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Abstract— One of the key challenges in dynamic manipula- contact. Nonprehensile robotic catching is a benchmark for
tion is to establish continuous contact between a moving object poth subproblems, each coming with individual challenges.
and a manipulator. Direct robotic catching is a benchmark A successful catch typically relies on a combination of

in this context, especially without grasping devices. In this L . . .
paper, we explain why it is unrewarding to aim for an ideal sophisticated solutions in robot control, multiple typds o

initial dynamic contact if only imprecise knowledge of the Sensory feedback, dynamic modeling and trajectory plannin
object states is available. Robust initial contacts are proposed The first two components aim at improving the repeatability

such that a successful quasi-direct catch can be predicted. of a task. Since dynamic modeling implies the definition of

The proposed robustness originates in a negative relative gccessful contact situations, it is the foundation fonpiag
acceleration between object and catching end-effector. Seter . . .
robust catching trajectories.

which an upper negative relative acceleration bound holds, are i L . .
evaluated throughout an exemplary catching motion. Reachable  In the presence of imprecise |nformat|oq about the object
set computations allow to express and visualize these sets of states, continuous contacts in nonprehensile catchingotan

successful object states at any point in time before contact. pe guaranteed initially as re-bounces may occur. Hence, non
The paper closes with a robot-robot experiment that shows . .ehensile catching must not only consider the initial aont
successful quasi-direct catches without feedback on the objec . . . . .
states for a robotic throw. but rather the entire catching motion. For situations wizere
direct catch, which requires to match all states of an olgect
I. INTRODUCTION the same time instant, is not possible, indirect catcheg wer
Dynamic and reliable manipulation is of great relevanc€oPosed [3], [4]. These indirect catches prepare the objec
for industrial applications or robotic sports. Solutiors t With an instantaneous contact such that a subsequent direct
growing dynamical task requirements mostly originate ifaich becomes possible. The proposed quasi-direct catch is
more complex robotic systems that are specially developdgcated in between these two approaches: intentional itapac
for a particular application. If the task changes, a new robdvithout requiring full motion prediction of the conseciv
or at least a new end-effector must be designed. In order @ject flight.

provide reliability, these systems are typically overdizad Hove and Slotine [5] presented one of the first experiments
thus have high costs per unit. in dynamic catching, where a robot end-effector matches

The framework of dynamic manipulation intends topositilon and velocity wit.h an quect. They mana}ged to follow
counter this development with simple robot structures thah€ flight path of an object with a robotic manipulator for a
can execute dynamically complex tasks. The term dynamftite time. Some years later, dynamic catching was disclisse
manipulation was formed and discussed by Mason arlfi Lynch and Mason's dynamic manipulation framework [2].
Lynch [1]. They stated that task dynamics can or should be However, until today, most approaches in object catching
actively used to enhance the manipulation capabilitieswf | are closed-loop by means of complex vision systems. Re-
degree of freedom (DoF) robots. Mason and Lynch differentS€arch thus focuses on efficient image processing and flight
ate between form or force closure grasps and nonprehensjfigiectory estimation. Overcoming these challenges allow
dynamic manipulation [2]. The latter term summarizes aflor €nough time to find a robot motion that intercepts the
interactions between manipulators and objects withoutgra OPIeCt trajectory with a grasping manipulator [6]. Some
ing devices. Instead, generic end-effector structuresised, aPproaches took a step further and defined the kinematic
which reduce cost, mechanical complexity, and increase tif@i€ctory interception as an optimization problem [7aunl
applicability to multiple types of tasks or objects. gt al. [8] are even able to plan a kinematically optlmal robot

Within nonprehensile manipulation, the goal is to modwnterceptlon trajectory online. In all these grasping base
the states of the object making use of instantaneous aA@proaches, the contact time estimation is crucial to close

continuous contacts. Continuous contacts can be furthil® 9gripper at the right time. They all focus on kinematic
divided into the problem of establishing and maintaining"terception leading to high impact forces if both manipaita
and object are not designed specifically.
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Throwing Robot Catching Robot

