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Abstract

This dissertation presents a novel task-based approach towards computer-aided kinematic de-

sign of a spatially moveable class of linkages, called here spherically constrained kinematic

chains. Based on a detailed review of the state of the art in theoretical kinematics, linkage de-

sign theory as well as computer-aided kinematic design new kinematic synthesis and analysis

methods as well as a general CAD-integrated kinematic design process were developed, which

also consider space requirements of a given engineering motion task. An example of a spatial

kinematic motion task inspired from automotive engineering is used to demonstrate theory and

methods.
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Zusammenfassung

Die vorliegende Dissertation liefert einen neuartigen Ansatz zum aufgabenbasierten, computer-

gestützten, kinematischen Design einer Klasse räumlich beweglicher Gelenkstrukturen, hier

genannt sphärisch zwangsgeführte kinematische Ketten. Auf Basis des Standes der Forschung

zur theoretischen Kinematik, Designtheorie von Mechanismen und dem rechner-gestützten kine-

matischen Design wurden neue kinematische Synthese- und Analysemethoden sowie ein all-

gemeiner CAD-integrierter kinematischer Designprozess erarbeitet. Die erarbeiteten Verfahren

berücksichtigen auch gegebene Bauraumanforderungen einer vorliegenden Bewegungsaufgabe.

Theorie und Methoden werden am Beispiel einer kinematisch räumlichen, Ingenieur- Bewe-

gungsaufgabe aus dem Bereich Automotive demonstriert.

ii
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1. Introduction

The terminology mechanical linkage design refers to one of the most traditional and oldest

disciplines in mechanical design engineering. It leads back to Franz Reuleaux, who derives a

machine from a kinematic structure assembled from resistant bodies and joints that provides a

well-defined mechanical movement. In his original treatise from 1875, [1], one may find the

following definition:

Eine Maschine ist eine Verbindung widerstandsfähiger Körper, welche so eingerichtet ist,
dass mittelst ihrer mechanische Naturkräfte genöthigt werden können, unter bestimmten Bewe-
gungen zu wirken.

(English translation, see [2]: A machine is a combination of resistant bodies so arranged that
by their means the mechanical forces of nature can be compelled to do work accompanied by
certain determinate motions.)

Until today this is still an admirable definition, appropriately describing the task and meaning

of current mechanical and mechatronic devices. Those range from classical mechanical low-

degree-of-freedom (d.o.f.) linkage mechanisms to multi-d.o.f. robots, performing motion tasks

in various different applications. On the one hand there are for instance tasks in the area of me-

chanical automotive engineering, where engineers design highly complex low-d.o.f. linkages

consisting of numerous links and joints that define retractable tops of sports cars. On the other

hand kinematic structures of multi-d.o.f. robots enable automated and flexible manufacturing

processes. Furthermore, medical devices such as laparoscopic grippers, adjustable spinal im-

plants or endoscope guidance devices require particularly moveable linkage structures. Other

disciplines such as architecture, industrial design and even Nano-biology exist, where linkages

are used to realize for instance transformable roofs or furniture or also to model hydrogen bonds

of protein molecules.

1.1. Motivation and Problem Statement

The list of different existing examples where linkages are used to solve specific motion tasks is

far from being complete and could be further continued. However, it may also be supplemented

by the wealth of potential applications and motion tasks, that have not yet been explored to be

solved by task-specific linkage structures. On the one hand there are clearly various tasks for

multi-d.o.f. robotic linkage structures. However, on the other hand this is also particularly true

for the class of low-d.o.f. linkages. Consider for instance a single-d.o.f. spatial orientation

device, that guides solar panels along the sun’s daily trajectory allowing it to reduce the number

of actuators in common spatially orientable solar sun tracking systems. Another example is a

car door that is guided along a spatial path upon the car top and hence eases getting into a car

in cramped parking spots.

This list of potential applications is also far from being complete and specifically addresses

the use of spatial low-d.o.f. linkage topologies in order to solve what may be called low-

d.o.f. spatial motion tasks. In fact, there is wealth of spatial linkage topologies that could be

used to solve motion tasks in various different applications by task-based kinematic designing
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1. Introduction

of linkages. This design process is particularly represented by what is known as kinematic

dimensional synthesis, where kinematic dimensions measured between the different joints are

calculated, such that the linkage provides the desired movement.

The circumstance that a variety of low-d.o.f. spatial linkage topologies is not yet used to solve

motion tasks in practice first of all is based upon the complex nature of spatial dimensional syn-

thesis. In order to somehow hide this fact from a designer appropriate computer-aided kinematic

design approaches are required, which guide a designer through the process, [3]. This can be

realized via specialized software tools or via computer-aided design methodologies, that inte-

grate kinematic linkage design into other design software tools. Note that in this context we

consider the kinematic design of linkages as a particular subdevelopment process, embedded

into other larger computer-aided product development processes. Integration into existing de-

sign environments on the one hand particularly requires the development and implementation of

proper kinematic design steps that combine appropriately with existing computer-aided design

procedures. On the other hand computing methodologies in the sense of kinematic synthesis

procedures are required, which allow systematic dimensional synthesis of task-specific kine-

matic dimensions of a given linkage topology. (Note that task-based structural synthesis, i.e.

defining a task-specific linkage topology is clearly a concern, which, however was not the focus

of this work.)

A second circumstance that exacerbates the use of a spatial linkage refers to the fact, that its

joints are spatially located and oriented and can be useless, even though a structure obtained

from synthesis solves the (kinematically) defined motion task. This is particularly the case,

when synthesis results, i.e. kinematic dimensions dramatically violate space requirements of a

given task (note that there are of course further requirements such as force transmission require-

ments, which, however, are not directly considered in this work). Such a space requirement is

defined by obstacles in the configuration space and in fact always decides about whether syn-

thesis results can be realized or not, so that we can conclude and identify the problem statement

that defines the topics of this work:

What is needed in addition to computer-aided kinematic design methodologies are spatial
linkage topologies, which can be synthesized compactly in order to solve spatial motion tasks
in engineering design with respect to given space requirements.

Note that the objectives of this work are precisely defined in sect. 1.3. The relatively quick

introduction to linkages given in the following should represent a sufficiently precise overview

on linkages required to study this work.

1.2. Rigid Body Linkages

In this section a quick definition of linkages is given, which may also be found in detail in

the numerous excellent literature on linkage design theory. Examples providing appropriate

introductions are represented by Luck and Modler [4], Sandor and Erdman [5], Kerle et al. [6]

or Uicker et al. [7] to name a few.

A mechanical linkage is known as a well ordered assembly of links and kinematic joints.

The links are considered as rigid undeformable elements just representing Reuleaux’s resistant

bodies. In case that links and joints are assembled alternately in series the result is a serial
linkage topology, see Fig. 1.1a). On the other hand, if a linkage consists of several serial

chains, which form kinematic loops it is known as a parallel kinematic linkage topology, see

2



1. Introduction

Figure 1.1.: Qualitative examples of a) serial, b) parallel and c) hybrid linkage topologies

Figure 1.2.: Basic joint types: the prismatic (P) joint, the revolute (R) joint, the cylindric (C)

joint, the universal or gimbal (G) joint, the ball or spherical (S) joint

figure b).

While the exemplary serial and parallel structure from Fig. 1.1 only consist of binary links,

the hybrid linkage topology from figure c) also includes a ternary link, which is made up of

three joints. This example introduces the type of links as another distinctive feature of linkages,

which applies to binary, ternary, quaternary links and further types.

In order to classify the types of motion enabled by a specific serial or parallel topology,

different possible kinematic pairs represented by the kinematic joints are considered. A pair can

allow translational relative movement, rotational relative movement or either a combination of

both. The relative movement may hence be a single-d.o.f. or either a multi-d.o.f. movement.

An excerpt of the well-known lower kinematic pairs or joint types is shown in Fig. 1.2, which

may be extended by various other types, see e.g. [4].

While the prismatic (P) and revolute (R) joint only allow single-d.o.f. relative movement

between two consecutive links, the cylindrical (C) joint allows a combined slide and rotation.

In fact, since rotation and translation are performed around and along the same axis this joint

enables a screw motion between the different coupled links, which is a spatial movement. In

contrast to C joints the gimbal (G) as well as the ball (S) joint allow pure spherical relative

movement. The result is that C, G and S belong to the class of spatial joint types that are used

to assemble spatially movable linkage structures, while P or R joints are also used in planar

linkages.

Planar movable linkage topologies only consist of P joints whose joint axes lie in the plane

and / or R joints whose axes are oriented perpendicular to the plane, where the motion takes

place. In contrast to that spherical linkages can be viewed as only consisting of R joints, whose

axes intersect at a specific point. This is known as the center of rotation of each of the links

that make up the spherical structure. Finally, the class of spatially moveable structures is not

restricted to have any particularly oriented joint axes and hence represents the most general

class of linkage topologies. Figure 1.3 shows different examples of planar, spherical and also

spatial linkage structures, which in fact are all single-d.o.f. structures.

In figure a1) the classical planar four-bar (or also 4R) linkage is shown, which has parallel
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1. Introduction

Figure 1.3.: Examples of planar, spherical and spatial linkage topologies with one single d.o.f.

for arbitrary kinematic dimensions

joint axes that form a single kinematic loop. Three of these loops coupled in a specific way

as shown in figure a2) form a multiloop 10R or eight-bar linkage, which consists of binary,

ternary and also quaternary links. The basic concept also generalizes to spherical linkages with

intersecting joint axes, where a spherical four-bar (4R) as well as a spherical six-bar (7R) is

shown in Fig. 1.3 b). In case of spatial linkage topologies clearly also single and multiloop

linkages exist as shown in figures c). On the one hand the RCCC single loop structure is shown

in figure c1). On the other hand a so called spatial single-d.o.f. platform linkage is shown, which

is known as the RSSR-GS multiloop linkage. This consists of a spatial RSSR four-bar linkage,

which has an isolated d.o.f. due to the two spherical joints. Hence, in order to completely

control the orientation of the moving platform another building block chain is used, which is a

GS serial kinematic chain.

1.2.1. The Kinematic Linkage Design Process

The process of linkage design for a prescribed task includes various different steps and starts

with the definition and classification of a motion task. This is followed by an appropriate se-

lection of a linkage topology such as a serial or parallel linkage. Based on that, kinematic

dimensional synthesis must be performed in order to obtain task specific kinematic dimensions.

The resulting structure must next be analyzed in order to evaluate the performance as well as

the feasibility of the system. The different steps form a specific stepwise process, that is called

here the task-based kinematic design process of linkages.

The different steps surround a designer, who aims at solving a given motion task by designing

a task specific mechanical or either mechatronic device. Figure 1.4 shows the steps of the

process based on the simple qualitative example of a spherical guidance task for an endoscope.

Endoscopes are often considered to be used in medical interventions, where spatially distinct

perspectives from the inside of a patient are required, so that different spatial orientations of

the device are required. An example of such an intervention is functional endoscopic sinus
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Figure 1.4.: Qualitative representation of a stepwise iterative kinematic design process of a link-

age for a prescribed motion task

surgery (FESS), where drain and ventilation are rearranged at a patient’s nose under endoscopic

view, [8]. In order to support a surgeon in such interventions the development of task specific

orientation devices is of interest, [9].

When a designer aims at finding a task specific linkage structure he needs to identify the types

of motion associated with the endoscope guidance task. This is clearly a spherical movement,

which hence also requires a spherical linkage topology. Within the set of spherical mecha-

nisms the next step consists in selecting a topology with appropriate mobility. Since it might

be required to orient the endoscope independently along longitude, latitude or also roll angles

in order to obtain an adequate endoscopic view, a multi-d.o.f. structure such as a spherical

serial 3R seems to be appropriate. Proper kinematic dimensions that allow the chain to reach

any task position within a desired work space may then be found from dimensional synthesis

procedures. Based on that, kinematic analysis must be performed in order to detect weak trans-

mission properties of the structure. Furthermore, also collisions between the different links may

be evaluated. Evaluation of the results then yields, whether the linkage design may be prepared

for prototyping and manufacturing or whether another design iteration must be performed.

The different steps from Fig. 1.4 identify kinematic design as an iterative process, which, in

the worst case, may require modifications of the definition of the task if design results do not

match the given requirements. Then, also any further design steps could be affected from such

modifications and may require another linkage topology with specific synthesis and analysis

procedures. In another scenario, weak design results may directly require other selections of

a linkage topology, which, however, will ask for other dimensional synthesis and analysis pro-

cedures. Finally, another scenario with, however, still perceptible impact on the effort for the

designer may be iterations between synthesis and analysis. This may be performed by evalu-
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ating free selectable parameters of dimensional synthesis or also those available in the specific

geometric design of links.

In order to reduce iterations or to accelerate iteration steps in kinematic design processes var-

ious different computational approaches have been developed, which has led to what is called

here computer-aided kinematic design. Then it is convenient to group different kinematic de-

sign steps in a way, that particularly regards their temporal sequence. Such a classification, that

is also proposed by Corves and Niggemann [10], considers preprocessing, solving and postpro-

cessing procedures in computer-aided kinematic design. Preprocessing includes the preparation

and planning of the motion task, while solving includes any computational processes, such as

synthesis and analysis calculations. Postprocessing on the other hand is defined by visualization

and evaluation of design results.

In order to support these design steps a variety of software tools has been developed, where

an excerpt will be discussed in sect. 2.4. On one hand there are standalone tools, that assist

synthesis and analysis tasks. On the other hand also advanced CAD-add in tools exist, which

integrate kinematic design into larger CAD-integrated product development processes. This

latter approach is also considered in this work in order to provide a contribution towards CAD-

integrated spatial linkage design.

1.2.2. Space Requirements

The different linkage examples from Fig. 1.3 in fact remain mobile for (almost) any chosen

kinematic dimensions measured between the different joints. For the set of planar revolute

jointed linkage topologies this means, that the locations of R joints may be varied in the plane

where the motion takes place, while their direction must remain perpendicular to that plane. In

case of spherical linkage topologies joint axes may be directed arbitrarily but must intersect at

a common point. The examples of spatial linkage topologies from Fig. 1.3 c) obviously do not

have the previously mentioned property of their planar and spherical counterparts. This means

that joint axes or gimbal or ball joints may be varied arbitrarily without affecting the mobility

of the structures. (Note that these considerations are clearly theoretical in character, based on

the assumption of rigid links and ideal kinematic joints).

Kinematic dimensional synthesis methods for planar, spherical and spatial structures preserve

the different basic properties of the three distinct topological classes (i.e. parallel, intersecting

or skew axes). However, the ’feature of arbitrary kinematic dimensions’ means that dimensional

synthesis of a given linkage topology can produce dimensions that are completely useless in the

sense that joint locations dramatically violate given space requirements. This is based on an

inappropriately stated motion task which can yield joint locations that cannot be realized. An

example is the synthesis of a linkage for a retractable top of a sports car, where an inappropri-

ately stated task yields joints located outside the car. For the case of planar linkages Mlinar and

Erdman [11] provide an introduction towards a theory that considers the dependencies between

joint locations (synthesis results) and the parameters that define a motion task.

Because synthesis of planar linkages will only affect the joint locations, while the directions

are not affected, planar synthesis results can usually be realized as a compact construction,

which consists of a layered arrangement of thickened but approximately flat links. Observe

that this property of ’flatness’ is particularly important in real applications where other parts

involved in the design task usually define a particularly small portion of space, where the link-

age is allowed to move in. In case of spherical linkage topologies there is a similar situation,

although joint axes intersect instead of being parallel. This is because the links always move

on concentric spheres, which means that spherical linkages may always be designed compactly

6



1. Introduction

Figure 1.5.: Examples of spatially moveable overconstrained structures: a) Bennett’s four-bar

linkage. b) Another Bennett linkage with link geometry that allows collision-free

folding into a compact state. c) A network of Bennett linkages. d) An origami-

evolved linkage network consisting of several spherical substructures

around their center of rotation. These fundamental properties immanent to planar and spherical

structures do not hold any longer for spatial linkage topologies and hence define the chances that

a designer may synthesize a useful spatial linkage to be slim. However, another class of spatial

linkage topologies exists, which is known for several examples having compact configurations.

This is the class of overconstrained spatial linkages, which is introduced in the following.

1.2.3. Overconstrained Spatial Structures

Overconstrained spatial linkage topologies are those, whose mobility depends on special kine-

matic dimensions among the different joints, [12]. Figure 1.5 shows different examples of such

linkages each of which moves with a single degree of freedom. Figure a) shows the well-known

spatial Bennett four-bar or 4R mechanism [13], whose mobility depends on particular, symmet-

rically arranged revolute joint axes. However, it is important to note here, that there is not only

a single set of kinematic dimensions that defines Bennett’s linkage. Instead, an infinite number

of four-bars exist, whose kinematic dimensions satisfy what is known as the Bennett conditions,

also provided in the appendix. Such another example of Bennett’s linkage is shown in figure b),

where appropriately designed links allow a collision-free folding movement. Aside the Bennett

four-bar a variety of further overconstrained single-loop structures exist such as those proposed

by Delassus [14], Bricard [15], Myard [16], Goldberg [17] or - as one of the first - by Sarrus
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[18].

While a single Bennett linkage is a single-loop linkage, also combinations or networks of

Bennett linkages exist, which are coupled with particular respect to the overconstraining kine-

matic dimensions. Such networks are also of recent interest in kinematics and those will be

discussed briefly in a subsection of sect. 2.3.6. An example of a Bennett network is shown in

Fig. 1.5 c), which is a scissor mechanism that allows a compactly folded configuration and a

circular deployment.

Origami-inspired linkages

In fact the property of foldability is a particular characteristic immanent to a variety of spatial

overconstrained single-d.o.f. structures. An example of a linkage folding configuration is rep-

resented by joint axes that lie in a common plane. This may particularly also be observed at

another class of network linkages which are known as the class of rigid origami or origami-
evolved linkage structures. A rigid origami can also be assigned to the category of technical

origami or origami-based engineering design, where specific engineering design problems are

solved using the principles of the Japanese art of paper folding. Example applications are for

instance transformable roofs in architecture, [19] , [20], or also deployable arrays of solid so-

lar panels, [21]. However, origami-based engineering design has also yet been identified with

further engineering design disciplines such as compliant mechanisms [22], meta materials [23],

nano scaled DNA origami mechanisms [24], medical devices such as medical stents [25] as well

as the design of mobile robots [26], [27].

A rigid origami is obtained by replacing the numerous creases and paper segments of an

origami folding pattern by revolute joints and rigid panels, such that the resulting structure

remains movable, see e.g. [28]. An example linkage network is shown in Fig. 1.5 d), which

consists of several, highly symmetrical spherical sub-structures with intersecting joint axes, that

introduce a high degree of overconstraint. Due to the fact, that a rigid origami originates from a

crease pattern drawn on a continuous sheet of paper, there is usually no sliding along the joint

axes, i.e. rigid origami are usually R jointed linkage topologies. Such structures also exhibit

flat inflated as well as flat folded states, which, however depend on the thickness of the different

parts that make up the structure.

1.2.4. Task-Based Dimensional Synthesis of Spatial Overconstrained
Linkages

Even though various overconstrained spatial linkage topologies have the property of foldability

and may hence be used to solve folding tasks, a particular problem may arise, if the structure

should be used to realize a desired, pre-defined task-specific movement. This refers to the fact,

that the mobility and hence also the motion capabilities rely on the special kinematic dimen-

sions and will probably not directly match a task-specific, pre-defined trajectory in practice.

However, in contrast to spatial linkages whose mobility doesn’t depend on special kinematic di-

mensions, this means that the chances that a designer may find a useful linkage, which satisfies

the requirements of a given motion task are outmost slim.

An example demonstrating that this is not necessarily always the case is the finite position
synthesis of Bennett’s linkage. This relies on the synthesis problem of spatial serial RR chains.

An early result discovered by Tsai and Roth [29] in 1973 shows how to calculate or synthe-

size the kinematic dimensions of such a chain, such that its end link can reach three finitely

separated and arbitrarily pre-defined spatial poses (Note, that we won’t distinguish between the
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words poses and positions in this work). In fact the algebraic calculation procedure yields two

solutions, which represent two RR chains that form the Bennett linkage. However, this in turn

means that one may always synthesize a Bennett 4R for three arbitrarily specified position.

When this fundamental result is considered in the context of linkage design in mechanical

engineering the three poses can be used as the task positions, that define an engineering motion

task. The result is that the finite position synthesis of an overconstrained linkage topology

becomes available for task-based kinematic design in engineering.

While the initial result of Tsai and Roth has been reformulated and simplified, see e.g. Perez

and McCarthy [30] or Brunnthaler, Schröcker and Husty [31], most recently Hegedüs, Schicho,

and Schröcker [32] reported on the four-position synthesis of spatial 3R chains that can be used

to form overconstrained 6R linkages. This gives hope that also further overconstrained linkages

can be synthesized for engineering motion tasks.

1.3. Objectives

The results of this work shall address the problem statement from sect. 1.1. Hence, a computer-

aided kinematic design approach will be developed, which allows the task-based design of

spatial linkages for engineering motion problems. The approach should also take into account

the problem of given space requirements, since those always decide about whether synthesis

results can be realized or not. In order to meet the goal the following topics will be considered:

1. In order to solve motion tasks with challenging space requirements low-d.o.f. spatial linkage

topologies will be considered, that have joint axes located relative to each other, such that

a detailed design may have particularly slim shape.

2. In order to make practical use of the spatial topologies, kinematic synthesis and analysis

techniques will be developed. This, on the one hand, will allow to calculate kinematic

dimensions, such that the linkage can provide a desired movement. On the other hand

analysis will allow to quantify ’the quality of the movement’.

3. In order to provide a kinematic design methodology also useful in engineering practice a

methodology will be developed using commonly available computational as well as de-

sign environments.

4. In order to verify computational procedures as well as design methodologies a real engineer-

ing application will be considered, where a motion task must be solved. The task shall

require spatial motion and needs to be characterized by particularly challenging space

requirements.

1.4. Organization of the Work

The desired computer-aided kinematic design methodologies for spatial linkage topologies first

of all require a detailed review of the state of the art in kinematic linkage design, which is pro-

vided in chapter 2. Section 2.1 provides essential foundations of theoretical kinematics, which

yields the fundamental reference for kinematic analysis and synthesis of linkages, provided in

sect. 2.2 and 2.3. These first three sections of the second chapter are additionally supported by

the appendix, where further kinematics methods are derived. These also include algebraic solu-

tion procedures for synthesis problems, which were used throughout this work. Section 2.4 then
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1. Introduction

provides an overview on common computer-aided kinematic linkage design, which particularly

include software tools commonly used to solve kinematic design problems.

Based on the state of the art a family of slim spatial linkages is developed in chapter 3, which

belong to the class of overconstrained structures and which may be found from a specific rigid

origami pattern. Synthesis procedures as well as analysis procedures of these structures are

then derived in detail in chapter 4, which represents a major part of the work. When imple-

mented into a commonly available computing environment the different procedures define the

computational part in a computer-aided kinematic design process, which is performed within a

design environment and which is based on a systematic kinematic design methodology. This

methodology is derived in detail in chapter 5 and represents the second major part of the work.

In chapter 6 the different results are evaluated using a suitable design engineering task. The

computer-aided kinematic design methodology is used in order to synthesize a compact spatial

linkage for a motion task with particularly challenging space requirements in order to evaluate

and validate both synthesis and analysis procedures as well as the computer-aided kinematic

design approach.
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2. State-of-the-art

This chapter on the one hand provides the mathematical framework in rigid body kinematics,

kinematic analysis as well as finite position dimensional synthesis of linkage building blocks re-

quired throughout the work. On the other hand the state-of-the-art in mechanically constrained

serial kinematic chains as well as linkage design software is given.

2.1. Excerpts from Theoretical Kinematics of Rigid Motion

Theoretical kinematics aims at studying the fundamental properties of rigid motion and is based

on the movement of points forming a rigid link or body. Starting from the group of rigid
displacements, composed from a rotation and a translation, the section will derive the velocity
of points using the tangent operator or twist of the motion group. This allows to identify the

tangent operator as a 6-dimensional vector, also known as the velocity screw. Based on this,

lines as special types of screws and the spatial displacement of screws are derived. In order to

study line geometry the dual vector algebra of screws is introduced. A suitable reference for

this section is [33].

More detailed derivations are given in appendix A, which may be consulted when required.

These allow to study the invariants of displacements, particularly needed for linkage synthesis.

Here also the linear combination of independent screws (screw systems) is identified in brief,

that is used to analyze linkage structures.

2.1.1. The Motion Groups SE(3), SO(3) and SE(2)
The points that form a rigid link K in a linkage can be measured in a Cartesian coordinate frame

B, which shall be rigidly attached to K (see Fig. 2.1). Then an arbitrary point can be described

in B using the vector Bp̄ = (u, v, w)T , where the left superscript denotes that Bp̄ is measured

in B. The displaced coordinates of points are found in another frame W from the displacement
equation

W p = W RB · Bp̄+W tB, (2.1)

where the translation vector W tB ∈ R
3 points from the origin of W to that of B and is measured

in W . Note that W -frame coordinates of points shall be denoted as W p = (x, y, z)T and we put

the bar to Bp̄ because there are two different vectors describing the same point. W RB is a proper

orthogonal 3× 3 rotation matrix satisfying W RB(
W RB)

T = W RB
BRW = E, which means that

W RB represents an element of the special orthogonal group SO(3) (here E is the 3×3 identity).

By adding a fourth vector component normalized to 1 the homogeneous representation of Eq.

(2.1) is obtained:

W p =

( W RB
W tB

0T 1

)
· Bp̄ = W TB · Bp̄. (2.2)

Note that in this equation vectors take the form W p = (x, y, z, 1)T and Bp̄ = (u, v, w, 1)T . The

4×4 matrix W TB is called the homogeneous transform and represents an element of the special
Euclidean group SE(3) with properties:
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Figure 2.1.: Graphical representation of the displacement equation

1. W TB2 =
W TB1

B1TB2 =

( W RB1
B1RB2

W tB1 +
W RB1

B1tB2

0T 1

)
(composition of displacements,

with semi direct product acting on the translations). It is important to note here, that

frames B1, B2, . . . , indicated at the right subscript denote coordinate frames attached to

different links K1, K2, . . . .

2. (W TB)
−1 = BTW =

( BRW −BRW
W tB

0T 1

)
(inverse of a displacement) and

3. I =
(

E 0
0T 1

)
(identity displacement).

In the case that W RB is a proper 2×2 rotation matrix and W tB ∈R
2 planar rigid motion can be

embedded into 3×3 homogeneous transforms, which then form the group SE(2). Considering

the xy-plane of W and B being the plane where the motion takes place, this requires vectors W p=
(x, y, 1)T and Bp̄= (u, v, 1)T in the planar version of Eq. (2.2). In what follows Bp̄ is considered

to be rigid and hence independent of temporally and spatially different configurations of a link.

Relative displacements

A particular type of a composition of two displacements is termed relative displacement, which

relates two general poses i and j of a frame B. These can be thought of as two temporally and

spatially different poses of B, in the following also called finitely separated poses. Badging these

configurations by another right superscript and using Eq. (2.2) yields W pi =W Ti
B ·Bp̄ and W p j =

W T j
B · Bp̄ and eliminating Bp̄ yields the relative displacement equation

W p j = W T j
B(

W Ti
B)

−1 ·W pi =

(
W R j

B
BRi

W
W t j

B −W R j
B

BRi
W ·W ti

B
0T 1

)
·W pi. (2.3)
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Note that Bp̄ is considered to be rigid and hence independent of configuration i and j. Equa-

tion (2.3) is an expression only consisting of W -frame coordinates, transporting the points from

configuration i to j. Hence, for relative displacements it is convenient to choose the follow-

ing notation, which neglects the left superscript and uses the right lower index to denote the

considered moving frame:

p j = Ti j
B ·pi =

(
Ri j

B ti j
B

0T 1

)
·pi, (2.4)

where Ri j
B and ti j

B are the rotational and translational parts of the homogeneous transform from

Eq. (2.3). Expanding Eq. (2.4) into the non-homogeneous representation of a displacement

equation yield an expression consisting of usual 3×1 vectors:

p j = Ri j
B ·pi + ti j

B . (2.5)

Rotation matrices

A convenient way to describe or construct the spatial orientation of a link K or frame B is to

perform a series of coordinate rotations. The well-known basic rotations about the x-, y- and

z-axis of a certain coordinate frame are given as

Rx =

⎛
⎝ 1 0 0

0 cφ −sφ
0 sφ cφ

⎞
⎠ , Ry =

⎛
⎝ cφ 0 sφ

0 1 0

−sφ 0 cφ

⎞
⎠ , Rz =

⎛
⎝ cφ −sφ 0

sφ cφ 0

0 0 1

⎞
⎠ , (2.6)

where c and s denote the cosine and sine. Compositions of a certain combination of these

rotations may then yield the desired spatial orientation of B with respect to another frame W .

Within this work the z-x-z rotation sequence will mainly be used, because this is also provided

by the CAD-system used for the kinematic design procedures:

W RB = Rz(ψ)Rx(ϑ)Rz(ϕ) =

⎛
⎝ cψcϕ − cϑsψsϕ −cψsϕ − cϑcϕsψ sϑsψ

cϕsψ + cϑcψsϕ cϑcψcϕ − sψsϕ −cψsϑ
sϑsϕ cϕsϑ cϑ

⎞
⎠ . (2.7)

Another convenient way is to define rotations in terms of a rotation angle and rotation axis,

as shown in sect. A.1.

Coordinate screw displacements

According to the previously described coordinate rotations, the 4×4 homogeneous transforms

take a very simple form in the case of a slide s along and a rotation φ around the x-, y- or z-axis

of a certain coordinate frame:

Tx =

⎛
⎜⎜⎝

1 0 0 s
0 cφ −sφ 0

0 sφ cφ 0

0 0 0 1

⎞
⎟⎟⎠ , Ty =

⎛
⎜⎜⎝

cφ 0 sφ 0

0 1 0 s
−sφ 0 cφ 0

0 0 0 1

⎞
⎟⎟⎠ , Tz =

⎛
⎜⎜⎝

cφ −sφ 0 0

sφ cφ 0 0

0 0 1 s
0 0 0 1

⎞
⎟⎟⎠ .

(2.8)

These matrices will also be denoted as T(φ ,s) and they are known as the coordinate screw
displacements. Those are widely used in the analysis of spatial kinematic chains, see also sect.

2.2.2 and B.1.
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2.1.2. Velocity and the Tangent Operator of SE(3)
When a link in a linkage is considered to move smoothly through space from one pose to the

next, the entries in W TB and W p in Eq. (2.2) vary continuously with respect to time. Hence,

considering these quantities as continuous functions in time and computing the derivative of

Eq. (2.2) with respect to time yields: W ṗ = W ṪB · Bp̄. Substituting Bp̄ = (W TB)
−1 ·W p into this

expression then yields the velocity of the points forming the link:

W ṗ = W ṪB(
W TB)

−1 ·W p =

(
W ṘB

BRW −W ṘB
BRW ·W tB + ·W ṫB

0T 0

)
W p. (2.9)

Equation (2.9) is an expression only consisting of W -frame coordinates, so that in the following

indices indicating coordinate frames are neglected. Hence, after introducing the matrix Ω =
Ṙ(R)T and the vector v = −Ωt+ ṫ and assembling these into a 4× 4 matrix Γ, Eq. (2.9) is

written as:

ṗ = Γ ·p =

(
Ω v
0T 0

)
·p. (2.10)

The matrix Γ acts on the trajectories of points to yield their velocities and is also called the tan-
gent operator of SE(3). Another denotation of a tangent operator is twist, also used throughout

the work.

Straight forward differentiation of R(R)T = E yields R(Ṙ)T = −Ṙ(R)T , which shows that

Ω is skew symmetric. Hence, Ω may also be assembled from three parameters denoted as ωx,

ωy and ωz, which are nothing but the well-known angular velocity parameters. Assembling ωx,

ωy and ωz into a 3×1 vector �ω and using the common vector product allows to replace −Ωt by

t× �ω , which yields v = t× �ω + ṫ. The vector v is known as the linear or translational velocity.

Using this, the matrix representation of the tangent operator reads

Γ =

(
Ω t×�ω + ṫ
0T 0

)
. (2.11)

For a detailed derivation of tangent operators and their fundamental role as the elements of the

Lie algebra se(3) readers are referred to e.g. [34], pp. 29-35.

Twists in 6-vector representation

Since the sixteen elements of a tangent operator Γ only depend on six different parameters �ω
and v, these parameters can be assembled formally into a 6× 1 vector. Such six-vectors are

badged by a ’ˆ’ throughout this work, which follows the notation also used by Beyer [35]:

v̂ =

(
�ω

t×�ω + ṫ

)
. (2.12)

(Note that the role of a tangent operator in Eq. (2.10), i.e. relating the trajectory and velocity of

points, shall be ignored for this purpose) A general six-vector v̂ = (�ω, v)T satisfies (�ω)T v �= 0

and is called a screw, first invented by Sir Robert Stawell Ball in his treatise The Theory of
Screws: A study in the dynamics of a rigid body from 1876, [36].

2.1.3. Lines as Special Cases of Screws

The theory of screws provides a powerful tool since its elements - the screws - can be used to

model several further quantities beside velocities that are of interest in the analysis and synthe-

sis of linkages. A particular example are lines that are needed to model the axes of revolute
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or cylindrical joints in a linkage. In order to see how to fit a line into a screw, consider the

parameter form of a line:

r(λ ) = p+λh, λ ∈ R, (2.13)

where h is a (non-normalized ) direction and p is an arbitrary point on the line . Now multiply

on the right by ×h to obtain the fact, that any point on the line produces the same moment of a
line:

r×h = p×h. (2.14)

Hence, beside the parameter form, a line is also defined by its direction and moment, which

together may be assembled into a 6× 1 vector (h, p× h)T . This has the from of a specific

screw and the coordinates are also known as the Plücker coordinates of a line screw, named

after Julius Plücker. However, this is not unique since any amount |h| may be used to define the

line. Therefore, it may also be convenient to use a normalized direction s = h
|h| . For a general

line with direction l and location p the following notation is used within the work:

l̂ =
(

l
p× l

)
. (2.15)

If a particular line or different lines â, b̂, . . . need to be defined, the notation â = (a, pa × a)T ,

b̂ = (b, pb ×b)T , . . . will be used to distinguish the lines.

