¢, Start) is false. This means that 3" € N :
t" <t A(s,t") - ¢, whichin turn means that 3¢” € Ny : t” <t A (s, t") Ef ¢
as ¢ contains no temporal operator. But this negates the selection of ¢ in the
antecedent as the first violation time point of O(¢) because 3¢" < ¢ : (Vs €
Trace : (prefiz(s,t") ® s',t") Ep O(4)). So (s,t — 1) |- since™ (¢, Start) must
be true.

* To prove that the first violation of until(¢, 1)) for ¢, € V¥ is correct according to the
definition in Section 5.2.1, the following must be proven to be true:

— if the equivalent past-time condition is true, then the future-time formula does
not hold:

Vs € Trace; t € Ny; ¢, € U
(s,t) Fp- before™ (1, since™ ((¢ A ), Start)) A —~(d V) —
(s, 8) Py until(9,v) A
t =min{t' € Ny |V € Trace : (prefiz(s,t') @ s',t') =y M(Gﬁ,lb)})

Let us assume that (s, t) |=; until(¢,1)). This means that (s, t) =¢ ¢V1p, whichin
turn means that (s, ) =y~ ¢V, because ¢ is propositional. But this contradicts
the antecedent. Hence, (s, t) =5 until(¢, ).

If t = min{t’ € Ny | Vs € Trace : (prefiz(s,t') @ s',¢') e until(¢,v)} is
false, then 3¢” € Ny : ¢ < t A (s,t” ¢ (¢ V ¢)). This means that there exists a
timestep ¢ < ¢ : (s, t" [ (¢V1))) as ¢ is propositional. But this contradicts the
antecedent (s, t) =, before™ (1, since™ ((pA—), Start)). Hence, the consequent
is proven true by contradiction.

— if the equivalent past-time condition is false, then the future-time formula must
be true:

Vs € Trace; t € Ni; ¢, € U+ ((s,t) Wy until(, ) A
t =min{t' € Ny | Vs € Trace : (prefiz(s,t') ® ', t') ¢ M(gb,w)})
— (8,t) Fy- before™ (1, since™ ((¢ A ), Start)) A =(¢ V)

Because ¢,v € VU, (s,t) |=p- =(¢ VvV ¢) follows directly from (s, t) = = (¢ V 1)
because t = min{t' € Ny | Vs’ € Trace : (prefiz(s,t') @ s', ') Fer until(¢,v)}.

Proving that (s, t) |=;- before™ (1, since™ ((¢ A —¢), Start)) A =(¢ V ) holds,
means to show that (s, ¢ — 1) =;- since™ ((¢ A =), Start) holds. We can again
prove this by contradiction. Let us assume that (s,¢ — 1) =y since™ ((¢ A
—)), Start) is false. This means that 3" € Ny : " <t A (s,1") - o N 1),
which in turn means that 3¢t” € Ny : ¢ <t A (s,t") B ¢ AP as ¢,¢ € V.
This means that 3¢” € Ny : t” <t AVs' € Trace : (prefiz(s,t”) @ s',t") ¥y
until(¢, ). But this negates the selection of ¢ in the antecedent as the earli-
est point in time for the violation of until(¢,v). So (s,t — 1) |- since™((¢ A
1)), Start) must be true. Hence, the consequent is proven true.

* To prove that the first violation of after(n, ¢) for ¢ € V¥ is correct according to the
definition in Section 5.2.1, the following must be proven to be true:
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if the equivalent past-time condition is true, then the future-time formula does
not hold:

Vs € Trace; t € Ny; ¢ € ¥; 3n € N: (s,t) |- before™ (n, Start) A —=¢ —

((s.1) Vs after(n, ¢) A
t =min{t' € Ny | Vs € Trace : (prefiz(s,t') ® ', t') ¢ M(n,qﬁ)})

Assume, 3t" € Ny : ¢t <t A (V' € Trace : (prefiz(s,t') @', t') ¥t after(n, ).
Then the monitoring of the future formula after(n,¢) started at least n + 1
timesteps ago. This contradicts (s, t) |=¢- before™ (n,Start). So, t = min{t’ €
Ny |Vs' € Trace : (prefiz(s,t') @ s',t') =5 after(n, ¢)} holds.

If (s,t) ¢ after(n,¢), then (s,t) |=f ¢ because the monitoring of the future
formula after(n, ¢) started n timesteps ago, as shown above. This means that
(s,t) =y~ ¢ as ¢ is propositional. But this contradicts (s, ) ;- —¢ in the
antecedent. Hence, the consequent is proven true by contradiction.

if the equivalent past-time condition is false, then the future-time formula must
be true:

Vs e Trace; t € Ny; ¢ € ¥; In e N ((s,t) W after(n, ¢) A
t =min{t' € Ny | Vs’ € Trace : (prefiz(s,t') ® s',t) ¢ after(n,¢)}) —
(s,t) - before™ (n, Start) A —¢

Let us assume that (s, t) [=¢- before™ (n,Start) is false. Then Start was true m
timesteps ago such that either m > n or m < n. The first case, m > n means that
after(n, ¢) was violated at a timestep before ¢. But this contradicts the selection
of ¢ as the earliest violation of after(n, ¢). So m cannot be greater than n. For the
case of m < n, after(n, ¢) is not violated at timestep ¢ which again contradicts
the antecedent. Therefore m = n and (s, t) =, before™ (n, Start) must hold.

Now, if (s,t) |=p- —¢ is false, ie., (s,t) =y~ ¢, then (s,t) =y ¢. But this
contradicts (s, t) [~y after(n,¢). So (s,t) =f- —~¢ must be also true.

Hence, the consequent is proven true by contradiction.

* To prove that the first violation of replim (i, m, n, ¢) for ¢ € U is correct according to
the definition in Section 5.2.1, the following must be shown to hold:

if the equivalent past-time condition is true, then the future-time formula does
not hold:

Vs € Trace; t € Ny; ¢ € W; 3i,m,n € N: (s,t) g before™ (i, Start)A
(repsince™ (m — 1, ¢, Start) V —(repsince™ (n, ¢, Start)))
— ((s, t) ¥er replim(i, m,n,$) A
t = min{t' € Ny | Vs' € Trace : (prefiz(s,t') @ s',t') ¥ replim(i, m, n,¢)})
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If (s,t) =f replim(i, m,n,¢), then

(i) looking into the future from Start, in the next i timesteps, ¢ occurs mini-
mum m times, and

(ii) from Start, in the next i timesteps, ¢ occurs maximum n times

(i) contradicts (s, t) =~ before™ (i, Start) A (repsince™ (m — 1, ¢, Start)) and (ii)
contradicts (s, t) =~ before™ (i,Start) A —(repsince™(n, ¢,Start)). Therefore,
(i)A(ii) contradicts (s, t) [=f- before™ (i, Start) A (repsince™ (m — 1, ¢, Start)

V —(repsince™ (n, ¢, Start))).

If t = min{t' € Ny | Vs' € Trace : (prefiz(s,t') @ s',t') = replim(i, m,n,¢)}
is false then 3t” € Ny : ¢ < t A Vs € Trace : (prefix(s,t") @ s',t") ¢
replim(i, m,n, $)}. This means that Start was at least n + 1 timesteps ago. But
this contradicts (s, ) =7 before™ (i, Start). Therefore the consequent is proven
true by contradiction.

— if the equivalent past-time condition is false, then the future-time formula must
be true:

Vs € Trace; t € Ny; ¢ € U; Fi,m,neN: ((s, t) e replim(i, m,n, ) A
t =min{t' € Ny | Vs € Trace : (prefiz(s,t') ® s',t") ¢ replim(i, m, n,d))}) —
(s,t) Fy- before™ (i, Start) A (repsince™ (m — 1, ¢, Start)

V=(repsince™ (n, ¢, Start)))

If (s,t) F=p- before™ (i,Start) is false then Start was true in a timestep j such
that either j < ¢ orj > i. If j < i, then replim(i, m,n, ¢) is not violated at
t. If j > i, then replim(i, m, n, ) was false at a timestep earlier than ¢. This
contradicts the choice of t in the antecedent. Hence (s, t) |=;- before™ (i, Start)
holds.

Now if, (s,t) =p- repsince™ (m — 1, ¢, Start) V =(repsince™ (n, ¢, Start)) is false,
then (s, t) =y —repsince™ (m — 1,¢,Start) A (repsince™ (n, ¢, Start)) must be
true. This means that ¢ is true at least m times and at most n times since start.
That is, looking into the future from Start, (s,t) = replim(i, m,n,$) holds
as ¢ is propositional. But this contradicts the antecedent. Thus proved that
(s,t) =y repsince™ (m — 1, ¢, Start) V —(repsince™ (n, ¢, Start)) also holds.

 To prove that the first violation of repuntil(n,, ¢) for ¢,1) € V¥ is correct according
to the definition in Section 5.2.1, the following must be shown to hold:

— if the equivalent past-time condition is true, then the future-time formula does
not hold:
Vs € Trace; t € Ni; ¢,9p € U; In € N: (s,t) |y since™ (—¢, Start)
A=repsince” (n — 1,1, Start) A —
((s. ) ¥r repuntil(n, 1, ¢) A
t = min{t' € Ny |Vs' € Trace : (prefiz(s,t') @ s', t') ¥y T’epuntil(n,w,@})

If (s,t) =f repuntil(n,1), @) holds, then, either ¢ is true in ¢ or at a timestep
t" < t, or ¢ must be true at most n times till (and including) ¢. But this violates
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the antecedent (s, t) ;- since™ (=, Start) A —repsince™ (n — 1,%, Start) A .
Therefore, (s, t) [~¢ repuntil(n, 1), $) must be true.

If t = min{t’' € Ny | Vs' € Trace : (prefiz(s,t') @ s',t') ¥p repuntil(n,, ¢)} is
false, then there is at least one timestep ¢” < ¢ when ¢ has already been true at
least n + 1 times starting from Start, as ¢ was never true after Start. But this
contradicts the antecedent that says that ¢ becomes true the n + 1% time in the
timestep t¢. Therefore the consequent is proven true by contradiction.

— if the equivalent past-time condition is false, then the future-time formula must
be true:

Vs € Trace; t € Ny; ¢, € ¥; I3n € N: ((5, t) ¥ep repuntil(n,, ¢) A
t =min{t' € Ny | Vs € Trace : (prefiz(s,t') ® s, t') ¢ repuntil(n,p, gb)}) —
(s,t) |- since™ (—¢, Start) A =repsince™ (n — 1,4, Start) Ay

Let (s, t) y- since™ (=g, Start) A —repsince™ (n — 1,4, Start) A+ be false. Then
¢ has been true at least once since Start or, 1) has been true at most n times
including the current timestep, or both. Looking into the future from Start,
this contradicts the selection of ¢ as the earliest moment in time for (s, ) ¢
repuntil(n,, ¢). Therefore (s, t) ;- since™ (=¢, Start) A —repsince™

(n — 1,1, Start) A ¢ holds. Hence, the consequent is proven true.

The next section demonstrates policy derivation using action refinement for different
use cases. Before that, Algorithm 1 recaps action refinement in terms of the inputs and
outputs of the different transformations that the OSL formula goes through.

ALGORITHM 1: Action refinement in policies

input : formula ¢ € @
output : formula ¢ € @
local variables: temp1,temp2,temp3 € &,

1 templ < 7p(1)); / / get past condition

2 temp2 < 7¢(templ); / /action refined to transformers
3 temp3 < 7,(templ); / /state-based action refinement
4 ' < or~(temp2, temp3); / /combine both refinements

5.3. Evaluation

The refinement of actions with past form translations of specification-level policies is eval-
uated through several examples. For this, the example scenarios introduced in Chapter 4
are revisited. Actions are refined to transformers using the domain models described in
Figures 4.4-4.7 (pages 46—48). The following policies are considered:

1. Friends must never copy this photo (OSN: running example, Section 5.3.1.1).

2. This video must be deleted after 30 days (OSN: running example, Section 5.3.1.2).
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3. This message should not be sent to a destination more than 2 times in the next 24
hours (mobile application, Section 5.3.2.1).

4. Don’t use data older than 3 days (Java third-party application, Section 5.3.3.1)

SLPs are translated at the data consumer’s end with technical details in the ILPs reflect-
ing the configurations of the data consumer’s systems.

Before moving on to the respective examples, a rough overview of connecting data and
containers: as mentioned earlier, data is an abstract concept that reflects how end users
see the content of different containers. As such, data exists only in the minds of different
persons who want to protect or misuse it, e.g., users and attackers. In running systems,
only the corresponding containers exist. Therefore, policies (both for data and for contain-
ers) are specified on concrete containers in running systems. The data stored in a concrete
container is identified by creating a data ID and mapping it to the container. All further
copies of data are tracked based on this mapping. Hence data is identified by the initial
container in which it appears in the concrete system. Data appears in different containers
at different layers. The infrastructure is capable of tracking which containers at the data
consumer’s side store data at which layer of abstraction. So, for example, the infrastruc-
ture knows that Alice’s photo is received by Bob at the web browser level in “http:/ /fw-
../9c73d9b71f jpg”; is stored in “/home/../7B835Bd01” in the cache folder and rendered
in window “0x1a00005” in X11. This information is used to create initial mappings of data
and container for every usage-controlled layer at Bob’s end. The container is substituted
by the data ID in the policy before the policy is deployed. Further details of how the
mapping between data and container takes place are in Section 6.2.

Once the policy is deployed, with the usage control infrastructure, it is possible to track
multiple representations of the same data at and across different abstract layers in a sys-
tem. Data appears in different containers at different layers but all of these containers are
mapped to the same data ID and that data ID also appears in the deployed policy.

A data flow model per layer is used to keep track of all the copies of that data in each
layer. The relevant infrastructure components at respective layers communicate with each
other in order to track all copies of data across all layers.

In the following section, the symbols —, =, A, V, ¥, 3, € will be used instead of implies™,
not~,and", or~, forall, exists and in for simplicity’s sake.

5.3.1. Example One: Online Social Network

Revisiting the running example, actions are refined in two policies that Alice specifies, to
be enforced in her friend Bob’s machine. The first example refines the copy action.

5.3.1.1. Refining Copy Photo

Alice specifies a policy on the photo she accesses in her machine via URL “http:/ /fw-
../9c73d9b7ff.jpg”. Because this photo enters Bob’s machine at the web browser level via
the same URL, this URL refers to the initial container at Bob’s end.

The SLP “Friends must never copy this photo” on data in “http:/ /fw-../9c73d9b7tf.jpg”,
expressed in future OSL is: O(—(E(copy — {obj — http : //fw — ../9c¢T73d9bT[f .jpg, subj —
friend}))). It is of the form O(y) where ¢ = —(E(copy — {obj — hitp : //fw — ../9c73-
d9bTff .jpg, subj — friend})).
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Past form: 7p gives us the past-time condition to be checked in the respective ECA rules.
p(O(p)) = before™ (1, since”Start) N —¢ where Start denotes the policy activation
event. This means that the respective ECA rule is triggered when ¢ has always been true
since the policy was activated, except the current timestep. As ¢ = —(E(copy — {obj —
hitp = //fw—../9¢c73d9bTf .jpg, subj — friend})), the ECA rule is triggered when E(copy —
{obj — http : //fw — ../9c¢73dIbT[f .jpg, subj — friend}) is true.

Action Refinement: For refining actions to transformers, a domain model shown in Fig-
ure 4.4 on page 46 is used. For state-based action refinement, state formula is defined in
the event declaration. In this example, copy photo means “data is in more than two files”.
The respective state-based formula in the declaration of copy action is —(isMazIn(z,
{UnizFile},2)) where x is variable data and UnizF'ile is the class of containers at the ISM
level. Action refinement, 74(E(copy — {obj — http : //fw — ../9¢73d9bT[f .jpg, subj —
friend})), works as follows when the data is received at Bob’s end:

1. The state-based refinement of copy uses the following event declaration: copy
{obj, quality, subj, location, device} — —(isMazIn(x,{UnizFile},2)). State-based re-
finement is achieved by substituting variable x with http://fw-../9¢73d9b7ff.jpg in the
state formula:

To(E(copy — {obj — http : //fw — ../9¢T3d9bT[f .jpg, subj — friend})) =
—(esMazIn(http : //fw — ../9¢73d9bT[f .jpg, { UnizFile},2)) A eval(subj = friend)

The container name http : //fw — ../9¢73d9b7ff .jpyg is substituted by a data ID after
the initial mapping of data and container takes place as described in Section 6.2 on
page 82.

2. For refinement to transformers, applying 7¢, copy is first refined to {Copy&Paste,
Screenshot, CopyFile} and then recursively, each of these transformers is refined till
the lowest ISM level. As mentioned earlier, the usage control infrastructure is capa-
ble of figuring out which containers at first store the data in Bob’s machine at dif-
ferent layers.? These initial containers per layer are shown in the policy below. For
dataUsage policies, these container names don’t appear in the deployed ECA rules.
Before deployment, each of these containers is substituted by the same data ID in the
rule.

*How this is actually achieved, depends upon the technical systems in place. If, e.g., Bob runs a Firefox
browser on a Windows machine, a Firefox extension which is a part of the usage control infrastructure
can figure out for each picture, the corresponding file in the cache folder. If from each of these containers,
data flows to other containers within that layer, e.g., a photo can be copied to another file from the filepath
where it is initially cached, the data flow tracking components in place recognize this. See Chapter 7 for
more details on the architecture of the usage control infrastructure.
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Te(E(copy — {obj w— http : //fw — ../9c¢T73dIbTLf .jpg, subj — friend})) =
Te(E(cmd_copy — {obj — hitp : //fw — ../9¢73d9b7[f .jpg, subj — friend}))
V 1e(E(getImage — {obj — 0x1a00005, subj — friend}))

V (1¢(E(close — {obj — /home/../TB835Bd01, subj — friend})) A
&(1e(E(write — {obj — /home/../TB835Bd01, subj — friend})) A
&(te(E(read — {obj — /home/../TB835Bd01, subj — friend})) A
&(re(E(open — {obj — /home/../TB835Bd01, subj — friend}))))))

3. Following the definition of 74

TA(E (copy — {obj — hitp : //fw — ../9¢T3d9bT[f .jpg, subj — friend})) =
7o (E(copy — {obj — http : //fw — ../9¢73d9bT[f .jpg, subj — friend}))
V 1e(E(copy — {obj — http : //fw — ../9cT3dIbT[f .jpg, subj — friend}))

the translation results from (1) and (2) above are combined to get the action-refined
rule to be checked in the condition part of the ECA rule corresponding to the SLP:

—(esMazIn(http : //fw — ../9¢73d9bT[f .jpg, { UnizFile},2)) N eval(subj = friend)
V E(cmd_copy — {obj — hitp : //fw — ../9c¢73d9bT[f .jpg, subj — friend})
V E(getImage — {obj — 021a00005, subj > friend})
V (E(close — {obj — /home/../TB835Bd01, subj — friend}) A
& (E(write — {obj — /home/../TB835Bd01, subj — friend}) A
&(E(read — {obj — [home/../TB835Bd01, subj — friend}) A
&(E(open — {obj — [home/../TB835Bd01, subj — friend})))))

Assuming data ID dI is generated and mapped to the initial container http://fw-../9c-
73d9b7ff.jpg and then to all the others via data flow tracking, the final formula would look
like this:

—(isMazxIn(dl,{ UnizFile},2)) N\ eval(subj = friend)

V E(cmd_copy — {obj — d1, subj — friend})

V E(getImage — {obj — d1, subj — friend})

V (E(close — {obj — d1, subj — friend}) A
&(E(write — {obj — d1, subj — friend}) A
&(E(read — {obj — d1, subj — friend}) A
&(E(open — {obj — d1, subj — friend})))))

The above formula demonstrates a condition with one data ID that substitutes different
container names. As the data ID — container mapping does not take place at this stage of
policy derivation, the usage of containers in dataUsage policies is continued in the follow-
ing examples.

The nested OSL formula that we get from action refinement can be broken down to sub-
formulas (Fischer-Ladner closure) and each subformula is then mapped to the condition
part of one ECA rule. Then, several ECA rules are generated corresponding to one SLP.
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5.3.1.2. Refining Delete Video

The SLP “This video must be deleted after 30 days” on data in “http://fw-../myvid.mp4”
is expressed in future OSL as: after(30, E(delete — {obj — http : //fw — ../myvid.mp4}))
where the time unit is “day’. For simplicity’s sake, deleting the video before 30 days is not
captured in this formula. The video is accessed and downloaded by Bob and stored in his
machine as “myvid.mp4”. So the policy to be translated at Bob’s end is after(30, E(delete —
{obj +— myvid.mp4})). It is of the form after(30, ) where ¢ = E(delete — {obj —
myvid.mp4}).

Past form: 7p gives us the past-time condition to be checked in the respective ECA rules.
7p (30, after(p)) = before™ (30, Start) A —¢ where Start denotes the policy activation event.
For this case, the past-time condition to be checked in the ECA rule is:

before™ (30, Start) A —(E(delete — {obj — myvid.mp4}))

This means that the respective ECA rule is triggered when the rule was activated 30
timesteps ago and in the current timestep, myvid.mp4 is not deleted.

Action Refinement: For refining actions to transformers, the domain model shown in
Figure 4.5 on page 47 is used. For state-based action refinement, the respective event dec-
laration is delete — {obj, subj, location, device} +— isOnlyln(z, ) where x is a variable
data. The respective state-based formula says that the deletion of data means that “data is
in none of the containers”.