Fig. 1. Experimental setup with two symmetric 2-DoF planar tsbo T

work is the basic impulse-based framework introduced by
Wang and Mason [10], [11] that builds on Routh’s graphical
approach [12]. The role of negatlye,accgleratlon was flr%g. 2. Two symmetric planar robots with end-effector framed eefative
discussed by Schaal [13] for robotic juggling. obiject position.
In this work, we investigate how to find sets of object
states for nonprehensile catching that lead to continuous
contact and thus to task success. It is explained why it toincide, cf. Fig. 2. The distance of the throwing robot from
unrewarding to aim for an ideal initial dynamic contact if nothe catching robot is described by the veatbrThe inverse
precise knowledge of the object states is available. Hemcetransformation is known a%(q) = (T2(q))~!. Thus, the
set of successful object states is defined, based on negafpasition of an object with respect to the end-effector frame
relative acceleration between object and end-effectoe Thp® is calculated from the position in the reference frapie
negative acceleration must be shown to hold after initias
contact throughout the remaining catching motion. Only 7°(q,p°) = TS(q)p°, )
then, a strictly monotonically decreasing re-bounce heigh
for any consecutive impact can be guaranteed. The sets #féh P = [p 1]". The relative velocities and accelerations
calculated for an exemplary catching motion to evaluate tHé&ith respect to the end-effector frame of a flying object
restriction of the negative acceleration assumption. described in the base fram@?’,p”, 3°) and for a given
The remainder of the paper is organized as follows. Sefanipulator catching motio(y, ¢, §) are
tion Il simplifies the modeling process as it defines all objec. . e el
states and dynamics relative to the end-effector coorglinal — [p p] -
frame. Section IIl introduces a bounded set of successfl.Y{l J(q.p°)¢ + R (q)p’
object states. Exemplary sets are discussed in Sec. NJ(q,p%)i+ J(q,d,p° p°)d + RS(q)p° + R (q,d)p"]
An experiment in Sec. V shows repeatedly successful task 3)

executions based on the success sets. Section VI concludes ) i op°
the paper. where the terms with the Jacobidiiq, p') = 8—’; represent

the relative dynamics due to the end-effector motion. The
Il. RELATIVE OBJECTDYNAMICS terms with the rotational matrbRS and its time derivative
In this section, we introduce transformations that allow foRS add the object motion according to the end-effector
kinematic and differential object representations witkpext orientation.
to the end-effector frames. Furthermore, relevant phisica . .
models for gravitation and impacts are specified. B. Relative Dynamic Contacts
If a catching motiong(t) is given, its time derivatives

A. Kinematics and Differential Kinematics . .
i . q(t), ¢(t) are known. From here on, only the planar case
Consider au-DoF planar robot with an angle shaped end;g considered since all problems can be projected into the

effector as depicted in Fig. 2. Given that the robot dimemsio object flight plane. With transformations according to Fg.

are fixed, the end-effector position and orientation isrelti  ha relative object position vector denotesgfis= [p, p|]".
described by _the vector of joint _anglqs: @1 - qn) _Velocities p° = [, py]" and accelerationg® = [, j|T
The forward kinematic map is defined by the transformatiog,s gefined accordingly. In order to simplify the notation,

matrix g ; ;
the superscript is omitted for the parallel and perpendicul
R(e)(Q) OO(Q)] P P D berp

]T

TY(q) = { of el (1) components in the catching end-effector frame.
For all calculations in this paper, a single collision madel
where RY is a rotation matrix ando? is a translational introduced based on a rigid-body assumption for end-effect
vector. The inertial frame and the catching robot base fransnd object. From the detailed discussion on two-dimensgiona



rigid-body collisions in [10] and [11], we choose the case
of a frictionless central collision. A frictionless coliim
treatment is already conservative because possibilites f
energy dissipation are neglected. Hence, re-bounce Iseight
calculated with the chosen model, mark a conservative upper
bound. Fast rotating non-circular objects are an exception
which is typically avoided by robotic throws.

