
Knowledge-Based On-Chip Diagnosis for
Multi-Core Systems-on-Chip

Philipp Wagner∗, Lin Li‡, Thomas Wild∗, Albrecht Mayer‡, Andreas Herkersdorf∗

∗Lehrstuhl für Integrierte Systeme, TUM, München ‡Infineon Technologies AG, München
{philipp.wagner, thomas.wild, herkersdorf}@tum.de {lin.li, albrecht.mayer}@infineon.com

Abstract
Finding the cause of a failure in software running on a modern heterogeneous System-on-Chip (SoC) is challenging
and time consuming. This challenge originates from two main issues. First, insight into the chip is very limited
due to a huge gap between the size of the system state and the chip’s ability to transfer this state off-chip. Second,
the growing diversity in SoC architectures requires the developers to know the hardware architecture beyond
the instruction set (ISA) interface to understand the program execution. In this paper, we show how traditional
approaches to SoC debugging do not scale to future MPSoC, and present a novel approach which integrates expert
knowledge into the diagnosis solution to raise the abstraction level of its output from raw data to useful information.
The feasibility of the approach is shown by an industrial case study.

1 Introduction
What happens in a SoC, stays in a SoC. It is this reality
that troubles many developers working on software run-
ning embedded on a System-on-Chip: finding defects in
such software is difficult. It is difficult because today’s
heterogeneous multi-core SoC architectures make it hard
to form an expectation of how the program will execute;
and the limited observability of the execution (caused by
the inability to transfer the full system state in the range
of petabits per second off-chip) makes it hard to validate
those assumptions in the running system.
Today a significant percentage of the development time
of an embedded system is already spent on software
development. In software development, studies have
shown that 50 to 75 percent of the total development
cost is spent in verification, testing and debugging [5].
Finding problems in software applications faster also
often implies an earlier time to market and can decide
about the economic success or failure of a product.
Software diagnosis is the task of finding the root cause of
a failure, i.e. a violation of a functional or non-functional
requirement. Diagnosis, also commonly called debug-
ging (mostly for functional problems), tracing, profiling
(for non-functional problems), or (more positively) per-
formance engineering, is done in two steps: in the first
step, the developer creates a (mental) model of what will
happen during the program execution on the given target
architecture. In the second step, he or she compares this
expectation to the actual program execution, i.e. to what
actually happens when the program runs.

This work was partly supported by the German Research Foundation (DFG) as
part of the Transregional Collaborative Research Centre “Invasive Computing”
(SFB/TR 89).

Both steps in diagnosis are more challenging in SoC
environments. Modern heterogeneous SoCs tightly in-
tegrate different processor cores, hardware accelerators,
input/output (I/O) interfaces, and much more. They use
optimized memory layouts next to traditional shared co-
herent memories, on-chip networks (NoC), and other
techniques to make the chip ideally fit the intended pur-
pose. While this helped greatly increase the system’s
performance, it also increased its complexity. Fortu-
nately, for most functional concerns this complexity is
hidden from the application developer by the proces-
sor’s instruction set (ISA). But while hiding complex-
ity, the ISA also hides SoC details that can influence
the program execution both in functional as well as in
non-functional ways. It does not describe how long
an instruction is expected to take to execute, or how
memory-mapped peripherals share resources. This, in
turn, makes it hard or even impossible for the developer
to form an expectation how the program will execute,
and which behavior should be considered “expected” –
the essential first step of software diagnosis.
The second step requires getting insight into the system
to see how the actual execution proceeds. On standard
PC platforms, the tool used to gain this insight, usu-
ally a debugger or profiler, runs alongside the analyzed
program. On a SoC, this tool is outside the chip and
all necessary data needs to be transferred to it through
the chip boundaries. Representing the full system state
requires petabits per second (1015 bit/s) [14, p. 16], the
off-chip bandwidth available for diagnosis information
is in the range of gigabits per second in today’s chips.
This huge gap of several magnitudes severely limits the