The next step is action refinement as described in Section 5.1.2. Following steps take
place for 74 (E(delete — {obj — myvid.mp4})) at Bob’s end:

1. State-based refinement is achieved by substituting variable x with myvid.mp4 in the
state formula:
T, (E(delete — {obj — myvid.mp4})) = isOnlyIn(myvid.mp4, &)

2. Applying 7¢, delete is first refined to {Remove, Overwrite} transformers and then
each of these transformers is refined to {unlink, shred}.

Te(E(delete — {obj — myvid.mp4})) =
Te (E(Remove — {obj — myvid.mp4})) V 1¢(E(Overwrite — {obj — myvid.mp4}))

which is refined to

E(unlink — {obj — myvid.mp4}) V E(shred — {obj — myvid.mp4})

3. Following the definition of 7.4

TA(before™ (30, Start) A —(E(delete — {obj — myvid.mp4}))) = before™ (30, Start)
A=(7,(E(delete — {obj — myvid.mp4})) V 1e(E(delete — {obj — myvid.mp4})))
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the translation results from (1) and (2) above are combined to get the action-refined
rule to be checked in the condition part of the ECA rule corresponding to the SLP:

before™ (30, Start) A =(isOnlyln(myvid.mp4, @) V
E(unlink — {obj — myvid.mp4}) V E(shred — {obj — myvid.mp4}))

The next example is from the domain of Mobile Computing: actions in a mobile appli-
cation for Android are refined.

5.3.2. Example Two: Mobile Applications Domain

Based on the example domain model in Figure 4.6 on page 48, user action in the SLP “This
message should not be sent to a destination more than 2 times in the next 24 hours” is re-
fined. The SLP in OSL at the data consumer’sendis: V d € DEST : replim(24,0,2, E(send
— ({obj — SMS_10263, dest + d})))* where DEST is the set of all destinations and the
time unit is "hour’. The action “send SMS” is refined at the data consumer’s end as follows:

5.3.2.1. Refining Send SMS

The SLP is of the form V d € DEST : ¢ where ¢ = replim(24,0,2, E(send — ({0bj —
SMS 10263, dest — d}))).

Past form: Applying 7p to the SLP, we get V. d € DEST : 7p(¢) in the first step. p
essentially acts on replim(24, 0,2, E(send — ({0bj — SMS_10263, dest — d}))) which is of
the form replim (24,0, 2, ¢) where ¢ = E(send — ({obj — SMS_10263, dest — d})). This
gives us the final past-time formula to be checked in condition

YV d € DEST : before™ (24, Start) A
—repsince”™ (2, E(send — ({obj — SMS_10263, dest — d})), Start)

that is, if the ECA rule was activated 24 hours ago and the message was already sent to a
destination 2 times since the rule activation, then a 3rd attempt triggers the rule:

p(V d € DEST : replim(24,0,2, E(send — ({obj — SMS_10263, dest — d}))))
= VYV d € DEST : before™ (24, Start) N
—repsince”™ (2, E(send — ({obj — SMS_10263, dest — d})), Start)

Action Refinement: For refining actions to transformers, the domain model shown in
Figure 4.6 on page 48 is used. 74(E(send — ({obj — SMS_10263, dest — d}))) works as
follows:

48MS_10263 is used an as SMS identifier in this example for simplicity’s sake. In reality, an SMS is uniquely
identified within a phone either by a UID or by a hash of some unique parts of the SMS like the sender’s
phone number and the receiving time stamp; across phones, other unique content and added identifiers
could be combined to generate hash and create a unique identifier for an SMS.
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1. The respective event declaration is send — {obj, subj, dest} — false. The state-based
refinement gives us 7, (E(send — ({obj — SMS_10263, dest — d}))) = false

2. Applying ¢, send is first refined to SendMessage and then to the SendTextMessage
transformer in the Android application.

Te(E(send — ({obj — SMS_10263, dest — d}))) =
Te(E(SendMessage — ({0obj — SMS_10263, dest — d})))

which is refined to

E(sendTextMessage — ({obj — SMS_10263, dest — d}))

3. Following the definition of 74

74NV d € DEST : before™ (24, Start) N
—repsince” (2, E(send — ({obj — SMS_10263, dest — d})), Start))
=V d € DEST : before™ (24, Start) A
—repsince” (2, 7,(E(send — ({obj — SMS_10263, dest — d})))
V 1e(E(send — ({obj — SMS_10263, dest — d}))), Start)

the translation results from (1) and (2) above are combined to get the action-refined
rule to be checked in the condition part of the ECA rule corresponding to the SLP:

YV d € DEST : before™ (24, Start) A —repsince™ (2, (false V
E(sendTextMessage — ({obj — SMS_10263, dest — d}))), Start)

which is equivalent to

YV d € DEST : before™ (24, Start) N\ —repsince™ (2,
E(sendTextMessage — ({obj — SMS_10263, dest — d})), Start)

5.3.3. Example Three: A Java Application

The original policy for this use case is “don’t use outdated data” for Google+. For demon-
stration purpose, outdated data is interpreted as data older than 3 days. This means that
if a data d was neither created nor updated in the past 3 days, it’s considered outdated.

Revisiting the Birthday Reminder third-party OSN application, written in Java and mod-
eled in Figure 4.7 on page 48, actions are refined in the following SLP: “Don’t use data
older than 3 days” for data stored in String object fid (friend ID).

This time we refer to Section 2.6 and specify this policy in past: L(E(use — {obj —
fid}) — within™ (3, E(create — {obj — fid}) V E(update — {obj — fid}))) where the

timestep is on the scale of ‘day’.” The actions to be defined are “create text data”, “update
text data” and “use text data”.

°As already mentioned in Section 2.6, the choice of future time OSL for policy specification is driven by
intuition; policies could as well be specified using past time operators. This example is used to demonstrate
this fact.
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5.3.3.1. Refining Create, Update and Use Data

Past form: As the policy is specified in past-time OSL, and the formula is of the form ()
where p = F(use — {obj — fid}) — within™ (3, E(create — {obj — fid}) V E(update —
{obj — fid})), the violation of the formula is given by —¢. The condition to be checked in
the ECA ruleis E(use — {obj — fid}) N —within~ (3, E(create — {obj — fid}) V E(update
— {obj > fid})).

Action Refinement: Actions are refined to transformers according to the domain model
shown in Figure 4.7 on page 48. The state-based action refinement of “create data” and
“update data” is given by the proposition false in their respective event declarations. The
state-based refinement of use data is given as —(isNotIn(xz, ResultSet)) where z is variable
data and ResultSet is the Java’s table of data representing a database result set, which is
generated by executing a statement that queries the database. This means that the data is
considered to be used whenever it is read from the database. The respective event decla-
rations are as follows:

— Create: create — {obj, subj, location, device} — false

— Update: update — {obj, subj, location, device} — false

- Use: use — {obj, subj, location, device} — —(isNotIn(z, ResultSet))

Action refinement, as described in Section 5.1.2 and given by, 74(E(use — {obj —
fid}) A —within™ (3, E(create — {obj — fid}) V E(update — {obj — fid}))) is straightfor-
ward:

1. 75(E(create — {obj — fid})) = false
To (E(update — {obj — fid})) = false
To(E(use — {obj — fid})) = —(isNotIn(fid, ResultSet))

2. Applying 7¢, create, update and use actions on text data are refined to {createData},
{updateData} and {useData} respectively. Then each of these transformers is re-
fined to {eu.demirbas.app.Main.createData}, {eu.demirbas.app.Main.updateData}
and {eu.demirbas.app.Main.useData} respectively. As the prefixes of the method
names are too long, let us use a placeholder term “prefix” instead of
“eu.demirbas.app.Main” here onwards. Finally,

Te(E(create — {obj — fid})) = E(prefiz.createData — {obj — fid})
Te(E(update — {obj — fid})) = E(prefiz.updateData — {obj — fid})
Te(E(use — {obj — fid})) = E(prefiz.useData — {obj — fid})

3. Following the definition of 7.4

TA(E (use — {obj — fid}) N —within™ (3, E(create — {obj — fid})

V' E(update — {obj — fid}))) =

To(E(use — {obj — fid})) V 7e(E(use — {obj — fid})) A

—within™ (3, (7, (E(create — {obj — fid})) V 1e(E(create — {obj — fid})) V
7. (E(update — {obj — fid})) V 7e(E(update — {obj — fid}))))
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the translation results from (1) and (2) above are combined to get the action-refined
rule to be checked in the condition part of the ECA rule corresponding to the SLP as:

—within™ (3, (false V E(prefiz.createData — {obj — fid})
V false V E(prefiz.updateData — {obj — fid}))) A
(—misNotIn(fid, ResultSet) V (E(prefix.useData — {obj — fid})))

which is equivalent to

—within™ (3, (E(prefiz.createData — {obj — fid})
V E(prefiz.updateData — {obj — fid}))) A
(—isNotIn(fid, ResultSet) V E(prefiz.useData — {obj — fid}))

What's next? We will revisit the above examples for further derivation of policies in the
next chapter.

5.4. Summary

This chapter describes a model-based policy refinement for usage control enforcement.
Through this, the fundamental problem of the lack of clear semantics of actions like copy
and delete is addressed. In addition, a methodological guidance to derive the past-time
first violation of future OSL formulas and the corresponding proof is also provided.

Policy derivation in this chapter does not discuss the case of enforcing policies about
interdependent events at multiple layers of abstraction as the the solution does not depend
upon policy derivation. This problem is addressed in Section 7.3.

It is hard to establish a notion of correctness between the semantics of low-level and
high-level policies. This is because the semantics of high-level propositions is not precisely
defined but rather exists in the (end) user’s mind. In fact, the domain metamodel and its
usage in policy derivation should be seen as a way to define the semantics of high-level
policies by assigning machine-level events and state changes to high-level actions.

The next chapter addresses the methodological part of the problem and describes the
further translation of these partially derived policies that we have at the end of this chapter.
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Chapter 6

The Policy Derivation Methodology

The results discussed in this chapter have already been published in [64], co-authored by the
author of this thesis.

Recapping Section 4.1, there are several requirements that must be met in order to auto-
matically derive ILPs from the SLPs. Firstly, SLP data and action must be refined. Sec-
ondly, we need to convert the future-time SLP constraints into their past forms so that
enforcement mechanisms can come to decisions on grounds of the past executions in the
system. Thirdly, we must convert the SLPs into rules of event-condition-action form. This
step is non-trivial because of the fact that one SLP can be enforced in several ways (e.g.,
Alice’s “don’t copy” can be enforced either by inhibiting all copy attempts, or by executing
the action with logs, or by modifying the data being copied). Fourthly, as described ear-
lier, we must achieve the initial binding of data and containers in an automated fashion.
Additionally, enforcement mechanisms might require some context information in order to
decide upon the action when they are notified of an event, e.g., browsing session identifier
in case of a web application. This context information must be added to the ECA rules be-
fore deployment. Also, a well-defined methodology for automating the policy derivation
is required. The rest of this chapter describes how all of these requirements are met from
the methodology point of view.

6.1. The Generic Approach to Policy Derivation

The core contribution of this chapter is a methodology for automating usage control pol-
icy derivation in order to include non-technical end users in policy specification. As a
fundamental concern is about the capability of end users in terms of understanding and
specifying usage control policies [59], power users help them by specifying policy tem-
plates which apply to classes and not specific instances of data. End users merely create
instances of these templates while specifying policies.
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In the overall policy specification and translation, the initial steps are about defining an
instance of the domain metamodel, with the three domain models providing the vocab-
ulary for specifying SLPs and their translations till the ISM layer. The definition of the
models is done by the sophisticated, power user.

In the next step, the power user creates specification-level policy templates Then the
specific kind of preventive enforcement (inhibition, modification, execution) needs to be
prescribed by the power user as one specification-level policy can be enforced in many
ways. So in the next steps, the enforcement strategies corresponding to every SLP template
are chosen and event-condition-action (ECA) rules are defined.

When the end user specifies policies using the available templates, as their translation
is already defined by the power user, the policies are automatically translated containing
implementation-specific representations of the abstract data and action according to their
refinements specified in the models. In theory, the end user can also specify PIM policies
without templates, using standard OSL operators. In that case, he must decide upon the
enforcement mechanisms and define the corresponding ECA rules.

The following sections provide a methodological guidance with details for automat-
ing the policy derivation. Some phases in the generic methodology are described only
at a high-level. This is because certain context-dependent information in policies can be
figured out in different domains in different ways. There is no universal set of precise
instructions to figure out specific context information in all the domain applications.

Regardless of this, as the policy derivation in this thesis relies on the domain expertise
of the power users, it is reasonable to assume that a high-level methodological guidance
at places is sufficient for a power user to fill the details according to the domain context.

6.2. The Policy Derivation Methodology

This section shows how the complete policy derivation process can be automated: the
power user only configures the policy derivation in the beginning, no further human in-
tervention is needed. Policy derivation is completed in five steps as described in the fol-
lowing subsections.

6.2.1. Policy Templates

Although end users would like to be able to specify security requirements, in particular
usage control policies [60], they are in general not capable of reasoning holistically about
such policies [59]. Hence the need for a policy specification and derivation framework
that requires simple and limited user input for the specification of usage control policies.
Our generic policy derivation approach is based on policy templates that are essentially
classes of policies. Two types of policy templates are used. Their specification is part of
the infrastructure setup tasks that the power user performs before the domain application
is ready to be used in a usage-controlled way.

6.2.1.1. Step 1: Setting up the Policy Derivation

The power user specifies two types of templates: one set of templates for the SLPs, to be
instantiated manually by an end user for each data element that he wants to protect. The
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second set of templates specify enforcement strategies for automatically generating ECA
rules for different classes of SLPs. Automating the generation of ECA rules is motivated by
the fact that the enforcement strategy (viz. execute, inhibit, modify) for each SLP is usually
according to the technical infrastructure and/or organizational goals. E.g., a company
enforces a policy “don’t copy document” by inhibition because the company wants to
prevent data leakage and its infrastructure supports it; or, a film producer enforces “don’t
play unpaid videos” by allowing corresponding events with a lower quality video because
either it’s technically not feasible to inhibit the events or he wants to give a limited preview
to its prospective customers. As the reasons for deciding upon an enforcement strategy
don’t change very often, it is reasonable to specify the enforcement strategy for ECA rules
generation in a template in order to automate the process.

6.2.1.2. Step 2: Policy Specification

We looked into usage control requirements in several domains like online social networks,
ambient assisted living systems and video surveillance systems. We recognized that most
of the relevant usage control policies could be specified using limited combinations of OSL
operators. Based on this experience, we came up with a list of policy patterns, where each
pattern could be used to specify templates of policies, explained shortly.

Table 6.1 shows a sample list of patterns of policies. This list could be extended to cover
special data protection needs in specific domains. For most of the policies, we already have
OSL operators and macros that cover the majority of the patterns in temporal logic. There
are however some more type of policies that need to be expressed by nesting some of the
OSL operators. In the following, {¢1, p2, 3} € ®:

Pattern text OSL Formula Structure
1 Or 9 must be true 01 V @9

1 and 9 must be true w1 A P2

1 must be true n timesteps after ¢y became true O(po — after(n,¢1))

1 must immediately succeed 2 O(p2 — after(1,¢1))

1 must always be true, e.g., “all events must be | Oy
logged”

1 must never be true, e.g., “never send data outside | O—¢y
the network”

1 must hold until ¢, becomes true, e.g., “no data | 1 until po
should be copied without permission”

If ¢y is true, then 2 must be true within n timesteps | O(p; — (within(n, ¢2) V
or o must never be true, e.g., “a gift coupon can be | —¢7))
used only within an year from the date of purchase”
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If ¢ is true, then 2 must be true in every moment | O(p; — during(n, p2))
in n timesteps after ¢, e.g., “if a user is fined, he is
not allowed to download sensitive documents for the
next 3 months”

1 must be repeated minimum m times and maxi- | replim (i, m,n, 1)
mum n times in the next i timesteps, e.g., “at most
50 SMS may be sent in the next 24 hours”

1 must be true at most n number of times, until ¢y | repuntil(n, p1, 2)
becomes true, e.g., “accounts are suspended after 3
consecutive failed login attempts”

1 must be true maximum n number of times, e.g, | repmaz(n, 1)
“a user account may be restored from suspension at
most 2 times”

2 must be true immediately after ¢, until @3 be- | O(p; —

comes true, e.g., “discovery of malicious user activity | after(1, g2 until p3))
must trigger account suspension in the next moment; o
the account must remain suspended until the charges
are proven wrong”

Table 6.1.: Sample policy patterns

Using policy patterns, we came up with classes of SLPs that specify constraints upon classes
of data and actions for the domains where we tested our policy specification and deriva-
tion. SLP templates are user-friendly representations of policy classes as end users need
not know policy specification languages. They instantiate the policy classes using tem-
plates to specify data elements, actions and other constraints like time and cardinality
(max. number of log in attempts before the account is blocked, amount, currency, etc.).

6.2.2. Policy Derivation
6.2.2.1. Step 3: Past Translation & Action Refinement

When the policy is specified at the data provider’s end, first, the class of data addressed
in the policy is computed using the getclass function (introduced in Section 5.1.1) and this
information is added to the policy. When the data and the policy are propagated to all the
consumers, the binding of data and its class is also propagated, which helps in translating
the policy at the consumers” ends. Then the derivation of implementation-level ECA rules
from specification-level policies uses the formal policy derivation described in Chapter 5:
specification-level OSL formulas are translated to their past forms and actions are refined
according to the domain model.

Technically, if the SLP in Obligation Specification Language (OSL) is expressed as ¢, the
first output of this step is 74(). After action refinement, we get a complex, nested formula
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that could be broken down to subformulas.! This way, we would get a set of ECA rules
corresponding to one specification-level policy. The generic format of ECA rules at this
stage is as follows (where ¢; is one subformula)

FEvent : any
Condition : @;
Action : MODIFY /INHIBIT /|EXECUTE

To limit the set of trigger events for each ECA rule (for performance reasons), whenever
¢; is of the form E(e) A z or I(e) A z) where x is an OSL formula, e is moved to the trigger
event part and only x is checked in the condition part of the rule. In case of multiple events,
e.g., p; = FE(e1) N E(e2) A ... N E(en) A z, any of the events can be the trigger event.

Event : I(e)/E(e)
Condition : x

Action : MODIFY /INHIBIT /|EXECUTE

We know that one high-level policy can be enforced in many ways. Hence theoretically,
the action part of ECA rules (MODIFY /INHIBIT /EXECUTE) cannot be specified in an
automated way. In order to avoid human intervention at this stage, predefined templates
that express the action part for classes of policies are used, as mentioned earlier.

6.2.2.2. Step 4: Connecting Data and Container

As such, data does not exist in the real world, except in the mind of the humans who want
to protect or abuse it. In real systems, only corresponding containers exist. Therefore,
an end user writes policies only on concrete containers and specifies if he means to ad-
dress the data in that container (i.e., all copies of the container) or the container itself. This
is done by specifying the policy type in the SLP. “Policy type” corresponds to the type of
event in the policy: e.g., if a policy talks of datallsage event, then it is called a datallsage pol-
icy). Conceptually, data enters a system in an initial container and gets a data ID assigned.
Practically, this would mean that corresponding to that container, a data ID is created and
mapped to the container and the mapping is somehow stored in the usage control infras-
tructure. This process of initially mapping containers to data is called the initial binding of
data and container. How this initial binding takes place and gets reflected in policies, varies
according to the type of the policy:

* ContainerUsage policy: applies only to the specific container in the policy; useful in
specifying integrity policies like “don’t modify /config.cfg file”. There is no need of
data-container binding in this case.

¢ DataUsage policy: applies to all copies of the container mentioned in the policy. The
data-container mapping is created and reflected in the policy before deployment.

'We used a very simplistic approach to compute the subformulas: if x = ¢ V ¢, then subformula(x) =
{¢,v}. Each subformula is then mapped to the condition part of one ECA rule. We recognize the fact that
creating multiple ECA rules, each corresponding to one subformula might be problematic for performance
during enforcement. We implemented this solution for improving the readability of the generated ECA
rules.
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¢ DataContainerUsage policy: the end user can specify a data ID for the particular
container in the policy, or this data ID can be retrieved from the infrastructure if
the data-containers mapping already exists, as in the case of data distribution [65].
This type of policy is useful in distributed setup when the data ID for a particular
container must be maintained across machines.

¢ DataOnly policy: this type of policy is useful when the mapping between data and
containers already exists in one machine and both data and the policy are propa-
gated to other machines via different channels. The policy has a data ID without any
container; data enters the other machines in some initial containers and the policy
with the data ID applies to all of them.

In Listing B.1 in the Appendix, a concrete syntax of SLPs is described as XML schema. In
this syntax, the type of a policy is expressed via ParamMatchDataTypes (lines 193 and 199).

Algorithm 2 shows all the four cases of initial binding of data and container reflected
in a policy. Post initial binding, policies that are finally deployed for enforcement are
of two types: dataOnly policies apply to all representations of data at and across layers
of abstraction in a machine while containerOnly policies apply to the specific container
mentioned in the policy.

6.2.2.3. Step 5: Adding Context-Specific Details

According to the domain and system implementations in place, there are a number of
context details that might be added to ECA rules before deployment. E.g., policies in
an OSN might address specific users and their relationships to the profile owner. This
information is critical to the correct enforcement of the usage control policy and it can be
known only at runtime by identifying the browsing session.