2.1.4. Screw Transformations

The convenience of assembling the direction and moment of a line into a 6× 1 vector can be

seen by considering the spatial displacement of a line. This is easily constructed by considering

the direction being written in terms of two vectors W p and W q both pointing from the origin of

W to two corresponding points on the line:

W l̂ =
(W l, W p×W l

)T
=

(W q−W p, W p× (W q−W p)
)T

. (2.16)

Now, since the line may be a part of a moving link (i.e. it may represent a revolute axis), the

W -frame coordinates of p and q are obtained from Eq. (2.1) as W p = W RB · Bp̄+W tB and
W q = W RB · Bq̄+W tB and assembling this into Eq. (2.16) and rearranging yields

W l̂ =

( W RB · (Bq̄− Bp̄)
W tB ×

(W RB · (Bq̄− Bp̄)
)
+W RB ·

(Bp̄× (Bq̄− Bp̄)
) )

=

=

( W RB · B l̄
W tB ×

(W RB · Bl̄
)
+W RB ·

(Bp̄× Bl̄
) )

. (2.17)

Modelling the crossproduct W tB× by introducing a skew symmetric matrix W t̃B assembled from

the parameters of W tB allows to assemble the motion parameters in a 6× 6 matrix W T̂B, that

represents the spatial displacement of a line:( W l
W p×W l

)
︸ ︷︷ ︸

W l̂

=

( W RB 0
W t̃B

W RB
W RB

)
︸ ︷︷ ︸

W T̂B

·
( Bl

Bp̄× Bl

)
︸ ︷︷ ︸

B l̂

. (2.18)

Note that l̄ ≡ l was taken into account here. Furthermore it can be shown, that the result also

holds for general screws (see e.g. [33], pp. 292-293), which can be used to transform the
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coordinates of a velocity screw. In order to describe the relative displacement of a line eliminate
Bl̂ from W l̂i = W T̂i

B · Bl̂ and W l̂ j = W T̂ j
B · Bl̂ to obtain:

l̂ j = T̂i j
B · l̂i =

(
Ri j

B 0
t̃i j
B Ri j

B Ri j
B

)
· l̂i. (2.19)

2.1.5. Dual Vector Algebra of Screws

As one can see from Eq. (2.17) and (2.18) the structure of the screw transformation matrix
W T̂B yields that the direction of a line is only affected by rotations while the moment of a line is

transformed by translational and rotational parts of the displacement. This and further properties

of screws and the group of rigid motion allow to consider screws as elements of a specific

algebra, called the dual vector algebra of screws, which preserves the algebraic properties. For

a detailed introduction into this topic the reader is referred to Dimentberg [37] or also Beyer

[35].

The construction of the dual algebra begins by defining the set of dual numbers â = a1+σa2,

where a1 and a2 are real numbers and the dual unit σ is manipulated as σ2 = 0. Note that usually

the symbol ε is used for the dual unit, which however is used throughout the work as specific

angle, see chapter 4. Hence, we follow Rudolf Beyer, who used the symbol σ in [35].

The set of dual numbers forms a commutative ring on which (i) addition â+ b̂ = a1 + b1 +
σ(a2 +b2), (ii) subtraction â− b̂ = a1 −b1 +σ(a2 −b2) and (iii) a multiplication âb̂ = a1b1 +
σ(a1b2 +b1a2) (and (iv) a division, which is not needed here) among two elements is defined.

If one allows vectors and matrices instead of real numbers, the result is a vector algebra, that

represents a powerful tool to manipulate screws. An introductive example demonstrating this

is the spatial displacement of a screw obtained from a multiplication of a screw by a screw

transformation matrix, modelled as dual vector v̂ = �ω +σv and a dual matrix T̂ = R+σ t̃R:

T̂ · v̂ =
(
R+σ t̃R

)
(�ω +σv) = R ·�ω +σ

(
t̃R ·�ω +R ·v) . (2.20)

When the screw represents a line, a comparison of this result with Eq. (2.17) or (2.18) shows that

the multiplication of a line in dual vector form by a dual matrix assembled from the parameters

of a screw transformation matrix yields the spatial displacement of the line.

Dual scalar product of two screws

The linearity of the scalar product of vectors allows the definition of the corresponding counter

part in the dual vector algebra. Respecting σ2 = 0 then yields the dual scalar product:

(�ω1 +σv1) · (�ω2 +σv2) = (�ω1)
T ·�ω2 +σ

(
(�ω1)

T ·v2 +(v1)
T ·�ω2

)
. (2.21)

Note that · among vectors denotes the scalar product so that the result ist a dual scalar composed

from two real numbers.

Remark: Similarly a dual vector product can be defined as (�ω1 +σv1)× (�ω2 +σv2) = �ω1 ×
�ω2+σ (�ω1 ×v2 +v1 ×�ω2), where the result is another dual vector. An interesting aspect is that

the dual vector product in fact represents the Lie product defined in the Lie algebra se(3), which

means that this Lie algebra represents the algebra of screws, called screw theory, see also [34],

pp. 29-35.
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Dual scalar product of two lines

If the screws in Eq. (2.21) represent two lines â = (a, pa ×a)T and b̂ = (b, pb ×b)T , where a
and b are unit vectors, the dual scalar product yields

(a+σpa ×a) · (b+σpb ×b) = (a)T ·b+σ
(
(a)T · (pb ×b)+(pa ×a)T ·b

)
. (2.22)

The real part of the resulting dual scalar clearly represents the cosine of the angle α enclosed

by a and b: (a)T ·b = cosα .

Since the triple products in (2.22) are invariant under a circular shift of the operators the dual

part can be rearranged as:

(a)T · (pb ×b)+(pa ×a)T ·b = (pb)
T · (b×a)+(pa)

T · (a×b) =
= (pa −pb)

T · (a×b). (2.23)

Next, consider pa and pb being points that define the intersections of the common normal line

between â and b̂ (Note that this definition is valid since Eq. (2.14) yielded that the choice of the

point locating a line in space does not affect the moment of the line). Then vectors (pa −pb)
and a×b may be either parallel or antiparallel, which yields

(pa −pb)
T · (a×b) = ±|pa −pb||a×b|=

= ±l sinα , (2.24)

where l represents the common normal distance between â and b̂. Hence, the dual scalar product

of two line screws yields

(a+σpa ×a) · (b+σpb ×b) = cosα ±σ l sinα , (2.25)

which allows to study the relative location between two lines, e.g. whether they are parallel,

intersect, etc.. In fact it can furthermore be shown, that the dual scalar product of two lines

actually satisfies

(a+σpa ×a) · (b+σpb ×b) = cosα −σ l sinα , (2.26)

which may also be retraced from [35] pp. 74-77.

2.2. Kinematic Analysis of Linkages

Essential steps in the analysis of a kinematic chain with given kinematic dimensions are defini-

tion or determination of the movement of the chain. On the one hand, this refers to the forward
kinematics analysis problem where it is the concern to find the spatial pose of a particular link

or frame for given joint parameters. On the other hand, one has to deal with the inverse kine-
matics analysis problem where the goal is to find the joint parameters for a given spatial pose

of a particular link or frame. Note that one may furthermore distinguish between analysis at

the position, velocity, acceleration level or also higher levels of differentiation. The forward

or inverse problem particularly differ for serial and parallel structures of different degrees of

freedom. In order to determine this d.o.f. or mobility, a mobility analysis may be performed,

where a classical approach is provided in brief in sect. 2.2.1.

In order to solve either the forward or inverse problem a mathematical description of the

chain, known as the kinematics equations of a chain, is required, which captures the geometry
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(kinematic dimensions) as well as the movement (joint parameters and link movement). A well

known way to formulate kinematics equations is the Denavit-Hartenberg convention, which is

given in sect. 2.2.2. This directly applies to planar, spherical and spatial serial structures and can

also be used to state kinematic constraint equations of parallel structures. Cases exist, where

such constraint equations can be solved in a unified manner. This is shown for the spherical

four-bar in sect. 2.2.3, where the result is the solution of the forward analysis problem of

spherical four-bars. This is also required for velocity considerations provided in sect. 2.2.4.

Analysis results of this section will be particularly required in sect. 4.1, where analysis

procedures are presented for spherically constrained linkages.

2.2.1. The Mobility Formula

The question of whether a certain linkage topology consisting of a number of links and joints is

actually mobile, leads to what is known as linkage mobility analysis. The goal is to determine

the number of degrees of freedom (d.o.f.) of a given linkage structure. The mobility formula

provides a counting formula to calculate the d.o.f. of a system consisting of n links. First

neglecting the set of joints the d.o.f. is M = 6n, according to the three translational and three

rotational d.o.f. each link has in space. Note that in the case of purely planar or spherically

moveable systems the result is M = 3n, because of the three-parameter motion subgroups SE(2)
and SO(3).

When the links are connected by g joints, each introducing ci kinematic constraints, the d.o.f.

of the system is reduced such that M = 6n−∑g
i=1 ci. Because it is more common to deal with

a joint’s d.o.f. than speaking of constraints, the freedom f = 6− c a joint allows is used to

describe the mobility of the system. The result is M = 6n−∑g
i=1(6− fi) = 6(n−g)+∑g

i=1 fi,

where fi is the d.o.f. allowed by the i’th joint. Because at least one link of a linkage is always

fixed, the number of moving links in fact is n−1, which yields

M = 6(n−1−g)+
g

∑
i=1

fi (space) or M = 3(n−1−g)+
g

∑
i=1

fi (plane, sphere) . (2.27)

Equation (2.27) is known as the mobility formula, which yields the d.o.f. of a given structure.

If for instance a given linkage structure yields M = 1, there is only one actuator required to

perform a defined movement of the complete linkage.

In the case of spatial overconstrained linkages it happens that Eq. (2.27) yields a zero or

negative mobility for a given structure, even though it is movable. An example is the spatial

Bennett mechanism consisting of n= 4 links and g= 4 revolute joints. This yields M =−2 even

though the system moves with mobility one, see also appendix C.3. In this case the structure

contains some special kinematic dimensions such as symmetrically arranged hinges, which

preserve the mobility. The total number of these dimensions is often written as a formal sum

∑s so that it can be added to Eq. (2.27):

M = 6(n−1−g)+
g

∑
i=1

fi +∑s . (2.28)

In the case of overconstrained kinematic chains, as they will be introduced in chapter 3, calcu-

lating the correct mobility requires detailed considerations of special kinematic dimensions.

Beside the mobility formula also various other approaches exist, which allow to detect the

mobility of a linkage. Here, for instance the so called twist loop equations of a structure may

be used, which originate as specific linear combinations of screws from the time derivatives of
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Figure 2.2.: The general spatial serial 6R chain with skew joint axes and coordinate frames

associated with the Denavit-Hartenberg kinematics equations

the kinematics equations of the linkage. Then, the result is an instantaneous mobility analysis,

see also [38], [39] or [40]. Further approaches consider connectivities and constraint analysis

of building block chains of complex parallel kinematic chains, e.g. [41] or [42]. In [43] Stachel

provides a detailed flexibility analysis of various overconstrained mechanisms. Flexible mech-

anisms are those, who are analytically able to change their spatial shape with respect to given

input parameters. Examples are deployable polyhedral structures, linkage networks or also rigid

origami folding patterns.

2.2.2. The Denavit-Hartenberg Kinematics Equations

In order to describe the geometry (kinematic dimensions) as well as the movement (joint param-

eters and link movement) of kinematic chains a mathematical description of the chain, known as

the kinematics equations, is required. A well-known way to formulate kinematics equations is

the Denavit-Hartenberg convention introduced in the following using the example of a general

spatial 6R serial chain.

A general 6R chain with 6 d.o.f. (Fig. 2.2) can be viewed as a sequence of skew joint axes.

A minimum set of parameters (the Denavit-Hartenberg parameters) consists of the kinematic

dimensions as well as joint parameters and is represented by the angles and common normals

among two consecutive joint axes as well as the angles and normal distances among each con-

secutive pair of the common normals.

19



2. State-of-the-art

A key feature of the Denavit-Hartenberg convention is that one may define the spatially dis-

placed pose of a frame B, located somewhere in the end link of the chain by perfoming a com-

position of displacements only using screw coordinate displacements Tx and Tz, introduced in

section 2.1.1, Eq. (2.8). To retrace that, consider coordinate frames being attached along the

normals of the chain as shown for the general 6R in Fig. 2.2. This allows to write the kinematics

equations as an alternating composition of homogeneous transforms Tz and Tx:

W TB = W T1,z
1T2,x

2T3,z
3T4,x

4T5,z
5T6,x

6T7,z . . .
13T14,x

14TB,z, (2.29)

where the transformations W T2 =
W T1,z

1T2,x as well as 13TB = 13T14,x
14TB,z describe the rela-

tive location between axis â or f̂ and frame W or B. The remaining z-transformations capture the

joint angles φ a,. . . , φ f around axes â,. . . ,f̂ as well as the constant offsets sa,. . . ,s f . For instance

sa measures the distance between frames 2 and 3 along axis â. The remaining x-transformations

in Eq. (2.29) include the constant angles αab,. . . ,αe f and distances lab,. . . ,le f measured be-

tween the different joint axes. Using these parameters Eq. (2.29) can be rewritten as

W TB = W T2
2T3,z(φ a,sa)

3T4,x(αab, lab)
4T5,z(φ b,sb) · · ·12T13,z(φ f ,s f )

13TB. (2.30)

These are the Denavit-Hartenberg kinematics equations of the general 6R with arbitrarily lo-

cated frames W and B. Note, that this view point is considered here, because it allows the

derivation of relative kinematics equations, as shown in sect. B.1. For analysis it is convenient

to consider W or B coinciding with frames 2 or 13 and the result is a more compact form of the

kinematics equations.

Figure 2.2 will serve as certain ’general reference linkage’ for the derivation of kinematics

equations of simpler chains. This includes kinematics equations of spherical serial chains in

the next section but also the matrix loop equation of a spherical four-bar, which is a parallel

kinematic structure.

Kinematics Equations of Spherical Chains

An important special case is the class of spherical serial structures, which are able to produce

movement within the three-parameter sub-group SO(3). A chain whose end effector is able to

perform an arbitrary motion in SO(3) is the spherical 3R chain with intersecting joint axes. A

3R chain is obtained by cutting off joints d̂, ê and f̂ from the general 6R chain in Fig. 2.2. In

order to state kinematics equations frames W and B are considered being located at the point of

intersection of the joints and should have their z-axes coinciding with the directions of â and ĉ.

The result are purely ’spherical’ kinematics equations:

W RB = W R1,z(φ a)
1R2,x(αab)

2R3,z(φ b)
3R4,x(αbc)

4RB,z(φ c). (2.31)

2.2.3. Forward Position Analysis of Spherical Four-Bars

As it is the case for serial structures, the forward kinematics problem of a parallel structure

consists in determining movement of the chain for given joint parameters. However, compared

to serial structures parallel systems always have kinematic loops and hence also have non-

actuated passive joints, whose joint movement results from loop-based kinematic constraints in

the structure. To determine the unknown joint movement a loop-based forward position analysis

of parallel structures may be performed. This can be done using the constraint equations of a
loop, which, can be derived using the Denavit-Hartenberg convention introduced in sect. 2.2.2.

20



2. State-of-the-art

Figure 2.3.: The general spherical four-bar with angles and axes that allow to state matrix loop

equations using the Denavit-Hartenberg kinematics equations

For parallel structures several solutions of the forward kinematics problem may exist, which

yield different sets of passive joint parameter values for a given actuation. These result in

different assembly modes and finding all such modes is a challenging part in forward position

analysis of a parallel structure. A prominent example is the forward kinematic problem of the

6-SPS parallel structure (general Steward-Gough platform), which has been shown to have 40

different solutions at most (see e.g. [44]).

It can be shown that for specific types of parallel structures constraint equations of a loop can

be transformed into a standard form of a constraint equation. This is shown for the spherical

four-bar linkage from Fig. 2.3, that consist of a single loop and which is the building block of the

systems analyzed in sect. 4.1. Based on spherical Denavit-Hartenberg matrix loop equations
the standard form of a constraint equation is derived and it is shown that this can easily be

solved using the well-known tangent-half-angle solution formula.

The matrix loop equation of spherical four-bars

A general spherical four-bar with angles φ a,. . . ,αad and directions a,. . . ,d is shown in Fig. 2.3

and allows to state the matrix loop equations. These are given by the following alternating

composition of x- and z-rotations along the loop:

W R1,z(φ a)
1R2,x(−αab)

2R3,z(φ b)
3R4,x(αbc)

4R5,z(φ c)

5R6,x(−αcd)
6R7,z(−φ d)

7R8,x(−αad)
8RW,z(−π

2
) = E. (2.32)

Note that frame W is considered being located at the point of intersection, such that it has its

z-axis aligned with direction a and its y-axis perpendicular to the plane spanned by a and d.

The remaining frames 1,. . . ,8 are all located at the point of intersection and Fig 2.4 provides a

graphical depiction of the matrix loop equation. The different signs arise from the definition of

angles.
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Figure 2.4.: Transformation sequence of coordinate frames along the spherical four-bar loop

Equation (2.32) can be verified using the following values, which belong to the structure

from Fig. 2.3: φ a = 32.020841 deg, αab = 40 deg, φ b = 99.139761 deg, αbc = 70 deg, φ c =
87.383215 deg, αcd = 55 deg, φ d = 71.160834 deg, αad = 50 deg. Herein angles φ were

measured in a CAD-system.

In a general analysis scenario dimensions α as well as one angle φ is known as a given input,

while the remaining joint angles are unknown. Note that this is because the spherical four-bar

moves with one single d.o.f.. Then Eq. (2.32) provides a set of non-linear equations, that can

be solved to obtain the unknown joint angles. Further approaches towards solving matrix loop

equations (also for multiloop structures) can be found in [33] or [45].

The constraint equation of a single loop

Another systematic approach to solve the forward position problem for the unknown joint angles

of the four-bar uses the (normalized) directions a,. . . ,d in combination with rotation matrices

from Eq. (2.32). Note, that axes a and d are known since they are considered to be fixed. If φ a
is considered to be given from an actuator one may write the following constraint equation for
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the loop: (W c
)T ·W d = cosαcd , (2.33)

where

W c = W R1,z(φ a)
1R2,x(−αab)

2R3,z(φ b)
3R4,x(αbc) · 4c

W d =
(

7R8,x(−αad)
8RW,z(−π

2
))
)T

· 7d. (2.34)

Observe that 4c = 7d = (0 0 1)T . After inserting Eq. (2.34), Eq. (2.33) can be expanded and

rearranged to yield the scalar standard form of a constraint equation as

Ab(φ a)cosφ b +Bb(φ a)sinφ b = Cb(φ a), (2.35)

where the parameters A , B and C are given as

Ab(φ a) = cosαad sinαab sinαbc + cosαab sinφ a sinαbc sinαad

Bb(φ a) = cosφ a sinαbc sinαad

Cb(φ a) = cosαcd − cosαab cosαbc cosαad +

+cosαbc sinφ a sinαab sinαad . (2.36)

An equation of the type A cosφ +B sinφ = C can be solved using tangent-half-angle substi-

tutions for the sine and cosine to yield

tan
φ
2
=

B±√
A 2 +B2 −C 2

A +C
, (2.37)

see e.g. [46], p. 296. Herein the two different solutions correspond to the two different assembly
modes of a four-bar for a given input angle. Equation (2.37) is the well-known tangent-half-

angle solution formula, which only has real solutions if

A 2 +B2 ≥ C 2. (2.38)

Then one may solve Eq. (2.37) for φ . In the specific case of Eq. (2.35) this yields the angular

relationship φ b(φ a), which represents the joint rotation of the joint axis b.

A particular linkage configuration is that, where A 2+B2 = C 2, because this corresponds to

the limit of an input angle φ , e.g. [33]. In fact, this configuration of the linkage is specifically

singular in character and will be of particular interest in the later sections.

Instead of stating the constraint equation (2.33) one may also calculate(W b
)T ·W c = cosαbc (2.39)

for a given φ a, where now

W b = W R1,z(φ a)
1R2,x(−αab) · 2b

W c =
(

5R6,x(−αcd)
6R7,z(−φ d)

7R8,x(−αad)
8RW,z(−π

2
))
)T

· 5c, (2.40)

and 2b = 5c = (0, 0, 1)T . This yields the standard form Ad(φ a)cosφ d +Bd(φ a)sinφ d =
Cd(φ a). The result is the angular relationship φ d(φ a) representing the joint rotation of the joint

axis d.
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The relations φ b(φ a) and φ d(φ a) together with the given input parameter φ a, completely

specify the movement of the three moving links of the four-bar. For this reason it is unnecessary

to compute φ c(φ a), which however may also be found from an appropriately stated constraint

equation.

The procedure presented in this section may clearly also be executed for any input angle other

that φ a. The results are then different angular relations between angles and different limits on

the input.

2.2.4. Twist-Loop Equations of Spherical Four-Bars

Particular configurations in a linkage occur when lines associated with the joint axes become

linearly dependent. A physical interpretation of such situations is, that the mechanism loses

its ability to resist external acting forces, even though there is an appropriately strong actuator.

Such configurations are also termed singular configurations or singularities and are also the

configurations where transmission properties become weak. See also see e.g. [47], [48] or [49]

in the context.

In order to consider singularity aspects of the systems introduced in chapter 3, singularities

of a spherical four-bar can be considered, which require the so called twist loop equation of a
spherical four-bar introduced in the following.

Twist loop equations are obtained by studying the velocity properties of the four-bar using

the matrix loop equation (2.32). Straight forward differentiating this equation with respect to

time yields

d

dt

(
Rz(φ a)Rx(−αab) . . .Rz(−π

2
)
)

= Ṙz(φ a, φ̇ a)Rx(−αab) . . .Rz(−π
2
)+

+Rz(φ a) . . . Ṙz(φ b, φ̇ b) . . .Rz(−π
2
)+

+Rz(φ a) . . . Ṙz(φ c, φ̇ c) . . .Rz(−π
2
)+

+Rz(φ a) . . . Ṙz(φ d, φ̇ d) . . .Rz(−π
2
) = 0. (2.41)

Note that the sub- and superscripts badging different coordinate frames were neglected here to

keep overview in the equations. Multiplying this on the right by the inverse (transpose) of the

left hand side of Eq. (2.32) yields

Ṙz(φ a, φ̇ a)(Rz(φ a))
T +Rz(φ a)Rx(−αab)Ṙz(φ b, φ̇ b)(Rz(φ b))

T (Rx(−αab))
T (Rz(φ a))

T +

+Rz(φ a) . . . Ṙz(φ c, φ̇ c)(Rz(φ c))
T . . .(Rz(φ a))

T +

+Rz(φ a) . . . Ṙz(φ d, φ̇ d)(Rz(φ d))
T . . .(Rz(φ a))

T = 0. (2.42)

Herein the skew symmetric angular velocity matrices Ωi = Ṙz(φ i, φ̇ i)(Rz(φ i))
T take the simple

form

Ωi = Ṙz(φ i, φ̇ i)(Rz(φ i))
T = φ̇ i

⎛
⎝ 0 −1 0

1 0 0

0 0 0

⎞
⎠ . (2.43)

Following sect. 2.1.2 and assembling the entries of a twist into a vector, here yields 3× 1

angular velocity vectors �ωi = φ̇ i(0, 0, 1)T . Note that these are measured in coordinate frames

whose z-axes point along the directions a, b, c and d. However, pre- and post-multiplication by

rotation matrices and their transpose in Eq. (2.42) is nothing but a transformation into W -frame
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coordinates, so that the four angular velocity vectors measured in W are nothing but φ̇ a
W a,

φ̇ b
W b, φ̇ c

W c and φ̇ d
W d. Using this result, Eq. (2.42) can be written as

φ̇ a
W a+ φ̇ b

W b+ φ̇ c
W c+ φ̇ d

W d = 0, (2.44)

which is the vector notation of the twist loop equation of a spherical four-bar, used in sect.

4.1.3 to study transmission properties.

In the appendix, sect. A.2, Eq. (A.6) to Eq. (A.8), the standard form of a general screw is

shown to have the form v̂ = ω(�ν , pν ×�ν + k�ν)T . When k = 0 this is a zero-pitch screw and

the velocity is written in terms of the line ν̂ = (�ν , pν ×�ν)T with direction �ν , see sect. 2.1.3.

When furthermore pν is zero this line passes through the origin of a certain coordinate frame

and the resulting velocity screw takes the form v̂ = ω(�ν , 0)T . This is just the case for the four

velocities in Eq. (2.44), where the corresponding coordinate frame is W . Hence, Eq. (2.44) can

be seen as a specific linear combination of line screws. See also sect. A.3 in the context, where

screw systems are defined as linear combinations of independent screws). The result is, that

studying the transmission properties in sect. 4.1.3 will be a line-based analysis of transmission

properties.

2.3. Finite Position Dimensional Synthesis of Serial and
Parallel Structures

This chapter provides different finite position dimensional synthesis approaches that will be

used throughout the synthesis sections of the work, i.e. in sect. 4.2 and 4.3. The terminology

’finite position synthesis’ (f.p.s.) was used by Roth [50] and it denotes a methodology, which

allows to compute the kinematic dimensions of a linkage with given topology, such that it can

be assembled in a prescribed finite number of task configurations. These configurations are

given in terms of a discrete number of finitely separated task positions of specific links in a

linkage, which corresponds to the number of unknown kinematic dimensions of the structure.

This synthesis methodology is also called motion generation by Sandor and Erdman [5] or rigid

body guidance by Suh [51].

Based on the simplest approach, which is the synthesis of a single joint axis connecting two

links, the constraint-based synthesis of planar spherical and spatial RR chains as well as of

spatial GS and SS chains is given. These serial kinematic chains are the building blocks of

complex multilink mechanisms and are made up from three links, which are coupled by two

joints. While the spatial SS chain uses two spherical or ball joints, the GS chain uses a gimbal

and a spherical joint. Planar, spherical and spatial RR chains have revolute joints and either the

property of parallel, intersecting or skew joint axes. The derivation of the synthesis equations

of the SS and GS as well as of planar and spherical RR chains aims at providing one single

synthesis equation, that can be used for each of these chains. This equation is based on the

study of geometric constraints and may also be found in [52].

In order to synthesize complex multilink mechanisms different synthesis solutions of the

building block chains introduced above can be joined together in a systematic way. This may

be termed the constraint-based synthesis of linkages and is also the approach followed in the

synthesis sections of this work. Here a specific approach is the synthesis of mechanically con-
strained serial kinematic chains, where the state of the art is given in sect. 2.3.6. Beside the

constraint-based synthesis further f.p.s. methods such as the loop equation-based methods, e.g.

[53], [54], [55], [56], dual quaternion synthesis, e.g. [57], [58], or also factorization methods

e.g. [32] exist, which will not be used in this work, however.
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2.3.1. Synthesis Using Finite Displacement Invariants

The simplest dimensional f.p.s. approach consists in finding a single joint axis for a given finite

displacement task. In fact this can be done only for two finitely separated poses 1 and 2 and

leads to calculation of an invariant line - namely the screw axis of a relative displacement. The

approach is introduced in the appendix, sect. A.4 and A.5.

In the case of a general spatial displacement T12
B this may yield a slide s12 �= 0 (see sect.

A.5), which means that the resulting screw axis corresponds to a cylindrical joint. In the case

that T12
B yields s12 = 0 the resulting screw axis corresponds to a revolute joint. This latter case

may correspond to a planar or either a spherical relative displacement, which is discussed in the

following.

Pole-based planar two-position synthesis of revolute joints

In the case that the task is planar, let’s say the motion takes place in the xy-plane of W (or

planes parallel to that), the entries in a 4×4 matrix T12
B satisfy t12

B = (x12
t , y12

t , 0)T and R12
B =

Rz(φ 12), where φ 12 = φ 2 − φ 1. Then the solution of Eq. (A.10) for a specific line screw ŝ
will always yield a direction s = (0, 0, 1)T , a location ps = (xps , yps , 0)T and a slide s12 = 0.

Hence, the result is a revolute joint located in and directed perpendicular to the xy-plane of W .

This is uniquely determined by the point ps, which is known as the pole of a planar relative
displacement.

Rotation axis-based spherical two-position synthesis of revolute joints

In the case that a given task is spherical in character, it is clear that task poses of the link may

be defined using coordinate frames whose origins remain coincident. Then the task consists

of t12
B = 0 and general 3× 3 rotation matrices and the result for ŝ is a general direction s =

(xs, ys, zs)
T , where |s| = 1 and a location ps = 0. The slide again satisfies s12 = 0 because

t12
B = 0 (origins of coordinate frames remain coincident) and the result is a revolute joint passing

through the origin of W and B, which is identical to the rotation axis of a relative rotation.

However, another example of a spherical movement can be constructed, where the origins of

coordinate frames are not attached to each other, i.e. where translations are not equal to zero.

However, then it is required that (t12
B )T · s = 0, which provides a condition for the translations.

The result is a revolute joint axis, which has ps �= 0.

2.3.2. Constraint-Based Synthesis of Planar RR Chains

The general planar RR chain is a serial chain that consists of three planar movable links Ka,

Kb and Kc and two parallel revolute joints. Links Ka and Kc shall have two rigidly attached

frames Ba and Bc required for synthesis. Note that the frame Bb is not of importance, because

the movement of the corresponding link is never involved in the synthesis of the RR chain.

The motion of the different links shall take place in the xy-plane of a fixed frame W so the

revolute joints coupling the links have their directions pointing along the z-axis of W . Since

z-coordinates will not be affected from planar motion, the synthesis problem only affects the

locations of the R joints, which can be defined in the xy-plane and shall be represented by two

vectors pa and pb measured in W .

Fig. 2.5 shows the general planar RR chain in a linkage configuration i. Using the relative

displacement equation (2.4) allows to describe any configuration i of pa and pb in terms of a
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reference configuration 1: pi
b = T1i

Bc ·p1
b and pi

a = T1i
Ba ·p1

a. This expands to yield

pi
b = R1i

Bc ·p1
b + t1i

Bc and pi
a = R1i

Ba ·p1
a + t1i

Ba, (2.45)

where i = 2, . . . ,n. The translations are of type t1i
B = (x1i

t , y1i
t , 0)T and the rotations may be

written as R1i
B = Rz(φ 1i) (see Eq. (2.6)), where φ 1i = φ i − φ 1. Aside Eq. (2.45) pa and pb

must satisfy a constraint equation of the planar RR chain, which describes the constant distance

l among the R joints in each configuration i of the chain:

(pi
b −pi

a)
T · (pi

b −pi
a) = l2, i = 1, . . . ,n. (2.46)

Subtracting the first equation from the remaining ones eliminates the parameter l and substitut-

ing Eq. (2.45) allows to describe pi
b and pi

a in terms of p1
b, p1

a as well as the pre-defined task

position data. After some rearranging the result is the set of bilinear scalar design or synthesis
equations:

(p1
b)

T ·M1i ·p1
a +(�λ 1i)T ·p1

b +(�μ1i)T ·p1
a +δ 1i = 0, i = 2, . . . ,n, (2.47)

where M1i = E− (R1i
Bc)

T R1i
Ba, (�λ 1i)T = (t1i

Bc − t1i
Ba)

T ·R1i
Bc, (�μ1i)T = (t1i

Ba − t1i
Bc)

T ·R1i
Ba and

δ 1i = 1
2(t

1i
Bc)

T · t1i
Bc − (t1i

Ba)
T · t1i

Bc +
1
2(t

1i
Ba)

T · t1i
Ba.

The maximum number of task positions is n = 5,

Figure 2.5.: The planar RR chain

since then there are four equations in the four unknown

W -frame coordinates x1
pa

, y1
pa

and x1
pb

, y1
pb

of the loca-

tions p1
b and p1

a. However, the bilinear structure does

not allow a direct solution for the unknowns but re-

quires an algebraic elimination procedure that can be

found in [33], pp. 108-109. The solution of Eq. (2.47)

immediately becomes simpler for underspecified prob-

lems where n = 4, n = 3 or n = 2 and will be discussed

in later chapters when required. Note that the solution

procedure for n = 4 is given in detail in sect. C.1.

2.3.3. Constraint-Based
Synthesis of Spatial GS and SS Chains

The general spatial SS chain also consists of three moving links Ka, Kb and Kc with rigidly

attached frames Ba and Bc required for synthesis, Fig. 2.6. However, it differs from the planar

RR in the sense that links may perform spatial motion and that spherical joints allow spherical

movement between the different links. Never the less, letting two three dimensional vectors pb
and pb, measured in a fixed frame W , describe the center points of the S joints, the geometric

constraint of a SS chain may be written as

(pi
b −pi

a)
T · (pi

b −pi
a) = l2, i = 1, . . . ,n, (2.48)

which is identical to that of the planar RR chain. Since a gimbal or G joint is also completely

described by its center point, i.e. the point of intersection between its two R joints (see also Fig.

1.2), Eq. (2.48) also holds for the GS chain.

Using the relative displacement equation (2.4) for general spatial displacements allows to

describe the movement of pb and pb as pi
b = T1i

Bc ·p1
b and pi

a = T1i
Ba ·p1

a, which expands to yield

pi
b = R1i

Bc ·p1
b + t1i

Bc and pi
a = R1i

Ba ·p1
a + t1i

Ba. (2.49)
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Compared to the planar case, the translations are of type t1i
B = (x1i

t , y1i
t , z1i

t )
T and the 3× 3

rotation matrices R1i
Ba and R1i

Bc describe general spatial relative orientations. However, as in the

planar case, subtracting the first equation from the remaining ones eliminates the parameter l
and substituting relative displacements allows to describe pi

b and pi
a in terms of p1

b, p1
a as well as

the pre-defined task position data and yields, after some rearranging, the set of bilinear scalar
design or synthesis equations:

(p1
b)

T ·M1i ·p1
a +(�λ 1i)T ·p1

b +(�μ1i)T ·p1
a +δ 1i = 0, i = 2, . . . ,n, (2.50)

where M1i = E− (R1i
Bc)

T R1i
Ba, (�λ 1i)T = (t1i

Bc − t1i
Ba)

T ·R1i
Bc, (�μ1i)T = (t1i

Ba − t1i
Bc)

T ·R1i
Ba and

δ 1i = 1
2(t

1i
Bc)

T · t1i
Bc − (t1i

Ba)
T · t1i

Bc +
1
2(t

1i
Ba)

T · t1i
Ba.

