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In this study, numerical simulation results and a reduced order model of thermoacoustic
heat engine with proper orthogonal decomposition are presented. The governing equations
are solved with a finite volume based solver. The reduced order model is obtained using
proper orthogonal decomposition taking snapshots when the system reaches limit cycle.
The evolution of the pressure, heat transfer from heated parallel plates (stack) to the fluid
and flow field at the ends of the stack are presented. A reduced order model with 11-POD
modes is obtained for the full system from the Galerkin projection. A polynomial quadratic
ODE system is obtained and the effect of neglecting the second order contributions is also
presented in this study.

1 Introduction

Thermo-acoustic heat engines which convert heat into acoustic power are widely used in engineering
due to their simple design and compact structures with no moving parts. One main problem associated
with thermoacoustic heat engines are their low thermal efficiencies. Rayleigh criterion [1] explains ther-
mal to acoustic conversion in a thermo-acoustic heat engine. To understand the transforming mecha-
nism between thermal energy and acoustic energy, numerical and analytical models have been devel-
oped for thermoacoustic systems [2–7].

The simulation of thermoacoustic engines requires expensive computations due to their different
length and time scales. CFD simulation of thermoacoustic systems have been performed by many re-
searchers. Hantschk and Vortmeyer [8] have performed CFD computations of thermoacoustic in a Ri-
jke tube with heating bands kept at constant temperature. They showed that self-excited oscillations
are observed if the Rayleigh criterion is satisfied and limit cycle amplitude is determined by the non-
linearities in the heat flux from the heating element to the flow. Zink et al. [9] have performed a CFD
analysis of a whole thermoacoustic engine the influence of a curved resonator on the thermoacoustic
effect was investigated. They observed that the introduction of curvature affects the pressure amplitude
achieved and severely curved resonators also exhibited a variation in operating frequency. Yu et al. [10]
have used CFD method to investigate nonlinear phenomena and processes of a 300 Hz standing wave
thermoacoustic engine. The acoustic fields were given, and the vortices evolution in both ends of the
stack along which a temperature gradient was imposed were investigated.

For thermo-acoustic systems, prediction and control of thermal to acoustic conversion is an impor-
tant design objective. Low order modeling of thermo-acoustic systems has become important since a
reduction in the computational demand (time and resources) is achieved. Toffolo et al. [11] have pre-
sented a methodology to reduce the computational cost of thermoacoustic oscillations. Their proce-
dure suggests the use of CFD calculations for their capability on acoustic aspects rather than on fluid



Fatih Selimefendigil

dynamic details. They lower the computational effort by restraining domain boundaries or by increas-
ing cell dimensions and time steps. Song et al. [12] have presented a CFD-CAA combined method to
predict the thermoacoustic instability limit curve. In this approach, the response function for pulsating
release of heat in the Rijke tube and the distribution of mean density in the tube are computed with CFD
and used as inputs to CAA predictions. There exist also studies where the a model for the heat source is
obtained and used in full thermo-acoustic simulations [13–17]. In this approach, a nonlinear model of
the heat source may be computationally costly due to curse of dimensionality [17].

In the present study, a reduced order model of a heat engine is presented with the Proper Orthog-
onal Method (POD). To the best of the authors’ knowledge, a low computational effort of the coupled
thermoacoustic system with POD has never been reported in the literature.

2 Standing Wave Heat Engine and Numerical Model

Rayleigh criterion [1] explains thermal to acoustic conversion in a thermo-acoustic heat engine which
consists of heat cavity, heat exchangers and stack. A detail for the one of the pores in the stack (parallel
plates) is shown on the right part of Fig.1. A gas parcel at (A) rejects heat to the cold heat exchanger,
and at (B) it is compressed with the acoustic wave. At (C), it takes heat from the hot heat exchanger
and at (D), it starts to expand. A net positive work is obtained as the area under the P-v diagram of the
thermodynamic cycle. The phase between the heat transfer and the acoustic oscillation is obtained with
the thermal diffusion.
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FIGURE 1. A thermo-acoustic prime mover with heat exchangers and stack (left), a detail for one of the pores in the stack along
with a gas parcel experiencing expansion and compression (right)