Together, step 4 and 5 are called policy instantiation and they might be switched in order,
depending upon the context detail to be added and the corresponding system implemen-
tation.

6.3. The Workflows

Figure 6.1 shows the sequences of human activities for the systematic specification and
translation of policies. The first flow-chart describes the tasks performed by the power
user for the definition of the domain model and the policy templates and the translation
of policies specified using these templates. The second flow chart describes the end user
tasks for specification of policies (and also their translation, in case he opts not to use
the templates). In the complete process, end user tasks start only after all the tasks are
completed by the power user.

The initial steps are about defining the three domain models because this provides the
vocabulary for specifying policies at the PIM level (that is, the SLPs) and their transla-
tions to the ISM layer. The platform-independent domain model is defined as the first
task of the power user. As the second and the third tasks, the platform and implementa-
tion -specific models of the application are defined. The fourth task is to map the model
elements: high level components from the PIM level are mapped to PSM level technical
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ALGORITHM 2: Initial Binding of Data and Container in a Policy
input : Policy p
output : Policy p’
local variables: Data d, Container ¢

1 switch getPolicyType(p) do

2 case containerlUsage

3 p <P

4 //the returned policy is of type containerOnly

5 setPolicyType(p’, containerOnly);

6 case datallsage

7 //get the value of object parameter

8 ¢ < getObjectIn(p);

9 //get the ID of the data stored in the container object
10 //this method creates a data ID, if it already does not exist
11 d + getDataForContainer(c);

12 //substitute existing value of object parameter with data d
13 substituteObjectIn(p, ¢, d);

14 p <~ p;

15 setPolicyType(p’, dataOnly);

16 case dataContainerUsage

17 d « getDataldIn(p);

18 ¢ + getObjectIn(p);

19 //create data ID for the given container
20 createDataFor(d, c);

21 substituteObjectIn(p, ¢, d);

22 p < p;

23 setPolicyType(p’, dataOnly);

24 case dataOnlyUsage

25 p <P

26 setPolicyType(p’, dataOnly);

27 endsw

representations. As the implementation-specific model is also a refinement of the platform-
specific model, any power user who maps the PIM components to the PSM components
also completes the mapping of the PSM-level counterparts at the ISM level. Therefore, this
step is not shown as a separate task in the process.

In the fifth task, the power user creates specification-level policy templates. The sixth
task of the power user is to decide upon the enforcement strategy corresponding to each
SLP template. These enforcement-related decisions are used to define the templates of
executable event-condition-action rules as the seventh task.

Usually, the power user defines classes of policies as templates. The end user specifies
PIM policies using the available templates. As their translation is already defined by the
power user, the policies are automatically translated when the end user saves them. The
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Figure 6.1.: Policies specification and translation

end user can also specify PIM policies without templates, using standard OSL operators.
In that case, he must decide upon the enforcement mechanisms and define the correspond-
ing ECA rules as shown in the second flow-chart.

A third possibility of variation in the end user’s work flow is for those end users who are
technically proficient and are capable of specifying policies directly at the implementation
level (ECA rules with concrete technical details). Such cases also fit perfectly in the context
of this work and their possibility is not ruled out.> However, as this use case bypasses the
typical policy specification and derivation process, it is not shown explicitly in Figure 6.1.

6.4. Implementation & Evaluation

In the following subsections, the partially derived policies and their scenarios from Sec-
tion 5.3 will be revisited in the context of the respective concrete implementations.

6.4.1. Example One: Online Social Network

The generic architecture, to be described in Chapter 7 was instantiated to derive policies
for the Online Social Network SCUTA?, which already had basic usage control capabili-
ties [51]. This is an implementation of the scenario introduced in the running example in

2Technically—proﬁciem’c end users like system administrators might also specify policies by hand and directly
deploy them via shell commands or hand-written tools.
3h’ct-p: //tiny.cc/scuta
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Section 1.4.2. SCUTA was extended to provide two types of policy specification for two
classes of end users. As shown in Figure 6.2, basic users only specify how sensitive they
consider a particular data. Based on this sensitivity rating and a predefined trust model
that assigns trust ratings on a scale of 0 to 1 to different types of friends and maps these
trust ratings to a list of allowed actions, SLPs are generated by the system on behalf of the
users. The intuition here is that basic users are incapable of understanding and specify-
ing complex usage control policies. Further details of this type of policy specification are
discussed in [51].

Advanced Users can specify their policies by instantiating admin-defined SLP templates
that are loaded every time the page is requested. A template can be brought to editable
mode by double-clicking on it. In Figure 6.2, we also see an SLP template in edit mode.
One example policy that could be specified using this template is “acquaintances must not
copy this data without permission”. All these policies protect end users’ data from misuse
by other social network users.

Policies were translated and their enforcement was evaluated on two system config-
urations. One configuration consists of Mozilla Firefox web browser [51] running on a
Windows 7 operating system (for protecting cache files) [12].# In the second configuration,
the Firefox web browser runs on an Ubuntu Linux distribution. In the following subsec-
tion, the second implementation that has been part of the running example till now will be
discussed: refinement of copy and delete in Linux.

6.4.1.1. Connecting instances to classes.

As mentioned in Section 5.1.1, there is no universal way to compute the class of a given
data or container. The definition of the getclass function varies according to the domain
and its implementation. That’s why the connection of a data to its class has not been imple-
mented as part of the policy derivation core (see Section 7.1). Instead, the policy derivation
infrastructure expects this connection information to come from the domain where policies
are specified.

In order to connect data elements to their classes for this scenario, the database schema of
SCUTA was used: the class of a data element is represented by the name of the table where
that element is stored. E.g., an image stored in table “profile_photo” is a profile photo.
Recall from Chapter 3 that a data flow model is used to keep track of data in multiple
containers at different layers of abstraction. The data flow model of a particular layer
describes all sets of containers in that layer. E.g., Cry. is the set of all files in the data flow
model of Windows 7. These names of sets of containers have a one-to-one correspondence
with the container class names. So it’s possible to reuse the set names as class names and
connect containers to their classes, e.g., all members of Cp;. are instances of File.

*A video demonstrating policy specification and translation for this use case is available at
https:/ /www.youtube.com/watch?v=6i9Mfmbj2Xw. For space reasons, the discussion in this section is
limited to selected SLP templates, instantiated policies and the different translations. Other templates are
available at the SCUTA website.
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(a) ‘Basic User’ policies are generated by the system on behalf of the user. Details of how data sensitivities
result in usage control policies are already published in related work.

I ~ Advanced user I

filter
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Notify me when this data is

i [action] by [subject]

[subject] must not [action] this

ks data unless permission granted
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[numhberl [timel
Add policy template bn] this
rprivto o prrarmoet | times after
which they must pay

acquaintance *|must not

copy -
this data unless permission
granted

Save

(b) ‘Advanced Users’ can specify their policies using admin-defined SLP templates

Figure 6.2.: Screenshot of SCUTA showing basic and advanced policy specification

6.4.1.2. Enforcing Don’t Copy by Inhibition

Now let us go through the derivation of the example policy introduced in Section 1.4.2:
“Friends must never copy this photo” on data in “http://fw-../9¢73d9b7ff.jpg” and ex-
pressed in future OSL as: O(not(E(copy — {obj — http : //fw —../9¢73d9bT[f .jpg, subj —
friend}))). The concrete syntax of this SLP that conforms to the schema of appendix Sec-
tion B.1 is given in Listing 6.1.

As mentioned in Section 1.4.2, in the attacker model, the SCUTA provider is trusted.
So the SLP templates (specified by the power user) and their instances (specified by end
users) are stored in the SCUTA database. Table 6.2 shows an example SLP template as
stored in the database.
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Template ID 102

Template Text | #{[subject]}# must never _[[action]]- this data

Data Class city; email; photo

Pcﬂicy’Class <policy subject=\"#{subject}#\">
<obligation>
<always>
<not>
<event name=\"_[action]_\" tryEvent=\"true\">
<params>
<param class=\"@{class}@\" name=\"obJ\" value=
\"@{obJj}@\" policyType=\"dataUsage\"/>
</params>
</event>
</not>
</always>
</obligation>
</policy>

Table 6.2.: An example SLP template, specified by the power user

* Each template is identified by a Template ID, e.g., 102 in Table 6.2.

e The template text appears in the web interface without the special character delim-
iters; the delimiters are interpreted by the web application logic to recognize certain
fields and to fill the list of options for that field that a user can choose from: a list of
actions, a list of OSN users, etc.

* Data class refers to the type of data for which the policy could be instantiated. The
web application logic shows the template in the context of only those type of data.
E.g., if the template class is photo, then that template could be instantiated for speci-
tying policies for all photos in the OSN.

e Policy class is the concrete XML representation of the template text with delimiters
for the aforementioned purpose.

In the GUI, the end user sees the ‘template text” with subject and action parts config-
urable via dropdown selections. The values of data class and container (to be interpreted
as data) on which the policy is specified, is filled in by the web application logic. When a
template is instantiated, data and other parameter values substitute the placeholders de-
limited by special symbols in the policy class. Generated policies are shown to the user in
form of structured, meaningful sentences in natural language.

At the backend, XML representations of the SLPs are generated that conform to the
concrete syntax shown in appendix Listing B.1. SLPs in XML representations are used for
further translation and enforcement steps. The SLP generated by instantiating the template
of Table 6.2 is shown in Listing 6.1.
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<policy name="nocopy" subject="friend">
<obligation>
<always>
<not>
<event name="copy" tryEvent="true'">
<params>
<param name="obj" value="http://fw-../9c73d97££f. jpg"
policytype="dataUsage"/>
</params>
</event>
</not>
</always>
</obligation>
</policy>

Listing 6.1: “Don’t copy” policy in concrete syntax

Policy derivation and deployment in our implementation is a one-click process. In order
to generate ECA rules from the action-refined policy, ECA generation templates, per SLP
template, are used. These templates are stored as part of configuration files in the usage
control infrastructure.

Listing 6.2 shows the ECA template (in the format of a JSON object) for the SLP tem-
plate shown in Table 6.2. Note how template ID from Table 6.2 is used to connect the two
templates. The ECA template states that in the generated ECA rule, the trigger event is a
*-event, a concrete representation of “any” event mentioned in Section 6.2.2.1 and which
matches all events in the system; the condition comes from the action refinement which in
turn takes as input the past form of the specified OSL policy; the action is to inhibit the
event.

R OO WOk WN -~

—

{
"id" : "1io02",
"templates" : [
! "event" : "<x/>",
"condition" : "<actionRef (pastForm)/>",
"action" : ["<inhibit/>"],
"type" : "preventive"
}
]
o

Listing 6.2: ECA template for “inhibit” enforcement strategy

Using this ECA template, ECA rules corresponding to instances of SLP template 102 are
generated. We will pick the example policy from where we left it in Section 5.3.1.1:

We have the action-refined rule to be checked in the condition part of the ECA rule from
the previous chapter. Let’s call it ¢.

© = =(isMazIn(http : //fw — ../9¢73d9bT(f .jpg, { UnizFile},2)) A eval(subj = friend)
V E(cmd_copy — {obj — http : //fw — ../9c¢73d9bT[f .jpg, subj — friend})
V E(getImage — {obj — 0x1a00005, subj — friend})
V (E(write — {obj — /home/../TB835Bd01, subj > friend}) A
&(E(read — {obj — [home/../TB835Bd01, subj — friend}) A
&(E(open — {obj — [home/../TB835Bd01, subj — friend})))))
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In the implementation, two minor modifications were introduced to the policy in deriva-
tion: one, copy is modeled as a sequence of (open, read, write) system calls without close.
The reason is that from the usage control point of view, it is more useful to recognize a
copy action when the write system call is triggered instead of waiting for it to complete in
which case the violation of the policy would have already taken place if the policy was to
inhibit the copy action.

The second modification is that the condition part is decomposed to several subformulas
in order to make the generated ECA rules readable for demonstration purposes, as already
mentioned in Section 6.2. This decomposition is automated. The above condition ¢ is
decomposed into

p1 = ~(isMazIn(http : //fw — ../9¢73d9bTLf .jpg, { UnizFile},2)) A eval(subj = friend)
w2 = E(emd_copy — {obj — hitp : //fw — ../9¢73d9bT[f .jpg, subj — friend})
w3 = E(getImage — {obj — 0x1a00005, subj — friend})
w4 = E(write — {obj — /home/../TB835Bd01, subj — friend}) A
&(E(read — {obj — [/home/../7TB835Bd01, subj — friend}) A
O(E(open — {obj — [home/../TB835Bd01, subj — friend}))))

where ©1 V @3 V @3 V o4 = . Here, ¢, p3 and ¢4 are of the form E(e) A true. So the
respective e becomes the trigger event as described above, and the condition part of the
respective ECA rules is true.

With these different conditions, several ECA rules are generated automatically accord-
ing to the template of Listing 6.2. The corresponding ECA rules are shown in Listing 6.3.

<!-—- for state-based refinement -->
<preventiveMechanism name="Mechanism 102 1 preventive">
<trigger action="x" tryEvent="true"/>
<condition>
<not>
<stateBasedFormula operator="isMaxIn"
paraml="http://fw-../9c73d9b7£ff. jpg" param2="UnixFile" param3="2" />
</not>
</condition>
<authorizationAction name="Authorization_ 1">
<inhibit/>
</authorizationAction>
<description>#{friend}# must never _[copy]_ this data</description>
</preventiveMechanism>

<!—— for FF Browser ——>
<preventiveMechanism name="Mechanism 102_2 preventive'">
<trigger action="cmd_copy" tryEvent="true">
<paramMatch name="obj" wvalue="http://fw-../9c73d9b7£ff.jpg" type="dataUsage"/>
<paramMatch name="scope" value="536a624a87644"/>
</trigger>
<condition>
<true/>
</condition>
<authorizationAction name="Authorization 2">
<inhibit/>
</authorizationAction>
<description>#{friend}# must never _[copy]_ this data</description>
</preventiveMechanism>
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<!—— for X11 -—>
<preventiveMechanism name="Mechanism_ 102_3_preventive'">
<trigger action="getImage" tryEvent="true">
<paramMatch name="obj" value="0x1a00005" type="dataUsage"/>
</trigger>
<condition>
<true/>
</condition>
<authorizationAction name="Authorization 3">
<inhibit/>
</authorizationAction>
<description>#{friend}# must never _ [copy]_ this data</description>
</preventiveMechanism>

<!-- for Linux -->
<preventiveMechanism name="Mechanism 102_4_ preventive'">
<trigger action="write" tryEvent="true">
<paramMatch name="obj" value="/home/uc/.mozilla/firefox/143mebnh.dev/Cache/7B835Bd01"
type="dataUsage"/>
</trigger>
<condition>
<eventually>
<and>
<eventMatch action="read" tryEvent="true">
<paramMatch name="obj" value="/home/uc/.mozilla/firefox/143mebnh.dev/Cache/7B835Bd01
" type="dataUsage"/>
</eventMatch>
<eventually>
<eventMatch action="open" tryEvent="true">
<paramMatch name="obj" value="/home/uc/.mozilla/firefox/143mebnh.dev/Cache/7
B835Bd01" type="dataUsage"/>
</eventMatch>
</eventually>
</and>
</eventually>
</condition>
<authorizationAction name="Authorization_4">
<inhibit/>
</authorizationAction>
<description>#{friend}# must never _[copy]_ this data</description>
</preventiveMechanism>

Listing 6.3: ECA rules for “don’t copy” by inhibition

The scope in line 4 and 22 of Listing 6.3 is added to the ECA rules as part of the context
information that identifies each logged-in SCUTA user and his browsing session uniquely.
In this case, it identifies Bob’s login session as the policy is to be enforced in his machine.

Apart from the identification of a user session, scope’s computation also includes the re-
lationship of Alice with Bob (i.e., Friend). The inclusion of friendship relationship in scope
means that we have both the context information and the subject of the policy merged into
one for compactness. It’s obvious that if Alice changes her relationship with Bob in the
OSN after Bob logged in and the while his login session was still valid, the change in the
relationship would not reflect at Bob’s end until he logs out and logs in again (i.e., starts a
new user session). Of course, the web application can enforce the update at Bob’s end by
forcibly logging him out [51].

The type="datallsage” in lines 21, 36, 50, 56 and 60 means that the respective containers
are to be interpreted as data and substituted by a data ID.
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6.4.1.3. Enforcing Don’t Copy by Modification

As templates are used for ECA rules generation, changing enforcement strategies (inhibit,
modify, execute) is easy. The power user modifies the ECA templates and notifies the re-
sponsible component of the infrastructure for re-translating, revoking and deploying poli-
cies. In the current implementation, all deployed policies are overwritten. Modifying the
implementation to selectively revoke and redeploy only those policies whose enforcement
strategy has changed is trivial and can be achieved by maintaining a list of deployed ILPs
with respect to each SLP.

Listing 6.4 shows another ECA template that generates ECA rules with “modify” en-
forcement strategy for the class of SLP in Table 6.2. In this template, we see that the
authorization action type (modify vs inhibit) and the values of the modified parameters
vary according to the trigger event. The line 7 in this listing specifies how the enforce-
ment mechanism must replace the different parameters of the respective trigger events in
question. The format of specifying authorization action is shown by example in Figure 6.3:
enforcement strategy, followed by event and parameter name, value pairs. Any number of pa-
rameters can be specified. A list of keywords with fixed semantics were also used in ECA
templates. Some example keywords are inhibit, modify, allow, event, method and destination.

When there is only one enforcement strategy for all ECA rules and that strategy is “in-
hibit” then it’s sufficient to mention “inhibit” in the action part (as done in Listing 6.2).
However, when there is more than one enforcement strategy for different ECA rules, then
it’s required to specify the authorization action part in full format as described above and
shown by example in Listing 6.4:

¢ The ECA rule with *-event as trigger event is to enforced by inhibition.

e The ECA rule with cmd_copy as trigger event is to enforced by modification where
the object parameter’s new value is string “Action not allowed!”.

e The ECA rule with getlmage as trigger event is to enforced by modification where
the planeMask parameter’s new value is “0x0”.

e The ECA rule with write as trigger event is to enforced by modification where the
object parameter’s new value is “/icon/error.jpg”.

"<modify/>", "event", "getImage", "planeMask", "O0xO0",...

enforcement

event parameters
strategy

Figure 6.3.: Specification of authorization actions in ECA templates
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nid" : "102",
"templates" : [
"event " . "<*/>"'
"condition" : "<actionRef (pastForm)/>",
"action" : ["<inhibit/>", "event", "x",
"<modify/>", "event", "cmd_copy", "obj", "Action not allowed!",
"<modify/>", "event", "getImage", "planeMask", "Ox0",
"<modify/>", "event", "write", "obj", "/icon/error.jpg"],
"type" : "preventive"
}
]
}I

Listing 6.4: ECA template for “modify” enforcement strategy

The generated ECA rules are shown in Listing 6.5: line 30 says that the object of the trig-
ger event should be substituted by a fixed value “Action not allowed!”, hence modifying
the event attempted in the trigger (cmd_copy in this case). Similarly, lines 48 and 77 spec-
ify the modification of values of planeMask and object parameters of getlmage and write
trigger events.

<!-- for state-based refinement -->
<preventiveMechanism name="Mechanism 102_1 preventive'">
<trigger action="*" tryEvent="true">
<paramMatch name="scope" value="536a624a87644"/>
</trigger>
<condition>
<not>
<stateBasedFormula operator="isMaxIn"
paraml="http://fw-../9c73d9b7£ff. jpg" param2="UnixFile" param3="2" />
</not>
</condition>
<authorizationAction name="Authorization 1">
<inhibit/>
</authorizationAction>
<description>#{friend}# must never _ [copy]_ this data</description>
</preventiveMechanism>

<!—— for FF Browser ——>
<preventiveMechanism name="Mechanism 102_2 preventive">
<trigger action="cmd copy" tryEvent="true">
<paramMatch name="obj" value="http://fw-../9c73d97£ff. jpg" type="dataUsage"/>
<paramMatch name="scope" value="536a624a87644"/>
</trigger>
<condition>
<true/>
</condition>
<authorizationAction name="Authorization 2">
<allow>
<modify>
<parameter name="obj" value="Action not allowed!"/>
</modify>
</allow>
</authorizationAction>
<description>#{friend}# must never
</preventiveMechanism>

[copy]_ this data</description>

<!-- for X11 --—>
<preventiveMechanism name="Mechanism 102_3_ preventive'">
<trigger action="getImage" tryEvent="true">
<paramMatch name="obj" wvalue="0x1a00005" type="dataUsage"/>
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</trigger>
<condition>
<true/>
</condition>
<authorizationAction name="Authorization 3">
<allow>
<modify>
<parameter name="planeMask" value="0x0"/>
</modify>
</allow>
</authorizationAction>
<description>#{friend}# must never _ [copy]_ this data</description>
</preventiveMechanism>

<!-- for Linux -——>
<preventiveMechanism name="Mechanism 102_4_ preventive'">
<trigger action="write" tryEvent="true">
<paramMatch name="obj" value="/home/uc/.mozilla/firefox/143mebnh.dev/Cache/7
B835Bd01" type="dataUsage"/>
</trigger>
<condition>
<eventually>
<and>
<eventMatch action="read" tryEvent="true">
<paramMatch name="obj" value="/home/uc/.mozilla/firefox/143mebnh.dev/Cache
/7B835Bd01" type="dataUsage"/>
</eventMatch>
<eventually>
<eventMatch action="open" tryEvent="true">
<paramMatch name="obj" value="/home/uc/.mozilla/firefox/143mebnh.dev/Cache
/7B835Bd01" type="dataUsage"/>
</eventMatch>
</eventually>
</and>
</eventually>
</condition>
<authorizationAction name="Authorization 4">
<allow>
<modify>
<parameter name="obj" value="/icon/error.jpg"/>
</modify>
</allow>
</authorizationAction>
<description>#{friend}# must never _ [copy]_ this data</description>
</preventiveMechanism>

Listing 6.5: ECA rules for “don’t copy” by modification

6.4.1.4. Enforcing Delete Video by Execution

The policy to be specified is “this video must be deleted after 30 days”. The corresponding
SLP template is shown in Table 6.3. Again, though the template text in this figure is shown
with special characters, the end user only sees corresponding meaningful words in the UL
E.g., subject instead of #[subject[#. Similarly, the user is prompted to specify a number via
#NUO[[number]INU# and the time unit via #T1[[time]]TI# (e.g., line 3 in Listing 6.6).
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Template ID 103
Template Text | #{[subject]}# must _[[action]] this data after
#NUO[[number]INU# #TI[[time] | TT#

Data Class document; photo; video; song
Pcﬂjcy'C]ass <policy subject=\"#{subject}#\">
<obligation>

<after>
<timesteps>

<num value=\"#NUO [number ] NU#\"/>
<#TI[time]TI#/>
</timesteps>
<event name=\"_J[action]_\" tryEvent=\"true\">
<params>
<param class=\"@{class}@\" name=\"obj\" value=
\"@{obj}@\"policyType= \"dataUsage\" />
</params>
</event>
</after>
</obligation>
</policy>

Table 6.3.: SLP template used for “delete video” policy

The SLP generated by instantiating the template of Table 6.3 is shown in Listing 6.6.