From the rigid-body assumption follows that collisions
can be considered instantaneous as well as inelastic and e
are therefore fully described by a coefficient of restimtio ol - '
0 < ¢ < 1. For this coefficient of restitution, an upper 4 L
bound must be found experimentally to be able to determine = e ,
an upper bound for the re-bounce height. The post impact —0.4| =
velocities of objects according to the frictionless mode a |
given by ts

pLt) = —epLlty) (4) b w
P (td) = py(te)- (5)

This reset of the object velocity® in the end-effector frame -1
is analogous to a reset of the object velogityin the inertial

frame, calculated by rearranging (3). Note that situations tls]
which the Jacobian becomes singular need no consideration

because rearranging the first line of (3) pr does not Fig. 3. Object trajectories for three academic contact stehn the end-

. . - effector coordinate frame: a perfect direct catch (solidp early contact
require the inverse Jacobian. with undesireable large re-bounce (dotted), and a lateacomtith little and
decreasing re-bounce (dashed). The relative acceleriatitve same for all
Ill. SUCCESSFULNONPREHENSILECATCHING three scenarios, e.g. one dimensional object and end-@ffewition.
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A direct robotic catch describes the instantaneous estab-
lishment of continous contact between an object and an end- . _ ) ) .
effector that were previously separated. It is most dekgrabMust hold. In consideration of (6), this requires a positive
to achieve a direct catch since it reduces the problem to fifglative perpendicular acceleration

a single common state of object and end-effector. In case BLtS) >0 )
of nonprehensile catching, position and velocity are v ¢ '
states to avoid object re-bounce. The transition from a perfect dynamic contact to a perfect

dynamic catch relies on a guaranteed negative perpendicula

A. The Perfect Direct Catch acceleration

A perfect dynamic contact with a flat end-effector and an PL(t) <0, V>t (10)
object happens at the distinct time instapt at which the
perpendicular components of the stattare zero: to ensure continuous contact. The solid lines in Fig. 3 depic
. such a perfect dynamic catch.
x) () = Bigiiﬂ =0. (6) In practice however, it is difficult to achieve contact

situations (6)-(10) reliably as they require an ideal objec
In order to hit the catching end-effector of lengthmax, the  state. Any deviation from the desired object state mostylike

parallel component has to fulfill eliminates any possible solutiotf from (6). In case of
. early contacts, situations arise, where the relative pogact
0 <pj (t) < Pjjmax (") accelerationji, (t+) is still positive, shown by the dotted

lines in Fig. 3. The consequence is a large re-bounce that
needs to be modeled until the next contact. Modelling such
a long lasting re-bounce suffers from the typically impseci
p.(t-) < 0. With regard to the frame definition in Fig. 2, knowledge of the coefficient of restitutiap, which relates to

only the first scenario is reasonable. The latter statensent3" IMPrecise pred|ct|i)n of the post-impact velogity(t¢ ).
not feasible because the object would lie behind the end-IMPacts later tharic are less problematic, as shown by
effector in its direction of motion. Hence, in order to allowth® dashed lines in Fig. 3. Here, the re-bounce occurs during

the object to approach the end-effector, the perpendiculQ?gative perpendicular acceleration, which has a limiting
constraint of negative velocity effect on the re-bounce height. Together with a coefficient

of restitutionc, < 1, the re-bounce height is strictly mono-
pi(ts) <0 (8) tonically decreasing. Too late contacts however, must deal

at the same point in time.
For an infinitesimal short time instamf beforet?, two
approach scenarios are possible, namelyt_ ) > 0 and



with high relative velocities and thus again with larger rewhich is the well-known free flight parabola with

bounces. p.1 (tc) = 0. Rearranging leads to the negative bounded ve-
B. The Successful Quasi-Direct Catch locity range

Due to the unique solution of a perfect direct catch and _ \/m o
in the presence of uncertain object states, re-bouncing con Pip=—"—"—"—<pi(tg) <0, (15

. . . . Cr
tacts are inevitable. In order to provide successful catghi

for a whole set of initial contact states, the two majotvhereash, depends on the end-effector design gindmax
results from the previous discussion are considered.|firstiS & design parameter. The positive solutiongof(z;) to
contacts with positive perpendicular acceleration must Hd4) would result in a negative, due to (13) and is thus
prevented. Secondly, if negative perpendicular accéterat Not feasible. In combination with a rearranged (3), it is
can be guaranteed between multiple contacts, the re-bourfé@ possible to calculate bounds g (¢) which result in
height decreases strictly monotonically. Consequentty, ssuccessful catches. Note thatis a considerable source of
initial contact can establish continuous contact sucadlgsf ~ uncertainty here.

negative perpendicular acceleration is guaranteed daling

re-bounces. This is what we define asuasi-directcatch.  C. Sets of Successful Object States