Since now there are six unknown W -frame coordi-

Figure 2.6.: The spatial SS chain

nates x1
pa

, y1
pa

, z1
pa

and x1
pb

, y1
pb

, z1
pb

of the locations

p1
a and p1

b the maximum number of task positions is

n = 7. However, the bilinear structure does not allow a

direct solution for the unknowns but requires an alge-
braic elimination procedure, derived by Innocenti [59].

The solution of Eq. (2.50) immediately becomes sim-

pler for underspecified problems where n = 4, n = 3

or n = 2 and will be discussed in later chapters when

required.

2.3.4. Constraint-Based
Synthesis of Spherical RR Chains

The spherical RR chain has intersecting axes and

Figure 2.7.: The spherical RR chain

each of the links Ka to Kc perform pure rotational move-

ment about the point of intersection. Hence, the finite

position synthesis problem is conveniently studied in

frames that are located at this point. The benefit is that

translations equal zero and the synthesis equations of a

spherical RR chain simply originate from a constraint

equation, describing the constant angle α enclosed by

the directions of the revolute joints in each configura-

tion i of the chain (see Fig. 2.7):

(ai)T ·bi = |ai||bi|cosα , i = 1, . . . ,n (2.51)

(Note that the frames that correspond to Ka and Kc are not shown here to keep clarity in the

figure, while that corresponding to Kb is not shown since this link is never involved in the

constraint-based synthesis of the RR chain). Subtracting the first equation from the remaining

ones eliminates the right hand side and after substituting relative rotations bi = R1i
Bc · b1 and

ai = R1i
Ba ·a1 with pre-defined rotation matrices the design problem takes the simple form:

(b1)T ·M1i ·a1 = 0, i = 2, . . . ,n, (2.52)

where M1i = E− (R1i
Bc)

T R1i
Ba. Compared to the planar RR chain the bilinear polynomial design

equations consist of six unknown coordinates a1 = (x1
a,y

1
a,z

1
a)

T and b1 = (x1
b,y

1
b,z

1
b)

T . However,

the design equation is homogeneous in character since expansion of (2.52) yields that each
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monomial is of order three. This means that only four of the six unknowns are independent.

In other words, one may choose i.e. z1
a = z1

b = 1 to obtain a design equation that has the same

structure as the one discussed for the planar RR chain (section 2.3.2). The result is that the

maximum number of task positions is again n = 5 and the bilinear structure does not allow a

direct solution for the unknowns but requires an algebraic elimination procedure, see e.g. [33],

pp. 108-109. The solution of Eq. (2.52) immediately becomes simpler for underspecified

problems where n = 4, n = 3 or n = 2 and will be discussed in later chapters when required.

Note that the solution procedure for n = 4 is given in detail in sect. C.2.

2.3.5. Constraint-Based Synthesis of Spatial RR Chains

While the synthesis problem of planar and spherical RR chains as well as that of spatial SS

chains was relatively easy to state when taking into account the particular geometry of these

chains, the spatial generalization is of significantly higher complexity due to skew joint axes

that allow spatial motion. In contrast to the previously described chains, the synthesis of the

spatial RR will be studied in the following by considering one of the end links being fixed.

The set of design equations

Research on the design problem of spatial RR

Figure 2.8.: The spatial RR chain

chains dates back to 1967, where Roth [50] de-

scribed the application of finite position theory to

mechanism synthesis. In the same year Veldkamp

[60] studied the spatial RR synthesis for three in-

stantaneous spatial poses of the end link of the

chain. In 1969 Suh [61] discovered that RR chains

always exist in pairs in the case of three finitely

separated spatial poses. A broad description of

the design equations of various chains including

the spatial RR was reported by Tsai and Roth in

1972, who then, in 1973, used these equations to

solve the RR synthesis algebraically for a maxi-

mum number of three poses [29]. A particular re-

sult was, that there exist two solutions of the de-

sign equations, representing two RR chains, which

together may be used to form a Bennett linkage, al-

ready found by Bennett in 1901, [13]. This closed

loop linkage is known as the spatial four-bar with

special, symmetric kinematic dimensions that provide mobility. In 1996 Huang reported, that

the screw axes of the movement of Bennett’s linkage always form a specific surface in space,

known as the cylindroid or Plücker conoid (see also [62]). This result is also considered in

brief in sect. C.3 and it motivated Perez and McCarthy [30] to associate the cylindroid with

the synthesis problem of RR chains. The result was a synthesis, with particularly simplified

design equations, which are also used in this work. Later then in 2005, Brunnthaler, Schröcker

and Husty [31] reformulated and solved the problem by using the Study quadric, a specific

projective space particularly suitable to study spatial motion.

In what follows, the design equations of the spatial RR chain based on geometric constraints

are revisited. Note that deriving these equations here requires dual vector algebra introduced in
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brief in sect. 2.1.5.

Figure 2.8 shows a spatial RR chain together with the different geometric parameters, needed

to describe the geometric constraints. Note that the link that includes axis â shall be fixed here,

which reduces the number of moving frames involved in the synthesis to a single frame B,

located somewhere in the end link K.

When the chain moves through n configurations, the first constraint is that the revolute axes

must preserve a constant angle α and distance l. This can be formulated using the dual scalar

product between the dual vectors â = (a, pa × a)T and b̂i = (bi, pi
b ×bi)T , derived in section

2.1.5, Eq. (2.26):

â · b̂i = cosα −σ l sinα , i = 1, . . . ,n, (2.53)

where â and b̂i shall be measured in a fixed frame W . Subtracting the first equation from

the remaining ones eliminates the right hand side of this equation. Next, using the relative

displacement of a line allows to describe b̂i in terms of b̂1, b̂i = T̂1i
B · b̂1. Note that the screw

transformation matrix shall be a dual matrix, such that T̂1i
B = R1i

B +σ t̃1i
B R1i

B . The position data

of frame B will be given, so rearranging and substituting the relative displacement yields

â · b̂1 − â · b̂i = â · (b̂1 − b̂i)=
= â · (b̂1 − T̂1i

B · b̂1
)
=

= â · (E− T̂1i
B
) · b̂1 = 0, i = 2, . . . ,n. (2.54)

The matrix has the form (E− T̂1i
B ) = E−R1i

B −σ t̃1i
B R1i

B and expansion of (2.54) yields a real

and dual part equal to zero:

(a)T · (E−R1i
B
) ·b1 = 0 and (2.55)

(a)T · (E−R1i
B
) · (p1

b ×b1
)
+(pa ×a)T · (E−R1i

B
) ·b1 − (a)T · t̃1i

B R1i
B ·b1 = 0, i = 2, . . . ,n.

(2.56)

These equations are often called the direction and moment constraints, which describe a con-

stant angle and distance between â and b̂ in each configuration. While Eq. (2.55) is nothing

but the design equation of the spherical RR chain with one fixed link a particular property of

the moment constraint is that it can be simplified by considering the geometry of an RR chain

in combination with the screw axis of T̂1i
B . The result is that Eq. (2.56) can be replaced by the

simpler equation

(s1i)T · (pa −p1
b
)− s1i

2
= 0 i = 2, . . . ,n, (2.57)

where s1i and s1i are the normalized direction of and the slide along the screw axes ŝ1i, see also

appendix A, sect. A.5. This equation is obtained from insight in the so called screw triangles

spanned by the axes â, b̂1 and ŝ1i, see e.g. [63].

However, direction and moment constraint do not take into account whether line â and b̂
perform a sliding when the RR chain moves, which would amount to a movement of pa and pi

b
along â and b̂. This can be suppressed by forcing that pa and pi

b remain on the common normal

between â and b̂ (dashed line in Fig. 2.8). This is expressed by two further constraints:

(a)T · (pa −pi
b
)
= 0 and (bi)T · (pa −pi

b
)
= 0, i = 1, . . . ,n. (2.58)

Since it is known from a spatial displacement of lines that bi = R1i
B · b1 and from a spatial

displacement of points that pi
b = R1i

B ·p1
b + t1i

B one may substitute this into (2.58) to obtain

(a)T ·(pa −R1i
B ·p1

b + t1i
B
)
= 0 and (b1)T ·((R1i

B )
T ·pa − (R1i

B )
T · t1i

B −p1
b
)
= 0, i= 1, . . . ,n.

(2.59)
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Figure 2.9.: Qualitative representation of a stepwise finite position synthesis procedure of a

Watt-1 linkage topology

Equations (2.55), (2.57) and (2.59) represent the set of bilinear scalar design or synthesis equa-
tions in the ten independent unknown W -frame coordinates xa, ya, x1

b, y1
b, xpa , ypa , zpa , x1

pb
, y1

pb

and z1
pb

. Hence, the maximum number of task poses that can be predefined for the end link is

n = 3, since then there are ten equations in these unknowns.

As already mentioned in the introduction of this section Perez and McCarthy [30] associate

the cylindroid with the three task positions, which allows to simplify the design equations. In

particular this means, that if Eq. (2.55), (2.57) and (2.59) are stated in a specific coordinate

frame associated with the cylindroid Eq. (2.59) is identically satisfied so that the number of

equations reduces to four. This corresponds to the fact, that the ten design parameters xa, ya,

x1
b,. . . ,z1

pb
can be replaced by an equivalent set of four design parameters. The coordinate frame

is the principal axis frame of the cylindroid and it can be determined from the three task position

of the synthesis problem, as shown in [30]. Different relations between a three-position task, the

associated cylindroid with principal axis frame as well as the spatial Bennett four-bar linkage

are roughly described in the appendix, sect. C.3, since it is required in one of the major synthesis

procedures of this work, see sect. 4.3.4.

2.3.6. Building-Block-Based Synthesis Procedures for Multiloop
Linkages

In order to compute the kinematic dimensions of a linkage with given topology, such that spe-

cific links can reach a finite number of prescribed task poses, different linkage building block

chains such as planar spherical or spatial RR chains as well as spatial GS or SS chains can be

assembled in a systematic manner. This leads to what may be denoted as synthesis procedures
of a linkage, where an example is the synthesis of a 5-SS platform linkage, [64]. A further

specific approach is to systematically constrain a serial kinematic chain, that guides a specific

link through a finite number of task poses by adding building blocks in a systematic manner.

The basic approach is shown in Fig. 2.9 for a Watt-1 linkage topology, see also [65].

A Watt linkage topology consists of six links K′, K′′, K′′′, K1, K2 and K3 and seven joints

or joint axes â, b̂, ĉ, d̂, ê, f̂ and ĝ and is essentially characterized by two consecutively hinged

ternary links K2 and K′′. When a binary link, such as K′ is considered as the fixed link the

linkage is called a Watt-1 topology, otherwise, i.e. a ternary link is fixed, a Watt-2 topology.

In the case that the different joints are revolute, the mechanism may be termed as Watt’s 7R
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linkage.

When such revolute jointed Watt linkages have parallel joint axes each of the links move in

planes parallel to each other and the resulting structure is a planar linkage. Then, the synthesis

procedures based on building block chains require the synthesis equations (2.47) of planar RR

chains. The second case is spherical Watt linkages with intersecting R joints, which then require

the synthesis equations (2.52) of spherical RR chains. In both cases applying the mobility

formula to this type of linkage yields the d.o.f. M = 1. Due to the fact that the planar and

spherical RR synthesis problems both are limited to a maximum number of five task poses, also

the synthesis procedures of complete Watt topologies is restricted to five poses.

The synthesis procedure of a Watt-1 linkage begins with the definition of n planar or spherical

task poses of link K3, i.e. a frame B3, where 2 ≤ n ≤ 5 (Fig. 2.9a)). In a second step a planar or

spherical serial 3R chain is defined, which can reach the prescribed task poses of K3. Note that

the dimensions of the planar and spherical motion sub groups SE(2) and SO(3) are 3, which

means that a planar or spherical 3R chain (with appropriate kinematic dimensions) with d.o.f.

equal to three is always able to reach each of the given poses. Fig. 2.9b) shows such a 3R chain

formed by links K′, K1, K2 and K3. Inverse kinematics calculations of the 3R next allow to

determine poses of the link K2 in configurations where K3 reaches the initially specified task

poses. This allows to synthesize a RR chain among K2 and the fixed link K′, so that the result is

another link K′′ and a four-bar loop formed by K′, K1, K2 and K′′ (Fig. 2.9c)). Analysis of this

four-bar yields the finitely separated poses of K′′ that correspond to the initial task poses of K3

and a final RR synthesis among links K′′ and K3 yields the remaining link K′′′ and completes

the Watt-1 synthesis procedure.

The synthesis procedure described above has also been developed for planar single-d.o.f.

six-bar mechanisms which consist of PRR or RPR guiding chains instead of a 3R chain, [66],

[67]. The synthesis procedure from above for a spherical Watt-1 linkage may be found for

instance in [68]. Another synthesis procedure where spatial GS chains are used to constrain a

spatial TRS guiding chain is presented in [69]. Due to the GS synthesis problem the result is

a seven-position synthesis which yields a spatial 2-d.o.f. eight-bar linkage. In [70] the idea of

mechanically constrained serial chains based on cable drives instead of systematically added

RR chains is presented. Beside the approach of constraining serial chains the synthesis of

planar and spherical eight-bar linkages can also be performed by systematically adding linkage

building blocks to a parallel kinematic loop, [71], [72].

The synthesis of spatial kinematic chains based on geometric constraints is more multifarious

due to the larger set of different joint types. Beside the R, G and S joints also building block

chains with cylindrical (C) joints exist. However, here also synthesis procedures exist, e.g.

[73]. Synthesis procedures based on building block chains with different joint types such as a

RC chain introduce asymmetry, which requires specific attention, as shown recently in [74].

Finite Position Synthesis of Overconstrained Linkages

Another class of linkages, where synthesis is performed are the overconstrained spatial linkage

topologies, already introduced in sect. 1.2.3. (See e.g. [75, 76, 77, 78, 79] for further stud-

ies on the class of overconstrained linkages). However, since the mobility of these structures

particularly depends on special kinematic dimensions usually finite position synthesis based on

prescribed task positions is not possible. Example where this is usually true for large scale

linkage networks [80] or also deployable polyhedral structures [81], [41].

Furthermore, also the class of rigid origami (see also sect. 1.2.3) usually resists successful ap-

plication of f.p.s. An example approach that may be assigned to a certain dimensional synthesis
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of origami structures is given by Tachi [82].

The reason why f.p.s. is hard to apply to overconstained topologies may be ascribed to the

typically high degree of overconstraint. However, as already mentioned in the introduction, the

finite position synthesis can be applied for certain overconstrained linkage topologies. This on

the one hand was shown to be possible for the Bennett linkage, see sect. 2.3.5. In addition to

this early result further other synthesis results exist such as the f.p.s. of RPRP and RCCR single

loops reported by Perez [83] and Batbold et al. [84]. Furthermore, recently Hegedüs, Schicho

and Schröcker [32] report on the four-position synthesis of angle-symmetric 6R linkages.

2.4. Computer-Aided Linkage Design

In order to support a designer along the different steps of a kinematic design process from

Fig. 1.4 various different software and computational approaches have been developed or used,

where an overview is provided in the following. A first large field of linkage design software is

represented by specialized, standalone linkage design software, which is available commercially

and as research software code. However, since linkage design is also oftentimes considered as a

sub-development process embedded into larger CAD-integrated product development processes

also CAD-systems are used for kinematic design. Herein the designer may perform kinematic

preprocessing as well as postprocessing, i.e. he may specify the motion task using available

parts of a virtual CAD product or may evaluate linkage design solutions. On the other hand

general mathematical computing environments are available that allow for the implementation

of kinematic solvers.

2.4.1. Overview of Standalone Linkage Design Software Tools

In the area of standalone software for kinematic or linkage design various tools have been

implemented that support different design steps. For instance the program Symeku [85] repre-

sents a standalone tool, which enables dimensional synthesis of multilink planar single-d.o.f.-

structures. The program GENESYS (Getriebe-Entwurfs- und Entwicklungs-System, [86, 87])

represents another multifarious standalone tool, which provides dimensional synthesis, kine-

matic and kinetostatic analysis as well as optimization procedures of various linkage and mech-

anism topologies. This includes planar linkages as well as planar and spatial cams and gear

trains. Furthermore, the designer may also specify his motion task based on CAD geometries

of different links and parts.

While Symeku and GENESYS represent non-commercial software tools, also other com-

mercially available standalone tools for planar linkage design exist, such as for instance SAM,

ASOM or Optimus Motus. Functionalities of these tools are described at the dmglib-web plat-

form, which is a digital mechanism library [88].

In [89] Ruth et al. describe the standalone tool ’SphinxPC’, which can be used for finite po-

sition synthesis as well as kinematic analysis of spherical four-bars. Another non-commercial

tool with name ’Spades’ (SPAtial mechanism DESign) [90] allows to synthesize spatial 4C

mechanisms. The program SYNTHETICA [91] represents an extensive standalone tool that en-

ables the synthesis of several spatial linkage topologies ranging from serial to different parallel

structures. Other computational tools such as DARWIN2K also consider synthesis and analy-

sis procedures for robotic multi-d.o.f. structures as multicriteria optimization problems, where

automated evolutionary optimization approaches are used to solve design problems [92].
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Apart from standalone linkage analysis and synthesis software also interactive geometry soft-

ware provides functionalities that provide powerful visualization for kinematic synthesis and

hence may provide support in a kinematic design process. Examples of such tools are ’Ge-

oGebra’, ’Cinderella’ or ’GEONExT’, whose functionalities are compared and discussed for

instance in [93].

2.4.2. Mathematical Computing Environments

Mathematical computing environments such as MATLAB, Mathematica or Maple (to name a

few) provide numerical and algebraic solver modules that allow to manipulate and solve sys-

tems of equations as those arising in kinematic synthesis and analysis. As it was shown in sect.

2.3 synthesis problems essentially represent polynomial systems of equations whose solutions

are linkage structures, which satisfy a finite position task. Since a maximum number of alter-

native linkage solutions are of interest the complete set of solutions of the equations should

be found, which requires appropriate numerical solvers. These are provided in computational

environments using polynomial homotopy approaches, which allow to search for several solu-

tions. See for instance [94] and [95], where polynomial continuation is used to solve kinematic

synthesis problems. A MATLAB add-in for polynomial homotopy is described in [96].

In addition to solver modules particularly suitable to solve polynomial systems computing

environments also provide other modules for general nonlinear systems of equations or opti-

mization problems. When kinematic analysis solving processes are a concern the solution of

nonlinear loop equations may be performed using Newton-Raphson solvers, which are are com-

monly available. For optimization problems gradient-based methods solvers such as Levenberg-

Marquard algorithms as well as evolutionary genetic algorithms are commonly available. An

example showing optimization-based kinematic design processes using MATLAB optimization

solvers is demonstrated in [97]. Solvers may also be realized as individualized standalone exe-

cutable solver code.

2.4.3. CAD-Integrated Kinematics Software Tools

A particular characteristic the software tools from sect. 2.4.1 have in common is that they

represent standalone programs with specific graphical user interfaces. Even though some of

the tools provide an interface to CAD-systems, they do not provide extensive integration into

such tools. However, kinematic design can be considered as a subdevelopment process, which

takes place in an early stage of larger virtual product development processes. Hence, CAD-

integrated design represents an advantageous linkage design approach. This is also particularly

true because kinematic design may directly fade into a detailed CAD-design of links and parts of

the mechanism. Furthermore actual CAD-systems provide powerful kinematic solver modules

for simulation and partially also advanced kinematic as well as dynamic analysis.

The state-of-the-art in CAD-integrated kinematic design software on the one hand includes

graphical constructions, see e.g. [98, 99, 100]. Based on macro-controlled execution of CAD-

functionalities synthesis results are obtained from automated graphical synthesis. Here Corves

et al. [10] provide a CAD-integrated synthesis approach for cam mechanisms, which is de-

scribed in detail in the following.

Aside CAD-integrated kinematic design based on graphical constructions also the approach

of a combination of CAD-environments and computing environments exists. This is based on an

executable kinematic solver, which performs analysis and synthesis calculations using methods

such as those introduced in sect. 2.2 and 2.3. The solver is connected to the CAD-system,
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which is used to visualize synthesis results. This yields CAD-integrated pre- and postprocessing

and kinematic solving, which is performed within the computing environment (see again sect.

1.2.1 for a few introductory words describing pre- and postprocessing as well as solving). An

example towards CAD-integrated kinematic design is shown in [101], where a CAD add-in for

the synthesis of a spatial RSSR linkage is described. Another commercially available program

is the CAD add-in Mechanism Generator, which allows the f.p.s. of several linkage topologies.

The performance of this software package is demonstrated in [68] and is also described in the

following.

CADiS

The CAD-add in software package CADiS (CAD-integrierte Synthese), see Corves et al. [10],

assists a designer in synthesizing planar, spherical and spatial cam mechanisms.

An essential feature of CADiS is that pre- and postprocessing as well as solving procedures

are integrated into the CAD-system ’Mechanical Desktop’. This means that CADiS particularly

controls different CAD-construction steps, which can be operated via graphical user interfaces.

Postprocessing functionalities include colored graphics and animations for evaluation. Addi-

tional solver modules also allow optimization of cam mechanisms.

Mechanism generator

The program demonstrated by Sonawale et al. [68] is denoted as Mechanism Generator or

MechGen and allows the f.p.s. of several planar and spherical linkages. MechGen is based on a

kinematic solver, which is implemented using the Mathematica computing environment and it

is a so called partner product of SolidWorks.

The solver focuses on synthesis procedures based on RR building block chains with a maxi-

mum number of prescribed task positions. That way the synthesis of a spherical six-bar requires

an input of five task positions. Since this number strongly reduces the chances to find real so-

lutions in RR synthesis the program iterates task position data within specified tolerance zones.

The result is particularly increased chances to find useful synthesis solutions.

Own approaches

In [102] the author presents a CAD-integrated kinematic design tool for planar four-bar and

six-bar linkages, which is also based on CAD-integrated preprocessing and postprocessing and

external kinematic solving. However, in contrast to any other available approach the software

allows to specify task positions for two distinct parts or links of the linkage topologies. The

preprocessing and postprocessing is performed using CATIA V5, while the kinematic solver

is implemented and compiled as a dynamic link library (dll data format) using the MATLAB

computing environment.

The program allows to design linkages for two- and three-position tasks of up to two links.

However, because also the synthesis of planar RR chains is involved this leads to underspec-

ified synthesis problems, where free design parameters must be evaluated efficiently. This is

achieved by evaluating user-defined regions, where joints are allowed to be located. This in-

creases the chances to find useful synthesis solutions, but represents an alternative approach to

other programs. While there the terminology ’useful linkage’ first of all refers to a kinemati-

cally useful linkage, the consideration of allowed regions for joints considers the feasibility of

a linkage in connection to space requirements of a given task.
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Figure 2.10.: Graphical depiction of a CAD-integrated kinematic design process with external

solving processes, hidden from a designer

The basic concept of the software is shown in Fig. 2.10, where a designer specifies the motion

task in terms of finite positions of desired parts as well as in terms of additional parts that define

a portion of space, where the linkage is allowed to move in. This is done using specifically

defined CAD-models, that contain different initially given geometric information on the type

of linkage as well as synthesis procedure. Graphical user interfaces allow to extract required

input parameters in the CAD-system and transmit it to the kinematic solver, which evaluates

linkage designs in the given allowed space. Valid solutions are next re-submitted to the CAD-

system, where simple skeletons of the linkage are generated automatically. Postprocessing

includes the evaluation of results using kinematic simulation functionalities available in the

CAD-System. An automated switching between different linkage solutions is also realized via

specific graphical user interfaces. The different CAD-integrated GUIs are controlled via VBA

macro programming, which is available in todays CAD-systems.

The automation approach provides various different synthesis strategies for four-bar and six-

bar linkage topologies. This yields a flexible design approach, since four-bars occur as sub-

structures in six-bar linkages and hence allow a combination of design strategies. Furthermore,

automated CAD-integrated generation of linkage skeletons finally allow a quick evaluation of

the feasibility of a given linkage.

Further approaches

Further approaches towards CAD-integrated kinematic design are described at the dmg-lib dig-

ital mechanism library, [88]. Here for instance the commercially available CAD add-in ’indu-

Drive’ for synthesis of cam mechanisms and the design of servo motors is presented, which is

a partner product of SolidWorks and Autodesk. Other software packages are represented by

’BMX - Behavioural Modelling eXtensions’, ’EasyEvoOpt-3D’ and ’EvoCAT’, which provide

optimization-based design procedures.
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As already stated in sect. 2.3.6 low-d.o.f. linkages, that result from joining together different

linkage building blocks (e.g. planar or spatial RR chains) in a way that the movement of a serial

kinematic chain is constrained are termed mechanically constrained serial chains. However,

when performing dimensional synthesis this approach typically yields a multiloop linkage with

several joints, which may be located far from each other. In applications with space require-

ments this can yield an unfeasible mechanism as it violates the given requirements. Hence, an

alternative way to constrain the movement of different serial revolute jointed chains is devel-

oped in the following, which was initially inspired from the Miura-ori origami folding pattern.

Substantial ideas of the following sections have also already been considered in [103] and

were also partially published in [104] and [105].

3.1. The Rigid Foldable Miura-ori Origami Pattern

Origami is known to be the Japanese art of paper folding, where two- or three-dimensional ob-

jects such as animals or figures are folded from a crease pattern drawn on a single sheet of paper.

While generally twisting as well as bending of the sheet is allowed to obtain a desired object,

the subcategory rigid origami deals with patterns that remain movable even if the numerous

creases and paper segments are replaced by kinematic revolute joints and rigid plates.

Rigid origami represent highly overconstrained spatially foldable linkages consisting of nu-

merous symmetrically arranged links and joints, which allow mobility. A prominent example is

the Miura-ori pattern shown in Fig. 3.1 (a). It has the specific geometric characteristic that it is

assembled from a symmetrical, recurring arrangement of four intersecting joint axes, that form

a plane symmetric spherical building block four-bar. This is known as the rigid origami mech-

anism equivalent of the Miura-ori building block vertex and is formed by four links K1,...,K4,

Fig. 3.1 (b). The whole rigid foldable Miura pattern may then be called a system of spheri-

cal mechanisms following Bowen et al. [106], who identify further spherical mechanisms in

various origami structures.

3.1.1. The Kinematically Equivalent Spherical Building Block Four-Bar

The two halfs of the plane-symmetric Miura-building block four-bar perform identical move-

ment, when the linkage is considered to move as shown in Fig. 3.1 (b). However, this allows

to replace one half of the structure by two new links K′ and K′′, which play the role of the

line of symmetry in the original Miura-building block four-bar. The result is another kinemati-

cally equivalent spherical four-bar, Fig. 3.1 (c), which was also found by Wei et al. [107] as a

subsystem of the mechanism equivalent of a folded carton box. Note that plate-like segments

K1 and K2 were replaced here by circular curved, tube-like links commonly used for spherical

mechanisms.
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Figure 3.1.: The Rigid Foldable Miura-ori Pattern a) consisting of numerous plane symmetric

spherical building block four-bars b). Replacing one half of the linkage by two new

links yields a kinematically equivalent spherical building block four-bar c)

3.2. Spherically Constrained Chains with Mobility 1

The following section shows how to couple several of the kinematically equivalent spherical

four-bar from Fig. 3.1 (c). Due to the fact that this moves with one single d.o.f., the coupled

systems will also have mobility 1. The result is a family of mechanisms, which are called

spherically constrained, revolute-jointed serial chains here and which have a naturally given

slim and compact shape. This is because the spherical vertices, i.e. spherical four-bars can be

designed compactly around their center of rotation.

3.2.1. Spherically Constrained Planar, Spherical and Spatial RR Chains

A coupling of two of the kinematically equivalent spher-

Figure 3.2.: The spherically con-

strained planar RR

chain

ical four-bar from Fig. 3.1 (c) yields a linkage that contains

two displaced vertices, which share a common joint axis

denoted as ĉ, see Fig 3.2. This yields an overconstrained

linkage consisting of n = 6 links and g = 7 revolute joints

with axes â,. . . ,ĝ. Observe that this includes a planar RR

chain formed by axes d̂ and ĝ. We call this linkage the

origami-evolved, spherically constrained planar RR chain

(see also [105]) or simply spherically constrained RR chain

and applying Eq. (2.27) yields

M = 6(n−1−g)+
g

∑
i=1

fi = 6(6−1−7)+7 =−5 , (3.1)

which shows that this is an overconstrained linkage. Note

that K′ was considered here as fixed link, so that K3 per-

forms spatial movement allowing the application of the spa-

tial mobility formula. Never-the-less, 1-d.o.f. mobility of

the structure is ensured because the link K′′ connecting the

revolute axes of the planar RR chain provides the hinge

of K2 which preserves each of the vertices formed by the

spherical building block four-bars.
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3. Spherically Constrained Serial Revolute Jointed Chains

Figure 3.3.: The family of 1-d.o.f. spherically constrained planar, spherical and spatial RR

chains

Figure 3.4.: Spherically constrained RR chains as Watt-related linkage topologies with two con-

secutively hinged ternary links

The mobility of the origami-evolved mechanism remains 1 even when the kinematic dimen-

sions are modified. Note that such modifications must preserve the different vertices. On the

one hand this may yield further constrained planar RR chains, Fig. 3.3 (a). On the other hand

the axes d̂ and ĝ may also form a spherical or spatial RR chain, Fig. 3.3 (b) and (c). This

classification follows the common distinction of planar, spherical and spatial systems, which

is useful, when the family of spherically constrained RR chains is considered to solve either

planar, spherical or spatial motion tasks.

It is noteworthy, that removing the joint connecting K2 and K′′ in a spherically constrained

RR chain yields what is known as the overconstrained double-spherical 6R single loop mech-

anism, see e.g. [108], which performs identical movement. However, the seventh R joint pro-

vides additional stiffness in the linkage, which is of particular importance for accuracy in real

applications.

Spherically constrained RR chains as Watt-related linkage topolgies

From a topological view point, the class of spherically constrained RR chains with six bars and

seven revolute joints have two ternary links K2 and K′′ that are hinged consecutively, while

39



3. Spherically Constrained Serial Revolute Jointed Chains

the remaining links are binary cranks. Hence, a simplified graph of the chain may be drawn

as shown Fig. 3.4a), where the spherical sub-four-bars are marked by intersecting lines, repre-

senting joint axes. However, this representation directly evolves from Watt’s kinematic chain,

which is also defined as a six-bar chain with seven joints and two consecutive ternary links. If

either a binary or a ternary link is considered as the fixed ground the Watt-1 or the Watt-2 link-

age is obtained from Watt’s kinematic chain (see also Fig. 2.9d)). These cases are also possible

for the spherically constrained RR chains as shown in Fig. 3.4b) and c), so that the spherically

constrained RR chains may also be considered as the Watt-related linkage topologies.

Spherically constrained RR chains as a particular RCC-C-CCC linkage topology

A RCCC linkage is usually defined as a spatial linkage with skew joint axes, see Fig. 1.3 c3).

However, it is known that this transforms into a spherical four-bar (where no sliding along the

axes is observed), if the four axes intersect at a common point [109], p. 270. In other words

the common normal distances must be equal to zero. When two spherical four-bars are coupled

to yield a spherically constrained RR chain, this means that one may also think of a coupling

of two corresponding RCCC linkages. However, since there are only seven joints one of the R

joint vanishes.

Elimination of a R joint instead of a C joint is considered because it eliminates the overcon-

straining property of a spherically constrained RR chain. To see this apply Eq. (2.27), which

yields:

M = 6(n−1−g)+
g

∑
i=1

fi = 6(6−1−7)+13 = 1. (3.2)

The result is that a spherically constrained RR chain may also be seen as a RCC-C-CCC linkage

topology, where the axes form two displaced, spherically moveable vertices that share a com-

mon C joint. This is useful, when kinematic CAD-models of spherically constrained RR chains

should be assembled, see also sect. 5.4. In the following another approach is presented, which

considers the normal distances among the different joint axes in order to show 1-d.o.f. mobility

of spherically constrained nR chains.

3.2.2. Spherically Constrained nR Chains

It is obvious that also a larger number of spherical building block four-bars (Fig. 3.1 (c)) can be

coupled in the way presented in the previous sections. Recall that such a coupling must preserve

the different vertices of the building block four-bars. An example of such a coupling of three

four-bars is shown in Fig. 3.5, which results in a general spherically constrained 3R chain.

In order to see, that the mobility of an arbitrary number of coupled spherical building block

four-bars is always 1, the number of links and joints can be expressed in terms of a general

number of vertices k:

n = 4+2(k−1) = 2(k+1) and g =
g

∑
i=1

fi = 3k+1, k ≥ 2 (3.3)

Note that k ≥ 2 to obtain a spatial linkage. Next, following Eq. (2.28) a number of conditions

can be added as a formal sum ∑s to Eq. (3.3) and considering M = 1 yields:

1 = 6(2(k+1)−1− (3k+1))+(3k+1)+∑s ⇒ ∑s = 3k (3.4)
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3. Spherically Constrained Serial Revolute Jointed Chains

Figure 3.5.: The general spherically constrained 3R chain

This number of conditions needs to be satisfied for a spherically constrained, revolute-jointed

serial chain consisting of k vertices. However, it is easy to see that the number δ of zero-

common normal distances required to preserve the different vertices simply also increases in

such a way that δ = 3k. Hence, there are always as many zero common normal distances as are

required from Eq. (3.4), so a spherically constrained nR chain also performs 1-d.o.f. motion.

Note that the considerations of this section may also be found in [104].

3.3. Concepts of Spherically Constrained Chains with
mobility > 1

The family of spherically constrained RR, 3R,. . . ,nR chains presented in the previous sections

were single-d.o.f. structures, which hence, belong to the class of classical mechanical linkages.

However, as it will be shown in this section also different further spherically constrained kine-

matic chains with d.o.f. > 1 can be found. On the one hand spherically constrained 2-d.o.f.