<policy name="dodelete">
<obligation>
<after amount="30" unit="DAYS">
<event name="delete" tryEvent="true">
<params>
<param name="obj" value="http://fw-../myvid.mp4" policytype="dataUsage"/>
</params>
</event>
</after>
</obligation>
</policy>

Listing 6.6: “Delete video” policy in concrete syntax

As it is already mentioned, Alice specifies the policy on “http:/ /fw-../myvid.mp4” but
at Bob’s end, this data is stored in “myvid.mp4”.

This policy is enforced by execution: whatever event is attempted, we check if the data
should be deleted at that moment and if the data is not deleted, then the responsible person
is notified of the policy violation. The corresponding ECA template is shown in Listing 6.7.

{

"id" : "103",
"templates" : [
! "event" : "<x/>",
"condition" : "<actionRef (pastForm)/>",
"action" : ["<execute/>", "notify", "pxpID", "pxp",
"obj", "<@objectInstance@>",
"method", "email",
"destination", "kumari@in.tum.de",
"subject", "###policy violation###",
"message", "data not deleted!"],
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"type" : "preventive"

}
}r

Listing 6.7: ECA template for “execute” enforcement strategy

Line 7 of Listing 6.7 says that the policy is to be enforced by execution of the authoriza-
tion action “notify” whose object parameter’s value is the same as the object of the trigger
event. The method of notification is “email”, destination (or recipient) of the email is “ku-
mari@in.tum.de”, the subject is “###policy violation###” and the message in the body is
“data not deleted!”. The term pxp in line 7 refers to a component, the Policy eXecution
Point, which is used in the implementation of usage control enforcement for executing
synchronous and asynchronous events both inside and outside the usage controlled in-
frastructure. Some examples of such events are send email, send SMS and delete files.
Asynchronous events are those events for whom the policy enforcement mechanism does
not wait to know if they have been successful or not; it just sends the event request to PXP
and continues. A detailed discussion of the usage control policy derivation and enforce-
ment architecture is given in Chapter 7.

For further derivation, let us revisit the example where the condition part of the ECA
rule is:

before™ (30, Start) A = (isOnlyIn(myvid.mp4, &) V
E(unlink — {obj — myvid.mp4}) V E(shred — {obj — myvid.mp4}))

In our implementation, Start proposition is an event activateMechanism with object value
as the “ID of the mechanism”. This event is used to activate the corresponding ECA rule
after deployment. The ECA rule automatically generated according to the ECA template
of Listing 6.7 is shown in Listing 6.8.

<preventiveMechanism name="Mechanism 103_1 preventive">
<trigger action="x" tryEvent="true'"/>
<condition>
<and>
<before amount="30" unit="DAYS">
<eventMatch action="activateMechanism" tryEvent="false">
<paramMatch name="obj" value="Mechanism 103_1_ preventive"/>
</eventMatch>
</before>
<or>
<not>
<stateBasedFormula operator="isOnlyIn"
paraml="myvid.mp4" param2="null" />
</not>
<or>
<eventMatch action="unlink" tryEvent="false">
<paramMatch name="obj" value="myvid.mp4"/>
</eventMatch>
<eventMatch action="shred" tryEvent="false">
<paramMatch name="obj" value="myvid.mp4"/>
</eventMatch>
</or>
</or>
</and>
</condition>
<authorizationAction name="Authorization 1">
<allow>
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<executeSyncAction id="pxp" name="notify">
<parameter name="pxpID" value="pxp"/>
<parameter name="obj" value="myvid.mp4"/>
<parameter name="method" value="email"/>
<parameter name="destination" value="kumari@in.tum.de"/>
<parameter name="subject" value="###policy violation###"/>
<parameter name="message" value="data not deleted!"/>
</executeSyncAction>
</allow>
</authorizationAction>
<description>delete video after 30 days</description>
</preventiveMechanism>

Listing 6.8: ECA rules for “delete video” by execution

By now, we have seen how ILPs are derived from the respective SLPs that are specified
using templates in one concrete implementation of our running example of an OSN. It
has also been demonstrated how one SLP can be enforced with different strategies (viz.
inhibition and modification) with very little effort needed for changing the infrastructure
configurations. Now let us revisit the other two use cases where the automated derivation
of policies has also been successfully evaluated.

6.4.2. Example Two: Mobile Applications Domain

The policy specification tool of SCUTA in the previous example, is integrated with the web
application. This means that if we want to specify policies for another web application, we
cannot reuse that policy editor. To specify policies in a generic way for several applications,
an independent policy editor was developed, which runs as a daemon on a machine (e.g.,
a physical or virtual machine, a phone) and can be called by any layer on that machine
to specify policies. The user interface and the functioning of the editor is the same as
shown in the case of advanced user in Figure 6.2, the only difference being in the storage
of templates and other configurations: they are stored as config files instead of in a database
as in SCUTA. Also, the connection of instances to their classes has not been implemented
as part of the policy editor. Instead, the policy editor relies on this information to come
from the component that called it for policy specification. The SLP template is as shown
below in Table 6.4:

In this example a specific destination for the SMS is provided (via #TXTO0[[address]]TXT#)
as there was no implementation-level support for variables in the Mobile Application use
case. The concrete SLP generated by instantiating the template of Table 6.4 is shown in
Listing 6.9.

<policy name="sendsms'">
<obligation>
<repLim upperLimit="2" lowerLimit="0" amount="24" unit="HOURS">
<event name="send" tryEvent="true'">
<params>
<param name="obj" value="SMS_10263" policytype="dataUsage" />
<param name="dest" value="+01-234-5678" />
</params>
</event>
</repLim>
</obligation>
</policy>

Listing 6.9: “Send SMS” policy in concrete syntax

100




O OO UTk WN

O O N ONUT s WN -

6. The Policy Derivation Methodology

Template ID 101

Template Text | Send SMS max #NUO[[number][NU# times to destination
#TXTO[[address]]TXT# in #NU1[[number]|[NU# #TI[[time]] TI#

Data Class sms
Policy Class <policy>
<obligation>
<replim>
<timesteps>

<num value=\"#NUI [number ] NU#\"/>
<#TI[time]TI#/>
</timesteps>
<num value=\"0\"/>
<num value=\"#NUO[ [number] INU#\"/>
<event name=\"send\" tryEvent=\"true\">
<params>
<param class=\"@{class}@\" name=\"obJj\" value=
\"@{obj}R\" policyType= \"dataUsage\"/>
<param name=\"dest\" value= \"#TXTO[address]TXT#\"/>
</params>
</event>
</replim>
</obligation>
</policy>

Table 6.4.: SLP template used for “send SMS” policy

This policy is enforced by inhibition. The corresponding ECA template is shown in List-

ing 6.10.
{
llidll . II‘JO‘]",
"templates" : [
{
"event" : "sendTextMessage", "obj", "<@objectInstance@>",
"dest", "<@destInstance@>",
"condition" : "<actionRef (pastForm)/>",
"action" : ["<inhibit/>"],
"type" : "preventive"
}
]
} ’
Listing 6.10: ECA template for enforcing “send SMS” policy by inhibition
Based on this ECA template, the generated ECA rule in shown in Listing 6.11.
<!-—- for state-based refinement -->
<preventiveMechanism name="Mechanism 101 _preventive'">
<trigger action="sendTextMessage" tryEvent="true'">
<paramMatch name="obj" wvalue="SMS_10263" type="dataUsage"/>
<paramMatch name="destination" value="+01-234-5678" />
</trigger>
<condition>
<and>
<before amount="24" unit="HOURS">

<eventMatch action="activateMechanism" tryEvent="false">
<paramMatch name="obj" wvalue="Mechanism_101_preventive"/>
</eventMatch>
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</before>
<not>
<repsince limit="2">
<eventMatch action="sendTextMessage" tryEvent="false">
<paramMatch name="obj" wvalue="SMS_10263" type="dataUsage"/>
<paramMatch name="destination" value="+01-234-5678" />
</eventMatch>
<eventMatch action="activateMechanism" tryEvent="false">
<paramMatch name="obj" wvalue="Mechanism_ 101 _preventive"/>
</eventMatch>
</repsince>
</not>
</and>
</condition>
<authorizationAction name="Authorization 1">
<inhibit/>
</authorizationAction>
<description>not more than 2 SMS per day</description>
</preventiveMechanism>

Listing 6.11: ECA rules for “not more than 2 SMS per day”

6.4.3. Example Three: A Java Application

Another use case where this policy derivation approach has been successfully evaluated
is described in [1]. The scenario is as follows: though the OSN providers regularly check
third-party applications for policy violations, these checks are neither transparent nor fool-
proof. No documentations were found to show the existence of any policy enforcement
frameworks that performs these checks in automated ways without the side effects of man-
ual checks.

The work described in [1] addresses this issue and enables a technical enforcement of
platform policies for violations: once the third-party application providers agree to the
platform policies, their infrastructures are continuously monitored for the violation of
these policies. The implementation took into account the enforcement of third-party plat-
form policies in three OSNs: Facebook, Google+ and Tumblr. An overview of the imple-
mentation is shown in Figure 6.4.

When third-party application providers access OSN users’ data, they also get the respec-
tive policies from the OSN. A proxy server, acting as the OSN’s policy manager, mediates
between the OSN and the third party application and modifies responses from the OSN
servers in order to achieve this. The implementation only enforces usage control policies
for third party applications written in Java. This is not a fundamental limitation as the
infrastructure could be easily extended by adding enforcement points (called PEP in Fig-
ure 6.4, for further details on PED, see Section 7.2), capable of intercepting, inhibiting and
possibly modifying system events at different other layers of abstraction.

Conceptually, the modified interface (MIF) and the policy database (PDB) are components
of the proxy. MIF intercepts and modifies messages between the OSN and the third party
application and the PDB stores all the policies in XML format.

Policy derivation requests are processed by the same usage control infrastructure servers
as used by SCUTA. In this work, these components (viz. PMP, PDP and PIP) are treated
as black box. They could as well be together called a component © that provides policy-
related services. Hence they are not described here (see Chapter 7 for details on them). The
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Figure 6.4.: Infrastructure for enforcing third-party platform policies [1]

power users specify a domain model and policy templates without any idea of the other
details. A partial domain model for a third-party java application is shown in Figure 4.7
on page 48. It refines create, update and use actions for text data (name, ID, friendlist etc.).

One of the platform policies extracted from free text is “do not use outdated data” from
Google+ [66]. We already saw a partial translation of this policy in Section 5.3.3. The
policy was specified in past form. No SLP templates were used in the specification. The
corresponding ECA template is shown in Listing 6.12.

{
"id" . "1i10",
"templates" : [
! "event" : "<x/>",
"condition" : "<actionRef (pastForm)/>",
"action" : ["<inhibit/>"7,
"type" : "preventive"
}

Listing 6.12: ECA template for “inhibit outdated data usage” policy

The past condition to be checked is ~within™ (3, (E(eu.demirbas.app.Main.createData —
{obj — fid}) vV E(eu.demirbas.app.Main.updateData — {obj — fid}))) N (—isNotIn(fid,
ResultSet) Vv E(eu.demirbas.app.Main.useData — {obj — fid})). The ECA rule generated
from this template is shown in Listing 6.13.
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<preventiveMechanism name="Mechanism 110 preventive'">
<trigger action="*" tryEvent="true"/>
<condition>
<and>
<0or>
<not>
<stateBasedFormula operator="isNotIn" paraml="fid" param2="ResultSet" />
</not>
<eventMatch action="eu.demirbas.app.Main.useData()" tryEvent="true">
<paramMatch name="obj" value="£fid"/>
</eventMatch>
</or>
<not>
<within amount="3" unit="DAYS">
<or>
<eventMatch action="eu.demirbas.app.Main.createData()" tryEvent="false">
<paramMatch name="obj" value="£fid"/>
</eventMatch>
<eventMatch action="eu.demirbas.app.Main.updateData ()" tryEvent="false">
<paramMatch name="obj" value="£fid"/>
</eventMatch>
</or>
</within>
</not>
</and>
</condition>
<authorizationAction name="Authorization 1">
<inhibit/>
</authorizationAction>
<description> Prevent using outdated data</description>
</preventiveMechanism>

Listing 6.13: ECA rule for “inhibit outdated data usage” in 3rd party Java application

6.5. Summary

This chapter has provided a methodological guidance for transforming specification-level
policies into implementation-level policies that configure enforcement mechanisms at dif-
ferent layers of abstraction. This methodology helps translate policies in an automated
manner. The methodological guidance is at two levels: At one level, there is a description
of a work-flow with all the technical (system components) and non-technical users (power
users and end users). The second type of methodological guidance sets the order of com-
putation in policy derivation (derivation of past-time rules followed by action refinement
followed by ECA generation and so on).

The usage of policy templates is also proposed in order to enable end users specify com-
plicated usage control policies with minimum effort and zero understanding of the un-
derlying policy language. Templates are user-friendly representations of policy classes.
However, no concrete syntax or design for the templates is suggested. Instead, one con-
crete implementation has been discussed for demonstration.

In this chapter, policy derivation and deployment components are treated as black box.
Power users only specify a domain model and policy templates without any idea of the
other details. The next chapter provides the details of the relevant usage control infras-
tructure components.
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Chapter 7

Architecture

Some parts of this chapter are based on a similar chapter from our usage control book under
publication [2].

In order to operationalize the policy derivation concepts, we build upon an existing generic
usage control infrastructure with three main components:

1. a Policy Enforcement Point (PEP), able to observe, intercept, possibly modify and gen-
erate events in the system;

2. a Policy Decision Point (PDP), responsible for deciding on admission and necessary
modifications of system events according to deployed ILPs and representing the core
of the usage control monitoring logic;

3. and a Policy Information Point (PIP), which implements the data-flow model (Chap-
ter 3) and maintains the data state o € ¥ and therefore provides the data-container
mapping to the PDP.

These three components are called the core of usage control enforcement.
To this setup, a Policy Management Point (PMP) was added in order to specify, translate

and deploy policies. The following sections elaborate on the internal structure and the be-
haviour of the PMP and the interactions among all of the above usage control components.

7.1. Policies: Specification to Deployment

This section describes the so-called policy derivation core, which is the Policy Management
Point (PMP) component with its two main subparts: the Policy Translation Point (PTP)
and the Policy Editor (PE). A component diagram of the PMP with respect to other usage
control components is shown in Figure 7.1.
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Figure 7.1.: Core components of the usage control infrastructure

The PTP represents the core logic of (i) deriving past-time conditions from future-time
SLPs, (ii) action refinement according to the domain model and (iii) the derivation of ECA
rules based on the ECA templates. Because of the sequential nature of policy derivation,
the implementation instantiates the “pipe and filter” design pattern [67, 68] where the re-
sult of each step is an input to the next step. In order to generate ECA rules from the
action-refined policy, ECA generation templates, per SLP template, are used. These tem-
plates are stored as part of configuration files in the PTP. All calls to the PTP go via the
PMP.

Unlike the PTP, the Policy Editor is conceptually a part of the PMP but it can reside
anywhere in the environment: it can be integrated with the domain application logic (as in
the case of SCUTA) or it can run independently as a background application that is called
by PEPs at different layers of abstraction for policy specification. SLP templates along with
event declaration are part of the policy editor configuration.

From the methodology point of view, the PE is the entry point of policy derivation and
this is where the connection of instances to their classes is generally done. But this con-
nection of instances to their classes has not been implemented as part of the policy editor.
Instead, the policy editor expects this connection information to come from the compo-
nent/ layer of abstraction which calls it for policy specification. This is because of the
fact that connecting instances to their classes is domain and implementation -specific and
cannot be generalized to be encoded inside the policy derivation logic. So PE is called by
different layers via a method where instance and class mapping is passed as parameter.

After future to past translation and action refinement, ECA rules are generated and for-
warded to the PMP for instantiation and deployment, as described in Section 6.2, Algo-
rithm 2. The corresponding sequence of component interactions is depicted in Figure 7.2.
If the policy is of type “containerUsage” or “dataOnly”, the PMP instantiation component
skips the initial binding of the data and the container. If the policy is of type “data usage”,
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Figure 7.2.: Policy instantiation and deployment (figure adapted from [2])

the PMP queries the PIP for the data IDs mapped to the container addressed in the policy.
If no data ID already exists, the PIP creates a new data ID and maps it to the container in
question. The PIP then forwards the data ID which replaces the container in the policy at
the PMP. If the policy type is “dataContainerUsage”, the PMP notifies the PIP to create a
new data with the given ID and map it to the corresponding container. After this initial
binding, the policies are marked as either containerOnly in cases of container usage type,
or as dataOnly in cases of the rest of the three policy types. After this, the policies are de-
ployed at the PDP. In Figure 7.2, P and P’ are the policies before and after instantiation
respectively.

Policy instantiation with context details is dependent on the application technicalities; a
concrete case of how this is done has been shown in Section 6.4.1.

If the domain model or the ECA templates need to be updated, the power user modi-
fies them and notifies the PMP for re-translating, revoking and deploying policies. In the
current implementation, all deployed policies are overwritten. Modifying the implemen-
tation to selectively revoke and redeploy only those policies whose enforcement strategy
has changed is trivial and can be achieved by maintaining a list of deployed ILPs with
respect to each SLP.
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Figure 7.3.: Component structure: single-layer, multi-layer and multi-system [2]

During policy enforcement, when an event is intercepted and notified by the PEP to the
PDP, the object parameter is always a container as only concrete containers exist in running
systems. For a dataOnly policy, the PDP queries the PIP for the data-container mapping
before deciding upon the enforcement mechanism. In case of containerOnly policies, the
PDP needs no communication with the PIP as the policy and the event notification, both
address containers.

Although enforcement of policies is out of the scope of this work, for the sake of com-
pleteness, an overview of the policy enforcement core is presented in the next section.

7.2. Overview of Enforcement

To ensure data protection via usage control, enforcement must be done at and across all
layers and in all the machines of the distributed system. In the existing usage control
scheme, the enforcement relies on one PEP per layer of abstraction with PDP, PMP and
PIP shared across all layers in one machine. Figure 7.3 shows a layer-agnostic generic
architecture. This generic architecture can be instantiated for arbitrary system layers.

Figure 7.3 depicts the static component structure of the overall infrastructure including
i) single-layer, ii) multi-layer, and iii) multi-system or multi-machine enforcement of usage
control.

In the single-layer case, the PEP intercepts desired and actual events of a specific sys-
tem layer and forwards them to the PDP for evaluation. Based on the PDP’s decision the
PEP then either allows, inhibits, or modifies a signaled event, and potentially generates
additional events if a matching policy demands so. To conduct this evaluation, the PDP
tries to match the events, coming from the PEP, against the deployed ILPs. To evaluate the
corresponding policies, in particular the condition part of the ECA rules, the PDP uses a
runtime verification algorithm [69].
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Figure 7.4.: Interaction among components during enforcement [2]

In some cases, e.g., if the trigger part of an ECA rule concerns a data-usage event, or the
condition part contains a state-based formula, the PDP needs additional information for
the policy evaluation. In these cases the PDP queries the PIP for data state related infor-
mation to e.g., get to resolve the relationship between a data item and its representations.
Finally, if the desired event was transformed into an actual event and executed by the PEP,
the PEP notifies the PDP about this execution, which then in turn updates corresponding
formulas. The PDP then finally notifies the PIP about the executed actual event to allow
it to update its data-flow model accordingly. The evolution of the data-flow model is then
internally conducted by updating the data state 0 € ¥ according to the defined transition
relation R for the respective actual event. Figure 7.4 depicts the corresponding sequence
of interactions at a high level.