_ For an explicit discussion on the re-bounce height a max- wiith the above discussion, it is now possible to define a set

imum negative perpendicular acceleration constriiinkax  of object states that lead to successful quasi-direct rajch

is introduced as For this purpose, a sampled robot catching motdt),) is
Pt p%P°%) <Pl max<O. (11) regarded. For each time stgpe [tq, t¢] of the robot catching

. . . . ... _motion, a set of object states
This constraint must hold for all possible object velogtie )

after contact un@il the end—effegtor comes to rest. Due éo th Xyo(ty) = {xr | Hyxy < by A Epep =g} (16)
dependencies g, on the relative positiop® and velocity

p° of the object, the constraint can only be shown to hold focan be defined based on the previous discussion. The entries
a restricted set of relative object states. Therefore, aessc of the matrix H;, and the vectob, formulate a set of half
areaS is defined originating from the end-effector designspaces that serve as multi-dimensional inequality conssra
This area should never be left by the object after a sucdessfuhile E; and g, formulate equality constraints. The unity
initial contact. The upper acceleration bound can then hef these constraints results in a polytope for every timp ste

defined as t., each with a bounded set of successful contact states.
.. _ P In order to express the the set of object states at an
B max = max{pL(t;p% p) | t € [ta,t] A arbitrary point in time, reachable set computations arel.use

z®cS A z°€V)}, (12) Since the free object flight is an autonomous linear affine

where the velocity set’ needs to be chosen accordingdynamic, we define the reachable set similar to [14] as
to (11). The time instanty specifies the start of an arbitrary B
decelerating catching motion. The time instgndenotes the X5 (t) = Reach(Xi(te), t)- a7

end of the catching motion where the end-effector comgsy, myltiple consecutive sets, their intersection is akvay
to rest. The acceleration of the catching end-effector ts n%mpty'x-(t)ﬂ)(-(t) — (), Vi # j. This is due to the presence
X () =0, .

regarded here. _ _ of at least one equality constraint for the precise contact a
From (4) and (11)-(12) it follows that the maximum re-2 certain point in time;,.

bounce distance is strictly monotonically decreasing with
every cycle. Hence, once the perpendicular relative vloci
after initial contactp, (¢*) is lower than some upper bound
D1 max > 0, the trial can be labeled successful. For the evaluation and discussion of the previously intro-
In this work, p1 max is calculated based on the worst caseluced sets, we consider two planar symmetric robot arms,
which is the assumption of a guaranteed constant negati®ach withn = 2 revolute joints. The link lengths, andl,
acceleration of at leagt, max aftertq. This allows for linear are listed in Tab. I. The choice of this setup is additionally

IV. SIMULATION AND NUMERICAL SOLUTION

time treatment of challenging as position and orientation of the end-effiecto
P (td) —cpL (t3) are coupled. Thus, the higher the velocities required fer th
to = P 1 max = “pmax (13) dynamic catch, the shorter the time becomes in which the
which is the worst case duration of positive post-impacrt0b0t can match an objects flight trajectory.
velocities. The maximum re-bounce height can thus be TABLE |
CalCU|ated by KINEMATIC DIMENSIONS AND PARAMETERS
I — 1, 2
hy = Cr?J_ (tc )t + 2.pJ_,maxtrb . dlm] LM L M) pymam] e m]
CatpR () N a’pd (te) i (te) (14) 112 032 0345 0.035 0.005

_p.i,max 2pl,max _QﬁL,max
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Fig. 4. End-effector success area for which a velocity see@ched such —1.5 -1 —0.5 0 0.5
that an object (ball) never leaves this area again. 0
Py (M)
0 Fig. 6. Object position&; (¢) at multiple points in time beforey that
Vioo(t100) lead to a successful catch. If the object velocityt dies in the according
setVi (t), the trial is successful. The cross marks a position for witheh
- _92l N velocity solution sets are discussed.
|
g V1 (tl)
w4 y b | isolines highly depend on the success area definition and the
co o . .
\o catching motion.
_6 | | | \ |
0 2 4 6 B. Successful Sets

P [m 3_1] After validating the assumption, the sets(t;) that lead
to a successful catch can be found for every time step
Fig. 5.  The isolines mark the top right bound of sétin (19) for ¢, € [tq,t] Of the robot catching motion. For this purpose,

examplary valueg | max. Additionally, two example set¥ (¢1) (dotted) i ; _ ;
and Vioo(t100) (filled) are plotted forj, max = —2. The run of the only contact situations . 0 in the success area are

isolines highly depends on the definition of the success iaréag. 4 and  Considered, represented by the set
the catching motion.