RR chains can be considered. On the other hand also multi-d.o.f. chains based on a particular

coupling of Cardan chains can be found, which essentially are nothing but numerous coupled

spherical four-bar linkages. The result is a demonstration of a variety of different spherically

constrained multi-d.o.f. chains that may represent the kinematic architectures in robotic devices.

3.3.1. Spherically Constrained RR Chains with Mobility 2

Planar, spherical or either spatial RR chains can

Figure 3.6.: A spherically constrained

RR chain with mobility 2

also be constrained in the spherical manner, such

that the result is 2-d.o.f. structure. A qualitative

representation of such a chain is shown in Fig. 3.6,

which essentially represents the coupling of a spher-

ical five-bar with a spherical four-bar. As already

described in sect. 3.2.1 the joint connecting the two

ternary links may be neglected, which results in what

is termed a 2-d.o.f. overconstrained double-spherical

7R mechanism by Kiper et al. [110].
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Figure 3.7.: Two coupled Cardan chains resulting in a 2-d.o.f. spherically constrained structure,

which allows to actuate and re-orient a spherical four-bar

3.3.2. Coupled Cardan Chains with Mobility 2

Figure 3.7 shows another spherically constrained 2-d.o.f. structure essentially consisting of

two specific overlayed Cardan kinematic chains. One of these chains enables a changing of the

orientation of joint that connects for instance a gripper to the chain. Observe, that the number of

Cardan vertices is not limited to three but may also be increased depending on the requirements

of a specific task. The end links of the second Cardan chain then combine with the end links

of the first Cardan chain to yield a spherical four-bar. The two combined Cardan chains have

two degrees of freedom but may be considered as a reconfigurable structure, which allows to

orient and actuate a spherical four-bar. In fact various further configurations may be achieved by

changing the location and orientation of the different fixed joints connected to the platform. The

result is a flexible reconfigurable and also slim structure, when made up of compactly designed

spherical vertices.

The concept of coupled Cardan chains may also be extended by simply overlying another

such chain. The result is another degree of freedom available at the end of the chain. One may

then connect a spherical five-bar instead of a four-bar and use two d.o.f. as the input and the

third one to control the orientation of the five-bar.
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4. Kinematic Design Processes for
Spherically Constrained Linkages

This section presents different kinematic analysis as well as finite position synthesis procedures

and methodologies for different types of spherically constrained linkages. When considered

as the computational part in a computer-aided kinematic design process these procedures are

implemented and executed using a computing environment.

The kinematic analysis and synthesis methodologies provided in sect. 4.1.1 and 4.2 were

already partially considered in [103] and [104], and have been precisely specified in [111]. The

second synthesis approach derived in sect. 4.3 follows [105] and [112].

4.1. Kinematic Analysis of Origami-Evolved Linkages

Analysis provided in this section includes position analysis based on sect. 2.2.3 as well as

line-based analysis of transmission properties using twist loop equations (sect. 2.2.4). Position

analysis yields insight in the angular relations of the Miura-ori origami building block 4-bar

from sect. 3.1 as well as spherically constrained RR chains, which is required for f.p.s. in sect.

4.2.4. Line-based analysis provides insight in the stability properties of the structure, which

will be of particular importance in the application scenario, sect. 6.3.

4.1.1. Position Analysis of the Kinematically Equivalent Miura-ori
Building Block 4-Bar

The structure under consideration is shown in Fig. 4.1. Recall from sect. 3.1.1 that this is

kinematically equivalent to the original building block four-bar from Fig. 3.1b). In order to

analyze the angular relations of the structure frames B1, B2 and B′′ (not shown, to keep overview

in the figure) are considered, whose origins shall coincide with that of W . B1 describes the

movement of link K1, which shall have it’s xz-plane coinciding with the plane spanned by a
and b. The x-axis of B1 should point along the x-axis of W , while the y-axis of B1 should

point along b× a. Using this its easy to see that the B1 performs a simple x-rotation, so that

its movement can be written as W RB1 = Rx(φa). Similarly B2 describes the movement of link

K2, which shall have its xz-plane coinciding with the plane spanned by b and c. The x-axis

coincides with direction c and the y-axis points along c×b. Then a pose of B2 measured in W
is given by the composition

W RB2 = Rz(φd)Rx(−φc) =

⎛
⎝ cosφd −cosφc sinφd −sinφd sinφc

sinφd cosφd cosφc cosφd sinφc
0 −sinφc cosφc

⎞
⎠ . (4.1)

Using W RB1, W RB2 as well as the direction b allows to determine the relation between φa and φc.

To see this, consider the flat unfolded configuration of the four-bar, where each direction vector
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Figure 4.1.: Quantities for the position analysis of the mechanism equivalent of the Miura-ori

building block four-bar

lies in the xz-plane of W and all frames are aligned. Note that this corresponds to the unfolded

case of the Miura-ori pattern. In this configuration one has B1b = B2b = (sinε, 0, −cosε)T and

calculating the W -frame coordinates yields

W b = W RB1 · B1b = W RB2 · B2b =

=

⎛
⎝ sinε

sinφa cosε
−cosφa cosε

⎞
⎠=

⎛
⎝ cosφd sinε + sinφd sinφc cosε

sinφd sinε − cosφd sinφc cosε
−cosφc cosε

⎞
⎠ . (4.2)

Comparing the z-coordinates in Eq. (4.2) yields cosφa = cosφd , which suggests that the four-bar

satisfies φa = φc. However, in fact the result is

φa =−φc (4.3)

because of the matrix Rx(−φc) in Eq. (4.1). Equation (4.3) states that the opening angles of

the four-bar from Fig. 4.1 only differ in signs for any given angle ε . Due the fact that this

four-bar was kinematically equivalent to the original Miura-ori folding pattern (see sect. 3.1.1)

this also holds for the structure from Fig. 3.1b). Equation (4.3) is of particular importance for

the two-configuration synthesis of Miura-ori-based folding structures presented in sect. 4.2.

The second important relation is the transmission angle φd(φa). This is easily found using

the constraint equation (W b
)T ·W c = cos(

π
2
− ε) = sinε , (4.4)

see also Eq. (2.33). W b is already known from W RB1 · B1b and W c is easily found as W c =
(cosφd, sinφd, 0)T , so that the standard form of Eq. (4.4) is easily found after expanding and

rearranging as

cosφd + k sinφa sinφd = 1, k = cotε . (4.5)

Using the tangent-half-angle formula from Eq. (2.37) with coefficients Ad = 1, Bd = k sinφa
and Cd = 1 yields

tan
φd

2
= k sinφa. (4.6)
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Figure 4.2.: Two kinematically equivalent representations of a general spherically constrained

RR chain

The φd(φa) is also used for the two-configuration synthesis of Miura-ori-based folding struc-

tures and is hence required in sect. 4.2.

4.1.2. Position Analysis of Spherically Constrained RR Chains

In this section the goal is to determine kinematics relations in a general spherically constrained

RR chain. Recall that the most general linkage is the spherically constrained spatial RR chain

as shown in Fig. 4.2a). This is essentially nothing but two specifically coupled general spherical

four-bars, which is why the familiar geometric shape of four-bars is considered in the following,

see Fig. 4.2b).

In order to analyze the spherically constrained spatial RR chain angles φ and α are introduced

in Fig. 4.3, where the notation φa,. . . ,φg and αab,. . . ,α f g directly follows Fig. 2.3 and 2.4 from

sect. 2.2.3. A suitable reference frame for the following vector calculations is B′′, which is

rigidly attached to link K′′. B′′ is located at the first vertex, has its z-axis aligned with axis

ĉ and has its yz-plane coinciding with the plane spanned by ĉ and d̂. Following sect. 2.2.3

transformations about x- and z-axes are used in order to derive the constraint equations of the

two displaced spherical loops.

In the application scenario discussed in chapter 6 a spherically constrained spatial RR chain

is considered to be actuated, such that the input angle of the mechanism is φd . Hence, this is also

considered here as input and the goal is to obtain the angular relationships φc(φd) and φg(φd)
from the constraint equations. These relations can then be used to describe the movement of all

joint axes of the linkage, which is required for line-based analysis of transmission properties in

sect. 4.1.3.
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Figure 4.3.: Angles, frames and planes for position analysis of spherically constrained spatial

RR chains

Angular relationship φc(φd)

The angular relationship φc(φd) is easily obtained from the following kinematic constraint equa-

tion (
B′′

a
)T · B′′

b = cosαab, (4.7)

where a and b are the directions of axes â and b̂. The coordinates of vectors measured in B′′
can be found from two transformations B′′a = B′′RB′ · B′a and B′′b = B′′RB2 · B2b. For analysis

purposes frame B′ shall have its z-axis aligned with â and its x-axis pointing along a×d. B2 shall

have its z-axis aligned with b̂ and its x-axis pointing along c×b. The result for the coordinates

of direction vectors is B′a = B2b = (0, 0, 1)T . The corresponding coordinate transforms are

then found as:

B′′
RB′ = Rx(−αcd)Rz(−φ d)Rx(−αad)

B′′
RB2 = Rz(φ c)Rx(αbc). (4.8)
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Using this, Eq. (4.7) can be expanded and rearranged to yield the scalar standard form of a

constraint equation as

Ac(φ d)cosφ c +Bc(φ d)sinφ c = Cc(φ d), (4.9)

where the parameters Ac, Bc and Cc are obtained as

Ac(φ d) = −sinαbc(cosαad sinαcd + cosαcd cosφ d sinαad)

Bc(φ d) = sinφ d sinαad sinαbc

Cc(φ d) = cosαab − cosαbc(cosαcd cosαad − cosφ d sinαcd sinαad). (4.10)

Applying the tangent-half-angle solution formula (2.37) to Eq. (4.9) yields

φc(φd) = 2arctan

(
Bc ±

√
A 2

c +B2
c −C 2

c
Ac +Cc

)
, (4.11)

which has real solutions only if

A 2
c +B2

c ≥ C 2
c . (4.12)

However, even if Eq. (4.12) is satisfied for a given angle φd , the second four-bar defined by links

K′′, K′′′, K2 and K3 may be in a configuration where it cannot be assembled. Hence, the next

step is to derive a similar condition for the second four-bar, which is obtained after determining

φg(φd).

Angular relationship φg(φd)

In order to obtain φg(φd) it is important to see, that the angle φc(φd), given by Eq. (4.11),

represents the input parameter of the second four-bar. Then, the desired relation can be found

by considering the constant dual scalar product from sect. 2.1.5, Eq. (2.26), using the lines ê
and f̂, measured in B′′:

B′′
ê · B′′

f̂ =
(

B′′
e+σ B′′

pe × B′′
e
)
·
(

B′′
f+σ B′′

p f × B′′
f
)
= cosαe f −σ le f sinαe f , (4.13)

To obtain ê and f̂, measured in B′′ the coordinate transforms (4.8) of directions are extended

to those of line screws using screw transformation matrices T̂, introduced in sect. 2.1.4 Eq.

(2.18). Following the Denavit-Hartenberg methodology by only using transformations about x-

and z-axes, requires screw transformation matrices of the form

T̂x(α, l) =
(

Rx(α) 0
t̃x(l)Rx(α) Rx(α)

)
and T̂z(φ ,s) =

(
Rz(φ) 0

t̃z(s)Rz(φ) Rz(φ)

)
, (4.14)

where t̃x(l) and t̃z(s) are skew symmetric matrices assembled from translation vectors tx =
(l, 0, 0)T and tz = (0, 0, s)T .

The B′′-frame coordinates of axis ê are found from the screw transformation B′′ ê= B′′T̂B̄2 · B̄2ê,

where frame B̄2 is rigidly attached to B2 from the previous section but is located at the new

vertex, defined by axes ĉ, ê, f̂ and ĝ. The z-axis of B̄2 is aligned with ê while its x-axis should

point along e× c. Note that in the context of screw transformations ê is considered as a 6× 1

vector instead of a dual vector. In frame B̄2 ê then takes the simple form B̄2ê=(0, 0, 1, 0, 0, 0)T

and using the matrices introduced in Eq. (4.14) the corresponding screw transformation can be

found as
B′′

T̂B̄2 = T̂z(φ c(φd)+ϑ ,r)T̂x(π −αce,0). (4.15)
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Herein the constant angle ϑ is measured between two planes in K2. The first one is spanned by

the directions of b̂ and ĉ, the second one is spanned by the directions of ĉ and ê. r denotes the

constant distance between the two displaced vertices, which may be measured along axis ĉ.

In a similar fashion the B′′-frame coordinates of axis f̂ are found from the screw transfor-

mation B′′ f̂ = B′′T̂B′′′B
′′′ · f̂, where now frame B′′′ moves with link K′′′ and is located at the ver-

tex, defined by axes ĉ, ê, f̂ and ĝ. For analysis purposes the z-axis of this frame is aligned

with the direction of f̂ while its x-axis points along g× f. In B′′′ also f̂ takes the simple form
B′′′ f̂ = (0, 0, 1, 0, 0, 0)T and using the matrices from Eq. (4.14) yields

B′′
T̂B′′′ = T̂z(ρ,r)T̂x(−(π −αcg),0)T̂z(−φ g,0)T̂x(α f g,0), (4.16)

where the constant angle ρ is measured between two planes in K′′. The first one is spanned by

the directions of d̂ and ĉ, the second one is spanned by the directions of ĝ and ĉ.

In order to expand Eq. (4.13) the different lines B′′ ê and B′′ f̂ are written as dual vectors. Then

the real part in Eq. (4.13) reads (
B′′

e
)T · B′′

f = cosαe f , (4.17)

while the dual part is identically satisfied. This shows, that the angular relation φg(φd) is only

defined by the real part of the dual scalar product. The result is, that analysis of angular relations

may also be performed by considering the two spherical four-bars being located at one common

vertex. This reduces the calculation efforts to a purely spherical analysis.

Eq. (4.17) is also known as the spherical image of the dual scalar product since it represents

nothing but a constraint equation of a spherical four-bar. This expands to yield the standard

form

Ag(φc(φd))cosφ g +Bg(φc(φd))sinφ g = Cg(φc(φd)), (4.18)

where the parameters Ag, Bg and Cg are obtained as

Ag(φc(φd)) = −cosαce sinαcg sinα f g − cos(φc(φd)+ϑ)cosαcg sinαce sinα f g cosρ −
sin(φc(φd)+ϑ)cosαcg sinαce sinα f g sinρ

Bg(φc(φd)) = cos(φc(φd)+ϑ)sinαce sinα f g sinρ − sin(φc(φd)+ϑ)sinαce sinα f g cosρ
Cg(φc(φd)) = cosαe f − cosαce cosαcg cosα f g +

cos(φc(φd)+ϑ)cosα f g sinαce sinαcg cosρ +

sin(φc(φd)+ϑ)cosα f g sinαce sinαcg sinρ . (4.19)

Applying the tangent-half-angle solution formula (2.37) to Eq. (4.19) yields

φg(φc(φd)) = 2arctan

⎛
⎝Bg ±

√
A 2

g +B2
g −C 2

g

Ag +Cg

⎞
⎠ , (4.20)

which has real solutions if A 2
g +B2

g ≥C 2
g . This combines with Eq. (4.12) of the ’first’ four-bar

and yields the following condition for two coupled spherical four-bars to have a valid assembly

mode for a given angular value φd:

A 2
c +B2

c ≥ C 2
c ∧ A 2

g +B2
g ≥ C 2

g . (4.21)

The angular relations φc(φd) and φg(φc(φd)) from Eq. (4.11) and (4.20) allow to determine the

location and orientation of each axis of the spherically constrained spatial RR chain. On the one
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hand axes B′′ â, B′′b̂ and B′′d̂ can be found in the lower four-bar (see again Fig. 4.2 or 4.3). On

the other hand B′′ ê, B′′ f̂ and B′′ ĝ can be found in the upper four-bar. The complete set of formulas

that allow the calculation of the current location and orientation of lines is given as

B′′
â = B′′

T̂B′B
′ · â B′′

T̂B′ = T̂x(−αcd,0)T̂z(−φd,0)T̂x(−αad,0),
B′′

b̂ = B′′
T̂B2

B2 · b̂ B′′
T̂B2 = T̂z(φc(φd),0)T̂x(αbc,0),

B′′
d̂ = B′′

T̂B̄′ B̄
′ · d̂ B′′

T̂B̄′ = T̂x(−αcd,0),
B′′

ê = B′′
T̂B̄2

B̄2 · ê B′′
T̂B̄2 = T̂z(φ c(φd)+ϑ ,r)T̂x(π −αce,0),

B′′
f̂ = B′′

T̂B′′′B
′′′ · f̂ B′′

T̂B′′′ = T̂z(ρ,r)T̂x(−(π −αcg),0)T̂z(−φ g,0)T̂x(α f g,0),

B′′
ĝ = B′′

T̂B̄′′ B̄
′′ · ĝ B′′

T̂B̄′′ = T̂z(ρ,r)T̂x(−(π −αcg),0), (4.22)

where B′ â = B2b̂ = B̄′d̂ = B̄2ê = B′′′ f̂ = B̄′′ ĝ = (0, 0, 1, 0, 0, 0)T . Note that one may directly

specify B′′ ĉ = (0, 0, 1, 0, 0, 0)T .

Example

As a quick example the analytical relationships φc(φd) and φg(φd) from Eq. (4.11) and (4.20)

were calculated for the linkage from Fig. 4.3. The kinematic dimensions of the linkage are

given as αab = 65.97 deg, αbc = 60.46 deg, αcd = 120.69 deg, αad = 81.2 deg, r = 186.14 mm,

ϑ = 19.94 deg, ρ = 83.9 deg, αce = 91.3 deg, αe f = 62.71 deg, αcg = 123.78 deg and α f g =
91.52 deg. The input angle is defined as a simple linear function in time: φd(t) = t within a

motion range of 55 deg ≤ φd ≤ 200 deg. Fig. 4.4 shows the resulting relations. Note that angles

measured at the kinematic CAD-model of the spherically constrained RR chain were in perfect

accordance with the relations shown in the figure.

Numerical solution approach

Due to the fact that multiloop linkages can also yield constraint equations, which cannot be

solved analytically and independently as shown above, also another numerical solution ap-

proach is briefly sketched here. The approach aims at using the Newton-Raphson algorithm

(see e.g. [6], pp. 100-106 for details about the Newton-Raphson method in the context of nu-

merical linkage analysis) and hence requires a nonlinear system of equations. This is given by

Eq. (4.9) and (4.18) and may be written as

z(φ c,φ g) =

(
z1(φ c,φ g)
z2(φ c,φ g)

)
=

(
Ac(φ d)cosφ c +Bc(φ d)sinφ c −Cc(φ d)
Ag(φc)cosφ g +Bg(φc)sinφ g −Cg(φc)

)
=

(
0

0

)
,

(4.23)

where φ d is the given input. Note that in contrast to Eq. (4.18) z2 is considered here only as a

function of φ c. Applying the Newton-Raphson formula yields(
φ c
φ g

)i+1

=

(
φ c
φ g

)i

−
( ∂ z1

∂φ c

∂ z1
∂φ g

∂ z2
∂φ c

∂ z2
∂φ g

)−1

︸ ︷︷ ︸
(Ji)−1

·
(

z1

z2

)i

, (4.24)

where J is a Jacobian matrix. A convenient set of starting values φ 1
c ,φ 1

g may be found from a

synthesis solution of a linkage in a reference configuration. Implementing the algorithm yields

the angular relations φc(φd) and φg(φd), where the second relation will yield the same result as

φg(φc(φd)) from Eq. (4.20).
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Figure 4.4.: Angular relations φc(φd) and φg(φd) of a spherically constrained RR chain for the

input range 55 deg ≤ φd ≤ 200 deg

Modifications for spherically constrained, spherical RR chains

In the case that axes d̂ and ĝ form a spherical RR chain, they intersect at a certain point (see,

sect. 3.2.1 Fig. 3.3b). Another way of saying this is that d̂ and ĝ lie in one plane, which means

that the angle ρ equals zero in the analysis of a spherically constrained, spherical RR chain.

Modifications for spherically constrained, planar RR chains

In the case that axes d̂ and ĝ form a planar RR chain, they are parallel to each other (see, sect.

3.2.1 Fig. 3.2 and 3.3a). As it was the case for the spherical RR chain, this means that the angle

ρ equals zero. However, in addition to that, the angle αcg satisfies the relation αcg = π −αcd in

the analysis of a spherically constrained, planar RR chain.

4.1.3. Line-Based Analysis of Transmission Properties of a Single
Spherical Four-Bar

Line-based singularities of a linkage were introduced in sect. 2.2.4 as configurations, where

joint axes become linearly dependent. Even though this text does not aim at providing a com-

plete analysis or list of line-based singularities, the goal of this section is to provide at least a

little study on such configurations in spherically constrained RR chains. Since this type of link-

age is nothing but two specifically coupled spherical four-bars, the study requires a line-based

analysis of a spherical four-bar. This is provided in a general manner in the following and leads

to what is called here a line-based analysis of transmission properties.
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Line-based identification of the limits on input and output angles

In order to perform a line-based analysis of a spherical four-bar, the directions W a, W b, W c and
W d of the screw system from Eq. (2.44) are considered to be known from a position analysis.

When φa = φa(t) is considered to be the given time dependent input also φ̇ a is known and W a,
W b, W c and W d move within the limits of the input angle φa. On the other hand φ̇ b, φ̇ c and φ̇ d
are unknown and Eq. (2.44) can be rearranged as

(W b W c W d
)︸ ︷︷ ︸

Jbcd

·
⎛
⎝ φ̇ b

φ̇ c
φ̇ d

⎞
⎠

︸ ︷︷ ︸
q̇bcd

=− φ̇ a
W a︸ ︷︷ ︸
�ωa

. (4.25)

This linear system of equations only has a solution if det(Jbcd) �= 0, i.e. if the three directions

b, c and d are linearly independent. In turn, det(Jbcd) = 0 yields linear dependent joint axes,

which means that b, c and d lie in the same plane. The four-bar is said to be in a singular

configuration, which can be detected by tracing the determinant:

det(Jbcd)

{
= 0 Jbcd is singular

�= 0 Jbcd is regular.
(4.26)

In fact, there are two cases where det(Jbcd) = 0, which correspond to the lower and upper limits
of the input1 (see e.g. [33] pp. 31-33 and pp. 165-167 for the definition of input limits of planar

and spherical four-bars). The physical interpretation of the configurations defined by Eq. (4.26)

is, that the four-bar allows a small amount of rotations dqbcd = (dφb, dφc, dφd)
T about the axes

b, c and d although the actuation is blocked. In a real linkage with structural elasticity and

joint clearance as well as external forces acting on the different links the result is a mechanism

configuration that will provide significant mobility and cannot be controlled by the actuator.

The matrix Jbcd can be seen as a Jacobian of a spherical four-bar. However, instead of

assembling J from b, c and d one may also define three other criteria, which correspond to

lower and upper limits of angles φb, φc and φd:

det(Jacd) = 0, det(Jabd) = 0, det(Jabc) = 0. (4.27)

Since φa = φa(t) is still considered as the input angle here, the three angles φb, φc and φd
represent output angles of the linkage and the geometric meanings of the criteria in Eq. (4.27)

are:

1. det(Jacd) = 0: In a configuration defined by a value φa(t) the output about b doesn’t change,

i.e. dφb = 0 or φ̇b = 0.

2. det(Jabd) = 0: In a configuration defined by a value φa(t) the output about c doesn’t change,

i.e. dφc = 0 or φ̇c = 0.

3. det(Jabc) = 0: In a configuration defined by a value φa(t) the output about d doesn’t change,

i.e. dφd = 0 or φ̇d = 0.

1 It is crucial to mention here, that only two cases exist in the absence of special kinematic dimensions. If a

linkage has for instance dimensions that allow a configuration where all joint axes lie in a common plane it can

happen that further cases must be taken into account.
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Figure 4.5.: Example four-bar for line-based analysis of transmission properties

In an application, where it is for instance the goal to make use of a φ̇d �= 0 over a specified input

range of φa, the criterion det(Jabc) = 0 may be used to check whether the considered four-bar

actually realizes the desired goal. Another scenario may be a moment, trying to induce dφd at

the four-bar. However, if det(Jabc) = 0 the result is dφd = 0 for any given input φa(t), which in

turn means that no movement can be, induced by the torque.

A weighted Frobenius condition number as singularity measure

Another approach to detect the singular configurations in a numerical analysis is to consider

ill-conditioned cases of a Jacobian J. A suitable measure to consider such cases is the condition

number

κ(J) = |J||J−1|, (4.28)

where |J| is a matrix norm of J. As stated by Angeles and Park [113], p. 236 or also in [114] in

particular a weighted Frobenius norm defined as

|J|F =

√
1

n
tr(J(J)T ) (4.29)

is a suitable norm, where the weight 1
n shall be 1

3 because J is a 3×3 matrix for four-bar analysis.

This yields the weighted Frobenius condition number

κF(J) =
1

3

√
tr(J(J)T )

√
tr((J(J)T )−1), (4.30)

where tr() is the trace of a matrix. The linkage is said to be in or close to a singular configuration

when κF(J)>> 1. Beside Eq. (4.26) this provides another condition to trace singularities.

Example

The determinant det(J) as well as the weighted Frobenius condition number κF(J) were calcu-

lated for an exemplary spherical four-bar formed by directions a, b, c and d, and with dimen-

sions αab = 115 deg, αbc = 70 deg, αcd = 70 deg and αad = 90 deg. Figure 4.5 shows the four-

bar in a reference configuration, where W a = (1, 0, 0)T and W d = (0, 0, 1)T . −147.5 deg <
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Figure 4.6.: Angular relation φd(φa) within the input range −147.5 deg < φa < 147.5 deg as

well as singular configurations of the four-bar

φa < 147.5 deg shall represent the given range of the input angle φa, which is used to determine

the current orientation of the moving direction W b. Based on a forward position analysis the an-

gular relation φd(φa) is found, which is then used to obtain the current orientation of the second

moving direction W c.

The relation φd(φa) is shown in Fig. 4.6a), which shows a continuous function over the range

−147.5 deg < φa < 147.5 deg. In order to determine singular configurations that belong to the

limits of input angles, the following quantities were evaluated:

det(Jbcd(φa)) and κF(Jbcd(φa)), (4.31)

where κF is the weighted Frobenius condition number from Eq. (4.30). The results are shown

in Fig. 4.6b), where the determinant or the condition number tend to zero or to infinity at the

starting and ending configuration of the linkage. In fact, these are nothing but the (approximate)

limits of the input angle φa.

In order to determine configurations that belong to the limits of output angles within the input

range, the following quantities were evaluated:

det(Jacd(φa)) and κF(Jacd(φa)), (4.32)

det(Jabd(φa)) and κF(Jabd(φa)), (4.33)
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Figure 4.7.: Line-based analysis results that correspond to the limits of input and output angles

det(Jabc(φa)) and κF(Jabc(φa)), (4.34)

The results are shown in Fig. 4.6c) to e), where limits of outputs were found for each of these

cases. Equation (4.32) is satisfied at φa ≈ 100 deg, while (4.33) and (4.34) are at φa ≈ 0 deg and

φa ≈−61 deg respectively. The corresponding linkage configurations are shown in Fig. 4.7.

As one can see det(J) varies within the range of (1,−1), while κF(J) tends to very large

values when angular limits are reached. For this reason κF(J) is cut here at a maximum value

of 25. Thus, different characteristics can be observed, so that both measures will be considered

within this work.

4.1.4. Line-Based Analysis of Transmission Properties of Two Coupled
Spherical Four-Bars

In the case of a spherically constrained RR chain there are two coupled spherical four-bars, see

e.g. Fig. 4.2 or 4.3. Due to the coupling, the actuation between these four-bars interact, which

has just been shown in sect. 4.1.2. Here φ d was considered as the input of the first four-bar,

which resulted in φ c(φ d) as the input for the second four-bar. A configuration in a spherically

constrained RR chain, which corresponds to a limit in the inputs then means

1. the input φ d of the first four-bar cannot sufficiently resist angular changes

dqabc = (dφa, dφb, dφc)
T , or (4.35)

2. the input φ c(φ d) of the second four-bar cannot sufficiently resist angular changes

dqe f g = (dφe, dφ f , dφg)
T . (4.36)

The corresponding conditions allowing it to detect these cases are hence

det(Jabc(φd)) and κF(Jabc(φd)) (4.37)

54



4. Kinematic Design Processes for Spherically Constrained Linkages

Figure 4.8.: Singular configurations of the two coupled four-bars from Fig. 4.3 within an input

range 55 deg < φd < 290 deg

and

det(Je f g(φ c(φ d))) and κF(Je f g(φ c(φ d))). (4.38)

However, beside limits of the inputs, also limits on the outputs may occur, which can be detected

by tracing the determinant or the condition number of Jacobians assembled from any other

possible combination of joint axes (directions) of the two different four-bars.

Figure 4.8 shows the determinants as well as the condition numbers of the spherically con-

strained RR chain from Fig. 4.3 over the input φ d , where here the motion range has been

enlarged, such that 55 deg < φd < 290 deg. Note that the current orientation of joint axes may

be found from Eq. (4.22). Then coordinates are consistently measured in frame B′′, which,

however, does not affect the calculation of determinants or condition numbers.

Figure 4.8a) to d) correspond to Jacobians, which are assembled from directions a, b, c and

d that make up the ’first’ four-bar. As one can see from figure a), det(Jabc(φd = 55 deg)) or

κF(Jabc(φd = 55 deg)) tends to zero or to values >> 1, which means that the first four-bar

is close to a limit on the input in this configuration. On the other hand figures b), c) and d)

show, that there are limits of the output angles φa, φb and φc at input values of φd ≈ 247 deg,

φd ≈ 180 deg and φd ≈ 98 deg.
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Figure 4.9.: Graphical depiction of the singular configurations of the two coupled four-bars

from Fig. 4.3 within an input range 55 deg < φd < 290 deg

Figures e) to h) belong to Jacobians of the ’second’ four-bar, assembled from directions c, e,

f and g. Since here φ c(φ d) is the corresponding input, limits of this input are detected when

det(Je f g(φ c(φ d))) = 0 or κF(Je f g(φ c(φ d))) >> 1. However, as one can see, this is not the

case in figure h), which means that the ’second’ four-bar does not reach any input limits within

55 deg < φd < 290 deg. Similarly one can see from figure e), that this is also the case for the

output angle φg. However, the two remaining outputs possess two limits within the input range.

On the one hand there is φe, which reaches a limit at φd ≈ 187 deg, see figure g). On the other

hand there is φ f , which in fact reaches a limit at φd = 55 deg and another one at φd ≈ 158 deg.

Even though the input φ c(φ d) of the ’second’ four-bar itself does not reach any input limits

within the range of φd , φ c(φ d) was the output of the ’first’ four-bar, which reached its limit at

φd ≈ 247 deg. Hence, in this configuration no motion is transmitted into the ’second’ four-bar,

which in turn also represents a certain limitation on the input of the ’second’ four-bar.

Figure 4.9 provides the graphical depiction of the different configurations of the spherically

constrained RR chain. Note that axes are highlighted, which are lying in a plane, i.e. which

define a limit on an input or output. At figure f) one can see, that the two different singular situ-

ations of Jceg at φd = 55 deg and at φd ≈ 158 deg actually correspond to the same configuration
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of the ’second’ four-bar but to two different configurations of the ’first’ four-bar.

4.2. Two-Configuration Synthesis Procedures

For the f.p.s. of spherically constrained linkages a two-configuration synthesis is developed in

this section, which allows it to compute joint axes of a linkage, such that each link in a linkage

can reach two prescribed planar, spherical or either spatial poses. Beside spherically constrained

linkages the methodology also applies to all other types of linkages that consist of R and/or C

joints and may be particularly helpful when two distinct configurations (e.g. compact, stowed

configurations) of a system are a concern.

Detailed solution procedures to solve the synthesis equations derived here are given in the

appendix, sect. A.4 and may be consulted when required. Note that the general method has also

been considered in [103] and [104], and has been specified precisely in [111]

4.2.1. The General Spatial Two-Configuration Synthesis Method

Two-configuration synthesis evolves from considering two poses of two consecutive links Ka
and Kb of the linkage. Those are described by two frames Ba and Bb, rigidly attached to

the consecutive links. Ba and Bb shall be displaced by two pre-defined 4× 4 homogeneous

transforms (W Ti
Ba,

W T j
Ba) and (W Ti

Bb,
W T j

Bb), where T ∈ SE(3). Using Eq. (2.3) yields the

relative displacements Ti j
Ba and Ti j

Bb.

Next, the Plücker coordinates l̂ = (l, pl × l)T of either a R or C joint axis are considered,

which couples the different links. The coupling implies that l̂ must satisfy Ti j
Ba and Ti j

Bb, which

means that l̂ must satisfy two different relative displacement equations of a line:

l̂ j = T̂i j
Ba · l̂i and l̂ j = T̂i j

Bb · l̂i, (4.39)

see Eq. (2.19). Recall here, that relative displacements are completely measured in W . Sub-

tracting and rearranging yields (T̂i j
Ba − T̂i j

Bb) · l̂i = 0̂ and multiplication on the left by (T̂i j
Ba)

−1

results in

(Ê− (T̂i j
Ba)

−1T̂i j
Bb︸ ︷︷ ︸

T̂i j
Ba|Bb

) · l̂i = 0̂, (4.40)

where

T̂i j
Ba|Bb =

(
(Ri j

Ba)
T Ri j

Bb 0
(Ri j

Ba)
T
(
(t̃i j

Ba)
T + t̃i j

Bb

)
Ri j

Bb (Ri j
Ba)

T Ri j
Bb

)
. (4.41)

Notice that multiplication by (T̂i j
Bb)

−1 yields a similar result as T̂i j
Bb|Ba = (T̂i j

Bb)
−1T̂i j

Ba. To see

that T̂i j
Ba|Bb actually represents a spatial relative displacement of a line introduce the matrix

R� = (Ri j
Ba)

T Ri j
Bb. Rearranging, so that Ri j

Bb = Ri j
BaR� and re-substituting into the left lower

submatrix in Eq. (4.41) yields t̃�R�, where

t̃� = (Ri j
Ba)

T
(
(t̃i j

Ba)
T + t̃i j

Bb

)
Ri j

Ba (4.42)

is a skew symmetric matrix. This is easily verified by showing that (t̃�)T =−t̃�:(
(Ri j

Ba)
T
(
(t̃i j

Ba)
T + t̃i j

Bb

)
Ri j

Ba

)T
= (Ri j

Ba)
T
(
(t̃i j

Ba)
T + t̃i j

Bb

)T
Ri j

Ba =−(Ri j
Ba)

T
(
(t̃i j

Ba)
T + t̃i j

Bb

)
Ri j

Ba.

