Institut fiir Informatik
der Technischen Universitat Miinchen

An Approach for Hybrid Modelling
and Formal Verification in Focus

Alarico Campetells

Vollstandiger Abdruck der von der Fakultét fiir Informatik der Technischen

Universitdat Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende(r): Univ.-Prof. Dr. Uwe Baumgarten
Priifer der Dissertation:
1. Univ.-Prof. Dr. Dr. h.c. Manfred Broy
2. Univ.-Prof. Dr.-Ing. Matthias Althoff

Die Dissertation wurde am 12.05.2015 bei der Technischen Universitit
Miinchen eingereicht und durch die Fakultét fiir Informatik am 10.09.2015

angenomimen.

il

Abstract

Nowadays, safety-critical embedded systems are in use e.g. in
vehicles, aircrafts, and medical devices. In these domains, the
combination of embedded systems with physical components re-
quires a suitable design that unites continuous time and discrete
elaboration in so-called hybrid systems, as provided by the Hen-
zinger’s hybrid automaton formalism. The scope of this thesis is
the introduction of sampling algorithms and the study of formal
verification support for hybrid systems. The theoretical founda-
tion of our approach is the modelling theory Focus, which for-
mally specifies distributed and interactive systems. We study the
problem of a full continuous simulation of Focus hybrid systems
in a modelling tool (AutoFocus 3) and explore new ideas (with
a prototypical implementation) based on the sampling of the con-
tinuous time elaborations into discrete time elaborations. In con-
trast to traditional approaches based on the error minimization,
we propose sampling solutions guided by desired requirements/s-
cenarios or by value variation of sampled variables.

System failures may lead to a considerable loss of money due
to warranty costs or - in the worst case - even endanger human
lives. The use of formal methods for the system definition per-
mits employing formal verification, which offers an exhaustive and
automatic verification. This work also explores formal verifica-
tion methods, such as model checking and Satisfiability Modulo
Theories (SMT) solving, as well as their practical application.
Our integration of formal verification is performed based on tight
coupling of verification properties with model elements, differ-
ent specification languages for the formulation of properties, as
well as visualization and simulation of counterexamples. We pro-
vide an implementation of such verification approach in the tool
AutoFocus 3.

111

v

Acknowledgments

Firstly, I would like to give my thanks to my supervisor Profes-
sor Manfred Broy, who provided me the chance to be his Ph.D.
student without hesitation when I applied with my research pro-
posal. I am grateful for the great support in the development
of this thesis and for his continuous mentoring that helped me
to be always inspired for my research. Without his advises and
discussions with him this thesis would not been realized. I would
like to thank my second supervisor Professor Matthias Althoff for
the very useful comments and discussions.

I would like to thank my colleagues at the TU Munich. I
am particularly grateful to Philipp Neubeck, Georg Hackenberg,
Maximilian Irlbeck, Mario Gleirscher, Stefan Kugele, Alexander
Gruler and Maximilian Junker for their useful discussions and
help for work and thesis issues. I am glad to Xiuna Zhu, Klaus
Lochmann, Diego Marmsoler, Vasileios Koutsoumpas and all oth-
ers chair colleagues for the nice time by coffee breaks. A special
thanks goes to Wolfgang Bohm for his excellent feedback on an
earlier version of this thesis. Finally, I would like to dedicate this
thesis to my wife and my family. The belief and the sacrifice they
made for me to support my life choices and my work are ineffable.
I thank my wife for always encouraged me and for her care and
tender.

vi

Contents

1 Introduction

1.1 Motivation
1.2 Subject
1.3 Outline.

Fundamentals and Design Methodology

2.1 System Classification
2.2 Introduction to Focus
2.2.1 Discrete Components
2.2.2 Channel Types
2.2.3 Trace Specification
2.2.4 Functional Specification
2.3 Hybrid Automata
2.3.1 Example
2.3.2 Linear Hybrid Automaton . . .
2.4 System Development Methodology . .
2.4.1 Waterfall model design process
242 AutoFocus3
2.4.3 Our Methodology
2.4.4 Methodology Case Studies . . .

Focus Hybrid Specifications
3.1 Hybrid Components
3.2 Hybrid Streams

Vil

11
12
14
14
14
15
16
17
19
21
23
24
26

viii CONTENTS

3.2.1 Causal Components. 34

3.3 Hybrid I/O Interfaces 35
3.3.1 Component Connection: Discrete to Continuous 36
3.3.2 Component Connection: Continuous to Discrete 37
3.3.3 1/O Interface and Logical Implementation 39

3.4 Hybrid I/O State Machines 39
3.4.1 Composition of Hybrid I/O State Machines 43
3.4.2 Hybrid I/O State Machine Traces 44
343 Example 44
3.4.4 Comparison with Henzinger’s Hybrid Automaton . . . 46
3.4.5 Nonlinear Systems in System Modelling 47

3.5 Related Worko 47
3.5.1 Modelling A7
3.5.2 From Nonlinear to Linear Systems 48
3.5.3 Abstraction of Hybrid Systems 49

4 Dynamic Discrete Sampling 51
4.1 Imntroductiono 51
4.1.1 Definitiono 52
4.1.2 Control Theory 52

4.2 Dynamic Sampling of Focus Hybrid Components %)
4.2.1 Sampling Architecture 56
4.2.2 Dynamic Periodic Sampling 59
4.2.3 Approximation of Differential Equations 64
4.2.4 Sampled-Data Model vs Event-Triggered Model 65

4.3 Dynamic Sampling of Component Architectures 68
4.3.1 Component Composition 69
4.3.2 Time Restrictions 70

4.4 Implementation 71
4.4.1 Dynamic Sampling in MATLAB Simulink/Stateflow . . 72
4.4.2 Dynamic Sampling in AutoFocus 3 79

4.5 Related Work 79

CONTENTS ix

5 Verification of Focus Components 81
5.1 Analysis Techniques 81
5.1.1 Definition 82
5.1.2 Testing and Simulation 83
5.1.3 Inspections, Reviews, and Walkthroughs 84
5.1.4 Runtime Verification 85
5.1.5 Formal Verification 85
5.2 Model Checking of Discrete Components 89
5.2.1 Theory: From AutoFocus Components to SMV Pro-
BTAIMS . . o v v e e e e e e e e e e e 91
5.2.2 Implementation in AutoFocus3 93
5.2.3 Related Work 102
5.3 Formal Verification of Hybrid Components 103
5.3.1 Hybrid System with Discrete Interaction (HyDI) 103
5.3.2 Transformation of Focus Hybrid Components to HyDI
Programs o 104
5.3.3 Specification of Properties 109
5.3.4 Related Work 110
6 Modelling Case Study 113
6.1 Modelling of the ETCS 114
6.1.1 RBCRequest 115
6.1.2 Railroad Crossing Communication. 116
6.1.3 Brake Point Calculation 118
6.1.4 Train Movement 120
6.2 Dynamic Sampling of the ETCS 122
6.3 Formal Verification of the ETCS 123
6.4 Conclusions 126
7 Conclusion 129
7.1 Contributions 131

7.2 Outlook and Future Work 134

X CONTENTS

A Linear hybrid systems 137

Chapter 1

Introduction

Nowadays, safety-critical embedded systems are in use in vehicles, machines
aircraft, and medical devices. In these domains, the combination of embed-
ded systems with physical components determines the necessity of a suitable
design that unites continuous time and discrete elaboration. The most im-
portant challenge lies in modelling the interaction between the system and
the environment including its physical constraints. In fact, software com-
ponents operate in discrete program steps, while physical components func-
tion over continuous time intervals following physical constraints. The term
Cyber-Physical Systems (CPSs) is used in literature to indicate such evolu-
tions of embedded systems. In some cases, new specialised methodologies
or languages are introduced to deal with CPSs, where the already existing
techniques could be suitable to represent them, especially after an extension
or adaptation to cover some special domain features, which are not present or
not handled for embedded systems. In dealing with CPSs, the main challenge
here is to combine two worlds, the physical and the virtual one. Nevertheless,
many physical properties can be represented similar to software properties,
e.g., in many cases it is possible to switch from continuous time to discrete
time representation without losing the essential properties of the represented
system [69]. In several industrial projects we verified that, speaking about
the system architecture and properties on a certain abstraction level, did not
reveal differences between physical signals and discrete elaborations from the
software components [32]. Thus, until we are considering systems modelled
with Focus, which are a logical representation of the systems, we can bene-
fit from using the software development models and methods. An important
formalism for describing CPSs from the perspective of computer scientists is
known as hybrid automaton [68]. Systems that combine discrete/continuous
time and data are usually known as hybrid systems [4].

2 CHAPTER 1. INTRODUCTION

Software and hardware in hybrid systems are complex: these systems
consist of a high number of modules or programs, where the software part is
in the magnitude of several millions lines of code. System failures may lead
to a considerable loss of money due to warranty costs or — in the worst case
— even endanger human lives. This motivates the need for well-defined for-
mal modelling theories, languages, and tools, which help to improve system
quality. A formal modelling theory provides important concepts for devel-
opment such as different conceptional levels of the system, as for instance
views and different levels of granularity of the system under development.
Moreover, a suitable modelling theory for these systems helps in their de-
velopment, maintenance, simulation, and verification. Correct behaviour of
the modelled systems is fundamental. It can be guaranteed through analysis
techniques, mostly in form of formal verification (cf. [43]). Their compre-
hensive use permits the construction of more reliable systems, even though
system complexity. The use of formal methods for the system definition al-
lows for formal verification techniques, which offer exhaustive and automatic
checks. Model checking is a successful formal verification technique, which
builds a formal model of a system and checks whether it satisfies a desired
property, proving the correctness of the system under development.

We concentrate our work mainly in the domain of model-based devel-
opment for embedded systems and CPSs. Our contribution starts with the
extension of the modelling theory Focus [22] for embedded systems to the
domain of CPSs. Based on this theoretical foundation we address the simula-
tion of such systems using a discretization of time, introducing the sampling
of the involved continuous time variables. This way the state space of the
CPSs is reduced to a discrete set. Since CPSs often can be found in safety-
critical domains, they require rigorous checking techniques. We contribute
to handling these requirements with formal verification techniques, not only
for the introduced hybrid systems, but also for tackling the usability of such
analysis techniques in supporting tools. The foundations of our work are
evaluated already successfully by means of case studies from the embedded
system domain, as for instance in the automotive and automation branches;
we propose to extend its general ideas for the development of CPSs.

1.1 Motivation

CPSs are composed of discrete time components, as for instance software
parts or switches, and continuous ones such as sensors or mechanical parts.
Usually discrete transitions are instantaneous state changes, meanwhile elab-

1.1. MOTIVATION 3

Automatic Watering System

y >= max

Watering Off

Watering On

y' =-0.05

y' = Waterln-0.05

Figure 1.1: Hybrid system for the control of a simple watering system.

orations in continuous time changes the system state according to differential
equations. Moreover, in CPSs embedded computers perform the control of
the physical processes. The combination of digital and analog as well as
software and physical elements involves several fields of study, principally
electrical engineering, mechanical engineering and computer science. In or-
der to model software intensive CPSs are commonly used hybrid systems.
Figure 1.1 shows a simple hybrid system for the control of an automatic
watering system. This automaton shall prevent that the tank level (y) from
emptying or filling up above a certain level, also considering a constant water
dispersion from the tank to the watering system.

Modelling Designers of embedded systems and CSPs are increasing their
interest for integrated model-based development approaches. Model-based
development advocates the pervasive use of models throughout the entire
development process. Early defined models capture requirements on the sys-
tem, and are subsequently transformed and enriched until an implementation
is completed. Models exist on different levels of detail and formalisation, and
are used for different purposes by different stakeholders during the process
phases of the system life-cycle. A precise and formal modelling theory ab-
stracts from certain details, from each involved discipline. On a logical level,

4 CHAPTER 1. INTRODUCTION

the system has already the interfaces between the subcomponents and their
logical behaviour, but excluding the implementation details, which are then
explicitly defined in the technical level. The complexity of the development is
reduced using these separated designs and verification at early design stages,
if possible missing knowledge about the complete hardware implementation.

Hybrid systems are natural candidates for model-based development to
support the different physical and software requirements, the different nature
of the components as well as other interdisciplinary issues. The abstraction
of the models plays an important role in the design to hide details, man-
age complexity and show domain-specific views. Embedded control systems
need a combination of traditional automata based models for the discrete
control and differential equations based models for the continuous computa-
tion of physical components or the environmental conditions and elements.
We want to tackle with this work the modelling of CPSs with a suitable the-
ory and with a concrete tool support. Focus [22] is a modelling theory for
the formal specification of distributed, discrete-event systems. It forms the
foundation for our work and is extended to support the modelling of hybrid
systems. FOCUS components are defined in a hierarchical and interconnected
net, where each component as a typed i/o interface. The internal behaviour
of each component can be implemented using different formalisms, for in-
stance functional specifications or finite state machines. The Focus theory
is supported and implemented in the modelling tool AutoFocus 3! [73]. Our
work starts with the continuous functional specifications as defined by Scholz
and Miiller [94] and is extended to provide a wider framework for real-time
and hybrid systems. In order to support these features, the authors modi-
fied the semantics of the interface functions between components (streams)
introducing dense streams.

Sampling The real-time simulation and elaboration of hybrid systems is
also addressed. We study not only the formalization of the modelling theory
for hybrid systems, but also aspects that are related to tool support and
execution of them. Our models represent CPSs with a focus on software be-
haviour. In a software tool, a full continuous simulation for hybrid models is
without approximation not realizable and the final hardware of the system
under development may be different to the hardware of the supporting tool.
For these reasons, we propose sampling techniques to transform the continu-
ous time into discrete steps. There are already many works that address this
subject as a central point of the control and simulation of hybrid systems

http://autofocus.in.tum.de

http://autofocus.in.tum.de

1.1. MOTIVATION 3

[10, 95, 103, 90]. We study an approach that fits at best with our extension
to the Focus theory and for an implementation in the tool AutoFocus 3.

In mathematics, the term sampling is defined as the transformation of an
analogue signal into a digital one. Our ideas are mainly based on the work
of Petreczky et al. [103], where a static sampling over continuous time is
presented. It is static because the discrete time step remains constant, also
called "equidistant sampling”. Instead, we introduce two solutions, including
a prototypical implementation, based on the dynamic sampling approach.
The adjective "dynamic” refers to the discrete time step, which is variable
during the simulation. In general dynamic time step modifications can pro-
duce a more flexible simulation as opposed to static sampling. Traditional
dynamic sampling approaches vary the period according to an estimation of
the error of the approximated differential equations. These approaches can
be too time consuming especially when applied to large systems of differential
equations. We want to overcome this problem by adopting a high approxima-
tion quality only for specific regions of the differential equations. At the same
time, we aim at an intuitive way to define such regions of interest. A lower
approximation can be accepted in regions that have a lower interest in the
simulation. Our algorithms make the step shorter or longer with two different
solutions: depending on the values reached by the continuous variables or the
slope between the previous and the actual values of the continuous variables.
We claim that such variations can produce a better simulation, because we
can select important value intervals for each variable from the requirements,
and establish a corresponding length for the sampling period. On the other
hand analysing the slope of the variables and use a shorter period when the
slope is steep better adapts to the variation of the variable, producing more
values in the same time, increasing the precision of the simulation, in a cer-
tain sense. Overall, our algorithms in some scenarios can be faster than the
traditional solutions.

Verification Hybrid systems often are implemented in highly safety-critical
systems such as control systems for vehicles, machines aircraft, and medical
devices. Verification is then a crucial aspect of the development, but also
challenging due to its complexity. One prominent problem is that verifica-
tion cannot easily handle the state space dimension of hybrid systems, whose
size is determined also by continuous variables. Representations of hybrid
systems result in infinite state spaces and model checking solutions may need
an abstraction or a symbolic representation in order to deal with them, since
the complexity of the verification process. Approaches based on deductive
formal verification, that employ a deductive proof system developed for the

6 CHAPTER 1. INTRODUCTION

used logic, may overcome some limitations [104]. We address formal verifica-
tion in our integration of model checking in the modelling tool AutoFocus
3 (cf. [42]). In this integration, also the usability and the integration in
support tools are important aspects, because the effectiveness of powerful
verification solutions may be invalidated by a suboptimal integration, or by
the high skills required to manage the tools and the verification properties.
We believe that system design should guarantee integrated and easy to use
formal verification facilities. We study and perform preliminary tests of an
extension of such techniques for the introduced hybrid components, using
supporting verification based on Satisfiability Modulo Theories (SMT) [13].

1.2 Subject

As explained in the introduction, we describe an attempt to define formal
modelling of CPSs, based on the hybrid automaton paradigm. Considering
their simulation in a modelling tool, we introduce sampling of the continu-
ous time variables. Finally, we provide an initial formal verification support.
This work starts with the definition of a suitable modelling theory, consid-
ering the problems and limitations of actual approaches; we describe the
extension of a supporting tool for the modelling, study the complexity and
the simulation issues and introduce an integrated user-friendly formal ver-
ification, with particular focus on the methods for high level and intuitive
definition of properties.

The proposed modelling theory is not defined from scratch; instead, it is
based on the Focus theory, a model-based method for the specification of
distributed embedded systems implemented in the support tool AutoFocus
3. The basic structure of a FOCuUs model is a network of components com-
municating through input and output channels between them. An initial
approach for supporting real-time systems in Focus was already conducted
by Scholz und Miiller, through functional specifications. Our extension of
Focus to support continuous dynamics is inspired by this work. We en-
capsulate the hybrid automata model as internal implementation of Focus
components and we introduce then a new approach for the dynamic sampling
of differential equations [27, 30].

One goal is to promote the introduction of model-based development in
practice. Therefore, a tool support for the design of CPSs is fundamental.
AutoFocus 3 permits the modelling and analysis of distributed and reactive
systems. We propose a prototypical implementation of the hybrid systems
artefacts in AutoFocus 3. We analyse simulation issues of the designed

1.3. OUTLINE 7

models, consider complexity and provide an implementation. We also intro-
duce sampling algorithms for the execution of the continuous dynamics, in a
discrete environment as in AutoFocus 3.

Conceiving the safety-critical domain of CPSs, many efforts have been
made to provide a suitable formal verification. The formal verification ap-
proach is addressed studying the possibility of model checking, SMT solv-
ing, as well as the combination of both. The implementation of analysis
techniques for discrete systems in AutoFocus 3, such as model checking,
debugging support and specification of properties (assertion languages [14],
templates and specification patterns [53]), is then extended towards a veri-
fication environment for hybrid systems. Therefore, our contribution is not
limited to the support of formal verification, but also improves the integration
and usability in support tools.

1.3 Outline

The thesis has the following structure: Chapter 2 presents the modelling
foundations, which motivate the following design decisions. In Chapter 3,
the modelling elements used for the definition of hybrid components are
proposed. Chapter 4 introduces the simulation and discretisation of hybrid
components with sampling techniques. The formal verification capabilities
for Focus components are introduced in Chapter 5. In Chapter 6 a case
study representing a train velocity control system is presented to show our
contributions. Finally, in Chapter 7, we give a summary of the concepts and
ideas, and we briefly discussed possible future work directions.

CHAPTER 1. INTRODUCTION

Chapter 2

Fundamentals and Design
Methodology

In this Chapter the fundamental notions are explained, which will be used for
the definition of our work in Chapter 3. The design method introduced by
Focus is modular and allows for abstraction levels by stepwise refinement.
Based on the models defined in FOCUS we propose our solution and introduce
in this chapter the fundamentals of FOcus and hybrid automata theories. To
represent a hybrid component of a system at the abstraction level where the
continuous and discrete calculations are modelled, we construct our models
inspired to the hybrid automata from Henzinger [68]. Our contribution is
inspired by our system development methodology, which is presented in the
last section.

2.1 System Classification

In this work, we are focused on the design of embedded systems with contin-
uous dynamic, for instance systems that interact with physical processes. In
order to present our application domain, we briefly explain the characteristics
that determine whether a system is discrete, continuous or hybrid.

Characteristics For software systems their internal state, inputs and out-
puts change over time according to a precise dynamic. Following the clas-
sification in [91], we briefly describe system characteristics that affect this
evolution and dynamic. Based on the nature of their state there are the
following classes:

10 CHAPTER 2. FUNDAMENTALS AND DESIGN METHODOLOGY

e Continuous, if the system state is defined over values in R" (n € N),
therefore a system state is denoted as x € R".

e Discrete, if the system states are defined in a countable set or finite set,
where we denote a state ¢ € M = {q1,...,q,...}.

e Hybrid, if the system state is partially defined with values in R™ and in
a countable set.

The evolution of a system is usually determined following time or driven
by events. Thus, a system may also be classified using the time parameter
over which the states evolve:

e Continuous time, if the time parameter is defined over the set of real
number; usually an ordinary differential equation describes the evolu-
tion of the states in this case.

e Discrete time, if the time or set of times is a subset of N, usually a
difference equation describes the evolution of the state. The state space
with discrete time is defined as ;11 = Axy, where k € N denotes the
discrete time.

e Hybrid time, if the time is continuous but there are also discrete tran-
sition or evolution.

Equations that involve dependent variables and their derivatives with
respect to the independent variables are called differential equations. Parts
of physical and engineering systems are often modelled trough differential
equations. Differential equations in which all the derivatives are respect
to only one independent variable are called ordinary differential equations
(ODEs). ODEs describe usually the evolution of the state of continuous
time systems. A differential equation is called linear if: (1) any dependent
variables and their derivatives appear to the first power; (2) products of
dependent variable are not allowed. In fact, to determine if a differential
equation is linear are used only the function and its derivatives. Differential
equations are nonlinear if they do not satisfy the definition of a linear.

In this work we concentrate on systems with an hybrid state space, there
is a further classification for the equations used:

e Linear hybrid systems, if the evolution of the system is determined by
a linear differential equation. Usually, linear differential equations are
involved for the dynamics of control systems in mathematical design.

2.2. INTRODUCTION TO FOCUS 11

e Nonlinear hybrid systems, if a nonlinear differential equation determine
the evolution of the system. In this category of systems, nonlinear
ODEs delineate the continuous state space and nonlinear constraints
the discrete changes.

In linear hybrid systems the discrete transitions are restricted by linear
inequalities over the source and target values of the variables, the continuous
flows are restricted by linear inequalities over the possible values of the vari-
ables during the flow, and the possible derivatives of the variables during the
flow are restricted by linear inequalities on the derivatives. In each discrete
state linear constraints on the first derivatives, determine the behaviour of
all variables. Hybrid automata and its linear variant are explained in Section
2.3, meanwhile a definition of the linear hybrid system based on the approach
in [4] is given in Appendix A.

2.2 Introduction to Focus

We concisely present the foundations of Focus [22], as a discrete modelling
theory. We can model a system in FOCUS, beginning at an abstract require-
ment specification, which can be formalised as either a trace or a functional
specification. These specifications represent the foundation for the follow-
ing phase, which is a concrete implementation description (Focus models
are structured as hierarchical components connected with input and output
channels). Tt provides a formal semantics for define relationships between
the different descriptions. We shortly explain these elements, and then in
the next sections we give formal definitions for discrete systems, trace speci-
fications and functional specifications.

Streams Infinite and finite sequences of elements from given sets are called
streams. Streams can consist of actions (called traces) or of messages (called
communication histories).

Components Basically, a system is composed of a number of subsystems
(called its components). The composed system is a component itself and can
in turn be a part of a larger system. A component is specified by its interface
to communicate with its environment and (optionally) an encapsulated state.

12 CHAPTER 2. FUNDAMENTALS AND DESIGN METHODOLOGY

2.2.1 Discrete Components

Streams are a central concept in Focus theory. Depending on the consid-
ered specification, streams consist of actions in trace specifications and of
messages in functional specifications and programs.

Definition 1 (Stream). Let S be the set element, we denote with S* the
set of streams over S. It results from the union of the set of finite and infinite
sequences S¥ = S* U S°.

Over the streams, the following operations and relations are defined,
where s, t, and u are streams and a, b, and ¢ are elements of S:

e () is the empty stream.

e (s1,...,S,) indicates the stream containing the elements sy, ..., s, with
S; € S

e ft(s) returns the first element of s, if s is not empty, otherwise it returns
L, that represents an undefined result.

e rt(s) returns the stream in which the first element of s is deleted.

e a&s indicates the stream where a is prefixed to s. Thus, if a is defined,
that is @ #L, we have ft(a&s) = a and rt(a&s) = s.

e sot denotes the concatenation of s and t. sot returns s, if s is infinite.
Abuses of the notation for streams of length 1 are a o s for a&s and

aob for a&eb& ().

e s C t indicates that s is a prefiz of t. We can formal express it by
dJu:sou=t.

e a in s produces true exactly if a occurs in s.
e #s returns the length of s. The result may also be "infinite”: oo

e a(0)s denotes the substream of s that contains only the a-items. It is a
filter operator, for example, a(©{a,b,a,c,) = (a,a). The first operand
may also be generalised to a set of items.

Transition systems, or automata, in terms of states and state transitions,
can model a distributed system. A single state represents a snapshot of
the system, and through the actions the system processes from a state to
the next, determining an evolution of the system from one snapshot to the
following.

2.2. INTRODUCTION TO FOCUS 13

Definition 2 (Transition system). A transition system is a tuple (Act, State, —
, Init) where:

Act 1s a set of actions,
State is a set of states,
N

Init

C State x Act x State is the transition relation,
C

State is the set of initial states.

o . . . a .
The transition (o, a,0’) €— is also written as ¢ — ¢’. The executions of
a transition system are sequences of states and actions:

ai a2
Og —> 01 —> 0g...

. e e @41 . .
where o is an initial state and o; — 0,41 is true for all i.

The semantics transition system is described by its executions represented
sequences of states and actions, while the interface of a system is described by
its input and output behaviour. This behaviour is the component interface,
which is defined by input and output actions and a predicate on input/output
traces. The set of input actions (I) must be disjoint from the set of output
actions (O) for distinguishing inputs from outputs in a trace. Predicates are
described by trace logic and/or transition systems.

Definition 3 (Component). A component is a tuple (I,0,C') with
INO=0and C: (IUO)¥ — {true, false}.

The function C returns true if the input/output combination may be gen-
erated from the component, otherwise it returns false. I represents the set
of input and O the set of outputs of the components. A system is composed
of a set of components (I;,04,C"), ..., (I,,O,,C,) where O; N O; =) for
1 # 7. The condition of disjointness for output actions is necessary, in order
to guarantee unique output ports for components. In case, the specification
represents a closed system, the environment is modelled from at least one of
these components; otherwise, it is modelled as input port(s) to one or more
components. If an output port of one component is an input port of another
one, we say that the two components are connected.

Definition 4 (Component composition). Components composition is de-
fined by the following predicate:
Sys: ([1U---UL,UO;U---UO,)¥ — {true, false} defined by

Sys is the global specification of a system constructed by n components.

14 CHAPTER 2. FUNDAMENTALS AND DESIGN METHODOLOGY

2.2.2 Channel Types

We assign a data type to each channel by a function t : ¢ — T, where c is a
channel and T is a set of types 7 € T" and each type represents a set of data
elements.

2.2.3 Trace Specification

A distributed system can be described by a trace specification, as the set of
all the runs of this system by sequences of actions, which are elements of
a given set Act. The sequences are named as traces. These specifications
are suitable for defining requirements. Trace specifications are constructed
over actions, which represent basic activities in a system. Activities are
atomic and instantaneous as, for instance, the exchange of a message between
system components or the response to a user command. A trace specification
comprises a record of a run of the system. Modern systems have naturally
also infinite runs, so we consider infinite and finite traces.

Definition 5 (Trace). Let Act be a set of actions. A trace is a stream of
actions defined over the set Act:

Act¥ = Act* U Act™®

where Act* are the finite traces and Act™ the infinite ones.

2.2.4 Functional Specification

Functional specifications are less abstract compared to trace specifications
presented in the previous section. The systems are modelled following the
paradigm of communicating system components, in a network connected by
direct channels. The connection is made between an output port to an input
port. In this component network, each component receives input messages,
which are then processed in some manner, and produces output messages. In
the structure there is no control on what is received as input, instead there
is a full control over the produced output. The input and output ports of a
component are channels and are connected to its environment. A component
must have at least one output port and it must have at least one input port
only if the action set [is not empty. In the component specification, every
input (output) action must be associated with exactly one input (output)
port. Therefore, the sets I and O of input and output actions have to be
partitioned in respectively: I1,...,I,, p>0and Oy,...,0,, g > 0.

2.3. HYBRID AUTOMATA 15

Definition 6 (Functional Specification). A component can be represented
through a functional specification with the following signature:

w w w w
P x-x I —= 0F X+ x O

This definition asserts the syntactic interface of a system component,
listening the number of input and output ports and the type of messages
that can be sent over each port. The behaviour of a system described by a
functional specification is represented as a network of functions. The single
function receive as input infinite streams of messages and produce in output
infinite streams of messages. The denotational semantics maps the specifica-
tions to sets of stream processing functions or sets of traces.

2.3 Hybrid Automata

Automatic systems have a growing and important role in the control of real-
life processes, such as in cars, aircrafts, elevators, etc. The environment in-
teracts with these systems with a continuous exchange of inputs and outputs.
In many cases interaction and communication occurs in real-time.

Hybrid systems are formed by discrete software, hardware components,
physical components and interact with an analog environment. For the spec-
ification and modelling of hybrid systems, Henzinger introduced hybrid au-
tomata [68] that can be considered as a generalisation of timed automata.
We combine in Chapter 3 the Focus theory introduced in 2.2 with hybrid
automata defined in [10]. The formal definitions used to specify hybrid sys-
tems and automata are reported from [4]. So far, this paradigm does not
support composition and abstraction of systems, because it has no input or
output. The following definition is taken from [91].

Definition 7 (Hybrid automaton). A hybrid automaton H is a tuple H =
(Q, X, f, I, Dom, E,G,R) constituted by eight components:

o Aset@Q={q,q,...} of discrete states.

o A set X =R" of continuous states.

A wvector field function f:Q x X — R™.

A set of initial states I C Q) x X.

A domain function Dom : Q — P(X).

16 CHAPTER 2. FUNDAMENTALS AND DESIGN METHODOLOGY

o A set of edges E C @ X Q.
o A guard condition function G : E — P(X).

o A reset map function R: E x X — P(X).

We represent hybrid automata as directed graphs with vertices () and
edges E. A set of initial states {x € X|(¢,z) € I}, a vector field f(q,-) :
R™ — R™ and a domain Dom(q) C R™ are associated with each element
q € Q. Each edge (¢,¢) € E has a guard G(q,¢’) € R" and a reset function
R((q,q),-) S R™

A set of continuous states is assigned to each discrete state with the
function Dom. When the automaton is in one of these states, there is the
continuous evolution in the state. A state of the automaton is referred as a
pair (¢,z) € @ x X. The evolution in the continuous state space from an
initial state (qo, o) is determined by the differential equation

T = f(qu)
x(0) = xg

and the discrete state ¢ is constant
q(t) = qo-

In the time interval when x is still in Dom(qo) the continuous evolution
can be executed. When the guard G(qo,q1) C R™ of some edge (qo,q1) € F
is reached from the continuous state x there may be a discrete transition to
the state ¢;. In this case the reset map function is used to set some value in
R((qo,q1),z) € R" to perform a reset of the continuous evolution.

2.3.1 Example

We report an example from [91], which is a simple tank system, composed of
two water tanks that leak with a constant rate. To add water at a constant
rate there is a hose that can switch instantaneously between the two tanks.
The amount of water in a tank is denoted as x; and v; > 0 is the rate of
water that leaks out of a tank, with ¢ = 1,2. Water is added to the system
with a flow of w. Assuming that the initial levels are above r; and ry, the
scope is to keep the water levels of the two tanks above r; and ro. For that
there is a controller that changes the tank to be filled to the first if 1 < ry
and to the second if z9 < ry. Now we define the automaton components:

2.3. HYBRID AUTOMATA 17

Q = {q1, 2}, a discrete state for the active tank in the filling operation;

e X = R?, there are two continuous states derived from the water level
for each tank;

e We assign the vector field in each discrete state, considering that only
one tank will be filled at a time and the other one will be losing water:

fan = 20 o= [,

Vo w — U9

e The initial state is I = {q1,q2} x {z € R?|xy > r A xo > 19}, that
means starting with water levels above the delimitation marks;

e The domain is denoted with Dom(q;) = {z € R?|zy > 3} and Dom(qz)
{z € R?*|z; > r1}, that is the current tank is filled until the water level
in the other tank sinks below the volume mark;

e The edges are E = {(q1,¢2), (¢2,¢1)} it is possible to switch the filling
tank.

e The state guards are G(q1,q2) = {z € R?|xy < mp} and G(q2, 1) =
{z € R?|x; < r1}, so the tank is switched when the water level of the
other tank reach the mark;

e R((q1,92),2) = R((q2,q1),x) = {z} the discrete transitions do not
change the continuous state.

The defined hybrid automaton is graphically represented in Figure 2.1.