Network Model

In the linear network model of a thermo-acoustic heat engine, individual elements of thermo-acoustic network are
described by their transfer matrices which could be derived analytically, measured from the experiments or computed
from the numerical simulations. A schematic network representation of a thermo-acoustic heat engine is shown in
Fig. 2. The transfer matrix for the stack can be written as [3, 2],
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P,J,ρ,A f ,γ, fv, fk, pm,σ ,ω represent the pressure, volumetric flow rate, density, stack cross-sectional area, ratio
of the specific heats, velocity penetration depth, thermal penetration depth, mean pressure, Prandtl number, angular
frequency of the oscillation, respectively. The transfer matrix of the empty ducts (T M1,T M2) can also be given in terms
of characteristic impedances and propagation constants in the ducts [3] . After combining the transfer matrices of all
elements (2 ducts and one stack with closed-open boundary conditions), one can find the eigenfrequencies and the
corresponding eigenmodes. A specified number of eigenmodes is retained in the calculation of the maximum growth
factors which will be described in the next chapter.
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FIGURE 2. A network model of the thermo-acoustic heat engine with two ducts and one stack

NON-NORMALITY

Systems with self adjoint operators/matrices have orthogonal eigenvectors. As a result, if small disturbances imposed
on the normal directions decay with time, i.e. if the system is “linearly stable”, then the overall system response
also decays with time [6]. Systems governed by non-normal operators/matrices have non-orthogonal eigenvectors. A
system is said to be “non-normal” if its operator/matrices does not commute with its adjoint,

LLT 6= LT L, (2)

Figure 1: A thermo-acoustic prime mover with heat exchangers and stack (left), a detail for one of the
pores in the stack along with a gas parcel experiencing expansion and compression (right)

A schematic description of the problem is shown in Fig.2 (a). It is a simple standing wave engine and
a stack of parallel heated plates located in the vicinity of the closed end. Our model problem is similar
to the one considered in [9]. It is 150 mm (=L) long and 51(=H) mm wide in dimensions. The stacks
are placed 30 mm (=x f ) from the downstream of the closed end and are given a non-zero thickness. The
length of the stack along which a temperature gradient imposed is 10 mm (=b) and the spacing between
the stacks are 0.25 mm (=d).

2
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Figure 2: Geometry of the heat engine and a detail of the mesh in the vicinity of the stack

Governing equations, boundary conditions and solution method

The conservation equations for mass, momentum and energy are solved in 2d case for a laminar
compressible flow with Fluent are :

∂ρ

∂t
+ ∂

(
ρvx

)
∂x

+ ∂
(
ρvy

)
∂y

= 0, (1)

∂
(
ρv

)
∂t

+∇.
(
ρvv

)=−∇p +∇. (τ) , (2)

∂
(
ρE

)
∂t

+∇.
(
v
(
ρE+p

))=∇. [k∇T + (τ.v)] , (3)

where ρ, v, p,τ,E denote the density, velocity, pressure, stress tensor and energy, respectively. and k
represent the dynamic viscosity and thermal conductivity, respectively. The state equation of an ideal
gas is used which is given as

p = ρRT. (4)

The model of the thermoacoustic heat engine has an open end and pressure inlet to create a pressure
gradient and non-zero velocity field in the computational domain. The stack walls are at constant tem-
perature with a given temperature gradient from 700 K to 300 K over the stack length. The outer wall of
the heat engine is assumed to be adiabatic. A zero velocity boundary condition was used for all walls.
Equations (1-3) along with the boundary and initial conditions are solved with a finite volume based
commercial CFD code (FLUENT). Second order upwind scheme is used for spatial discretization. PISO
algorithm is used for velocity-pressure coupling and second order implicit time differencing is utilized.
A time step of 10−5 is decided to be sufficient to obtain results independent of time step size. For the
unsteady calculation, the pressure inlet boundary condition is replaced with an adiabatic wall [9]. Mesh
independence study is also carried out to obtain an optimal grid distribution with accurate results and
minimal computational time. The number of the triangular cells used in computations is 46392. The
mesh is finer near the edges of the stack walls and in the spacing separating the stack plates to resolve
the high gradients of the field variables there. A detail of the mesh is shown in Fig.2 (b).