(4.43)
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Table 4.1.: Arbitrarily chosen task position for an exemplary two-configuration synthesis

ψ ϑ ϕ W tB
Ba1 130.0 deg −15.0 deg 10.0 deg ( 50.0 −55.0 65.0 )T

Ba2 5.0 deg 30.0 deg −35.0 deg ( −120.0 −50.0 150.0 )T

Bb1 30.0 deg 0.0 deg 0.0 deg ( −50.0 −150.0 100.0 )T

Bb2 −30.0 deg 45.0 deg 0.0 deg ( −120.0 50.0 70.0 )T

Table 4.2.: Axis coordinates of a C joint calculated from two-configuration synthesis example

Direction l1 Location p1
l

l̂1
(

0.1285 0.0453 0.9907
)T ( −18.8700 −76.4786 5.9425

)T

The result is that T̂i j
Ba|Bb represents a spatial relative displacement of a line for any specified

Ti j
Ba and Ti j

Bb and hence comparing the situation with Eq. (A.10) from sect. A.4 shows, that

Eq.(4.40) is nothing but the equation of the screw axis of finite rigid motion. This means that

l̂i may either be interpreted as the screw axis of the relative displacement T̂i j
Ba|Bb or as the joint

axis in configuration i, that satisfies Ti j
Ba and Ti j

Bb. Following the discussion provided in sect.

A.5 and 2.3.1 it can be specified, whether the line l̂ represents a R or a C joint. This is done by

considering the slide along l̂, which is found as

si j = (t�)T · l, (4.44)

where t� is the vector assembled from the parameters of the skew symmetric translational matrix

t̃�. The result are again the cases

1. si j �= 0: The spatial displacements Ti j
Ba and Ti j

Bb lead to a rotation around and the slide along

l̂i, so that l̂i corresponds to a C joint.

2. si j = 0: The spatial displacements Ti j
Ba and Ti j

Bb only lead to a rotation around l̂i, so that l̂i
corresponds to a R joint.

Example

The results of a numerical example based on position data given in table 4.1 are shown in Fig.

4.10. Note that angles ψ , ϑ and ϕ correspond to Euler angles, introduced in sect. 2.1. Table 4.2

lists the corresponding calculated set of axis coordinates, i.e. the normalized direction l1 and

the location p1
l , both measured in W . The slide between frames Ba and Bb from configuration 1

to 2 was calculated as s12 = (t�)T · l1 = 141.044, where t� is assembled from the parameters of

t̃� = (R12
Ba)

T (
(t̃12

Ba)
T + t̃12

Bb

)
R12

Ba. Hence, the line l̂1 corresponds to a C joint in configuration 1.

A spherical version of two-configuration synthesis

In the case of a spherical linkage two poses of two arbitrary (consecutive) links Ka and Kb may

be described using displacements (W Ti
Ba,

W T j
Ba) and (W Ti

Bb,
W T j

Bb), with translations satisfying
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Figure 4.10.: C joint, which allows the assembly of two links in two prescribed spatial positions

W ti
Ba =

W t j
Ba =

W ti
Bb =

W t j
Bb = 0. This results in a pure spherical version of Eq. (4.41) as

T̂i j
Ba|Bb =

(
R� 0
0 R�

)
=

(
(Ri j

Ba)
T Ri j

Bb 0
0 (Ri j

Ba)
T Ri j

Bb

)
. (4.45)

Substituting T̂i j
Ba|Bb and afterwards expanding Eq. (4.40) yields two equations that correspond

to those two from Eq. (A.11)

(E−R�) · li = 0 and (E−R�) · (pi
l × li

)
= 0. (4.46)

As described in sect. A.4 the first equation may be solved using Cayley’s formula from sect.

A.1, which yields the direction of the axis l̂i. However, this means that pi
l = 0 in order to have

a meaningful solution for the second equation. The result is the line l̂i = (li 0)T which passes

through the origin of W . Furthermore, translations equal to zero yield si j = 0, see Eq. (4.44),

which shows that l̂ corresponds to the axis of a revolute joint.

A planar version of two-configuration synthesis

In the case of a planar linkage that moves in the xy-plane (or in a plane parallel to that) two poses

of two arbitrary (consecutive) links Ka and Kb may be described using 3× 3 homogeneous

transforms (W Ti
Ba,

W T j
Ba) and (W Ti

Bb,
W T j

Bb), which are transformed into relative displacement

data Ti j
Ba and Ti j

Bb. A revolute joint, that couples the two links may simply be described as a

point in the xy-plane. When a homogeneous 3×1 vector p with a third component normalized

to 1 describes the location of the R joint, the coupling implies that p must satisfy the following

relative displacement equation

p j = Ti j
Ba ·pi and p j = Ti j

Bb ·pi. (4.47)
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Subtracting and rearranging eliminates p j and yields an equation for pi:

(E− (Ti j
Ba)

−1Ti j
Bb︸ ︷︷ ︸

Ti j
Ba|Bb

) ·pi = 0, (4.48)

where E is a 3×3 identity and

Ti j
Ba|Bb =

(
(Ri j

Ba)
T Ri j

Bb (Ri j
Ba)

T · (ti j
Bb − ti j

Ba)
0 0 1

)
. (4.49)

Herein Ri j
B and ti j

B are the 2× 2 rotational and 2× 1 translational sub-components of Ti j
Ba and

Ti j
Bb. Using this transformation data one may expand and rearrange Eq. (4.48) to obtain

pi = (E− (Ri j
Ba)

T Ri j
Bb)

−1(Ri j
Ba)

T · (ti j
Bb − ti j

Ba), (4.50)

where now pi is a common 2× 1 coordinate vector. This is the equation of the pole of the

displacement defined by Ti j
Ba|Bb, which has a solution as long as E �= (Ri j

Ba)
T Ri j

Bb. In the context

of two-configuration synthesis pi defines the location of a R joint in configuration i, which

satisfies two arbitrary planar poses of two consecutive links Ka and Kb.

4.2.2. Two-Configuration Synthesis of Spherical Four-Bars

The method described in the previous section shall be applied here to a spherical four-bar. The

resulting procedure is also part of [104] and yields a linkage, whose links can be assembled in

two prescribed task orientations. Such an approach may particularly important in applications,

where two distinct configurations of each link of the linkage are of interest. Examples are

foldable four-bars as substructures of transformable furniture or retractable tops of sports cars,

where the generation of two significant configurations is of particular importance.

Table 4.3 list the orientation data of three moving frames B1, B2 and B′′, that correspond to

three links K1, K2 and K′′. Note that angles ψ , ϑ and ϕ correspond to Euler angles, introduced

in sect. 2.1. Figure 4.11a) provides a corresponding graphical depiction of K1, K2 and K′′
in two configurations 1 and 2. A fixed base link K′ of the four-bar is associated with the

reference frame W . To obtain four directions a, b, c and d of a spherical four-bar that reaches

the given orientations, Eq. (4.40) must be solved for appropriately stated matrices T̂12
Ba|Bb, see

Eq. (4.41). However, due to a purely spherical task, where translations are equal to zero, Eq.

(4.41) becomes

T̂12
Ba|Bb =

(
(R12

Ba)
T R12

Bb 0
0 (R12

Ba)
T R12

Bb

)
. (4.51)

This leads to nothing but the spherical version of two-configuration synthesis, see Eq. (4.45),

which means that the axis, obtained from the solution of Eq. (4.40) passes through the origin of

frame W . The result is, that only the direction equation needs to be solved, which yields

(E− (R12
Ba)

−1R12
Bb︸ ︷︷ ︸

R12
Ba|Bb

) · l1 = 0. (4.52)

To obtain the four directions a, b, c and d in configuration 1 the following equations need to be

stated and solved using the solution procedure, provided in sect. A.4:

(E−R12
W |B1

) ·a1 = 0 (E−R12
B1|B2

) ·b1 = 0
(E−R12

B2|B′′) · c1 = 0 (E−R12
B′′|W ) ·d1 = 0 (4.53)
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Table 4.3.: Exemplary task orientations for two-configuration synthesis of a spherical four-bar

Bi ψ ϑ φ W ti
Bi

B11 0.0 deg 20.0 deg 0.0 deg ( 0.0 0.0 0.0 )T

B12 0.0 deg 60.0 deg 0.0 deg ( 0.0 0.0 0.0 )T

B21 40.0 deg −10.0 deg 0.0 deg ( 0.0 0.0 0.0 )T

B22 120.0 deg −70.0 deg 0.0 deg ( 0.0 0.0 0.0 )T

B′′1 40.0 deg 0.0 deg 0.0 deg ( 0.0 0.0 0.0 )T

B′′2 120.0 deg 0.0 deg 0.0 deg ( 0.0 0.0 0.0 )T

Figure 4.11.: Task orientations and corresponding spherical four-bar synthesized using the two-

configuration synthesis approach

Note, that in the equations for a and d the rotations of the fixed frame W is included as R12
W =E.

Hence, these equations may also be written neglecting index 1 at vectors, since these directions

also belong to the fixed frame W . Solving Eq. (4.53) yields the values for the different di-

rections listed in table 4.4. Figure 4.11b) shows a CAD design of the four-bar, assembled in

configuration 1, which can also reach the prescribed configurations 2, see Fig. 4.12.

4.2.3. Transformation of G- or S-Jointed Kinematic Chains Using
Two-Configuration Synthesis

In this section the two-configuration synthesis approach is used to transform specific kinematic

chains consisting of gimbal and / or spherical joints into revolute-jointed chains. This is shown

for the spatial GS chain with one fixed end link, where the result is a spatial RR chain, that

reaches two configurations. Note that this is also part of [104]. The configurations are defined

by the two moving links of the GS chain and the synthesis procedure on the one hand requires

the GS synthesis equations (2.50) for two prescribed spatial poses of one of the end links. On the

other hand the inverse kinematics of the synthesized GS chain is required in order to prescribe

poses of another moving link. Throughout the procedure the G joint is considered to be the

fixed joint.

In order to synthesize a GS chain defined by three links K′, K′′ and K′′′, two spatial poses of
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Table 4.4.: Directions a, b, c and d in configuration i

Direction

a
(

1.0 0.0 0.0
)T

b1
( −0.3834 −0.3384 0.8594

)T

c1
(

0.7660 0.6428 0.0
)T

d
(

0.0 0.0 1.0
)T

Figure 4.12.: Spherical four-bar reaching the two configurations

the moving end link K′′′ are considered. Those are prescribed using a corresponding frame B′′′
and are measured with respect to another fixed reference frame W , associated with K′. Table

4.5 lists the arbitrarily chosen position data, where angles ψ , ϑ and ϕ correspond to Euler

angles, introduced in sect. 2.1. The position data is used to assemble the bilinear scalar design

or synthesis equations from sect. 2.3.3 for a two-position task:

(p1
b)

T ·M12 ·pa +(�λ 12)T ·p1
b +(�μ12)T ·pa +δ 12 = 0. (4.54)

Due to the fact that there is one fixed end link in the chain the parameters containing position

data take the simple form M12 = E− (R12
B′′′)T , (�λ 12)T = (t12

B′′′)T ·R12
B′′′ , (�μ12)T =−(t12

B′′′)T and

δ 12 = 1
2(t

12
B′′′)T · t12

B′′′ . Note that the right superscript vanishes at pa, because this should describe

the center point of the fixed G joint.

Since now there is only one single scalar equation, five of the six W -frame coordinates xpa ,

ypa , zpa and x1
pb

, y1
pb

, z1
pb

represent free design parameters and may hence be chosen arbitrarily.

When for instance five W -frame coordinates are chosen as x1
pb
= −21.6987, y1

pb
= −99.0192,

z1
pb
= 30.0, xpa = 20.0 and ypa = 0.0, the remaining parameter is easily found after rearranging
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Table 4.5.: Task poses for two-position synthesis of a spatial GS chain

ψ ϑ ϕ W ti
B′′′

B′′′1 30.0 deg 0.0 deg 0.0 deg ( −50.0 −150.0 100.0 )T

B′′′2 −30.0 deg 45.0 deg 0.0 deg ( −120.0 50.0 70.0 )T

Figure 4.13.: a) A spatial GS chain in reference configuration 1 obtained from two-position

synthesis using coordinate frame B′′′. b) A spatial RR chain obtained from trans-

forming the GS chain using two-configuration synthesis

the linear design equation as zpa = 21.1883.

Figure 4.13a) shows a detailed CAD design of the GS chain in reference configuration 1

together with the poses of the cube-like link K′′′ and corresponding frame B′′′. The chain can

also be assembled in configuration 2, defined by B′′′2. In order to connect the moving S joint,

defined by pb, to the cube in configuration 1 a gripper was designed, which, as a consequence

also belongs to K′′′.
To transform the GS chain into the desired spatial RR chain, Eq. (4.40) must be solved for

appropriately stated matrices T̂12
Ba|Bb. Since there are three links K′, K′′ and K′′′, this can be

achieved by assembling T̂12
W |B′′ and T̂12

B′′|B′′′ using the frames W , B′′ and B′′′. While position

data of W and B′′′ is already given (W performs the identity displacement) that of B′′ must be

calculated and it is convenient for this purpose, to consider this frame being defined as shown

in Fig. 4.13a). B′′ shall be located at the previously determined fixed pivot defined by pa. In

order to define the orientation of the frame using z-x-z-Euler angles, introduced in sect. 2.1 its

z-axis shall point along a direction, defined as c =
pi

b−pa

|pi
b−pa| . This allows to obtain the desired

orientation data from the following inverse kinematics calculations:

ψ i
B′′ = arctan

(
xi

c√
(yi

c)
2 + zi

c)
2

)
and ϑ i

B′′ = arctan

(
yi

c
zi

c

)
, (4.55)

where i = 1,2. Using the numerical values from GS synthesis, this yields ψ1
B′′ = 157.1601 deg,

ψ2
B′′ = 35.43 deg as well as ϑ 1

B′′ = −85.3001 deg, ϑ 2
B′′ = −79.02 deg, which, together with
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Figure 4.14.: Starting, intermediate and ending configuration of the spatial RR chain obtained

from two-configuration synthesis

W ti
B′′ = pa allows to define the desired position data of frame B′′. Hence, matrices T̂12

W |B′′ and

T̂12
B′′|B′′′ can be assembled, which yields:

T̂12
W |B′′ =

(
R12

B′′ 0
t̃12
B′′R12

B′′ R12
B′′

)
(4.56)

(note that R12
W = E and t̃12

W = 0 from the identity displacement) and

T̂12
B′′|B′′′ =

(
(R12

B′′)T R12
B′′′ 0

(R12
B′′)T (

(t̃12
B′′)T + t̃12

B′′′
)

R12
B′′′ (R12

B′′)T R12
B′′′

)
. (4.57)

Next, solving the equations

(Ê− T̂12
W |B′′) · â = 0̂ and (Ê− T̂12

B′′|B′′′) · b̂1 = 0̂ (4.58)

using the solution procedure provided in sect. A.4 yields two joint axes â and b̂1. These actually

belong to two revolute joints, because the calculation of slides s12 using Eq. (4.44) along â and

b̂1 yields zero slides.

Figure 4.13b) shows the CAD-model of the RR chain in reference configuration 1, which in

fact is a spatial RR chain, because one can measure a non-zero common normal distance as well

as a non-zero angle between â and b̂1 (Note that this can also be verified using the dual scalar

product from Eq. (2.26)). The angle is indicated at the connecting rectangular rod between â
and b̂1 by an angular offset. Furthermore, as one can see, the moving R joint is designed at

some other point p̃1
b than the previously determined center point p1

b of the S joint. Note that this

is possible, because both points lie on b̂1.

Figure 4.14 shows the starting, an intermediate and the ending configuration of the chain,

where the intermediate state of the cube, i.e. K′′′, was chosen arbitrarily. When this intermediate

pose would represent another task position in a three-position synthesis approach of a spatial

RR chain (see sect. 2.3.5) the result would be two RR synthesis solutions, out of which one

would exactly represent the chain, obtained here from two-configuration synthesis.

Another idea is to compare a two-position RR synthesis approach using the design equations

from sect. 2.3.5 with the approach presented here. A two-position task of link K′′′ yields under-

specified design equations (2.55), (2.57) and (2.59) since then there are only six equations in the

ten W -frame coordinates xa, ya, x1
b, y1

b, xpa , ypa , zpa , x1
pb

, y1
pb

and z1
pb

. Hence, four of these pa-

rameters may be pre-defined with respect to certain other requirements of the task such as given
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Figure 4.15.: Two examples of modified Miura patterns differently chosen angles ε , which re-

sult in different folded configurations: a) Configuration characterized by a convex

shape of a polyline. b) Configuration characterized by a zig-zag shape of a poly-

line

space requirements. However, due to the fact that the two-configuration synthesis approach

made use of the underspecified synthesis equation of GS or SS chains, here the result were five

free design parameters. While these five parameters are restricted to be location parameters, the

four paramters from Eq. (2.55), (2.57) and (2.59) may also be direction coordinates.

4.2.4. Two-Configuration Synthesis of Miura-Ori-Based Folding
Structures

As shown in the previous sections two-configuration synthesis may be used to design linkages,

such that they can be assembled in two different configurations, prescribed in terms of two

spatial poses of each link that make up the structure. However, in the case of spatial (overcon-

strained) linkages this can be a challenging task, because special kinematic dimensions must be

taken into account, which preserve the mobility of the systems. Another way of saying this is,

that there is particularly strong dependency between kinematic dimensions and the movement

of the linkage. Hence, using two-configuration synthesis to obtain the kinematic dimensions

of an overconstrained linkage requires essential information on the movement of the desired

structure.

In what follows, two-configuration synthesis of overconstrained systems based on the Miura-

ori folding pattern are presented. This becomes possible through the kinematic analysis results

from sect. 4.1.1, where the transmission properties in the Miura-ori building block four-bar

have been identified. The result is the two-configuration synthesis of Miura-ori-based folding

structures which is also presented in [111]. The corresponding configurations are defined in

terms of two configurations of a polyline, which is a particular part of the pattern.

Folding structures with flat unfolded configuration

A particular result from sect. 4.1.1 is that the opening angle of a Miura-ori building block four-

bar satisfies φa =−φc for any given angle ε , see Eq. (4.3) as well as Fig. 4.1. Furthermore, Eq.

(4.6) provides another transmission relation as tan
φd
2 = cotε sinφa. Writing this in terms of two

configurations 1 and 2 yields

φ i
a =−φ i

c and tan
φ i

d
2

= cotε sinφ i
a, i = 1,2, (4.59)
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Figure 4.16.: a) Frames defined along one plane symmetric half of a serial assembly of Miura

building block four-bars. b) Example configurations of a polyline for synthesis:

Unfolded flat line and line segments, defined as tangents to a parabola.

where the first equation simply states the equality of the amount of opening angles in any con-

figuration of the four-bar and is independent of any kinematic dimensions. When analysis is

a concern and φ i
a or φ i

d is considered to be a given input parameter, the second equation may

easily be solved for φ i
d or φ i

a. However, in case of synthesis ε represents the unknown parameter

and the second equation represents a system of two linear equations in the parameter k = cotε .

This will generally not yield a valid ε for two general configurations, which means that no two

arbitrary configurations of a building block four-bar can be pre-defined. However, when config-

uration 1 represents the flat unfolded state the result is φ 1
d = φ 1

a = 0 and the second equation of

Eq. (4.59) is identically satisfied. Then tan
φ 2

d
2 = cotε sinφ 2

a can be solved for ε , for any given

φ 2
d and φ 2

a .

For this reason, a Miura-ori folding pattern consisting of numerous building block four-bars

can also be modified in various ways as shown in Fig. 4.15, where the result are different folded

configurations. The particular difference can be characterized by the shape of a certain polyline,

which is found as a straight vertical line of symmetry in the unfolded flat configuration. On the

one hand, if directions of angles ε alternate along this line the result is a convex shape. On the

other hand, if directions of angles ε remain the same along the line the result is a zig-zag folded

shape.

Instead of choosing a set of angles ε and observing the resulting shape of the polyline one

may ask for the angles ε , such that the polyline of the pattern can reach a certain pre-defined

shape. This problem can be solved by applying two-configuration synthesis to one single stripe

of the pattern, using the flat unfolded as well as a certain folded configuration. Several of such

identical stripes may then be assembled right next to each other, to form a complete modified

Miura-ori pattern.

Figure 4.16a) shows a plane symmetric unfolded flat stripe, which is also called a serial

assembly of Miura-ori building block four-bars in the following. Due to the symmetry only one
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Table 4.6.: Position data of frames B1 to B4, which correspond to one half of a serial assembly

of Miura building blocks that approximates the shape of a parabola (angles measured

in [deg])

ϑ 1 ϑ 2 ψ1 ψ2 W t1
B

W t2
B

B1 0.0 −17.5 0.0 0.0 ( 0.0 0.0 0.0 )T ( 0.0 0.0 0.0 )T

B2 0.0 17.5 0.0 340.9352 ( 30.0 0.0 0.0 )T ( 30.0 0.0 0.0 )T

B3 0.0 −17.5 0.0 329.0854 ( 85.0 0.0 0.0 )T ( 81.9832 −17.965 0 )T

B4 0.0 17.5 0.0 319.9781 ( 135.0 0.0 0.0 )T ( 124.8799 −43.653 0 )T

Table 4.7.: Axis coordinates of joints, connecting the different links in one half of a serial as-

sembly of Miura building blocks

Direction Location

â1
(

0.8731 0.0000 −0.4876
)T (

7.1315 0.0000 12.7705
)T

b̂1
( −0.9453 0.0000 −0.3262

)T (
9.0466 0.0000 −26.213

)T

ĉ1
(

0.9667 0.0000 −0.256
)T (

8.8494 0.0000 33.4119
)T

half of the pattern needs to be synthesized, and the complete plane symmetric serial assembly

may afterwards be found as a mirrored counterpart. One such half of the pattern shall have links

K1,. . . ,Km, which shall move with respect to another fixed link, not shown in the figure. Note

that m > 2, in order to consider a spatial linkage with at least two vertices.

To describe the movement of links corresponding frames B1,. . . ,Bm are considered to be

located along the polyline, such that their xz-planes coincide with the flat panels. Another frame

W , associated with the fixed link, is located at the lower bound of the pattern, having its origin

coinciding with that of B1. The x- axes of frames shall be aligned with the different segments

of the polyline, which are characterized by arbitrary lengths l1,. . . ,lm. These definitions allow

to describe a spatial configuration of a certain frame B j using Euler angles, introduced by Eq.

(2.7) as well as the different segments of the polyline:

W RB j = Rz(ψB j)Rx(ϑB( j−1)),
W tB j =

W tB( j−1) + l j−1

⎛
⎝ cosψB( j−1)

sinψB( j−1)

0

⎞
⎠ . (4.60)

Note that j = 2, . . . ,m to have a consistent description. Furthermore, the result from sect. 4.1.1,

Eq. (4.3), must be added as ϑB( j−1) = −ϑB j in order to have this formula actually describing

the considered half of a serial assembly of Miura building blocks.

Equation (4.60) can be retraced using the example shown in Fig. 4.16b), where the number

of segments of the polyline is m = 4. Configuration 1 of the polyline corresponds to the flat un-

folded pattern. Configuration 2 is defined, such that the different line segments define tangents

to a parabola.

The lengths of the different segments may be chosen arbitrarily and are defined here as

l1 = 30, l2 = 55, l3 = 50 and l4 = 50. Furthermore, respecting Eq. (4.3), the amount of the

angle ϑ 2 can be chosen arbitrarily, which corresponds to the opening angle of the considered

serial assembly of Miura-ori building block four-bars. Note that ϑ 1 = 0 is required in order
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Figure 4.17.: a) Two-configuration synthesis results of one half of the plane symmetric serial

assembly of Miura building block four-bars. b) Complete serial assembly

Figure 4.18.: Complete serial assembly reaching a folded configuration, defined in terms of a

parabola

to prescribe the flat unfolded configuration. Next, angle ψ2 can be prescribed at the different

vertices of the polyline. The result is the position data, listed in table 4.6 that corresponds to

the example from Fig. 4.16b). Recall that odd values of ψ result from the fact, that the dif-

ferent segments of the polyline are tangent to the arbitrarily prescribed parabola. Using this

position data in combination with Eq. (4.60) allows to calculate the relative displacements T12
Bi ,

i = 1, . . . ,4, whose entries can then be assembled into corresponding 6×6 screw transformation

matrices

T̂12
Bi =

(
R12

Bi 0
t̃12
Bi R12

Bi R12
Bi

)
, i = 1, . . . ,4. (4.61)

Afterwards computing T̂12
B( j−1)|B j = (T̂12

B( j−1))
−1T̂12

B j, j = 2, . . . ,4, using Eq. (4.41) allows to

state two-configuration synthesis equations as

(Ê− T̂12
B( j−1)|B j) · l̂1 = 0̂, j = 2, . . . ,4, (4.62)

where l̂1 is a joint axis in configuration 1 that connects two consecutive links K( j−1) and K j.
Using the position data from table 4.6 Eq. (4.62) can be solved using the solution procedure

presented in sect. A.4. The result are three joint axes â1, b̂1 and ĉ1, measured in W whose axes

parameters are listed in table 4.7. The y-components of the vectors are equal to zero, which
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Figure 4.19.: A Miura-ori-based serial assembly of non-flat four-bars reaching folded configu-

rations, defined in terms of a circle and a parabola

corresponds to the unfolded configuration 1 of the pattern. Using Eq. (4.44) in order to classify

the slide along axes â, b̂ and ĉ yielded a zero sliding for each axis, which shows that those

correspond to revolute joints. Figure 4.17a) shows the resulting plane symmetric half of the

serial assembly in configuration 1. The mirrored counterpart of the structure is shown in figure

b), which completes the serial assembly of Miura building block four-bars. Figure 4.18 shows

the folded configuration of the structure, where the polyline touches the parabola.

Folding structures without flat unfolded configuration

Another interesting design case is to consider two different shapes of the polyline in a serial

assembly of Miura-ori building block four-bars. This amounts to two different sets of angles

ϑ 1,ϑ 2 �= 0 and ψ1,ψ2 �= 0 in each building block four-bar. Following Eq. (4.6) these angles

satisfy

tan
ψ1

2
= k sinϑ 1

tan
ψ2

2
= k sinϑ 2. (4.63)

However, when synthesis is a concern Eq. (4.63) represents overdetermined linear system in the

unknown dimensional parameter k = cotε . This in turn means, that a serial assembly of Miura-

ori building block four-bars will not be able to reach the two desired configurations of the

polyline. However, straight forward application of the two-configuration synthesis procedure

yields another serial assembly of four-bars, which may reach the prescribed configurations but

has no flat inflatable state. Those may be called Miura-based serial assemblies due to a certain

similarity to the previous patterns that have a flat unfolded state.

The synthesis approach basically follows the same design idea as shown before. However,

now a polyline is attached to two different curves, as shown in Fig. 4.19a). This yields sets

of angles ψ1,ψ2 �= 0 at each vertex along the polyline, where afterwards a set of opening

angles ϑ 1,ϑ 2 �= 0, identical for each vertex along the line may be prescribed. Using Eq. (4.60)

and (4.61) then allows to define relative displacements and again solving Eq. (4.62) for each

reasonable combination of frames yields joint axes of Miura-based serial assemblies of of non-

flat inflatable four-bars. An example is shown in Fig. 4.19, where a polyline is defined to touch a

parabola in configuration 1 and a circle in configuration 2. Figure 4.19d) shows non-flat panels,

which result from joint axes that do not lie in one single plane at one segment. Finally, using
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Eq. (4.44) in order to classify the slide along axes yielded a zero sliding for each axis, which

shows that those correspond to revolute joints.

Applications of the folding structures presented here could be transformable roofs in archi-

tecture or also robotic grasping devices.

4.3. Constraint-Based Synthesis of Spherically Constrained
RR Chains

This section presents f.p.s. procedures of the structures introduced in sect. 3.2.1. Compared to

the previous section, where two-configuration synthesis is a concern, the procedures presented

here require the synthesis equations of planar, spherical and spatial RR chains, introduced in

sect. 2.3.2, 2.3.4 and 2.3.5. The result is a general design procedure, which can be used to

synthesize spherically constrained planar, spherical and spatial RR chains for a prescribed set

of task positions of the end link of a RR guiding chain.

The procedure essentially requires the definition of specific coordinate frames in order to

perform synthesis. Using these frames, examples are provided showing four- and three-position

synthesis procedures of a spherically constrained planar as well as a spatial RR chain, which

can also be found in [105] and [112]. These procedures also make use of the algebraic solution

procedures of planar, spherical and spatial RR chains, given in detail in the appendix, sect. C.1,

C.2 and C.3.

4.3.1. Specification of Coordinate Frames for Synthesis

Figure 4.20 shows a general spherically constrained spatial RR chain. Recall here, that this

is the most general case, which may always be transformed into the planar or spherical types.

A fixed frame W shall be associated with the fixed link K′. The moving frames B2 and B′′′
correspond to the moving links K2 and K′′′ and are required for synthesis. While W and B′′′ can

be located arbitrarily somewhere in K′ and K′′′, frame B2 is required to have its z-axis parallel

to axis ĉ.

The location and orientation of ĉ can be defined by the location of R joints at axes d̂ and

ĝ. This is equivalent to saying, that the z-axis of B2 may be defined by a constant angle β ,

which is measured in a plane spanned by the directions of ĉ and d̂. When the linkage moves,

B2 performs spherical movement about the fixed vertex, defined by axes â, b̂, ĉ and d̂, which is

a composition of rotations around ĉ and d̂ by angles φc and φd . These angles, axes and frames

serve as a certain reference for the following synthesis procedure and may be used in the design

of constrained planar, spherical or either spatial RR chains.

4.3.2. General Synthesis Steps for Spherically Constrained RR Chains

Before providing synthesis procedures in detail it is convenient to consider essential design

steps, similar in the design of spherically constrained planar, spherical or either spatial RR

chains:

1. The first step in the synthesis procedure consists in defining a finite number of task poses of

link K′′′ using frame B′′′ whose location and orientation is measured with respect to the

fixed frame W . Those may be defined using homogeneous transforms, introduced by Eq.

(2.2), which allow to compute relative displacements using Eq. (2.3).
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Figure 4.20.: Axes, links and frames of a general spherically constrained RR chain, required for

constraint-based synthesis

2. The next step consists in synthesizing a RR guiding chain for the previously prescribed finite

set of task poses. This RR chain is formed by the links K′, K′′ and K′′′ in a spherically

constrained RR chain. The case of a planar or spherical RR guiding chain requires the

design equations (2.47) or (2.52) from sect. 2.3.2 or 2.3.4. Note that synthesis equations

must be adopted appropriately since here one end link is considered to be fixed. The

case of a spatial RR chain requires the design equations (2.55), (2.57) and (2.59) from

sect. 2.3.5. The result of synthesis calculations are the axes d̂ and ĝ, which are parallel,

intersect or are either skew.

3. Based on the synthesized RR guiding chain, the next step is to prescribe finitely separated

poses of link K2 using frame B2. Those must be compositions of rotations around axes

ĉ and d̂ by angles φc and φd at the synthesized RR guiding chain. On the one hand this

requires the definition of ĉ by choosing R joints at the previously determined axes d̂ and

ĝ. On the other hand an inverse kinematic analysis of the guiding RR chain is required.

4. The final synthesis step consists in applying spherical RR synthesis to obtain the remaining

links K1 and K3 in a spherically constrained RR chain. This again requires the design

equations (2.52) from sect. 2.3.4 and yields the remaining axes â, ĉ, ê and f̂ at the fixed

and moving vertex.

The different steps are visualized qualitatively in Fig. 4.21, where a general spherically con-

strained RR chain is drawn using the linkage graph introduced in Fig. 3.4.
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Figure 4.21.: Qualitative representation of the stepwise constraint-based finite position synthe-

sis procedure of spherically constrained RR chains

4.3.3. Four-Position Synthesis of Spherically Constrained Planar RR
Chains

The synthesis of spherically constrained planar RR chains is considered in the following for

four prescribed planar poses of link K′′′. Note that essential steps may also be found in [105].

This follows straight forward execution of the previously synthesis steps and particularly and

requires synthesis equations (2.47) and (2.52) of planar and spherical RR chains. Since these

can be solved for up to five finitely separated task poses, the procedures may also be extended

into a five-position synthesis procedure, which however has not been examined here.

Prescribing task poses and planar RR synthesis

Figure 4.22a) shows four finitely separated task poses of frame B′′′. Note that the motion shall

take place in the xy-plane of W , such that the z-axes of B′′′ and W are parallel. The differ-

ent poses correspond to the position data, listed in table 4.8 and using Eq. (2.2) this can be

assembled into planar homogeneous transforms that take the form

W Ti
B′′′ =

( W Ri
B′′′ W ti

B′′′
0 0 1

)
=

⎛
⎝ cosϕ i −sinϕ i xi

t
sinϕ i cosϕ i yi

t
0 0 1

⎞
⎠ , i = 1, . . . ,4. (4.64)

Since the synthesis equations of the planar RR guiding chain require relative displacements this

is transformed into

T1i
B′′′ = W Ti

B′′′(W T1
B′′′)−1 =

(
R1i

B′′′ t1i
B′′′

0 0 1

)
, i = 2,3,4, (4.65)

using Eq. (2.3). The rotations R1i
B′′′ and translations t1i

B′′′ represent the input parameters of the

planar RR synthesis equations (2.47), which, however, are stated in sect. 2.3.2 for two moving

end links of the chain. Since one of these links is the fixed link K′ here, one needs to insert

R1i
B′ = E and t1i

B′ = 0, which, after writing in terms of pd and p1
g, yields the simplified planar RR

synthesis equations as

(p1
g)

T ·M1i ·pd +(�λ 1i)T ·p1
g +(�μ1i)T ·pd +δ 1i = 0, i = 2,3,4, (4.66)

Herein the motion parameters take the simple form M1i = E− (R1i
B′′′)T , (�λ 1i)T = (t1i

B′′′)T ·R12
B′′′ ,

(�μ1i)T =−(t1i
B′′′)T and δ 1i = 1

2(t
1i
B′′′)T · t1i

B′′′ and pd and p1
g represent the unknown locations of
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Figure 4.22.: a) Four planar task poses for a planar RR chain. b) center-point and circle-point

curve that correspond to the four poses and a planar RR chain

Table 4.8.: Task poses for four-position synthesis of a planar RR chain

B′′′1 B′′′2 B′′′3 B′′′4

ϕ i 0.0 deg 20.0 deg 40.0 deg 0.0 deg
W ti

B ( 0.0 0.0 )T ( 7.5 20.0 )T ( 15.0 42.5 )T ( 40.0 37.5 )T

the parallel axes d̂ and ĝ of the planar RR chain. Equation (4.66) represents the set of three

bilinear scalar synthesis equations, that can be solved for pd and p1
g using the algebraic solution

procedure developed in detail in the appendix, sect. C.1. The result is that pd and p1
g can

be selected at specific planar curves, known as the center-point and circle-point curve. Figure

4.22b) shows these curves, where a specific pd and p1
g is chosen in order to design a planar RR

chain.