insight into the system. Still, increasing the off-chip
bandwidth would not solve the problem: processing
petabits of data per second is a non-trivial task, espe-
cially when considering that most of it is not relevant to
the diagnosis problem at hand.
Software diagnosis for SoCs is challenging. Complex
hardware architectures lead to a gap of understanding
how the software will execute, and increasing logic den-
sity leads to a huge observability gap during the program
execution. To tackle those challenges, we propose a
novel diagnosis solution which integrates expert knowl-
edge (e.g. from a chip manufacturer or an experienced
developer) into the diagnosis solution. The whole solu-
tion can then be integrated onto the chip, reducing the
required off-chip bandwidth significantly.
In this paper, after presenting today’s SoC diagnosis
methods and approaches to formulate expectations about
a program execution in more detail in Section 2, we
present in Section 3 our novel approach to SoC diag-
nosis, which integrates expert knowledge to greatly im-
prove diagnosis productivity. To validate this approach
we present a case study in Section 4. There we show how
we added knowledge about the SoC architecture and la-
tencies of memory transfers to a diagnosis solution to
guide the developer towards possibly problematic areas
of the chip, while reducing the bandwidth requirements.

2 Related Work
2.1 SoC Diagnosis Today
To find the cause of a defect, developers typically tend
to exhaust all other options before debugging the soft-
ware directly on the SoC. This can include running the
software on a x86 developer machine or in a virtual
prototype of the SoC. In some cases, however, the only
option is debugging on the target system: no virtual
prototype might be available, I/O interfaces are miss-
ing, models of connected peripherals are missing, or the
timing behavior is different.
In those cases, today, two diagnosis approaches for SoCs
are used: run-control debugging and tracing. The first
one, also known as stepping, run/stop debugging or
just debugging, is an interactive approach that works
by temporarily interrupting the program execution at a
defined point and inspecting the current system state.
This method is supported by most available SoCs today
and also well known to software developers from tools
like the GNU Debugger (gdb). It is intuitive to use and
provides good insight into the processor and memory
state. Since the program execution is halted, a developer
can iteratively query many properties of interest and
transfer them over a low-bandwidth interface out of the
chip, keeping the cost of the off-chip interface low (in
many cases, the JTAG ISO 1149.1 interface is used for
this task).
While the halting of the program execution is the reason

for most of the benefits of run-control debugging, it is
also its greatest drawback. In many environments, espe-
cially in the embedded domain, the program execution
may not be interrupted. In cyber-physical systems with
hard real-time requirements, a deadline violation caused
by a stalled system during debugging can cause catas-
trophic failures. Halting the program execution may
also change the (temporal) behavior of a program, hid-
ing problems like race conditions. Thus, for debugging
many of today’s SoC applications, an “invisible” diag-
nosis solution, i.e. a solution without probe effect, is
required [10].
This different approach is called tracing. Instead of
interrupting the program flow, the system state is contin-
uously observed without obstructing it, and transferred
off-chip, where it can be analyzed with virtually no time
or processing power restrictions. While this method is in
theory able to resolve all the drawbacks of run-control
debugging, it is heavily limited by the size of system
state required to reconstruct the program behavior. To
allow for continuous, non-intrusive operation, the off-
chip bandwidth needs to be dimensioned with the peak
data rate, which is commonly in the range of multiple
MBit/s up to some GBit/s. Comparatively, transferring
the full system state would require a bandwidth in the
range of multiple PBit/s. If continuous operation is not
required, on-chip memories may serve as buffer.
To reduce the required off-chip bandwidth for tracing
the developer needs to limit the observation focus both
temporally and spatially. This limits the data collection
to certain points in time (usually, when a point in the
execution flow is hit), or to some parts of the chip (e.g.
a single CPU). In tracing solutions, those limitations
are called events or triggers and filters. In addition, the
generated trace stream is compressed with close to no
loss. Compressing instruction trace streams has been
extensively studied, resulting in compression down to
0.036 bit per single-core instruction [13]. Compressing
data (memory) traces is less efficient due to the generally
random nature of the data, but in practice a compression
to 76.3 percent of the original size has been achieved [6].
Industry solutions for tracing are common today. ARM
provides the CoreSight IP cores [1] for its licensees,
which include the “ETM” module for instruction traces.
Many vendors, such as Texas Instruments or Samsung,
integrate these IP cores into their ARM-based products.
Other vendors, such as NXP, STMicroelectronics or
Freescale, integrate debugging and tracing support based
on the NEXUS 5001 standard. Infineon has introduced
its own tracing solution, the Multi-Core Debug Solution
(MCDS) [7], which is part of its automotive microcon-
troller family. The main differentiators between the
industry tracing solutions is the varying degree of con-
figurability at run-time, such as trigger and filter options,
and the types of data sources available for inspection.