3
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3 Proper Orthogonal Decomposition for compressible flow

An ensemble of data set, either from numerical simulations or experiments, can be expressed in terms
of a reduced order basis. The fluctuating part of the data set is expressed as a linear combination of
spatial eigenfunction multiplied with time dependent coefficients as:

q(x, t ) = q̄(x)+
Nm∑
i=1

ai (t )Φi (x) (5)

In the above equation, the data set is truncated with Nm number of modes.

The modes will then be calculated by minimizing the distance between the original data and approx-
imated (projected) data [18]

∣∣∣∣q −Projection(q)
∣∣∣∣→ MIN. (6)

This is equivalent to maximizing the inner product of ensemble average, normalized by the inner prod-
uct of the basis vectors [18],

〈(q,Φ
)2〉

(Φ,Φ)
→ MAX. (7)

For two vector field variables~r and~s, the inner product is the defined as the integration of their scalar
product over the domain V ,

(~r ,~s) =
∫

V

L∑
l=1

rl sl dV. (8)

The expression in Eq.( 7) can be then reformulated as an integral eigenvalue problem.∫
V
〈q(x)

⊗
q(x ′)〉Φ(x ′)d x ′ =λΦ(x). (9)

As it has been shown by Rowley et al. [19], an energy based inner product will lead to stability of
the Galerkin system (after projection) around the linearization point. Another aspect is the nondimen-
sionalisation when we use vectorial form of the flow variables. Without nondimensionalisation, the
standard inner product may not be the suitable choice because of dimensional consistency. One can
nondimensionalise the flow variables, but the optimality of the projection depends on the nondimen-
sionalisation [19]. Bourguet et al. [20] have defined a specific scaled inner product (weighted spatial
product) to ensure POD-dimensional consistency [20]. This approach in [20] is also adopted in this
study.

3.1 POD - Galerkin Projection

The vector of variables for compressible flow denoted by q are defined in [20] assuming constant vis-
cosity as

q = [
1/ρ, v1, v2, p

]′ (10)

Using the data set in terms of POD modes (truncated with Nm - POD modes) and the orthogonality
of the POD modes, a quadratic form of the ODE in terms of time dependent modal coefficients are
obtained from compressible Navier-Stokes equations as,

d ai (t )

d t
=

Nm∑
k=1

Nm∑
j=1

A1i j k ak (t )a j (t )+
Nm∑
j=1

A2i j a j (t )+ A3i . (11)

A1, A2 and A3 are constant coefficients issued from Galerkin projection. They are functions of POD
modes and their spatial derivatives.
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4 Results and Discussion

In the following, the results from CFD will be presented and a reduced order model of the full thermoa-
coustic system in limit cycle oscillations will be obtained using POD method.

4.1 CFD results

Fig.3 shows the time evolution of absolute pressure oscillation and a detail of the periodic state state
oscillation (limit cycle). It is seen that the pressure oscillation starts from an initial disturbance until
the balance between the acoustic power dissipation and acoustic power generation is reached. The fre-
quency of the oscillation is 618 Hz which is in good agreement with the result of [9]. Fig.4 shows the pres-
sure fluctuation and heat transfer fluctuation (heat transfer from heated plates to the fluid elements) in
the limit cycle. It is seen that the maximum of the pressure does not coincide with the maximum of heat
flux but with a phase advance due to the thermal inertia. The Rayleigh criterion is met in this case.