Inverse kinematics of the planar RR chain and definition of orientations of K2

Following the third step from sect. 4.3.2, inverse kinematics calculations are required in order

to define orientation data of link K2. Recall here from Fig. 4.20, that the movement of this link

is conveniently described using frame B2, that may be considered as being located at pd having

its z-axis pointing along axis ĉ of a spherically constrained RR chain. Hence, the next step is

to define axis ĉ, which can be done for each configuration i using the previously determined

locations pd and p1
g:

ĉi =

(
ci

pi
c × ci

)
, i = 1, . . . ,4 ci =

pi
g −pd

|pi
g −pd| , pi

c = pd . (4.67)

Due to the fact, that pd and p1
g are considered as planar vectors in Eq. (4.66), both lying in the

xy-plane of W , this definition of ĉ yields the angle β = 0 (see again Fig. 4.20). However, by
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simply adding a third vector component to pd and p1
g other than zero, also angles β �= 0 may be

produced. This yields differently placed R joints along axes d̂ and ĝ. Note that such a definition

is valid, because no additional constraints are added to the planar RR chain. Never the less this

section continues discussing the case of β = 0, because β �= 0 will be retraced in sect. 4.3.4.

When β = 0, the movement of frame B2 is simply a composition of a z- and x-rotation, by

angles φd and φc:

W Ri
B2 = Rz(φ i

d)Rx(φ i
c) =

⎛
⎝ cosφd −cosφc sinφd sinφd sinφc

sinφd cosφd cosφc −cosφd sinφc
0 sinφc cosφc

⎞
⎠i

, i = 1, . . . ,4. (4.68)

Note that the movement of K′′ may be described by W Ri
B′′ = Rz(φ i

d). Since φd simply measures

the angle around the fixed axes d̂ of the planar RR chain it may easily be found from following

inverse kinematics calculations as

φ i
d = arctan

(
yi

c
xi

c

)
, i = 1, . . . ,4, (4.69)

where yi
c and xi

c are W -frame coordinates of direction ci. For the x-rotation, angles φ i
c may be

specified arbitrarily, because no additional constraints are added to the planar RR chain. For the

example shown in Fig. 4.22 angles were calculated as φ 1
d = 268.122 deg, φ 2

d = 274.889 deg,

φ 3
d = 292.534 deg and φ 4

d = 358.172 deg using Eq. (4.69). Angle φc was chosen arbitrarily as

φ 1
c = 0.0 deg, φ 2

c = 20.0 deg, φ 3
c = 40.0 deg and φ 4

c = 120.0 deg. Using this data, allows to

calculate the following relative rotations, which represents an essential input for the synthesis

of spherical RR chains in the final design step in the next section:

R1i
B2 =

W Ri
B2(

W R1
B2)

−1, i = 2,3,4. (4.70)

Four-position synthesis of spherical RR chains

In order to complete the spherically constrained planar RR chain the remaining links K1 and

K3 must be found, such that the resulting linkage reaches the four poses of K′′′. This is done

using Eq. (2.52) and synthesizing two spherical RR chains. The first one is formed by links K′,
K1 and K2, while the second one is formed by links K2, K3 and K′′′. Because K′ is a fixed link

this yields R1i
W = E and a1 = a and the result are the following synthesis equations for the first

RR chain

(b1)T ·M1i ·a = 0, i = 2, . . . ,4, where M1i = E− (R1i
B2)

T . (4.71)

Note, that R1i
B2 is given from the previous section.

It’s important to recall here, that the spherical synthesis problem only includes information

about the orientation of frames, while their locations are not of interest. For this reason the

different locations of W and B2 shown in Fig. 4.20 do not affect the spherical RR synthesis and

Eq. (4.71) may be solved without considering the aspect.

The spherical algebraic four-position RR synthesis procedure parallels that of planar RR

chains and yields what is known as the center-axis and circling-axis cones. These cones are

ruled surfaces of order three, passing through the fixed vertex formed by axes â, b̂, ĉ and d̂ and

contain the directions a and b1. Due to relative orientations R1i
B2, these are measured in W .

The algebraic four-position synthesis procedure towards center-axis and circling-axis cones

is provided in the appendix, sect. C.2 and also holds for the case of two moving end links in a

spherical RR chain. This is just the case for the chain formed by links K2, K3 and K′′′ at the
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Figure 4.23.: Center-axis and circling-axis cones obtained from four-orientation synthesis of

spherical RR chains

moving vertex defined by axes ĉ, ê, f̂ and ĝ. The corresponding synthesis equations may be

written as

(f1)T ·M1i · e1 = 0, i = 2, . . . ,4, where M1i = E− (R1i
B′′′)T R1i

B2, (4.72)

where R1i
B′′′ =W Ri

B′′′(W R1
B′′′)−1 is the rotation matrix from Eq. (4.65), which contains the planar

rotation data from table 4.8. However, due to the fact that R1i
B2 is a 3× 3 matrix, R1i

B′′′ must

represent a 3×3 matrix as well, which is easily arranged by defining

W Ri
B′′′ =

⎛
⎝ cosϕ i −sinϕ i 0

sinϕ i cosϕ i 0

0 0 1

⎞
⎠ , i = 1, . . . ,4. (4.73)

Equation (4.72) may also be solved to obtain a center-axis and circling-axis cone using the

algebraic four-position synthesis procedure provided in the appendix, sect. C.2. Hence, there

are two center-axis and circling-axis cones, one located at the fixed vertex formed by axes â, b̂,

ĉ and d̂ and another one located at the moving vertex defined by axes ĉ, ê, f̂ and ĝ. Intersecting

these cones with spheres yields spherical curves of intersection. Such curves are shown in Fig.

4.23 for the different center-axis and circling-axis cones determined before and may be seen as

the analogue, spherical versions of center-point and circle-point curves of planar RR chains. At

these curves a suitable a, b1, f1 and e1 may be chosen in order to complete the four-position

synthesis of a spherically constrained planar RR chain.

Example design of a spherically constrained planar RR chain

Figure 4.24 shows the animation of a detailed CAD-model that reaches the four initially pre-

scribed poses of link K′′′. Based on a parametrized CAD-model of the chain with simplified

link geometry (see sect. 5.2) the detailed design was carried out, which allows collision-free

movement of the linkage.
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Figure 4.24.: Detailed kinematic CAD-model reaching the four planar poses of link K′′′

4.3.4. Three-Position Synthesis of Spherically Constrained Spatial RR
Chains

This section describes a synthesis procedure of spherically constrained spatial RR chains for

three prescribed spatial poses of link K′′′. Note that essential steps of the following remarks

may also be found in [112]. The procedure requires synthesis equations of spatial and spherical

RR chains. Recall from sect. 2.3.5 that three is the maximum number of poses for spatial

RR synthesis. Hence, spherical RR synthesis is also performed for three positions only, even

though the problem can also be solved for up to five positions. The result is an underspecified

spherical synthesis which provides free parameters that can be specified with respect to further

requirements of the task.
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Figure 4.25.: Three finitely separated task positions of frame B′′′ and a fixed reference frame W
for three-position synthesis of a spherically constrained spatial RR chain.

Table 4.9.: Three task positions of frame B′′′ for spatial RR synthesis

ψ ϑ ϕ W ti
B′′′

B′′′1 30.0 deg 35.0 deg 40.0 deg ( 90.0 65.0 10.0 )T

B′′′2 30.0 deg 15.0 deg 20.0 deg ( −10.0 −10.0 100.0 )T

B′′′3 0.0 deg 0.0 deg −10.0 deg ( −60.0 −20.0 20.0 )T

Prescribing task poses and spatial RR synthesis equations

Figure 4.25a) shows three finitely separated spatial task poses of frame B′′′. The different poses

correspond to the position data, listed in table 4.9, where the orientation of frames is defined

with respect to the fixed reference frame W using the z-x-z-Euler transformation from Eq. (2.7).

Using Eq. (2.2) this can be assembled into 4×4 homogeneous transforms as

W Ti
B′′′ =

( W Ri
B′′′ W ti

B′′′
0 0 0 1

)
, i = 1,2,3. (4.74)

Since the synthesis equations of the spatial RR chain require relative displacements this is trans-

formed into

T1i
B′′′ = W Ti

B′′′(W T1
B′′′)−1 =

(
R1i

B′′′ t1i
B′′′

0 0 0 1

)
, i = 2,3, (4.75)

using Eq. (2.3). The rotations R1i
B′′′ and translations t1i

B′′′ represent the input parameters of Eq.

(2.55), (2.56) and (2.59). When furthermore stated in terms of the axes d̂ = (d, pd ×d)T and
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Figure 4.26.: The cylindroid generated from the three position task (table 4.9), which includes

the relative screw axes ŝ12 and ŝ13

ĝ1 = (g1, p1
g ×g1)T , measured in W these equations take the form

(d)T · (E−R1i
B′′′

) ·g1 = 0, (4.76)

(d)T · (E−R1i
B′′′

) · (p1
g ×g1

)
+(pd ×d)T · (E−R1i

B′′′
) ·g1 − (d)T · t̃1i

B′′′R1i
B′′′ ·g1 = 0, i = 2,3.

(4.77)

and

(d)T ·(pd −R1i
B′′′ ·p1

g + t1i
B′′′

)
= 0 and (gi)T ·((R1i

B′′′)T ·pd − (R1i
B′′′)T · t1i

B′′′ −p1
g
)
= 0, i = 1,2,3.

(4.78)

As already described in sect. 2.3.5, Eq. (4.77) can be replaced by the following simpler equation

(s1i)T · (pd −p1
g
)− s1i

2
= 0 i = 2,3, (4.79)

where s1i is the direction of the screw axes ŝ1i associated with the relative displacement T1i
B′′′ and

s1i is the slide along s1i. See also sect. A.4 and A.5 to see how to determine these quantities.

Synthesis of a Bennett linkage using the principal axis frame of the cylindroid

As described in sect. C.3 the screw axes ŝ12 and ŝ13 associated with T12
B′′′ and T13

B′′′ are involved

in finding the principal axis frame H of a cylindroid (see [115]). The benefit of knowing the

location and orientation of H is that Eq. (4.78) is identically satisfied , when measured in H.

Furthermore, the ten unknown W -frame coordinates xd , yd , x1
g, y1

g, xpd , ypd , zpd , x1
pg

, y1
pg

and

z1
pg

can then be replaced by four equivalent parameters that define coordinates of vectors in H.
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Table 4.10.: Synthesized axis parameters, measured in the principal axis frame H, of two spatial

RR chains forming Bennett’s linkage in configuration i = 1

Direction Location

H d̂ ( 0.9819 −0.1061 0.1570 )T ( 8.7136 −80.6060 −54.4861 )T

H ĝ1 ( 0.9724 0.1051 0.2082 )T ( −11.6684 −107.9391 54.4861 )T

H◦d̂ ( 0.9724 0.1051 −0.2082 )T ( 11.6684 107.9391 54.4861 )T

H◦ĝ1 ( 0.9819 −0.1061 −0.1570 )T ( −8.7136 80.6060 −54.4861 )T

Figure 4.27.: Synthesized Bennett linkage reaching the three positions from table 4.9

The complete procedure is shown in detail in [30] together with an algebraic solution of Eq.

(4.76) and (4.79), that yields two RR chains that can be assembled to form a Bennett linkage.

This procedure is used here in order to determine the axis parameters d, pd , g1 and p1
g of a

RR chain, measured in H. To distinguish H-frame parameters in this section from the usual

W -frame coordinates they are denoted as Hd, Hpd , Hg1 and Hp1
g here.

Using the screw axes ŝ12 and ŝ13 associated with the position data from table 4.9 and follow-

ing [115] and [30] yields the desired principal axis frame as well as the RR synthesis solutions

forming a Bennett linkage. Figure 4.26 shows the Bennett linkage as well as the cylindroid gen-

erated following sect. C.3, which includes ŝ12 and ŝ13. Table 4.10 lists the coordinates of axes

measured in H. The results show a certain symmetry, which results from the particular relative

location and orientation between the Bennett linkage and the principal axis frame. This is a

particular feature of the geometry of Bennett’s linkage and the principal axis frame, discussed

in detail in [116]. The synthesis solution actually satisfies the three positions as shown in Fig.

4.27.
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Transformation into W-frame coordinates

In order to continue the synthesis procedure of the spherically constrained spatial RR chain, the

transformation of the different axis coordinates into W -frame coordinates is required. This is

because further synthesis calculations are conveniently performed in frame W . Based on the

calculations of the previous section the transformation between H and W was found as

W TH =

( W RH
W tH

0 0 0 1

)
=

⎛
⎜⎜⎝

−0.5736 0.7617 0.3012 −15.4284

0.0119 0.3755 −0.9268 170.7447

−0.8191 −0.5280 −0.2245 134.9617

0 0 0 1

⎞
⎟⎟⎠ . (4.80)

Using this numerical data in combination with that from table 4.9, the W -frame coordinates d,

pd , g1 and p1
g from table 4.10 are found as:

d = W RH ·Hd pd = W RH ·Hpd +
W tH (4.81)

and

g1 = W RH ·Hg1 p1
g =

W RH ·Hp1
g +

W tH . (4.82)

Inverse kinematics of the spatial RR chain and definition of orientations of K2

The parameters obtained from Eq. (4.81) and (4.82) form the axes of the spatial RR chain that

is used as the guiding chain in the spherically constrained linkage. Based on that the next step

in the synthesis procedure is to define three finitely separated poses of the link K2. Retrace in

Fig. 4.20 that this is a composition of the rotations about d̂ and ĉi by angles φ i
d and φ i

c, for each

configuration i = 1,2,3 of the chain. Because d̂ is already known from spatial RR synthesis,

the first step towards a definition of poses of K2 is to determine ĉi. In fact, this axis can be

defined using two points p̃d = pd +λdd and p̃i
g = pi

g +λggi, where λd and λg are arbitrary real

constants, which define a Plücker coordinate vector ĉi, measured in W :

ĉi =

(
ci

pi
c × ci

)
, ci =

p̃i
g − p̃d

|p̃i
g − p̃d| , pi

c = p̃d . (4.83)

The next step is to determine the angle φ i
d in each configuration i = 1,2,3 of the spatial RR

chain. However, since axis d̂ may have arbitrary spatial orientation in W it is convenient to

introduce a coordinate transformation between W and another fixed frame W̃ , which has its

x-axis parallel to the direction of d̂:

W RW̃ = Ry(−ξ )Rz(ζ ) =

⎛
⎝ cosζ cosξ −sinζ cosξ sinξ

sinζ cosζ 0

cosζ sinξ −sinζ sinξ cosξ

⎞
⎠ , (4.84)

This is a composition of coordinate rotations about y- and z-axes, where the constant angles

can be calculated from the direction d as

ξ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arctan
(

zd
xd

)
: {xd,zd}> 0; xd > 0, zd < 0

arctan
(

zd
xd

)
−π : xd < 0, zd < 0

arctan
(

zd
xd

)
+π : xd < 0, zd > 0

. (4.85)
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Figure 4.28.: Four different cases, which define the calculation of ξ from Eq. (4.85). Note that

the direction of the rotation corresponds to Ry(−ξ )

and

ζ = arctan

(
yd√

(xd)2 +(zd)2

)
. (4.86)

Herein parameters xd , yd and zd define the direction d. Retrace the geometric meaning of the

different cases from Fig. 4.28. Eq. (4.84) allows to obtain the W̃ -frame coordinates of the

direction ci as
W̃ ci = W̃ RW · ci, i = 1,2,3, (4.87)

which in turn allow to calculate φ i
d as

φ i
d =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arctan
(

W̃ yi

W̃ zi

)
: {W̃ yi,W̃ zi}> 0; W̃ yi < 0, W̃ zi > 0

arctan
(

W̃ yi

W̃ zi

)
−π : W̃ yi < 0, W̃ zi < 0

arctan
(

W̃ yi

W̃ zi

)
+π : W̃ yi > 0, W̃ zi < 0

i = 1,2,3. (4.88)

Note that these cases follow from similar considerations as those shown for ξ in Fig. 4.28. Fig-

ure 4.29 provides another detailed view on the angles and frames involved in inverse kinematics

calculations.

The different angles can next be used to define finite orientations W Ri
B′′ of the link K′′ as

W Ri
B′′(φ i

d) =
W RW̃ Rx(−φ i

d). This transformation rotates B′′, such that its xz-plane is parallel to

the plane spanned by d̂ and ĉ. Hence, the next step towards defining the movement of K2 or B2

is another constant y-rotation by the angle β . This aligns the z-axis of B2 with ĉ and afterwards

a final z-rotation by the angle φc defines the movement of B2. The constant angle β may be

found for instance from

β = arctan

⎛
⎝ W̃ x1

c√
(W̃ y1

c)
2 + W̃ z1

c)
2

⎞
⎠ . (4.89)

Note that also W̃ c2 or W̃ c3 may be used to yield the same angle β . The angle φ i
c can be specified

by choosing three arbitrary angles. This is because no constraints are imposed to the previously

determined spatial RR chain. The result is the following composition of rotations, that define

the orientation of B2:

W Ri
B2(φ

i
d,φ

i
c) = Ry(−ξ )Rz(ζ )Rx(−φ i

d)Ry(β )Rz(φ i
c), i = 1,2,3. (4.90)
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Figure 4.29.: The Frame W̃ as well as angles involved in the inverse kinematics calculations

The relative rotation is obtained as

R1i
B2 =

W Ri
B2(

W R1
B2)

T , i = 2,3 (4.91)

using Eq. (2.3). This includes the relative rotation Rz(φ 1i
c ) = Rz(φ i

c)(Rz(φ 1
c ))

T , where φ 1i
c =

φ i
c −φ 1

c .

Three-position synthesis of spherical RR chains

This section provides the final synthesis step in the three-position synthesis procedure of the

spherically constrained spatial RR chain and is almost identical to the final step from sect.

4.3.3. Hence, the following text is partially identical to this section.

In order to complete the spherically constrained spatial RR chain the remaining links K1 and

K3 must be found, such that the resulting linkage reaches the three poses of K′′′. This is done

using Eq. (2.52) and synthesizing two spherical RR chains. The first is formed by links K′, K1

and K2, while the second one is formed by links K2, K3 and K′′′. Because K′ is a fixed link this

yields R1i
W = E and a1 = a and the result are the following synthesis equations for the first RR

chain

(b1)T ·M1i ·a = 0, i = 2,3, where M1i = E− (R1i
B2)

T . (4.92)

Note, that R1i
B2 is given from the previous section, Eq. (4.91). The second spherical RR chain is
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Figure 4.30.: Kinematic CAD-model reaching the three spatial poses of link K′′′

defined by axes ê and f̂ and the corresponding synthesis equation may be written as

(f1)T ·M1i · e1 = 0, i = 2,3, where M1i = E− (R1i
B′′′)T R1i

B2, (4.93)

where R1i
B′′′ = W Ri

B′′′(W R1
B′′′)−1 is the rotation matrix from Eq. (4.75), which contains the rota-

tion data from table 4.9.

It’s important to recall here, that the spherical synthesis problem only includes information

about the orientation of frames, while their locations are not of interest. For this reason different

locations do not affect the spherical RR synthesis problem.

The spherical algebraic three-position RR synthesis is an underspecified problem, simple to

solve. To see this consider the general spherical RR synthesis equations (2.52) being written as

(ai(b1) bi(b1) ci(b1)) ·a1 = 0, i = 2,3, (4.94)

where (ai(b1) bi(b1) ci(b1)) = (b1)T ·M1i. Equation (4.94) expresses the intersection of the

two planes

a2(b1) · xa +b2(b1) · ya + c2(b1) · za = 0

a3(b1) · xa +b3(b1) · ya + c3(b1) · za = 0. (4.95)

Of course these planes intersect in a common line (as far as they are not parallel). This line of

intersection has the direction a, which may be found simply as:

a =

⎛
⎝ a2

b2

c2

⎞
⎠×

⎛
⎝ a3

b3

c3

⎞
⎠ . (4.96)

Hence, choose an arbitrary b1 and solve Eq. (4.96) to obtain a spherical RR chain that can reach

three prescribed orientations. Applying this procedure to Eq. (4.92) and (4.93) shows that one

may specify one direction at each vertex of the spherically constrained spatial RR chain.
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Table 4.11.: Orientation data for frame B2

{ξ , ζ , β} {−127.2971 deg,−10.001 deg,0.0 deg}
{φ 1

d , φ 2
d , φ 3

d } {−82.5463 deg,−138.967 deg,4.368 deg}
{φ 1

c , φ 2
c , φ 3

c } {50.0 deg,85.0 deg,0.0 deg}

Table 4.12.: Axis parameters of the spherically constrained spatial RR in configuration i = 1,

measured in W

Direction Location

ĉ1 ( 0.2075 −0.9765 0.0584 )T ( −98.2409 191.0778 182.6130 )T︸ ︷︷ ︸
p̃d=pd, λd=0

â ( −0.9848 −0.1736 0.0 )T p̃d
b̂1 ( 0.0897 0.5082 0.8566 )T p̃d
ê1 ( −0.1093 0.1667 0.9799 )T ( −74.5438 79.5812 189.2786 )T︸ ︷︷ ︸

p̃1
g=p1

g, λg=0

f̂1 ( 0.6330 0.7544 −0.1736 )T p̃1
g

Example of a spherically constrained spatial RR chain

Figure 4.30 shows a CAD model of an example design of a complete spherically constrained

spatial RR chain, which is based on the synthesis steps provided before, i.e. on the position data

from table 4.9 as well as the spatial RR chain formed by axes d̂ and ĝ1. Results of the inverse

kinematics part are listed in table 4.11. Table 4.12 on the other hand lists the axis parameters

of the remaining axes. Note that λd = λg = 0 is selected here, which corresponds to β = 0

in table 4.11. As one can see, the previously determined spatial RR chain defined by d̂ and

ĝ1 still reaches the three task poses. Recall from Fig. 4.27 that this represents one of the RR

chains in a Bennett linkage. Even though the linkage determined here suffers from an assembly

mode change, required to reach pose 3, the result is a design solution whose axes are located

compactly along the spatial RR guiding chain.

4.4. Detecting the Intersections Between Joint Axes and
Triangulated Surface Tesselations

The computer-aided kinematic design process from chapter 5 regards given space limits of

a task by considering, whether solutions obtained from a certain synthesis procedure fit into a

certain given envelope. This is done using the stl representation of the envelope, which provides

a tesselation of triangles, see sect. 5.3. In particular the links of linkage may be designed such

that they fit into the given envelope, if at least the joint axes intersect the triangulated surface.

Hence, in order to check for existing intersections between the envelope and an axis of the

linkage, the intersection between a line and a triangle must be considered. This problem refers

to the ray tracing problem, also used in computer graphics to detect intersections between rays
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Figure 4.31.: Quantities that measure the intersection of ray and triangle

and bodies, see also [117].

In what follows a simple procedure is provided, which allows to detect the intersection be-

tween a line and a triangle and which is also part of [112]. The procedure has also been imple-

mented and used in chapters 5 and 6 to check, whether the axes of a spatial RR chain, obtained

from three-position synthesis pass through a given envelope.

If a line l̂ intersects the plane of a triangle, direction l and location pl of l̂ satisfy:

λ =
(n)T · (p1 −pl)

(l)T ·n , (4.97)

where n is the normal of the plane and p1 represents one of the three vertices of the triangle (note

that n and p1 are known for each triangle from the stl file, see also sect. 5.3 for details). The

parameter λ is a real constant, so that h = pl +λ l describes the point of intersection. Note that

in order to have no intersections at infinity between line and plane it is required that (l)T ·n �= 0.

In order to have h furthermore being located inside the triangle also the following conditions

must be satisfied:

(s12)
T ·k1 < 0, (s32)

T ·k2 < 0, (s13)
T ·k3 < 0, (4.98)

where for instance s12 = (p2 −p1)×n represents an outwards oriented normal direction at the

edge of the triangle defined by (p2 −p1), see Fig. 4.31. Vectors ki are defined as ki = h−pi,

i = 1,2,3.

When Eq. (4.97) and (4.98) are evaluated for the joint axes of a spatial RR chain and each

triangle of the tesselated representation of the envelope this yields each existing intersection

between axes and envelope. In case of an arbitrarily shaped envelope with both convex and

concave shape as well as several holes there may exist various points of intersection. However,

if the envelope represents an approximately convex polyhedron, there are either 0, 1 or 2 points

of intersection for an axis.
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5. A Concept for Computer-Aided
Kinematic Design (CAKD) of Linkages

This chapter presents a concept towards the computer-aided kinematic design (CAKD) of link-
ages, which aims at quick evaluations of the feasibility1 of a linkage. The CAKD approach,

couples linkage-specific kinematic synthesis calculations, performed in the computing envi-
ronment MATLAB, with a corresponding parametrized CAD model in the design environment
CATIA V5. Note that the concept is also applicable with eventual minor modifications using

other computing environments such Mathematica or Maple, or also other design environments

such as for instance SolidWorks, ProEngineer or Siemens NX.

The simplest approach couples the different software packages using simple design tables,

which control the parameters of a CAD-model and allow a quick evaluation of changes of

the kinematic dimensions of a linkage. Such changes may particularly affect the feasibility and

occur from different linkage synthesis solutions, which result from a variation of a given motion

task or either from a variation of of free kinematic design parameters. A more advanced CAKD

approach additionally makes use of VBA programming capabilities provided by common CAD-

systems. This allows for instance to control various synthesis solutions stored in a single design

table or also to create individualized toolbars for CAKD within the CAD-environment.

The simple CAKD approach is discussed exemplarily using the three-position synthesis pro-

cedure of a spherically constrained spatial RR chain from sect. 4.3.4. Afterwards, examples

of CAKD based on VBA programming are discussed using a spatial RR chain. However, the

presented general methodology also holds for any other type of linkage, i.e. planar, spherical

or spatial single or also multi-d.o.f. mechanisms and only requires an appropriate adoption of

implemented kinematic synthesis calculations as well as a parametrized CAD-model.

5.1. The General CAKD Methodology

The general computer-aided kinematic design approach considers the design engineer as the

central subject, that controls the different steps in a kinematic design process. These steps

include preprocessing, solving and postprocessing, which may occur in the computing as well

as in the design environment (see also Fig. 5.1) and which are defined here as follows:

1. Preprocessing begins by considering the motion task as well as given requirements. This

particularly includes classification of the motion characteristics of the task, i.e. whether it

requires planar, spherical or either spatial movement. In order to solve the given problem

using linkage design theory the designer may consult or derive corresponding methods

1The feasibility of a linkage is always related to the requirements of a given task and must be considered indi-

vidually by a designer. On the one hand it is determined by suitable kinematic dimensions that fit into a given

allowed envelope as well as useful kinematic/kinetostatic transmission properties, which are obtained from

synthesis and analysis procedures of specific linkage topologies (examples of such procedures are developed in

chapter 4). On the other hand feasibility includes the design of links as well as collision-free movement within

the workspace of the linkage.
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Figure 5.1.: Computer-aided kinematic design of a specific linkage topology based on

parametrized CAD-models and kinematic solver code

or procedures for kinematic analysis and synthesis of either planar, spherical or spatial

linkages.

Within the design environment, i.e. the CAD-system, the motion task as well as given re-

quirements, such as for instance given space requirements, then must be specified by col-

lecting and assembling required CAD-parts. This includes parts that define an envelope,

where the linkage must fit in or wherein the linkage is allowed to move. CAD-integrated

preprocessing parallels a preprocessing step within the computing environment, where

the task as well as given requirements also need to be translated into a numerical set of

position data. When a specific linkage topology is chosen to be evaluated for the given

task the next preprocessing step is to set up a parametrized CAD-model of the desired

structure. The CAD-model must include parameters that define task poses, kinematic

dimensions, simplified link geometry and a kinematic model for simulation. Control of

the parameters of the model will be achieved via design tables that are provided by a

kinematic solver within the computing environment.

2. Solving represents any kinematics calculations performed within the computing environ-
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ment. An efficient approach considers the implementation of universal analysis and syn-

thesis solver modules, which are based on planar, spherical or either spatial linkage de-

sign theory. These must next be combined appropriately into a complete synthesis and/or

analysis solver code, which is implemented with respect to a specific kinematic design

procedure of the considered linkage topology. Input data such as task positions or free

design parameters of this solver are conveniently amplified within allowed ranges during

processing. This may be achieved through numerous iterative computations in order to

provide various alternative solutions.

In the case of a pure synthesis solver, the calculation results include the kinematic dimen-

sions of each linkage solution obtained from the variation of input data. However, this

also includes solutions which suffer from weak kinematic or kinetostatic transmission

properties or may even require an assembly mode change during the movement. Then, the

non-feasible synthesis solutions occur for the first time in a simulation of CAD-integrated

postprocessing. An opportunity to avoid such situations is to include analysis subroutines

into solver code, which filter weak synthesis results.

3. Postprocessing is performed in both the computing as well as the design environment. After

the solving process the calculated parameters defined above are assembled into a design

table by a subroutine within the computing environment. This controls the parametrized

CAD-model of the linkage and is considered here as an external document, which may

also be used in environments other than the CAD-system. Based on that, the dimensions

of the parametrized CAD-model are updated (automatically by the CAD-system) and

CAD-integrated postprocessing begins. This includes simulation of the movement as

well as detailed design of link geometry using design capabilities of the CAD-system. In

fact these final design steps usually must be performed iteratively, since an appropriate

detailed design of links in a reference configuration of the linkage may yield collisions

in another configuration and hence a non-feasible design. However, collision detection

is also a common functionality in current CAD-environments and may hence also be

performed herein.

A further important CAD-integrated postprocessing step consists in evaluating whether

the resulting linkage design acually meets further given requirements of the whole product

development process. An example is a given envelope, where the linkage must fit in or

wherein the linkage is allowed to move. In fact, beside adequate kinematic/kinetostatic

behavior this requirement represents a major feasibility aspect, which must be evaluated

in regard of any given parts, that define or either affect the allowed envelope

5.2. The Parametrized Basis CAD-Model of a Linkage
Topology

This section presents the step wise development of the parametrized basis CAD-model of a

linkage topology. This denotes a non-movable CAD-part of the complete linkage in a reference
synthesis configuration 1 and represents the basis for the parametrized kinematic CAD-model

allowing for simulation of the movement, see sect. 5.4. A basis model includes parameters

that define task poses, kinematic dimensions and link geometry, which are controlled via one or

more design tables, which are provided by a kinematic solver.

The parametrized basis CAD-model shall enable studies of parameter variations in the kine-

matic solver and shall also be potentially reused for other tasks. Hence, the goal is a model
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Figure 5.2.: Design tree of the pre-defined parametrized model for three-position synthesis pro-

cedure of a spherically constrained spatial RR chain

whose elements, such as coordinate frames, axes or link geometry may follow (almost) any

possible shape changing induced by amplified design tables. This requires a well-organized

CAD-tree with specific pre-defined folders, described in the following section, where the dif-

ferent elements are stored. The set or skeleton of axes essentially represents the kinematic

topology as well as kinematic dimensions of the considered linkage and the parametrization of

location and orientation of axes is presented afterwards. This is followed then by a discussion

of simplified parametric link designs, which are based on the skeleton of axes.

The different key elements are discussed in the following using an example basis model

for the three-position synthesis procedure of a spherically constrained spatial RR chain from

sect. 4.3.4. However, due to a general methodology similar parametrized models may also be

developed for other planar, spherical or spatial topologies and corresponding design procedures.

89



5. A Concept for Computer-Aided Kinematic Design (CAKD) of Linkages

Figure 5.3.: Design table DesignTable_TaskPoses for three-position synthesis procedure of a

spherically constrained spatial RR chain

5.2.1. Required Elements and the Design Tree

Figure 5.2 shows the design tree of a basis CAD-model for a three-position synthesis proce-

dure of a spherically constrained spatial RR chain, which includes the complete linkage in a

reference configuration 1, i.e. links K’, K”, . . . , K3 and axes a, b1, . . . , g1 (note that these are

nothing but the mathematical quantities K′, K′′,. . . ,K3 and â, b̂1,. . . ,ĝ1 from the synthesis pro-

cedure from sect. 4.3.4). Recall here for instance from Fig. 3.2 how links and axes are defined

for a spherically constrained spatial RR chain. The different parametrized CAD-objects asso-

ciated with axes and link geometry are stored into the corresponding folders of the tree and are

discussed more detailed in sect. 5.2.2.

The desired parametrization of the CAD-model is introduced by defining different types of

parameters for each geometric quantity that should be parametrized. This includes paramters of

type ’length’ and ’angle’, which are shown exemplarily in Fig. 5.2 by parameters t_1_x, t_1_y
and t_1_z defining x-, y- and z-translation values as well as by parameters psi_1_rad, ny_1_rad
and phi_1_rad defining z-x-z Euler rotation angles. The different length parameters are defined

with respect to the common reference coordinate frame World (cooresponds to frame W ), which

is stored in the folder PartBody.