2.2 Formalizing Diagnosis Knowledge
The ability to formulate expectations of how a program
should behave, or inversely, which behavior describes
a bug, is essential when integrating diagnosis on-chip.
Two main categories of bugs exist: functional and non-
functional bugs.
Functional or correctness problems are the majority of
bugs developers are trying to resolve. In most cases, the
intended behavior of the program is codified in various
types of tests, be it unit tests, regression tests, system
tests, etc.
In concurrent software on multi-core processors, addi-
tional problems arise: race conditions, deadlocks and
atomicity violations [9]. A lot of research has been car-
ried out to detect data races, with a focus on two main
algorithms describing correct patterns to access shared
data: happens-before relations [8] and lock-sets [12].
Building on those two algorithms, methods and tools for
detecting data races have developed, including hardware
based solutions [15, 16].
For non-functional requirements inefficiency patterns
or performance bottlenecks have been studied, mostly
in the domain of High-Performance Computing (HPC)
for OpenMP or MPI-based parallel applications. The
Paradyn Performance Consultant [11] contains a set of
experiments to test a hypothesis, such as “the application
is CPU bound.” The APART Specification Language
(ASL) is a formal language for describing inefficiency
patterns such as imbalances in thread execution times [4].
Like much of the work done in the HPC community, the
presented ideas in these papers is of increasing relevance
to the SoC community as system complexity increases.
Due to the different programming paradigms, such as
OpenMP and MPI, the approaches need to adapted to be
applicable to the embedded domain.

3 Knowledge-Based SoC Diagnosis
An in-depth study of the existing approaches to SoC
diagnosis as outlined in the previous section reveals two
insights, which guide the design of our new approach to
SoC diagnosis.
Further improvements in lossless trace compression
algorithms will not close the off-chip bandwidth gap.
Figure 1 shows the predicted evolution of three key
figures in a SoC. The logic size follows Moore’s law.
This results in an exponential growth of the internal
state of a SoC, increasing 24.4× by the year 2024 as
compared to 2011. While the number of signal I/O pins
per package is predicted to increase 1.67× by 2024, the
test I/O speed saturated at a factor of 1.48 compared
to 2011. At the same time, trace compression rates
have not seen significant improvements over the last
years. Especially the largely uncorrelated nature of data
value traces does not present much opportunity for data
compression.

2012 2014 2016 2018 2020 2022 2024

5

10

15

20

25

year

fa
ct

or
of

in
cr

ea
se

logic size
of signal I/Os
test I/O speed

Figure 1 Predicted evolution of key figures for SoCs.
Data normalized to 2011 baseline from the ITRS
Roadmap 2013 Edition [2]

Increasing diagnosis productivity requires a solution
that guides the developer towards problems.
The rapidly increasing system complexity requires equiv-
alently rapid increases in diagnosis productivity to meet
time to market demands. Today, SoC tracing tools focus
on efficiently presenting data, but take little part in in-
creasing its abstraction level; the questions “what to look
for,” “where to look for it,” and “when to look for it” are
left for the developer to answer. A productivity increase
can be achieved if the developer can spend more time on
fixing problems, and less time on finding the cause of it;
a diagnosis solution which is able to pinpoint problems
without being explicitly asked for it can help with that
goal.
Based on these two insights, we propose a novel ap-
proach to SoC diagnosis. Our top goal is to raise the
abstraction level of the output of the diagnosis solution
from data to information. Data describes the system
state as it can be observed in the system. Information,
however, is data with added meaning and purpose. As
such, information can be the answer to a question solv-
ing a developer’s problem. The increase in abstraction
results in more dense representations, it reduces the num-
ber of bits required to describe it. If the SoC diagnosis
solution does not transfer observation data off-chip as
it does today, but meaningful information instead, the
off-chip bandwidth is not a limitation any more. At the
same time, the goal of a diagnosis solution should not be
the collection of raw data, but the answering of questions
with relevant information. If this goal can be achieved,
increased developer productivity is achieved as well.
Raising the abstraction level from data to information
can be achieved through the integration of expert knowl-
edge into the diagnosis solution. We consider three types
of knowledge, as visualized in Figure 2.