Fig.5 shows the three points during the acceleration phase of a period. Flow field at the end of the
stacks are shown in Fig.6 at the time instances according to Fig.5. The flow field is directed towards the
negative x direction at the time instances a and b, while it is directed towards positive x direction at point
c (at the time instance where the pressure reaches maximum value). From point a towards point b, the
magnitude and the intensity of the flow field at the left and right part of the stacks increase. Entrance
effect is observed at the right part of the stack at points a and b and at the left part of the stack at
point c. The flow field then changes periodically. The axial temperature distribution for the time points
according to Fig.5 where the axis is located at y = 0.0028 m is shown in Fig.7. In this plot, the location
of the stack is also plotted with vertical lines. With the time increment from point a towards point c,
the location of the peak value of the temperature shifts towards the closed end. The magnitude of the
temperature increases outside the stack and remains below the temperature value in the stack when
moving from point a towards point c.
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Figure 3: Time evolution of the pressure oscillations and a detail of the oscillation in the limit cycle at a
point in the vicinity of the stack.
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Figure 4: Calculated simulation results in the limit cycle for pressure and heat transfer from the heated
plates to the fluid at a point in the vicinity of the stack.
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Figure 5: Three points during the acceleration phase of a period
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(a) Left, a (b) Right, a

(c) Left, b (d) Right, b

(e) Left, c (f) Right, c

Figure 6: Flow field as vectorial plots in the ends of the stack for the time instances according to Fig.3
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Figure 7: Temperature distribution along the horizontal axis located at y = 0.0028 m for the time in-
stances according to Fig.3.
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4.2 POD results

The POD base is extracted when the limit cycle is reached for M = 33 snapshots from equally spaced
time interval with a time step of 10∆t . The relative magnitude of the eigenvalue gives a measure for the
statical content of the corresponding POD mode. The cumulative modal contribution is also defined as

Modal contribution =
∑Nm

i=1σi∑M
i=1σi

(12)

As it is shown in Fig.8, 11 POD modes capture more than 99.9 percentage of the snapshot series statisti-
cal content.
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Figure 8: Relative energy content of each mode (a) and modal contribution of the truncated POD basis
(b).

Reference temporal evolutions of modal coefficients are obtained by projecting the data set onto the
POD modes. In Fig. 9, the reference modal coefficients are shown in continuous lines for mode numbers
between 1 to 9. The effect of omitting the nonlinear contribution in Eq.11 is also illustrated in these
plots. Neglecting the second order nonlinear terms in Eq.11 have effects on higher index modes. The
amplitude and phase drifts are observed when neglecting these terms as indicated by square shaped
markers in Fig.9. A second order ODE model which is illustrated in circle markers in Fig.11, captures
very well the reference modal coefficients. The reduced order model integration is performed by using
a four-stage Runge-Kutta scheme. The phase diagrams in Fig.10 shows the predicted modal coefficients
both for neglecting the second order term and retaining it when the periodic regime is reached. The
final amplitude of the limit cycle agrees well with the data from CFD for the second order ODE model.
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Figure 9: Time evolution of the POD modal coefficients from CFD (reference values), neglecting and
retaining second order terms.
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Figure 10: POD-ROM prediction in the phase space when the limit cycle is reached.

5 Conclusions and Outlook

In the present study, numerical simulation of a standing wave thermoacoustic heat engine is performed
and a POD based reduced order of the system is presented. Following results are obtained:

• The maximum of the pressure does not coincide with the maximum of heat flux but with a phase
advance due to the thermal inertia and the Rayleigh criterion is met in this case.

• A reduced order model (quadratic ODE system) with 11 modes are obtained with POD after Galerkin
projection.

• Neglecting the second order nonlinear terms in ODE have effects on higher index modes. The
amplitude and phase drifts are observed when neglecting these terms.

• The reduced order model procedure can be extended to investigate the effects of a parameter
variation, e.g., stack location on the limit cycle oscillation which will be the subject of our next
paper.
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