Cu(tr) = {x(tr) |2 € S A pL =0}. (20)

A. Verification of Constraints and Assumptions For these positions, a prior-impact velocity subsef/ofor

Primarily, it has to be verified that (8) holds throughouVery time steg; is defined as
the catching phase. For the regarded catching motion, this
already holds by design. The angular velocities of the eatch V (t;;) = {x°(t;) | pL € [pL1b,0] Vp; € [0, ) ma

ing robot ¢ is always smaller than the throwing motigh AP <0 A a(t;) eV}, (21)
at the object release instatit and the desired contacts lie
lower: p)(t) < p(tr), Vt € [ta, t1]. This definition ensures that all prior-impact velocitiedl-fu

An intermediate step is necessary to find the upper pefit (15) independently of the contact position in the success
pendicular acceleration bourid max based on (12) because area. In Fig. 5 this produces the boundaries 1 and 3 for
. depends on the object positig?’ and velocityp®. In 5, = 0 andp, = p. , respectively. Major dependencies of
order to find a viable set of the velocity vector for whichpr from (15) are the coefficient of restitutian, the maxi-

P 1 max holds, the further discussion is limited to a succesfum desired re-bounce height and the maximum negative
area velocity p | max. IN order to avoid disadvantageous contacts
S={x"|p®€[0,h] x [0,p|maxd} (18) with the end-effector edge at; = p| max We choose the
parallel velocityp, to be negative, represented by boundary

which is marked in Fig. 4. This restriction is possible if the, Additionally, it must be ensured that (11) holds also for
choice ofV in (12) ensures that the object never leaves thiﬁost—impact velocities leading to the set

area again after an initial contact. The velocity set in (%2)
then Vi(tr) = {2(ty) | 2°(t;) € VA 2°(t)) € V), (22)

_ 0 = e .e . 0
V= {56057 <PLmm Ve €S Ate [td’tfgg') represented by boundary 4.

The simulation results of this set for a given catching mmotio According to the model assumptions made, the set of states

are shown in Fig. 5. The isolines illustrate the upper borddpat ead to successtul catching can now be formulated as the

of V for a choice ofji; max. This upper acceleration bound intersection

in the velocity space is guaranteed for all object positions Xi(tr) = Cr(tr) N Ve (tr). (23)
S during the entire catching period € [tq,t;]. From (18)

and (19), it can further be concluded that the shapes of these
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. ) . " . L Fig. 8. The one-dimensional set lengthdf (¢) for the position marked
Fig. 7. Left: Object velocities, (¢) at multiple points in time before, in Fig. 6 over timet. The longer the flight tisn)e until impact, the smaller
that may lead to a succe_ssful catch_(ﬂlled). The dot in thedféleea sr_u_)ws the velocity set size. When the fixed position reaches the efigg(¢) the
the set of successful object velocitiestat= tq — 0.55s for the position size of V. (t) goes down to zero

marked in Fig. 6. The dotted area indicates possible releekeities of '

the robot in use for this position and joint configurati®ight: A zoom of
valid release velocities frorh = 1 to k = 21 in steps of five for the same
point in timet.

C. Discussion of Results ‘

The result of the success analysis is presented with Figs. 6
and 7. The first plot shows potentially successful object
states at different points in time as a projection f(t)
onto the position dimensions. It can be interpreted such tha
for every time-position combination within the sets, there
exists a corresponding one dimensional set of velocitias th
leads to a successful catch. For further reference we denote °
the length of this one dimensional solution set|as One

possibility to calcullata: is tootake the.difference of t_he first 0.02S 0.06S l 0.20s
and the last velocity vectgd (¢) that is in the velocity set
Vi (t) given a positionp®(t). Fig. 9. Frames of the catching experiment with= 0s.