Data

Information

Expert Knowledge

universal bug knowledge
architecture knowledge
application developer knowledge

Figure 2 Adding expert knowledge to data results in
information.

• Universal bug or inefficiency patterns: knowl-
edge about how a bug-free and efficient applica-
tion behaves. This includes, for example, knowl-
edge how race conditions present themselves, or
which application behavior is considered a dead-
lock.

• Architecture knowledge: the execution behavior
of an application depends on the SoC architecture.
“An access to flash memory in general takes this
long” or “if the I/O module sets an error flags, it
could be caused by one of those problems” are
examples.

• Finally, application developer knowledge. The
line between benign and malign behavior is in
general not fixed, but dependent on the use case
and thus the application developer. For exam-
ple, a data race can be intended for performance
reasons, but it also can be a sign of a serious
problem with the program code.

These three types of knowledge form the basis for the
transformation from data to information. In order to use
this knowledge to find the cause of failures in a SoC, we
encapsulate it inside diagnostic tests. A test consists of
three components:
• A hypothesis, an assumption about the reason

behind a problem,
• an experiment which confirms or negates the hy-

pothesis, and
• a set of child tests to further refine the hypothesis.

The tests are organized in a tree, with each subtree re-
fining the hypothesis of its parent until a leaf is reached.
This leaf then describes the most likely reason cause of
the failure as determined by the SoC diagnosis solution.
This approach formalizes the way software developers
are debugging software manually.

Integrating different types of expert knowledge creates
a diagnosis solution which goes beyond collecting data
to presenting the developer with relevant information
about the SoC status, while at the same time avoiding
the off-chip interface bottleneck. A case study showing
this is presented in the next section using an Infineon
automotive SoC.

QSPI 1
TX RX

Periph. Bus (SPB) DMA Crossbar (SRI)

QSPI 0
TX RX

CPUMemory

Figure 3 Subset of the simplified Infineon AURIX
TC29x SoC architecture diagram, as relevant to the pre-
sented case study.

4 Case Study
In the previous section, we have motivated the need for
an knowledge-based SoC diagnosis solution. To show
the power of this approach, we present in the following
a case study with an Infineon AURIX TC29x SoC, an
automotive chip mainly used in powertrain applications.
The relevant part of the SoC architecture is shown in
Figure 3. The components relevant to this case study are
the CPU, two QSPI (queued serial peripheral interface)
modules, and a DMA module. The QSPI modules are
connected to a peripheral bus, the SPB. The DMA en-
gine allows the connected peripherals to exchange data
with the memory.
The QSPI module implements the SPI protocol. It can
operate independent of the CPU by filling the trans-
mit and receive buffers directly from the memory using
DMA transfers. In the following case study, the module
is configured for transmissions consisting of eight data
words. The communication is full-duplex, i.e. sending
and receiving always happen in combination.
Before we go into the details of the implementation of
the diagnosis solution, we describe the diagnosis flow
from a developer’s point of view.

4.1 User Perspective

1 while (1) {
2 // wait until at least one QSPI module is ready
3 s0 = IfxQspi_SpiMaster_getStatus(&spiChannel);
4 s1 = IfxQspi_SpiMaster_getStatus(&spiChannel2);
5 while (s0 == SpiIf_Status_busy ||
6 s1 == SpiIf_Status_busy);
7
8 initiate_next_transmission()
9 }

Listing 1 Simplified C code of the user program show-
ing the issue we are applying the knowledge-based diag-
nosis to.

A software developer has written an application that
sends data to peripherals like D/A converters attached
over SPI to the QSPI modules of the SoC. An excerpt
from the used application code is presented in Listing 1.
A processing loop waits until both QSPI modules are

QSPI problem

DMA issue

DMA collision

other

other

Figure 4 Tree of conducted tests during diagnosis. Each
bubble represents a hypothesis.

free and initiates the next SPI transmission.
The application runs as expected in general, but some-
times it “hangs,” it does not send out SPI data any more.
This problem becomes apparent since the attached SPI
peripherals do not receive any more updates. The soft-
ware developer notices this, and realizes that the program
does not proceed beyond the while-loop in line 5/6
(e.g. from an instruction trace, or other debug tech-
niques). Since the issue happens in a line of code related
to the QSPI the developer formulates the first working
hypothesis “The problem is QSPI related.” Based on
this hypothesis, an automated diagnosis solution can be
applied, which is described in the following.