The six parameters t_1_x, t_1_y, . . . , phi_1_rad together define the location of a point t_1
and the orientation of coordinate frame B”’ ˆ 1, stored in the folder Task Positions. B”’ ˆ 1 is

nothing but the frame defining the first task position and is located at t_1. In a similar fashion

six further length parameters define points, i.e. translations t_2 and t_3, while six other angular

parameters define the orientation of frames B”’ ˆ 2 and B”’ ˆ 3. Note that this defines the three-

position synthesis task of the spherically constrained spatial RR chain and numerical values for

this set of parameters are stored in the design table DesignTable_TaskPoses. An exemplary

screen shot of the design table defining position data is shown in Fig. 5.3. Further parameters

control the location, orientation and also the length of the axis skeleton of the linkage (discussed

in detail in sect. 5.2.2) as well as specific dimensions of the simplified link geometry (discussed

in detail in sect. 5.2.3). The total number of parameters of the CAD-model is summarized in

sect. 5.2.4.

The connection between the different geometric quantities, i.e. points, frames, axes, etc.

and the different parameters is provided by Relations, which map parameter values of design

tables to the corresponding quantities. This is done using so called formulas, provided by the

CAD-System and is shown exemplarily for the x-, y- and z-translations of task position 1.
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Figure 5.4.: Parametrized axis skeleton of a spherically constrained spatial RR chain in refer-

ence configuration 1

5.2.2. Parameterized Kinematic Dimensions

The kinematic dimensions of a linkage are represented by the joint axes determined from syn-

thesis calculations in reference configuration 1 and with axis coordinates measured in frame

World. Within the basic CAD-model the parametrized axis skeleton, formed by lines in the

CAD-system, represents these kinematic dimensions.

Figure 5.4 shows the axis skeleton of a spherically constrained spatial RR chain, defined by

axes a, b1, . . . , g1. Since the link K’ is considered as the fixed link in the synthesis procedure

from sect. 4.3.4 axes a and d do not necessarily require the right superscript. The geometric

CAD-objects of the different axes are lines, which are stored in a corresponding folder Joint
Axes, see again Fig. 5.2. These objects accept numerical input data to define a direction and

require a pre-defined point in order to define a location. Hence, additional points p_d_tilde and

p1_g_tilde are included, which define the location of any axes of a spherically constrained RR

chain. These represent nothing but the vectors p̃d and p̃1
g from sect. 4.3.4, which might be

varied along the axes d and g1 of the spatial RR chain. Recall here that only these two points

are required to define the location of any other axis in a spherically constrained RR chain.

The different CAD-objects are of course parametrized quantities, since they need to change as

synthesized axis coordinates change. Parameters are controlled by a specific design table, which

provides numeric values that define locations and orientations. This is shown exemplarily for
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Figure 5.5.: Simple voluminous representation of the parametrized axis skeleton of a spherically

constrained spatial RR chain in reference configuration 1

the locating point p_d_tilde and the direction of d in Fig. 5.4, where formulas f(x), provided

by the CAD-system, are used to map numeric values from the design table to axis coordinates

measured in World.

Axis c1 of the skeleton is defined between p_d_tilde and p1_g_tilde. However, this defines

the length of c1 as the distance between p_d_tilde and p1_g_tilde. Since these points in fact

result from the synthesis solver the considered length may be calculated as another parameter

value and submitted to the CAD-model via the design table. This length also provides a suitable

parameter to define the length of further axes and is used for the spherically constrained spatial

RR chain to define a finite length of a, b1, d, e1, f1 and g1. Note from Fig. 5.4 that actually a

scaled version of the distance between p_d_tilde and p1_g_tilde is used to define the length of

these axes.

5.2.3. Standardized Shape of Building Block Parts

The geometric design of parts, i.e. links of a linkage turns the axis skeleton of the linkage

into a more realistic voluminous object. This is oftentimes a creative process, with usually

unbounded multifarious design possibilities. However, in order to have designs that are able

to follow unpredictable strong changes of the kinematic dimensions (that result from different

synthesis solutions) a robust and standardized design of parts is required.

The simplest standard shape of parts can be realized by simply defining cylinders as joint axes

and also as connections between different axes at one specific link. This attributes a voluminous

representation of the axis skeleton to the linkage, which, as a first rough approximation may

represent the real dimensions of the structure. Even though this usually consists of various

collisions between different links and is far from representing a final design, this representation

is maximally able to follow changes of the kinematic dimensions. This allows for a quick
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Figure 5.6.: Examples of more detailed standard geometries of two coupled links, where dra-

matic changes in the kinematic dimensions may yield unfeasible link designs or

interference between links

evaluation of the impact of parameter studies on the geometric shape of the linkage. Examples

of such parameter studies may be the changing of task poses or other free parameters of the

synthesis procedure.

Figure 5.5 shows a particularly simple CAD-model of the spherically constrained spatial RR

chain in a reference configuration. The structure was synthesized for three task poses, i.e. the

three frames B”’ ˆ 1, B”’ ˆ 2 and B”’ ˆ 3, simple cylinders provide a voluminous representation

of the axis skeleton from Fig. 5.4 and also define connections between the different joints.

A connection between frame B”’ ˆ 1 and axis g1 is also provided by another connecting tube,

whose length is automatically defined as the distance between the location of B”’ ˆ 1 (i.e. t_1)

and p1_g_tilde.

Standardized building block parts based on tube-like link geometry

Further other detailed standard geometries of links may of course be defined, which already

take into account collision or more realistic designs of joints. However, due to a more detailed

design, such links also may not follow dramatic changes of the axis skeleton.

An example showing this issue is provided in Fig. 5.6, which shows a kinematic pair based

on the link design used several times in the context of spherical linkages throughout the work.

Figure a) shows the case where axes a and d as well as c and d enclose an angle of 90 deg. A

slight variation of 20 deg to the left between a and d as shown in figure b) is the maximum for

the lower link (note that such angular changes may result from different synthesis solutions that

define the direction of lines). This is because at that amount two radii at the center curve of the

tube-like rib interfere and hence produce an error in the CAD-model. On the other hand the

center curve of the tube-like rib allows a variation of at least 65 deg to the right. However, the

result is a link geometry, which is also far from a final design because it obviously has weak

structural mechanical properties.

Figure d) shows a variation of the upper link by an angle of 65 deg measured from the initial

axis c in figure a). Instead of a single tube-like rib this link consist of a cylinder that defines

axis c as a hull defining the joint connecting the two links, which, however, collides with the
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Figure 5.7.: Eight possible cases how to define a spherical tube-like ring connecting two axes in

spherical binary link

lower link. Finally figure e) shows the case where axes a and c both enclose an angle other than

90 deg with d, which provides an non-colliding example.

Standardized spherical binary links

Another standard link geometry interesting to study is that of spherical binary links, which

occur as the connecting link between the two R joints in a spherical RR chain. Figure 5.7 shows

the eight possibilities how to define a spherical tube-like ring connecting two axes a and b with

specified directions. In a CAKD process each of these cases may represent a first valid link

geometry, which can provide insight into collision properties in a kinematic simulation. Based

on that the designer can carry out a detailed, more complex design of a link.

From a structural mechanics point of view the ’shortest distance’ between two axes in a

spherical binary link may be seen as an indicator for high durability against deformations. Fur-

thermore, when case b) provides collision-free movement, then also a), c) and e) do so. When,

on the other hand d) or f) provide collision-free movement, then also c), e) and g) or a), e) and

g) do so. Finally, if case h) provides collision-free movement, then also a), c) and g) do so.

These considerations identify cases a), c), e) and g) as those, which may represent a first valid

link geometry providing insight into collision properties.

Control of proportion using a minimum set of parameters

The dimensional synthesis computations can result in kinematic dimensions of particularly large

and/or also small scale. Then the result is an axis skeleton of either particularly large and/or

small distances measured between the joints in a link. However, when using appropriately

parametrized standard link geometry, the shape of links in the CAD-model can automatically

adapt to the scale of the axis skeleton. This conveniently only requires a minimum set of

parameters defined in terms of available dimensions of the axis skeleton. This is called the
set of master parameters here, whose specific numeric values are provided by a design table.

Recall that design tables are generated by the kinematic solver or the computing environment,

which also defines the kinematic dimensions of the axis skeleton of a linkage.
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Figure 5.8.: Master and slave parameters that allow a proportional scaling of a spherical binary

link

The master parameters of the CAD-model control another set of slave parameters, that define

further scaleable link geometry. While master parameters occur explicitly in the folder Param-
eters of the design tree of a basis CAD-model (see again Fig. 5.2) slave parameters are defined

as Formulas. These relate different angles or lengths and are stored in the folder Relations.

An example is a slave parameter of type ’length’, which controls the thickness of a certain rod

connecting two joint axes with respect to the distance between these axes.

Another example of master and slave parameters is shown in Fig. 5.8 using the example of

a spherical binary link. Herein the radius r0 represents the master parameter that completely

controls the link geometry of the crank. Note that axes a and b represent the axis skeleton of the

link, whose directions are defined by coordinates provided by a design table. The parameters

r1, r2, d and l are the slave parameters, that are defined as

r1(r0) = k1 · r0, r2(r1(r0)) = k2 · r1, d(r0) = r1(r0), l(r0) = k3 · r0. (5.1)

Herein k1, k2 and k3 are constant values defining the proportion of the binary crank, which can

be defined directly in common CAD-systems. These were defined here as k1 = 0.0625, k2 = 1.4
and k3 = 0.3125, which results in the geometric shape shown in Fig. 5.8.

5.2.4. The Number of Parameters

The number of parameters P in a basis CAD-model is considered here as corresponding to the

parameters provided by one or more design tables. This number is determined by the number

of task poses of a linkage synthesis procedure, the set of joint coordinates of a linkage topology

and further parameters, such as master parameters defining scaleable link geometry.

In case of a spatial synthesis procedure there are six parameters for each of the n task posi-

tions. This yields the number of task position parameters as Ptask = 6 · n. The number of joint

parameters Pjoint differs for different joint types such as C, R, P or S joints. Let nC, nR, nP and
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nS be the number of C, R, P or S joints then numbers of parameters defining their location and

direction in a reference configuration of the linkage are

PC = 6 ·nC PR = 6 ·nR PP = 6 ·nP and PS = 3 ·nS. (5.2)

This results from the fact that C, R and P joints are defined by a spatially located and directed

line while S joints are defined only by their center points. Note that this is the general spatial

case, where each joint axis must be defined independently by its own location and orientation.

The total number of joint parameters is simply Pjoint = PC +PR +PP +PS. Together with a total

number of remaining parameters Pr the total number of parameters of a basis CAD-model is

defined as

P = Ptask +Pjoint +Pr. (5.3)

In case of a spherical linkage, where all revolute joint axes intersect at a common location,

only one single set of three location parameters but 3 ·nR direction parameters must be defined.

The result is a set of PR = 3(1+ nR) R joint parameters for a spherical linkage. Furthermore,

task position parameters reduce to three orientation parameters for each of the n task positions:

Ptask = 3 ·n.

In case of a planar linkage design project, there are three parameters defining the planar pose

of each of the n planar task poses, which yields Ptask = 3 ·n. When the linkage consists of nR R

joints, their location may be defined by two different parameters in the plane where the motion

takes place, which yields PR = 2 ·nR. Note that this can be extended to PR = 3 ·nR, if axes should

be described explicitly by three-dimensional locations. The direction of R joints clearly remains

oriented perpendicular to this plane, which can be defined directly in the CAD-system. When

the linkage consists of nP P joints lying in the plane where the motion takes place, there are two

location and two orientation parameters required to define the joint, which yields PP = 4 · nP.

Hence, the total number of parameters for a planar linkage is P = 3 ·n+2 ·nR +4 ·nP +Pr.

Parameters in the CAD-system that are controlled via specific design tables are subject to

a usually automated update process of the CAD-model, which is triggered as soon as at least

one single parameter in a design table changes. Hence, a large number of parameters in a

CAD-model will probably result in a time consuming update process. However, the example

CAD-model from Fig. 5.5 based on the three-position synthesis procedure of spherically con-

strained spatial RR chains from sect. 4.3.4 with P = 43 parameters showed, that a model of

that dimension updates in 1 - 2 seconds on a common intel CORE i7 PC, without any particular

timer-based execution of the CAD-system.

Parameters of the basis CAD-model for three-position synthesis of spherically
constrained spatial RR chains

The CAKD based on the three-position synthesis procedure of spherically constrained spa-

tial RR chains from sect. 4.3.4 represents a spatial linkage design approach, which requires a

particular set of parameters in the basis CAD-model. One the one hand three-position synthe-

sis requires Ptask = 6 · 3 = 18 task parameters to define the three task poses. Next, in order to

parametrize the axis skeleton from Fig. 5.4 six location parameters for p_d_tilde and p1_g_tilde
are defined. These define the location of axes a, b1, d, e1, f1 and g1, whose directions are de-

fined by 3 · 6 = 18 further parameters. Note that c1 does not require any particular parameter

since it is defined as the line connecting p_d_tilde and p1_g_tilde. The resulting set of joint

parameters counts Pjoint = 18+ 6 = 24 that defines the location and direction of R joints in

coordinate frame World.
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Figure 5.9.: Envelope as a triangulated surface defining the portion of space where axes of the

spherically constrained spatial RR chain from sect. 6.1 must fit in. a) CAD-part of

the envelope. b) Analysis of intersections between spatial RR axes and envelope

performed in the computing environment

In order to define parametrized link geometry in a basis CAD-model of a synthesized spheri-

cally constrained spatial RR chain the distance between p_d_tilde and p1_g_tilde can be defined

as master parameter in the kinematic solver. This is submitted via a design table and allows to

control various further slave parameters in the CAD-model. These define the proportions of

the links of the linkage as described in the previous section. This defines Pr = 1 here, so that

the total number of parameters controlled via specific design tables is P = 43. However, also

further controlled parameters may be defined, which allow to study various further quantities in

a three-position synthesis procedure of a spherically constrained spatial RR chain. An example

is the principal axis frame of a cylindroid (see, sect. 4.3.4), whose location and orientation can

be defined in the CAD-model and controlled via corresponding parameters and design tables.

5.3. Definition of Envelopes Using the STL File Format

Based on the synthesis and design results defining the axis skeleton as well as the geometric

shape of the basis CAD-model of a linkage in a reference configuration, an essential postpro-

cessing step consists in evaluating whether the results fit into a given envelope.

A basic approach described in the following using the example of a spatial RR chain con-

siders, whether the linkage fits into such an envelope in the synthesis reference configuration.

Because a spatial RR chain represents a particular building block of a spherically constrained

spatial RR chain, the approach was also used in the application scenario, described in chapter. 6.

Furthermore, because of a general methodology, the approach may also be used for other link-

age topologies. On the one hand, one may evaluate whether the axis skeleton of other linkage

building blocks fits into a given envelope. On the other hand complete multilink mechanisms

could directly be analyzed.

Since the spatial RR chain is made up from R joints it must be detected whether the lines

associated with the different R joints intersect with the given envelope. On the one hand, this

can be observed manually in the design environment by the designer from the visually available

CAD-model of the linkage. On the other hand, in a computational approach, one may also detect
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intersections within the kinematic solver code implemented in the computing environment. In

any case a suitable representation of the considered envelope is required.

A suitable representation for an envelope is the stl representation of a surface. One available

definition of ’stl’ is stereolithography [118], which describes a surface as a triangulated tesse-

lation. Each triangle of the tesselated surface is defined by an outwards oriented normal vector

and three points defining the vertices of the triangle. This information is stored into a set of

rows of a stl file which take the following exemplary form:

facet normal -9.424492e-001 -3.341834e-001 1.053194e-002
outer loop

vertex -4.680349e+001 1.379301e+002 1.554831e+001
vertex -3.406774e+001 1.014916e+002 -1.005743e+000
vertex -3.060530e+001 9.557938e+001 1.212320e+002

endloop
endfacet

The complete stl file describing the complete envelope then consists of numerous sets of these

rows defining a closed triangulated surface.

When the intersection between the axis skeleton and the envelope should be evaluated in a

computational process within the computing environment, a stl file of the complete envelope

must be available for the kinematic solver. This is easily arranged since actual CAD-systems

provide the stl file format as an output format for an arbitrary CAD-part. Hence, a designer

may specify the envelope during CAD-integrated preprocessing by considering a representative

portion space where the linkage must fit into as a CAD-part. Afterwards a corresponding stl

file may be derived, which is used to analyze intersections between axis skeleton and envelope

in the computing environment. For this purpose a corresponding preprocessing step in the

computing environment consists in storing and sorting the vertex and normal data from the stl

file in the kinematic solver. A computational analysis of the intersection between axis skeleton

and envelope can be done using ray tracing procedures as described in sect. 4.4.

Figure 5.9 shows the triangulated surface representation of an envelope that defines the por-

tion of space, where the axes of a spatial RR chain must pass through. Figure a) shows the

CAD-part of the envelope and figure b) shows intersection analysis results performed within

the computing environment, which both belong to the application scenario described in detail

in chapter 6. The sets of axes result from different synthesis solutions, which are obtained from

a variation of task poses. The benefit of this intersection analysis is that synthesis solutions can

be filtered before stored into design tables and submitted to the parametrized basis CAD-model

of the linkage.

5.4. The Kinematic CAD-Model of a Linkage Topology

Based on a valid basis CAD-model of a linkage with useful kinematic dimensions that fit into

a given envelope, the movement of the structure must be considered. This can be done using

the kinematic CAD-model of the linkage and allows to study collision properties of the different

links. These were considered in the previous sections as roughly designed parts, which can now

be modified according to specific collisions. Afterwards the designer may carry out a detailed

final design that can turn into a manufacturing process.

The kinematic model requires the different links as well as kinematic constraints that define

the different joints of a linkage topology. Based on that, kinematic solver modules commonly

available in actual CAD-systems allow to manipulate, i.e. to move the linkage with respect to

98



5. A Concept for Computer-Aided Kinematic Design (CAKD) of Linkages

Figure 5.10.: The design tree of the kinematic model of a spherically constrained spatial RR

chain

the joint constraints. Within the design environment CATIA V5 used here, such a kinematic

model may simply be derived from a number of copies of the basis CAD-model described in

the previous sections. The specific number of copies just matches the number of the different

links of the linkage. Using the example of the basis CAD-model of the spherically constrained

RR chain from Fig. 5.5 and with the design tree from Fig. 5.2 the number of copies is six. When

a particular copy of this basis model should represent for instance the link K’ in the kinematic

CAD-model then each of the remaining folders K”,. . . ,K3 with corresponding link geometry

needs to be hidden. Similarly the copy representing K” requires that each of the remaining

folders are hidden. Repeating this procedure for each link constituting the structure yields the

different parts that are required to complete the kinematic model.

Within the design environment CATIA V5 a kinematic model is represented as an assembly

of the different links, which has another design tree 2. Figure 5.10 shows the design tree of

the kinematic model for the spherically constrained RR chain from Fig. 5.5. This includes the

design tree from Fig. 5.2 as a sub-tree for each link of the structure. This is shown for K’, where

each of the remaining links are hidden objects in the kinematic model. Note that axes were

stored here into two distinct folders.

2Note that this may not be the case in other CAD-systems. An example is the Siemens NX software, where

kinematic CAD-models not require another design tree. Hence, when performing CAKD within such an envi-

ronment, an extra kinematic model may not be necessary
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In addition to the different links, the design tree includes the folder Constraints, where any

kinematic constraint defined between the different axes is stored. Due to the fact, that a spheri-

cally constrained RR chain may also be considered as a RCC-C-CCC linkage (see sect. 3.2.1)

this folder contains seven constraints of type Coincident between the different joint axes and a

single additional Offset-constraint. While six Coincident constraints define C joints the seventh

combines with the Offset constraint to yield the single R joint. The result is a kinematic model,

that can be moved in order to study collision properties of the linkage.

Because each of the links is defined by the same basis CAD-model, whose parameters are

controlled by the same design table(s), also the kinematic model is a parametrized model, that

may follow changes in the design table(s). A kinematic model of the spherically constrained RR

chain consists of six basis CAD-models each of which is parametrized by P = 43 parameters.

Hence, an update process in the kinematic model updating changes in the design tables must

evaluate PKin = 6 · P = 258 parameters. Even though this seems as a particularly increased

set of parameters update processes performed within specific design sessions yielded update

times tupdate < 7s using a common intel CORE i7 PC. This particularly refers to the simple link

geometry described in the previous sections, and finally yields a quick evaluation of changes in

the geometric shape of the synthesized linkage.

5.5. VBA-Based Control of Parameters and Design Tables

Another possibility to further advance the CAKD of a certain linkage topology with correspond-

ing synthesis procedure is to use CAD-automation approaches based on VBA-programming

(Visual Basic for Applications). Note that VBA- or also VB-Net-programming is available in

several actual CAD-systems. A first simple example is a VBA-code, which allows to switch

between different synthesis solutions of a linkage, all together stored in a single design table.

Recall here, that in the previously described CAKD approach the parameters of the CAD-model

were controlled by a design table, which only included a single solution set obtained from the

solver. Compared to that, the VBA-based approach completely decouples solving from CAD-

integrated postprocessing and avoids performing another solving process each time another

parameter setting should be evaluated. This and other VBA-codes can be made available to a

designer in the graphical user interface of the CAD-system via specific toolbars and buttons that

trigger the different VBA-codes.

In the following a VBA-based CAKD-specific toolbar is presented. The toolbar particularly

supports the synthesis of a spatial RR chain, such that it intersects a given envelope. This

requires a variation of three spatial task poses, which results in various sets of position data

with corresponding RR joint axes denoted as d and g1. Due to the fact, that spatial RR chains

occur as building blocks of different other linkages such as the spherically constrained spatial

RR chain, the toolbar may also be used in CAKD of other linkage structures. The toolbar then

allows to quickly switch between solutions and also to vary points p_d_tilde and p1_g_tilde that

define the location of any axis of a spherically constrained RR chain (see, e.g. Fig. 5.4). The

different implementations for this toolbar were done in a CAD-integrated VBA editor and were

performed by Manuel Winkler who is gratefully acknowledged.

5.5.1. A VBA-Based Toolbar for CAKD of Spatial RR Chains

The VBA-based toolbar that allows an advanced CAKD approach considers a kinematic CAD-

model of a spatial RR chain for three-position synthesis being given. This may be prepared
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Figure 5.11.: A VBA-controlled toolbar for CAKD of spatial RR chains and a corresponding

input box

and organized as shown for the more complex model of a spherically constrained spatial RR

chain, see sect. 5.4. Herein a designer should have already specified three different spatial task

poses of a certain part that later on will be associated with the end link of the spatial RR chain.

Note that this link will be denoted as K”’ here, since the spatial RR chain is considered as a

building block of a spherically constrained spatial RR chain. Furthermore, a stl file providing

numerical data that defines an envelope where synthesis solutions or the axis skeleton must fit

in is considered to be available to the designer (see sect. 5.3). Based on these preliminaries the

buttons �,�,. . . ,� of the toolbar shown in Fig. 5.11a) provide support to the designer in the

CAKD procedure. The different buttons trigger VBA programming code and are described as

follows.

Button � - The spatial position snap shot

Based on the three specified spatial task poses of the parts associated with link K”’ the VBA

triggered by this button extracts the location and orientation of each position. The CAD-system

allows to extract directly 3×3 rotation matrices W Ri
B′′′ as well as 3×1 translation vectors W ti

B′′′ ,
i = 1,2,3 of a coordinate frame B”’ associtated with link K”’. This position data is stored into a

specific input file for the kinematic solver implemented in the computing environment, which

can usually directly use vectors and matrices as input for synthesis calculations.

Synthesis calculations based on the three positions particularly include solving the design

equations (2.55), (2.57) and (2.59) from sect. 2.3.5 for the unknown revolute joint axes of

the spatial RR chains. In case of a spherically constrained spatial RR chain these are denoted

as d and g1, which do not necessarily pass through the given envelope. Hence, the designer

will probably vary the initial set of task poses within the kinematic solver. The result is a

set of various three-position tasks with corresponding valid joint axes, which are stored into

a corresponding design table (recall here that intersection between axes and the envelope is

checked within the kinematic solver, see sect. 5.3, 4.4). The parameters of the kinematic model

defining the frames B”’ ˆ1, B”’ ˆ2 and B”’ ˆ3 as well as the axis skeleton are controlled by these

design tables. Based on that, the kinematic model is assembled in the first solution out of this

set.
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Figure 5.12.: Possible definition and variations of p_d_tilde and p1_g_tilde of a spatial RR chain

within a given envelope, which are controlled via button � of the CAKD toolbar

Button � - Automated adjusting of initial task poses

Since the variation of position data within the computing environment will usually yield task

poses other than those initially defined in the CAD-system, a button is required, that adjusts the

location and orientation of the three poses. This is achieved through button �, which induces

that the initial locations and orientations of K”’ swap to the first set of task poses. The first valid

three task poses have two corresponding valid axes d and g1 passing through the envelope,

which is also visualized in the CAD-system.

Button � - Switching between three-position tasks with corresponding valid joint axes

In order to allow a designer to switch between different three-position tasks with axes d and

g1 passing through the envelope, button � can be used. This opens another input box (GUI))

where the designer may select one solution out of the set. Figure 5.11b) shows the input box

of a design session, where the variation of task positions within the kinematic solver yielded 37

different three-position task with corresponding 2 ·37 = 74 RR joint axes in configuration 1 of

the linkage.

Button � - Definition and variation of p_d_tilde and p1_g_tilde

The points p_d_tilde and p1_g_tilde defining, where the R joints shall be located along the axes

are conveniently defined within the given envelope. Since the points of intersection between

axes and the envelope as well as the location and orientation of axes were calculated within the

kinematic solver, this may easily be arranged by providing adequate coordinates for p_d_tilde
and p1_g_tilde in the design table. Based on that the voluminous representation of joints, such

as given for instance by simple basic cylinders (see again sect. 5.2.3, Fig. 5.5) is generated

automatically from the parameters of the CAD-system.
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Because a cylinder defining a joint may usually be located at several different places along

an axis among entrance and emersion point of an axis with the envelope, the designer may wish

to vary this location. This possibility is provided by different discrete coordinates for p_d_tilde
and p1_g_tilde along d and g1, which are available from another design table. The different

alternative points can be evaluated using button �, which automatically switches between dif-

ferent p_d_tilde and p1_g_tilde.

Figure 5.12 shows an exemplary spatial RR chain based on simple cylinders, which is defined

using a specific p_d_tilde and p1_g_tilde within the envelope. In this example a design table also

provides further valid p1_g_tilde along axis g1, which can be selected via button �. Then the

automated update procedure of the CAD-system yields other connecting rods between d and g1.

When such a RR chain is used in a three-position synthesis procedure of spherically constrained

spatial RR chains (see sect. 4.3.4) this yields different axes c1, which will have impact on the

synthesis procedure. If only n different points p1_g_tilde along axis g1 are available, then there

are also n different axes c1. However, if there are n different points p1_g_tilde and m different

points p_d_tilde there is a total number of n ·m different axes c1.

Buttons �, � and 	 - Switching between linkage configurations of one specific
three-position task

After the designer has chosen a suitable RR chain that fits appropriately into the given envelope

he may evaluate location, size of the chain or also collision characteristics between links and

other parts in the two other configurations, defined from the three-position task. This is enabled

via buttons � and 	, which allow to assemble the synthesized RR chain, such that its end link

K”’ reaches task pose 2 and 3. Note that this is achieved by activating corresponding constraints

of the CAD-model. By clicking � the RR chain swaps back to configuration 1.

Button � - Preparing coordinates of p_d_tilde and p1_g_tilde for further synthesis
computations

In case that a useful spatial RR chain is found, whose links fit into the given envelope, it may

represent the building block chain, required in further synthesis procedures of another link-

age topology. Then the coordinates of the final selection of p_d_tilde and p1_g_tilde must be

available in another kinematic solver, implemented using the computing environment. This is

achieved via button �, which triggers the generation of a corresponding input file for the kine-

matic solver. In fact, this is just the scenario of CAKD of spherically constrained spatial RR

chains, where another spherical RR synthesis is performed based on the spatial RR synthesis

results (see again sect. 4.3.4).

5.6. A Flowchart for CAKD of Spherically Constrained
Spatial RR chains

The parametrized CAD-models of a linkage topology with corresponding synthesis procedure

as well as envelopes defining allowed regions where a linkage must fit into may be used to define

a CAKD flowchart. This provides an organized overview of the different linkage design steps

performed in both the design as well as the computing environment and somehow summarizes

the various facets of a CAKD process.
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Figure 5.13 shows such a CAKD flowchart for three-position synthesis of spherically con-

strained spatial RR chains, where specific steps are also supported by the CAKD toolbar pre-

sented before. The different steps performed and implemented within the computing environ-

ment are those described in detail in sect. 2.3.4, 2.3.5, 4.1.2, 4.3.4 and 4.4. Furthermore, the

flowchart directly applies to the application scenario from sect. 6.3.

In a similar fashion CAKD flowcharts for other linkage topologies with corresponding kine-

matic design procedures can be developed. Examples of such other procedures are provided

along chapter 4 for linkage topologies such as spherical four-bars or spherically constrained

planar RR chains.
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Figure 5.13.: A flowchart for CAKD of spherically constrained spatial RR chains
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The CAKD of linkages particularly described in chapter 5 includes CAD-integrated linkage

design processes as well as kinematic synthesis and analysis procedures within the computing

environment and is evaluated in this chapter using a specific engineering design example. The

goal is the CAKD of a spherically constrained spatial RR chain, such that it guides a car door

between two distinct spatial poses. A particular given requirement of the task is that synthesis

results must be integrable into the given parts of a car. A linkage design solution for this motion

task should significantly ease getting into a car in cramped parking spots. In fact, the approach

is inspired from Sonawale and McCarthy [68], who solved a car door guidance task in a CAD-

integrated five-position synthesis procedure using a spherical Watt-1 six-bar linkage and their

MechGen linkage design software (see also sect. 2.4.3).

The problem of cramped parking spots has also been studied in [119] from a practical point

of view, where a planar RR chain is considered for planar car door guidance. While planar

car door guidance may easily be prescribed using a plane sketch, a spatial guidance problem

requires more advanced approaches in order to be prescribed adequately. Here Richter et al.

[120] developed the idea of a force controlled serial robot in order to guide a car door along a

spatial task trajectory. Based on the inverse kinematics of the robot spatial positions of the door

can then be used in a computer-aided linkage design process.

In order to solve the car door guidance task different solution approaches are discussed in

the following. On the one hand the spatial RR chain guiding the car door is found following

a two-configuration synthesis procedure (see sect. 4.2.3). This is demonstrated using the sim-

plified geometry of links in a parametrized CAD-model, which was introduced in sect. 5.2.

On the other hand the guiding spatial RR chain is found following the three-position synthesis

procedure from sect. 4.3.4 in combination with particular space requirements for the linkage,

see sect. 5.3. Additionally a singularity analysis based on sect. 4.1.3 is included in order to

consider transmission properties. The three-position synthesis approach is discussed using a

detailed design of the spherically constrained spatial RR chain, which appropriately fits into a

given envelope obtained from CAD-parts of the car. The results of the three-position synthesis

approach may also be found in [112] and have also been manufactured using rapid prototyping.

As a final remark, the author gratefully acknowledges the support of BMW AG for providing

CAD-parts of the car.

6.1. A Car Door Guidance Task for the Spherically
Constrained Spatial RR Chain

A first preprocessing step of the CAKD procedure consist in collecting different CAD-parts of

the car including the car door as well as additional parts, that define the space requirements for

the linkage. The different parts are shown in Fig. 6.1. On the one hand, the car door is shown,

which only provides a slim region where the linkage is allowed to be connected. Note that this

is usually also the valid region for simple R joints commonly used to realize the connection. On

the other hand, the side panel of the car must be available for the designer, since this represents
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Figure 6.1.: CAD-parts required to define the spatial motion task of a car door with allowed

regions for the linkage (courtesy of BMW AG)

the fixed reference link of the linkage. Since car doors are commonly connected in the front

part of the car right behind the front wheel, this region is also the allowed volume, where the

linkage must fit into when the door is closed.

In order to evaluate this region within the computing environment, i.e. in order to filter

synthesis solutions, the portion of space is modelled as an approximately convex polyhedron,

which can be saved using the stl file format. Note that this is just the envelope already shown in

Fig. 5.9, which will be used for three-position synthesis of the spatial RR chain in sect. 6.3.

Based on the preliminary steps the designer may begin defining task poses of the car door.

Note that this is done separately for the two distinct CAKD approaches described in the follow-

ing in sect. 6.2 and 6.3.
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Figure 6.2.: Two task positions of the car door for two-configuration synthesis of a spatial RR

chain

6.2. A Linkage Obtained From a Transformation of a GS
Chain

In this section a two-configuration synthesis approach is chosen in order to find an appropriate

spherically constrained spatial RR chain that solves the car door guidance task. This is particu-

larly based on a transformation of a spatial GS chain into a spatial RR chain using the procedure

from sect. 4.2.3. The CAKD procedure towards a final design of a kinematic CAD-model with

simple link geometry as shown in Fig. 5.5 requires the following essential steps:

1. Based on the CAD-parts of the side panel as well as the car door two task positions of the

door are defined by a designer. While the initial position clearly cannot be varied, since it

is the closed door configuration, the second position can be specified arbitrarily. However,

because the goal is to ease getting into the car in cramped parking spots, the second pose

shall be defined, such that the door is located appropriately upon the car top.

2. The two finitely separated spatial task positions are next used in a two position synthesis

of a GS chain using Eq. (4.54). Because of two-position synthesis five of the six joint

coordinates can be selected with respect to the given space requirements discussed in the

previous section.

3. Following sect. 4.2.3 and applying two-configuration synthesis allows to transform the GS

chain into a spatial RR chain, that reaches the two positions of the car door. Recall that

this also includes inverse kinematic calculations of the GS chain.

4. Since the spatial RR chain next must be constrained using spherical RR chains as described

in sect. 4.3.2 it is convenient to define another intermediate position of the door. This

yields a more precise approximation of the movement between the two initially defined

task poses. However, note that this is clearly only possible respecting the already existing

RR guiding chain. This means that the two independent d.o.f. of the chain must be used

to define the intermediate spatial position.