If the position p°, the timet¢ and the catching step
are fixed, the lengthv| is only influenced by the size
of the catching surface defined in (7). The chosen releageere built. Each of the manipulators is driven by two PD-
position does not directly influence the size of the velocitgontrolled revolute joints based on angular displacement
solution set. The zoomed plot on the right hand side isensing with resolutiorl.5 x 10~° rad. Angular velocities
Fig. 7 illustrates valid velocities for consecutive stdpsf are based on numerical differentiation of the angular dis-
the sampled catching motion. placement with resolution.5 x 10~2rads~! considering
The only parameter that does have an influence on the sitfe time sampling in steps daf.001s. Every joint is ac-
of Vi (t) is the timing, more precisely the time until impact.tuated with a150 W Maxon motor attached to a 1:100
As Fig. 8 shows, the velocity set size increases if the timgarmonic Drive gear. The maximum possible joint velocities
until impact is reduced. For a given position and a particulaare 7rads~* on the load side. The distan¢d| between the
catching stepk, this can be done by changingin X (¢t) two robot bases and the kinematic dimensions are given in
until the position is close to the set border. Figure 8 show&ab. I.
this size fork = 1 at several points in time. If the chosen Each of the two robots is able to perform both tasks throw-
position is too close to the boundary of its set, the respectiing and catching with the same end-effector. An exemplary
velocity set size is reduced to zero. Consequently, thecehoicatching motion is given and performs open-loop without
of the position influences the velocity set size indirectly b knowledge of the current object state, cf. Fig. 9. For this
the time range that can possibly be covered. However, tmeotion, successful object states were defined and caldulate
maximum velocity set size is not the best choice since im Sec. IV. From the set of successful object states, one
turn the amount of valid catching seksfor the position- object state is chosen which is not close to any bounds of the
time combination would be reduced. success set. Furthermore, this one object state is amdregst t
reachable end-effector states of the throwing robot, degic
in Fig. 7 by the dotted area. Considering possible release
For the experimental evaluation, two symmetric seriaghnd catching positions, the overall open-loop flight distan
manipulators with end-effectors moving in a vertical planés aboutl.8 m.

V. EXPERIMENT



Fig. 10.  End-effector for throwing and catching sphericéjects in
a vertical plane. The middle track minimizes the contact serfailst
keeping the object at a defined position for throwing. Inetirside planes

to additional degrees of freedom like object orientatiod an
rotational velocity. For such extensions, the physical etod
needs further attention in terms of a range of successful
contacts. The set description and calculation scales well f
this purpose unless nonlinear models for free object flight
are considered.

In future work, the algorithm will be enhanced to also
consider undesirable contacts, e.g. when the object tosjec
crosses parts of the accelerating robot motion. In the $eque
it will be possible to investigate and improve the catching

increase the catching area.

trajectory itself jointly with the end-effector design.
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jects, here an aluminum ball with radius5cm and thus
negligible aerodynamic drag. The planar surfaces, left and
right of the middle track, are slightly inclined towards the [1]
middle. This directs the object back into the vertical plane
during the catch if distortions in the direction of the non-
actuated dimension appear. In the center, the end-effector
provides 3-point contact to minimize the contact surfacg an .
to fix the object in the vertical plane for (re-)throwing.

Experimental results verify the discussion of the sucegssf
object states with 18 successful catches out of 20. ThE‘”
attached video shows one of the successful throwing an
catching cycles. Furthermore, it illustrates what hapgens
case of undesirable early contacts as they were described H
Sec. lll.

The release configuration on the throwing side is chosef]
such that a sufficient range of release velocities is availab
and such that the absolute velocity is sufficiently high. Thep,
configurationg! = 0.175rad andq¢! = 2.094rad has shown
to be a good trade-off, cf. Fig. 2. For similar desired redeas g
velocities, these angles cannot be chosen much larger éé
the motors already operate close to their power limits. The
resulting release position jg) = —1.5m andp? = 0.54 m, ]
which is also marked by a cross in Fig. 6.

On the throwing side, limiting effects on the task success
originate in release state inaccuracies that are larger thet
the currently found success sets. On the catching side, the
so far heuristically chosen catching motion contains udusél1]
potential. For example, the catching motion could be re[-lz]
planned by using the presented method.

[13]
VI. CONCLUSION AND FUTURE WORK

In this work, quasi-direct catching has been proposed &4
an effective way to deal with uncertain object states as a
set of potentially successful object states becomes &laila
It was explained how these sets of successful object states
can be calculated efficiently for given catching motions at
any point in time before contact. The time until contact has
been identified as the most crucial and complex parameter
for which generalized statements cannot be made.

The flexibility of the implementation enables intense cause
and effect discussions on all relevant constraints andhpara
eters beyond this work. The representations can be extended
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