4.2 Diagnosis System Setup
To find the cause of the described failure, we integrate
chip architecture knowledge from the Infineon, as well
as universal knowledge how DMA congestions manifest
themselves into the diagnosis solution. This creates a
tree of diagnostic tests. In Figure 4 the hypotheses of
these tests are shown. In this case study, we focus on
two tests. The first hypothesis is “There is a DMA issue.”
If this hypothesis holds, we test the hypothesis “A DMA
collision occurred.”

4.3 Test 1: DMA Issue
4.3.1 Hypothesis
The first diagnostic test accepts or rejects the hypothesis
“A DMA issue exists.”

4.3.2 Motivation and Integrated Knowledge
This test is motivated by the industry experience that
DMA-related problems can be often detected by observ-
ing the latencies on a DMA channel. A latency is defined
as the time between the submission of the request and
the beginning of the corresponding data transfer. In case
of a normal operation, the DMA latencies show a reg-
ular, repeating pattern. The regularity results from the
fact that control-oriented real-time applications are in
general periodic; they continuously read sensor values,
process them, and write actuator values. Irregularities in
the DMA latency patterns can be an indicator for a (at
this stage undefined) DMA issue, and thus validate the
hypothesis. Further tests are required to refine it.

4.3.3 Implementation of the Experiment
First, the latencies are measured for each used DMA
channel on the peripheral bus using the the Multi-Core
Debug Solution (MCDS) IP core embedded on the
TC29x SoC. MCDS is configured generate events if
a request is sent off and if a DMA channel becomes
active, i.e. if the transfer of the requested data begins.
The time difference between the two events is the DMA
latency. All measurements for each DMA channel c are
stored in a vector vc ∈ Nn. Each vector consists of n
latencies in MCDS clock cycles.
Based on this data, the search for irregular DMA latency
patterns is implemented in two steps. First, the individ-
ual latencies are grouped into periods, and then these
periods are analyzed for irregularities.
To determine the number of elements in each group (i.e.
period), we minimize the Euclidean distance between
two consecutive groups. Given a maximum expected
group size of gmax, the group size g is described as

argmin
g∈1..gmax

√√√√ g∑
i=1

(vi − vg+i)2

Note that the presented algorithm expects that the first
two analyzed periods are representative of the data set,
and that the latencies inside a period form a sufficiently
distinct pattern. In our tests, this was shown to be the
case.
Based on the group size g we now can group the
measured latencies in v into a two-dimensional matrix
Mbn/gc×g, in which each row describes the measure-
ments of one period.
In the second processing step, our goal is to find anoma-
lies or outliers between the periods, i.e. between the
rows in M . We use an established algorithm to detect
outliers in data sets, the Local Outlier Factor [3]. The
LOF algorithm is a “soft” outlier detection algorithm, it
assigns a factor to each data object representing a likeli-
ness of being an outlier in a local search environment of
the k closest neighbor objects.
For the data set of DMA latencies, we found that good
results are achieved by setting k = 2 and treating a
period, i.e. a row p in M , with LOF(Mp) > 10 as
outlier. An outlier in the data set of DMA latencies
describes a possible DMA issue.

4.3.4 Experimental Results
In our experimental setup five DMA channels are used.
Channels 1 through 4 are used to transfer the receive
(RX) and send (TX) buffer contents of the two QSPI
modules, respectively. Channel 10 is used to copy data
in a distributed memory, an operation representative of
sudden bursts of DMA traffic. In the following, we focus
on channel 1 which fills the sending (TX) buffer of the
QSPI 0 module. The other channels used by the QSPI
modules (2, 3 and 4) show similar patterns.