The architecture for a multi-layered system corresponds to the architecture for the single
layer, with the only difference that there exists a PEP for each layer of abstraction. All
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the different PEPs signal events to the same PDP. The PIP in this scenario is supposed to
maintain a common state of the system across all layers. How this is achieved theoretically
is out of the scope of this work as it does not impact the policy derivation nor does it
require any further change in the architecture. The sequence diagram in this case would
be identical to the one depicted in Figure 7.4 for the single layer case, where the PEP agent
represents one of the multiple PEPs in the system. One exception to this rule is the case of
cross-layer events in a multi-layered system, discussed in Section 7.3.

In a multi-machine setup, each PIP holds the data flow state of the machine (i.e., all the
monitored layers of abstraction together) on which it is deployed. The product of the
storage, alias and naming functions of all PIPs thus corresponds to the global data flow state
across machines. At the same time, each PMP manages the deployed policies (ILPs) for data
within the machine on which it is deployed.

In addition to what has been described in the cases of single-layer and multi-layer sys-
tems, both the PIP and the PMP are able to communicate with their respective counterparts
on other machines. Thus, they allow for the exchange of cross-machine data flow informa-
tion and policies whenever attempts to transfer usage controlled data across systems are
observed at the operating system layer [30, 70].

7.3. Cross-layer Events

Till this point in this dissertation, only those cases of policy enforcement have been con-
sidered where events at one layer of abstraction in a system are unrelated to events at the
other layers with respect to a high-level action. E.g., copying a photo via taking a screen-
shot is achieved independently of saving the photo in a file and the two events, when
recognized on a data d in the system, are be counted as two copies of the same data.

However, many other events across different layers of abstraction in the system may to-
gether achieve one higher-level goal in the system. Such interdependent events are called
cross-layer events in the literature [3]. E.g., context-savepage command at the Firefox layer
and a series of write system calls in a Linux distribution together achieve one copy of data
d. During enforcement, the usage control infrastructure must also see these events at dif-
ferent layers to be somehow connected, in order to identify one (and not two) copy of d. In
the absence of such a connection, policies that specify cardinality constraints (e.g., “pay af-
ter three copies”) or express stateful constraints on events (e.g., “lower buyer ranking upon
copy until payment is done”) will be wrongly enforced. In these examples, the buyer may
be wrongly issued two invoices upon one copy or his ranking may be wrongly lowered
because he did not pay for the extra copy wrongly recognized by the enforcement.

In related work [3], cross-layer events are modeled by considering different layers pair-
wise, e.g, Firefox and Linux. For the sake of simplicity, in this discussion, just these two
layers are assumed to exist in a machine. In a generic case where the system is composed
of n > 2 layers, the same approach could be applied recursively considering the n'* layer
as layer X and the composition of the other n — 1 layers as layer Y.

Each data-flow in the cross-layer model is supposed to start at one layer (e.g., in the
Firefox), go through the other layer (e.g., in Linux) and end again at the first layer where it
started (Firefox). So the layer where the event started is seen as a long event with duration,
which from the other layer’s perspective, may span over several timesteps.
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Figure 7.5.: Cross-layer events (figure adapted from [3])

An example of cross-layer events is shown in Figure 7.5. For simplicity, the context-
savepage event at the Firefox layer is called SAVE event. The SAVE event spans over
multiple timesteps from the OS layer’s point of view where several events (3 system calls
shown in Figure 7.5) take place in this duration. In [3], the duration of such long events
that correspond to several events at the other layer is modeled using two atomic events
that respectively represent the moment in which the long event starts (e.g., SAVE,) and the
moment in which the long event ends (e.g., SAVE,). All events between, and including,
the SAVE, and SAVE, events shown on the timeline in Figure 7.5 perform one single data
flow across the two layers.

A concept of Scope is used to connect all events that are part of a single data flow across
layers. Scope is essentially a label attached to each system event at all layers at the runtime.
A scope is activated when the cross-layer flow starts and it is deactivated when the cross-
layer flow is completed. In Figure 7.5, the scope is activated by the start of the SAVE event
(given by event SAVE) at the Firefox level and it is deactivated with the end of the SAVE
event (given by event SAVE,). All events that are together a part of a single data flow (at
both the layers), have the same scope label attached to them. At any moment in time, there
may be multiple cross-layer events in progress (started, but not ended) and hence several
scopes may be active at a moment in time in a machine. Events belonging to different
cross-layers flows are distinguished from each other by their scope labels. Therefore, in
this example, one execution of context-savepage and all the related write system calls have
the same scope.

For policy enforcement, the scope is needed in the runtime after the policy is deployed.
Without going into the theoretical details, we refer to an “Oracle” that, given a system
event, returns the scope of the event in that system run. How exactly the oracle computes
the scope of each event is described in [3] and is not in the scope of this work.

The oracle has been implemented as part of the PIP. When a PEP notifies the PDP of an
event, the PDP requests the corresponding scope from the PIP where the oracle compo-
nent computes and returns the scope for the event. The oracle computes the same scope
for all the cross-layer events of one single data flow. In the example of context-savepage
command at the Firefox layer and a series of write system calls at the Linux level, both the
Firefox command (intercepted by the Firefox PEP) and the set of Linux system calls (inter-
cepted by the Linux PEP) have the same scope when they create one copy of the webpage.
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Essentially, the following should take place technically, when any PEP notifies the PDP of
an event: When the PDP receives the notification of a start-scope event (SAVE; in the above
example), it flags the start of a new scope. It compares events for this scope and collectively
evaluates the ECA rules with stateful conditions (e.g., with cardinality constraints) and up-
dates the corresponding conditions. Algorithm 3 gives an abstract view of the evaluation

of the cross-layer events at the PDP.

ALGORITHM 3: Evaluating cross-layer events at the PDP

input : Event e
local variables :Scope s
global variables: Time t

s < getscope(e);

if (e.type == start-scope) then
flag_new_scope(s);
create_list(s);

end

add_to_list(s,e);

forall the r in ECARule do

© 0 N S Ul R WN =

‘ evaluate_collectively(e,1,s);
end

else

‘ evaluate(e,r);

end

end

if (e.type == end-scope) then
wait(t);
flag_end_scope(s);
delete_list(s);

end

[ e S U T
® I Ul A W N R O

s
o

if (getcondition(r) == stateful) then

In evaluation functions, evaluate() and evaluate_collectively(), the data state is implicit,

unlike shown explicitly in Figure 7.4.

Implementation The OSN scenario of the running example was extended to also include
the demonstration of the case of cross-layer events:

User Alice wants to share some Excel files with her OSN friends. At the same
time, she wants to protect certain parts of these files (viz. cells and worksheets)
from being used in an unwanted way by her friends. She wants that her friends
should be able to view everything but they should not be able to e.g., print,
modify, delete the sheets. Again, Alice would like to specify and enforce rel-
evant policies without any technical knowledge. Her policies must be auto-
matically translated, delivered, deployed and enforced at and across different
layers of abstraction in her friends” machines.
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A usage control policy specification, translation and deployment infrastructure has been
set up which helps Alice. It comprises of three layers of abstraction: Ms Excel, Windows
and a Java applet using which the Excel files and policies are exchanged across machines
(from Alice to Bob). Both the Excel PEP (an AddIn written in C#) and the Windows PEP
(an API call interceptor) together enforce the policies.

In the implementation, data and policies are assumed to be generated at the Excel layer:
Alice writes a worksheet (or already has one) and wants to specify a policy. She can select
a cell (or a set of cells or a worksheet) and launch the Policy Editor described earlier via
a context-menu option. As the smallest container at the Excel layer is a cell in the work-
sheet, Alice can specify policies at the granularity of multiple policies per cell. After policy
specification, when Alice saves and deploys the policies, several data-container mappings
are created by the PIP as described in Algorithm 2 on page 87. The worksheet is saved in
a file to be uploaded at the web server and shared with friends in the OSN.

When Alice uploads the Excel file, technically, the following takes place: There are two
sets of cross-layer events: a LOAD event in the applet and a set of readFile API calls at the
Windows layer. These are connected together by two atomic events LOAD, and LOAD,
that mark the beginning and the end of the file upload respectively (similar to the SAVE
event and the set of system calls that represent one save page event in Figure 7.5). After the
file is completely read from the disk, the applet queries the PIP to get a list of all associated
data IDs. Thereafter, the list of data IDs and the file is sent to the web server. This complete
sequence is shown in Figure 7.6.

o
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upload file f
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save(f,{d1..dn})

Figure 7.6.: Cross-layer events in case of file upload
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Figure 7.7.: Cross-layer events in case of file download

The web application server stores all the files and for each file, it stores a list of data
IDs. At Bob’s end, when a file download starts, the dual of events that took place while
uploading, happen. The applet receives a file and a list of data IDs. The file is written
to the file system at the OS layer and in the local PIP, new data-container mappings are
created. A new SAVE event in the applet and a set of corresponding writeFile API calls
are executed (cross-layer). When the corresponding PEPs (the applet and the Windows
PEP) notify the PDP of the cross-layer events, the events could be connected via the scope
label at the PDP. The usage control monitoring infrastructure would therefore recognize
that only one copy of the data is created. Figure 7.7 depicts the complete download process
in a sequence diagram. Owing to time reasons, the PDP was not modified for this case.

With the related work on structured data [29], where different parts of a single container
store different data (e.g., one Excel file has several cells and worksheets, each storing a
different data item; an email has header, body and attachment fields that store data of
different sensitivity etc.), the infrastructure is capable of retrieving the correct mapping of
policies for each cell (or set of cells or worksheet) in the Excel file.
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7.4. Summary

This chapter described the core components of the usage control infrastructure with in-
teractions among them for policy deployment and enforcement. A solution for enforcing
policies on cross-layer events was also discussed with the help of a concrete implementa-
tion. The next chapter argues about the relevance of this work in the context of the existing
literature.
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Chapter 8

Related Work

There are two major challenges in the area of Requirements Engineering (RE) that must
be met in order to get rid of ambiguities in system implementations. The first challenge is
about bridging the gap between requirements elicitation approaches based on contextual
inquiry and more formal, specification and analysis techniques [71, 72, 73]. The second
challenge is to bridge the gap between user and system requirements by automated, un-
ambiguous derivation of the latter from the former.

The gap between user and system requirements [74, 75] has been a major problem in
the domain of Requirements Engineering in general [76, 77] and though a lot of work
has been done on understanding, eliciting and analyzing user requirements [78, 79, 74,
80, 81, 82, 83] and translating them into system requirements for different domains [84,
85, 86, 87, 88], it remains one of the prominent topics in software engineering research
[89, 90]. One major reason is that often, user requirements are not adequately translated
into system requirements which results in systems with functionality that are not desired
while missing out on the desired ones [90].

This work targets this fundamental problem of Requirements Engineering in the context
of usage control. The focus of this work is the derivation of implementation-level policies
from specification-level policies using a domain metamodel that is instantiated to define
the technical semantics of domain-specific abstractions in high-level usage control policies.

Though the problem we tackle here can be generalized to filling the gap between user
and system requirements for software systems in general, in this discussion we keep our-
selves limited to security requirements and policies.

Before we argue for our contribution with respect to related work, we recap the relevant
literature in the following section. We start with a rough overview of different techniques
to express and analyze security requirements followed by different approaches to refine
security requirements from a higher level to the lower levels. We then discuss these in the
specific context of access and usage control requirements.

As one major contribution of this work is the definition of generic semantics of high-level
actions, we also highlight our contribution in the context of the established understanding
of high-level actions like copy and delete.
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8.1. Security Requirements Engineering in General

In the context of Security Requirements Engineering, related work has addressed mod-
eling assets, threats and vulnerabilities, failures and countermeasures [91, 81, 92, 93], se-
curity requirements [94, 95, 96] and their potential conflict with other functional and non-
functional requirements [97], application of standards [98], access control policies [99, 100],
policy description languages [50, 101, 21, 102] and policy refinements [103, 41, 37, 35, 36].

To start with, several techniques have been employed to understand, analyze and elicit
security requirements. The following paragraphs discuss a few of the techniques that are
used to elicit security issues with capabilities to refine them incrementally and therefore,
they act as a motivation for the hierarchical refinement approach in this work.

Compared to text-based elicitation and analysis of requirements, graphical expressions
of requirements have been found to be more useful because they could be easily under-
stood by all stakeholders, both technically proficient and non-proficient ones.

Two of the most well-known techniques that focus on threats and attack scenarios are
abuse cases [91] and misuse cases [104, 81] which are extensions of the Unified Modeling
Language (UML) use cases. Compared to the UML use cases that elicit the desired func-
tionality of the system, abuse cases describe the interactions of users with the system that
might cause harm to the system. A misuse case elicits potential threats from mis-actors.
Countermeasures against threats are modeled as security use cases and a prevent relation-
ship is used to relate misuse cases to the countermeasures. The major drawback of these
techniques is that there is no hierarchy in the expressions (hence limited ways of refining
cases) and the case diagrams very quickly become too large and complicated to cover all
details of the relevant scenarios.

A better way to express harmful events/cases in systems is to organize them hierar-
chically. Such diagrammatic representations of the problem usually have a tree or graph
structure where threats/harmful events are nodes connected to each other via AND/OR
gates. The root node of the tree is top threat in the system (or subsystem) that material-
izes upon the success of the lower events that are either composite (intermediate nodes)
or atomic events (leaves). Analysis of such structures aims at finding a minimal cut set,
which is a collection of events/failures that can lead to the occurrence of the top-event.
Attack trees [92], fault trees [93], attack graphs [105] and attack nets [106] are some of the
widely used techniques in this respect.

The above techniques focus on the problem side. The solution side comprises of approaches
like UMLsec [95] and SecureUML [94] that address modeling of security requirements.
UMLsec is an extension of UML that uses stereotypes, tags and constraints in different type
of UML diagrams like state charts and sequence diagrams to express security-relevant in-
formation. SecureUML is a modeling language that supports model-driven development
of secure systems by combining Role-Based Access Control (RBAC) with UML. Though
SecureUML is quite useful in expressing both declarative and programmatic access control
requirements, it has two major limitations: one, it is limited to the generation of access
control infrastructures and two, requirements about what a user must not do cannot be
expressed in SecureUML notations.

In addition to SecureUML and UMLSec, several policy specification languages and pol-
icy frameworks have also been developed to express security requirements and manage
them. Most of these frameworks target access control (e.g., KAoS [107] and Cassandra
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[108]). Some well-known security policy languages include eXtensible Access Control
Markup Language (XACML) [109], Security Assertion Markup Language (SAML) [110],
WS-Trust [111], Open Digital Rights Language (ODRL) [50], eXtensible Rights Markup
Language (XRML) [101], Enterprise Privacy Authorization Language (EPAL) [112], Open
Mobile Alliance - DRM Rights Expression Language (OMA-DRM) [113], Obligation Spec-
ification Language (OSL) [21] and Ponder [102] that focus on various flavors of access and
usage control.

There are two levels at which policies are specified: in some cases, policies are specified
directly at the implementation level as executable rules; in others, policies are specified
at high level either using a Graphical User Interface (GUI) or in terms closer to natural
languages. In the latter cases, high-level policies are somehow translated from the spec-
ification to the implementation level in order to be enforced in technical systems. This is
called Policy Derivation. Terms like policy refinement, policy translation and policy decomposi-
tion have also been synonymously used in related work.

There are several approaches to policy refinement. Based on this, several policy refine-
ment frameworks exist in literature [103, 41, 37, 35, 36].

8.1.1. Different Approaches to Policy Refinement

In the spirit of knowledge refinement [114], all type of policy refinements distinguish be-
tween two levels of information: a high-level and a set of low-level information.

Most of the prominent work on policy refinement is based on the concept of goal which
is a desired objective that should be met in a system or domain. In goal-based policy
refinements, a policy is a typical means of achieving the goal [115]. Hence a goal is abstract
while policy is concrete.

Similar view is expressed in [116] and [117] where goals are decomposed into successive
levels of detail to form a tree of arbitrary depth. These are some of the earliest, prominent
work that uses goals for policy refinement. Lower level goals support achievement of
higher level policy. Policy is a type of goal. Hence goal is more general than policy.

In a nutshell, a goal is either similar to a policy or at least has the same purpose in the
system, that is, to control the behavior of the system in some way [47]. Goal decomposi-
tion and refinement is therefore often used to refine policies in a hierarchical fashion. We
mention some of the prominent goal-based refinement techniques below as they serve as
the motivation for the hierarchical action and policy refinement in our work.

Darimont, Lamsweerde et al. have described a goal-based policy refinement in the con-
text of the KAOS method [35, 36]. The high-level goal is formally refined to subgoals in an
AND/OR tree-structure until implementable constraints are reached.

In later work by Lamsweerde, goals are refined to software requirements from which,
software specifications and abstract architecture of the system are derived [118, 119].

Another hierarchical policy refinement is described in [120]. Policies are refined by map-
ping abstract elements to concrete policy elements. A database called the Information and
System Model (ISM) is used to store all policy-refinement information which is the set of
all objects and their relationships with each other (which can be hierarchical, inheritance
or associations).

Bandara et. al in [37] describe a goal-based policy refinement which uses abductive
reasoning techniques to derive the sequence of operations that allow a given system to
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achieve a desired high-level goal. Policies are refined by mapping abstract entities defined
as part of a high-level policy to concrete objects/devices that make up the underlying sys-
tem. High-level goals in policies are refined into operations supported by the concrete
objects / devices. Goal refinement is achieved using the refinement patterns defined in
[36]. Unlike our work, the policy refinement is semi-automated: towards the end of re-
finement, subject refinement requires user intervention. Several other goal-based policy
refinement approaches are completely automated.

Rubio-Loyola [38] build upon the work by Bandara et al. [37]. Using model checking
techniques to obtain system trace executions aimed at fulfilling lower-level goals that logi-
cally entail high-level goal that was refined according to [37]. Output policies are in Ponder
[102]. The policy derivation is automated.

Apart from goal-based policy refinement for access control, some other well-known ap-
proaches to policy refinement are as follows:

Su et al. have proposed a policy refinement methodology based on resource hierarchies
[40]. Klei et al. [41], Guerrero et al. [42] and Basile et al. [43] have proposed different
ontology-based have proposed different ontology-based approaches to policy translation.
Udupi et al. have presented an automated, domain independent approach based on data
classification [46]. Lodderstedt et al. specify RBAC policies in UML and translate them
to code or deployment files [94] and do not consider the semantics of atomic actions or
resources. Aziz et al. [39] have proposed a resource hierarchy metamodel for translat-
ing domain-specific elements in XACML policies at the level of virtual organizations to
generate corresponding XACML resource-level policies.

In terms of derivation of privacy policies, Yee and Korba [121] have presented two ap-
proaches for semi-automated policy derivation. One approach relies on third-party sur-
veys of user perceptions of data privacy and derives rules based on community consen-
sus. The other approach is to make use of existing policies in a peer-to-peer community.
Policy content comprises of rules based on privacy principles that have been enacted into
legislation.

Young and Anton [45] have proposed a commitment (obligations) analysis methodology
to derive software requirements from privacy policies.

In terms of automated policy refinement, [41] have proposed an architecture called
SEMPR that uses Web services and automatic Web services composition as a complemen-
tary technique to policy refinement in order to automate policy-based management. As
a proof of concept they have implemented automated policy refinement for a Home Area
Network. The limitation of this work is that it relies entirely on a Web service infrastructure
in the form of Web service based management interfaces of the devices.

[122, 123, 124] describe a UML-based high-level, graphical, modeling language called
UML-based Web Engineering (UWE) for graphically modeling system’s security aspects in
a simple and intuitive way. These graphical specifications are transformed to access control
policies in XACML in a model-driven way. These XACML policies are then translated to
Formal Access Control Policy Language (FACPL) policies which are evaluated by means
of a Java-based software tool. The policy transformation is automated.
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8.2. Differences with this Work

Now we identify the distinction between the state of the art in policy derivation and our
work in this thesis based on several factors.

8.2.1. The Policy Refinement Context

We argue in the context of those policy refinement work that come close to our approach.
Only fully-automated policy derivations are considered.

Aziz et al. [39] have proposed a resource hierarchy metamodel for translating domain-
specific elements in XACML policies at the level of virtual organizations to generate cor-
responding XACML resource-level policies. This is similar to our work in terms of the
approach. However, the policies are refined from the abstract level (users, resources and applica-
tions) to the logical level (user ids, resource addresses and computational commands like read/write);
further technical representations of policy elements in concrete systems are not considered.

Ontology-based policy derivations that hierarchically refine policy constructs according
to their meanings are also similar to our approach in spirit. Klei et al. [41], Guerrero et
al. [42] and Basile et al. [43] have proposed different semi-automated approaches to the
translation of access control policies. In our work, such ontologies could be used at each level of
the domain model. For example, an ontology with all the different interpretations of secure
deletion could be used to model the “delete” action in the domain model.

Another work which is quite similar to ours in terms of approach is described by Craven
et al. in [44]. This paper focuses on action decomposition in a policy refinement frame-
work. Subjects perform operations on targets (services and devices) which are specified
at a high level. Using a system model and a set of refinement rules, actions are decom-
posed and one higher level policy is refined into multiple policies. However, all elements
(both abstract and concrete) of the system model are at the same level which makes this approach
similar to the ontology-based refinement. Also, in the last stage of refinement, policies are
transformed into ECA rules. How this transformation is achieved is however not specified.

Two types of policies are refined this way: authorizations and obligations. The term
“obligations” is used in a limited sense: obligation policies require an action to be per-
formed within a certain period. Compared to this, obligations in our work refer to all constraints
upon future usages of protected data.