2.3.2 Linear Hybrid Automaton

A linear differential equation is an equation of the first degree only in respect
to the dependent variable or variables and their derivatives. An equation
of the first degree has in each term either a constant or the product of a
constant and the first power of a single variable. The evolution of a hybrid
automaton in the state ¢ € () is determined from the differential equation

&= f(q,).
A function f: R x ... x R — R is linear iff:

f(Qxl + ﬁylv cy Oy + Byn) = Oéf(ilfl, 7xn) + Bf(yla 7yn) (Ck,ﬁ € R)

18 CHAPTER 2. FUNDAMENTALS AND DESIGN METHODOLOGY

x,=r, X=X
- X 2P AX2T,
X\ 2rAX,2T, — ‘ ' 1="17v 4=l
4 4
'—_
X, =w-v, X, ==V
! —
X,'=-v, Xy =WV
X,2r, X, zr,
X = X=X

Figure 2.1: The hybrid automaton of the water tank controller [91].

A linear term is a linear combination of state variables with integer co-
efficients. A linear formula is a boolean combination of inequalities between
linear terms. Hybrid automata can be defined as linear systems expressing
vector field, guard condition, reset and domain functions as linear terms and
linear formulas.

Definition 8 (Linear hybrid automaton). A hybrid automata

H = (Q, X, f,I,Dom,E,G,R) is linear if: (1) for all the states ¢ € Q,
the vector field f(q,-) is expressed by a set of linear differential equations;
(2) for all states q € Q the domain function is defined as a linear formula
over X; (8) for all the edges (q,q') € Q the guard condition function is
defined as a linear formula over X ; (4) for all the edges (q,q') € Q the reset
function R((q,q'),-) € R™ is defined in form of a linear formula over X,
T = g |lr € X, where the a, have to be linear terms.

As we explained in Section 2.1, systems can be classified as linear or
nonlinear. Tools for analysis and design of nonlinear systems are limited
to special classes. Compared to the number of methods available for linear
systems, there are only few for nonlinear ones. Model checkers can verify
automatically and effectively linear hybrid systems, meanwhile for nonlinear
systems an automatic verification is hard to obtain. The first solution (when
possible) to handle nonlinear systems is commonly to reduce them to linear
systems. We provide related work about this transformation in Section 3.5.2.

2.4. SYSTEM DEVELOPMENT METHODOLOGY 19

In the introduction, we mentioned the importance of simulation in the
design of hybrid systems. In Chapter 4, we propose dynamic sampling ap-
proaches for hybrid systems and their numerical solutions to be executed on
a computer. These solutions are well understood on linear hybrid systems.
Therefore, these are the main reasons, why we concentrate our methods on
linear systems.

2.4 System Development Methodology

The development of systems usually applies different levels of abstraction,
to manage and reduce the overall complexity. A model-based development
environment provides model types to design different aspects of the system,
e.g., for embedded systems its functional behaviour, its software architec-
ture and its hardware architecture. These models are used to automatically
generate the implementation code of the software system w.r.t. its hardware
and execution environment. In [111] a framework is described where models
are defined that are used in the development process of embedded systems,
with their seamless integration at different stages. The authors considered
two different dimensions: the levels of granularity and the software develop-
ment views. The views support a stepwise refinement of information from
black box functionality to the realisation on hardware. The same concepts
are presented and extended in research projects SPES and its successor SPES
XT? [108], sponsored by the German ministry of research. In these projects
a large consortium of industrial and academic partners defined a method for
model-based development of embedded systems, with the scope to challenge
their develop model based engineering methods and that should guarantee
verification, validation, handling of contractors, quality assurance, definition
of system modes and systematic reuse. The SPES development framework,
also called the SPES matrix, provides modelling concepts to design different
aspects of the system, e.g. for embedded systems its functional behaviour,
its software architecture and its hardware architecture. The first dimension
of the SPES matrix defines four viewpoints: requirements, functional, logi-
cal, and technical. The viewpoints compose the SPES methodology for the
definition of system architecture. The order already suggests phases of the
design process, where the artefacts of one viewpoint serve as input for the
artefacts of the next viewpoint. However, the SPES framework does not pre-
scribe a fixed development process: an evolution or change of a model in a
viewpoint, it may require modifications to models in others viewpoints, in

'http://spes2020.informatik.tu-muenchen.de

http://spes2020.informatik.tu-muenchen.de

20 CHAPTER 2. FUNDAMENTALS AND DESIGN METHODOLOGY

order to maintain the consistency between system representations. The sec-
ond dimension of the matrix is the level of granularity of the artefacts system
under development. We report a representation of the SPES matrix in Fig-
ure 2.2. The development of a system under development (SuD in Figure 2.2)

SuD Requirements Viewpoint Functional Viewpoint Logical Viewpoii hnical Vi
e & S S S
n T ’ ~ 20, IC, TC, TC,
- ® @O i Py 5
. =] S0 L, LC, TC,
£ L —& A O @ —
2 —
° .
G} = L1
HNS & | 5|
g =N L | T
0| ntl A O G I — |
o B —° &z
LC2
LC3
Viewpoints

Figure 2.2: Two-dimensional abstraction: level of granularity and software
development views, presented in SPES XT project. In the depicted artefacts,
SuD indicates the system under development, S is a proper subset of the
system, OC means operational context, UF means user function, LC means
logical compo-nent and TC means technical component.

is usually starts with its requirements, which can have several representations
(e.g. textual or graphical) and levels of formality (e.g. formal or informal).
The requirements artefacts can be represented for instance by use case dia-
grams in terms of message sequence charts representing scenario descriptions.
The functional viewpoint describes the system functions in a structured and
hierarchical way looking at the system as a black box modelling the interface
behaviour of the system. The functional viewpoint can be directly derived
from the system requirements. The artefacts, in this viewpoint, describe the
system by a set of functions, which has to be realized by the system imple-
mentation. From the functional view the logical view is derived, where the
architecture and hierarchy of the components and subcomponents is defined.
The logical behaviour is observable through the signal /message flow between
the components. Functions are seamlessly traced with an association to the
correspondent subsystems in the logical models that implement them. The
artefacts in the logical viewpoint sketch a first structuration of the system

2.4. SYSTEM DEVELOPMENT METHODOLOGY 21

into a hierarchy of interconnected units, called components, with defined i/o
interfaces and behaviour. Functions are seamlessly traced with an association
to the correspondent subsystems in the logical models that implement them.
The behaviour of the system is observable in different ways, as for instance
through observations of the signal/message flow between the components.
Therefore, it is possible to systematically analyse the behaviour of the sys-
tem and verify requirements and system properties. Using system simulation
techniques at this stage of the development a modification to correct an erro-
neous execution of the system will be less complicated and require lower costs,
since the deployed hardware and software are not yet involved. The early
definition and design of i/o interfaces and a late separation between disci-
plines permit the creation of integrated impact models. Finally, the technical
view contains the implementation, hardware, and planning of the system. We
consider the viewpoints as development stages with a seamless integration.
For instance from the functional view the logical view is derived. Our work
focuses mainly on the domain of the logical representations of the system
and establishes an extension of the logical view (according to the SPES ma-
trix) for CPSs. From the system models, implementation code for the final
hardware and execution environment can be generated automatically.

There are different concepts and methodologies to describe and implement
the development process of software and hardware systems. Model-based
development advocates the use of formal and semiformal models throughout
the entire development process. During the development life cycle, models
are used at different levels of detail, and formalisation, informally starting
from the requirements of the system, which is subsequently transformed and
enriched until an implementation is completed.

In Figure 2.3, the relation between tools, modelling languages, and mod-
elling paradigms is shown. In this picture, a modelling paradigm appears
in different forms or dialects in different languages. In addition, many di-
alects of modelling languages can be understood and classified in terms of
the modelling paradigms they are based on. We classified well-known mod-
elling paradigms in [28], in order to provide an overview that may be used
by engineers for modelling tasks.

2.4.1 Waterfall model design process

We show a typical Waterfall model design process for software systems in
Figure 2.4 [116]. Requirements analysis is the first step, and describes the
major characteristics and system properties to be developed. The second
phase is the design, which is focused on the development of a high-level

22 CHAPTER 2. FUNDAMENTALS AND DESIGN METHODOLOGY

i i ! a
Modelling Modelling
Language B Language C

7 13 7\ VAR Il
I I S

Ve, Vet Meth. Vet Vet - * vath Meth Vet
Model A1 Model A2 Model A3 Model B1 Model B2 © Model B1 Model B2 B Model C

Modelling Modelling
Language A Language B

—] | \

Modelling Paradigm 1 Modelling Paradigm 2 Modelling Paradigm 3 Modelling Paradigm n

Figure 2.3: Tools, modelling languages, and modelling paradigms.

architecture, which then is refined to a more detailed one describing system
components. This phase is followed by coding that typically also includes
testing activities of the individual modules or parts of the systems under
development. Subsequent to the coding phase, system testing is applied
intensively. Finally, the product will be released and maintained if all test
have been passed successfully. During the development and afterwards, in
each of these phases it is possible to introduce errors or not correct behaviours
that influence the correctness of the whole system.

Considering the single parts of the development, we treat mainly the
following phases: design, implementation, and analysis. After collecting the
requirements the design phase describes with models what the system does,
then the implementation chooses the destination code that represents the
intended system, and finally the validation and verification of the system.
The schema in Figure 2.4 has returning edges to the precedent phases. In
fact, the defects and mistake that could happen in the implementation phase
can determine modifications of the design. The same could happen during
the analysis phase, where detected errors can determine revisions in the other

2.4. SYSTEM DEVELOPMENT METHODOLOGY 23

Requirements

Implementation

Analysis

Figure 2.4: A waterfall model design process for software systems.

phases. The precedent phases, which need at some point of the development
a revision, are not necessarily all the precedent phases but also some of them.

2.4.2 AutoFocus 3

AutoFocus 3 is a research tool for modelling. Its semantics is founded on
the Focus theory. AutoFocus 3 is designed for the development of reac-
tive, software-intensive, embedded systems. It is implemented on top of the
Eclipse? platform. In this tool, systems are modelled by software architec-
tures composed of components with executable behaviour descriptions (e. g.,
automata with input and output). As explained in Section 2.2, FOCUS model
of computation is characterized by the notion of streams, traces and stream
processing functions. AutoFocus 3 supports the timed synchronous streams
with a discrete notion of time, that is, a subdivision of the time in logical
ticks or steps, in which the model components synchronously interact ac-
cording to global clocks. In the tool are implemented development views, in
order to support the different level of abstraction of a system. Systems spec-
ifications are supported by different development views and the models have
more levels of abstraction. A requirement framework called Model-based
Requirements Analysis (MIRA) supports the specification of system require-

2http://www.eclipse.org

http://www.eclipse.org

24 CHAPTER 2. FUNDAMENTALS AND DESIGN METHODOLOGY

ments informally guided by templates [127]. The following formalization
step of these informal specifications is done using a set of integrated formal
notations. Formalized requirements are checked with automated analysis
techniques, as simulation, formal verification, and model-based testing. In
AutoFocus 3 the logical architecture of the system is graphical described,
according to the model of computation introduced by Focus: the system
model is given by a set of communicating components, each one with a de-
fined interface and an implementation. The components exchange typed
messages instantaneously through i/o ports. The tool provides an interac-
tive graphical simulation environment and testing/verification capabilities for
the logical architecture. Formal verification is guaranteed by a user-friendly
integration of model checking techniques, as better explained in Section 5.2.
The technical architecture of the system, in terms of execution environment
represented by execution control units and communication buses, has also a
modelling view in AutoF'ocus 3 and can be related to the logical architecture
of the system. Hardware aspects are captured in a topology model, which
describes execution and transmission units such as electronic control units
and bus systems. A deployment model allocates components to execution
units and allows generating C code of the system, which can be compiled
and installed into the demonstration hardware.

2.4.3 Our Methodology

As presented in [32], our methodology for the development of embedded sys-
tem was already used in industrial case studies, describes the system at the
logical level, and requires further extensions to work with CPSs. By devel-
oping a large system, a number of iterations are needed to cope with gain
of knowledge about the system, as well as modifications in the requirements.
Fig. 2.5 illustrates the structure of our generalized development methodology
in a top-down manner. The boxes represent artefacts that have been devel-
oped and the arrows show which other artefacts are derived. The process
starts by structuring of initial requirements using specific syntactic patterns:
this first step raises the level of precision by transforming the free text require-
ments into a structured form using specific pre-defined syntactic patterns, as
presented in [59]. An informal specification consists of a set of words, which
can be classified into two categories: content words and keywords. Content
words are system-specific words or phrases, e.g., “Off-button is pressed”. The
set of all content words forms the logical interface of the system with its
environment, which can be understood as a special kind of domain specific
glossary that must be defined in addition. Keywords are domain-independent

2.4. SYSTEM DEVELOPMENT METHODOLOGY 25

Requirements Level
Semiformal Specification - AutoFOCUSMIRA

. [i
Initial mesy| | Structured and Precise Requirements: : Use Cases: :
Requirements - Tabular Representation =) MSC Specification

—_— e

Formal Specification Formal Requirements
Transformation (AutoFOCUS™MIRA)
Functional Level S, L validation
Checki Architecture
ecking 3
prmmmmemmcemmceemcaeeeaes / AutoFOCUS
| Temporal Logic and | L
. Specification Patterns |
Logical Level | _Speclication Fatlems | |~ Validation
| Environment | Model Architecture
| I a
! Model ! =) Checking AutoFOCUS’
Test Model —p
i Formal Transformation \
Technical Level e - ,
! Physical Components | | Deployed Software |

Figure 2.5: A representation of our generalized development methodology.

and form relationships between the content words (e.g., “if”, “then”). Thus,
a semiformal specification consists of a number of requirements described via
textual patterns, which can be easily understood even by engineers unfamil-
iar with formal methods. Using this description to structure the informal
specification, missing information can be already discovered. Furthermore,
possible synonyms are identified that must be unified before proceeding to
a formal specification. Analysis of the semiformal specification document
should also detect sentences, which need to be reformulated or extended.
This specification can now be schematically transformed to a Message Se-
quence Charts (MSCs) [65] representation, as an optional step relevant for
highly interactive systems.

The methodology proceeds with the translation of semiformal specifica-
tion to AutoFocus 3 (MIRA). As mentioned above AutoFocus 3 is a mod-
elling tool based on the semantics and model of computation of the Focus
modelling theory. Development views in the tool support the viewpoints from
the SPES matrix.

26 CHAPTER 2. FUNDAMENTALS AND DESIGN METHODOLOGY

We model with AutoFocus 3 two kinds of specifications: a formal spec-
ification of system requirements and the corresponding architecture specifi-
cation (both are based on the semiformal specification). This prepares the
basis to verify the system architecture specifications against the requirements
by translating both to the model checker. The requirements specification is
schematically translated to temporal logic or specification patterns, which
gives basis to model-check the model (cf. [31]). There is also support for
a verification with the theorem prover Isabelle/HOL [97] via the framework
“Focus on Isabelle” [122]. AutoFocus 3 system model is encoded in Is-
abelle/HOL, as well as proof of theorems that support subsequent verification
of properties in Isabelle/HOL. The following features support the integration
of model checking in AutoFocus 3: tight coupling of verification properties
with model elements, visualization and simulation of counterexamples, and
different specification languages for the formulation of properties. This is
explained in Section 5.2.

This twofold verification firstly guarantees that actual properties of the
design model are verified and the implementation code and secondly, different
results in both techniques may indicate an implementation fault in one of the
generators.

Finally, we proceed from the logical to the technical level, where we split
our model into software and physical components. Transformation to a C
code can be done using the code generator of the tool: we have shown that
the C program produced by the AutoFoOcUs 3 code generator is a reasonable
simulation of the model. Altogether, the methodology guides us from infor-
mal specifications via stepwise refinement to a verified formal specification, a
corresponding executable verification model, and a C code implementation.

2.4.4 Methodology Case Studies

One of typical example of a hybrid system from the automotive field is a
Cruise Control System (CCS), which includes software and physical parts.
With our methodology, we modelled two different variants of the system
using two development methodologies with similar strategies but different
focal points. The first case study [56] developed an Adaptive Cruise Con-
trol (ACC) system with Pre-Crash Safety functionality. This was motivated
and supported by DENSO Corporation. The second case study [124, 123],
developed a CCS with focus on system architecture and verification, and
was supported by Robert Bosch GmbH. Third case study [57], motivated
and supported by DENSO Corporation, was the development of a Keyless
Entry-System, a system with a huge state space, which in addition required a

2.4. SYSTEM DEVELOPMENT METHODOLOGY 27

distributed deployment. In the logical representation, we did not distinguish
between physical and virtual parts of the system. A sample-property of a
Cruise Control System can be represented as follows: if the driver pushes
the ACC-button while the system is on and none of the switch-off constraints
occurs, the system must accelerate the vehicle during the next time unit re-
spectively to the predefined acceleration schema. This implies that the system
must analyse the information from sensors to check whether any switch-off
constraint occurs, e.g., if the battery voltage is too low or if the gas pedal
sensor fails.

In the ACC case study [56], we apply model checking techniques for tem-
poral logic formulas, ranging from SAT solving to interactive verification with
respect to its notational power and complexity. The verification was facili-
tated by the SMV tool [93] and the properties were specified in LTL (Linear
Temporal Logic, e.g. [107]), a widespread specification notation suitable for
automatic model checking. In this formalism supports boolean logical oper-
ators and temporal operators and allows for formalising properties of system
states and their changes during system execution. We used SMV to check
requirements in form of temporal logic formulas also in the Keyless Entry-
System case study [57]. Where necessary we abstracted variables/data types
and /or restricted value ranges, especially for integer variables. In the Cruise
Control System case study [124, 123], we applied semi-automatic verification
with a theorem prover and full automatic by a model checker. Formal re-
quirements could be checked using a theorem prover, through a translator,
which generates Isabelle/HOL theories from AutoFocus 3 models.

28 CHAPTER 2. FUNDAMENTALS AND DESIGN METHODOLOGY

Chapter 3

Focus Hybrid Specifications

In Chapter 2, we presented the fundamental concepts for the hybrid systems
and our methodology for modelling of embedded systems. The theory is only
for discrete time, discrete elaboration and data type systems suited, and does
not support continuous time. An extension towards continuous interactive
systems has been presented in [21]. In this chapter we introduce a new type
of components, which are based on the concepts already explained in the
modelling fundamentals chapter and are now extended to support the design
of CPSs in Focus.

3.1 Hybrid Components

At the requirement level, a specification of a distributed system should con-
template a suitable definition for system components as well as for the en-
vironment. The Focus approach covers these definitions, providing require-
ments for the components and assumptions for the environment. For discrete
systems, the communication histories or traces are represented by infinite
sequences of messages at discrete time intervals. Thus, if the set of the ex-
changed messages is M, then the trace function can be represented by a
function f : N — M*. This is a limiting restriction for reactive systems,
which interact in continuous real-time with physical components and their
environment, as for instance CPSs. Therefore, in order to permit a real-time
execution of the systems, time should be represented in the R, realm, that
is, the set of all non-negative real numbers. Consequently, the system needs
to have continuous data types and an instrument to define the continuous
evolution of such data types. Differential equations are a solution for systems
that work with physical or mechanical parts.

29

30 CHAPTER 3. FOCUS HYBRID SPECIFICATIONS

Xst,, d, Yi: 8, C4

Y
\J

component
xn: tn! dn ym: srn:l Cm

Y
y

Figure 3.1: Hybrid component representation with its interface.

Considering the definitions in the precedent chapter for discrete elabo-
ration (Section 2.2) and the continuous dynamic of hybrid automata (Sec-
tion 2.3), we define a hybrid component based on dense streams [94], which
introduces continuous behaviour in Focus. Also the concepts presented in
[21] for the definition of continuous time systems are considered.

A component is an elaboration unit that communicates with other com-
ponents or with the environment through input and output channels. We
denote with I and O, the set of input and output channels of a component
respectively. Associated with each channel there is a data type, which spec-
ifies the type of messages sent or received. The communication may be in
discrete or continuous time, so the channels are continuous or discrete de-
pending on the modelling necessities. With I > O we denote the syntactic
interface of a hybrid component. A schematic representation of it is depicted
in Figure 3.1, where x; are input streams, y; output streams, ¢; and s; the
type of the messages transmitted and, d; and ¢; indicate the type of the
stream (1 <i <mn,m).

In an analogous manner, the interface behaviour of a hybrid system with
identifiers of the input and output streams and the type of the exchanged
messages is defined in [21]. This work uses specific prefixes in the identifier
instead of an added symbol for the stream type. During the system exe-
cution, a system component exchanges messages through the channels. The
sequences of messages determine the behaviour. In a network of components,
connected by channels, each channel connects an output port to an input port.
Streams (with elements from M) may be infinite (M) or finite (M*). A
discrete component modelled in FOCUS communicates through channels us-
ing time intervals of equal length, where in each interval a finite sequence of
messages eventually empty is transmitted. By (M*)*> we denote the infinite

3.2. HYBRID STREAMS 31

streams of sequences of elements of set M, which correspond to a function
N\ {0} —» M*.

3.2 Hybrid Streams

Scholz and Miiller [94] propose an extension of Focus with continuous elab-
orations. The authors modify the semantics of the stream functions intro-
ducing dense streams. In the following definitions, a total function is only
defined for all possible input values a correspondent output value, whereas a
partial function defines on a subset of the input values.

Definition 9 (Dense stream). Let M be the set of all messages (poten-
tially infinite), a dense stream x over a set M is described by a total function:

r:Ry —-> M
We define hybrid streams to represent continuous signals and discrete
signals over continuous time.

Definition 10 (Hybrid stream). Let M be the set of all messages (poten-
tially infinite), a hybrid discrete stream x over M is described by a function:

x: I — M* with I CR,

whereas a hybrid continuous stream y over a set N of messages (typically
N =1R) is described by a total function:

M®+ refers the set of all hybrid streams over M, for which we define the
following relations, where x, y, and z are streams and a, b, and ¢ are elements
of M:

e () is the empty stream, that is a stream without elements with an empty
domain.

e (my,...,my,,...) indicates the finite or infinite stream containing ele-
ments m; € M*.

e cl(xz,t) returns the element of x at time t € R, if z is not empty or has
no element defined at time ¢, otherwise it returns L, that represents an
undefined result.

32 CHAPTER 3. FOCUS HYBRID SPECIFICATIONS

e ¢ in x produces true exactly if a occurs in x.

e a(©x denotes the substream of z that contains only the a-items. It
is a filter operator, for example, a(©{a,b,a,c,) = {(a,a). The first
operand may also be generalised to a set of items. We define it formally,
given a hybrid stream z over the set of messages M and v C M*,
v©z = (my, ma,...) with m; € v, where i can be finite or infinite.

e with = | t the restricted to the stream z|jy, that is the stream re-
stricted to the time interval [0, t].

A restriction of a stream to a finite interval can be affected by the Zeno’s
paradox. Zeno’s paradox argues that a time interval defined on R, cannot be
executed in a finite amount of time, since the interval is composed of infinite
discrete atomic moments. In Chapter 4, we sample continuous streams in
finite time intervals, dynamically reducing and incising their dimensions. By
doing so, we are not affected by Zeno’s paradox because there is an inferior
limit to the dimension of the interval based on the computational power of
the hardware in which the system is sampled and simulated.

In [21] streams with continuous domains called timed streams are intro-
duced. Timed streams are dense if the domain 7D C R, is an interval in
R, ; and are discrete if the domain T'D C R, is a finite interval. We defined,
according to the Definition 10, hybrid continuous streams as functions with
domain equal to R, , and hybrid discrete streams as functions with domain
in I C R,. Therefore, it is possible to define a dense time stream as a hy-
brid continuous stream if its domain 7'D = R, . Instead, if its domain is a
proper subset of R, , we can define it with a hybrid discrete stream. In the
same manner, a discrete timed stream can be defined with a hybrid discrete
stream.

Stream processing functions are specified over dense streams as follows.

Definition 11 (Component function). A component description function
f with m input and n output ports is a function

£ QIEY™ = (5

with sets of input and output messages My and My respectively, which are
not necessarily different.

A system defined with the Definition 11, .S : X — Y, where X and Y are
the sets of messages, is linear if satisfies the following property Vry, xy € X
and Va,b € R:

3.2. HYBRID STREAMS 33

S(axy + bxs) = aS(xy) + bS(x2)

This definition describes components only as continuous streams, but we
also want to have the possibility to specify systems with discrete streams. We
define our syntactic interface for hybrid components, considering the follow-
ing processing functions, a function f for the description of discrete streams
with m inputs and n outputs; and a function g for the description of contin-
uous streams with £ inputs and [outputs:

fiMy x---x My — Ny x - x N

. TRy R R R
g: Lyt x o x LT = 07" X - x O

Definition 12 (Syntactic interface). Hybrid components have the follow-
ing syntactic interface, where each element is a hybrid stream (Definition 10),
a function with (m + k inputs and n + | outputs):

hoo (MR oo (ME)B x LY oo x L —
PNF)E - x (NOB x OFF x -+ x OFF)
where m may be equal to zero if there are discrete streams in the input,
also n - may be equal to zero if there are no discrete streams in the output.
k may be equal to zero that means no input continuous streams, also | may
be equal to zero that means no output continuous streams. Anyway, n and |

cannot be both at the same time equal to zero. The sets of messages are not
necessarily different.

This syntactic interface is defined in continuous time as in Definition 11
for continuous streams. Streams that represent a discrete behaviour are also
continuous, but produce a valid output only at a time corresponding to a
discrete computation step, predefined with a length of A € R,. Therefore,
the elaboration of the hybrid component is defined following.

Definition 13 (Elaboration function). The elaboration function el de-
scribes the functional behaviour of hybrid components with a value A € R,
denoted as the discrete computation step:

(N1, ... Mg, 01,...01) € h(x1, .. Ty Y1y -+ - Ym),
if t = A x4, for some i € N

el(h(z1, .. Tn, Y1y Ym),t)

(L, Lymq,...m;) € (@1, ... Zn, Y1,y - - - Ym),

otherwise

(3.1)

34 CHAPTER 3. FOCUS HYBRID SPECIFICATIONS

where t € Ry, z1,...x, € (M;) are input discrete variables, y, € (Ly)
are input continuous variables, n;, € (N;}) are discrete output variables, and
my, € (Op) are continuous output variables. The variables associated to
discrete output streams return no value at time values ¢t € R, that are not
in the sequence A xi. In fact, the discrete streams have a domain set I C R,
in accord with Definition 10.

Functional specifications (in Section 2.2.4) need a mathematical founda-
tion for implementing feedback loops. In the discrete case, least fixed points
over domains have been used to describe the loop semantics [22]. In anal-
ogy, dense streams for stream processing functions use Banach’s fixed point
theory [94]. The functional behaviour of hybrid systems defined in [21] is a
function that maps input values to output values, as presented in the syntac-
tic interface of hybrid components. The behaviour of the hybrid systems and
components can be deterministic or nondeterministic in both the definitions.
It is deterministic if the function h returns only one output sequence for each
input sequence.

3.2.1 Causal Components

If the output produced by a component depends on the current and past
inputs this component is called causal. Consider a hybrid stream x : R, — M
or x : I — M for some message set M, we define the restriction in time of z
as Z|i<a, that is the function defined for time ¢ < « as x|;<q(t) = z(t). Now
considering a deterministic component S : X — Y with hybrid streams X
and Y over some set of messages M, ... My, where k is the total number of
streams. A component is weak causal if for all z1,25 € X and a € R,

wl‘tﬁa = $2‘t§o¢ = S(xl)’tga = S(@)‘tga

Therefore, for a weak causal component if two inputs is equal up to and
including time « then the outputs are also identical up to and including time
a.

A component is strongly causal if for all z1,25 € X and a € R,

T1lica = Taltca = S(21)|t<a = S(22)|i<a

The difference to a weak causal component is that the inputs for a strong
causal component has to be identical up to o but not including it, i.e. con-
sidering the output at some time ¢ does not depend on its input at time ¢.

3.3. HYBRID I/O INTERFACES 35

The elaboration of a data input to produce a data output, as for hybrid com-
ponents, takes computing time. This computing time interval is included
in the output elaboration of a strongly causal component. This notion of
causality describes the computational elaboration also for nondeterministic
components. The timed streams defined in [21] have the same causality prop-
erty.

3.3 Hybrid I/O Interfaces

We introduced in Focus continuous and discrete streams determining hy-
brid i/o interfaces between hybrid components. This way we support the
heterogeneous nature and increasing complexity of CPSs. In fact, CPSs are
composed by discrete and continuous components, which interact with each
other. In this section, we analyse the hybrid i/o interface between Focus
hybrid components.

In Definition 12 we specified the syntactic interface h : I > O of a hybrid
component, as a function with input channels I and output channels O.
Typically, a model is composed of more than one hybrid component, in order
to subdivide functionalities in more interconnected logical components. The
connection is established from one (or more) output channel of a component
to one (or more) input channel of another one. Moreover, Focus theory
permits to hierarchical define components inside other components, defining
different levels of abstraction. The logical behaviour is then specified at
the last level of the component hierarchy. A syntactic interface of a hybrid
component is composed by a set of typed i/o channels. Each channel has
is functional behaviour described by a hybrid discrete or hybrid continuous
stream function. The different type of stream determines different output
production frequencies, as shown in Definition 13.

If the output channels of a FOCUS hybrid component are described only
by hybrid discrete streams, then the model of computation of the component
is discrete. In such discrete component, the time flows discretely in steps of
predefined length. Otherwise, a hybrid component with at least a hybrid out-
put continuous stream is executed in continuous time. If an output port of
a component is associated to an input port of another component, then the
two components are interconnected. The connection between components
with the same model of computation obviously does not need modifications
to the execution of the components. In our modelling theory, it is possible to
connect continuous and discrete components obtaining a system that has to
handle different computation models. The simplest case is the i/o connection

36 CHAPTER 3. FOCUS HYBRID SPECIFICATIONS

—_—
Dﬂ
(discrete component)
B
a)
Z
F————»
(discrete component)
zk
>

Figure 3.2: The simplest i/o connections between two hybrid components
with different models of computation.

between two components, where each one has a different model of compu-
tation, as depicted in Figure 3.2. In this interface analysis, we can reduce
the execution of interconnected components with different model of compu-
tation to these mentioned cases also when more than two components are
connected. In this picture, two kinds of connection are described. The first
kind of connection is when output ports of a discrete component are input
ports of a continuous component (3.2a); in the second kind, output ports of
a continuous component are input ports of a discrete component (3.2b).

3.3.1 Component Connection: Discrete to Continuous

In 3.2a, the discrete component D, provides input values to the continu-
ous component C, at each discrete elaboration step, through the streams
Z1...%n. At least one of the output streams y; ...y, of the component C,
has associated a hybrid continuous stream, which is a continuous time func-
tion. D, provides the input values to C, at discrete steps with a constant
time interval. In Figure 3.3, we depicted the communication between the
C, and D, Focus hybrid components, where the black arrows describe the
internal discrete or continuous elaboration function. This function produces
the output signals of the component. The discrete component D, produces
output values at each discrete time points ¢; with ¢ > 0. Each time interval
has the same predefined length. The input messages given from D, to C, at
discrete time interval can be commands, which might influence the elabora-
tion of the C, component. In an application scenario the discrete component

3.3. HYBRID I/O INTERFACES 37

G . 5 & >
(continuous | ; § /
component)

D, | ‘I) d J d .
(discrete | | | | ¢
component) 1,=0 t 1 I

Figure 3.3: Message interaction between the hybrid components, described
in Figure 3.2a, with different models of computation.

D, can be a software controller connected to a continuous time actuator rep-
resented by the €', component. The discrete input commands received by the
component C, can be logical commands to change its internal state and as
consequence its output. As depicted in Figure 3.3 at time t5 the component
C, received a message from the D, component and instantly change its in-
ternal elaboration function and so its output. The change of the elaboration
might also happen sometime after a message is received. As for instance in
Figure 3.3 at time t;: the C, component receives a message and after some
time change the elaboration function. Typically, in a component architecture
as in 3.2a, the discrete component controls or influences the behaviour of the
continuous component.

3.3.2 Component Connection: Continuous to Discrete

The second type of i/o connection between components with different models
of computation is depicted in 3.2b; where the continuous component Cj, pro-
vides messages to the discrete component D, through the streams wy ... w;.
The output of the component Cj, is produced at continuous time, whereas the
component Dy, according to its model of computation, receives and reads the
input messages only at discrete time points ¢; with ¢ > 0. The communica-
tion between Cj, and D, is depicted in Figure 3.4. In this figure the internal

38 CHAPTER 3. FOCUS HYBRID SPECIFICATIONS

1,=0 o 1 o l S I3
(discrete | | | {
component)
U i e e e 4 <
Gy & o = >
(continuous I /
component)

Figure 3.4: Message interaction between the hybrid components, described
in Figure 3.2b, with different models of computation.

elaboration function of the components are described by black arrows. The
component D, receives at discrete time steps the output values produced by
the component Cj. This configuration may represent, for instance a system
where a software component (Dy) periodically reads data from a continuous
time component (C3). In some applications, it is enough for Dy, to read only
the messages produced at discrete time steps, but in some circumstances, also
the produced messages between a discrete step are important. In order to
read this data from the component C}, the streams functions wy ... w; can be
extended: a modified stream w; provide at discrete steps not its actual value
(w;(t;)) but a calculated value based on all the value of w; in the time interval
[ti_1,t;]. We can obtain this extending the hybrid stream function with an
additional function «;, which at discrete time steps ¢; reads the values pro-
duced by w; in the time interval [t;_;,¢;] and produces o;(w; [ti_1,t:]» i) With
a suitable function. The function «; may calculate for instance the maximal
value, minimal value, the average or median in the interval wj|j,_,). The
component D, receives values from the component C only at discrete time
steps, but with the «; function also the values produced between two discrete
steps are considered. This way the modelling theory permits to reduce the
information gap, when continuous components provide input data to discrete
components.