Applying the two analysis steps to the measured laten-
cies, we first determine the group size g to be 9. This
equals the expected period size, as a single SPI trans-
mission consists of an initial word with configuration
information, followed by eight data words. Grouping
the measured latencies into a matrix, we get

M =


7 1 1 3 1 1 1 − −
7 1 1 4 1 1 1 − −

...
7 1 1 51 7 21 − − 0


In this matrix “−” represents a DMA request without
a reply. This happens either if the request is ignored
because the DMA channel was inactive, or if the request
was lost due to a collision. (A definition of a DMA
collision follows in the next section.)
The matrix M can now serve as input to the LOF-based
outlier detection in the second step, in which the last
row is classified as outlier or anomaly. We therefore
consider the hypothesis “A DMA issue exists” to be
proven for channel 1. For a more detailed analysis,
we continue with a new set of hypotheses. For this
case study, we focus on one child hypothesis, “A DMA
collision occurred.”

4.4 Test 2: DMA Collision
4.4.1 Hypothesis
The second test assumes a collision of DMA requests
happened, and tries to accept or reject this hypothesis.

4.4.2 Motivation and Integrated Knowledge
The TC29x SoC contains two DMA engines, allowing
two concurrent DMA transfers. For each channel, one
request can be queued and wait for a DMA engine to
become available. If another request is received on a
channel where a request is already waiting to be served,
the first request is dropped. This behavior is called DMA
collision. Indicative for a DMA collision is the fact that
more than two DMA channels are active at the same
time if an anomaly at a transmission was found.
Infineon has seen DMA collisions occur at customer se-
tups if DMA channels were assigned wrongly. Detecting
this problem based on a trace requires knowledge about
the number of DMA engines and other implementation
details of the SoC.

4.4.3 Implementation of the Experiment
To validate or deny the hypothesis in an experiment we
use MCDS again. It is configured to record the state
(active/inactive) of all relevant DMA channels, i.e. if
the channel is currently used to transfer data or if the
channel is idle.
The test “DMA Issue” in the parent node of the diagno-
sis tree has determined a channel c containing a likely
DMA issue. To confirm the refining hypothesis that a

Figure 5 Activity on the DMA channels (blue) over
time, as visualized by our diagnosis tool (screen shot).

DMA collision occurred, we search for the set of DMA
channels active at the same time as c and store it. If more
than two other active channels are found while a DMA
issue was detected, the hypothesis of a DMA collision
is accepted. Using the stored set of channels which are
usually active at the same time we can pin-point the
channel(s) which are active in addition to the normal
case and which are most likely the cause for the DMA
collision. This information gives the developer a good
starting point towards solving the problem.

4.4.4 Experimental Results

In the same experimental setup as before we record the
active state of all DMA channels. This results in the data
set which is visualized in Figure 5. The previous test re-
sulted in a possible DMA issue on channel 1. Searching
through the data set for channels which are active at the
same time as channel 1 shows that around clock cycle
80,000 channels 2 and 10 are also active. The stored set
of usually active channels lists channel 1 and 2. We can
use this data to conclude that the DMA collision was
most likely caused by the activity on channel 10.

4.5 Case Study Summary

The case study showed how knowledge can be integrated
into a diagnosis solution to provide the application de-
veloper with useful information instead of raw trace
data. From the SoC manufacturer (Infineon) we included
knowledge about the architecture, like the number of
DMA engines present in the chip, and the way excessive
DMA requests are handled, as well as experience about
the most likely causes for a failure. From the application
developer we integrated the knowledge what software
was run on the system, in this case a periodic control-
oriented application. We showed how to formalize this
knowledge for two specific examples by encapsulating
it inside diagnostic tests, which are organized in a tree.
By refining a hypothesis from general to specific using
this test tree we were able to determine the cause of a
hanging application to be a DMA collision.