Rochaeli in his PhD thesis [47] (SicAri project)! uses a similar technique like [37, 38] to
refine policies into sub-policies. A hierarchical policy refinement tree is constructed where
the set of previously refined policies are the nodes of the tree connected with AND/OR
gates. The policy refinement tree is similar to a Fault Tree which consists of three types of
policies as nodes: specified policies, abstract policies and concrete policies. Inputs of gates
are connected to policies and outputs are connected to the relative sub-policies. The formal
semantics of policy refinement is given in terms of nodes and connecting gates. The policy
refinement is automated.

Differences with our work: firstly, the policy refinement in [47] is goal based; enforceable
rules are generated from high-level security goals. Secondly, the scope is the refinement of workflow
policies, there is no attempt to address the generic refinement of user actions like copy, delete and

'http:/ /sicari.sourceforge.net/introduction.html
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distribute. Thirdly, for policy representation, XACML is used and thus policies in SicAri are
limited to the access-control capabilities provided by XACML [125]. Fourthly, policy refinement
relies on refinement templates that are created by collecting best practices. An example best-practice
solution is to refine a policy “prevent fictive loans” into “apply separation of duty with XACML
policy” because banks usually prevent fictive loans by not allowing the same entity to apply for and
approve a loan. Additionally, dynamic domain structure where devices join and leave and
policies have to be changed at runtime are not considered by SicAri [125]. Compared to
this, it is possible in our work to capture and reflect the real-world domain structure changes into
the policies (see Appendix D).

All of the above techniques have certain points of differences with our work: Usually,
policy refinements result in a set (or sequence) of operations that achieve the desired high-
level goal in the system or are in some way, a direct technical representation of the high-
level policy constructs. These approaches do not specify the semantics of the high-level
terms in policies. Also, except [37], they also do not formally or informally describe the
semantics of refinements.

We, on the other hand, tackle a different problem. We want to give a way to define
formal semantics of high-level user actions in concrete systems taking into consideration
the underlying platform and, use this semantics to refine policies that contain these terms.

Besides this, we target policies for usage control enforcement while most of the policy
refinement literature concerns access control and privacy policies only. To the best of our
knowledge, the translation of usage control policies has not been investigated except in
[49] (see below).

8.2.2. Domain Modeling for Policy Refinement

We refine actions by modeling the concerned domain in a hierarchical way with distinc-
tion between the abstract entities at high level and the corresponding technical entities
at the lower levels. This approach of capturing details of a system with several levels of
abstraction has also been adopted in many architecture frameworks [126, 127, 128] and is
also common in the embedded systems domain [129, 130, 131].

Our approach uses the domain modeling/model-based development paradigm. At-
tacking the refinement of actions and related policies at the domain level is inspired by the
early work in the area of Requirements Engineering by Jackson et al. [132, 133, 134, 73].
In this approach, a significant proportion of the RE process is about developing domain
descriptions [71]. Some of the prominent work by Jackson et al. explicitly distinguish be-
tween the domain and the system. The system in turn consists of the machine and its con-
nection to the domain. Domain analysis is therefore limited to understanding the problem
from a high-level perspective. Connecting the domain to the technical systems is a sep-
arate step. In comparison to this approach, our definition of domain and its description
consists of both the domain and the system. The domain described in these work is rep-
resented in our metamodel at the PIM level. The similarity of our approach lies in the fact
that we also propose to analyse the problem at a high-level and this level sets the context
of our policy refinement. Policies are refined not according to the systems but according
to the domain context.
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We have adopted a model-based approach which is analogous to the MDA viewpoints
[135] with varying level of details at the computation-independent, platform-independent
and platform-specific levels. A minor difference with the MDA approach is in the naming of
the different layers. We have combined this approach with usage control concepts to refine
policies.

8.2.3. Semantics of Actions

In the context of semantics of actions, although various ways of secure deletion at differ-
ent levels of abstraction in the system are described at length in [48], there is no further
discussion on the different interpretations of deletion (weak deletion, quarantine items, ir-
reversible encryption, etc.). In comparison to this paper, our approach is to formally define
policy refinement along with a generic way of modeling semantics of actions like “copy”
and “delete”. We classify the abstract and the concrete elements according to the technical
details into different models and perform transformations on the elements of these models.

We are not aware of any other related work that either discusses the meanings of some
other high-level actions like copy or provides a generic way of modeling the meanings of
such actions.

8.2.4. Policy Templates and Roles of Users

Intuitively, policy templates are graphical or textual representations of different types (or
classes) of policies. We use two types of policy templates in our work-flow: one type of
templates are used to help non-proficient end users specify usage control policies which
could be otherwise quite complicated for them to understand and very tedious to specify.
The second type of policy templates are used to automate the derivation of policies as ECA
rules.

Use of templates and patterns is not new in Software Engineering (SE). Our template-
based specification is inspired by the patterns approach in SE [136] especially, in security
[137, 138, 139]. In general, the goal is to reuse knowledge and collect best practices in form
of patterns. In this work, we have two additional motives for using templates: facilitating
policy specification by end users and automation of the refinement process.

Rochaeli [47] also uses patterns, inspired by the work of Christopher Alexander in [140].
But the patterns are used to refine policies. These patterns contain best-practice solutions
for problems that have occurred in the past. From these refinement patterns, XACML poli-
cies are generated using XML templates. This approach of [47] is similar to the usage of
ECA templates described in this thesis, though the purpose of ECA templates is differ-
ent in our case: they are used to specify enforcement strategies in ILPs and, for syntax
transformation from obligation formulas to rules of ECA format.

Our policy specification and derivation requires users in two roles. Sophisticated users
called power users configure the policy translation infrastructure and other templates and,
the lesser users called end users use the templates to specify policies and automatically
translate and deploy them.

Similar to our approach of classifying users according to their expertise, [120] have pro-
posed two classes of users. The expert is the person with deep domain knowledge in the
field of security or network QoS related mechanisms. A consultant is the person who has
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deep knowledge of the business for which policies are to be specified. This approach also
uses policy templates, created by experts for specification of policies by consultants. Again,
the context of this work is access control.

8.2.4.1. Usability of Policy Specification

As early as [134], researchers have recognized the problem with the understanding of re-
quirements. From this point of view, we have found that specifications, both formal and
informal, are often hard to understand. Although end users are interested in specifying
security requirements, in particular usage control policies [60], they are in general not ca-
pable of reasoning holistically about such policies [59].

There are two ways suggested in literature to address this issue. One is to help users di-
rectly specify security policies in a simple and user-friendly way [141]. The other approach
is to specify policies on behalf of the user (limiting user input to selecting from options via
dropdowns or checkboxes) and help users understand already specified policies in terms
of how their data is affected by these choices [142].

This was the reason behind introducing templates for policy specification, as described
earlier. An in-depth look into the usability of policies and policy specification is out of
the scope of this work.

8.2.5. The Usage Control Context

In the area of usage control, several enforcements exist for a variety of cases: for various
policy languages [21, 50, 101, 102, 112, 113, 143, 144], at [51, 145, 146, 147, 148, 149, 150, 151,
152] and across [27] different layers of abstraction in various types of systems [7, 52]. All of
these work focus on the implementation of event monitors. Policies are supposed to exist
(or are directly specified at the implementation level) and their derivation from end user
requirements to enforcement mechanisms has not been addressed.

In the context of policy derivation/refinement for usage control enforcement, [49] describes an
approach where high-level policies are specified for an abstract system model and auto-
matically refined with the help of policy refinement rules to implementation-level policies.
A major difference with our work here is the absence of a generic way to refine policy con-
structs: the refinement rules are specific to the domain in consideration and they do not
reflect the technicalities of the underlying platform.

We are not aware of any work that provides an automated translation of specification-
level usage control policies into implementation-level policies in a generic, domain- and
system-independent way.? Policy enforcement, evolution of policies and policy life-cycle man-
agement is out of the scope of this work.

This chapter established the contribution of this thesis with respect to related work. The
next chapter presents a critical analysis of the work, limitations and other left over issues.

>The domain metamodel defines a way to model domain-specific semantics, but the metamodel itself is
generic and can be used for any domain.
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Conclusion and Future Work

This chapter concludes by a critical discussion on the achievements of this thesis and point-
ing to interesting directions of future work.

This work describes a model-based policy derivation that combines usage control en-
forcement with data and action refinement. Policies are supposed to be specified by end
users and translated using technical details provided by a more sophisticated power user.
The policy derivation methodology describes with several examples, how the process can
be automated end to end.

Specification-level policies consist of constraints on abstract user actions and data. There
are two major challenges in the enforcement of such policies: firstly, because specification-
level policies talk of abstract data but in real systems only concrete containers exist, it
should be possible to keep track of all representations of the same data at different layers
of abstraction. For instance, if a picture downloaded from an OSN is to be protected, then
the corresponding window content, the cache file, and the browser-internal representation,
as well as their copies, need to be protected. A summary of addressing different represen-
tations of the same data in the system without explicitly listing them has been presented
in Chapter 3 and forms an important part of the foundation on which this work is built.

The second challenge is to translate the policies specified in abstract terms into imple-
mentation-specific policies with concrete technical details at different layers of abstraction.
User actions in SLPs must be refined according to their technical semantics in order to
derive policies for enforcement.

In Section 4.1, a set of requirements were laid down in order to achieve policy derivation
in an automated way. The following section revisits these requirements and describes how
each of them were met, addressing the second aforementioned challenge.

9.1. Revisiting the Requirements
At first, three high-level user requirements were identified in order to achieve the three

sub-goals of policy derivation. Each of these goals and requirements correspond to one of
the three steps in which the policy derivation problem was to be approached:
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R1) Refinement of constructs: There must be a generic way to refine the basic policy con-
structs viz. data and action into technical equivalents.

R2) Policy derivation: SLPs must be translated to ILPs using the refinement of data and
action.

R3) Automation of policy derivation: Policy derivation from the specification to the imple-
mentation levels must be automated.

Following is a recap of the work presented in this thesis in the context of the refinements
of these requirements:

The first requirement was to come up with a language to model data and actions in
a generic way. A three-layer domain metamodel described in Chapter 4 fulfills this re-
quirement. Data and action are modeled as UML classes at a high-level in the platform-
independent model (PIM) and are refined recursively to their technical counterparts at the
platform-specific and implementation-specific levels. Associations among classes repre-
sent the data and action refinements (Requirements ®1.1 — R1.3).

The domain metamodel and the usage control model are combined in Chapter 5 by
connecting data and containers (of the usage control model) to their classes (that are in-
stances of elements of the domain metamodel: Requirement K2.1). The semantics of refining
data and actions is formally defined in the combined model (Requirement ®2.2) and past-
equivalents of future-time OSL formulas are also derived (Requirement ®2.3). The purpose
of past-time translation of OSL formulas is to know the condition in which a future-time
formula of an SLP will be violated so that relevant actions as mentioned in the respective
policy could be taken.

A detailed methodology from setting up the infrastructure to the translation, deploy-
ment and update of policies is described in Chapter 6. Two roles of users are suggested:
power users define a domain model instantiating the aforementioned metamodel. Finally
transforming SLPs to ECA format is essentially a problem of syntax transformation with
the tricky part being the specification of enforcement strategy for policies (Requirements
R3.1 —R3.3). Classes of SLPs and ILPs, used as patterns and called policy templates have
been used with two motives:

1. End users can specify policies for their data using the SLP templates which are user-
friendly representations of OSL formulas with object parameters that talk of classes
of data and containers instead of the instances (®3.4 — R3.5).

2. For each SLP template, the power user can specify an enforcement strategy. All poli-
cies that are specified using one SLP template are enforced in one particular way.

Different events at various layers of abstraction in a machine that belong to the same
higher level event (e.g., the save page event in the above paragraphs) are grouped together
by tagging them with a label that is unique for each such group of events (Requirement
R2.5). Adding context-specific information like user session identifier to policies is case-
dependent. Examples demonstrate how context information can be added in a generic
way for certain domain implementations (Requirement R2.4).

In Chapter 7, an infrastructure design that supports the policy derivation concepts and
the methodology is described via component diagrams. The interactions among different
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components are also outlined. Instantiating this generic architecture, several example sce-
narios were implemented to demonstrate the feasibility of achieving policy derivation in
an automated way.

In the following section, we critically analyze the achievements of this thesis.

9.2. Discussion

Domain Modeling: This thesis discusses an action refinement approach based on do-
main models. In general, model-based approaches have been advantageous in automating
concepts and processes because they allow flexibility of requirements. It is much easier to
incorporate changes at one place (i.e., in the model) and to reflect the change everywhere
in the environment.

Besides this, building explicit domain models provides two key advantages: they allow
detailed reasoning about what is assumed about the domain and they provide opportuni-
ties for requirements reuse within a domain [71]. It’s also possible to treat the domain as a
black box and reason about the environment as we do in our implementation of the policy
derivation core.

There are also some downsides to the model-based approach in the context of this work:
Domain models are built by power users. As the domain metamodel proposed in this work
could not be validated for correctness, this renders the usefulness of the domain models
highly reliant on the expert knowledge of power users. The reason is that the meanings
of data and actions are not precisely defined but they are intuitively understood both by
end users and power users. Because of this, it is hard to establish a notion of correctness
between the semantics of low-level and high-level policies based on these semantics.

Because action refinement is central to policy derivation in this work, and there is no
inductive way to prove or disprove the completeness and correctness of a given domain
model, we may end up with policy derivations that do not reflect the high-level require-
ments. From a security point of view, we do not consider this a misuse case where a power
user might deliberately model the domain in a wrong way because the power users are as-
sumed to be trusted. But if the power user wrongly models the domain, the errors would
accumulate and propagate throughout the enforcement. Also, if data is stored at a layer
of abstraction which is not included in the domain model or which could not be modeled
for any reasons (business secret, lack of understanding of the functionality, closed source
with no documentation, etc.), then no implementation-level policies would be generated
for monitoring data usage in that layer of abstraction. Hence corresponding usages might
be wrongly allowed during the enforcement of policies. Therefore, the domain metamodel
should be seen as a way to define the semantics of high-level actions by assigning machine-
level events and state-based formulas to high-level actions.

Automation: In the general scheme of things, the power used is supposed to configure
the policy translation before the derivation components are deployed and running. As the
action refinement is model-based and the syntax transformation of OSL formulas to ECA
format is template-based, no further human intervention is required after the end user
specifies and saves policies. Although the definition of enforcement mechanisms needs
human intervention if each SLP within a class of SLPs needs to be enforced in a different
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way, we did not find this to happen very often. Such cases therefore can be considered as
exceptions and handled differently via human intervention.

Another issue is in the derivation of past equivalents of OSL formulas. As we restrict
ourselves to propositional arguments for temporal operators, complex obligations with
nested future-time temporal formulas, whose past translation cannot be automatically
achieved, may need to be decomposed. A fully-automatic solution of this problem would
be to translate each subformula into the past form and map it to the condition part of a sep-
arate ECA rule. But in that case, there would be the need to show that the compositionality
property holds.

Generalizability: Though we have discussed the application of action refinement in the
context of usage control policy derivation, the domain metamodel used to define the mean-
ings of actions is fundamentally independent of the usage control context. We see it as a
way to to define the generic semantics of actions. So the domain metamodel could be
used in any area where the meanings of actions are to be explicitly modeled at the domain
level. E.g., any security policy model could be combined with the domain metamodel to
use the general semantics of actions in policies. In fact the domain metamodel is not re-
lated to security per se: it’s just a language to model domains and hence it could also be
used as a standard to refine both security and non-security, functional and non-functional
requirements.

Besides this, the formal semantics of policy derivation using action refinement could
also be used in existing access control frameworks to translate policies because (i) usage
control is an extension of access control with shared concepts between the two and (ii) it
is possible to translate OSL to access control policy languages: this possibility has already
been explored in the concrete case of translation from OSL to ODRLC and vice versa in
[21]. As long as the generated policies can be translated to OSL, they can be transformed
into ECA rules and successfully deployed and enforced in the usage control infrastruc-
ture described in Chapter 7. Because the policy management components, the Policy Ed-
itor(PE), the Policy Translation Point (PTP) and the Policy Management Point (PMP) are
implemented to generate policies in a specific syntax, they cannot be used as-is to deploy
policies that do not conform to the the concrete syntax given in the Appendix B. But this
is not a fundamental limitation.

Usability Concerns: A fundamental concern is about the usability of policy specification
tools in general: though we have introduced templates to abstract both technical semantics
and syntax of usage control policies, these requirements tend to be complex and end users
might not be capable of understanding and specifying them at all. An approach in that
case would be to let data protection officers or any other trusted authority specify these
policies for particular domains.

In the implementation, the policy templates have been deliberately kept simple with user
inputs limited to multiple-choice format. This should not be seen as a limitation though, as
the policy derivation is fundamentally independent of the concrete syntax of the templates.

In principle, policy templates could also be written in XML, in plain structured text,
in simple graphical format with dropdowns and checkboxes or, in advanced graphical
format where end users could drag and connect different blocks to write policies (on lines
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of Scratch, MIT Open Blocks). Policies could also be specified using free text in any natural
language or standardized solutions like ODRLC (as mentioned above, a translation from
OSL to ODRLC and vice versa is already provided in [21]).

Of course, technically sophisticated users can still write policies directly at the imple-
mentation level or they can write policies that address specific containers and concrete
events on them. This work does not exclude such cases.

Ubiquity of infrastructure: Finally, a general problem with usage control enforcement
is the requirement of a ubiquitous infrastructure in order to ensure that the translated
policies are indeed enforced at and across all layers of abstraction in different machines in
a distributed setup. Also, a basic assumption in this work is that the policy enforcement
components are implemented correctly, that they are up and running and that they are not
tampered with (at least not without the tamper being recognized). In a distributed setup
with remote data consumers and closed sub-environments, it might be hard to verify if the
assumptions indeed hold.

9.3. Future Work

The results in this thesis could be extended in multiple dimensions. The following para-
graphs point to some of the areas and provide an intuition of the probable solutions.

Using Machine Learning Techniques: As mentioned earlier, the specification of enforce-
ment strategies per policy is a stumbling block in the automation of policy derivation in
this work. In Chapter 6, this has been handled by the suggestion of templates. The fea-
sibility of using templates of ECA rules for this purpose has also been demonstrated by
several examples.

A possibility to improve this solution could be the application of machine learning tech-
niques where end user preferences for enforcing their specification-level policies for spe-
cific data and actions could be used as part of the input pattern to (i) enforce each policy,
instead of class of policies, in a different way, and (ii) to include end users in specification
of policy enforcement also. For instance, case-based reasoning (CBR) [153] has been shown
to help end users specify privacy policies in pervasive computing [154, 155]. In the context
of this work, it could be used to train a system to learn users’ preferences for enforcement
of specific policies. Based on the results, some of the human intervention from the power
user in setting up the infrastructure could be eliminated for future cases.

Dynamic domains: There is a deliberately introduced limitation in this work: the dy-
namic nature of domains has not been considered in detail. Appendix D provides an in-
tuition of handling the case where the domain structure is not static as defined initially in
the domain model, but it changes with new types of and implementations being added,
removed or updated from time to time. Along with the fundamental concepts and a basic
algorithm to compare and merge any two classes from two domain models (one that exists
in the infrastructure, represents an earlier version of the domain structure and is used for
policy derivation, and the other model that contains the modifications to the domain), a
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proof of concept has also been implemented, tested and validated. In a nutshell, the in-
frastructure exists to support the dynamic domain case. However, the conceptual solution
needs further attention for coming up with better ways of bringing together elements from
different domain models.

Apart from this, one limitation of the work in Appendix D is the reliance on existing
ontologies to establish relationships among terms at the abstract level. This limitation can
be got rid of by defining detailed ontology of the specific domain where usage control
has to be enforced. For example, an ontology with terms from computing industry, or
legal departments or educational institutions can be employed to more easily establish
relationships between two domain vocabulary. Therefore a next step in improving the
solution would be to come up with such ontologies that provide semantic support to fill
gaps in an incomplete definition of a domain.

Policy Evolution: Another limitation on the solution is posed by the evolution of specifi-
cation-level policies in a distributed setup where consumers of data transform themselves
into providers of data over time (as explained in Chapter 1), and so the policies that they
attach with data might evolve with this change [31]. In the present solution, this aspect of
the problem has not been considered. As Chapter 2 has explained, in the current scheme
of things, policies may only evolve by strengthening. How the semantics of the actions in
policies would change in that case could be worth exploring in future.

Policy Conflicts: This work also describes a policy editor for specifying SLPs where no
mechanism are implemented for checking specification-time conflicts. Conflicts in usage
control policies can arise from various sources. E.g., one policy might define a duty that
includes performing certain actions that are forbidden by another policy, as in “no non-
anonymised data should leave the system” vs. “report complete logs (including user pro-
file) whenever this data is accessed”. Conflicts can also arise when policies put constraints
upon an action that targets an object which is a collection of other objects or forms part
of another object in the domain model. For example, an album consists of several photos

AT

where each photo might be associated with a different policy (“copy max 5 times”, “copy
upon payment”, “copy but notify”, “copy with lower quality”, “never copy” etc.). In this
case, a policy for the album that constraints copy action might be in conflict with one or
more of the policies for individual photos. Apart from object hierarchy, policy conflicts can
also arise from subject hierarchy: for example, rights and duties of subjects at one level can
restrict rights and duties of subjects at other levels; and because of several other reasons.

Intuitively, detecting these conflicts at the time of policy specification in isolated cases is
not very difficult. However, in a large enterprise, it might be challenging for an adminis-
trator to manually compare a new policy with all the existing ones and detect and resolve
any conflicts within realistic time limits. Besides this, deployment in a distributed setting
is difficult because conflicts need to be identified (which is simple) and resolved at the
deployment time (which might be very difficult). For this reason, a tool support for the
process is required.