3.4. HYBRID 1/O STATE MACHINES 39

3.3.3 I/0O Interface and Logical Implementation

In this section, we shown some aspects of our modelling theory by the defi-
nition hybrid i/o interfaces. It is important to have a modelling theory with
formal and mathematical definition of the interfaces, because a CPS that con-
tains both discrete and continuous components utilize the i/o interfaces for
coordination, control and feedback operations. In our modelling approach,
the i/o interfaces are formally defined by the streams.

In our system development methodology (Section 2.4) we introduced a
logical representation of the system. In this system representation, the for-
mal interface and the internal logical implementation of the component are
its characteristic elements. The mentioned characteristics of our i/o interface
behaviour are defined independently to the internal logical implementation
of the components. In the next section, we present a possible logical imple-
mentation for FOcus hybrid components: the hybrid i/o state machine.

3.4 Hybrid I/O State Machines

We define now the implementation of a hybrid component based on the def-
inition of hybrid automata and our notion of component in FOCUs.

Definition 14 (Hybrid i/o state machine). A hybrid i/o state machine
is a tuple H = (X, Var,Init, 1,0, Dom, E, f,G, R) with:

o A state space X = (Q x V) where Q) is a set of discrete states) =
{q1,G2,...} and V a set of continuous states V. C (M;)®+ x -+ x

(MR x (My1)® x -+ x (M,)®+, where n is the total number of
variables. To each element of V' a wvariable in the variable set Var is
associated.

o A set of initial states Init C 3.

o A set of input I C V and output O C V states, respectively for in-
put and output channels, with O ¢ 0. To each element of I and O
corresponds a hybrid stream as specified in Definition 10. Oy C O
and O, C O, with O, N Oq = 0 are respectively the output state space
associated to continuous and discrete stream functions.

o A set of internal continuous Int C'V state space and internal discrete
Inty; C V state space both with no channels associated, with I N O N
IntNInty = 0. We denote with W = Int U O, the set of internal and

40 CHAPTER 3. FOCUS HYBRID SPECIFICATIONS

output state spaces. Any variable in Var can only be in one of these
sets or in one of the i/o sets defined above.

A domain function Dom : Q — P(V).

A set of edges E C QQ x QQ that represent the discrete state transitions.

A wvector field function f:Q xV — W.

A guard condition function G : E — P (V).

A reset map function R: E xV — P(W UQy) that represent together
with the vector field the continuous dynamics.

Then a hybrid component has a directed graphs encapsulated in a com-
ponent with input and output communications ports. Vertices are in ()
and edges in E. Associated with each discrete state ¢ €) there is a
set of initial states {v € V | (¢,v) € Init} and a vector field f(q,-) :
(MR x oo (MR x (Mg)®+ x -+ x (M,)®+ — W for the evolu-
tion of the variables in W. In each discrete state, the vector field function
describes the evolution of the continuous variables, which are guided by dif-
ferential equations. Differential equations are widely used to describe the
logical behaviour of CPSs that work with physical or mechanical parts. A
guard G(q,q") C (M7)®+ x -+ x (MF)®+ x (Mpy1)®+ x -+ x (M,)®+ and a
reset function R((q,q'),) € W U Oy are defined for each edge.

If t; and t, are linear functions, then a linear inequality is t; < t3. An
ordinary differential equation wherein the derivatives with respect to the

independent variable have order of at most one is a first order ordinary dif-
ferential equation.

Definition 15 (Linear hybrid i/o state machine). An hybrid i/o state
machine H = (X, Var,Init, 1,0, Dom, E, f,G, R) is linear if the following
three conditions hold:

1. the domain and the guard condition functions are boolean combination
of linear inequalities;

2. for each variable w € W U Oy the reset function is a linear formula
over 'V, w := «,, where the «,, have to be linear terms;

3. for each variable w € W U Oy, state ¢ € Q and v € V' the vector field
w = f(q,v) is expressed by a linear differential equation;

3.4. HYBRID 1/O STATE MACHINES 41

We defined a hybrid state machine that communicates through input and
output channels over hybrid streams in Definition 10. The continuous state
space V' is subdivided into internal variables, output and input subsets. The
i/o variable subsets are associated with i/o channels of the component. In
fact, we could abstract the internal automata considering only the syntactical
interface as depicted in Definition 12. In this definition, there is a distinc-
tion between discrete and continuous streams. Continuous states are defined
considering each discrete state and the Dom function, when the system is in
such a discrete state the system evolves in the continuous space according
to this function. From an initial state (go,v) the evolution of the system is
guided by the differential equation over w € W

w = f(qgo, v)
v(0) = vy

and remains constant in the discrete state ¢
q(t) = qo-

If the actual state v remains in Dom(qg) then the continuous elaboration is
active and executed. A discrete transition to ¢; is determined by the current
value of v, when it is in the guard G(qo,q1) C (M;)®+ x -+ x (M;)R+ x
(My1)®+ x - x (M,,)®+ of some edge (qo, q1) € E. After a discrete transition,
the reset function sets some values in R((qo, q1),v) C (M7)®+ x- - - x (M})R+ x

(Myy1)®+ x -+ x (M,,)®+ for the variables in W U Oy, that is a subset of V
and therefore with m < n, this way the continuous evolution can be reset.

The execution of the state machine is determined by a sequence of con-
tinuous and discrete modifications, induced by the transitions, the discrete
state elaborations and guided by the input streams. We define the executions
using the notations presented in [79].

Definition 16 (Step execution). A step ezecution is a sequence:
to / 11 22 /
T = (qo,vo) = (qo, V1) = (q1,v1) = ... = (@—1, V%) = (> Vk)

with i € {17"'7k}7 qo, ¢ € Q7 Vo, Vi, 'U'; €V and t’L S R*. The state
(qo, vo) is an initial state of the hybrid state machine. The continuous elabo-
ration of a discrete state q;, for the time interval [0,t;), is represented by the

transition 2. The discrete and atomic transition from the state (q;_1,v}) to
(gi,v;) is represented by this arrow —. The variables in Var corresponding to
the input elements I C V evolve their values according to the corresponding
mput streams.

42 CHAPTER 3. FOCUS HYBRID SPECIFICATIONS

We have denoted with v the actual states of the variables in V' in our
explanation. We introduce a notation for specifying the state of a hybrid
state machine at time ¢t € R as v(t) € V, that is the value of all variables
at time ¢. The actual value for the output variables is defined as following.

Definition 17 (Output variables evaluations). o(t) is a function:

where v(t) = {x1,...,2,} withv(t) €V, i €Ny, i <n
{vi,...,ym} andy =z, €O withleN;, [<m<n, je{l,...,n}.

If t ¢ I the discrete output variables y;, € Og4, with

h e N, and h <m <n, are equal to L .

o(t) =

(3.2)

The discrete output variables follow their elaboration as explained in Defini-
tion 13. Therefore, there are values in the output different from 1, when the
time corresponds to a “discrete” step. The value A of the step is constant
for the whole components architecture. In our hybrid state machine during
the execution the reset map function R can set values to discrete output
variables in Oy at any time ¢ € RT. The elaboration function, as defined
in Definition 13, returns in each step ¢ + 1 the values collected in the time
interval (Axi, Ax(i+1)) as a single output sequence at time t = Ax (i +1).

Predicates specified for hybrid components, can be defined considering the
syntactic i/o interface I >* O only. In addition, step executions, as shown
in Definition 16, can be considered from the point of view of the received
input and generated output messages. From a step execution m = (qq, vo) Lo,

(o, V) = (qu,v1) = ... LN (qr-1,v;) — (g, vx) we can derived a trace,
k

that is a sequence of messages over the time interval [0, o] where o = > ¢;,
i=0

in which at time ¢ € [0, o] the elements are the actual values of the input
and output variables. Given a predicate p C ¥ we say that 7 terminates in
p if and only if (gx,vx) € p. Considering a hybrid state machine H and the
language of the traces of input and output messages L(H), given a predicate
p C X the language L,(H) is the set of traces that accept p in runs of H
ending in p.

The hybrid state machines already introduced in Focus have different
characteristics respect to the presented hybrid i/o state machines. In fact,
in [21] they are described as generalization of Mealy machines, where the
internal behaviour is specified only as state transition function. The set of
states X is not defined. In this work we define explicit the guard functions,
the reset map function and the vector field function, which determine the

3.4. HYBRID 1/O STATE MACHINES 43

conditions for the state change, the reset of the variables and the evolution of
the output and internal variables in the states. Another difference is that the
hybrid machines in [21] can also be executed in a discrete time, instead in our
definition the variables and the states evolve in continuous time. We define
the composition of the state space, the behaviour of internal and output
variables explicit, because we want to specify a logical behaviour of hybrid
components. In Chapter 6, we model a case study of a simplified train brake
system using hybrid i/o machines, in order to show the capabilities of the
logical model. Moreover, we define the nature of the evolution of the output
and internal variables, the transition conditions to have a precise class of
hybrid systems in order to apply two important aspects: formal verification
and discrete sampling of continuous variables.

3.4.1 Composition of Hybrid I/O State Machines

Components communicate using input/output ports. So a network of compo-
nents can be represented by a directed graph. In this graph, the components
are nodes and the edges correspond to communication channels. In [22] it is
mentioned that a network of components may be semantically defined by a
single component. Applying the same principle, we can construct a hybrid
component starting from a more elemental set of hybrid components. The
parallel composition between two or more components forms a net of com-
ponents. Our composition of hybrid i/o state machines is based on the same
principle as the well-known composition of state machines.

Two hybrid state machine Hy; = (X4, Vary, Inity, I, O1, Dom;y, Ey,
fl, Gl, Rl) and HQ = (22, V(IT’Q,]m'tQ, IQ, 02, DOTTLQ7 EQ, fg, GQ, RQ) are paral—
lel composed H; || Hs to a resulting state machine H = (3, Var, Init, I, O,
Dom,E,| f,G, R), where:

Y= (QxV),where Q = (Q1 X Q2), V = V1 x V3, ¥1 = (Q1 x V1), and
Z2:(622 ><V2)7

Var =Var, U Vars,

the initial states are Init = (Q19 X Qao, Vig X Vo) where Init; =
(@0, Vio) and Inity = (Q20, Vao),

I=1UL,

o O:OlLJOQ,

b Dom(QDQQ) = {(Uth X UQ2) ‘ D0m1<Q1) = Uqy DomQ(Q2) = UQQ}:

44 CHAPTER 3. FOCUS HYBRID SPECIFICATIONS

E={(F,x E) | E; CQ1 xQ1, By CQy % Qa},
o f((q1,q2), (v1,v2)) = {(w1 X wa) | flqr,v1) = w1, f(ge,v2) = wa},

hd G((Q17Q2>7 (qllvqé)) = {(Uth X UQ2> | Gl((h?qa) = VUgqy 5 GZ(Q%Q%) = UtIz}

R(((q1,42), (01, 43)) (v1,v2)) = {(w1Uo14) X (waUo02a) | R((q1,q1),v1) =
(w1 Uo1a), R((q2,q3),v2) = (w2 U 02q)}

This parallel composition can be so generalised for n € N, hybrid state
machines H; ... H, and is denotated as Hy || --- || H,. In [21] a parallel
composition with feedback between two components is defined over their in-
terface behaviours. Instead, we compose the hybrid state machines including
also their logical behaviour.

3.4.2 Hybrid I/O State Machine Traces

Considering the syntactic interface in the Definition 12 there is a mapping
between the inputs and the outputs variables of the component to the input
and output channels. The i/o channels provide and represent the commu-
nication between components and with the environment. The evaluation of
them in a fixed time ¢ € R represents the actual state of the system.

In a hybrid i/o state machine we denote with V' a finite set of variables,
I C V a finite set of input ports and O C V a finite set of output ports. A
state of a hybrid i/o state machine is represented by the value interpretation
of all variables in V. 3 is the set of states and a trace is a function from R
to %, considering the evolutions of the component in the reached states, over
continuous time.

3.4.3 Example

Damm et al. [48] modelled and verify a variant of the European Train Control
System (ETCS) standard', which is an automatic train collision avoidance
system. We use the artefacts of the ETCS presented in [48] to build a case
study, which is presented in Chapter 6 in more detail. We model a train

controller modelled with a hybrid i/o machine, based on a variant of the
ETCS.

http://www.era.europa.eu

http://www.era.europa.eu

3.4. HYBRID 1/O STATE MACHINES 45

Radio
77 Speed
- > |
| Train | |
| I e
Position Brake Point gﬂgﬁ%

Figure 3.5: Simplified representation of the ETCS train controller system
48].

In this scenario (see Figure 3.5), there is a wayside radio system, which
transmits a brake position to the train controller to indicate eventual prob-
lems on the railway. The position of the train is one-dimensional; the radio
system sends the position at which the train should start to brake, in order
to avoid an obstacle, as for instance the railroad crossing in Figure 3.5. If
the brake point is equal to the special value —1, the train has no obstacles
and so can travel without brake.

We model the control system in the train as a hybrid component with
a hybrid i/o state machine as shown in Figure 3.6. The break point is rep-
resented by the input channel s, whereas the acceleration, the speed and
the current position of the train are output streams. In the figure, contin-
uous streams are depicted by dotted line, the others are discrete streams.
The continuous variables z and v, which correspond to output streams, have
their corresponding differential equations in each state. These equations are
used to simulate the acceleration and the brake actions of the train. There
are four transitions, which go from one discrete state to the next, with their
conditions to be executed and eventually with the resulting reset assignments
to the acceleration. If the train is in the brake point start to brake until the
speed is zero or there is no obstacle any more.

46 CHAPTER 3. FOCUS HYBRID SPECIFICATIONS

) _ a:=0.0003
S.Break Point 7=0 (z>=s) &(s!=-1)
v:=0 a =-0.0005 a. Acceleration

g ==

a:= 0.0005

Acceleration

v <= MaxSpeed
Z'=vV
v'=a

s==.18&v==

(z>=s)&(s!=-1) &v>0
a =-0.0005

CostantSpeed

v == MaxSpeed
a=0

Figure 3.6: Hybrid component for the train brake controller.

In many cases, the data to be elaborated by CPSs can be described by
differential equations and so by hybrid i/o state machines, which can be also
composed and hierarchical structured through i/o streams. In the simulation
and deployment phase, they have not necessarily be executed in continuous
time, as explained in Chapter 4.

3.4.4 Comparison with Henzinger’s Hybrid Automa-
ton

We introduced hybrid i/o state machines inspired by Henzinger’s hybrid au-
tomaton [68]. The characteristics of this formalism were most suitable for our
purpose compared to other i/o state machines formalisms. We encapsulated
the semantic structure of hybrid i/o state machines as logical implementation
of our FOCUs components. There are some remarkable differences between
hybrid automaton and hybrid i/o state machines: hybrid i/o state machines
differentiate between i/o and internal variables, while there is no such differ-

3.5. RELATED WORK 47

entiation for variables in the Henzinger’s automaton. We associate each i/o
variable with a discrete or a continuous channel, thus defining the interface of
the component. Moreover, in our component architecture, each component
is not necessarily implemented by a hybrid automaton, but might have a dif-
ferent implementation as for instance functional specifications. We also aim
to have a network of interconnected components representing our systems.
In fact, hybrid state machines can be composed, through the communication
of i/o channels, i.e. an output port of a component can be the input port of
another component. Besides, we can construct systems with a hierarchical
composition, where the components are composed inside other components.
Therefore, it is possible to abstract the view considering components higher
in the hierarchy. An implementation of a component as a hybrid i/o state
machine can be provided only on the last level of the hierarchy.

3.4.5 Nonlinear Systems in System Modelling

Our model of hybrid state machines permits the definition of linear hybrid
systems. As explained in the next Section (3.5) it is an important challenge
to model and verify also the class of nonlinear hybrid systems. In these
systems, the vector fields in the continuous state space are calculated by
nonlinear ordinary differential equations and, for the discrete transitions,
are regulated by nonlinear constraints. We believe that an extension of our
state machines to nonlinear dynamic is possible (cf. 3.5.2), by using existing
approaches listed in the next section to reduce nonlinear systems to linear
ones, but as already motivated in Section 2.3.2 we restrict our topic in this
thesis to linear systems.

3.5 Related Work

The increasing interest for embedded systems in automotive, medical, and
avionic has determined the realization of many formalisms for hybrid sys-
tems. The combination between communication and computation results in
distributed hybrid systems, where the system parts communicate with each
other by discrete transitions.

3.5.1 Modelling

One of the most important approaches for modelling and analysis of hybrid
systems is the Hybrid Automata framework [68], where a discrete transition

48 CHAPTER 3. FOCUS HYBRID SPECIFICATIONS

system is extended to a system with continuous infinite-state transitions. For
these systems, most of the formal verification approaches are based on model
checking, employing abstraction or approximations of the original hybrid
automata [37]. Concurrent hybrid behaviour is captured in models as hybrid
i/o automata [92], and hybrid modules [8]. Hierarchical hybrid systems can
be modelled using the tools SHIFT [52], Charon [5] and PTOLEMY [54].

Despite Petri nets have been designed to model and analyse discrete event
systems, David and Alla have introduced extensions called continuous and
hybrid Petri nets [3]. A continuous Petri net describes the continuous dynam-
ics and the number of tokens are real numbers instead of integers. In discrete
Petri nets, the transitions are taken instantaneously, while in the continuous
case the transitions are generated as a flow from an external input signal.

A well-known commercial tool is MATLAB Simulink/Stateflow (MSS)?
and a specific language, supported by various implementations, is Modelica?,
which are used from many industries for the development of CPSs. The
modelling language Modelica supports continuous and discrete components
based on hybrid modelling techniques. For the modelling of various aspects,
there are separate extensions, for instance for collision detection. A limita-
tion of Modelica is a very high level of detail that is required for a physically
accurate model. This includes for example, mass, inertia or friction coeffi-
cients, which are usually not known in early stages. Moreover, this makes
it almost impossible to model different parts of a system with different de-
grees of abstraction, since the physics must always be respected. Simulink
is a tool with a graphical interface for modelling, simulating and analysing
of dynamical systems in a model-based environment. Stateflow is an exten-
sion of Simulink that introduces tools to model and simulate discrete-event
systems within a hybrid environment. MSS is an industrial standard for em-
bedded systems. The continuous dynamics are supported by Simulink blocks
that models them as discrete states. Discrete state transition systems on
hierarchical state machines are provided by Stateflow charts.

3.5.2 From Nonlinear to Linear Systems

Following the distinction explained in section 2.1, we focus on linear and
nonlinear hybrid systems. Linear systems is a class of systems that have a
better support for their modelling and verification, instead handling nonlin-
ear systems is more complex. Therefore, are studied reductions of nonlinear

2www.mathworks.com
3www.modelica.org

3.5. RELATED WORK 49

systems to linear ones. There are methodologies to translate nonlinear hy-
brid systems to linear hybrid systems. For instance in [70] two methods are
proposed to do such a transformation. The first substitutes the constraints
on nonlinear variables with constraints on clock variables (see Appendix A).
The second method partitionates the state space into linear regions for each
discrete state, and overapproximates in each region the flow field using linear
sets of flow vectors. Other authors handle the problem with a piecewise lin-
ear approximation of nonlinear functions, which permits to insert a nonlinear
object into a hybrid model. For instance, the approach in [131] is based on
orthogonal activation function based neural network.

3.5.3 Abstraction of Hybrid Systems

Another attempt to reduce the complexity of hybrid systems is the reduction
to discrete systems. This type of transformation is called discrete abstraction.
Some of these approaches are based on predicate abstraction [6, 128], others
on invariants [98]. An approach based on relational abstractions is presented
in [117]; it also supports model checking verification capabilities.

50

CHAPTER 3. FOCUS HYBRID SPECIFICATIONS

Chapter 4

Dynamic Discrete Sampling

The hybrid components, introduced in Chapter 3, need a real-time execution
of their continuous variables. Moreover, we aim to implement them in a
supporting modelling tool, where it can be complex to guarantee an error-free
and computable simulation, especially in case of models with many variables.

In this chapter, we study the discretization of continuous variables through
sampling, in order to optimise the performance and provide a discrete time
execution of our models. In control theory sampling is a consolidated and
widely used solution to discretize continuous signals, whereas numerical anal-
ysis provides the theory to formalize the sampling of variables in differential
equations. These foundations are used to formalize the discretization and
are discussed as related work in this chapter. We also need a discrete exe-
cution because the final produced artefacts, as embedded software or source
code, will not be executed on a fully continuous hardware. The introduced
sampling algorithms are dynamic, that is the sampling period is variable at
elaboration time.

4.1 Introduction

In the last years, research was focused on conducting sampling in order to
reduce the loads of the system, computing complex differential equations,
and to simulate them in a digital execution environment. T'wo main theories
are known in the literature: event-triggered control uses dedicated hardware,
and sensors that send information to the controller when events occur. Self-
triggered control, where there is a simulation without specific hardware. The
system is regulated with sampling techniques made through a controller, usu-
ally represented by a finite state machine. We are focused on self-triggered

51

52 CHAPTER 4. DYNAMIC DISCRETE SAMPLING

sampling algorithms for linear systems, in which discrete elaboration steps
are as large as possible to guarantee a good level of performance of the digital
simulation without specific hardware. In fact, in our algorithms, the discrete
simulation step is dynamically adjusted according to the computational ca-
pabilities provided by the simulation tool.

We introduce in this chapter a sampled simulation for hybrid i/o state
machines, presented in Section 3.4. We approximate the continuous elabora-
tion in the differential equations through a discretization of the continuous
variables. In Chapter 3, we compared hybrid i/o state machine with the
hybrid state machines defined in [21]. These machines also support sampled
executions of the input and output signals, which are implemented the so
called 0 step timed state machines. This state machine performs state tran-
sitions only at time equal to an integer multiple of § € R*, when inputs are
read and outputs are written, providing a discretization of the i/o streams.
A difference with our sampled i/o state machine is that in our case the pe-
riod § is not constant. Instead, it is variable during the simulation, based
on adaptive sampling concepts. Moreover, we defined the internal logical
behaviour for the hybrid i/o machines. Therefore, our sampling solutions are
designed considering this implementation. Our approach studies the numeri-
cal solution of the differential equations in the states and adapts the sampling
considering the implementation. For instance, after a state transition, the
continuous variables might be described by a different differential equation
and this information is used in the dynamic sampling algorithms.

4.1.1 Definition

In communication/signal theory, the term sampling indicates the operation to
approximate an analogue signal with a discrete signal. We use the following
notation: an analogue signal is defined by a total function = : Ry — R,
whereas for a discrete one is a function z : I — R, with I C R. Figure 4.1
gives a representation of them. The time interval of the signal sampling is
called sampling period T and defined as T' = t;,1 — t;. The sampling may be
periodic if the sampling period is constant, denoted as A, and variable if the
period is not constant, denoted by a function §(n) with n € N,.

4.1.2 Control Theory

Control theory is an interdisciplinary branch originating from engineering
and mathematics, which handles the behaviour of dynamical systems, which

4.1. INTRODUCTION 53

x4

Figure 4.1: Signal Sampling.

can be discrete or continuous time systems. In control theory, the discretiza-
tion of continuous signals has been widely studied and debated, because in
practical applications control systems deal with continuous-time dynamics of
linear or nonlinear systems. The increasing performance of computers per-
mits to implement the discretization control algorithms and to evolve the
concepts that are the basis of the control theory. In control theory, there are
a wide range of approaches and solutions for the discretization of continuous
signals. A common approach, called adaptive step size control, guarantees
a desired accuracy of the solution while providing reasonable computational
performance, which is the mentioned sampling with a variable period. The
additional computation for the adaptation of the period is compensated by
the overall advantages of the adaptive solutions.

The Shannon’s sampling theorem formulates the approximation of a con-
tinuous signal in three steps: filtering, sampling, and interpolation. Shan-
non’s work [120] is a first fundamental solution of information theory. In
[81] a comprehensive overview on its extensions and applications is given.
A survey work about sampling theory in the mathematical literature is pre-
sented in [71]. [129] extends the Shannon’s approach, considering the signal
approximation with consistent measurements. This consistency guarantees

54 CHAPTER 4. DYNAMIC DISCRETE SAMPLING

that the output produced by the analysed system is the same if the signal
approximation is re-injected into the system. Another extension of the classi-
cal Shannon sampling theorem combines this approach with wavelet theories
[133]. The authors of [130] propose the approximation and interpolation of
a signal using polynomial splines.

The signal processing is equivalent to Shannon’s sampling theorem and
is implemented in three steps: prefiltering, sampling, and postfiltering. An
interesting extension is the generalization from one function to sample to
more functions is made for instance in [61]. Another extension of sampling is
based on the frame concept that is a generalization from a function to a set
of functions [18, 101]. A further research domain is the irregular sampling,
where the function is reconstructed from irregular sampled values [63]. In
[51] is presented an irregular sampling approach based on nonuniform splines,
this kind of solution has been successful used also for practical applications.

In the next sections, we will design a controller, for the sampled hy-
brid systems presented in the previous chapters, performing a discretised
representation of the continuous-time systems. This control technique is re-
ferred as Sliding Model Control (SMC). Computer controlled systems utilize
mainly these three different discretization methods: Euler, Zero-Order-Hold,
and Runge-Kutta method [126, 99]. The Euler method elaborates a correct
approximation of systems if the sample period is very small, anyway oth-
ers methods generally provide better solutions, therefore the Euler method
is recommended only if a very simple implementation is needed; The Zero-
Order-Hold method provides an exact analytic solution if is used for linear
systems; and the Runge-Kutta approach, based on making multiple Euler
steps, works particularly well for piecewise smooth nonlinear systems. Euler
method approximate solutions with a relatively low accuracy, therefore for
real systems, especially for safety-critical ones, this method does not provide
an adequate result. In order to have a better approximation, one needs the
so-called higher-order approaches. The Zero-Order-Hold method has been
used in industrial applications, especially in situations where the state infor-
mation is discontinuous or intermittent. It uses the most recent information
until new values are received, so it is a method more suitable for systems
with time-delayed inputs.

The control theory community refers to dynamic sampling also as adap-
tive time-stepping. It is an approximation of ODEs, attempting to reduce
the complexity together with the desired level of accuracy. One of the fun-
damental approaches was proposed by Widrow and Hoff [136]. In [89] a
new version of the last mean square (LMS) algorithm with variable step size
is presented. It is a gradient search algorithm that changes the time step

4.2. DYNAMIC SAMPLING OF FOCUS HYBRID COMPONENTS 55

according to the size of the prediction error and predefined constant val-
ues. In [78] it is argued that adaptive approaches are generally better than
non-adaptive ones considering restrictions due to error functions, moreover
adaptivity is even necessary to numerically solve ODEs in a reasonably com-
putational time. Also in [135] it has been shown that for linear problems
adaptive methods are more efficient. The adaptive time-stepping approach,
proposed in [80], determines the period according to an efficiency function
related to the Runge-Kutta approximation, where a prescribed global error is
their measure of efficiency. Similar approaches, which determine the period
considering the accuracy of the approximation of differential equations by
Runge-Kutta methods, are presented in [77, 126].

Considering the mentioned solutions and trends in control theory, and
the characteristics of the hybrid i/o state machines, we study and elabo-
rate dynamic sampling algorithms aiming to reach an efficient execution and
simulation of the models in a supporting tool.

4.2 Dynamic Sampling of Focus Hybrid Com-
ponents

The idea is to abstract the hybrid component defined in Section 3 in a discrete
time system, where the sampling time determines the reachable states of the
system. We presented preliminary results of dynamic sampling algorithms
for Focus hybrid components in [27, 30]. In the continuous time model,
the time approximation abstracts the state space in an infinite set, while the
discretization of the time reduces it to a countable set.

In Figure 4.2 a simplified interface of a hybrid component is depicted,
where x; € 1,7 < n are input variables, y; € O, j < m are output variables,
wp, € Int U O, h < [indicates the internal and output variables, and
v, € V,p < k indicates all the variables. The differential equations are
€qsy, Whereas res, and esp, are expressions associated to the variables. Our
approach constructs the abstracted hybrid system in time and not in space,
through a discretisation. We build an approach that extend the work in [103],
where the authors apply a sampling approach to hybrid automata with a
constant period. Our approach introduces a variable period. The variation
of the period is determined from two different ideas, explained in the next
sections. In the abstraction process of the hybrid component the hybrid
controller, that is an elaborating object connected directly to the hybrid
component plays an important role. It provides the sampled input and reads

56 CHAPTER 4. DYNAMIC DISCRETE SAMPLING

X 1 v,==esp, y
> Vy==esp, 1
>
X 2 V.= =esp, y
—
W =res; 2)
EER W2:r€32 EEE
X W ;res
n ! f ym
—_— P

Figure 4.2: 1/O Interface and internal elaboration of a hybrid component.

the output produced from the component in order to adjust consequently the
period. Considering a system represented by a single component, where the
continuous input channels can be physical parts, sensors or the environment,
the controller provides these inputs at a calculated and varying time period
so that the hybrid component receives input and produces output at discrete
time. The controller then again reads the output.

4.2.1 Sampling Architecture

The communication between the components of our architecture is based
on typed streams of messages. We introduced hybrid streams for the com-
munication between hybrid components in Definition 10. Hybrid streams
are total functions over a set of messages M; and the streams are infinite
sequences over real-time. We now define the architecture of our sampling ap-
proach, defining the hybrid component and the controller. We start defining
sequences of sampled values from a continuous stream, which represent the
input or output data produced in the discretised architecture.

Definition 18 (Sampled hybrid continuous stream). Considering a fi-
nite set M where 1. ¢ M and a finite or infinite timed sequence s of elements
of M :

s = (my,t1)(ma, ta) ... (Mg, tx) ...

4.2. DYNAMIC SAMPLING OF FOCUS HYBRID COMPONENTS 57

where 0 <t <ty < - <t <...,miypq1 €M, t;sg € Ry fori € N,
i < |s|. We associate a hybrid continuous stream o, as specified in Definition
10, to a sampled sequence:

a:teRy — (4.1)

miz1 € M if t =t;;1 for some i € N
otherwise
Definition 19 (Sampled hybrid discrete stream). Considering a finite
set M where L ¢ M and a finite or infinite timed sequence r of elements of
M| L:
r = (ml, tl)(mg,tg) Ce (mk,tk) e

where 0 <t <ty < - < tp < ..., miyg € M* , t;y1 € Ry fori €N,
i < |s|. We associate a hybrid discrete stream [3, as specified in Definition
10, with a A € Ry discrete computation step. Elements m; have to be equal
to L ift; = Axi for some 1 € N. We obtain a sampled sequence:

ﬁ:t€R+'—>

{miﬂ € M* ift=t;, for some i € N (4.2)

otherwise

These time-event functions o and [return at each time instance values
of the message set M and L in case of absence of messages. We denote with
Sy the set of all such sampled streams.

The syntactic interface of our component (Definition 12) describes a com-
ponent as a function with m inputs and n outputs. We define a behaviour
for this hybrid component in the formalizations in Definition 15. The follow-
ing formal notations, aim to build a sampling architecture of such a hybrid
component H. The sampling architecture is composed of several connected
elements that are explained in the following definitions. We start with a
sampled hybrid i/o component using a time-event map for each of its i/o
stream, where the N; and M; are respectively the input and output message
sets for i/o channels of H and the Sx the sampled streams.

Definition 20 (Sampling architecture). A sampling architecture of a hy-
brid i/o component H is composed by the following map for the sampled
component

UHZSN1 X oo XSNn —)SMl X ---XSMm

and a map for the hybrid controller

CCSMlX"'XSMm—)SNIX"'XSNn

58 CHAPTER 4. DYNAMIC DISCRETE SAMPLING

Sampled Hybrid
Component Oy ..y
A

Figure 4.3: Sampling Architecture for hybrid components.

The set of output messages that arrive at the controller are received at
sampling intervals, so the controller is activated at a sampling rate A > 0
and provides the corresponding input for the next sampled period. This
behaviour is specified in the following definition.