5 Conclusions and Outlook
Finding the root cause of a software bug in a SoC is dif-
ficult. The increasing system complexity due to shrink-
ing feature sizes and new architecture templates require
equivalently increased knowledge about the hardware
architecture from software developers, which were pre-
viously able to limit their understanding of the hardware
to the ISA boundary. At the same time, an observability
gap prevents insight into the full system state, which
makes the confirmation of assumptions on how the hard-
ware operates difficult. In this paper, we have shown that
those two problems will increase in significance over
time, requiring a new approach to software diagnosis on
a SoC.
Such a new approach has been presented in this paper.
We integrated expert knowledge from developers and
SoC manufacturers, together with the best-practices of
software development and debugging into a diagnosis
solution. This raises the abstraction level of the output
the diagnosis solution, it presents not only raw data as
it was captured in the system, but adds meaning and
purpose to this data, making it useful information. As a
way to integrate knowledge inside a diagnosis solution,
we used a tree structure of automated tests, following a
scientific approach of confirming or denying a hypothe-
sis using a targeted experiment. A case study based on
an Infineon automotive SoC showed the power of the
approach.
The case study has also uncovered new difficulties. For-
mulating hypotheses and writing highly specific experi-
ments to test them is tedious, and most likely does not
scale with the growing system complexity. At the same
time, the SoC design paradigm is based on the mod-
ularization and abstraction of individual components.
Yet, the interaction between the different system compo-
nents can lead to subtle and hard-to-find failures, which
require the combined expert knowledge from different
design teams.
In follow-up work, we currently investigate the applica-
bility of supervised and reinforcement-based machine
learning techniques in order to tackle those challenges.
Supervised learning techniques may help putting expert
and system knowledge in relationship to the effective-
ness and possible simplification of individual experi-
ments performed within a diagnosis framework. Un-
supervised learning or data mining techniques bear the
potential to discover entirely new patterns and anomalies
in the trace data deluge.

6 Literature
[1] CoreSight - ARM.
[2] International Technology Roadmap for Semicon-

ductors, 2013.
[3] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and

J. Sander. LOF: Identifying Density-based Lo-
cal Outliers. In Proceedings of the 2000 ACM

SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’00, pages 93–104, New
York, NY, USA, 2000. ACM.

[4] M. Gerndt and K. Fürlinger. Specification and de-
tection of performance problems with ASL. Con-
currency Computat.: Pract. Exper., 19(11):1451–
1464, Aug. 2007.

[5] B. Hailpern and P. Santhanam. Software De-
bugging, Testing, and Verification. IBM Syst. J.,
41(1):4–12, Jan. 2002.

[6] A. B. T. Hopkins and K. D. McDonald-Maier.
Debug support strategy for systems-on-chips with
multiple processor cores. IEEE Trans. Comput.,
55(2):174 – 184, Feb. 2006.

[7] IPextreme. Infineon Multi-Core Debug Solution:
Product Brochure, 2008.

[8] L. Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. Commun. ACM,
21(7):558–565, July 1978.

[9] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou.
Bugbench: Benchmarks for evaluating bug de-
tection tools. In Workshop on the Evaluation of
Software Defect Detection Tools, pages 1–5, June
2005.

[10] C. E. McDowell and D. P. Helmbold. Debug-
ging Concurrent Programs. ACM Comput. Surv.,
21(4):593–622, Dec. 1989.

[11] B. Miller, M. Callaghan, J. Cargille,
J. Hollingsworth, R. Irvin, K. Karavanic,
K. Kunchithapadam, and T. Newhall. The
Paradyn parallel performance measurement tool.
Computer, 28(11):37–46, Nov. 1995.

[12] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro,
and T. Anderson. Eraser: A Dynamic Data Race
Detector for Multithreaded Programs. ACM Trans.
Comput. Syst., 15(4):391–411, Nov. 1997.

[13] V. Uzelac, A. Milenković, M. Burtscher, and
M. Milenković. Real-time unobtrusive program
execution trace compression using branch pre-
dictor events. In Proceedings of the 2010 Inter-
national Conference on Compilers, Architectures
and Synthesis for Embedded Systems, CASES ’10,
pages 97–106, New York, NY, USA, 2010. ACM.

[14] B. Vermeulen and K. Goossens. Debugging
Systems-on-Chip: Communication-centric and
Abstraction-based Techniques. Springer, New
York, Aug. 2014.

[15] C.-N. Wen, S.-H. Chou, C.-C. Chen, and T.-
F. Chen. NUDA: A Non-Uniform Debugging
Architecture and Nonintrusive Race Detection
for Many-Core Systems. IEEE Trans. Comput.,
61(2):199 – 212, Feb. 2012.

[16] P. Zhou, R. Teodorescu, and Y. Zhou. HARD:
Hardware-Assisted Lockset-based Race Detec-
tion. In IEEE 13th International Symposium on
High Performance Computer Architecture, 2007.
HPCA 2007, pages 121–132, Feb. 2007.