An interesting part of future work in this direction would be to see in the context of
usage control, (i) how to form patterns of conflicts; (ii) if for all such cases, a hierarchical
order could be assigned to the policies (or to classes of policies) to create conflict taxonomy
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and (iii) if these patterns and hierarchies (and other conflict resolution strategies) could be
used to successfully resolve policy conflicts automatically.

Application to Other Areas: This work provides an application of the domain meta-
model in the usage control context. For interoperability among domains with different
other security models, the metamodel could be connected to other well-known usage and
access control models for respective policy derivations.

Usability of Policies: This work does recognize the issue of usability vs. security in
general and particularly in the case of specification of security policies (see Chapter 8).
Usability concerns led us to introduce templates for policy specification, as described ear-
lier. However, an in-depth look into the usability of templates and policies and a related
discussion on the usability of policy specification has been out of the scope of this work.
This is a vast area of research and there are innumerable possibilities to explore how usage
control could be made more usable in terms of the representation of policies.
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Appendix A

Implementation Details of the Domain Model
Editor

A.1. XML Schema of the Domain Model

The UML syntax of the domain model is given by the metamodel described in Chapter 4.
Following is the concrete syntax of the domain model in XML. XML models generated
from this schema can be fed to our policy translation infrastructure without any syntactic
modifications for refining actions in implementation-level policies.

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" attributeFormDefault="unqualified"
elementFormDefault="qualified">
<xs:element name="pims'">
<xs:complexType>
<Xs:sequence>
<xs:element name="pimactions" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="name" use="optional"/>
<xs:attribute type="xs:string" name="synonym" use="optional"/>
<xs:attribute type="xs:byte" name="seq" use="optional"/>
<xs:attribute type="xs:string" name="actionRefmnt" use="optional"/>
<xs:attribute type="xs:string" name="paramData" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="pimdata" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="storedin" use="optional"/>
<xs:attribute type="xs:string" name="name" use="optional"/>
<xs:attribute type="xs:string" name="synonym" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="name"/>
</xs:complexType>
</xs:element>
<xs:element name="psms'">
<xs:complexType>
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35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

A. Implementation Details of the Domain Model Editor

<Xs:sequence>
<xs:element name="psmcontainers" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="contimplementedas" use="optional"/>
<xs:attribute type="xs:string" name="name" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="psmtransformers" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="name" use="optional'"/>
<xs:attribute type="xs:byte" name="seq" use="optional"/>
<xs:attribute type="xs:string" name="outputcontainer" use="optional"/>
<xs:attribute type="xs:string" name="inputcontainer" use="optional"/>
<xs:attribute type="xs:string" name="crossPsmRefmnt" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="psmsystems" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="systemtransformers" use="optional"/>
<xs:attribute type="xs:string" name="sysimplementedas" use="optional"/>
<xs:attribute type="xs:string" name="name" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="name"/>
</xs:complexType>
</xs:element>
<xs:element name="isms'">
<xs:complexType>
<Xs:sequence>
<xs:element name="ismcontainers" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="name" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="ismtransformers" maxOccurs="unbounded" minOccurs="0">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="name" use="optional"/>
<xs:attribute type="xs:byte" name="seq" use="optional"/>
<xs:attribute type="xs:string" name="inputimplecontainer" use="optional"/>
<xs:attribute type="xs:string" name="outputimplecontainer" use="optional"
/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
<xs:element name="ismsystems" maxOccurs="unbounded" minOccurs="0">
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99
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101
102

103
104
105
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108
109
110
111
112
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<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string">
<xs:attribute type="xs:string" name="implesystemtransformers" use="
optional"/>
<xs:attribute type="xs:string" name="name" use="optional"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
<xs:attribute type="xs:string" name="name"/>
</xs:complexType>
</xs:element>
</xs:schema>

Listing A.1: Domain model schema

A.2. Ecore Metamodel of the Domain Model Editor

Figure A.1 shows the graphical representation of the Ecore metamodel of the domain edi-
tor.
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Appendix B

Concrete Syntax of Policies

B.1. Specification-Level Policies

In the concrete syntax that is discussed in this chapter and is used in the implementation,
SLPs are expressed with an identifier, a subject (optional, as subjects can also be expressed
as event parameters) and a set of obligation formula expressed in future-time OSL with
state-based operators.

The complete concrete XML syntax is described in three XML schema below. The schema
in Listing B.1 describes the Specification Language with all the OSL operators (lines 42—
66). It additionally uses Time and Event schemas in Listings B.2 and B.3 to describe events
and time in SLP.

In this syntax, the type of a policy as described in Section 6.2 is expressed via different
ParamDataTypes (lines 193 and 199). The boolean-valued attribute tryEvent (line 178) is
used to express if an event is an intended event event (in case of tryEvent="true”) or an
actual event (in case of tryEvent="false”).

B.1.1. Specification Language

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema" targetNamespace="http://www22.in.tum.de/
specificationLanguage"
xmlns:tns="http://www22.in.tum.de/specificationlLanguage" xmlns:time="http://www22.in.tum
.de/time"
xmlns:event="http://www22.in.tum.de/event" elementFormDefault="qualified">

<import namespace="http://www22.in.tum.de/time" schemalocation="time.xsd" />
<import namespace="http://www22.in.tum.de/event" schemaLocation="event.xsd" />

<element name="policy" type="tns:PolicyType" />

<complexType name="PolicyType">
<sequence>
<element name="initialRepresentations" type="tns:InitialRepresentationType"
minOccurs="0" />
<element name="obligation" type="tns:0ObligationType" minOccurs="1"/>
</sequence>
<attribute name="name" type="string" use="required" />
<attribute name="subject" type="string" use="optional" />
</complexType>
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<complexType name="InitialRepresentationType">
<sequence>

<element name="container" type="tns:ContainerType" minOccurs="1"

maxOccurs="unbounded" />
</sequence>
</complexType>

<complexType name="ContainerType">
<sequence>

<element name="dataId" type="string" minOccurs="1" maxOccurs="unbounded" />

</sequence>
<attribute name="name" type="string" use="required" />
</complexType>

<complexType name="ObligationType">
<sequence>

<group ref="tns:Operators" minOccurs="1" maxOccurs="1" />

</sequence>
</complexType>

<group name="Operators">
<choice>

<element name="true" type="tns:TrueType" />
<element name="false" type="tns:FalseType" />
<element name="not" type="tns:NotType" />
<element name="or" type='"tns:OrType" />
<element name="and" type="tns:AndType" />
<element name="implies" type="tns:ImpliesType" />

<element name="event" type="tns:EventOperatorType" />

<element name="until" type="tns:UntilType" />
<element name="always" type="tns:AlwaysType" />
<element name="after" type="tns:AfterType" />
<element name="during" type="tns:DuringType" />
<element name="within" type="tns:WithinType" />

<element name="repLim" type='"tns:RepLimType" />
<element name="repUntil" type="tns:RepUntilType" />
<element name="repMax" type="tns:RepMaxType" />

<element name="stateBasedFormula" type="tns:StateBasedOperatorType"

<element name="eval" type="tns:EvalOperatorType" />
</choice>
</group>

<complexType name="TrueType'">
<sequence />
</complexType>

<complexType name="FalseType'">
<sequence />
</complexType>

<complexType name="NotType'">
<sequence>
<group ref="tns:Operators" />
</sequence>
</complexType>

<complexType name="OrType'">
<sequence>

<group ref="tns:Operators" minOccurs="2" maxOccurs="2"

/>

/>
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86 </sequence>

87 </complexType>

88

89 <complexType name="AndType'">

90 <sequence>

91 <group ref="tns:Operators" minOccurs="2" maxOccurs="2" />
92 </sequence>

93 </complexType>

94

95 <complexType name="ImpliesType'">

96 <sequence>

97 <group ref="tns:Operators" minOccurs="2" maxOccurs="2" />
98 </sequence>

99 </complexType>

100

101 <complexType name="UntilType">

102 <sequence>

103 <group ref="tns:Operators" minOccurs="2" maxOccurs="2" />
104 </sequence>

105 </complexType>

106

107 <complexType name="AlwaysType">

108 <sequence>

109 <group ref="tns:Operators" />

110 </sequence>

111 </complexType>

112

113 <complexType name="AfterType">

114 <sequence>

115 <group ref="tns:Operators" />

116 </sequence>

117 <attributeGroup ref="time:TimeAmountAttributeGroup" />
118 </complexType>

119

120 <complexType name="DuringType">

121 <sequence>

122 <group ref="tns:Operators" />

123 </sequence>

124 <attributeGroup ref="time:TimeAmountAttributeGroup" />
125 </complexType>

126

127 <complexType name="WithinType">

128

129 <sequence>

130 <group ref="tns:Operators" />

131 </sequence>

132 <attributeGroup ref="time:TimeAmountAttributeGroup" />
133 </complexType>

134

135 <complexType name="RepLimType">

136 <sequence>

137 <group ref="tns:Operators" />

138 </sequence>

139 <attributeGroup ref="time:TimeAmountAttributeGroup" />
140 <attribute name="lowerLimit" type="long" use="required" />
141 <attribute name="upperLimit" type="long" use="required" />
142 </complexType>

143

144 <complexType name="RepUntilType">

145 <sequence>

146 <group ref="tns:Operators" minOccurs="2" maxOccurs="2" />
147 </sequence>

148 <attribute name="1limit" type="long" use="required" />
149 </complexType>

150
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<complexType name="RepMaxType'>

<sequence>
<group ref="tns:Operators" />
</sequence>
<attribute name="1limit" type="long" use="required" />
</complexType>

<complexType name="StateBasedOperatorType">
<attribute name="operator" type="string" use="required" />
<attribute name="paraml" type="string" use="required" />
<attribute name="param2" type="string" use="optional" />
<attribute name="param3" type="string" use="optional" />
</complexType>

<complexType name="EvalOperatorType">

<sequence>
<element name="content" type="string" />
</sequence>
<attribute name="type" type="string" use="required" />
</complexType>

<complexType name="EventOperatorType'">

<sequence>

<element name="params" type="tns:ParamsType" minOccurs="0"
maxOccurs="unbounded" />

</sequence>

<attribute name="name" type="string" use="required" />

<attribute name="tryEvent" type="boolean" use="required" />
</complexType>

<complexType name="ParamsType'">
<sequence>
<element name="param" type="tns:ParamType" minOccurs="0"
maxOccurs="unbounded" />
</sequence>

</complexType>

<complexType name="ParamType'>
<attribute name="name" type="string" use="required" />
<attribute name="value" type="string" use="required" />
<attribute name="class" type="string" use="optional" />
<attribute name="policytype" type="tns:ParamDataTypes" use="optional"
default="string" />
<attribute name="datalID" type="string" use="optional"
default="" />
</complexType>

<simpleType name="ParamDataTypes">
<restriction base="string">
<pattern value="string|dataUsage|container|data" />
</restriction>
</simpleType>

</schema>

Listing B.1: Specification language schema

B.1.2. Specifying Time in Policies

The XML schema shown in Listing B.2 describes the concrete syntax of time in OSL opera-
tors. At the abstract level, Time is represented by a (TAmount, TUnit) pair. In the concrete
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XML syntax below, these two elements of the pair are denoted by TimeAmountType and
TimeUnitType.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema" targetNamespace="http://www22.in.tum.de/
time"
xmlns:tns="http://www22.in.tum.de/time" elementFormDefault="qualified">

<attributeGroup name="TimeAmountAttributeGroup">
<attribute name="amount" type="long" use="required" />
<attribute name="unit" type="tns:TimeUnitType" use="optional"
default="TIMESTEPS" />
</attributeGroup>

<complexType name="TimeAmountType'">
<annotation>
<documentation>
A time amount is a sum of elapsed time,
specific intervals.
</documentation>
</annotation>
<attributeGroup ref="tns:TimeAmountAttributeGroup" />
</complexType>

which need not be of any

<simpleType name="TimeUnitType">
<annotation>
<documentation>
Possible time units to quantify a time amount. One month is 30 days and a
year is 12 months or 360 days.
</documentation>
</annotation>
<restriction base="string">

<enumeration value="TIMESTEPS" />
<enumeration value="NANOSECONDS" />
<enumeration value="MICROSECONDS" />
<enumeration value="MILLISECONDS" />
<enumeration value="SECONDS" />

<enumeration

value="MINUTES" />
value="HOURS" />
value="DAYS" />

<enumeration
<enumeration

<enumeration value="WEEKS" />
<enumeration value="MONTHS" />
<enumeration value="YEARS" />
</restriction>
</simpleType>
</schema>

Listing B.2: Time schema

B.1.3. Specifying Events in Policies

The XML schema shown in Listing B.3 describes the concrete syntax of events in policies:
it comprises of event name, event type to express if it is an actual or attempted event and
a set of parameters (name, value pairs).

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www22.in.tum.de/event"
xmlns:tns="http://www22.in.tum.de/event" xmlns:time="http://www22.in.tum.de/time"

elementFormDefault="qualified">
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<import namespace="http://www22.in.tum.de/time" schemalocation="time.xsd" />

<simpleType name="EventParameterDataTypes">
<restriction base="string">
<enumeration value="string" />
<enumeration value="data" />
</restriction>
</simpleType>

<complexType name="EventParameterType'">
<attribute name="name" type="string" use="required" />
<attribute name="value" type="string" use="required" />
<attribute name="type" type="tns:EventParameterDataTypes"
use="optional" default="string" />
</complexType>

<complexType name="EventType'">
<annotation>
<documentation>
Events have a name and parameters.
A try event represents an attempted usage event by a user.
</documentation>
</annotation>
<sequence>
<element name="parameter" type="tns:EventParameterType"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
<attribute name="event" type="string" use="required" />
<attribute name="tryEvent" type="boolean" use="required" />
</complexType>

<element name="event" type="tns:EventType" />
</schema>

Listing B.3: Events schema

B.2. Implementation-Level Policies

The following is the concrete XML syntax of the ILPs used in the implementations.

B.2.1. ECA Rules

The XML schema of Listing B.4 shows the concrete syntax of the ECA rules. It describes
both the preventive and the detective mechanisms (lines 280 —297).

The action part of ECA rules is called Authorization Action. In the authorization action,
apart from modification (lines 217 — 222) and inhibition (lines 224 — 229), we can also ex-
press both synchronous and asynchronous events to be executed as part of the execution
enforcement strategy (lines 195 — 211). Contrary to the case of asynchronous events, when
a synchronous event is executed, the enforcement waits for the status of the executed event
(success or fail) from the executor processors. Executor processors (lines 188 —193) are those
components in the overall architecture that execute events for policy enforcement. There
are two type of executor processors: one is a Policy Enforcement Point (PEP) described
in Chapter 7 and the other is a Policy eXecution Point (PXP) which is an umbrella term
for all components that are capable of executing some events both in the usage controlled
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infrastructure (e.g., delete a file from a usage controlled file system) and outside of it (send
an email using webmail). An example use of PXP is shown in Section 6.4.1.4.

The Condition and Authorization Action part of the ECA rules are described below
while the concrete syntax of Event and Time (time is also a part of the Condition) is the
same as shown in Listings B.3 and B.2. These schema are referenced below.

Recall from Section 2.2.3 that conditions outside temporal and first-order logic are ex-
pressed using eval. One choice for expressing eval is XPath as shown in line 177 below.
The rest of the past-time OSL and state-based operators are also a part of the condition.

Apart from event-condition-action, the ILPs also include a timestep declaration in order
to express the granularity of the evaluation of the ECA rule (line 266). Timestep is ex-
pressed in numbers without the time unit: the default time unit is implementation-specific.

Additionally, the InitialRepresentationType (lines 306 — 311) allows us to declare a set of
initial containers of data for specific type of policies as described in Section 6.2.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema" targetNamespace="http://www22.in.tum.de/
enforcementLanguage"
xmlns:tns="http://www22.in.tum.de/enforcementLanguage" xmlns:time="http://www22.in.tum.
de/time"
xmlns:event="http://www22.in.tum.de/event" xmlns:cnd="http://www.iese.fhg.de/pef/1.0/
condition”
elementFormDefault="qualified">

<import namespace="http://www22.in.tum.de/time" schemalocation="time.xsd" />
<import namespace="http://www22.in.tum.de/event" schemalocation="event.xsd" />

<complexType name="ConditionType">
<sequence>
<group ref="tns:Operators" minOccurs="1" maxOccurs="1" />
</sequence>
</complexType>

<complexType name="ConditionParamMatchType'">
<attribute name="name" type="string" use="required" />
<attribute name="value" type="string" use="required" />
</complexType>

<complexType name="NotType'">
<sequence>
<group ref="tns:Operators" />
</sequence>
</complexType>

<complexType name="TrueType'">
<sequence />
</complexType>

<complexType name="FalseType">
<sequence />
</complexType>

<complexType name="OrType'">
<sequence>
<group ref="tns:Operators" minOccurs="2" maxOccurs="2" />
</sequence>
</complexType>

<complexType name="AndType'>
<sequence>
<group ref="tns:Operators" minOccurs="2" maxOccurs="2" />
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44 </sequence>

45 </complexType>

46

47 <complexType name="ImpliesType'">

48 <sequence>

49 <group ref="tns:Operators" minOccurs="2" maxOccurs="2" />
50 </sequence>

51 </complexType>

52

53 <complexType name="SinceType">

54 <sequence>

55 <group ref="tns:Operators" minOccurs="2" maxOccurs="2" />
56 </sequence>

57 </complexType>

58

59 <complexType name="AlwaysType'">

60 <sequence>

61 <group ref="tns:Operators" />

62 </sequence>

63 </complexType>

64

65 <complexType name="BeforeType">

66 <sequence>

67 <group ref="tns:Operators" />

68 </sequence>

69 <attributeGroup ref="time:TimeAmountAttributeGroup" />
70 </complexType>

71

72 <complexType name="DuringType">

73 <sequence>

74 <group ref="tns:Operators" />

75 </sequence>

76 <attributeGroup ref="time:TimeAmountAttributeGroup" />
77 </complexType>

78

79 <complexType name="WithinType">

80 <sequence>

81 <group ref="tns:Operators" />

82 </sequence>

83 <attributeGroup ref="time:TimeAmountAttributeGroup" />
84 </complexType>

85

86 <complexType name="RepLimType">

87 <sequence>

88 <group ref="tns:Operators" />

89 </sequence>

90 <attributeGroup ref="time:TimeAmountAttributeGroup" />
91 <attribute name="lowerLimit" type="long" use="required" />
92 <attribute name="upperLimit" type="long" use="required" />
93 </complexType>

94

95 <complexType name="RepSinceType">

96 <sequence>

97 <group ref="tns:Operators" minOccurs="2" maxOccurs="2" />
98 </sequence>

99 <attribute name="1limit" type="long" use="required" />
100 </complexType>

101

102 <complexType name="RepMaxType">

103 <sequence>

104 <group ref="tns:Operators" />

105 </sequence>

106 <attribute name="1limit" type="long" use="required" />
107 </complexType>

108
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<complexType
<attribute
<attribute
<attribute

name="StateBasedOperatorType">

name="operator" type="string" use="required" />
name="paraml" type="string" use="required" />
name="param2" type="string" use="optional" />

<attribute name="param3" type="string" use="optional" />
</complexType>
<complexType name="EvalOperatorType">

<sequence>

<element name="content" type="string" />

</sequence>

<attribute name="type" type="string" use="required" />
</complexType>

<simpleType name="ParamMatchDataTypes">
<restriction base="string">

<pattern value="string|dataUsage|container|data" />
</restriction>
</simpleType>
<complexType name="ParamMatchType">
<attribute name="name" type="string" use="required" />
<attribute name="value" type="string" use="required" />
<attribute name="type" type="tns:ParamMatchDataTypes" use="optional"

default="string" />

<attribute name="datalID" type="string" use="optional"
default="" />
</complexType>
<complexType name="EventMatchingOperatorType'">
<sequence>
<element name="paramMatch" type="tns:ParamMatchType"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
<attribute name="action" type="string" use="required" />

<attribute

name="tryEvent" type="boolean" use="required" />

</complexType>

<group name="Operators">

<choice>
<element
<element
<element
<element
<element
<element

<element
<element

<element
<element
<element
<element
<element

<element
<element
<element

<element
<element
</choice>
</group>

name="true" type="tns:TrueType" />
name="false" type="tns:FalseType" />
name="not" type="tns:NotType" />
name="or" type="tns:0rType" />
name="and" type="tns:AndType" />
name="implies" type="tns:ImpliesType" />

name="eventMatch" type="tns:EventMatchingOperatorType" />
name="conditionParamMatch" type="tns:ConditionParamMatchType" />

name="since" type="tns:SinceType" />

name="always" type="tns:AlwaysType" />
name="before" type="tns:BeforeType" />
name="during" type="tns:DuringType" />
name="within" type="tns:WithinType" />

name="repLim" type="tns:RepLimType" />
name="repSince" type="tns:RepSinceType" />
name="repMax" type="tns:RepMaxType" />

name="stateBasedFormula" type="tns:StateBasedOperatorType" />
name="eval" type="tns:EvalOperatorType" />
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<simpleType name="ParamInstanceTypes'">
<restriction base="string">
<enumeration value="string" />
<enumeration value="xpath" />
</restriction>
</simpleType>