Definition 21 (Sampling component). We associate a sampling controller
Cy to a hybrid component H. The state of the continuous output streams at
time t € Ry is o(t) (see Definition 17) and o,(t) is the sampled output pro-
duced from the hybrid component and defined according to the Definition 18.
The controller returns the sampled input at time t:

i(t) ft=(G+1)AforieN

) (4.3)
1 otherwise

Cr(0a(t)) = {

In this case, the controller returns the input at regular intervals, not
considering the output received from the hybrid component.

We have a representation of the i/o sampled component and its controller
in Figure 4.3, where the symbols Ix and Ox indicate the sampled i/o streams
deduced from the streams specified in Definition 18.

4.2. DYNAMIC SAMPLING OF FOCUS HYBRID COMPONENTS 59

4.2.2 Dynamic Periodic Sampling

In the previous section, we built an architecture with periodic sampling,
which means, the period rate A during the execution remains constant. In
this section, we introduce our approach based on a variable period. The
basic idea is to adapt the length of the period, in the sampled architecture,
to the precision necessary for the elaboration of the values produced from
the differential equations and therefore for the continuous output of the com-
ponent. In case the value of the variable associated with the differential
equation changes its value more frequent, then a shorter period it may be
needed in order to support the precision of the computation with output.
Then no important value changes will be lost. On the other hand, when the
values are stable in its evolution and match the actual precision, the system
can maintain the actual period length or even make it longer. We define a
period mapping 6 : N — R, that returns the value of the period for the next
elaboration step.

Definition 22 (Dynamic sampling controller). We associate a dynamic
sampling controller Cy with a hybrid component H. The state of the con-
tinuous output streams at time t € Ry is o(t), 04(t) is the sampled output
produced from the hybrid component and ¢ is the period mapping.

i(t) ift=> 4(i) fori €N
=1

1 otherwise

Cr(0a(t)) =

4.2.2.1 Approaches for an Adaptive Period

We aim to adjust the period of the hybrid component according to the values
produced in the output from the differential equations in the continuous
states. We want to apply two different approaches for a dynamic and adaptive
period length. Both consider the values of each continuous variable associated
with the differential equations defined in the automata states, which are the
variables in the set W. Initially the period is set to an initial value dj.

The first solution considers the slope of the evolution of the variable de-
termined from the active differential equation, which is the equation in the
actual discrete state g. The slope is calculated between the actual value of
the variable and the value of the precedent elaboration step of the variable.
If the slope is smaller or equal to the acceptance value then the period re-
mains constant, otherwise is set to half until a minimum value. In the same

60 CHAPTER 4. DYNAMIC DISCRETE SAMPLING

way if in a predefined stabilization time the slope remains smaller or equal to
the acceptance value and the period is less than a maximum value, then the
period is doubled, eventually until a maximum value is reached. Each com-
ponent has a predefined acceptance value that have to be defined according
to the variable differential equations, in order to have an effective dynamic
sampling. These values can be manually or using a preliminary simulation
or verification automatically determined.

The second approach considers some predefined critical intervals for each
continuous internal or output variable. We have a minimum acceptance pe-
riod for the period that is associated with each interval. If at execution time,
the actual value of a variable in W enters in a critical interval and the pe-
riod is longer than the acceptance period then the period is changed to the
acceptance period.

4.2.2.2 Period Variation Based on the Slope

The first approach is based on the calculation of the slope for the functions
defined by differential equations and a correspondent acceptance value for it.
As shown in Figure 4.4, when the slope between the value at time ¢, and at
the actual time t3 is greater than the acceptance value, the period is halved.
The acceptance value have to reflect the interval and the variance reached by
the variable values. It has to be defined before the application of the sampling
algorithm. At time tg since the slope was in the acceptance value for a period
of time greater as the stabilization time the period is again doubled. We
define formally this adaptive sampling for the architecture defined in Section
4.2.1, where the period A was assumed as constant. In this architecture, we
associate a hybrid component H with the dynamic sampling controller Cg.
We apply our period modification defining the period function ¢§ with the
following statements.

Definition 23 (Period variation based on the slope). Given a hybrid
component H, a set of acceptance values L; and a stabilization times S, with
0 <i < |W|. We define the dynamic variation of the period as follows: we
calculate the slope from the second step at time t = 2dy and for the following
steps. The evolution of the system is guided from the differential equation
over the variable in w € W, that is w = f(q,v), where (q,v) is the actual
state and 6(n — 1) is the actual period of the component H for the n-th step
of elaboration.

At elaboration step n for each variable w € W we use the previous value

4.2. DYNAMIC SAMPLING OF FOCUS HYBRID COMPONENTS 61

w(t)A

Period variation

Figure 4.4: Period variation based on the slope.

of w at the computation step n — 1 to compute the slope:

slope(w,n) = w<n)5(_nui(7;)_ D

We update the period for the next computation step only if the slope is greater
than the acceptance value L., ; or until this elaboration step for a time inter-
val equal or greater than the stabilization time S the period was constant
and smaller than the maximum value dp,q.. This calculation is done for all
variables w € W. At the end, if at least one variable need to change the
period its actual value is halved, until a minimal value d,;,. The mapping &
is inductively defined: for an initial state (qo,vo) the mapping is set for the
first step of elaboration to an initial value dy:

62 CHAPTER 4. DYNAMIC DISCRETE SAMPLING

(6(7)/2 (dumin if 6(1)/2 < dpmin) if 3w € W with |slope(w,)| > L,

0(2) * 2 (dmag I 6(2) %2 > dmay) i (Yw € W [slope(w, 1) < LA
|slope(w,i — 1)| < Ly A+ A
|slope(w,i — k)| < L) A (0(i)+
d(i—1)+---4+0(i—k)>S5)Awith k <1

[0(7) otherwise

I(i+1) =

(4.5)

The definition of acceptance and stabilization time values for the con-
tinuous variables has to be based on the range of values that the variables
reach in the elaboration. The acceptance value of the slope for a variable is
in fact related to the values assumed from the variable. If a variable has a
relative small interval of values, the slope should also be not too big, in order
to follow the fluctuations with a finer production of values.

We consider the variables independently from the actual differential equa-
tion associated with the actual state. In this way when a state transition is
fired and the variable obtains a new different differential equation, this change
can also determine a high slope with the precedent value. Therefore, when
the discrete state is changed the slope determines a change in a smaller pe-
riod, resulting in a higher production of values. A change in the state is
normally a change in the modus of the system, so a better precision can
guarantee a reactive simulation. In order to derive acceptance values and
stabilization time, the hybrid component may be verified with a formal veri-
fication technique, where it is checked, through value invariants, the maximal
variable value ranges.

4.2.2.3 Period Variation Based on Critical Intervals

The second idea for the period variation is conceived around predefined value
intervals. During the simulation of the hybrid component, the period varies
according to the current values of the variables in W, with respect to prede-
fined critical intervals, as depicted in Figure 4.5. If the value of a variable
is in a critical interval and the actual period is greater than the acceptance
value associated to the interval, then the period is set to this value, for in-
stance the steps at time ¢4 and t;5. On the other hand, if the value of a
variable is not in a critical interval any more, then the period is set again
to the maximum value, as for instance at time ¢;. The critical intervals are
defined considering component requirements.

4.2. DYNAMIC SAMPLING OF FOCUS HYBRID COMPONENTS 63

w(t)A

Critical Intervals

Figure 4.5: Period variation based on the critical intervals.

The sampling period for the next computation step is calculated for each
output or internal variable, and finally set to the minimum period of the
values calculated for each variable.

Definition 24 (Period variation based on critical intervals). Given a
hybrid component H, a set of critical intervals K, a set of period times P,
with |K| = |P| = |W| and k € K, p € P, k,p € R, we build the dynamic
variation of the period as follows: for the initial states (qo,vo) the period
is set to the mazimum value dy, at the second step of elaboration (at time
t = 2dy) the dynamic choice of the period starts. The evolution of the system
s guided from the differential equation over the variable in w € W, that is
w = f(q,v), where (q,v) is the actual state.

The modification of the actual period is made analysing the actual value
of the variables in W, which is if a variable w is in a critical interval K,
and then the corresponding P, acceptance period is the necessary value of w
for the period. It is finally chosen the minimum acceptance period between
the variables that are in a critical interval. The period map & is inductively
over the elaboration steps as follow determined:

64 CHAPTER 4. DYNAMIC DISCRETE SAMPLING

P, ifw() e K;,with 0<j < |W
w&.ﬂ:{f (i) € K, j<Iwi (4.6

d(i) otherwise

§(i+ 1) = min{ws,,, | we W}

Critical intervals have to be established before the execution of the sam-
pled hybrid components and they should define appropriate sampling periods
(acceptance periods). This information is tightly bound to the needs and
real-time restrictions of the variables; therefore, they can be derived from
the formal requirements of each variable of the systems or from the modelled
hybrid component considering the implementation behaviours.

4.2.3 Approximation of Differential Equations

In this section, we provide a solution based on numerical mathematics for the
execution of the dynamic sampling algorithms presented in the previous sec-
tions. This solution is necessary to discretise and approximate the differential
equations defined in each discrete state of the hybrid i/o state machines. As
depicted in Figure 4.2, in each state there are first order differential equa-
tions associated with internal or output continuous variables, according to
the vector field function f : @ x V — W (Definition 15). In linear hybrid i/o
machines, differential equations define the behaviour of continuous variables
w € W U Oy in each discrete state, resulting in a system of n differential
equations with n real variables.

There are many classes of numerical methods for ODEs, a well known
classification is in the following two classes: the one-step methods that use
one initial value at each step and the multistep methods that use more values
to compute the solution [64]. One-step solutions calculate the point ;i
by using only the point y; as initial value and do not use any previously
computed solution points. Instead the multistep methods use the £ + 1
previously computed solution values y;,y; — 1,...y;_r to calculate the next
solution point y;,1. Generally, multistep methods are slower but produce
more accurate solutions than one-step methods.

We presented hybrid i/o state machines as a general modelling paradigm
for CPSs. Considering the heterogeneity of the modelled systems is it difficult
to estimate the complexity of the typical differential equations, so we focus
for a one-step method in this work.

In Section 4.1.2, we listed the most commonly used one-step approaches
to calculate the discretization of differential equations. The Runge-Kutta

4.2. DYNAMIC SAMPLING OF FOCUS HYBRID COMPONENTS 65

method is a higher order approach, compared to the other two. This ap-
proach works best with our i/o linear hybrid state machines. In fact, the
limitations of the Euler method and the characteristics of the Zero-Order
method are not well suited for our models. The Runge-Kutta method is a
classical fourth-order method, which guarantees a perfect balance between
accuracy and complexity. Moreover, this method has many scientific appli-
cations and can work very effectively as ODE integrator, especially when
combined with adaptive stepsize algorithms [109].

Given a differential equation w = f(q, v) for a continuous variable w € W,
where without loss of generality w(t) = v; € V in v(t) = (vo,...,v,), and
a period defined by the function ¢ : N — R, then the value w(d(i + 1)) =
flq(6(i+1)),v(6(i+1))) = w41 is calculated with the classical Runge-Kutta
method as follows:

w; = f(q(6(i)), v(6(i)))
h=06(i+1)—0(i)

Wl = Ww;

Wy = w; + 1/2f(q(0(i)), 07 ((i), W)

W3 = w; +1/2f(q(0(i) + h/2),v7(3(i) + h/2, W)
Wy =w; + hf(q(6(i) + h/2),v7(0(i) + h/2, W3))

wis1 = wi+h/6(wi+2f(q(d()+h/2),07 (0(i), W2))+2f(q(d (i) +h/2), " (3(i), W)+
Fq(0(i+ 1)), 07 (5(i + 1), Wa)))

where v/ (t,x) = (vo,v1,...,0; — 1,2, 0j41,...,0,) With v(t) = (vo,...,v,)
and V has cardinality n. A computer can execute this sequence of steps and
there are already many implementations, as for instance in [109], where the
algorithm has been implemented in C programming language. It requires
more computational time than the Euler’s method, but provides also more
accurate results. An advantage of Runge-Kutta is that it can work effec-
tively also with long sampling periods. The classical Runge-Kutta method
presented above is an approximation for the single variable w, but can be used
and generalised to find an approximate solution of a system of differential
equations.

4.2.4 Sampled-Data Model vs Event-Triggered Model

The introduced hybrid components and hybrid i/o state machines in Focus
(cf. Chapter 3) define in the Focus modelling theory a model of computa-

66 CHAPTER 4. DYNAMIC DISCRETE SAMPLING

| FOCUS model implemented
| with hybrid i/o state maschines

System %% [System un,
specifications \ ... T
— ﬁ Sampled-data model

| Event-triggered model

Figure 4.6: Two alternative implementations of the same system: event-
triggered model and Focus model implemented with hybrid i/o state ma-
chines, which uses at run-time a sampled-data model.

tion in continuous time. The simulation of hybrid i/o state machines through
dynamic sampling algorithms in a modelling tool, as for instance AutoFocus
3, results in a discrete time model of computation at run-time. In this sec-
tion, we compare the sampled execution of a FOCUS continuous time model
implemented with hybrid i/o state machines and a generic event-triggered
model, both based on the same system specifications.

The compared models are shown in Figure 4.6, where the artefacts are
classified according to the SPES matrix (cf. Section 2.4). As illustrated in
Figure 4.6, a Focus model described by hybrid i/o state machines when
is simulated by our sampling algorithms originates a sampled-data model.
Generally continuous time embedded systems are implemented on digital
hardware, which computes the signals at discrete time using sampling algo-
rithms determining a sampled-data control. Event-triggered systems adapt
the communication among components according to current needs and min-
imising the signal exchange in order to fulfil required performances. Nu-
merous approaches have shown that event-triggered models scale down the
computational time and the exchange of signals, with a little impact of the
control quality [11, 134, 67]. Event-triggered models are an alternative to
sampled-date ones when certain performance requirements have to be sat-
isfied, as for instance the reduction of the computational or energy needs

4.2. DYNAMIC SAMPLING OF FOCUS HYBRID COMPONENTS 67

[96]. A comparison from the control theory point of view is presented in [2].
This work concludes that often it depends of the kind of application which
model is more suitable. Sampled-data models offer for distributed control,
safety-critical and large-scale automotive systems in general more interesting
performances. On the other hand, the design complexity and the inflexibility
of sampled-data architectures can be not suitable for other application.

We consider a modelling example, that is, the control software of a train
braking control system presented in Chapter 6. We analyse for both event-
triggered and sampled-data models the value approximation of the contin-
uous variables. We model the control software of the braking train system
using the introduced hybrid i/o state machines in Focus. This system can
be also modelled (with a probable loss of precision) using an event-triggered
model. We evaluate if the sampled-data model has the same characteristics
of the event-triggered model. Hybrid i/o state machines in Focus define
the behaviour of the continuous variables with differential equations speci-
fied in each state. During the simulation, the introduced dynamic sampling
algorithms approximate a value for the continuous variable at discrete time
intervals. The period determines the rate at which the values are calcu-
lated and it varies dynamically during the simulation in order to improve
the accuracy of the approximation. In the event-triggered model, the con-
tinuous variables described by differential equations are modelled with a sort
of discreted differential functions. The values of the variables are calculated
in discrete time simulation steps, with a predefined length. The simulation
step for the event-triggered model can be chosen arbitrarily short, in order
to reach the desired precision, and it remains constant at execution time.
On the other way round the sampling algorithms for hybrid i/o state ma-
chines change the period dynamically. Therefore, the values calculated for
the continuous variables by the sampled-data model have a variable simula-
tion step. For this reason, the two models provide a different approximation
of the continuous variables: the sampled discrete model has the advantage
to change dynamically the simulation step, according to suitable criteria.
The Focus model implemented by hybrid i/o state machines respect to the
event-triggered model has advantage to change dynamically the precision of
the approximation. When both the implementations are modelled with the
Focus theory, they have i/o channels respectively in the I and O sets, which
define a formal syntactic interface: I 1 O. This formal typed syntactic in-
terface offers support for validation techniques of requirements specified on
the i/o channels. This way, traces of messages produced by sampled-data
and event-triggered models can be compared and validated against formal
requirements. It is also possible to verify the FOCUs models, implemented

68 CHAPTER 4. DYNAMIC DISCRETE SAMPLING

by hybrid i/o state machines model, and event-triggered models with model
checking techniques (see Section 5). Anyway, formal properties defined on
variables guided by differential equations in hybrid i/o state machines cannot
be verified, with the same semantics, by model checkers on event-triggered
models. In fact, in the first case the variables guided by differential equa-
tions are verified in a continuous time procedure, meanwhile in the second
case these equations are already discretised in the event-triggered model and
therefore also their verification will be with a discrete time procedure.

A certain precision of the approximation of differential equations or the
minimisation of the computational and energy efforts determine the deci-
sion for the developers of a continuous time system between a sampled-data
or event-triggered implementation. A requirement formalization phase with
artefact based on formal methods facilitate this decision. In fact, the men-
tioned technical requisites need to be specified and described in a precise and
rigorous manner. Whether a time-triggered or event-triggered is appropriate
for a continuous system depends on its scope and application domain.

4.3 Dynamic Sampling of Component Archi-
tectures

In Focus, the basic modelling element is a component, from which a hierar-
chical architecture can be constructed. This concept is a direct consequence
of the application of the FOcus modelling principles. Any system to be de-
veloped must be described as a top-level component and is then broken down
into a hierarchy of subcomponents. A component has a syntactical interface
described as a set of input and output ports (i/o-ports), as presented in Sec-
tion 2.2. These ports are used to interconnect several components for com-
munication. Ports are assigned data types to restrict the messages allowed
to be transmitted. Besides this black-box view, we have two alternatives to
describe the actual behaviour of a component. By applying decomposition,
we describe the component by a network of subcomponents. In this network,
the i/o-ports of the subcomponents and of the hosting component itself are
interconnected. Alternatively, a component is defined by some operational
behaviour description. For instance, depending on the kind of behaviour a
description may be e.g., in terms of i/o-automata (for adaptive behaviour)
or tabular i/o-specifications (for control-intensive behaviour), which are both
implemented in the AutoFocus 3 tool.

4.3. DYNAMIC SAMPLING OF COMPONENT ARCHITECTURES 69

X,:t ot
' z,.t
—> C1
X,:t .
— > Z,:t
— C2
y,: t
-

Figure 4.7: Mutual component composition.

4.3.1 Component Composition

So far we described our sampling architecture considering one component in
our model. We now consider component composition, where the components
are connected to each other, in order to form a network. In this network,
each component has its sampling controller connected as described in the
precedent section. In order to compose several behaviour functions or au-
tomata, we introduce the notion of typed channels. An output channel may
be connected to an input channel such that the owning components commu-
nicate over this shared channel. This communication is unidirectional with
exactly one sender and one or more receivers. Moreover, in our system model
components can be nested in a hierarchical way, where the implementation
of the nested component is defined on the lowest level. This way, the compo-
sition can be also abstracted, with the highest component, which represents
the interface of the model.

A typical example of a composed model is the "flip-flop” model, where the
composition of two components is done through an input and an output port
of a component that are respectively the output and input ports of the other
component and vice versa, as depicted in Figure 4.7. Let us assume that

70 CHAPTER 4. DYNAMIC DISCRETE SAMPLING

all i/o variables are continuous and that at the start of the elaboration the
period is set to the maximum value dy. During the elaboration, the variable
y1 requires a change of the period because the calculated slope of the variable
is not in the acceptance range, so the period for the next step is set to dy/2.
Consequently, the component C'1 needs a shorter period and therefore the
component C'2 has to adapt its period, because C2 provides the input with
the variable z3; to C'1. Analogously, if component C'2 modifies the period to
a shorter one, the component C'1 has to adapt.

It follows that in our architecture a component that receives input from
other components must be able to communicate needs for a shorter period
to them. That is particularly important if the component is receiving inputs
from other components at a longer period respect to its needs. After a
computational step, we calculate the period for each component for the next
step. Independently from the used method, each component has to check if
the period of the components, which are connected to its input ports, are
equal or shorter than its actual period. If a component has a longer period,
it has to adapt it to the required period of the connected component. If the
variable comes from the environment then it must be a continuous signal and
the period variation straightforward. Otherwise, if the input variable comes
from another component and its period is longer than the period required,
the controller sends a request to the component that now has to consider
and adapt its period not only based on its variables but also based on the
required value.

4.3.2 Time Restrictions

We now consider two restrictions necessary for a working implementation
of the sampling algorithm. We halved the period in the variation based on
the slope and we considered specific period values for the variation based on
critical intervals.

The first restriction is in both cases at run-time when the computational
load for the simulation and for computing the periods is it too much to
guarantee enough computational time at the CPU of the system. Therefore,
during the simulation it is necessary to control whether the actual execution
has enough resources to maintain a real-time elaboration. If the hardware
cannot afford shorter periods for some components then the change will not
be carried on and should be annotated.

The second time restriction comes from requirements for output ports.
In a model, we can have some precise temporal requirements for the output

4.4. IMPLEMENTATION 71

X1 Ty C
x3:T3l‘y3:T,3\ 4 Yo : Ty
—
Xp 0Ty Cl Ys:Ts CZ
B —— >
< Yot T'io
Xg @ Tg »
Ye: T's Xt Tg y;: T, X1 T \
X4 Ty C3 7 T’4
—
Xg i Tg ys i T's

Figure 4.8: Time restriction at output ports of the hybrid component archi-
tecture.

ports of the system, that is, the components that provide the output ports
to the environment as shown in Figure 4.8, for the output streams ys, y4, s,
and yg. If the requirements set a minimum rate for some output port, this
has to be respected and therefore can affect the simulation for the connected
components as explained in the first restriction.

4.4 Implementation

We present, in this section, our preliminary tests and considerations for
a future implementation of our sampling algorithms in the modelling tool
AutoFocus 3. We study the analysis and simulation capabilities of MAT-
LAB Simulink/Stateflow (MSS) for hybrid systems. MSS is one of the most
important industrial modelling tool for CPSs. We test the sampling en-
vironment of Simulink/Stateflow with a case study representing a Focus
hybrid component. We implemented prototypically our sampling algorithms
in MATLAB and we selected some models for a preliminary analysis of our
implementations. We used MSS version R2014a for our experiments and
implementations.

72 CHAPTER 4. DYNAMIC DISCRETE SAMPLING

4.4.1 Dynamic Sampling in MATLAB Simulink/State-
flow

We already introduced in Section 3.5 the toolbox MSS for the design of
dynamic and embedded systems. Simulink/Stateflow is a model-based data
flow graphical tool integrated in the MATLAB environment, which can drive
the elaboration with MATLAB or be scripted from it. Simulink/Stateflow
support modelling and simulation of dynamic systems and is an industrial
standard in control theory and signal sampling.

There are many dynamic and static sampling algorithms in the simu-
lation environment of Simulink/Stateflow. We analysed widely used ODE
solvers in the following case study. The selected ODE solvers are similar to
our sampling solutions; in fact, some of them are also Runge-Kutta based
methods. We used the toolbox MSS for two purposes: (1) a comparison be-
tween modelling and verification of Focus hybrid component in MSS and in
AutoFocus 3 (further details about the verification are in Section 6.3); and
(2) an initial test of our sampling solutions against the most used dynamic
sampling algorithms in MSS.

We consider the following dynamic sampling solvers: ode/5 integreted
in MSS, which provides fourth and fifth order formulas and is based on an
algorithm of Dormand and Prince; ode23 that is an implementation of a
third-order Runge-Kutta method based on an algorithm of Larry Shampine
and Przemyslaw Bogacki. In the MSS documentation, it is reported that the
ode45 solver should be applied as a first try for most problems. It also is
worth a try of the ode23 that can be even more efficient than the ode/5. We
made tests also with the following constant sampling algorithms: odej that
is the fourth-order Runge-Kutta method; ode3 that is the fixed step version
of the solver ode25.

4.4.1.1 Modelling and Simulation of Hybrid I/O State Machine
in MSS

In Section 3.4.3, a simplified train brake controller is modelled using Focus
in a hybrid i/o state machine. It is inspired to the European Train Control
System (ETCS) introduced in Chapter 6. We modelled the hybrid compo-
nent representing the train brake controller (see Figure 3.6 in Section 3.4.3) in
a semantic equivalent Simulink/Stateflow model. The differential equations
defined in the hybrid i/o state machines are converted in Simulink in integra-
tion blocks; for each differential equation there is an integration block. In the
system, there are two differential equations: one for the speed and one for the

4.4. IMPLEMENTATION 73

Controller f

Speed

A 4

ol

) 4

o=

Position

Figure 4.9: The Simulink model of the hybrid i/o state machine in Focus
presented in Section 3.4.3.

position of the train. The i/o streams of the hybrid component are modelled
in Simulink with i/o ports. The logical states of the hybrid state machine are
modelled with a stateflow diagram. The resulting Simulink model is depicted
in Figure 4.9, meanwhile the stateflow diagram (representing the logic of the
component) is in Figure 4.10.

We simulate this model in a scenario where the breaking point is a con-
stant value 30 (Km) with a simulation interval of 3600 seconds. We tested
different ODE solvers with static and dynamic sampling. We cannot simulate
the model in with a fixed (or variable) sampling period and a discrete solver
for the differential equations, because the model contains continuous states.
We executed the simulations with the following ODE solvers (with default
parameters): ode, ode23, ode/, and ode3. The results with the ode23 are
more accurate than the ode45. The results with the constant period solutions
are very similar and the tool was unable to derive a fixed step size, because
we do not specify any sampling period in our model. Therefore, the system
chooses a period based on the length of the simulation, in our case for a
length of 3600 seconds the period was of 72 seconds. In the simulation with
ode/5 the train starts to brake at the km 34.30, despite it should begin to
brake at the km 30. In the constant step simulation, the train start to brake

N

74

[(z>=s) & (s ~=-1)]
{a=-0.0005}

CHAPTER 4. DYNAMIC DISCRETE SAMPLING

[(s ==-1) & (v<=0)]
{a=0.0003}

{a=0.0003}

[v>=0.0833333333]
{a=0.0}

ConstantSpeed

[(z>=5s) & (s~=-1) & v>0]
{a=-0.0005}

[s==-1]
{a=0.0003} [v<=0]
{a=0.0}

Figure 4.10: The stateflow diagram corresponding to the logical behaviour
of the hybrid i/o state machine in FOCUS presented in Section 3.4.3.

4.4. IMPLEMENTATION 1)

at the km 31.10. If one would like to observe what happen at the braking
position (30 km), the precision of the simulation need an adjustment of the
sampling algorithms. We believe that this adjustments might be not intuitive
as defining the following parameter for our solution based on critical inter-
vals: a suitable critical interval for the train position variable, as for instance
perform a sampling with a simulation step of 10ms when the variable is in
the interval 25 (km) and 35 (km). Anyway, our algorithms and the ODE
solvers integrated in MSS require a preliminary analysis of the models to be
optimal configured.

4.4.1.2 Implementation of Dynamic Sampling Algorithms in M AT-
LAB

We programmed in MATLAB our sampling algorithms as ODEs solver func-
tions. As stated in Section 4.2.3 we use for the approximation of the con-
tinuous variables the fourth-order Runge-Kutta method. The resulting two
MATLAB functions have different parameters and can be executed over con-
tinuous functions, as made by the MATLAB functions ode23, ode/5 etcetera.
We call odejslope the implementation of the algorithm based on the slope;
and odejinterval the implementation of the algorithm based on critical in-
tervals. Unfortunately, the implemented algorithms in MATLAB cannot be
utilized as ODE solvers in the Simulink/Stateflow environment. We cannot
therefore test our sampling solutions using Simulink models. Anyway, we can
test them on differential equations defined in the MATLAB language.

We select a derived form of the Mathieu’s differential equation for a pre-
liminary evaluation of our solutions. It is a system of two linear differential
equations representing an oscillating trigonometric function. Mathieu func-
tions are special functions useful in mathematics for treating a variety of
problems [137]. The MATLAB code of the differential equation we used for
testing our algorithms is shown in Listing 4.1.

Listing 4.1: MATLAB Code for Mathieu’s differential equation.

function r = test(t,x)

% delta

d = 0.1045;

% epsilon

e = 0.0048685;

% result (2—dimensional)

r = [x(2); (=d — e * cos(t)) = x(1) — 0.7 x d % abs(x(1))];
end

76 CHAPTER 4. DYNAMIC DISCRETE SAMPLING

We simulated the derived form of Mathieu’s differential equation, which
was mentioned in the MSS community website MATLAB Central!, in a time
interval of one hundred thousand seconds, with the following ODE solvers:
ode4b, odelslope, and odejinterval. We configured ode45 with default pa-
rameters and our solutions with an initial period of 0.6, minimal period of
0.2 and maximal period of 2.0 seconds. We set for the ode/slope algorithm
the following parameters: an acceptance value of 0.55 for all variables and
a stabilization time of 1.0 second. Meanwhile, we set for the odejinterval
algorithm the critical interval [—1.0, 1.0] for the variable z(1) and [—0.5,0.5]
for the variable z(2) with an acceptance period of 0.5 seconds for both vari-
ables. These parameters are chosen to have a similar number of simulation
steps of the algorithm ode45. The results of the simulation in a time interval
of 100.000 seconds of the differential equations described in the above MAT-
LAB function test, with the mentioned parameter values, are summarized in
Table 4.1. The values reached by the variables z(1) (in blue) and z(2) (in
green) in the simulation with the different sampling algorithms are graphical
represented in Figures 4.11, 4.12 and 4.13.

’ Sampling Algorithm H Simulation Steps \ % H Computation Time \ % ‘

ode4H 157.089 100 4.2665 seconds 100
ode4slope 196.768 125 4.0702 seconds 95
odejinterval 182.531 116 3.7980 seconds 89

Table 4.1: Simulation results in terms of absolute/relative simulation steps
and computation time.

As shown in Table 4.1, our algorithms ode/slope and ode4interval calcu-
late more simulation steps for the same simulation time interval (i.e. 16 - 25%
more compared to ode45), while requiring less overall computation time (i.e.
5 - 11% less compared to the ode/5). This performance improvement is due
to the fact that we do not rely on estimating the approximation error. As
stated before, to us the approximation error is less important because we aim
at supporting different needs. Our solutions have the following advantages:

e The overall computational performance is better and generally more
stable and predictable performance can be guaranteed with respect to
existing approaches. Unfortunately, to the best of our knowledge no
public benchmark sets are available for comparing adaptive sampling

http://www.mathworks.com/matlabcentral

http://www.mathworks.com/matlabcentral

4.4. IMPLEMENTATION 7

Figure 4.12: Simulation of the function test with the algorithm ode4slope.

78 CHAPTER 4. DYNAMIC DISCRETE SAMPLING

Figure 4.13: Simulation of the function test with the algorithm odejinterval.

algorithms with respect to performance. The initial performance eval-
uation with the presented example, which due to its simplicity can be
considered a good representative benchmark, shows promising results
for the scalability of our solution. In particular, scalability is interest-
ing for systems with a large number of elements, where a simulation
within reasonable amount of time is more important than the precision
of the simulation itself. For instance, simulation performance might be
more important than simulation precision in early development phases
of systems with a very large number of components.

e An advantage of our approaches is the direct setting of period lengths in
desired variable value intervals and the setting of acceptance values for
the slope to determine the desired change of the period. Consequently,
it is possible to initialize simulations with a desired precision. For
instance, a possible scenario is the validation of a system, defining
a shorter period when error states are reached. Parameters for the
sampling algorithms could be directly derived by system requirements.

e In next chapter, we study an approach to formally verify hybrid i/o
state machines with the model checker HyCOMP. We check formal as-

4.5. RELATED WORK 79

sertions over continuous variables modelled by differential equations.
Formal assertions, as invariants, could be verified in an automatic or
assisted way to guide the determination of parameters, which are neces-
sary for our sampling algorithms. The verification process of HyCOMP
consider an infinite time horizon. Therefore, our solutions can use in-
formation about the behaviour of the continuous variables in an infinite
time interval, which is an advantage with respect to existing sampling
algorithms as for instance in the MSS environment. In fact, they usu-
ally consider the variable behaviour in finite time intervals.

4.4.2 Dynamic Sampling in AutoFocus 3

The modelling framework provided by AutoFocus 3 permits to design sys-
tems that have a discrete elaboration, where each component synchronously
performs a discrete step of computation. We defined models based on hybrid
components and in this chapter sampling algorithms for their simulation.
We plan to extend AutoFocus 3 models permitting the definition of hy-
brid automata as behaviour for the components. The discretised execution
for the continuous variable will be supported with the dynamic sampling
solutions introduced in this chapter. Preliminary results obtained from the
prototypical implementation in MATLAB, which are presented in the prece-
dent section, are promising. Therefore, an implementation of such dynamic
sampling algorithms in AutoFocus 3 is desirable.

4.5 Related Work

The simulation of systems in a digital environment or tool, which involve
and necessitate real-time continuous elaborations, is an important topic. In
the last decades, computer science increased its importance in control the-
ory. Also sampling algorithms are an integration of control, communications
theory and theoretical computer science. A fundamental approach to con-
trol hybrid systems is based on finite-state approximation. For instance, the
works [62] and [17] approximate the systems using observations. In the first
approach, the continuous dynamics is restricted to the output events, with
discrete-valued input and output signals based on observed threshold events.
In the second work, a discrete abstraction for robot motion planning and
control is presented. The finite-state abstraction is constructed by dividing
the state-space into regions. In our approach, we abstract by sampling the
system in time and not in the state space. This is similar as [103], but we

80 CHAPTER 4. DYNAMIC DISCRETE SAMPLING

introduce a variable sampling period, based on the slope correspondent to
the function associated to the continuous variables and on predefined critical
interval values and periods for the continuous variables.

Chapter 5

Verification of Focus
Components

During the last years, the functionality of safety-critical systems has grown
dramatically. This includes software as well as hardware, and holds at the
same time for reliability requirements. Therefore, we are now facing an enor-
mous system complexity. Due, to the growing complexity, the possibility
of unintentionally added defects, as for instance forgotten control conditions,
grows as well. In consequence, system failures may lead to a considerable loss
of money due to warranty costs or even—in the worst case—endanger human
lives. Thus, the need for well-defined development theories, languages, and
tools naturally follows. Their comprehensive use permits the construction of
more reliable systems even though system complexity, is supposed to grow
in the future.

In this chapter we introduce the support for analysis techniques in the
model-based tool AutoFocus 3 [31], also supporting the hybrid nature of the
models introduced in the Chapter 3. The method implemented for checking
the systems is based on a formal verification approach.

5.1 Analysis Techniques

Nowadays, computers are widespread and used to control various safety-
critical systems like automobiles, aircrafts, satellites, medical devices, etc.
Software and hardware operating within such systems is complex. It consists
of many modules or programs, each in the magnitude of thousands to millions
lines of code. The existence of errors may have severe consequences. For
instance, consider the famous fault occurred in 1994: the “Pentium bug”,

81

82 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

which caused Intel to recall faulty chips and take a loss of about $475 million
[45]. In June 1996 another important program failure was in the Ariane 5
rocket: a computation exception occurred during the conversion of a 64-bit
floating point number into a 16-bit value. The rocket exploded, less than
forty seconds after its launch. The reason for this catastrophe was identified
to be a software failure in a system responsible for calculating the rocket’s
horizontal velocity. Since these exemplary events, software and hardware
analysis techniques mostly model checkers but also theorem provers have
been more widely used [43].

Formal verification based on formal methods is a technique to prove this
correctness in an exhaustive manner, that is, all the possible executions of the
system are checked. Nevertheless, the acceptance and utilization of formal
verification methods is not always easy to integrate in the design of systems.
There are important issues that reduce its applicability, as not optimal inte-
gration in modelling tools, skills that are required to use it, enough time or
memory resources for some verifications cannot be provided. This calls for
better integrated development environments, where design and verification
tasks are strictly linked together with faster and more usable methods. We
also have to consider that using analysis techniques yield a more efficient
specification and thus verification of the undesired behaviours. Therefore,
it is possible to reduce the time of the whole development process. For a
detailed description of analysis techniques, see [26].

5.1.1 Definition

In order to have a characterisation of the term analysis techniques, we refer
to the definition of Software Verification and Validation from the IEEE [1]:

“Software verification and validation (V&V) is a technical discipline of
systems engineering. The purpose of software V&V is to help the develop-
ment organization build quality into the software during the software life cy-
cle. V&V processes provide an objective assessment of software products and
processes throughout the software life cycle. This assessment demonstrates
whether the software requirements and system requirements (i.e., those allo-
cated to software) are correct, complete, accurate, consistent, and testable.
The software V&V processes determine whether the development products
of a given activity conform to the requirements of that activity and whether
the software satisfies its intended use and user needs. The determination
includes assessment, analysis, evaluation, review, inspection, and testing of
software products and processes. Software V&V is performed in parallel with
software development, not at the conclusion of the development effort.”

5.1. ANALYSIS TECHNIQUES 83

That definition is applicable to software systems only. We state an anal-
ogous one for hardware verification [85]. The desired functionality and the
overall architecture of hardware design is typically defined with a high-level
specification, as for instance block diagrams, tables, requirements, and in-
formal text. In order to obtain a final design, a combination of top-down
and bottom-up design techniques are applied. The specification is checked in
validation and verification activities to verify that it does indeed meet physi-
cal and implemented design. Based on these definitions we consider domains
and the purposes of each analysis technique.

5.1.2 Testing and Simulation

Nowadays, testing, simulation, and code review methods are available for
software written in almost all programming languages. In practice, these
techniques detect a high number of coding bugs and thus are considered very
effective. Software Productivity Research! built up an extensive database
by collecting software defects and the efficiency of their corresponding defect
removal techniques [82]. Considering these results, only a 35% of the total
amount of defects in the final product were identified to be bugs inserted
while coding. In the results, about 20% of the faults were traced back to re-
quirements, 30% to design and the rest to other types of errors. Hence, in this
research, the majority of all errors made during the overall software devel-
opment process arise during the requirements and the design phase whereas
less during coding.

Typically, it is not possible to cover all possible system behaviours using
testing and simulation techniques. However, there are also some support
tools for exhaustive testing sessions, through test case generation, which use
in the verification process systematic verification techniques [75, 76]. All pos-
sible system behaviours can be characterised as evolution of internal data or
variable values during the execution of a program stimulated with all possible
input values. Hence, data and variable values together define a well-defined
system state. All those reachable states together define the system’s state
space. Considering such state definition, even small programs have a large
number of states, directly dependent on the possible values that variables
or data can have. For instance, a program which has a variable defined in
the natural set N, which is usually represented in a program with an integer
variable, it can take as many values as allowed by the memory available, each
value representing a different state. Without considering the obvious mem-

http://www.spr.com

http://www.spr.com

84 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

ory limitations, the program can be considered to have an infinite number
of states. Since testing and simulation are applied by explicit definition of
values to variables, it is impossible or very tedious to examine all possible
program behaviours. Therefore, critical behaviours might not be considered
during testing and possible defects are not detected.

5.1.3 Inspections, Reviews, and Walkthroughs

We refer to the following definition: “software inspections, reviews, and walk-
throughs are human-based methods for analysing documents based on infor-
mal or semiformal techniques for the purpose of early and effective defect
detection during development in order to improve product quality and re-
duce development rework” [36].

In order to have a comprehensive overview, we consider the survey from
the International Software Engineering Research Network? and the Fraun-
hofer Institute for Experimental Software Engineering (IESE) initiated in
2002, and its evaluations for the state of software review practice [113]. The
results obtained give evidence that there are some important benefits from
the use of software reviews: improved communication among developers,
evaluation of project status, and enforcing standards. Considering the sur-
vey results, software reviews are not systematically performed and planed
in the industry, in fact about 40% of participants accomplish reviews on re-
quirements or design documents, and about 30% on source code. At the
same time, the preparation or defect detection step is often not systemati-
cally executed in the industry. Even though empirical studies have demon-
strated that a preparation phase for reviews is crucial for effective reviews
[132], about 60% of respondents stated that they did not regularly manage
it. Considering companies conducting a preparation phase, half of them use
a checklist as support; about 10% use more advanced reading techniques,
and finally 40% use reading technics, which do not offer systematic support
for defect detection. Finally, in a systematic evaluation and improvement
program, companies seldom embed reviews. In fact, 40% of the companies
do not collect data at all, and 18% collect data but do not analyse them.
Considering the 42% who collect and analyse data, only 23% try to opti-
mise the review process. Even though it has been proved that optimisation
is crucial to accomplishing effective reviews. Today, inspections, reviews,
or walkthroughs are integral parts of most industrial software development
models, procedures, and standards [113].

’http://isern.iese.de

http://isern.iese.de

5.1. ANALYSIS TECHNIQUES 85

5.1.4 Runtime Verification

Runtime verification [46] is a verification technique that combines formal
verification (Section 5.1.5) and program execution. The examination process
for finding the defects is made by passively observing the input/output be-
haviour during the normal program execution. Typically, requirements are
specified as temporal constraints, or automata and state charts, and can rep-
resent liveness, fairness and safety properties. Different to model checking
techniques (Section 5.1.5.1), where a model of the target system is built and
verified; runtime verification is instead applied while the target system is in
execution. Formal verification methods (Section 5.1.5), as model checking
for instance have to deal with infinite traces, whereas runtime verification
only considers finite traces. A runtime monitor for detecting requirement vi-
olations that monitors on a potentially never-ending system is an exception
to this rule.

5.1.5 Formal Verification

Formal methods are the theoretical basis for formal verification and are used
for specifying and verifying systems through mathematically based languages,
techniques, and support tools [43]. System specification means expressing the
system requirements in a mathematical or formal language. System verifi-
cation is applied after the specification and formally proves that the system
meets its requirements. Several tools are available for specifying and verifying
system, providing the developers suitable notations, formalisms, and algo-
rithms. There are two fundamental verification techniques: model checking
and theorem proving, which we discuss with more detail in the next sections.
Compared to (informal) testing, formal verification has the advantage that
the verification is made in a complete, semi-automatic or fully automatic ex-
haustive way, where all the possible executions of the system are considered.
For these techniques: first, a mathematical model of the system, and second,
formally specified requirements, which the model should satisfy, have to be
provided. Formal verification has also some drawbacks: it requires high skills
to be used in specific problems, it is time and memory consuming, and it is
only as reliable as the used formal models.

Formal verification is applied to complement standard methods such as
testing and simulation, in order to increase the reliability of the system un-
der development. Formal verification ensures that the system model meets
its functional requirements, before the final hardware is deployed, when usu-
ally error corrections are more expensive and difficult. Despite its complex-

86 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

ity, formal verification tools have been introduced in industrial development
projects: from security and safety related projects, over hardware circuit
verification to software driver verification. In the hardware sector, formal
verification techniques have been applied successfully and thus have also en-
couraged the software sector to consider whether similar benefits could be
accomplished in program verification [100]. Some progress has been made,
despite many challenges remain [84], as properties of hardware and software
system are extremely different, namely the strict structure of hardware, the
inherently finite state of hardware, and the limited size of hardware [121]. The
economic aspect also plays an important role when applying these techniques
in a development process. In some domains, there is a strict time between the
design and the launch of products in the market, which make difficult to find
in time the experts and to train them to use conveniently formal verification
techniques. Instead, in other domains, especially for safety-critical systems,
these techniques are a consolidated role in the development process.

5.1.5.1 Model Checking

Model checking is a technique that builds a formal model of a system and
verifies whether it satisfies a desired property. Generally, the check is per-
formed as an exhaustive state space search on the model. The main challenge
is to design and improve algorithms and data structures that are capable to
search in large state spaces. Model checkers, i.e. tools, which perform model
checking, take two inputs: a finite state model of the system and a formally
specified property. A model checker checks whether the system satisfies a
property, and provides a “yes” or “no” answer. If the system does not satisty
a property, the answer is “no” and a counterexample is provided, i.e., a trace
(system run) violating the property. Counterexamples are useful in order to
find bugs in the system design as they guide developers to the unintended
behaviour. Figure 5.1 describes the model checking process.

In today’s practice, two general approaches are used: the first, tempo-
ral model checking is a technique developed in the 1980s independently by
Clarke and Emerson [40] and by Queille and Sifakis [110]. There, the spec-
ifications ¢ are expressed in a temporal logic [107] and the model M as a
finite transition system. Verification is performed through an efficient search
procedure, which checks if the finite state transition system is a model for
the specification. In the second approach, the system and the specification
are modelled as automata, and the system is compared to the specification
to determine whether its behaviour conforms to the specification. Different
notions of conformance have been proposed, as language inclusion [66, 88|,

5.1. ANALYSIS TECHNIQUES 87

Model Checker

Formal Property

Counterexample

Aborted /
Don't know

Figure 5.1: Overview of the model checking procedure.

refinement orderings [44, 114], and observational equivalence [44, 58, 115].

Model checking is completely automatic, in contrast to theorem proving,
and in some cases produces an answer in a relative short time, especially if
the property is not satisfied and a counterexample is provided, which usually
points to subtle design errors and model checking can be used to improve the
debug phase. The "state space explosion” problem is the main disadvantage
of model checking. In 1987, McMillan proposed Bryant’s ordered binary deci-
sion diagrams (BDDs) [24] to represent the state transition systems in a more
efficient way. BDDs can be used to check CTL formulas. In order to ease
the state space explosion problem, other approaches have been suggested, as
for instance the exploitation of partial order information [102], localisation
reduction [88, 87|, and semantic minimisation [83], which eliminates unneces-
sary information from a system model. Today, model checkers are expected
to work with systems having between 100 and 200 state variables. Systems
with 10'?° reachable states have been checked by model checkers [25], instead
systems with an essentially unlimited number of states has to use abstraction
techniques [41].

5.1.5.2 Bounded Model Checking

In the semiconductor industry bounded model checking (BMC) is one of the
most commonly applied formal verification techniques. The success of this
technique comes from the brilliant performance of propositional SAT solvers.

88 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

Biere and others have introduced BMC in 1999, as a complementary method
to BDD-based and unbounded model checkers [19]. BMC visits all states
within a bounded number of steps, say k. Using BMC the model is built in
the following way: A propositional formula is built from the system until k
steps in conjunction with a property. Next, the obtained formula is passed to
an efficient SAT solver. If and only if there is a trace of length k that contra-
dicts the property the formula is satisfiable. If the propositional formula is
unsatisfiable, we cannot be certain about the correctness of the verification,
because there may be counterexamples longer than £k steps. BMC provides
a full counterexample trace in case of the property is not satisfied, and it is
one of the best techniques to identify shallow bugs.

5.1.5.3 Theorem Proving

Theorem proving uses formulas in some mathematical logic or theory, to
express the system and its properties [43]. A mathematical logic specifies the
formal system and defines a set of axioms and a set of inference rules. In
practice, theorem proving finds a proof of a property from the axioms of the
system. The proof is composed of steps, which invoke the axioms and rules,
and derive definitions and intermediate lemmas if possible. Theorem proving
approaches perform verification using calculi that are based on two principal
works. The first is by C.A.R. Hoare, which presents a calculus to reason about
program correctness in terms of pre and postconditions [74]. The second is
by E.G. Dijkstra, who extended Hoare’s ideas in the notion of “predicate
transformers” which begins with a postcondition and uses the program code
to determine the precondition, instead of starting with a precondition.

Nowadays, theorem proving is used more and more in the verification of
safety-critical properties of hardware and software systems. We can coarsely
categorise theorem provers into the classes (i) highly automated, (ii) general-
purpose programs, and (iii) interactive systems with special-purpose capabil-
ities. Approaches based on automatic verification have been useful as search
procedures and were successfully applied in solving combinatorial problems.
Interactive systems are more appropriate for automating formal methods and
the formal development of mathematics [43]. In order to prove properties
on infinite domains, theorem proving relies on techniques such as structural
induction. The interactive theorem proving process is slow and often error-
prone, because, as the name suggests, it requires the selection of possible
theorems by a human. However, the user often gains useful insight into
the system or the property being verified, during the process of finding the
proof. Theorem proving can deal with systems having an infinite state space,

5.2. MODEL CHECKING OF DISCRETE COMPONENTS 89

whereas model checking usually cannot.

5.2 Model Checking of Discrete Components

To develop correct hardware and software systems, two fundamental phases
are validation and verification. Formal verification methods as model check-
ing are not easy and often require skills to handle the temporal logic formulas,
and to understand and debug the counterexamples, but they provide a for-
mal and comprehensive proof of correctness of the system. Considering the
available analysis techniques for model-based development, we decided to im-
plement the support for model checking in the modelling tool AutoFocus
3. Some disadvantages of this technique can be reduced with a model-based
and user-friendly integration, to overcome the intrinsic complexity of model
checking.

We demonstrate applicability of verification mainly in four areas. Firstly,
we integrate specification and verification tightly into the model-based de-
velopment process. This means that verification properties are linked to
model elements and can be verified locally easily during the development. In
addition, the support for different specification languages is essential. There-
fore, we implemented property templates for simpler but recurrent cases and
high-level languages for the more complex properties. Properties disproved
by verification must be analysed and either the system model or the proper-
ties have to be corrected. In the case of model checking, disproof is given by
counterexamples, which we present to the user either as a simulation of the
system model or as a message sequence chart [125]. For formal verification
to be actually practical, it must perform efficiently and may not impose long
delays on the user. Therefore, we evaluate various optimization techniques
implemented in the model checkers, TVARC [23] (only prototypical) and the
Cadence Symbolic Model Verifier (SMV) [93].

TVARC We study model checking based on three-valued logic system in-
stead of common two-valued logic, which extensively applies model abstrac-
tion and notions of model refinement. Three-valued Abstraction Refinement
(TVAR) extends the existing work on the three-valued logic model checking
[23]. The three-valued logic results true, false and don’t know, are used in the
model checking algorithm for refining an abstraction in a similar manner to
the Counterexample guided abstraction refinement (CEGAR) approach [39].
TVARC is our prototypical implementation of the model checker integrated
in AutoFocus 3 that accept as input C programs and p-calculus formulas to

90 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

be verified. In this implementation, an AutoFocus 3 model is transformed
to corresponding C code by a code generator, more precisely a generator for
CO0 code a C language subset.

In CO, some features are forbidden, including pointer arithmetic and
the non-nested use of function calls. In any case, the code generated from
AutoFocus 3 models does not need these features and other characteristics
still available in CO like dynamic memory allocation, pointers or arrays. We
further verified the CO code representation of the implemented model with
model checking techniques. However, the implementation of TVARC is at a
prototypical stage. Since TVARC abstracts the model to being verified, it
also reduces the state space dimension in the verification phase. We worked
to extend the foundation of our three-valued logic model to a multi-valued
logic model. A formula in a multi-valued logic evaluates no longer to just true
or false but to one of many truth values, therefore we can express to which
extent a property is considered satisfied by a model. The main motivation to
introduce multi-truth values is a support for software product lines or prod-
uct families, so our system models are explicitly expressed differences and
shared characteristics of the different product versions. Thus, the question
of which products of the product line satisfy a certain property corresponds
to the truth value of the formula encoding the property with respect to the
multi-valued system. The model checking verification is based on an exten-
sion of the refinement and abstraction principle for the three-valued logic. A
complete explanation of this approach can be found in [29].

Cadence SMV The choice of Cadence SMV as model checker is mainly
due to its semantics. In fact, in AutoFocus 3 the interconnected compo-
nents execute an elaboration step synchronously, in the same manner as the
modules in an SMV model. Furthermore, the symbolic model checking pro-
vided by SMV works well with hardware-like systems, which fit well with the
embedded systems modelled in AutoFocus 3. SMV guarantees one of the
best performances for the formal verification of such systems available. In
order to perform the verification, the original models are mapped into the
SMV language, where each component is mapped to an SMV module. Then
the resulting SMV program is executed for verification, with the integrated
model checker. The results are displayed directly in the tool environment.

5.2. MODEL CHECKING OF DISCRETE COMPONENTS 91

5.2.1 Theory: From AutoFocus Components to SMV
Programs

In the literature, the usage of SMV language to model finite-state Sym-
bolic Transition Systems (STSs) is widely documented. We repeat here the
fundamentals concepts of the SMV language from [93]. This language is
the input language of two widely used model checkers: Cadence SMV and
NuSMV?3. Cadence SMV is a well-known model checker branched from the
original SMV and developed by Cadence Berkeley Labs. Instead of storing
states and transitions explicitly, in STSs the states and transitions are de-
scribed with symbolic formulas. Thus, STSs specify the semantics of SMV
programs. Formally an STS S is a tuple (V, W, I, T, Z) with:

e 1 is the set of symbolic variables that represent the states,

e IV is the set of symbolic variables that represent the events,

I(V) is the initial formula,

T(V,W,V’) is the transition formula,

e Z(V) is the invariant formula.

In the transition formula, V' is the next state reached from the state variables.

A set of symbolic variables represent the state of a system and are par-
titioned into modules. In an STS, the same module can be instantiated
several times, to define them in a hierarchical way. In an SMV model, a
component is an instantiation of a module. In a composition of compo-
nents, also hierarchical, each elaboration step is synchronous and is equiv-
alent to the conjunction of a step in each component. A program in SMV
is composed of a set of modules and each module is described by a tuple
(PARAM,VAR,IVAR,INIT,TRANS,INV AR) where:

e PARAM is a set P of formal parameters,

o VAR defines a set of variables V, with a type 7(v) for each variable v
and is a set of variable declaration,

e [V AR defines a set W of variables, with a type 7(w) for each variable
w and is a set of input variables,

3http://nusmv.fbk.eu

http://nusmv.fbk.eu

92 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

e [NIT defines a formula I using the variables in V' U P and is a set of
initial conditions,

e TRANS defines a formula T using the variables in VUPUWUV'U P,

e INV AR defines a formula Z using the variables in V' U P.

Module instantiations may be used in the VAR declaration, in the form
(M, B), where M is a module and each formal parameter is associated with
an actual parameter 5. The actual parameters must have the same type of
the parameters, so for each p € P, f(p) must evaluate to the same type.

The structure of an SMV program is hierarchical with module instantia-
tions, where the root node is a so-called main module. The STSs, previously
presented, define the semantics of an SMV program. An STS corresponds
to a Labelled Transition System (LTS). Assuming that there are no circular
dependencies in the module hierarchy, the semantics of a module is defined
recursively on the hierarchical structure; a detailed explanation is in [93].
AutoFocus 3 models are converted to an SMV program, mapping each com-
ponent into an SMV module, where the root component is the module main
of the SMV program. The semantics of SMV is similar to the synchronous
execution model of AutoFocus 3, where other model checkers have an asyn-
chronous execution model, as for instance the tool SPIN*. In fact, an SMV
program with more modules is executed in parallel, so that the transition rela-
tions of each module are conjoined and the initial predicates are instantiated
together (cf. [31]). In Section 5.3.2, we specify formally the transformation
from hybrid Focus components to HyDI programs; therefore, we omit here
the similar formal transformation from FOCUS components to SMV modules.

An SMV module is specified as a state machine, where the variable val-
ues, boolean, integer or integer interval, which determine the state space.
At the beginning, the initial values of variables determine the initial state of
the model. SMV specifies the assignments to the state variables in the fol-
lowing step, with a transition relation. We translate directly the data types
and functions in the data dictionary in AutoFocus 3 to SMV data types
and functions. As discussed above we restricted to finite data types and not
recursive functions, because SMV cannot handle infinite state systems. In
AutoFocus 3, the user can define functions through pattern matching, which
we converted in SMV functions. In the AutoFocus 3 models, the components
exchange synchronously at most one data value in each elaboration step, so
we map the channels to SMV variables, with an extra variable to handle

‘http://spinroot.com

http://spinroot.com

5.2. MODEL CHECKING OF DISCRETE COMPONENTS 93

the absence of a value over the channel. AutoFocus 3 supports hierarchical
definition for the system components, so we translated each component to an
SMV module. We support two kinds of implementations for the components:
state machines and functional definitions, both component implementations
are translated to a single SMV module. For state machines, we support local
variables and use a state variable, an enumerator, to simulate the states. If
the transition relations of the state machines are non-deterministic, also the
SMV module has the same non-deterministic behaviour in the verification.
Each input and output port of the component is mapped to a parameter of
the SMV module. Consequently, the original hierarchy and structure of the
AutoFocus 3 model is replicated through module instantiations. A func-
tional specification is translated to an SMV module. The SMV main module
corresponds to the root component in the component hierarchy defined by
an AutoFocus 3 model.

5.2.2 Implementation in AutoFocus 3

For the usability of verification, it is essential to reduce the complexity by
specifying verification properties and the handling of the verification process.
The user should have a user-friendly environment to adapt the properties and
to trace its semantical connection to the system model. We evaluate several
model checkers that implement different optimization strategies, in order to
practical test their characteristics. We apply the TVARC model checker to
the CO code generated from the model, (to be precise its C intermediate
language representation) and SMV directly to the model design, as depicted
in Fig. 5.2.

We generated two artefacts from the system model, namely a CO code
implementation, and an SMV representation. The correctness of the trans-
formation to CO has been shown in [72]. For the execution of the SMV model
checker, AutoFocus 3 automatically translates the selected component with
all its subcomponents into an SMV instance, where an SMV module rep-
resents each state machine. Each module contains its subcomponents as
nested modules. During this translation, we have restrictions for recursive
constructs. In general, AutoFocus 3 provides recursive functions and data
types. However, the SMV generator and the CO generator do not support
these features. This limitation is due to the finiteness of the state space (re-
quired by SMV and often applicable in embedded systems design) and the
fact that recursive data types induce a potentially infinite state space (of
course, only a finite part may be reached). In such cases, we return an error
message to the user.

94 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

System Modeling Model Checking

Property Templates
Specification Patterns
Assertion Language
Temporal Logic

Formal
Transformation Cadence SMV
AutoFOCUS 3 Model SMV AF3 Model
E_orme;l ti Result comparison
ransformation Formal

Transformation

CO0 Code Implementation TVARC Model

TUM TVARC

Figure 5.2: Verification artefacts and activities in AutoFocus 3.

Another limitation is given by large state variables like integer variables.
Excessive use of these quickly leads to the so-called state space explosion.
Even in small projects, we noticed that the verification process required too
much time and memory. Therefore, in the model checker view the user can
restrict the value range of integer variables for the whole model, and define
a specific range for certain variables (Fig. 5.3). It is important that the user
specifies the smallest possible integer interval to avoid the state explosion
problem. With static analysis, we could automatically determine these in-
tervals. The application of abstraction techniques may help to reduce these
problems. Further, SMV has already been tested in a case study from the
automotive domain [56], whereas the testing phase of TVARC’s integration
is not yet published.

5.2.2.1 Properties Verification

Our approach allows the designer to attach verification properties to compo-
nents in addition to their decomposition or their behaviour description. The
scope of a verification property is fixed by the component it is attached to.
Thus, the property refers to the i/o ports of the component. If available,
the property can additionally refer to all i/o ports of the immediate sub-

5.2. MODEL CHECKING OF DISCRETE COMPONENTS 95

[@ *Facility EE' =8
Selected element
$ IS

traffic
»—0
it © Merge channelReq ¥ (3 Controller pregestren
channelB T}
weticatord O
indicatorB
TTT TT i _ Integer
Structure Cherview | External Interface | Internal Interface variable intervals
| 7 SMV View X E ShV Counterexample‘u‘iew:'.g_\ Problem.smﬁ Properties = [m|
Basic use | Medium use | Expert use|
’ Start verification of this diagram] [Perform verification] Variables ranges settings &

Variable Minval Maxval
Verification context [Controller (id=64) v] t =50 50

Port value is always equal to X ¥ Red
Port value is equal to X until is equal ¥

Port value is eventually eg
Port value is never equal to X
Property Templates

Figure 5.3: Property template options for model checking in AutoFocus 3.

components. If an automaton defines the component, the automaton’s state
variables are also in scope. After augmenting the model with verification
properties, we are able to choose the component to be verified. If we verify
a component, this component together with all its subcomponents are con-
sidered. The chosen component is verified against all possible inputs allowed
by the types of its input ports, thus the components environment (consisting
of the non-descendant components) is completely ignored. Contrary, if we
would like to verify a component together with its directed connected com-
ponents, we would have to verify the parent component containing all these
components. Thus, the chosen component fixes the verification context.

For illustration, Fig. 5.3 shows a small component network in AutoFocus 3.
In this view, the user selects a model element in the upper part and a pre-
defined property template from the list below. The templates contain free

96 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

variables that the user has to define. Therefore, the user can refer to model
elements like i/o-ports or state variables. The context of the verification is
selectable from a drop-down list containing all parent components. Finally,
the verification can be initiated. A model checker performs the verification.
If the model checker is able to prove the property, the user is presented a
confirmation. If the property is disproved, a counterexample is generated for
the user’s review. Counterexamples can be simulated stepwise or illustrated
as MSCs, see Fig. 5.4 and 5.5.

Benefits As previously explained, the user can specify a verification condi-
tion in the scope of a certain component. This allows the tool to facilitate the
formulation of verification properties. For example, the property’s formula
is type checked with respect to the types of the ports and state variables.
Other supportive functionality is discussed in more detail in Section 5.2.2.2.
This shows that the tight coupling of properties to the system model im-
proves the process of verification and validation. Our approach also allows
to locally verify properties of a component. By verifying components and
their subcomponents independently from the surrounding environment, the
developer can apply verification continuously throughout the development
process. Thus, implementation errors can be found earlier and bug fixing
costs are reduced.

Contrary to operational behaviour descriptions, the developer can formu-
late verification properties in a declarative way. In many cases, a declarative
description is considerably shorter and more comprehensible than the op-
erational description. Furthermore, each property is specific to a certain
aspect of the component’s functionality allowing to abstract from the com-
plexity of the component’s behaviour. With the presented tool integration,
the developer can easily formulate such properties during the component’s
development. In the same manner as with unit tests, which should be defined
together with the implementation, our model checking integration allows the
same approach but using formal verification. This way, as the system devel-
opment proceeds, several verification properties are collected and contribute
to the confidence in the system’s implementation.

5.2.2.2 Specification of Properties

The formal properties to be verified on the system model are specified in
temporal logic [107]. To specify the properties, SMV supports the following
temporal logics: Computational Tree Logic (CTL) [42] and Linear Time
Logic (LTL) [107], meanwhile TVARC supports p-calculus [55]. Temporal

5.2. MODEL CHECKING OF DISCRETE COMPONENTS 97

Facility Controller Merge

Clnit, t-1) { Merge)

buttonB :|HAresent()

\

{ Green, t.-1)>

| traffic : Green() | [request: Present()

I~

[pedestrian : Stop()

{ Green, t:2)

| traffic : Green()

[pedestrian : Stop()

{ Green, t:1)
[
{ Green, t:0)

[|
{ Yellow, t:1 >

| traffic : Yellow()

[pedestrian : Stop()

Figure 5.4: Counterexample visualized as MSC.

98 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

logic formulas can be subdivided in safety, liveness and fairness properties.
If one wants that something, like an event or a state of the system, must not
happen then is a safety property. For instance, in an ATM a safety property
is the check that it does not release the money if the login of the user was not
successful. Instead, if something must happen then the property is called a
liveness property. In an ATM, a liveness property is that if the user inserts
the card then must be returned to the user. A fairness property for an
exchange protocol between a banking server and an ATM argues, when the
communication has been terminated, either the server has received an ATM
message and the ATM has received a server message, or none of them has
lost their messages.

The integration of SMV/NuSMV in AutoFocus 3 models supports both
CTL and LTL, which can express all the mentioned property kinds. Their
formulas are inductively defined with logical and temporal operators. To
understand exemplary safety and liveness properties expressed in LTL, we
explain two temporal operators: G, for globally, where the formula affected
by the operator has always to hold; F, for future, where the formula affected
by the operator has to hold eventually. An example of a liveness property is
if “input x recetved” holds then “output y provided” eventually:

G(input x = F output y)
A safety property is the error state z is never reached:
G(—actual state == z)

In a formula specified with AutoFocus 3 is possible to refer to i/o streams,
internal variables and actual states of the component state machines.

Practical application of such temporal logic requires advanced skills in for-
mal verification, since it is difficult to express properties in these formalisms.
The acquisition of this level of knowledge may be an obstacle to the adop-
tion of automated verification tools. In order to improve the usability and
expressiveness in the specification of the properties, we propose three higher
level approaches. The most intuitive one is based on predefined Property
Templates, the second uses a pattern-based approach, and the third is based
on the Structured Assertion Language for Temporal Logic (SALT) [14].

The first approach, as highlighted in Fig. 5.3, provides templates that can
be directly selected, configured and executed from the graphical interface.
We represent common properties to be verified, which are integrated in the
model checker view and can be saved along with the model itself. The user
selects an element in the model view, and then the appropriate templates

5.2. MODEL CHECKING OF DISCRETE COMPONENTS 99

are shown. Examples of property templates for a port and a component are,
respectively:

e Port value is eventually equal to X

e After input port A has value X, output port B has eventually value Y

Templates contain variables, e. g., “X” in the precedent template. Each vari-
able is bound to the content of an associated text field. Using these text
fields, the user defines logical parts of the formula. Variables correspond to
states or port values or, if they are indicated as “events”, to general formulas.
A type and name check is made for controlling the correctness of the values
inserted by the user.

The second approach is a pattern-based approach for the presentation,
codification and reuse of property specifications for finite-state verification.
We refer to the specification pattern definition given by [53]: “A property
specification pattern is a generalized description of a commonly occurring re-
quirement on the permissible state/event sequences in a finite-state model of
a system. A property specification pattern describes the essential structure
of some aspect of a system’s behaviour and provides expressions of this be-
haviour in a range of common formalisms”. The patterns are based on a
survey of available specifications, collecting over 500 examples of property
specifications. Most of these specifications were instances of the patterns. A
specification pattern is composed by the following elements: name, descrip-
tion of its behaviour, mappings into temporal logic formalisms, examples of
uses and relationships with other patterns. For instance, the absence pattern
specifies a state/event that must not occur; and the response pattern speci-
fies an initial state/event, which, when it occurs, must always be followed by
another condition/state/event.