<complexType name="ParameterType'">
<attribute name="name" type="string" use="required" />
<attribute name="value" type="string" use="required" />
<attribute name="type" type="tns:ParamInstanceTypes" use="optional"
default="string" />
</complexType>

<simpleType name="ExecutorProcessors'">
<restriction base="string">
<enumeration value="pep" />
<enumeration value="pxp" />
</restriction>
</simpleType>

<complexType name="ExecuteActionType'">
<sequence>
<element name="parameter" type="tns:ParameterType" minOccurs="0"
maxOccurs="unbounded" />
</sequence>
<attribute name="name" type="string" use="required" />
<attribute name="id" type="string" />
</complexType>

<complexType name="ExecuteAsyncActionType">
<complexContent>
<extension base="tns:ExecuteActionType">
<attribute name="processor" type="tns:ExecutorProcessors"
use="optional" default="pxp" />
</extension>
</complexContent>
</complexType>

<complexType name="DelayActionType">
<attributeGroup ref="time:TimeAmountAttributeGroup" />
</complexType>

<complexType name="ModifyActionType'">
<sequence>
<element name="parameter" type='"tns:ParameterType" minOccurs="0"
maxOccurs="unbounded" />
</sequence>
</complexType>

<complexType name="AuthorizationInhibitType">
<sequence>
<element name="delay" type="tns:DelayActionType" minOccurs="0"
maxOccurs="1" />
</sequence>
</complexType>

<complexType name="AuthorizationAllowType">
<sequence>

<element name="delay" type="tns:DelayActionType" minOccurs="0"
maxOccurs="1" />

<element name="modify" type="tns:ModifyActionType" minOccurs="0"
maxOccurs="1" />

<element name="executeSyncAction" type="tns:ExecuteActionType"
minOccurs="0" maxOccurs="unbounded" />

166




239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

B. Concrete Syntax of Policies

</sequence>
</complexType>

<complexType name="AuthorizationActionType">
<choice>
<element name="allow" type="tns:AuthorizationAllowType" />
<element name="inhibit" type="tns:AuthorizationInhibitType" />

</choice>
<attribute name="name" type="string" use="required" />
<!-- indicates starting point in authorizationAction hierarchy -->

<attribute name="start" type="boolean" use="optional"
default="false" />
<!-- reference to fallback authorizationAction (name), if executeActions/modification
could not be performed successfully --—>
<attribute name="fallback" type="string" use="optional"
default="inhibit" />
</complexType>

<!-- Preventive mechanisms can only come to decisions on the grounds of
their current knowledge, so they use past-time formulas. The mechanism consists
of an Event, a Condition, and an Action part (ECA). The Event is called trigger

Event. When the condition evaluates to true the action part is executed. -—>
<complexType name="MechanismBaseType'">
<sequence>

<element name="description" type="string" minOccurs="0"
maxOccurs="1" />
<!—— Timestep size must not use timestep time unit! -->
<element name="timestep" type="time:TimeAmountType"
minOccurs="0" maxOccurs="1" />
<element name="trigger" type="tns:EventMatchingOperatorType"
minOccurs="0" maxOccurs="1" />
<element name="condition" type="tns:ConditionType" minOccurs="0"
maxOccurs="1" />
<element name="authorizationAction" type="tns:AuthorizationActionType"
minOccurs="0" maxOccurs="0" />
<element name="executeAsyncAction" type="tns:ExecuteAsyncActionType"
minOccurs="0" maxOccurs="unbounded" />
</sequence>
<attribute name="name" type="string" use="required" />
</complexType>

<complexType name="DetectiveMechanismType">
<complexContent>
<extension base="tns:MechanismBaseType">
<sequence />
</extension>
</complexContent>
</complexType>

<complexType name="PreventiveMechanismType">
<complexContent>
<extension base="tns:MechanismBaseType">
<sequence>
<element name="authorizationAction" type="tns:AuthorizationActionType"
minOccurs="1" maxOccurs="unbounded" />
</sequence>
</extension>
</complexContent>
</complexType>

<complexType name="ContainerType">
<sequence>
<element name="dataId" type="string" minOccurs="1" maxOccurs="unbounded" />
</sequence>
<attribute name="name" type="string" use="required" />
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304 </complexType>

305

306 <complexType name="InitialRepresentationType">

307 <sequence>

308 <element name="container" type="tns:ContainerType" minOccurs="1"

309 maxOccurs="unbounded" />

310 </sequence>

311 </complexType>

312

313 <complexType name="PolicyType">

314 <sequence>

315 <element name="initialRepresentations" type="tns:InitialRepresentationType"
316 minOccurs="0" />

317 <choice minOccurs="0" maxOccurs="unbounded">

318 <element name="detectiveMechanism" type="tns:DetectiveMechanismType" />
319 <element name="preventiveMechanism" type="tns:PreventiveMechanismType" />
320 </choice>

321 </sequence>

322 <attribute name="name" type="string" use="required" />

323 </complexType>

324

325 <element name="policy" type="tns:PolicyType" />

326 | </schema>

Listing B.4: Enforcement language schema

B.2.2. Specifying Time in ILPs

The XML schema shown in Listing B.2 describes the concrete syntax of time in ILPs also.

B.2.3. Specifying Events in ILPs

The XML schema shown in Listing B.3 also describes the concrete syntax of Event in the
ECA rules.
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Appendix C

A Summary of Symbols in Policy Derivation

Symbol | Meaning

Eq Set of actions

2A Set of classes of actions

C Set of containers

ép sm Set of classes of containers at the PSM level

Ciom Set of classes of containers at the ISM level

D Set of data

) Set of classes of data

& Set of events

¢ Set of classes of events

EDecl Event Declaration

o Set of objects (O C D UC)

D, The language containing state-based operators with variable data

& Past eventually; semantically equivalent to not™ (E(not™))

Rgeq Sequence refinement function that maps classes of transformers
within the PSM and the ISM levels

Rt Set refinement function that maps classes of transformers within
the PSM and the ISM levels

Rseq Sequence refinement function that maps classes of actions to

classes of transformers at the PSM level; it also maps classes of
transformers at the PSM level to those at the ISM level
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Rget Set refinement function that maps classes of actions to classes of
transformers at the PSM level; it also maps classes of transformers
at the PSM level to those at the ISM level

Start Meaning

Er Set of transformers

‘ip sm Set of classes of transformers at the PSM level

‘fism Set of classes of transformers at the ISM level

TA A translation function that is computed by taking a disjunction
over the transformer-based and state-based refinements of action

TE Transformer-based action refinement function

Ty State-based action refinement function

TP Future to past translation function that computes the first viola-
tion of a future-time formula in past time

VD Set of variable data

Table C.1.: List of symbols used in policy derivation
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Appendix D

The Case of Dynamic Domains

In real world, domains evolve over time with services, logical systems and physical hosts
being added, removed or modified. E.g., in an online social network (OSN), modifications
might include the OSN provider offering encrypted file sharing service, the ad-service
might be outsourced and various third-party applications can hook into the OSN. The
client machines accessing the social network at various users” end might also change in
their technical configurations, e.g., anew web browser or a new mail client can be installed.
Any realistic policy translation must reflect these changes. In order to do so, firstly, we
must be able to recognize changes in the domain structure. Secondly, recognized changes
must be reflected in the domain model and we must decide if and where the changes must
be incorporated in the policy derivation. The third requirement is to apply the changes. The
new refinements should be reflected in the policy derivation by re-translation of the SLPs
followed by revocation and deployment of the ILPs.

This chapter gives an initial intuition of a semi-automated approach to handle changes
in a dynamic domain. Changes in domain are recognized manually by the power user and
the delta is specified in a new (partial) domain model. E.g., if there is a new implementa-
tion class at the ISM level, it is assumed that some power user knows this and he specifies
a 3-level domain model where existing (and potentially new) PSM classes are refined in
terms of the new classes. In order to include these new features in policy derivation and
enforcement, the new model is merged with the existing domain model, based on certain
rules.

There is no universal way to merge any two domain models as different domains mod-
els might represent the same concept or artifact differently. Intuitively, existing ontologies
could be leveraged to compare and bring together different classes based on their mean-
ings. At the PIM level, another approach could be to compare classes based on their natural
language meanings as the PIM classes describe the end user view of the domain and are
therefore expressed in natural language terms. This chapter adopts the second approach
for automatically merging two platform-independent models. The platform-specific and
implementation-specific models could only partially be merged automatically, based on
the closeness of the well-known technical terms as no known ontology for technical vo-
cabulary was found to exist.
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D.1. Merging Domain Models

Two type of relationships between elements! could be established after comparison: con-
tainment, between sequences in action refinements and equivalence. In order to establish
one of the relationships, these information about elements were taken into consideration:

1. syntactic information, given by the name and the type of the element, e.g., a data can
be compared only with a data, an action only with an action;

2. structural information, given by the element refinement, e.g., a sequence of trans-
former can be compared only with another sequence (and not a set) of transformers,
and a set can be compared only with another set; and

3. semantic information, provided by the lexical equivalence/synonymity of terms or, in
case of actions and transformers, by the formal semantics of their respective refine-
ments.

For lexical equivalence among model elements, the concept of Synonyms is used. Apart
from labels and associations with each other, each class in the model also has a set of
synonyms which are intuitively, alternative names. E.g., a data class labeled "photo” might
have {picture, diagram, image} as synonyms. Synonyms are by default equivalent to each
other. Hence policies specified using synonyms can be easily translated and deployed
without requiring any negotiation between parties for agreement on terms. The set of
synonyms for each class can be defined in two ways: firstly, when the domain model is
defined by a power user and secondly, after the definition of the domain model during the
merging process. In the second case, lexical similarities could be discovered using existing
ontologies or using a dictionary update. The discovered lexically similar terms are added
to the set of synonyms for the class in the existing domain model.

Basic Rules for comparing and merging two domain models are as follows:

Rule 1 Comparison and merging is possible only between elements at the same levels in the do-
main, i.e., PIM to PIM, PSM to PSM, ISM to ISM.

Rule 2 At the PSM and the ISM levels, classes associated to the same system class are compared;
classes associated to different systems exist independent of each other.

Rule 3 Elements are named using standard vocabulary at the PSM and the ISM levels across
models. E.g., file, records, system calls are universal terms. Synonyms, if any, are added only
manually by the power users.

Rule 4 The new domain model is always an addition to the existing model, it’s not a replacement.

When applying these rules to compare model elements and merge different classes in
domain models, the following order based on the dependencies among elements is fol-
lowed: data and container classes are compared and included first, followed by the trans-
former classes because transformer classes definitions need container classes as their tar-
gets. System classes are included at last because systems are collections of transformers and
complete system definitions require all the relevant transformers.

IRecall from Chapter 4 that domain model elements are classes of data, actions, containers, etc.
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The next section discusses the changes needed in the existing architecture in order to
operationalize these concepts.

D.2. Modifications to the Existing Architecture

Chapter 7 describes in detail the component architecture of the usage control infrastruc-
ture. Policy derivation is performed by the Policy Translation Point (PTP) which is a part
of the Policy Management Point (PMP). For incorporating domain changes, The PTP was
extended and split into two main components: a Translation Engine (TE), which is an im-
plementation of the translation logic and the policy derivation process and, an Adaptation
Engine (AE), which provides the adaptation and merging part for the model-based policy
translation. Figure D.1 gives an overview of the architecture.

<<component>> <<use>>
PEP Policy Enforcement Point notify event (transformer, container) <<component>>
---------------------- > PDP Policy Decision Point

<<yse>>

1 -

: notify presence (domain model) i .

\'/ -7 <<yuse>>

<<component>> a deploy policies

PMP Policy Management Point <use>>

_——— A = = = = =

<<component>>
PTP Policy Translation Point \V4
<<component>>
<<component->  &| | | >| PIP Policy Information Point
AE Adaptation Engine <<use>>
<<component>>
TE Translation Engine

Figure D.1.: PTP split into adaptation engine and translation engine

D.2.1. Recognizing Changes

In dynamic domains, one of the initial challenges is how to recognize change in the envi-
ronment: in this case, how to recognize that there is a new type of system (e.g., database
replaced by file system storage) or a new system implementation (e.g., a new database
implementation) and the existing domain model needs to be updated. It is assumed that
the respective power users specify the model of the new systems, but somehow this new
model must be injected in the usage control infrastructure and the infrastructure must
know that a new model is there. From the perspective of the usage control infrastructure,
there are two ways to do it: active and passive.

In the active approach, the usage control infrastructure would detect a new component,
query for a corresponding domain model and incorporate the changes. It was recognized
that this approach is not feasible for several reasons. E.g., there may be parts of appli-
cations that are installed but are not subject to the usage control monitoring, such as ex-
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tensions or Windows updates. Then, malicious applications might not be detected upon
installation. Also the usage control infrastructure would have to broadcast messages and
listen for responses on every start of the infrastructure and thereafter at periodic intervals.
This could be a performance overhead.

In the passive approach, the infrastructure would wait and listen for a new system to
initiate a handshake and notify its presence or update by sending its domain model as a
parameter of the notification. Upon notification, the infrastructure would incorporate the
changes in the domain model, e.g., re-translate the existing policies from the specification
to the implementation level, revoke deployed policies and deploy new policies.

In this implementation, the passive approach is adopted that relies on a notification from
the PEP of the new system that sends a three-layer domain model. The core task of the
Adaptation Engine is to then compare the two models element by element and update the
existing domain model.

The usage control infrastructure can start in one of two initial conditions: either, there
is no initial model and the domain model provided by the first installed PEP will become
the base domain model for future adaptations; or, the infrastructure has an existing model
that has been specified for standard layers of abstraction, e.g., an operating system.

D.2.2. Including Changes in Policies

Once the domain model has been updated, the updates need to be reflected in deployed
policies. This can be done in two ways: delayed adaptation and real-time adaptation. In
delayed approach, already deployed policies are maintained until the infrastructure com-
ponents restart. Any new specification-level policies are translated using the updated base
domain model.

In the real-time adaptation, after the domain model is merged, the already deployed
policies are immediately revoked, retranslated and deployed. This would require that
a) the infrastructure keep track of all the deployed implementation-level policies corre-
sponding to one specification-level policy along with their instantiation parameters and
data ids generated at deployment and, b) the enforcement state of each deployed policy be
exported before revocation and be imported for the newer version of that policy.

System As A New Instance Sometimes, the domain model need not change because a
new instance of an existing system is installed. For example, a new backup server is added
to the network. The backup server has the same implementation details as the main server.
The PEP of this instance will notify its presence but the domain model has no new elements
to be included. The only difference is in the storage of the protected data. In order to keep
track of the data, the backup server must be populated with data via a monitored channel.
This means that the protected data is tracked by the usage control infrastructure and the
data-container mapping on the new server is included in the data state of the monitored
system at the PIP.

The next section describes one implementation of merging domain model for the SCUTA
instantiation of the running example.
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D.3. Implementation & Evaluation

The online social network SCUTA with usage control enforcement capabilities has already
been introduced in Chapter 6. Enforcement of policies in two different system configu-
rations was also mentioned and one of them with a Linux distribution OS was discussed
there. The second usage control enforcement with Mozilla Firefox web browser and Win-
dows 7 32-bit operating system was augmented with capabilities to handle the dynamic
domain case.

Lexical similarity In terms of merging the domain models at the PIM level, a natural lan-
guage lexical library, namely RitaWordnet [156, 157, 158] was used to establish semantic
relations between terms. For two words, e.g., “picture” and “photo”, a normalized dis-
tance value was chosen which is closer to 0 if the concepts are related and closer to 1 if
they are not semantically related. The PSM and the ISM -level classes were specified us-
ing standard terms and synonyms were only specified by the power user. No automated
comparison for new synonyms was performed for these two levels in the domain model.

The synonyms provide a vocabulary negotiation mechanism between two end-users
who want to use the same domain model for their policy translation but still want to use
the terms with which they are most accustomed to. Synonyms are either provided in a
static manner as a property of an element of the domain model, or synonyms are discov-
ered in a dynamic manner while merging by the use of a lexical similarity comparison of
terms.

D.3.1. Performance Analysis

The machine on which the tests were run was configured as follows: Intel i7-2640M 2.8ghz,
8Gb Ram, Windows?7 64bit, SSD Intel 160Gb. In order to replicate a real case scenario, 160
different policies were used as fix set of input policies for evaluating the performance.
The time required for the translation, revocation, deployment and instantiation of a single
policy depends on the complexity of the domain model.

At first, the performance was measured per component. The first evaluated component
was the translation engine (TE), part of the PTP. The base domain model contained 54
unique elements to be evaluated and had as defined systems the browser and the operat-
ing system both at PSM and ISM. The time required by the TE to translate 160 policies was
an average of 11.4 seconds. Next component, PMP, required in average 24.3 seconds to
revoke, re-translate, and redeploy all 160 affected policies. The third step was to evaluate
the adaptation engine (AE). The base domain model consisted of 42 elements, the new do-
main model 43 elements, and the merged domain model 54 elements. In total 54 elements
were affected by the update and 12 elements were added to the base domain model. The
average time required for this to take place was 0.4 seconds.

The final step, was to measure the end-to-end performance. End-to-end performance
refers to the time perceived by an user from the moment the request to adapt the domain
model is sent to the moment when the updated policies are deployed and ready to be
used. The average time required by the UC infrastructure was of 24.38 seconds to revoke
affected policies, translate and redeploy them. This time also includes the communication
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Operation on 160 policies average time
1. Translate 11.4 seconds
2. Translate + Revoke + Deploy 24.3 seconds
3. Adaptation 0.04 seconds

4. Adapt + Revoke + Translate + Deploy 24.38 seconds

Table D.1.: Performance overhead

overhead induced by the communication between the PEP and the PMP. The results are
shown in Table D.1.

During the performance test, the following observations were made. First of all, op-
timizing the translation process affects the performance of the entire infrastructure and
improves the user experience. Secondly, the time required by the adaptation depends di-
rectly on the number of the elements composing the domain model because every element
must be compared to its equivalent. On the other hand, adaptation takes place only when
a new PEP is installed and new PEPs are installed less frequently compared to adding or
revoking policies. This means that this time is similar to the time required when a newly
configured system starts up for the first time. It is a common case that such a time is
greater. Thirdly, in the context of a social network, the end-to-end time appears only at the
first access of the data, not every consequent access. A good analogy would be that the
end-to-end time is the time required for a ticket machine to issue a ticket, once the ticket
is issued the performance overhead is only that introduced by checking the ticket at each
access point, in our case the PDP verifying the policies.

In conclusion, an adaptive model-based policy translation introduces an insignificant
performance overhead, whose cost is relatively minor compared to having static model-
based policy translation.

D.3.2. Validation

Validation was done on the lines of Metamorphic Testing. The adaptation engine acts as
a transformation function which takes as input domain models M; and M;, and merges
them to M, ie., M;®M;~M;. We have observed that the properties that this function
verifies are commutativity and associativity. Commutativity means that M;®M;=M;® M,
and associativity means that (M;®M;)®M;=M;®(M;@®M;). Another observed property
is that for a series of transformations M;®Mj®...® My~ M,, there is new domain model
M, such that M;®M,~M,. Because elements which define sequences can have different
names, the merged domain model and the expected domain model need not be identical.
Therefore, the verification of these properties and the comparison of equivalent domain
models is done by comparing the translated policies.

D.3.3. Limitations

This chapter described and implemented one way of including real world domain changes
into the policies derived for usage control enforcement. The approach is semi-automated
because the initial changes to a domain structure are always recognized by the power
user who includes them in the domain model or constructs a new domain model. The
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further steps of recognizing and comparing the new or updated domain model with an
existing one in the infrastructure are automated. Policies are also re-translated, revoked
and deployed seamlessly.

With the example implementation, two major limitations were recognized. The data
from a domain model can be specified with business domain terms which are not recog-
nized by a lexical ontology. Therefore, a specific use case ontology should be put in place.
This is a limitation introduced by the use of an external lexical library. We have not taken
into consideration domain model elements which are labeled with composed terms, e.g.,
UserProfie, Project-portofolio, UpdateUserTable. A composed term cannot be recognized
“as is” by the lexical library.

A second limitation is introduced by the fact that the domain model is always updated
and backward compatibility is maintained. This means that the base domain model always
expands. In case a domain model must be simplified, this must be done either manually
or by using a special notification signed by the administrator to mark that the new domain
model must be accepted as a replacement for the elements it contains.
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Appendix E

Acronyms

DME Domain Model Editor

ECA Event-Condition-Action

EMF Eclipse Modeling Framework

EPAL Enterprise Privacy Authorization Language
FACPL Formal Access Control Policy Language

GMF Graphical Modeling Framework

GUI Graphical User Interface

ILP Implementation-level Policy

ILPs Implementation-level Policies

ISM Implementation-Specific Model

KAoS Knowledge Acquisition in automated specification
LTL Linear Temporal Logic

ODRL Open Digital Rights Language

OMA-DRM Open Mobile Alliance - DRM Rights Expression Language
OSL Obligation Specification Language

OSN Online Social Network

PDP Policy Decision Point

PE Policy Editor

PEP Policy Enforcement Point

PIM Platform-Independent Model
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PMP Policy Management Point

PSM Platform-Specific Model

PTP Policy Translation Point

RBAC Role-Based Access Control

RE Requirements Engineering

SAML Security Assertion Markup Language
SE Software Engineering

SLP Specification-level Policy

SLPs Specification-level Policies

UML Unified Modeling Language

UWE UML-based Web Engineering

XACML eXtensible Access Control Markup Language
XRML eXtensible Rights Markup Language
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