It is necessary to associate a scope with a pattern, which specifies the
extend of the program execution, in which the pattern must hold. The au-
thors of the specification patterns found five scopes [53]: global, when the
pattern must hold for the whole program execution; before when the ex-
ecution must hold ahead of a state/event; after when the execution must
hold after a state/event; between when the execution must hold between two
given states/events; and after-until when the execution must hold between
two given states/events and also after the first state/event occurs and the
second state/event can eventually not occur.

We added most of the specification patterns in the model checker view
of AutoFocus 3, where the user has to select from a list a scope and a pat-
tern [53]. After that step, the correspondent formula parts are presented and

100 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

should be filled with the desired elements by the user, as already explained
for property templates. The user can fill the expressions with logical opera-
tors and elements of the model. In the selected pattern, the role of each text
field is indicated with a short description.

The third approach is based on the specification language SALT, which
provides a higher level of abstraction compared to other temporal logics for-
malisms. This is based on ideas of existing approaches, such as specification
patterns but also provides nested scopes, exceptions, support for regular ex-
pressions, real-time, and employs some constructs similar to a programming
language. As a result, its specifications are more intuitive to utilize and
to understand than temporal logic. We have added support for these three
concepts in the front end view of AutoFocus 3 of the model checker.

The formalization of system properties and assertions have been con-
ceived for Focus components and for the hybrid systems introduced in [21].
In this work, we define interface assertions over the components channels of
the syntactic interface. They are preferred to the verification through tempo-
ral logic. The main motivation is better expressiveness of the assertion based
approach, to specify formulas over the behaviour of i/o channels, through
predicate logic and basic operators over streams. In our approach, we se-
lected an existing model checking solution for FOCUS components, which
guarantees a seamless integration, counterexample handling, suitable seman-
tics, and reasonable performances. We implemented the integration of the
model checker Cadence SMV in AutoFocus 3 and improved its capabilities
to express properties to support additional high-level specification languages.

5.2.2.3 Handling of Counterexamples

In case a verification fails, a counterexample generated by SMV is reported
in a tool view. The counterexample represents a path in the SMV model.
This path leads from an initial state to a state where the property is violated
or it contains a loop, where the desired behaviour is never reached. The
path is visualized as a sequence of states, together with the eventual loop
information. In this sequence, each state describes a current state of the
state machines and a valuation of all variables and i/o ports that compose
the model.

In order to improve the representation and understanding of such data,
we visualize the counterexample as a message sequence chart. In the gener-
ated diagram, the actors are the different components of the model and the
messages between them represent the value assignment in the model from an

5.2. MODEL CHECKING OF DISCRETE COMPONENTS 101

0 | |
T Running View &2 R & O ® %
4 Sim: Controller @ 13:35 /
| Controller | ; :
I Simulation controls

o | |
B Graphical Simulation State View &3 @nt state

initialize

/

countdown FECEIVE

f\ 0

countdown

rECeive

]
2 RedYellow

rECEivE

countdown
ECEIVE

Figure 5.5: User interface for simulating counterexamples.

102 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

output port of the sender component to the input port of the receiver com-
ponent. It is also possible to simulate the counterexample in AutoFocus 3.
The view shown in Fig. 5.5 contains controls to execute forward and back-
ward steps as well as continuous playback of the simulation. In other views,
the user can examine the current values of i/o ports and a state machine’s
transition system with the highlighted current state. If the model contains
more than one component, it is possible to open more component views. A
step in the simulation corresponds to the passage from a state to the follow-
ing one in the SMV counterexample. In case a property is disproved during
the verification, these views help to debug the model. The described debug-
ging phase is solely based on the structures previously modelled by the user.
Thus, the intermediate model generated for the model checker is not shown.
We consider the integration of the verification and counterexample analysis
in the tool a big advantage as the user is not bothered with the underlying
structures and the model checker anymore.

5.2.3 Related Work

To the best of our knowledge, an integrated and user-friendly verification
tool environment as presented here has not been widely supported in the
modelling tools. Standard industry tools integrate similar formal verifica-
tion capabilities. Simulink Design Verifier and SCADE Design Verifier are
extensions for Simulink® and the SCADE tool®, which use formal analysis
techniques provided by Prover Plug-In. Rhapsody in C++ [118] has a ver-
ification environment for UML models, the specifications to be verified can
be formulated using temporal patterns or a graphical specification formalism
called Life Sequence Charts [47]. The verification is applied to UML models
composed by UML state charts and UML class diagrams. They are trans-
formed in a format for VIS model checker [20]: a finite state machine for
the model and a temporal logic CTL formula for the property to verify. In
Hugo/RT [12] UML state chart diagrams are associated with a UML class
diagram to specify the model to verify and communication diagrams describe
how the objects of a model may interact. The tool generates input for two
model checkers: SPIN and UPPAAL [16]. The model checkers can verify
whether the interactions expressed by a UML communication diagram are
realized by the state machines. Considering the specification of the model
checking properties, none of these approaches integrates user-friendly tem-
plates with correctness checks, specification patterns, assertion language and

Shttp://www.mathworks . com
6http ://www.esterel-technologies.com/products/scade-suite

http://www.mathworks.com
http://www.esterel-technologies.com/products/scade-suite

5.3. FORMAL VERIFICATION OF HYBRID COMPONENTS 103

temporal logic. Additionally, none of these tools has an integrated counterex-
ample handling and simulation.

5.3 Formal Verification of Hybrid Components

We implemented a first holistic and user-friendly verification environment
with a focus on the model checker integration. In order to enhance the us-
ability of model checking in model-based development, we integrate different
property specification concepts and back-translation of counterexamples to
the model level in the modelling tool (e.g., counterexamples can be exam-
ined step by step in the AutoFocus 3 Simulator). In the official release
of AutoFocus 3, NuSMV model checker a reimplementation and extension
of SMV is supported. The features of NuSMV are almost the same but
NuSMYV provides an open architecture for model checking, which offer more
extensions possibilities respect to Cadence SMV. Both implementations with
NuSMV /Cadence SMV are made for discrete time systems, so they do not
support the continuous dynamic of hybrid components. In this section, we
present our ideas for an extension of formal verification approaches also to
hybrid systems.

5.3.1 Hybrid System with Discrete Interaction (HyDI)

The authors of NuSMV introduced support for formal verification of hybrid
systems in a new version of their model checker that is publicly available: Hy-
COMP?. This is implemented by translating system models into the HyDI
(Hybrid system with Discrete Interaction) [35] language. It is possible to
verify invariants over the real variables, using MathSAT® an SMT (Satisfia-
bility Modulo Theories) solver integrated in HyCOMP. HyDI is a language
for modelling systems with discrete and continuous dynamics on real-valued
variables. The intention of the authors was to overcome the limitation of
model checking in the verification of infinite-state systems. In fact, Hy-
COMP supports complete symbolic model checking with verification of LTL
properties.

Its foundation is the standard symbolic language SMV that is extended
with continuous variables, flow conditions, and synchronization between sys-
tem modules. The SMV models are hierarchical and the variables evolve in

"http://es-static.fbk.eu/tools/hycomp
Shttp://mathsat.fbk.eu

http://es-static.fbk.eu/tools/hycomp
http://mathsat.fbk.eu

104 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

each module synchronously. On top-level the modules in HyDI are asyn-
chronous and use events for the synchronization. A discrete-time infinite
transition system is the target model of a HyDI instance. The instantiation
of HyDI modules are called HyDI processes.

The language HyDI supports four different semantics, combining global
and local time and asynchronicity that can be interleaving or step. There
are two verification modes: the first translates the model with MathSAT
applies SMT-based techniques; the second mode work on the structure of
the network. There are sets of benchmarks available? and it is possible to
translate models of MATLAB Simulink/Stateflow and Altarica to HyDI pro-
grams. The SMT based-verification is applied to hybrid automata networks
[35], that is a parallel composition of two or more hybrid automata [68]. The
time progression is local to each automaton, so there is a local-time semantics
where the shared events are labelled with time-stamps and there are specific
events to synchronize the components.

5.3.1.1 HyDI Programs

In Section 5.2.1, we explained the fundamental structure of the SMV modules.
In HyDI a set of modules, which extends the SMV modules, are given. These
modules introduce three features: events for the synchronization between
processes, continuous variables that can evolve in continuous time and flow
conditions that define the continuous evolutions of the variables also referring
to the derivative of the continuous variables. In a HyDI program it is possible
to instantiate other modules in the main module, which can be asynchronous
or synchronous using shared events. There is the same mechanism as in SMV
program to share variables through the module parameters, but the network
is not hierarchical.

5.3.2 Transformation of Focus Hybrid Components to
HyDI Programs

Considering the experience gained with the discrete components and the im-
portance of checking CPSs, we worked towards a formal verification support
also for hybrid components. We integrate the theoretical foundation for the
transformation of hybrid systems into HyDI programs, in order to apply its
verification capabilities. We would like to use the verification in future to

Yhttp://es.fbk.eu/people/mover/hydi

http://es.fbk.eu/people/mover/hydi

5.3. FORMAL VERIFICATION OF HYBRID COMPONENTS 105

test invariants for the variable values, to gain information that could be used
in the sampling algorithms.

5.3.2.1 System Representation

HyDI programs describe the system with a symbolic representation using
state variables, in an analogous way as for SMV programs (cf. Section 5.2.1),
but they extend the SMV module introducing continuous data types and
elaborations. Symbolic Hybrid Systems (SHSs) define the semantics of HyDI

modules, recursively on the instantiation of the modules as for SMV modules.
The tuple (D, X, Ev, IN, T, Z F) represents an SHS S:

e D represents the states and is the set of symbolic discrete variables,
e X represents the states and is the set of symbolic continuous variables,
e Fv represents the events and is the set of symbolic variables,

e /N(D, X) represents the initial formula,

T(D, X, Ev, D', X') represents the transition formula,

Z(D, X) represents the invariant formula,

F(D, X) represents the flow formula.

A HyDI module is described by the following tuple, similarly to an SMV
module (see Section 5.2.1):
(PARAM,VAR,IVAR,INIT,TRANS,INV AR, FLOW) with the follow-
ing differences respect to an SMV module:

e VAR is now composed from discrete variables in the set D and contin-
uous variables in the set X,

e ['LOW defines a formula F' using the variables in DU Ev U X that
is a set of flow conditions. Where X defines the differential equations
associated to the continuous variables.

106 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

5.3.2.2 HyDI Semantics for Focus Hybrid Components

The semantics for HyDI programs is defined in [35] for asynchronous and
parallel composed processes, whereas Focus hybrid components are syn-
chronous and hierarchical defined. We do not consider the synchronization
events of the original HyDI programs, because the introduced models do not
need such events. The hybrid automata used and implemented in HyDI pro-
grams are linear as the automata used in hybrid components. This means
that the predicates in FLOW, which contain the operator der, must be a
linear combination of the derivative operators. In this section, we define
the semantics of HyDI programs translated from Focus hybrid components,
based on the global time semantics presented for HyCOMP.

It is straightforward to define a semantic correspondence between an
SHS S = (D, X, Ev,IN,T,Z, F) and a Focus hybrid component H =
(3, Var,Init, 1,0, Dom, E, f,G, R), which is specified in the Definition 15,
withE=(@QxV),ICV,OCV, IntCV,Int; CV,04, 0,0, CO and
W =1Int U O,:

(@ is represented by the set of assignments D;

V' is represented by the assignments X;

W is represented by the set of assignments Y C X, where Y are the
internal and output continuous variables;

e G(q1,92) ={a | q1,71,a,q2, 22 E T} the guard function G corresponds
to the events of the transition formula;

o Init ={(q,2)| ¢ € Q,(q,z) E I for some assignment x to X};

e Dom(q) = Z|qp) that is the domain function in the state ¢ is given by
the invariant formula Z restricted to the state ¢ with all the value of
V' that satisfies the formula;

o E={(q1,42) | 91,2 € Q, q1,71,0,q5, 25 F T N\ a € G(qu,) for some
assignment x1 to X and x} to X'} the set of edges F is derived from

the transition formula;

o f(q,v) = Flg)u(x) the vector field function for the state ¢ and actual
value of the variables v is given by the formula F' restricted to the state
q and assignments v, with all values from D and X that satisfy the
formula;

5.3. FORMAL VERIFICATION OF HYBRID COMPONENTS 107

o R((q1,92)),v) = T|q,(D)w(x),g2(p)- The reset function is associated to a
transition between states ¢; and ¢y, where the actual state v is defined
by the formula T restricted to the states g1, ¢, and assignments v to
variables with all values from D, X, and X’ that satisfy the formula.

In our transformation, we do not have events in Ev, because we embed the
conditions without using the events, this set will be empty in the transfor-
mation. In fact, we have a synchronous execution meanwhile the HyCOMP
uses an asynchronous execution with events for synchronize interconnected
processes.

In the following statements, the module declarations INIT, TRANS,
INV AR and FLOW are restricted, according to the semantics for the HyDI
modules presented in [35]. The formulas IN, T, Z, and F are built as
boolean combinations of assignments to the discrete variables, whereas linear
constraints are defined over the continuous variables. The constrains are of
the form Zj cjz; X ¢, with e {<, >, <, >, =}, ¢;, ¢ are constants and z;
are variables, variables in the next elaboration step or derivative. Moreover,
Z and F formulas limit the assignments s to variables in D as conjunctions
of linear constraints. However, it will be necessary to overcome some of such
restrictions in the definition of the constraints, in order to have a complete
transformation of Focus hybrid components in HyDI programs and their
verification.

A HyDI program is defined by a set of modules similar to a hybrid com-
ponent with its subcomponents. The top component in the hierarchy corre-
sponds to the main module that is the root module of a hierarchy build by
the recursive module instantiations in each module. A given HyDI program
Py, generated from a FOCUS hybrid component H, consists of a hierarchical

module structure, with the root module
main = (PARAM, VAR, IVAR, INIT, TRANS,INV AR, FLOW) such that:

o PARAM represents the set of parameters (that is an empty set);

e VAR represents the set of declarations that defines the variables in the
set D and X, where the variables in X are continuous and the variables
d € D have type 7(d), it is also added an additional argument ¢ for
each process instantiation;

e [V AR represents the set of declarations that define the set of input
variables Ev. We do not need to define variables for the synchronization
of processes in our translation, but we add a declaration for assign the
continuous type to ¢;

108 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

e [NIT represents the set of initial conditions declarations that define a
formula IN over D U X U P;

e TRANS is constructed to include also the formula F' that constitutes
the FLOW declarations. It is defined by the formula 7" A F’, where
T is a formula over the variables D U X U PU EV U D' U X’ and F’
is a formula constructed from F', in which the predicates of the form
>_; Tj > c are substituted by > @} —x; > ¢ X 0;

e I NV AR represents the set of invariant condition declarations that de-
fines a formula Z over D U X U P.

e FLOW defines a formula F' using variables in DU EvU X that is a set
of flow conditions.

After the definition of the root module, we define the other modules in
the hierarchy. Each module M; is a tuple:
(PARAM;,VAR;, IVAR;,INIT;, TRANS;, INV AR;, FLOW,), with:

e PARAM,; represents the set of parameters and an extra parameter ¢;

o VAR;, IVAR;, INIT;, TRANS,;, INVAR;, FLOW, have the same
definition respectively as VAR, IVAR, INIT, TRANS, INV AR,
FLOW:;

The declarations VAR and V AR; may also contain module instantiations,
which are variables with type as a tuple (M, §), where M is a module and /3
is used to associate the formal parameters. The extra parameter ¢ is for the
continuous elaboration of the predicates in the vector field.

The semantics of a module is defined recursively on the structure, without
circular dependency in the instantiations. In case the root module M has
no module instantiations the semantics of a HyDI program is defined by the
SHS (DUP;, XUP,, Ev,IN, T, Z F), where P = P;U P, is the set of input
parameters of the module. Otherwise if there are module instantiations Z,
so that for each instance i € Z there is a module instantiation (M;, §;), we
consider recursively the SHS Sy, = (D, Xar,, Evng,, INv, Tosyy Zngyy Fiay)
specified for M;. For an instance ¢ with type (M;,) we define the SHS S; as
<Di7 Xi, Evi, [NZ, T;;, Zi; E> with:

e D, is defined taking the set D);, without the formal parameters of M
and renaming the other variables d € Dy, in i.d;

5.3. FORMAL VERIFICATION OF HYBRID COMPONENTS 109

e X, is defined renaming all the variables x € X}, as i.x;

e Fv; is defined taking the set Ev,;, and renaming all the variables e €
Evyy, as i.e;

e [N, is defined taking the set IN,;,, renaming all the variables v as 7.v
and replacing the parameters p of M; by £(p);

e T} is defined taking the set T, renaming all the variables v as ¢.v and
replacing the parameters p of M; by 5(p);

o 7, is defined taking the set Z);,, renaming all the variables v as 7.v and
replacing the parameters p of M; by 5(p);

e F; is defined taking the set F},, renaming all the variables v as ¢.v and
replacing the parameters p of M; by 5(p).

We define the SHS S of M by the tuple (D\Z U {id | i € Z,d €
Di}UP;, X\ZTU{iw|i €I, x € X;}UP, Ev,INANN;cz IN;, TAN;ezTis Z N
Niezr Zi» F'N N;ez Fi). The SHS relative to the root main module gives the
semantics of a HyDI program.

5.3.3 Specification of Properties

During execution of HyDI programs constraints are verified, which are de-
fined by the INV AR declaration. In this declaration can be referred both
discrete and continuous variables in a state expression, this constraint must
be satisfied in all the states of the system. We can restrict invariant that
must hold only in a location, specifying it in the expression.

For example, consider a property for the brake train controller, if we define
the states of the hybrid i/o state machine with an enumerator variable as
{acceleration, brake,constant_speed}, then an invariant for the state brake
can be:

INVAR
state = brake -> accel <= 0

That is, if the state brake is active then the acceleration of the train must
be negative. In Chapter 6, we provide the whole HyDI program for the train
controller example.

110 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

5.3.4 Related Work

Modelling languages as SHIFT and R-Charon [86] for distributed hybrid sys-
tems are focused on simulation and compilation and they have no verification
support. For some modelling approaches, simulation is provided, but a lim-
ited verification or only on fragments. As for instance in UPPAAL [16],
where the properties do not support the nesting of formula. The verification
with the tool PHAVer [15] is computationally expensive and suffers from the
system scalability issues.

Davoren und Nerode [50] applied a Hilbert-style calculus with an exten-
sion of p-calculus to hybrid systems. In this approach, the system behaviour
cannot always be represented through the used propositional modal logic.
Solutions based on real-time temporal logics, as for instance in [119], are not
able to represent the full dynamics of hybrid systems, especially the part of
the behaviour represented by the differential equations.

Model checking techniques based on invariant techniques permit to per-
form the verification without an explicit reachability search; moreover, they
do not need solutions of the differential equations [119, 112]. In [49] the
authors define the fundament for proving temporal specifications of discrete-
time hybrid systems. Checking if a hybrid system from a set of initial states
reaches a predefined set of states is called (in verification) symbolic reacha-
bility analysis. The first model checker to implement this analysis, restricted
to linear hybrid systems is HYTECH [9]. To facilitate this analysis the tool
CHECKMATE [34] computed an overapproximation of the reachable sets
through polyhedral representations. SpaceEX is a tool that implements the
reachability analysis with a scalable approach, capable to analyse a complex
helicopter controller [60]. Flow™* is a tool for modelling and verification of
hybrid systems defined by nonlinear ODEs [33]. The tool computes Taylor
model flowpipes, which are over-approximations of the reachable states in a
step, supporting an adaptive or fixed step size.

One of the first comprehensive formal verification approaches, based on
deductive verification, has been proposed by Platzer [105]. The verification
combines first-order structures, compositional verification logic and proof cal-
culus. The specifications are expressed through first-order logic formulas.
Hybrid systems are modelled as hybrid programs, where discrete and con-
tinuous dynamic interact. The discrete part is constructed with first-order
discrete jump formulas, while the continuous evolutions are first-order dif-
ferential algebraic formulas. The author defines a differential dynamic logic
for the specification and verification of hybrid systems, not limited to linear
systems. The automated and interactive theorem prover KeYmaera [106] is

5.3. FORMAL VERIFICATION OF HYBRID COMPONENTS 111

based on differential dynamic logic and its verification calculus. This ap-
proach can offer a complete verification of the systems; however, it is not a
fully automatic procedure, as for instance the model checking with NuSMV,
and may require certainly specific skills to be used. It would be also difficult
to implement specification patterns or other high-level property specifications
for limiting its overall usability.

Abstraction of the system model is a successful method to reduce the
inherent complexity of the verification. A technique also used for hybrid sys-
tems is predicate abstraction [7, 38], which constructs finite state models from
potentially infinite and complex state systems. The authors of [79] apply an
interval arithmetic for over-approximation of nonlinear hybrid systems. It is
also presented a supporting tool called hydlogic, which introduces Satisfia-
bility Modulo Theories (SMT) for the bounded model checking of nonlinear
systems. With this tool is it possible to verify systems with nonlinear ODEs
and nonlinear guard constraints.

112 CHAPTER 5. VERIFICATION OF FOCUS COMPONENTS

Chapter 6

Modelling Case Study

In order to show the modelling characteristics of our hybrid components and
their simulation, we consider a case study based on the European Train Con-
trol System (ETCS) standard'. We show with this case study the necessity
to extend the Focus theory from discrete time models to continuous ones.
The ETCS works also as collision avoidance protocol, applied with a fully
automated and coordinated movement of trains. The system is influenced
from data provided by trackside infrastructure called Radio Block Centers
(RBC). The train routes are subdivided in tracks, where there is an RBC for
each of it. The position of all trains in a track are monitored by the corre-
spondent RBC, which authorizes the trains to go freely until a stop point,
called End-of-Authority point (EoA).

To avoid that trains go beyond the actual EoA point, each train has an
Automatic Train Protection system (ATP) on-board to monitor such risk. If
the ATP detects a collision with the EoA, it will take control of the speed
system enforcing a break action in order to stop the train ahead of the EoA.
The ETCS has different levels of application; in level three, the EoAs are
moved forward, as soon as a safe distance between the train ahead and the
successor train is reached. The traditional method for the collision avoidance
implements interlocking principles, which are based on static partitions of the
tracks into blocks, where the trains can move following interlocking protocols.
Instead the ETCS is based on a "moving block principle”; where the RBCs
protects each train along the route. In case, that the EoA is a railroad
crossing the train has to lock the railroad crossing before the train will reach
this point.

We build our model using a variant of the ETCS level three protocol, pre-

http://www.era.europa.eu

113

http://www.era.europa.eu

114 CHAPTER 6. MODELLING CASE STUDY

sented by Damm et al. [48] for introducing their formal verification method-
ology. They extended the protocol protecting track segments in case a train
moves into a segment before getting the permission. The system dynamics is
modelled in MATLAB Simulink. The model of the dynamics is subdivided
in three parts: mechanical transition, outer conditions, and the control part
of the ETCS protocol, all modelled in Stateflow.

We build our case study based on these mentioned models. We construct
the system with Focus hybrid components. A state machine defines the
internal behaviour of each component and i/o channels handle the intra-
component communication. Both the automaton and the streams may have
discrete or continuous behaviour, showing the hybrid nature of the case study.
In this chapter we want to achieve the following goals: (i) provide a suffi-
ciently complex example, where is it possible to show a complete architecture
of hybrid components and their interfaces; (ii) show the necessity and oppor-
tunity to have discrete and continuous streams with different scopes; (iii)
provide a running example of our dynamic sampling solutions; and (iv) build
a logical description of systems that can be understood by experts of different
disciplines.

6.1 Modelling of the ETCS

In ETCS level 3, trains move in safe blocks through an automatic and decen-
tralized interlocking scheme, where each RBC controls its block with a radio
based control system. The train movements in a territory, subdivided into a
fixed number of track segments, are supervised and controlled by an RBC.
Trains can move freely until the end of movement authority (EoA) through
the authorisation of the RBC. At each point of time, there exists an EoA,
which may be the end of a track segment, an unsafe point, or the end of a
train that is ahead. This way a safety block surrounding the train is defined.
In practice, this moving system dynamically resets the track behind the train.
In Figure 6.1, there is a graphical representation of the ETCS protocol. The
variables for the distances are explained in the following models. The picture
shows a scenario where the EoA ahead of the train is a railroad crossing. We
model the control part of the ETCS using four FOCcUs components (see Fig-
ure 6.2), some of them requiring a continuous update of variables thus being
are hybrid components. In the following figures, the discrete channels are
coloured in black, while the continuous are in blue. The component whose
automata have states with continuous dynamic are in blue, while the other
components are in grey.

6.1. MODELLING OF THE ETCS 115

Train I | |

req_next_eoa_point brake point Rail m?d
Crossing

Figure 6.1: Schematic representation of the ETCS System.

6.1.1 RBC Request

The first component represents the RBC Request for communication between
the train and the RBC and is presented in Figure 6.3. The internal state
machine has an initial state that is only left if on the input channel active an
activation message is sent. This means that this ETCS supervises the train.
When this transition is fired, the output channels train_pos and train_id are
set respectively to the current train position p and the id of the controlled
train. At the same time a request for a new EoA is sent to the RBC, a timer
is reset and the state machine evolves in the rbc_send state. In this state
through the loop transition, a request is transmitted again after the time
interval of a transmit action but before the maximal time has been reached.
The rbc_wait state is reached and a brake service message with the output
message brake_req := Present is sent, if no message is received before the
maximal delay period. The message will be read from the move component,
described in the following sections. If an acknowledge is received before the
upper bound the other transition to the rbc_wait state is explored, and a
request message through the output channel calc_req is sent. In the rbc_wait
state there is only one transition that is taken, after the active message from
the input channel next_eoa_req and at the same time in the output port
an activation message eoa_req is received. With this transition, the system
produces a request for travelling to the next segment, which will be sent to

116 CHAPTER 6. MODELLING CASE STUDY

Automatic

Train

System

active
rbc_ack
9 > train_curr_eoa
train_eoa
= RBC Request | brake_req RBC Systems
train_id
\ train_info train_pos

eoa_req

next_eoa_req calc_req
4

Train Sensors,
Commands brake_req
and

o anen comm_cross_lock_req, lock_sent_out

req_next_eoa_point
cross_p

halt_req

— next_eoa_req brake_req ’7

e

safe Railroad Crossing

Rail-Road Crossing com_cross._req Communication

Figure 6.2: ETCS system in the train modelled in Focus.

the RBC in the output port train_curr_eoa. The request to the RBC is made
with the following output messages as parameters: the current position of
the train train_pos, the current EoA train_curr_eoa and the train id train_id.
The new EoA will be calculated by the RBC considering the current train
position, the current EoA and the positions of possible other trains ahead.

Continuous Dynamic The only element elaborated in continuous time is
the input port p for the actual train position.

6.1.2 Railroad Crossing Communication

The second component represents the communication between the train and
a railroad crossing. The component and the behavioural state machine are
in Figure 6.4. From the initial state the transition to the state z_com_point
is fired, if there is an activation message in the input channel x_cross_lock.
This means that there is the necessity to activate the railroad crossing and
a lock message is sent to the output port com_cross_req. In the z_com_point
state, the transition to the safe state is fired if the train has not reached

6.1. MODELLING OF THE ETCS 117

rbc_ack

=", RBC Request [time < (train_info.send_delay * 10) &
rbc_ack == present] eoa_req
[(time > (train_info.send_delay * 10)) & calc_req := present

train_pos

train_eoa | (time < (train_info.max_send_delay * 10))]
S

——» €0a_req:= present
next_eoa_req | time:=time+1
R

active
- \
p

train_curr_eoa

RBC_wait
—————»
RBC_send

train_id

T — e

. _
o inf E_a‘:t“_’f 0 present] [time > (train_info.max_send_delay * 10)
train_info =0 brake_req := present
train_pos:= p

train_id := train_info.id
eoa_req:= present

[next_eoa_req == present] calc_req
train_pos:= p
train_curr_eoa:= train_eoa
Var train_id:.=_train_info.id brake_req
time eoa_req:= present -
time:=0 ——

Figure 6.3: Component for the communication between train and RBC unit.

the start of communication point to rbe, req_next_eoa_point, and the level
crossing has communicated the safe message through the input channel safe.
With this transition, a new EoA from the RBC is requested and the local
variable lock_sent is set to one indicating that the train has already sent a
lock message to the railroad crossing. If in the z_com_point state the train
is behind the start of communication to RBC point and there is an unsafe
message in the input channel safe, then the transition to the unsafe state is
fired and a brake message is transmitted to the move component. There is
only one possibility to leave the unsafe state, that is, by switching off the
automatic mode of the train, therefore this state is a blocking state in our
model. The transition to leave the safe state is fired if the train position is
behind the position of the railroad crossing. With this transition an unlock
message to the railroad crossing is transmitted. This way the init state is
reached again, being ready for the next request.

Continuous Dynamic There are two input channels with a continuous
dynamic, which represent the train position and the point to initialize the
request for a new EoA.

118 CHAPTER 6. MODELLING CASE STUDY

[p > cross_p]

req_next_eoa_point Railroad Crossing com_cross_req := unlock com_cross_req
——» Communication —
P brake_req
]
>
cross_p
— i next_eoa_req
p <req_next_eoa_point && safe == 1 && lock_sent==0]
com_cross_lock_req c_m:=1 =
_— next_eoa_req:=present
safe
—>

lock_sent_out
E—

[com_cross_lock_req == present]
com_cross_req := lock

lock_sent:=lock_sent_out [p > cross_p && safe ==0]

brake_req = present

Var
lock_sent

Figure 6.4: Component for the communication between the train and railroad
crossing component.

6.1.3 Brake Point Calculation

This component is crucial for the safety of the train movement, as performs
the calculation of the brake point. The component is depicted in Figure
6.5. There is only one continuous state brake_point, where the variables
brake_point and lock_req_point, and the output channel req_next_eoa_point
are elaborated, through linear differential equations and updated every time
the state is active. The variable brake_point is the point in which the service
brake is initialized. This point has to be updated constantly in order to ensure
safe breaking, and guarantee that the train will stop before the EoA point.
The current speed of the train and the deceleration produced by the brake
determine the safe distance. At every time interval the point in which the
brake has to be activated is calculated, as modelled in [48], by the equation:

1.1-2?
2-b

in the formula v is the current speed of the train and b is the deceleration of
the service brake. To guarantee a 10% of safety margin it is multiplied by
the factor 1.1. In the scenario, the train will not brake at every EoA, because
it asks the RBC for a new EoA before entering the breaking mode. In order
to obtain this situation, the request should be sent in advance enough to
avoiding the breaking initialization at point brake_point.

brake_point = FoA —

6.1. MODELLING OF THE ETCS 119

P

—

v Brake Point Calculation
—
[xcross==1 && p < brake_point && p<lock_req_point]
[calc_req == present] drive_req := present B
calc_req XCross:=is_xcross(p) [p >= brake_point]

cross_p:=fcross_p(p) brake_req:=present

—
next_eoa_sent:=0

reset lock_sent:=0

7 @

[halt_req == present]

brake_point state

halt_req
— brake_point:=rbc_eoa — 1.1 * v*2 / (2*t_info.b)
B req_next_eoa_point:=brake_point-2.1*max_send_delay*v
train_eoa lock_req_point:=req_next_eoa_point-2.1 *
— (t_info.x_time*v+t_info.max_send_delay*v)
train_info

[reset == present]
next_eoa_req:= present

—
Var
lock_sent
next_eoa_sent
XCross
lock_req_point
brake_point

®

[xcross == 0 && p < brake_point && p < req_next_eoa_point]
drive_req := present

[p >= req_next_eoa_point && xcross ==
&8& p < brake_point && next_eoa_sent ==0]
next_eoa_sent :=1

next_eoa_req:= present

®

[xcross ==1 && p > lock_req_point && lock_sent ==0]
lock_sent:=1

comm_cross_lock_req:= present
lock_sent_out:=lock_sent

next_eoa_req

L - - .
drive_req

L - .
brake_req
L .

comm_cross_lock_req
L

lock_sent_out
>

cross_p
R
req_next_eoa_point
L - - -,

Figure 6.5: Component for the calculation of the train brake point.

The time for sending a new request is calculated considering the maximal
send delay to the RBC and the response time to a request. So the point is
calculated from the point to initialize the brake minus two times the delay
for the velocity of the train:

req_next_eoa_point = brake_point — 2.1 - max_send_delay - v

The variable lock_req_point is the point to initialise a lock request to a railroad
crossing:

lock_req_point = req_next_eoa_point—2.1-(train_in fo.x_time+maz_send_delay)-v

The field 2_time from the input port train_info represents the time to set up
the railroad crossing in a safe state. In fact if the EoA is a railroad crossing
the train has to lock the crossing point in time, so it has to send a lock
request and receive an acknowledge. This scenario is shown in Figure 6.1.
The acknowledge from the Communication Railroad Crossing component is
received in the safe input channel. Afterwards a new EoA is requested.

Transition number one is fired after an EoA message is received from
the RBC. In this transition two local variables for counting the messages
sent to the RBC and to the railroad crossing, respectively nezt_eoa_sent and
lock_sent are initialized. The information if a railroad crossing is ahead of
the train position p is initialized in the local variable zcross. Likewise, the

120 CHAPTER 6. MODELLING CASE STUDY

position of the crossing is copied to the local variable cross_p from a function
defined in the data dictionary. Transition number two is taken if there is
an input message on the channel reset and a new EoA point is requested.
The same request is sent in the transition number three, which is fired if the
train has passed the point for an EoA-request and its position is before the
point to start the service brake. If the train position is beyond to initialize
a lock request (lock_req_point) and a railroad crossing is ahead the train,
then transition number four is executed, where a request for a lock is sent to
the railroad crossing. Transition number five sends a drive message to the
component train movement to change the driving mode of the train. This
transition is fired if no railroad is ahead of the train, the train has passed
the position for starting the service brake, and the train has not yet reached
the point for committing an EoA-request. Through transition number six,
the state break_point is left and state halt will be enabled. This transition
occurs if there is an emergency signal in the input port halt_req forcing a
brake of the train. Transition number seven is fired if the train has passed
the point to initialize the break point and therefore a request for the service
brake is generated. Finally, transition number eight is executed if there is a
rail crossing ahead of the train and a request for changing the drive mode to
the component train movement is sent.

Continuous Dynamic This component has two continuous input chan-
nels for the position and velocity of the train, and one output channel that
is the position to initialize a new EoA-request. In this component, we intro-
duce continuous states that perform a set of linear differential equations in
continuous local variables or output streams if they are active. Otherwise,
the correspondent output channels produce no value and the local continuous
variables are not modified. As explained in the previous section, the state
break_point has three differential equations to calculate the three positions
used from the system. These points are important and critical for the safety
of the train and its passengers, because they are used, to determine the right
point of initialization of the service brake.

6.1.4 Train Movement

The train movement component is responsible to control for the train velocity
(see Figure 6.6). At start of the execution, variable old_v_d is set to zero. This
variable holds the previous value of the desired speed. Transition number
one is fired if an activation message is received at input port drive_req. Then
the local variable drive_control, used for the drive control, is set to “on”, the

6.1. MODELLING OF THE ETCS 121

P c
— Train Movement_ Var
v [drive_req == present] drive control halt_req
drive_control:=1 vd »
old v_d:=0 v_d:=req_speed(p) sb_c
drive_req @ slope:=req_slope(p) [old_v_d ~=v_d] eb c
. slope
old v_d
brake_req set v d
> [set_v_d ==0] v_calculated
. set_v_d:=1 -
train_eoa old v d:=v.d
—
train_info
E——

[drive_req == present]
v_d:=req_speed(p) lvevd
slope:=req_slope(p) SQVE_—_CO°””°|-=1

[v>=v_d&&
v< 1.05 * v_d]

frive_control::o

[v>11*v_d&&
[brake_req == present] sb_c==0]
drive_control =0 drive_control:=0
sb_c=1 sb_c=1

[v<=v_s]
sb_c:=0

®

[brake_req == present]

drive_control := 0
sb_c=1 @

[sb_c==18&&v>1.5*v_d]
drive_control:=0

sb_c:=0

eb_c:=1

halt_req:= present

init_brake
v_calculated:=sqrt(1.1*rbc_eoa-p)*2*t_info.b/1.1

[v>1.1*v_calculated]
sb_c=0

eb_c:=1

halt_req:= present

Figure 6.6: Component for the control of the train movement.

desired speed at the actual position is set in v_d, and the gradient of this track
segment is set in slope. Both values are returned from the data dictionary.
From this transition the automata evolves to the change state. In this state
if the current desired speed is not equal to the previous value the transition
number two to state switch is fired. This situation is marked with a reset
of the variable set_v_d, which implies transition number three to state mowe,
where the new value of the current desired speed is defined. Transition four
to state move is fired if there is no variation of the desired speed.

In the move state, the train speed is handled. In fact, transition number
eight is enabled if the current speed is below the desired speed, so the drive
mode is switched on and the service brake is disabled. If the speed is equal
or greater but not more than 5% over the desired speed, the drive mode is
disabled and transition seven is taken. Transition six is enabled if the velocity
is greater than 110% of the desired speed and if the breaking mode is not

122 CHAPTER 6. MODELLING CASE STUDY

enabled. Then with the activation of this transition, the driving mode is
disabled and the service brake mode is enabled.

These last three transitions lead to the cont state. Transition thirteen
from this state to state change is activated, if from the channel drive_req
an activation message is received, also the slope and the desired speed are
updated. With a brake_req message transition ten is taken. This way is set
the breaking mode and init_break state is reached.

When the velocity is greater than 150% of the desired speed and the
emergency brake mode is enabled then the transition five is fired. Thus, the
state machine changes from state mowve to halt state and a halt message to
the component brake point calculation is sent.

From the change state, transition twelve to the state wnit_brake is acti-
vated if the component receives an activation message in the input channel
brake_req. Then the drive mode, storing zero in the variable drive_control, is
disabled and the service brake mode switching on the variable sb_c is enabled.

The init_break state is a continuous state, which has a differential equation
associated to the variable v_calculated. This variable contains the calculated
speed to guarantee the breaking curve. If v_calculated is greater or equal
than the current speed transition eleven to the change state is fired and the
service brake mode is disabled. Otherwise if v_calculated is lower than the
current speed transition nine is active, then the emergency brake mode is
activated and the halt state is reached. At the same time, the emergency
brake situation is communicated to the calculation brake point component.

Continuous Dynamic This component has two continuous input channels
for the train position and speed, as other components. In the state init_break,
the speed for controlling the breaking action of the service brake is calculated
with a differential equation and in case the train speed is still too high, the
emergency brake is activated.

6.2 Dynamic Sampling of the ETCS

In Chapter 4, we presented dynamic sampling solutions to simulate hybrid
components in AutoFocus 3. To show a practical application of such sam-
pling techniques, we consider the component Train Movement (explained in
Section 6.1.4). The state init_brake calculates the continuous internal variable
v_calculated. When the effective train speed is greater than this calculated
speed plus 10%, the train will be slowed down with the emergency break. We

6.3. FORMAL VERIFICATION OF THE ETCS 123

consider a simulation of this component in this state based on the concepts
presented in Chapter 4. The discretization is implemented by approximating
the continuous variable with the Runge-Kutta method. The period varies
according to the two introduced methods.

The variable v_calculated is differentiated using the actual measured speed
of the train and we consider how the dynamic sampling might approximate
its values. We take the period variation based on the gradient to considera-
tion and we show how can help the precision of the discretization. Between
two simulation steps, the speed of the train may increase considerably or the
speed sensor may have a delay to update its increasing value. In this case,
a slope variation greater than the acceptance value determines the reduc-
tion of the sampling period; therefore, the component calculates more values
of the variable v_calculated in the same time interval. As consequence, the
guard of transition 9 is controlled more often and the component can signalise
promptly an emergency going to the state halt. This adaptivity is an advan-
tage of our dynamic sampling simulation over a static one. In addition, the
sampling approach based on critical intervals can also guarantee an adapt-
able precision of the simulation. In this case, critical intervals are modelled.
When the variable reaches a critical interval, corresponding for instance to a
high not usual speed, then the period is set to a predefined value. Again, this
value guarantees a fast response of the controller to a dangerous situation,
activating in time the emergency brake.

6.3 Formal Verification of the ETCS

We presented a simple train controller in Section 3.4.3, which is a simplified
version of the case study presented in this chapter. We translate the depicted
hybrid component in Figure 3.6 of such a controller in to a HyDI program
and we verify it with the first public release of the HyCOMP model checker
(version number 1.0). The behaviour of this hybrid i/o state machine results
in a compact HyDI program. As explained in the precedent chapter we
convert each hybrid component to a HyDI module. Since our example has
only one component, we have the main module and the brake_controller_type
module. We report in the Listing 6.1 the resulting HyDI program.

124 CHAPTER 6. MODELLING CASE STUDY

Listing 6.1: HyDI program corresponding to the hybrid i/o state machine
presented by the train brake controller case study (cf. Section 3.4.3).

MODULE main

VAR breakPoint : —1..5000;
VAR brake_controller: brake_controller_type(breakPoint);

INVARSPEC NAME BRAKE.CONTROL := !(brake_controller.state !=
acceleration & brake_controller.a > 0);

MODULE brake_controller_type (s)

VAR state: {acceleration, brake, constant_speed };
VAR a: real; — Acceleration is in m/s "2
VAR z: continuous;

VAR v: continuous;

INIT
state=acceleration & a = 0.0003 & z =0 & v = 0

DEFINE
MaxSpeed := 0.0833333333; — MaxSpeed is in m/s (300 km/h)

INVAR
(v >= 0) & (v <= MaxSpeed);

TRANS

state=acceleration & ((z >= s) & (s 1= -1)) —
(next(state) = brake) & (next(a) = —0.0005) &
(next(v) = v) & (next(z) = z);

TRANS

state=acceleration & (v >= MaxSpeed) —>
(next(state) = constant_speed) & (next(a) = 0.0) &
(next(v) = v) & (next(z) = z);

TRANS

state=acceleration & (!((z>=s) & (s = —-1)) &
(v = MaxSpeed)) —> (mnext(state) = state) &
(next(a) = a) & (next(v) = v) & (next(z) = z);

6.3. FORMAL VERIFICATION OF THE ETCS 125

TRANS

state=constant_speed & ((z >=s) & (s = =1) & (v > 0)) —
(next(state) = brake) & (next(a) = —0.0005) &
(next(v) = v) & (next(z) = z);

TRANS

state=constant_speed & ((v = 0) & (s = —-1)) —
(next(state) = acceleration) & (next(a) = 0.0003)
& (next(v) = v) & (next(z) = z);

TRANS

state=constant_speed & (!((z >=s) & (s != =1) & (v > 0))
& 1((v=10) & (s = —1))) = (next(state) = state) &
(next(a) = a) & (next(v) = v) & (next(z) = z);

TRANS

state=brake & (s —1) — (next(state) = acceleration) &
(next(a) = 0.0003) & (next(v) = v) & (next(z) = z);

TRANS

state=brake & (v = 0) —> (next(state) = constant_speed) &
(next(a) = 0.0) & (next(v) = v) & (next(z) = z);

TRANS

state=brake & (!(v =10) & (s =
(next(state) = state) & (next
(next(v) = v) & (next(z) = z)

HOW
der(v) = a & der(z) = v;

The main module encapsulates the brake_controller module in order to con-
tain and instantiate input variables of the modules at the highest hierarchy,
which represent the input channels of the components in the original Focus
model. In fact, the brake_controller module has a parameter that corresponds
to the input channel s, the break point constantly communicated from the
railway control system. We instantiate in the main module the integer vari-
able breakPoint, with an interval of values between —1 and 5000. In the
verification phase, HyCOMP will execute the component with all the val-
ues in this interval. The output variables a, z, and v, and the states of the
automaton are defined as variables with the keyword VAR and the initial
state is defined with the expression after the keyword INIT. We define with
INV AR the invariants to express the physical limits of the train speed and
that are the state invariants in the i/o Focus hybrid state machine. The
transitions of the automaton and the update of the state are defined with the
keyword TRANS. The evolutions of the continuous variables are specified

126 CHAPTER 6. MODELLING CASE STUDY

with FLOW | where the operator der is the derivative of the variable passed
as parameter. We specify an invariant in the main module with the keyword
INVARSPEC, which imposes that the acceleration variable ”a” can have
a positive value only if the actual state of the hybrid i/o state machine is
the acceleration state. We verified the invariant of this HyDI program with
HyCOMP 1.0 in circa eight minutes using a computer with an Intel Core i7-
2720QM processor and 8 GB ram memory. Unfortunately, the actual version
of HyCOMP was not stable enough to verify LTL formulas.

In Section 4.4.1.1, we modelled this simple train controller in a seman-
tic equivalent model with MSS to evaluate our sampling algorithms. MSS
integrates a formal verification environment, called Simulink Design Verifier
(SDV), which offers exhaustive formal analysis of Simulink models with re-
spect to specified assertions. We tried to verify the Simulink model of the
brake controller with SDV executing a predefined compatibility test. We got
an error message, because the model is not verifiable, since SDV does not sup-
port models that contain continuous-time integrator blocks. We used them
to model the differential equations contained in the state machine. It seems
that the verification process is dependent of the chosen sampling algorithm.
Instead, HyCOMP proves HyDI programs representing i/o Focus hybrid
state machines independently from its sampling process only considering the
model execution in continuous time.

6.4 Conclusions

Continuous Dynamic In this case study we have introduced continuous
streams and states, as new modelling elements for the discrete models defined
in Focus. The theoretical foundation of such extensions are explained in
Chapter 3. If we would have modelled only discrete the presented ETCS
system fragment, it would have the following problems.

e Without continuous streams: it would be necessary to have a suitable
value in milliseconds for the execution of a step action. This time must
be enough long to avoid a dangerous delay in the handling of safety
control, for instance the control for the activation of the emergency
brake. In this way if there will be other requirements the discrete
execution step should be again adjusted. However, that could lead to
problems of different versions of the same model with different length
of the execution step. With a very short step duration, it may be that
other components do not need this simulation precision.

6.4. CONCLUSIONS 127

e Without continuous states: the elaboration through differential equa-
tions are replaced by a sort of discrete differential equations to be per-
formed when the state is active. The elaboration of these equations
will be also dependent on the discrete execution step, which has the
same limitations explained in the precedent paragraph.

If we consider these problems, an extended modelling theory with con-
tinuous states and streams is more versatile and convenient, in a clear rep-
resentation, modification and execution of the systems. We consider these
extensions in the FOCUS modelling theory as a first step towards an inte-
grated interdisciplinary design of CPSs.

Discrete Abstraction An advantage of our modelling concept is that we
could abstract the model constructed without showing the continuous details.
We can define a complete discrete view of the system, as for instance the
model in Figure 6.2, just considering the components and the channels as
discrete units. This way, the users can have a representation of the system
through the components and their port connections, which represent the
behaviour without showing the continuous state and variables inside the state
machines and considering the streams as discrete. It is also possible to define
requirements on the i/o streams, without considering the internal continuous
dynamic.

Dynamic Sampling and Verification In Chapter 4, we studied sam-
pling algorithms to adapt the granularity of the step to the behaviour of
the continuous equations dynamically. We propose a dynamic sampling so-
lution with approximation of differential equations that is thought for the
modelling theory FOCUS and its implementation in the tool AutoFocus 3.
We showed in this case study an example of hybrid component architecture
and we made some considerations about its simulation in Section 6.2. The
results that could provide our sampling algorithms encourages an integration
of such solutions in AutoFocus 3.

Formal verification is another important aspect of the system design. In
Section 6.3, we presented the automatic verification of a simplified component
of the ETCS model. We could verify invariants, meanwhile the same model
cannot be checked in MSS. The presented verification of hybrid components
can also be easily implemented in AutoFocus 3, since we already provided
a user-friendly integration of SMV/NuSMV for discrete time models and
HyCOMP is part of the same family of model checkers.

128 CHAPTER 6. MODELLING CASE STUDY

Next Steps We specified the theory in Section 3 behind the continu-
ous time and date extension for Focus, we showed in this section a case
study with this principle applied, in the modelling, simulation and verifi-
cation phases. These concepts are conceived to be put into practice in an
implementation in the tool AutoFocus 3. The introduction in the mod-
elling environment of the tool is an implementation issue; meanwhile more
challenging topics are simulation and verification of the models.

Chapter 7

Conclusion

We presented an approach that comprises modelling, verification and simula-
tion aspects for embedded and hybrid systems. We established our concepts
over the modelling theory FoCUs, providing an extension that aims improv-
ing the support for modelling, simulation and verification of CPSs. We are
aware of the intrinsic difficulties in a synthesis of a suitable modelling the-
ory with formal verification capabilities for a complex domain as for CPSs.
In fact, the design of these systems involves more disciplines and is strictly
linked to the technical level and the hardware implementation.

The Focus theory has been conceived mainly for representing a system
in formal models that are part of its logical viewpoint. In fact we refer to
the SPES framework, where the development of systems is subdivided in dif-
ferent views or representations, namely the requirements, functional, logical
and technical (Section 2.4). Our work focuses on the logical level, trying
to propose a model representation that could be used by different experts
involved in the design, such as computer scientists, electrical engineers, and
mechanical engineers. The modelled system in the logical representation
contains already behavioural characteristics, a system structure with typed
interfaces, both being derived directly from the requirements and functional
views. In some sense, we abstract in the logical view technical details and
therefore the complex integration between the involved disciplines. The log-
ical models have an important role in system engineering, since they permit
the simulation of the behaviour of the system as well as its formal verification
and validation. It is an important advantage that we can verify requirements
and properties of the system, without the necessity to have already the final
hardware implementation. This way the development life cycle is more effec-
tive and bugs can be detected earlier. In fact, changes in the logical models
can be implemented more easily and cheaper than when it is discovered at the

129

130 CHAPTER 7. CONCLUSION

technical representation. For these reasons, our work focuses on improving
the artefacts of the logical view.

The presentation of our results starts with theory fundamentals, where
we presented a brief classification of the systems, their development life cycle,
and our methodology for the design of embedded systems. The Focus the-
ory was designed originally for discrete components that operate in discrete
time. We explained the basic elements that constitute the Focus theory, es-
tablished in an embedded systems formalism. In the cyber-physical domain
the involved physical components, the environment and the time precision
may not have an optimal representation with discrete components and may
require a continuous time and data type precision. Some systems can be
represented with discrete FOCUS components because we can abstract the
continuous dynamic of the system in discrete time. However, there are sys-
tems, especially safety-critical systems, which require continuous modelling
artefacts and capabilities for their logical representation. For instance, the
case study about a train system controller discussed in Chapter 6 requires
differential equations to simulate and verify the reaction of the train with
sufficient accuracy. Therefore, we extended the behaviour of the Focus
components introducing differential equations and continuous variables. In
computer science, there is a well-known formalism, which is used for defining
systems with discrete and continuous dynamics. Based on these modelling
structures we developed our notion of hybrid components. We defined hybrid
i/o state machines as logical behaviour for Focus hybrid components. We
extended the FOCUS models to obtain a more precise and better representa-
tion of CPSs, while using the streams theory, the abstraction and modularity
of components available in Focus. We implement structure, interface and
behaviour of the developed systems making it possible to simulate them.
We studied the possibilities for a suitable simulation framework, and used
AutoFocus 3 as a tool for demonstration. Since a full continuous simula-
tion is too complex, we have studied sampling algorithms for the variables
used in hybrid components. We believe that the precision of the sampling
algorithm should be adapted to the necessities at run-time, therefore we in-
troduced dynamic sampling solutions. We implemented and performed some
preliminary tests of our sampling algorithms. Another important aspect of
our models is the possibility of a formal verification based on model check-
ing. Based on concepts already implemented for model checking of discrete
systems, we worked towards an extension of the same concepts for the hybrid
components.

7.1. CONTRIBUTIONS 131

7.1 Contributions

Modelling. The first step of our work is the definition of the foundations
to be used to model formally CPSs. As introduced with our methodology
(cf. Section 2.4), there are different representations of the same system un-
der development. The FOCUS models of our approach are used for a logical
description of systems, which is usually preceded by requirements and func-
tional representations, and is followed by an implementation or technical
description. The contribution of this work is to extend the Focus mod-
elling theory to support CPSs. We modify the well known hybrid automata
paradigm as implementation for hybrid FOCUS components, in order to sup-
port continuous time and data. We defined hybrid components with the
aim to provide a logical representation of the system that could be used and
understood not only by computer scientists, but also by electrical and me-
chanical engineers. Since CPSs involve different fields of expertise, a goal
of system engineering is to provide a logical representation of the system,
which defines behaviour, structure, and clear interfaces as soon as possible
in the development life cycle. The introduced models can be simulated and
verified without the necessity of final implementation details. This way, we
want to limit problems that may occur at the integration phase, when the
artefacts produced by different domain experts are integrated to form a com-
plete system. We provide a sort of free logical language that can be used for
important aspects in the development such as design, simulation, and formal
verification of system properties.

Real-time simulation and sampling. We studied the execution in con-
tinuous time of variables guided by differential equations and their simulation
in a modelling tool like AutoFocus 3. There are difficulties to guarantee a
full continuous simulation of hybrid systems, due to the intrinsic complex-
ity to handle differential equations over continuous variables in a reasonable
time. In fact, with a high number of variables, the complexity of the dif-
ferential equations increases and it becomes difficult to provide a real-time
precise simulation, since most computers do not have enough computation
resources. Furthermore, a system modelled with hybrid components might
for instance represent control software for embedded systems, so the final
real-time execution will be performed again in a discrete time environment.

A well-known solution in literature are sampling algorithms. In practice,
a variable that evolves its values in continuous time is sampled assuming a
value only in discrete time. The time between a sampled variable value and
the next value is called period. If the period remains constant during the

132 CHAPTER 7. CONCLUSION

sampling, we speak of static sampling; otherwise, if the period can vary we
speak of dynamic sampling. We studied a dynamic sampling approach for
hybrid components, because we believe that the sampling algorithm has to
increase or decrease the period length, to increase the precision of the sim-
ulation according to runtime needs. Therefore, we developed two different
solutions for adjusting the change of the period length: one based on the gra-
dient calculated between the actual and the precedent value of the variables;
and another based on some predefined critical intervals for the values of the
variables, that is, when a variable is in a critical interval then the period
must be equal or smaller to a correspondent predefined acceptance period.
With both solutions, a change of the period can increment or decrement its
length.

The first solution tries to follow the sudden changes of the values of the
variables. They might happen for two reasons: the new differential equation
associated to the variable with respect to the old equation at the precedent
elaboration step, when the automaton changes its discrete state; or a rapid
change of the values of the variable with the same differential equation. In
both cases, we provide a shorter period in order to have more sampled values
and therefore more precision. When the gradient is stable again, the period
can be incremented. In the second solution, when the value of a variable is
in a predefined critical interval, the period is set to a correspondent value
associated to each critical interval. When the variable is not in the critical
interval any more, the period might be set again to a longer value. The dy-
namic sampling is applied to each variable of the component and the shortest
required period is taken. We analysed the impact of the dynamic sampling
in a model with an architecture of interconnected components. In this case,
a component can propagate the need for a shorter period to other compo-
nents connected to its input ports. In fact, these components have to set
their period in order to guarantee, for the variables associated with the in-
volved output ports, a sampling period that provides enough input values for
the period of the receiving component. We implemented prototypically our
sampling solutions using MATLAB and we executed preliminary tests. We
compared our solutions with sampling algorithms in the industrial standard
for model-based design of embedded systems: MATLAB Simulink /Stateflow
(MSS). The tests show that our solutions have better time performance and
a more stable execution, because the adaptation of the period length is not
based on the error minimization of differential equations. In some scenar-
ios, where time performance is more important than the precision of the
simulation, our solutions can be preferred. More important is that in our
solutions it is possible to specify the desired precision of the simulation in re-

7.1. CONTRIBUTIONS 133

gions of interest. Unfortunately, to the best of our knowledge we did not find
benchmark sets specific for dynamic sampling algorithms. Furthermore is
not possible to execute a customized sampling algorithm in the Simulink/S-
tateflow environment, but only in the MATLAB environment. Therefore,
it was not possible to test the algorithms with Simulink/Stateflow models.
In our approaches, setting the period length and its adaptation mechanisms
can be done directly through specifying desired simulation situations. For
instance, a system validation can be done specifying the desired precision of
the simulation for the error states or events of the system. These parameters
could be directly derived from system requirements.

Integration and study of formal verification techniques. In the de-
velopment life cycle of hardware and software systems, a fundamental phase
is verification. It is particularly important for CPSs, since they are often
used in safety-critical domains. As explained in Chapter 5 there is a wide
spectrum of different analysis techniques conceived for specific development
phases or system domains. In this work, we considered and studied model
checking techniques to achieve full automatic and exhaustive verification.
Model checking is a formal technique based on rigorous mathematical foun-
dations, which is not easy for the non-expert to handle. Anyway, for an
optimal development environment, we need an automatic verification tech-
nique for seamless integration in the modelling tools and without complicated
usage.

In order to overcome this problem we implemented a holistic and user-
friendly verification environment with focus on the integration in the mod-
elling tool AutoFocus 3. We integrated the model checker SMV/NuSMV in
the modelling tool together with different property specification concepts, to
help the user expressing the system properties. We support specification pat-
terns, an assertion language, and property specification based on templates
adapted from the model artefacts. Moreover, we include back-translation of
counterexamples to the model level, e.g., counterexamples can be examined
step by step in the AutoFocus 3 simulator. Our goal was to render model
checking usable not only by skilled developers. In addition, we believe that
a strong integration of formal verification in model-based development is an
advantage. In our modelling tool AutoFocus 3, we implemented this ap-
proach for models that are executed in discrete time steps. Then we studied
and tested a similar support of formal verification for the introduced hybrid
components. The synchronous semantics of the SMV/NuSMV modules is
an excellent representation for the AutoFocus components. Therefore, we
considered extensions of NuSMV for hybrid systems with the model checker

134 CHAPTER 7. CONCLUSION

HyCOMP based on the HyDI language. HyDI is a language that adds sup-
port for continuous variables and variable derivatives in the next state as-
signments, which represents a suitable model for hybrid components. We
adapted the semantics of HyDI to hybrid systems, because it originally did
not support hierarchical module definitions and executed the processes in
one program asynchronously. The verification in HyDI is enabled through
an SMT Solver that verifies invariants over the variables and states of the
system. With the semantic correspondence between HyDI programs and hy-
brid components, we wanted to offer the same verification capabilities. We
verified with HyCOMP formal assertions over continuous variables in a HyDI
program derived from a hybrid i/o state machine in Focus. The same sys-
tem modelled in Simulink/Stateflow was not verifiable by Simulink Design
Verifier, because this integrated verifier does not support models that contain
continuous-time integrator blocks.

7.2 Outlook and Future Work

This work establishes a foundation for comprehensive modelling and verifica-
tion of CPSs. We aimed at solving criticalities with the development of these
systems, essentially introducing and adapting model-based design concepts.
One crucial point is to introduce these concepts not only for computer sci-
entists, but also for other experts, as for instance electronics and mechanical
engineers. This interdisciplinary nature of CPSs guarantees a wide spectrum
of future evolutions for our contribution.

Modelling and Dynamic Sampling. The proposed extension of the Fo-
CcUS models can be considered as a first step for an integrated interdisciplinary
design of CPSs. This logical representation is mainly conceived for control
software components of CPSs. Further evolutions of the presented formal
modelling theory are for instance the introduction of the support for product
lines or instantiation of predefined modules/components. To improve the in-
terdisciplinary of the models, the support for specific energy or material flows
between the model parts/components is of particular interest. Through case
studies and feedback from different discipline experts, it should to be ex-
amined whether the introduced models are valid logical representations or
whether extra characteristics are needed, which are not considered yet.

A problem to be addressed in the final implementation of our sampling
algorithms is the set of adequate periods at run-time in a network of com-
ponents, the lack of benchmark sets as well as the difficulties to evaluate

7.2. OUTLOOK AND FUTURE WORK 135

them. Industrial case studies need to be performed to prove our approaches
and define eventually better heuristics. It would also be advantageous to
execute these cases not only in MATLAB but also in the AutoFocus 3 tool.
Therefore, the realization of an implementation of our dynamic sampling
algorithms in AutoFocus 3 will be a fundamental topic.

Formal Verification. We provided a semantical correspondence between
HyDI programs and Focus hybrid components, and executed preliminary
tests to verify assertions through SMT solving. A modification of HyCOMP
to support hybrid components according to the provided semantics, the res-
olution of some limitations of the actual implementation, and an integration
in a supporting tool as e.g. AutoFocus 3 are beneficial. These steps would
be necessary to obtain an integrated modelling and verification environment.

(Semi-)Automatic Determination of Dynamic Sampling Parame-
ters. It will be interesting also to use the HyCOMP verification process to
determine acceptance values for the sampling based on gradients. For in-
stance in order to find automatically the most convenient acceptance value
for a variable, we can with HyCOMP systematically verify which maximal
values are reached by the variable. Other automatic or assisted ways to guide
the determination of parameters of the simulation could be studied. In this
way, our algorithms can use information about the behaviour of continuous
variables in an infinite time interval using formal verification. Meanwhile,
existing approaches as for instance the sampling in the MSS environment
usually check the variables behaviour with a finite time horizon.

136 CHAPTER 7. CONCLUSION

Appendix A

Linear hybrid systems

A linear term « over a set of variables V' is a linear combination of the vari-
ables in V' with rational coefficients. A linear formula ¢ over V is a boolean
combination of inequalities between linear terms over V. The following defi-
nition, which specifies linear hybrid systems, is reported from [4].

Definition 25 (Linear hybrid system). A hybrid system A = (Vp, Q, 1, fio, 113)
is linear if its activities, exceptions, and transition relations can be defined
by linear expressions over the set Vp of data variables:

1. For all locations ¢ € @, the possible activities are linear functions de-
fined by a set of differential equations of the form x' = k,, one for each
data variable x € Vp, where k, is a rational constant: f € uy () iff all
teR, andx € Vp, f(t)(x) = f(0)(x)+ky-t. It is written py (¢, x) = ky
to define the activities of the linear hybrid system A.

2. For all locations ¢ € Q, the exception is defined by a linear formula ¢
over Vp = 0 € ps(l) iff ().

3. For all location pairs e € Q X Q , the transition relation ug(e) is defined
by a guarded set of assignments

¢ — {x = a,|r € Vp}

where ¢ 1s a linear formula over Vp and each o, s either a linear term
over Vp or 7?7 (0,0') € us(e) iff o(¢) and for all x € Vp, either a =7
oro'(z) = o(ay).

To indicate that the value of the variable x is changed nondeterminis-
tically to an arbitrary value is denoted by x :=7.

137

138 APPENDIX A. LINEAR HYBRID SYSTEMS

Are some special cases of linear hybrid systems of particular interest are:

e x is a discrete variable if p — 1(l,x) = 0 for each location ¢ € Q.
Therefore, a discrete variable changes only when the location of control
changes. We can conclude that a discrete system is a linear hybrid
system where all data variables are propositions and clocks.

e A discrete variable x is a proposition if ps(c,z) € {0,1} for all pairs
c € Q x Q. If all the data variables are proposition then a linear hybrid
automaton is same as a finite-state system whose states are labelled
with propositions.

o If yy(¢,z) = 1 for each location ¢ and ps(e,z) € {0,x} for each pair
e € X Q, then x is a clock. Therefore, the value of a clock increases
with time uniformly; a transition of the automaton either resets it to 0,
or leaves it unchanged. A (finite-time) timed system is a linear hybrid
system where all data variables are propositions and clocks.

e If there is a constant k& € R such that u(¢,z) = k for each location
¢ and ps(e,x) € {0,x} for each pair e € Q x @, then x is a skewed
clock. Thus, a skewed clock is similar to a clock variable except that
it changes with time at some (fixed) rate different from 1. A multirate
timed system is a linear hybrid system where all data variables are
propositions and skewed clocks. An n-rate timed system is a multirate
timed system whose skewed clocks proceed at n different rates.

o If yy(¢,z) € {0,1} for each location ¢ and ps(e,x) € {0,x} for each
pair e € Q) X @, then x is an integrator. Hence an integrator is like a
clock that can be stopped and restarted, and can measure accumulated
durations. An integrator system is a linear hybrid system where all
data variables are propositions and integrators.

e A discrete variable is a parameter if us(e, x) = z for all pairs e € Q X Q.
Thus, a parameter is a symbolic constant, which can be used, for in-
stance, in the guards of the transitions. For different special types of
linear hybrid automata defined above, we can also define its parameter-
ized data variables version. A parameterized timed system is a linear
hybrid system where all data variables are propositions, parameters,
and clocks.

In [4] a verification approach to check invariant properties applicable only
to linear hybrid automata is presented.

Proof Lists

© 00 N O Ut = W N

[N R N o R R T e e e e e e e
ENECCEE VN = RN e RN o« RN B o> BN GGV VN =)

Stream 12
Transition system oo 13
Component 13
Component composition 13
Trace 14
Functional Specification 15
Hybrid automaton oo 15
Linear hybrid automaton 18
Dense stream 31
Hybrid streamo 31
Component function oo 32
Syntactic interface oo 33
Elaboration function 33
Hybrid i/o state machine 39
Linear hybrid i/o state machine 40
Step execution 41
Output variables evaluations 42
Sampled hybrid continuous stream 56
Sampled hybrid discrete stream 57
Sampling architecture 0oL 57
Sampling componento 58
Dynamic sampling controller 59
Period variation based on theslope 60
Period variation based on critical intervals 63

139

140 APPENDIX A. LINEAR HYBRID SYSTEMS

25 Linear hybrid system oo 137

List of Figures

1.1

2.1
2.2

2.3
24
2.5

3.1
3.2

3.3

3.4

3.5

3.6

4.1
4.2
4.3

Hybrid system for the control of a simple watering system. . .

The hybrid automaton of the water tank controller [91].

Two-dimensional abstraction: level of granularity and software
development views, presented in SPES XT project. In the de-
picted artefacts, SuD indicates the system under development,
S is a proper subset of the system, OC means operational con-
text, UF means user function, LC means logical compo-nent
and TC means technical component.

Tools, modelling languages, and modelling paradigms.
A waterfall model design process for software systems.

A representation of our generalized development methodology.

Hybrid component representation with its interface.

The simplest i/o connections between two hybrid components
with different models of computation.

Message interaction between the hybrid components, described
in Figure 3.2a, with different models of computation.

Message interaction between the hybrid components, described
in Figure 3.2b, with different models of computation.

Simplified representation of the ETCS train controller system
[A8]. .

Hybrid component for the train brake controller.

Signal Sampling.
I/O Interface and internal elaboration of a hybrid component.

Sampling Architecture for hybrid components.

141

18

142

4.4
4.5
4.6

4.7
4.8

4.9

4.10

4.11
4.12
4.13

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4

6.5
6.6

LIST OF FIGURES

Period variation based on the slope. 61
Period variation based on the critical intervals. 63

Two alternative implementations of the same system: event-
triggered model and Focus model implemented with hybrid
i/o state machines, which uses at run-time a sampled-data

model. 66
Mutual component composition. 69
Time restriction at output ports of the hybrid component ar-
chitecture. L 71
The Simulink model of the hybrid i/o state machine in Focus
presented in Section 3.4.3. 73

The stateflow diagram corresponding to the logical behaviour
of the hybrid i/o state machine in FOCUS presented in Section
343, . 74

Simulation of the function test with the algorithm ode5. . . . 77
Simulation of the function test with the algorithm odejslope. . 77

Simulation of the function test with the algorithm odejinterval. 78

Overview of the model checking procedure. 87
Verification artefacts and activities in AutoFocus 3. 94
Property template options for model checking in AutoFocus 3. 95

Counterexample visualized as MSC. 97
User interface for simulating counterexamples. 101
Schematic representation of the ETCS System. 115
ETCS system in the train modelled in Focus. 116

Component for the communication between train and RBC unit.117

Component for the communication between the train and rail-
road crossing component. 118

Component for the calculation of the train brake point. 119

Component for the control of the train movement. 121

Bibliography

1]

2]

IEEE Std 1012 - 2004 IEEE Standard for Software Verification and
Validation. Technical report, 2005.

Amos Albert. Comparison of Event-Triggered and Time-Triggered
Concepts with Regard to Distributed Control Systems. FEmbedded
World, 2004.

Hassane Alla and René David. Continuous and Hybrid Petri Nets.
Journal of Circuits, Systems, and Computers, 8(1):159-188, 1998.

Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin
Ho. Hybrid Automata: An Algorithmic Approach to the Specification
and Verification of Hybrid Systems. pages 209-229. Springer-Verlag,
1992.

Rajeev Alur, Thao Dang, Joel Esposito, Yerang Hur, Franjo Ivancic,
Vijay Kumar, Insup Lee, Pradyumna Mishra, George J. Pappas, and
Oleg Sokolsky. Hierarchical Modeling and Analysis of Embedded Sys-
tems, 2003.

Rajeev Alur, Thao Dang, and Franjo Ivanci¢. Counterexample-
guided predicate abstraction of hybrid systems. Theor. Comput. Sci.,
354(2):250-271, March 2006.

Rajeev Alur, Thao Dang, and Franjo Ivanci¢. Predicate abstraction for
reachability analysis of hybrid systems. ACM Trans. Embed. Comput.
Syst., 5(1):152-199, February 2006.

Rajeev Alur and Thomas A. Henzinger. Modularity for Timed and
Hybrid Systems. pages 74-88. Springer-Verlag, 1997.

Rajeev Alur, Thomas A. Henzinger, and Pei-Hsin Ho. Automatic Sym-
bolic Verification of Embedded Systems. IEFE Transactions on Soft-
ware Engineering, 22:181-201, 1996.

143

144

[10]

[11]

[12]

[13]

[17]

[18]

BIBLIOGRAPHY

Rajeev Alur, Tom Henzinger, Gerardo Lafferriere, George, and
George J. Pappas. Discrete Abstractions of Hybrid Systems. In Pro-
ceedings of the IEEFE, pages 971-984, 2000.

A. Anta and P. Tabuada. To Sample or not to Sample: Self-Triggered
Control for Nonlinear Systems. Automatic Control, IEEE Transactions
on, 55(9):2030 —2042, sept. 2010.

Michael Balser, Simon Baumler, Alexander Knapp, Wolfgang Reif, and
Andreas Thums. Interactive Verification of UML State Machines. In
Jim Davies, Wolfram Schulte, and Mike Barnett, editors, 6th Interna-
tional Conference on Formal Engineering Methods (ICFEM’04, Pro-
ceedings), volume 3308 of Lecture Notes in Computer Science, pages
434-448. Springer, 2004.

Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli.
Satisfiability Modulo Theories, volume 185 of Frontiers in Artificial
Intelligence and Applications, chapter 26, pages 825-885. 10S Press,

February 2009.

Andreas Bauer, Martin Leucker, and Jonathan Streit. SALT - Struc-
tured Assertion Language for Temporal Logic. In ICFEM, pages 757—
775, 2006.

D. A. Van Beek, K. L. Man, M. A. Reniers, J. E. Rooda, and R. R. H.
Schiffelers. Syntax and consistent equation semantics of hybrid Chi. In
Journal of Logic and Algebraic Programming, pages 129-210, 2006.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial
on UPPAAL. In Marco Bernardo and Flavio Corradini, editors, Formal
Methods for the Design of Real-Time Systems: 4th International School
on Formal Methods for the Design of Computer, Communication, and
Software Systems (SFM-RT’04, Proceedings), number 3185 in Lecture
Notes in Computer Science, pages 200-236. Springer, September 2004.

Calin Belta, Volkan Isler, and George J. Pappas. Discrete Abstractions
for Robot Motion Planning and Control in Polygonal Environments.
IEEFE Transactions on Robotics, 21:864-874, 2004.

John J. Benedetto. Wavelets: A Tutorial in Theory and Applications.
chapter Irregular Sampling and Frames, pages 445-507. Academic Press
Professional, Inc., San Diego, CA, USA, 1992.

BIBLIOGRAPHY 145

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan
Zhu. Symbolic Model Checking without BDDs. In TACAS ’99: Pro-
ceedings of the 5th International Conference on Tools and Algorithms
for Construction and Analysis of Systems, pages 193-207, London, UK,
1999. Springer.

Robert K. Brayton et al. VIS: A System for Verification and Synthe-
sis. In 8th International Conference on Computer Aided Verification,
volume 1102 of Lecture Notes in Computer Science, pages 428-432.
Springer, 1996.

Manfred Broy. System Behaviour Models with Discrete and Dense
Time. In Samarjit Chakraborty and Jorg Eberspécher, editors, Ad-
vances in Real-Time Systems, pages 3—25. Springer, 2012.

Manfred Broy, Frank Dederich, Claus Dendorfer, Max Fuchs, Thomas
Gritzner, and Rainer Weber. The Design of Distributed Systems -
An Introduction to FOCUS. Technical Report TUM-19202, Technische
Univeritdt Miinchen, 1992.

Glenn Bruns and Patrice Godefroid. Model Checking Partial State
Spaces with 3-Valued Temporal Logics. In 11th International Con-

ference on Computer Aided Verification (CAV’99: Proceedings), pages
274-287, London, UK, 1999. Springer.

Randal E. Bryant. Graph-Based Algorithms for Boolean Function Ma-
nipulation. IEEE Transactions on Computers, 35:677-691, 1986.

Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. Mcmil-
lan, and David L. Dill. Symbolic Model Checking for sequential circuit
verification. [EFEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 13:401-424, 1994.

Alarico Campetelli. Analysis techniques: State of the art in industry
and research. Tech. rep., TU Miinchen, 2010.

Alarico Campetelli. Dynamic Sampling for FOCUS Hybrid Compo-
nents. In Peter Csaba Olveczky and Cyrille Artho, editors, Proceedings
of the 3rd International Conference on Circuits, System and Simula-
tion (ICCSS’13), volume 3(5), pages 402-406. International Journal of
Modeling and Optimization, 2013.

146

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

BIBLIOGRAPHY

Alarico Campetelli, Maria Victoria Cengarle, Irina Gaponova, Alexan-
der Harhurin, Daniel Ratiu, and Judith Thyssen. Specification tech-
niques. Tech. rep., TU Miinchen, 2010.

Alarico Campetelli, Alexander Gruler, Martin Leucker, and Daniel
Thoma. Don’t know for multi-valued systems. In Zhiming Liu and An-
ders P. Ravn, editors, Proceedings of the 7th International Symposium
on Automated Technology for Verification and Analysis (ATVA’09),
volume 5799, pages 289-305. Springer, 2009.

Alarico Campetelli and Georg Hackenberg. Performance Analysis of
Adaptive Runge-Kutta Methods in Region of Interest. In 2nd Interna-
tional IFIP Workshop on Emerging Ideas and Trends in Engineering
of Cyber-Physical Systems (EITEC ’15), 2015.

Alarico Campetelli, Florian Holzl, and Philipp Neubeck. User-friendly
Model Checking Integration in Model-based Development. In 2/th In-
ternational Conference on Computer Applications in Industry and En-
gineering, 2011.

Alarico Campetelli and Maria Spichkova. Towards system development
methodologies: From software to cyber-physical domain. In Proceedings
First International Workshop on Formal Techniques for Safety-Critical
Systems, volume 105 of Electronic Proceedings in Theoretical Computer
Science. Open Publishing Association, 2012.

Xin Chen, Erika Abrahém, and Sriram Sankaranarayanan. Flow™®: An
Analyzer for Non-linear Hybrid Systems. In Natasha Sharygina and
Helmut Veith, editors, CAV, volume 8044 of Lecture Notes in Computer
Science, pages 258-263. Springer, 2013.

Alongkrit Chutinan and Bruce H. Krogh. Verification of Polyhedral-
Invariant Hybrid Automata Using Polygonal Flow Pipe Approxima-
tions. pages 76-90. Springer, 1999.

Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. HYDI: a

language for symbolic hybrid systems with discrete interaction. In
EUROMICRO-SEAA, 2011.

Marcus Ciolkowski, Oliver Laitenberger, and Stefan Biffl. Software
Reviews: The State of the Practice. IEEE Software, 20(6):46-51, 2003.

Edmund Clarke, Ansgar Fehnker, Zhi Han, Bruce Krogh, Joél Ouak-
nine, Olaf Stursberg, and Michael Theobald. Abstraction and

BIBLIOGRAPHY 147

[38]

[42]

[43]

[44]

[45]

[46]

Counterexample-Guided Refinement in Model Checking of Hybrid Sys-
tems, 2003.

Edmund Clarke, Ansgar Fehnker, Zhi Han, Bruce Krogh, Olaf Sturs-
berg, and Michael Theobald. Verification of Hybrid Systems Based on
Counterexample-Guided Abstraction Refinement. In 9th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 192-207. Springer, 2003.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith. Counterexample-guided Abstraction Refinement for Symbolic
Model Checking. J. ACM, 50(5):752-794, September 2003.

Edmund M. Clarke and E. Allen Emerson. Design and Synthesis of Syn-
chronization Skeletons Using Branching-Time Temporal Logic. In Logic
of Programs, Workshop, pages 52-71, London, UK, 1982. Springer.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model Check-
ing and Abstraction. ACM Transactions on Programming Languages
and Systems, 16(5):1512-1542, September 1994.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, January 1999.

Edmund M. Clarke and Jeannette M. Wing. Formal Methods: State of
the Art and Future Directions. ACM Computing Surveys, 28(4):626—
643, December 1996. Report by the Working Group on Formal Methods
for the ACM Workshop on Strategic Directions in Computing Research.

Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The Con-
currency Workbench: A Semantics Based Tool for the Verification of
Concurrent Systems. ACM Transactions on Programming Languages
and Systems, 15, 1994.

Tim Coe, Terje Mathisen, Cleve Moler, and Vaughan Pratt. Com-
putational Aspects of the Pentium Affair. Computing in Science and
Engineering, 2(1):18-31, 1995.

Séverine Colin and Leonardo Mariani. Run-Time Verification. In Man-
fred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner, editors, Model-Based Testing of Reactive Sys-
tems, volume 3472 of Lecture Notes in Computer Science, pages 525—
555. Springer, 2004.

148

[47]

[48]

[54]

[57]

BIBLIOGRAPHY

Werner Damm and David Harel. LSCs: Breathing Life into Message
Sequence Charts. 19(1):45-80, 2001.

Werner Damm, Alfred Mikschl, Jens Oehlerking, Ernst-Riidiger
Olderog, Jun Pang, André Platzer, Marc Segelken, and Boris Wirtz.
Automating verification of cooperation, control, and design in traf-
fic applications. In Formal Methods and Hybrid Real-Time Systems.
Volume 4700 of Lecture Notes in Computer Science, pages 115-169.
Springer, 2007.

Werner Damm, Guilherme Pinto, and Stefan Ratschan. Guaranteed
Termination in the Verification of LTL Properties of Non-linear Robust
Hybrid. pages 1-13.

J.M. Davoren and a. Nerode. Logics for Hybrid Systems. Proceedings
of the IEEE, 88(7):985-1010, July 2000.

Carl De Boor. A practical guide to splines. Appl. Math. Sci. Springer,
New York, NY, 1978.

Akash Deshpande, Aleks Gollii, Aleks Gollu, and Pravin Varaiya. Shift:
A Formalism and a Programming Language for Dynamic Networks of
Hybrid Automata, 1997.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Pat-
terns in Property Specifications for Finite-State Verification. In Pro-

ceedings of the 21st International Conference on Software Engineering,
ICSE "99, pages 411-420, New York, NY, USA, 1999. ACM.

Johan Eker, Jorn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu,
Jozsef Ludvig, Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong.

Taming Heterogeneity - The Ptolemy Approach. In Proceedings of the
IERE, pages 127-144, 2003.

E. Allen Emerson. Model Checking and the Mu-calculus. In Descriptive
Complexity and Finite Models, pages 185-214, 1996.

M. Feilkas, A. Fleischmann, F. Holzl, C. Pfaller, S. Rittmann, K. Schei-
demann, M. Spichkova, and D. Trachtenherz. A Top-Down Method-

ology for the Development of Automotive Software. Technical Report
TUM-10902, 20009.

M. Feilkas, F. Holzl, C. Pfaller, S. Rittmann, B. Schétz, W. Schwitzer,
W. Sitou, M. Spichkova, and D. Trachtenherz. A Refined Top-Down

BIBLIOGRAPHY 149

[58]

[59]

[60]

[61]

[62]

[65]

[66]

Methodology for the Development of Automotive Software Systems -
The KeylessEntry System Case Study. Technical Report TUM-11103,
2011.

Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Laurent
Mounier, Radu Mateescu, and Mihaela Sighireanu. CADP - A Pro-
tocol Validation and Verification Toolbox. In CAV °96: Proceedings
of the 8th International Conference on Computer Aided Verification,
pages 437-440, London, UK, 1996. Springer.

A. Fleischmann. Model-based formalization of requirements of embedded
automotive systems. PhD thesis, TU Miinchen, 2008.

Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Ra-
jarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao
Dang, and Oded Maler. SpaceEx: Scalable Verification of Hybrid
Systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, CAV,
volume 6806 of Lecture Notes in Computer Science, pages 379-395.
Springer, 2011.

Xiang gen Xia. A new prefilter design for discrete multiwavelet trans-
forms. IEEE Trans. Signal Processing, pages 1558-1570, 1998.

José M. E. Gonzélez, Antonio Eduardo Carrilho da Cunha, José E. R.
Cury, and Bruce H. Krogh. Supervision of Event-Driven Hybrid Sys-
tems: Modeling and Synthesis. In Maria Domenica Di Benedetto and
Alberto L. Sangiovanni-Vincentelli, editors, HSCC, volume 2034 of Lec-
ture Notes in Computer Science, pages 247-260. Springer, 2001.

Karlheinz Gréchenig. Reconstruction algorithms in irregular sampling.
Mathematics of computation, 59(199):181-194, 1992.

E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential
FEquations I (2nd Revised. Ed.): Nonstiff Problems. Springer-Verlag
New York, Inc., New York, NY, USA, 1993.

D. Harel and P. S. Thiagarajan. Message Sequence Charts. In
L. Lavagno, G. Martin, and B. Selic, editors, UML for Real: Design of
Embedded Real-Time Systems, pages 77-105. 2003.

Zvi Har’El and Robert P. Kurshan. Software for analytical develop-
ment of communications protocols. ATé T Bell Laboratories Technical
Journal, 69(1):45-59, 1990.

150

[67]

[68]

[69]

[70]

[72]

[73]

BIBLIOGRAPHY

W. P. M. H. Heemels, J. H. Sandee, and P. P. J. Van Den Bosch.
Analysis of event-driven controllers for linear systems. International
Journal of Control, 81(4):571-590, 2008.

T. A. Henzinger. The Theory of Hybrid Automata. In Proceedings
of the 11th Annual IEEE Symposium on Logic in Computer Science,
LICS 96, pages 278—, Washington, DC, USA, 1996. IEEE Computer
Society.

T.A. Henzinger, Z. Manna, and A. Pnueli. What good are digital
clocks? In Proceedings of the 19th International Colloquium on Au-
tomata, Languages and Programming, pages 545-558. Springer, 1992.

Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-toi. Algorith-
mic Analysis of Nonlinear Hybrid Systems. [EEE Transactions on
Automatic Control, 43:225-238, 1996.

J. R. Higgins. Five short stories about the cardinal series. Bulletin
(New Series) of the American Mathematical Society, 12(1):45-89, 01
1985.

F. Holzl. The AutoFocus 3 CO Code Generator. Technical Report
TUM-10918, Technische Universitat Miinchen, 2009.

Florian Holzl and Martin Feilkas. AutoFOCUS 3 - A Scientific Tool
Prototype for Model-Based Development of Component-Based, Reac-
tive, Distributed Systems. In Model-Based Engineering of Embedded
Real-Time Systems, volume 6100 of Lecture Notes in Computer Sci-
ence, pages 317-322. Springer Berlin / Heidelberg, 2011.

C. A. R. Hoare. An Axiomatic Basis for Computer Programming.
Communications of the ACM, 12(10):576-580 and 583, October 1969.

Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut
Veith. FShell: Systematic Test Case Generation for Dynamic Analysis
and Measurement. In CAV, pages 209-213, 2008.

Andreas Holzer, Christian Schallhart, Michael Tautschnig, and Helmut
Veith. Query-Driven Program Testing. In VMCAI, pages 151-166,
2009.

T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick. Com-
paring Numerical Methods for Ordinary Differential Equations. SIAM
Journal on Numerical Analysis, 9(4):603-637, December 1972.

BIBLIOGRAPHY 151

[78]

[79]

[80]

[31]

[85]

[86]

[87]

3]

Silvana Ilie, Gustaf Soderlind, and Robert M. Corless. Adaptivity and
computational complexity in the numerical solution of ODEs. J. Com-
plezity, 24(3):341-361, 2008.

Daisuke Ishii, Kazunori Ueda, and Hiroshi Hosobe. An interval-based
SAT modulo ODE solver for model checking nonlinear hybrid systems.
Int. J. Softw. Tools Technol. Transf., 13(5):449-461, October 2011.

Raymond Holsapple; Ram Iyer and David Doman. Variable step-size
selection methods for implicit integration schemes for ODES. Int. J.
Numer. Anal. Model., 4(2):210-240, 2007.

Abdul J. Jerri. The Shannon sampling theorem - its various extensions
and applications: a tutorial review. Proc. IEEFE, 65(11):1565-1596,
1977.

Capers Jones. Software Quality in 1997: What Works and What
Doesn “t. 1997.

J. Baugh Jr.; R. Cleaveland, and W. Elseaidy. Modeling and verifying
active structural control systems. Sci. Comput. Program., 29(1-2):99—
122, 1997.

Matt Kaufmann and J Strother Moore. Some Key Research Problems
in Automated Theorem Proving for Hardware and Software Verifica-
tion. Spanish Royal Academy of Science (RAMSAC), 98:181-196, 2004.

Christoph Kern and Mark R. Greenstreet. Formal verification in hard-
ware design: a survey. ACM Trans. Des. Autom. FElectron. Syst.,
4(2):123-193, 1999.

Fabian Kratz, Oleg Sokolsky, George J. Pappas, and Insup Lee. R-
Charon, a Modeling Language for Reconfigurable Hybrid Systems. In
Joao P. Hespanha and Ashish Tiwari, editors, HSCC, volume 3927 of
Lecture Notes in Computer Science, pages 392—406. Springer, 2006.

Robert P. Kurshan. The complexity of verification. In STOC "94:
Proceedings of the twenty-sixth annual ACM symposium on Theory of
computing, pages 365371, New York, NY, USA, 1994. ACM.

Robert P. Kurshan. Computer-aided verification of coordinating pro-
cesses: the automata-theoretic approach. Princeton University Press,
Princeton, NJ, USA, 1994.

152

[39]

[90]

[91]
[92]

[99]

[100]

BIBLIOGRAPHY

Raymond H. Kwong and Edward W. Johnston. A variable step size
LMS algorithm. IEEE Transactions on Signal Processing, 40(7):1633—
1642, 1992.

Jan Lunze and F Lamnabhi-Lagarrigue. Handbook Of Hybrid Systems
Control: Theory, Tools, Applications. Cambridge University Press,
New York, 2009.

John Lygeros. Lecture notes on hybrid systems. Technical report, 2004.

Nancy Lynch, Roberto Segala, and Frits Vaandrager. Hybrid 1/O Au-
tomata. pages 496-510. Springer-Verlag, 1996.

Kenneth Lauchlin McMillan. Symbolic model checking: an approach to
the state explosion problem. PhD thesis, Pittsburgh, PA, USA, 1992.

Olaf Miiller and Peter Scholz. Functional Specification of Real-Time
and Hybrid Systems. In In Proc. Hybrid and Real-Time Systems, pages
26-28. Springer-Verlag, 1997.

Thomas Moor, Jorg Raisch, and Siu O’Young. Discrete Supervisory
Control of Hybrid Systems Based on 1-Complete Approximations. Dis-
crete Event Dynamic Systems, 12(1):83-107, January 2002.

G. Nair, F. Fagnani, S. Zampieri, and R. Evans. Feedback control
under data rate constraints: an overview. Proceedings of The IEFE,
95:108-137, 2007.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

Meeko Oishi, Ian Mitchell, Alexandre Bayen, and Claire Tomlin.
Invariance-preserving abstractions of Hybrid Systems: Application to
User Interface Design. IEEE TRANSACTIONS ON CONTROL SYS-
TEMS TECHNOLOGY, 2005.

Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. Signals
Systems (2nd Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1996.

Martin Ouimet and Kristina Lundqvist. Formal Software Verification:
Model Checking and Theorem Proving. Technical Report, Malardalen
University, March 2007.

BIBLIOGRAPHY 153

101]

102]

103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

Soo-Chung Pei and Min-Hung Yeh. An Introduction to Discrete Finite
Frames. IEEE Signal Processing Magazine, 14(6):84-96, Nov. 1997.

Doron Peled. Combining Partial Order Reductions with On-the-fly
Model-Checking. In CAV ’94: Proceedings of the 6th International
Conference on Computer Aided Verification, pages 377-390, London,
UK, 1994. Springer.

M. Petreczky, D. A. van Beek, J. E. Rooda, P. J. Collins, and J. H. van
Schuppen. Sampled-Data Control Of Hybrid Systems With Discrete
Inputs And Outputs. In A. Giua, M. Silva, and J. Zaytoon, editors,
Proceedings of the 3rd IFAC Conference on Analysis and Design of
Hybrid Systems. International Federation of Automatic Control, 20009.

André Platzer. Differential-algebraic Dynamic Logic for Differential-
algebraic Programs. Journal of Logic and Computation, 20(1):309-352,
November 2008.

André Platzer. Differential Dynamic Logic for Hybrid Systems. Journal
of Automated Reasoning, 41(2):143-189, August 2008.

André Platzer and Jan-David Quesel. KeYmaera: A Hybrid Theorem
Prover for Hybrid Systems. In Alessandro Armando, Peter Baumgart-
ner, and Gilles Dowek, editors, IJCAR, volume 5195 of LNCS, pages
171-178. Springer, 2008.

Amir Pnueli. A temporal logic of concurrent programs. In Theoretical
Computer Science 13, pages 45-60, 1981.

Klaus Pohl, Harald Honninger, Reinhold Achatz, and Manfred Broy.
Model-based Engineering of Embedded Systems: The SPES 2020
Methodology. Springer, 2012.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and
Brian P. Flannery. Numerical Recipes in C' (2nd Ed.): The Art of

Scientific Computing. Cambridge University Press, New York, NY,
USA, 1992.

Jean-Pierre Queille and Joseph Sifakis. Specification and verification
of concurrent systems in CESAR. In Proceedings of the 5th Colloquium
on International Symposium on Programming, pages 337-351, London,
UK, 1982. Springer.

154

[111]

[112]

[113]

[114]

[115]

[116]

[117)

[118]

[119]

[120]

BIBLIOGRAPHY

Daniel Ratiu, Wolfgang Schwitzer, and Judith Thyssen. A System of
Abstraction Layers for the Seamless Development of Embedded Soft-
ware Systems. Technical Report TUM-10928, Technische Universitét
Miinchen, 2009.

Enric Rodriguez-carbonell and Ashish Tiwari. Generating polynomial
invariants for Hybrid Systems. In HSCC, pages 590-605. Springer,
2005.

Dieter Rombach, Marcus Ciolkowski, Ross Jeffery, Oliver Laitenberger,
Frank McGarry, and Forrest Shull. Impact of research on practice in the
field of inspections, reviews and walkthroughs: learning from successful
industrial uses. SIGSOFT Softw. Eng. Notes, 33(6):26-35, 2008.

A. W. Roscoe. Model-checking CSP. A classical mind: essays in honour
of C. A. R. Hoare, pages 353-378, 1994.

Valérie Roy and Robert de Simone. Auto/Autograph. In CAV "90:
Proceedings of the 2nd International Workshop on Computer Aided
Verification, pages 65—75, London, UK, 1991. Springer.

Winston W. Royce. Managing the development of large software sys-
tems: concepts and techniques. In Proc. IEEE WESTCON. IEEE
Press, August 1970. Reprinted in Proc. Int’l Conf. Software Engineer-
ing (ICSE) 1989, ACM Press, pp. 328-338.

Sriram Sankaranarayanan and Ashish Tiwari. Relational abstractions
for continuous and hybrid systems. In Proceedings of the 23rd interna-
tional conference on Computer aided verification, CAV’11, pages 686—
702, Berlin, Heidelberg, 2011. Springer-Verlag.

Ingo Schinz, Tobe Toben, Christian Mrugalla, and Bernd Westphal.
The Rhapsody UML Verification Environment. In 2nd International

Conference on Software Engineering and Formal Methods, pages 174—
183. IEEE Computer Society, 2004.

Pierre Schobbens, Jean Raskin, Thomas A. Henzinger, and L. Ferier.
Axioms for Real-Time Logics. Technical report, Berkeley, CA, USA,
1999.

C. E. Shannon. Communication in the Presence of Noise. Proc. Institute
of Radio Engineers, 37(1):10-21, 1949.

BIBLIOGRAPHY 155

[121]

[122]

[123]

[124]

[125]

[126]

[127)

128]

[129]

[130]

[131]

[132]

Sandeep K. Shukla, Tevfik Bultan, and Constance L. Heitmeyer. Panel:
given that hardware verification has been an uphill battle, what is the
future of software verification? In MEMOCODE, pages 157-158, 2004.

M. Spichkova. Specification and Seamless Verification of Embedded
Real-Time Systems: FOCUS on Isabelle. PhD thesis, 2007.

M. Spichkova. Architecture: Requirements 4+ Decomposition + Refine-
ment. Softwaretechnik-Trends 31:4, 2011.

M. Spichkova, F. Hélzl, and D. Trachtenherz. Verified System Devel-
opment with the AutoFocus Tool Chain. In 2nd Workshop on Formal
Methods in the Development of Software, WS-FMDS, 2012.

Standardization Sector of International Telecommunication Union.
Message Sequence Chart. Technical Report Z.120, Geneve, 2004.

Josef Stoer, Roland Bulirsch, Richard H. Bartels, Walter Gautschi,
and Christoph Witzgall. Introduction to numerical analysis. Texts in
applied mathematics. Springer, New York, 2002.

Sabine Teufl, Dongyue Mou, and Daniel Ratiu. MIRA: A tooling-
framework to experiment with model-based requirements engineering.

In RE, pages 330-331. IEEE, 2013.

A. Tiwari. Abstractions for hybrid systems. Formal Methods in Systems
Design, 32:57-83, 2008.

M. Unser and A. Aldroubi. A General Sampling Theory for Non-
ideal Acquisition Devices. IEEE Transactions on Signal Processing,
42(11):2915-2925, November 1994.

Michael Unser, Akram Aldroubi, and Murray Eden. Polynomial spline
signal approximations: Filter design and asymptotic equivalence with
Shannon’s sampling theorem. IEEE Trans. Inform. Theory, 38(1):95—
103, 1992.

étephan Kozak and Juraj Stevek. Improved Piecewise Linear Approx-
imation of Nonlinear Functions in Hybrid Control. In 18th World
Congress of the International Federation of Automatic Control, pages
1498214987, Milan, Italy, 1996.

Lawrence G. Votta, Jr. Does every inspection need a meeting? In
SIGSOFT °93: Proceedings of the 1st ACM SIGSOFT symposium on

156

[133]

[134]

[135]

[136]

[137]

BIBLIOGRAPHY

Foundations of software engineering, pages 107-114, New York, NY,
USA, 1993. ACM.

Gilbert G. Walter. A sampling theorem for wavelet subspaces. IEEFE
Trans. Inform. Theory, 38:881-884, 1992.

Xiaofeng Wang and M.D. Lemmon. Self-triggered feedback systems
with state-independent disturbances. In American Control Conference,
2009. ACC °09., pages 3842 —3847, june 20009.

Arthur G. Werschulz. Computational complexity of differential and in-
tegral equations - an information-based approach. Oxford mathematical
monographs. Oxford University Press, 1991.

B. Widrow and M. E. Hoff, Jr. Adaptive switching circuits. I[IRFE
WESCON Convention Record, 4:96-104, 1960.

Daniel Zwillinger. Handbook of Differential Equations, Third Edition.
Academic Press, November 1997.

	Title
	Introduction
	Motivation
	Subject
	Outline

	Fundamentals and Design Methodology
	System Classification
	Introduction to Focus
	Discrete Components
	Channel Types
	Trace Specification
	Functional Specification

	Hybrid Automata
	Example
	Linear Hybrid Automaton

	System Development Methodology
	Waterfall model design process
	AutoFocus 3
	Our Methodology
	Methodology Case Studies

	Focus Hybrid Specifications
	Hybrid Components
	Hybrid Streams
	Causal Components

	Hybrid I/O Interfaces
	Component Connection: Discrete to Continuous
	Component Connection: Continuous to Discrete
	I/O Interface and Logical Implementation

	Hybrid I/O State Machines
	Composition of Hybrid I/O State Machines
	Hybrid I/O State Machine Traces
	Example
	Comparison with Henzinger's Hybrid Automaton
	Nonlinear Systems in System Modelling

	Related Work
	Modelling
	From Nonlinear to Linear Systems
	Abstraction of Hybrid Systems

	Dynamic Discrete Sampling
	Introduction
	Definition
	Control Theory

	Dynamic Sampling of Focus Hybrid Components
	Sampling Architecture
	Dynamic Periodic Sampling
	Approximation of Differential Equations
	Sampled-Data Model vs Event-Triggered Model

	Dynamic Sampling of Component Architectures
	Component Composition
	Time Restrictions

	Implementation
	Dynamic Sampling in MATLAB Simulink/Stateflow
	Dynamic Sampling in AutoFocus 3

	Related Work

	Verification of Focus Components
	Analysis Techniques
	Definition
	Testing and Simulation
	Inspections, Reviews, and Walkthroughs
	Runtime Verification
	Formal Verification

	Model Checking of Discrete Components
	Theory: From AutoFocus Components to SMV Programs
	Implementation in AutoFocus 3
	Related Work

	Formal Verification of Hybrid Components
	Hybrid System with Discrete Interaction (HyDI)
	Transformation of Focus Hybrid Components to HyDI Programs
	Specification of Properties
	Related Work

	Modelling Case Study
	Modelling of the ETCS
	RBC Request
	Railroad Crossing Communication
	Brake Point Calculation
	Train Movement

	Dynamic Sampling of the ETCS
	Formal Verification of the ETCS
	Conclusions

	Conclusion
	Contributions
	Outlook and Future Work

	Linear hybrid systems
	Proof Lists
	List Figures