5. Since now there are three positions of the door but corresponding unknown configurations of

the spatial RR chain the next step is to enter into sect. 4.3.2 and continue with step 3. The
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Figure 6.3.: Design results from steps 2, 3 and 4: a) A spatial GS chain and b) a spatial RR chain

obtained from two-configuration synthesis both reaching the two task positions of

the car door. c) An intermediate position of the door defined by the RR chain

obtained from two-configuration synthesis

result are the inverse kinematics that define the configurations of the spatial RR chain.

For details about the inverse kinematics calculations, see the corresponding subsection of

sect. 4.3.4.

6. The final synthesis step consists in continuing with step 4 from sect. 4.3.2. This consists

in performing three-position spherical RR synthesis in order to constrain the movement

of the spatial RR chain. Details about the corresponding synthesis calculations are found

from the final subsection of sect. 4.3.4.

The result of these steps is a spherically constrained spatial RR chain that reaches two ’real’

task positions and another intermediate one, which was restricted to be defined by the spatial

RR chain. In this context the procedure performed here could also be termed as 2.5-position

synthesis.

The particular benefit of the approach is represented by step 2, where five of the six joint

coordinates of a GS chain can be defined with respect to the challenging space requirements.

This strongly increases the chances to obtain a useful GS chain located inside the given enve-

lope, since only one single joint coordinate must be calculated, while the remaining ones can be

selected appropriately. However, when step 2 yields a valid GS chain also the axes of the spatial

RR chain will pass through the allowed regions, because the joint axes will always include the

previously determined center points of the G and S joint (see sect. 4.2.3, Fig. 4.13).

6.2.1. Design Results

Following step 1 two spatial task positions of the car door were specified as shown in Fig.

6.2. Recall here that this is also the first step in the flowchart from Fig. 5.13 and note that in

contrast to Fig. 6.1 mirrored parts of side panel and car door were considered (which, however,

clearly do not change the motion task). Based on position data extracted from coordinate frames
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Figure 6.4.: Final result of the simple parametrized CAD-model of the spherically constrained

spatial RR chain

rigidly attached to the door two-position synthesis calculations implemented in the computing

environment yielded the spatial GS chain in step 2, which is shown in Fig. 6.3 a). Note that

the three coordinates defining the moving S joint in configuration 1 as well as two of the three

coordinates for the fixed G joint were the selected as free design parameters.

In order to obtain the spatial RR chain two-configuration synthesis as well as inverse kinemat-

ics calculations of the GS chain were performed using the computing environment. The result

is shown in Fig. 6.3 b), which allowed the intermediate postprocessing step of evaluating the

feasibility of the spatial RR design results. On the one hand, based on the simple parametrized

CAD-model of the chain it could be verified that at least the simple parts fit into the given enve-

lope. On the other hand an intermediate task position could be defined using the RR chain (step

4), which was useful, see Fig. 6.3 c).

In order to constrain the RR chain such that it becomes a spherically constrained spatial RR

chain step 5 was performed, which was nothing but step 3 from sect. 4.3.2. In fact this is nothing

but the first computational step in the second computing-environment-block of flowchart from

Fig. 5.13). Based on the results spherical three-position synthesis (step 4 from sect. 4.3.2

was performed within the computing environment, which yielded the remaining axes of the

spherically constrained spatial RR chain. These were submitted to the parametrized kinematic

CAD-model with simple geometric shape, which is shown in Fig. 6.4.

Even though the resulting linkage has roughly designed parts it could be considered for

further detailed design, because it provides a compact stowed configuration when the door

is closed. On the other hand it provides another slim ending configuration when the door is

stored upon the car top. While collision issues might be solved by appropriately shaped links

another important aspect are the transmission properties of the structure. On the one hand, the

line-based analysis from sect. 4.1.4 could be evaluated, which however was not done in this

example (see next section). On the other hand, also the kinetostatic properties must be eval-

uated since a car door usually represents a particularly heavy part. However, kinetostatics is

beyond the scope of this work and should be part of future research on the class of spherically

constrained linkages.
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6.3. A Linkage Obtained From Three-Position Synthesis of a
Spatial RR Chain

Compared to the previous example in this section a ’real’ three-position synthesis procedure is

applied in order to solve the car door guidance task. This means that the designer can directly

follow the flowchart shown in Fig. 5.13, which includes the following steps:

1. Based on the CAD-parts of the side panel as well as the car door three finitely separated task

positions of the door are defined by the designer. As it was the case in the previous design

session the first position clearly is uniquely given, since it is the configuration of the

closed door. However, now the second position - which shall represent the intermediate

pose - as well as the third position can be specified arbitrarily. Because the goal is to

ease getting into the car in cramped parking spots, the second pose should be defined in a

similar fashion as shown in Fig. 6.3c), while the third one locates the door appropriately

upon the car top. In contrast to sect. 6.2, where five of the six design parameters of the GS

chain could be specified directly inside the given envelope the next step in this scenario is

to extract an stl-file of the given envelope. This is because it must be evaluated within the

computing environment, whether spatial RR synthesis results actually intersect the given

envelope.

2. Based on the previous CAD-integrated preprocessing steps spatial RR three-position synthe-

sis is performed (sect. 2.3.5, the corresponding subsection of 4.3.4 or either C.3 for de-

tails). This yields two distinct spatial RR chains, which can reach the initially prescribed

task positions but, however, will probably not intersect the given envelope. Hence, a

variation of task poses 2 and 3 probably needs to be performed in order to obtain RR

synthesis solutions, which intersect the envelope. Note that the detection of intersec-

tions is performed by implementation of the method from sect. 4.4 using the computing

environment.

3. After the first solving step the designer evaluates the synthesized joint axes using the simple

CAD-model of the spatial RR chain and can define joints at the axes, that are located

inside the given envelope. Recall from chapter 5, that this can be done via parameters and

design tables at the CAD-model, which are controlled via the computing environment.

4. Based on a desired spatial RR chain the second solving procedure begins within the com-

puting environment, which includes the corresponding steps of the procedure from sect.

4.3.4. This is the calculation of the inverse kinematics of the spatial RR chain, which

allows to perform spherical RR synthesis in order to obtain the complete set of kinematic

dimensions of the spherically constrained spatial RR chain. Implementation of the po-

sition analysis as well as of line-based analysis procedures from sect. 4.1.2, 4.1.3 and

4.1.4 then allows to evaluate kinematic transmission properties, which particularly decide

whether a spherically constrained spatial RR chain can be considered for detailed design.

5. Based on a useful synthesis solution the final step consists in CAD-integrated postprocessing,

i.e. the simulation of the mechanism’s movement in combination with an analysis of

collisions among the different parts of the parametrized kinematic CAD-model (see again

sect. 5.4). Based on that a detailed design of the spherically constrained spatial RR chain

for car door guidance is carried out.
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Figure 6.5.: Intersections between joint axes of the spatial RR chain and the given envelope,

which are obtained from varied task position data

6.3.1. Design Results

Following step 1 three initial spatial task positions of the car door were specified. Based on

that variations of poses yielded spatial RR synthesis results whose axes intersected the given

envelope, see Fig. 6.5. In fact a few of these joint axes were already shown in Fig. 5.9. Out of

this set of valid RR chains a suitable one was chosen, which has the corresponding set of three

task positions shown in Fig. 6.6.

Following the further different design steps the parametrized basis CAD-model of a spheri-

cally constrained spatial RR chain from Fig. 6.7 was found, which can reach each of the three

poses on a continuous motion path. In fact this synthesis result was considered as a useful de-

sign because of adequate singularity analysis results described in the following section. This

motivated a detailed CAD-model of the spherically constrained spatial RR chain, which is de-

scribed afterwards.

Discussion of line-based analysis results of transmission properties

The continuous movement of the car door along the three task positions is achieved via actua-

tion of the fixed R joint of the spatial RR chain. Recall from Fig. 4.2 that this axis was denoted

as d̂, so that the input angle is denoted as φd . This allows to perform the line-based analysis

of transmission properties by simply following the procedures from sect. 4.1.3 and 4.1.4. This

yielded the determinants as well as the weighted Frobenius condition numbers of the car door

guidance linkage, which characterize the transmission properties. The determinants and condi-

tions numbers are shown in Fig. 6.8 over an input range of Δφd = φd,end − φd,start = 150 deg

and corresponding graphical depictions of the configurations where det(J) = 0 or κ(J) >> 1

are shown in Fig. 6.9. However, before analyzing the different configurations, it is important to
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Figure 6.6.: Three task positions of the car door obtained from a variation of initial position data

Figure 6.7.: Parametrized simple kinematic CAD-model which can reach each of the three poses

without a change of the assembly mode

clearly define the desired operation mode of the linkage. This may be formulated as follows:

In order to precisely control the movement of the car door between the initial and ending con-
figuration without weak transmission properties, the two coupled four-bars in the spherically
constrained RR chain must satisfy the following:

1. The input range of the driving angle φd of the ’first’ four-bar formed by the axes â, b̂, ĉ and
d̂ must not include any limits on the input. This is because those were the configurations,
where the input cannot resist (small) changes of the output angles.

2. In order to provide a homogeneous input for the ’second’ four-bar formed by the axes ĉ, ê,
f̂ and ĝ, the output angle φc of the ’first’ four-bar should not reach any limit within the
input range of φd. (Recall from sect. 4.1.2 or 4.1.4 that φc(φd) was the input of the second
four-bar)

3. In order to sufficiently resist changes of the output angles φe, φ f and φg of the ’second’
four-bar, the input range of angle φc(φd) of the second four-bar must not include any
limits.

4. Limits on the output angles φa, φb, φe, φ f and φg at the starting or either ending configuration
are welcome because those provide particular stability in the considered configurations.
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Figure 6.8.: Determinants and weighted Frobenius condition numbers within an input range

Δφd = φd,end − φd,start = 150 deg in order to detect singular configurations of the

car door guidance linkage

The case shown in Fig. 6.8 a) corresponds to the the Jacobian Jabc, which can be used

to identify limits on the input angle φd . However, this doesn’t show dramatically increased

condition numbers or determinants close to zero and hence not directly indicate a limit on the

input. In fact, it could be shown that a first limit is reached at φd ≈ φd,start − 17.8 deg, which

was considered to be ’far away enough’ from the evaluated input range. In a similar fashion

figure b) doesn’t represent any significant limit on the output angle φc which meets the second

point in the list from above.

The configurations shown in Fig. 6.8 c) and d) correspond to rank-deficiencies of the Jaco-

bians Jacd and Jbcd of axes that form the ’first’ four-bar and hence correspond to limits of the

output angles φb and φa respectively. However, since these angles do not represent any input

angles the configurations (which are particularly close to the starting and ending configuration)

don’t lead to any weak transmission properties.

Fig. 6.8 e) shows a rank-deficient configuration of Jce f , which corresponds to a limit on the

output angle φg. Note that this is measured about axis ĝ, which represents the output angle of the

’second’ four-bar. In fact, since this axis controls the orientation of the car door with respect to
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Figure 6.9.: Graphical depiction of the singular configurations within an input range Δφd =
φd,end −φd,start = 150 deg

the complete linkage, the limit on the output angle φg in the ending configuration indicates high

stability. This corresponds to the fourth point in the above mentioned list, which also holds for

the singularity shown in figure f). This corresponds to a rank-deficient Jacobian Jceg and stands

for a limit of angle φ f .

While Fig. 6.8 g) doesn’t indicate any specific limits on the output angle φe, figure h) provides

inside on the limit of input angle φc(φd) of the second four-bar. After point three from above,

this must not include any limits, which is considered here to be satisfied, because it could be

verified, that det(Je f g) as well as κF(Je f g) do not tend even to zero or to infinity for the limit of

the input φd , which was φd ≈ φd,start − 17.8 deg. Hence, ultimately the different requirements

from the list could be reached, which motivated a detailed design as well as a corresponding

rapid prototyping model described in the following.
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Figure 6.10.: Detailed CAD-model of a spherically constrained spatial RR chain, that is free

from collisions and which matches the given space requirements

Discussion of link design

Based on the kinematic analysis results a detailed design of the simple kinematic CAD-model

was carried out (see Fig. 6.10). This appropriately matches the given space requirements,

since it can be stowed compactly right behind the front wheel. Note that each of the links K1,

K2,. . . ,K”’ already introduced in chapter 3 also occur in the final design. The different links

shown in detail in Fig. 6.11 actually perform collision-free movement, which is particularly

important in the beginning of the movement, where the linkage leaves the chassis through a

particularly slim chamber, see Fig. 6.12 a). The sequence in Fig. 6.12 b) shows how the linkage

also reaches the two remaining task positions of the door from Fig. 6.6.

The different links represent particularly complex CAD-parts, which, however, require this

unique shape in order to fit into the given envelope and to provide collision-free movement.

Furthermore, in order to allow assembly of the linkage the link K” must be removable. The

connection between the car door (link K”’) and other adjacent links could be realized within a

given allowed region (see again Fig. 6.1) via an appropriate adapter located at the lower part of

the door.

116



6. Application

Figure 6.11.: Detailed designs of links allowing assembly and collision-free movement of the

spatial linkage topology

Discussion of a scaled rapid prototyping function model

It is clear that the considered complex part design would require particular extensive manufac-

turing effort. However, in view of contemporary manufacturing techniques such as the selective

laser sintering rapid manufacturing technique such link designs are easily fabricable. This was

evaluated for a scaled function model of the spherically constrained spatial RR chain, which is

shown in Fig. 6.13. In fact, this prototype was manufactured based on the analysis of transmis-

sion properties from the previous section in order to validate the analysis.

In the ending configuration, i.e. when the door is stored upon the car top, the rapid prototyp-

ing model reflects the predicted stability of the linkage. Recall from the previous section, that

this was because the ending configuration actually coincides with a limit of the output angle

φg. The stability characteristics are indicated by a particularly stiff mechanism, which has very

little shakiness although there is a little joint clearance as well as structural deformations from

polyamide material properties.

Unfortunately, in the starting configuration of the linkage suffers from weak transmission

properties. This is characterized by a noteworthy shakiness of the door, even if the input is

blocked, see Fig. 6.13d). One reason for this behavior surely relies on the mentioned joint

clearance in combination with structural elasticity of the model. However, precise study and

observation of the model indicates that the starting configuration of the ’first’ four-bar in fact is

’closer’ to a limit of the input φd as it was suggested in the previous section.

As a first guess towards a more useful linkage, another variation of the free selectable design

parameters could be evaluated. On the one hand task positions of the door could be varied

again. On the other hand free parameters of the underspecified spherical synthesis problem

could be varied again. Another idea towards a useful linkage could also be building a more

precise model, consisting of metal materials and bearings.
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Figure 6.12.: Motion sequences of the car door guidance linkage: a) Linkage leaves the chassis

through a particularly slim chamber. b) Linkage reaching the two further task

positions of the car by actuating the fixed R joint of the spatial RR chain.

Figure 6.13.: Scaled function prototype manufactured using selective laser sintering technique
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This work provides a contribution towards computer-aided kinematic design of spatially move-

able low-d.o.f. linkage structures. The specific characteristic is, that task-based design is under

consideration, where engineering motion problems should be solved. This means, that the de-

sign goal is to calculate the dimensions of a linkage, such that it provides a desired movement.

Furthermore, also given space requirements are considered in this work, which represent addi-

tional requirements of the task.

However, because the desired movement is given as a spatial path of a rigid body, the dimen-

sions that are of major importance are kinematic dimensions measured as angles and distances

between the different axes of linkage. Roughly spoken, those dimensions represent a finite

number of unknowns of the design problem, which only allow to define a corresponding finite

number of task poses of the rigid link instead of a continuous motion path. Formulated that

way, the calculation process can be solved algebraically, which leads to what is known as the

finite position synthesis (denoted here as f.p.s.) of linkages.

F.p.s. represents the major part of this work where several results have been produced. Aside

linkage synthesis the work also provides some results on kinematic linkage analysis, which

represents the second big part involved in task-based kinematic design and which considers

feasibility aspects of synthesized linkages. In order to make practical use of these computational

procedures, also a computer-aided kinematic design methodology (denote here as ’CAKD’) has

been developed

The overall results are the following:

1. In order to provide a supporting introduction to kinematic analysis and synthesis, a detailed

but compact excerpt of essential information on more and less known kinematic theory is

given. This covers displacement equations, homogeneous transforms, velocity twists, line

screws and dual screw algebra. Based on that Denavit-Hartenberg kinematics equations

are introduced, which are used throughout the work in order to perform position and ve-

locity analysis. Furthermore, introduction of algebraic finite position synthesis of linkage

building blocks benefits from the introductory part on kinematic theory. On this journey

it was also tried to introduce a convenient nomenclature that appropriately describes the

mathematical quantities. These are the results of chapter 2, which are actually presented

in a way, that readers might be familiar with from books on kinematic design theory. This

is because a lot of the content is also part of a lecture on kinematic design (see [52]),

the author has created during his phd position at the institute of micro technology and

medical device technology.

2. Since it was the goal to provide design methodologies for compact spatial linkages, such

a class of linkages is developed and presented in chapter 3. The topologies evolve from

origami folding and are denoted as spherically constrained linkage topologies here. Initial

studies of the author on these structures date back to 2010, [103]. However, now a new

and precise classification has been developed, which systematically considers single- and

also multi-d.o.f. structures that have the property of a naturally given slim shape. In fact

any structure under consideration represents a system of specifically coupled spherical
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four-bars. The structures can be categorized following the common distinction of planar,

spherical and spatial structures and hence represent a family of linkages.

3. Chapter 4 represents the major part of the work and includes several kinematic analysis

and f.p.s. procedures that apply to the spherically constrained structures from chapter 3.

Parts of the results may also be found in [104], [105], [111] and [112], which have been

developed and published during the author’s phd position.

The results include position analysis as well as a line-based analysis of transmission prop-

erties of one single and two specifically coupled spherical four-bar linkages. F.p.s. results

include a two-configuration synthesis method that allows to prescribe two planar, spheri-

cal or either spatial positions (also denoted as poses) of each link that make up a linkage.

Initial studies of the author on this method also date back to 2010, [103]. However, now

this method has been specified precisely in the sense, that most compact formulations are

available, which apply to planar, spherical and spatial linkages in general. Examples are

provided adressing two-configuration synthesis of spherically constrained structures as

well as origami structures.

Aside, two-configuration synthesis also three- and four-position synthesis procedures are

developed for spherically constrained single-d.o.f. structures, where task positions can be

prescribed only for one single link. However, the procedures represent stepwise design

methodologies, which follow the approach of mechanically constraining serial kinematic

chains to obtain the well-known Watt linkage topologies. The stepwise synthesis uses

the algebraic f.p.s. results of planar, spherical and spatial revolute-revolute (RR) chains,

which are developed in chapter 2 as well as in the appendix. Furthermore f.p.s. results of

spatial GS chains are included and used in an approach that combines two-configuration

synthesis with spherical RR synthesis. In order to check whether synthesis results fit

into a given envelope, that represents a region where a linkage is allowed to be located,

another approach is developed. This detects intersections between synthesized joint axes

and the given envelope (given as a stl-file) and makes use of a ray tracing method.

4. The different procedures developed in chapter 4 represent the computational part in a computer-

aided kinematic design process (CAKD), which is developed in chapter 5. The CAKD

process aims at providing a general design methodology that combines a computing en-

vironment and a design environment (CAD-system). The particular feature is that a de-

signer is the central subject in the process, who interacts with computing and design

environment. Based on a systematically developed parametrized CAD-model of a link-

age with simple link geometry it is shown how to control parameters of the model using

simple design tables and the computing environment. This allows quick evaluations of

the synthesis results at the design environment.

A CAD-system is used here as the design environment, because it allows to perform kine-

matic design with regard to various CAD-parts that define requirements of a given task.

Furthermore, beneficial functionalities of the CAD-system can be used to support the de-

signer in evaluating synthesis results or also in creating a detailed design. An example of

such functionalities for instance is VBA programming, which allows to define automated

procedures. Here, a VBA-based toolbar for CAKD is developed and described. The

methodology is described using the example of spherically constrained kinematic chains

but the basic approach also applies to other linkage topologies.

5. In order to evaluate the computational procedures from chapter 4 as well as the CAKD
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methodology from chapter 5 an application scenario from automotive engineering with

particularly challenging space requirements is described and performed in chapter 6. This

includes f.p.s. and analysis of a spherically constrained spatial RR linkage topology.

The result is a car door guidance linkage, that can reach three spatially displaced task

positions of the door and that regards the given space requirements. Kinematic analysis

results indicated that the structure has useful transmission properties, which motivated it

to build a rapid prototyping function model using a polymer and selective laser sintering

technique. However, the result showed, that the structure suffers from weak transmission

properties, that might result from filigree parts of the scaled polymer prototype. However,

this and further aspects should be part of further research on task-based kinematic design

of the spherically constrained linkage topologies.

7.1. Future Research

Through the application scenario a task-based CAKD of a spatial linkage topology could be

performed successfully. A particular benefit of finite position synthesis and kinematic analysis

in combination with computing and design environments could be shown, when motion design

problems in engineering are a concern. However, there are still a variety of topics, which define

the scope of future research and which should aim at improving results in CAKD processes. A

brief sketch of these topics is given as follows.

7.1.1. Kinetostatic Analysis

In order to support the area of linkage analysis for spherically constrained chains also spatial

kinetostatic analysis procedures are required. These may regard static and kinetic forces, that

of course are always involved in the linkage design process. An example is given by the car

door guidance task studied in chapter 6, where particularly heavy parts (such as the door) are

involved in the task.

7.1.2. Analysis and Synthesis of Multi-D.o.F. Spherically Constrained
Chains

This work has mainly focused on kinematic design procedures for single-d.o.f. spherically con-

strained structures. However, as derived in chapter 3 also multi-d.o.f. spherically constrained

chains can be found, which may be designed in a compact or slim way and may hence be used

in robotic devices in a variety of applications. However, these require particular analysis and

synthesis procedures.

7.1.3. Matching Space Requirements

A particular issue regarded in this work is that of given space requirements of a task. This

was defined as the problem of finding spatial synthesis solutions (locations and directions of

joint axes), such that these fit into a given envelope. This was solved here by simply varying

task positions. However, what would be beneficial here are more systematic methodologies.

An example is given here by Mlinar and Erdman [11], who introduced Burmester field theory

for planar synthesis. However, (to the author’s best knowledge) there is little theory on such a

rectification of spatial synthesis results in regard to given space limits.
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7.1.4. Actuation Principles for Spherically Constrained Chains

In order to make use of spherically constrained spatial linkages in real applications advanced

actuation principles must be developed. Actuation may be realized using classical dc motors

or also gas springs but may also be defined using cables, which are stringed along the chain.

Furthermore, mechanical springs or dampers could also be included in a detailed linkage design

in order to improve mechanical advantage.

7.1.5. Applications

Last but of course not least spherically constrained kinematic chains should be used to solve

application-driven motion design problems. Due to the fact that the joint axes of the structures

are located relative to each other, such that a detailed design may have particularly slim shape,

spherically constrained linkages may be used especially in applications with challenging space

requirements.
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A. More Rigid Body Kinematics!

A.1. Rotations and Skew Symmetric Matrices

A possibility to describe the spatial orientation of a frame B with respect to another frame W
other than using the composition of coordinate rotations (Eq. (2.7)) is to define a rotation matrix

in terms of a given rotation angle and rotation axis. In order to derive a corresponding formula

one can use the Cayley map (also known as Cayley’s formula), which represents a fundamental

relationship between rotation matrices and skew symmetric matrices (for a detailed derivation

see e.g. [34], pp. 14-15):

W RB = (E−H)−1(E+H) =

=
1

k

⎛
⎝ xh

2 − yh
2 − zh

2 +1 −2 (zh − xh yh) 2 (yh + xh zh)
2 (zh + xh yh) −xh

2 + yh
2 − zh

2 +1 −2 (xh − yh zh)
−2 (yh − xh zh) 2 (xh + yh zh) −xh

2 − yh
2 + zh

2 +1

⎞
⎠ .(A.1)

Herein k = xh
2 + yh

2 + zh
2 + 1 and H is a skew symmetric matrix assembled from parameters

xh, yh and zh measured in W . By rearranging Eq. (A.1) can also be solved for H, such that

H = (W RB −E)(W RB +E)−1, (A.2)

which means that for any given rotation matrix one may find a corresponding skew symmetric

matrix.

In fact the vector h= (xh, yh, zh)
T , also known as the Rodrigues vector, represents a direction

of the rotation axis, which will be retraced in brief in section A.4. A detailed study on h, that

can be found e.g. in [33] pp. 189-190, then yields the important result that |h| = tan
φ
2 , where

φ is the rotation angle about h. Hence, one may write Rodrigues’ vector using a normalized

direction s: h = tan
φ
2 s, which allows to rewrite Eq. (A.1) in terms of the parameters of the

rotation axis and φ :

W RB(φ ,s) = (E− tan
φ
2

S)−1(E+ tan
φ
2

S), (A.3)

where S is a skew symmetric matrix assembled from parameters xs, ys, zs. However, retrace that

Eq. (A.3) acually requires φ �=±π . Following [34], p. 18, Eq. (A.3) may be then expanded to

yield Rodrigues’ rotation formula in terms of a given angle and axis:

W RB(φ ,s) = E+ sinφS+(1− cosφ)(S)2. (A.4)

The Cayley map also holds for relative rotations that relates two finitely separated orientations

of frame B. In this case one may write: Ri j
B = (E−H)−1(E+H), where the right superscript

at H can be ignored, because h actually represents a fixed axis. Using the notation for relative

transformations introduced in Eq. (2.4), (A.4) may then be written as

Ri j
B (φ

i j,s) = E+ sinφ i jS+(1− cosφ i j)(S)2, where φ i j = φ j −φ i. (A.5)
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A.2. The Standard Form of a Screw

The six-vector representation of the tangent operator introduced in Eq. (2.12), i.e. the velocity

of a rigid body, can also be written only in terms of the components of a specific line ν̂ =
(�ν , pν ×�ν)T , also known as the instantaneous screw axis, e.g. [34] pp. 39-40. To see this,

decompose the linear velocity v from Eq. (2.12) into components perpendicular and parallel to
�ω . Letting v⊥ and v‖ be this perpendicular and parallel component one may write v = v⊥+v‖,

where v‖ is easily constructed for any given v and �ω as

v‖ = k�ω , where k =
(v)T�ω
(�ω)T�ω

. (A.6)

Next one may rearrange such that v⊥ = v− k�ω . However, this result for v⊥ also satisfies the

moment pν × �ω , because a point pν actually exists. To see this, multiply pν × �ω = v− k�ω on

both sides by �ω×, apply Grassmanns’ identity to the vector triple product on the left hand side

and rearrange to obtain

pν =
�ω ×v

(�ω)T ·�ω . (A.7)

Note, that pν was taken here directly as a vector perpendicular to �ω since this doesn’t change

the moment. The result is that the linear velocity v = t×�ω + ṫ from sect. 2.1.2 may also always

be written as v = pν ×�ω + k�ω . Substituting this into Eq. (2.12) yields

v̂ = (�ω, pν ×�ω + k�ω)T = ω(�ν , pν ×�ν + k�ν)T , (A.8)

which is known as the standard form of a screw. A benefit of this expression is that the tangent

operator is written only in terms of the essential screw parameters, �ω and pν as well as the so

called pitch k of the screw, which provides a convenient way to introduce screw systems.

A.3. Screw Systems

The standard form of a screw provides a convenient way to introduce screw systems, which are

defined as linear combinations of independent screws. Given for instance two screws v̂1 and v̂2

the linear combination

v̂ = v̂1 + v̂2 = ω1

(
�ν1

pν1
×�ν1 + k1�ν1

)
+ω2

(
�ν2

pν2
×�ν2 + k2�ν2

)
(A.9)

is called a two-system. Similarly three-, four- or five-systems are defined, which are of im-

portance in the kinematic analysis of linkage structures, see sect. 2.2.4. A precise study and

classification of screw systems has been provided by Hunt [115].

A.4. The Screw Axis of a Relative Displacement

As already mentioned in the previous sections, rigid displacements in three space may be repre-

sented as screw motions, defined by rotation around and a translation along a specific invariant

line, called the screw axis. This is retraced in this section for the case of relative displacements,

where two spatial poses i and j of a frame B are under consideration. The result is a line, com-

puted from the parameters of such a relative displacement, that is measured in another frame

W .
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An invariant line ŝ = (s, ps × s)T , which is not affected by a spatial displacement of a line,

satisfies

ŝ = T̂i j
B · ŝ ⇔

(
Ê− T̂i j

B

)
· ŝ = 0̂, (A.10)

where Ê is a 6×6 identity matrix and 0̂ is a 6×1 vector equal to zero. Note that the right su-

perscript at ŝ vanishes because ’not affected’ means, that the line remains fixed. The rearranged

equation is called the equation of the screw axis, which can be expanded into two equations:(
E−Ri j

B

)
· s = 0 and

(
E−Ri j

B

)
· (ps × s)− t̃i j

B Ri j
B · s = 0. (A.11)

Substituting Cayley’s formula for a relative rotation (see sect. A.1) into the first equation sim-

plifies after some rearranging to H · s = 0, which is clearly satisfied for s = h, since H is a skew

symmetric matrix. Hence, one can find the direction of the screw axis from the rotational part

of the given relative displacement by applying the relative displacement form of Eq. (A.2).

Substituting this result into the second equation in (A.11) and taking into account that Ri j
B ·s = s

from the first equation in (A.11) yields(
E−Ri j

B

)
· (ps ×h) = t̃i j

B ·h =: t⊥. (A.12)

Even though det(E−Ri j
B ) = 0 from the first equation of (A.11) a unique solution for ps × h

exists. This is because the vector t⊥, perpendicular to h does not have a component in the

direction of the null space of (E−Ri j
B ). Again substituting Cayley’s formula into Eq. (A.12)

yields after some rearranging

H · (ps ×h) =
1

2
(H−E) · t⊥ or using vectors h× (ps ×h) =

1

2

(
h× t⊥− t⊥

)
. (A.13)

Since in fact ps, locating the screw axis in space, is of rather interest than ps ×h here, one may

apply Grassmanns’ identity to the vector triple product on the left hand side to solve for ps:

ps =
1

2(h)T ·h
(

h× t⊥− t⊥
)

. (A.14)

Note that it was forced here, that ps is perpendicular to h, i.e. (ps)
T · h = 0, which is valid

since this does not change the moment of a line. The final result is the screw axis ŝ = (s, ps ×
s)T , where s = h for the given rotational part of a spatial displacement. For convenience this

is normalized such that s = h
|h| in order to derive a relative displacement in terms of screw

parameters.

A.5. Relative Displacements in Terms of Screw Parameters

An important condition for the right hand side of Eq. (A.12) is obtained if one asks directly for

the point ps instead of the moment ps ×h. This amounts to searching for the fixed points of the

relative displacement equation (2.5): (
E−Ri j

B

)
·ps = t̀⊥. (A.15)

The vector t̀⊥ satisfies the following condition:

t̀⊥ =− 1

(h)T ·hh×h× ti j
B =−s× s× ti j

B , (A.16)
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where s represents the normalized direction of the screw axis. Eq. (A.16) is easily obtained after

substituting Eq. (A.14) and Cayley’s formula for Ri j
B into Eq. (A.15) and replacing the skew

symmetric matrix H by h×. Next, applying Grassmanns’ identity to the vector triple product

on the right hand side yields

t̀⊥ = ti j
B − si js, , where si j = (ti j

B )
T · s. (A.17)

The parameter si j is called the slide of frame B along the screw axis from configuration i to j.
It determines the length of a vector t‖ = si js parallel to s and allows a particular classification

of a given displacement:

1. A slide si j �= 0 means a spatial motion and allows it to produce the movement Ti j
B by a

rotation around and the slide along ŝ.

2. si j = 0 means a non-spatial motion and allows it to produce Ti j
B by a pure rotation about ŝ.

Beside this classification, Eq. (A.17) furthermore provides a convenient way to express the

translation vector as ti j
B = (E−Ri j

B ) · ps + si js, which in turn allows to express a relative dis-

placement in terms of the screw parameters. Together with the angle-axis representation of a

rotation matrix, Eq. (A.5), the homogeneous transform in Eq. (2.4) then takes the form:

Ti j
B
(
φ i j,si j, ŝ

)
=

(
Ri j

B (φ
i j,s) (E−Ri j

B ) ·ps + si js
0T 1

)
. (A.18)

Since now it is clear that the parameters forming the screw axis are actually transforming

quantities, it may also be convenient to denote them as ŝi j = (si j, pi j
s × si j)T if required. This

is particularly the case in sect. 2.3.5 and 4.3.4, where it is necessary to distinguish different

relative displacements.

Remark: The fundamental properties of a screw motion actually only differ for the particular

cases of planar, spherical and spatial motion and yield the well-known pole, the rotation axis
and the general screw axis as the corresponding invariant.
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B. Kinematics Equations of Spatial RR
Chains

The general spatial 2R serial chain consists of two revolute joints whose joint axes are skew.

Hence, its kinematics equations are given by an appropriately modified version of Eq. (2.29).

This is obtained by cutting off joints ĉ to f̂ from the general 6R chain in Fig. 2.2 and considering

frames W and B being located somewhere in the fixed and in the new end link, connected to the

revolute axis b̂, results in

W TB = W T1,z
1T2,x

2T3,z
3T4,x

4T5,z
5T6,x

6TB,z, (B.1)

where matrices W T2 =
W T1,z

1T2,x, 3T4,x and 5TB = 5T6,x
6TB,z define structural dimensions of

the chain.

B.1. Relative Kinematics Equations of Spatial RR Chains

A particularly simplified version of the kinematics equations of a spatial RR chain is required

for synthesis (sect. 2.3.5, 4.3 and C.3) and is obtained by introducing relative displacements

derived in section 2.1.1, Eq. (2.3). To see this compute Ti j
B = W T j

B(
W Ti

B)
−1 using Eq. (B.1),

which yields

Ti j
B = (W T2

2T j
3,z

3T4,x
4T j

5,z
5TB)(

W T2
2Ti

3,z
3T4,x

4Ti
5,z

5TB)
−1 =

= (W T2
2T j

3,z
3T4,x

4T j
5,z

5TB)(
BT5

5Ti
4,z

4T3,x
3Ti

2,z
2TW ) =

= W T2
2T j

3,z
3T4,x

4T j
5,z

5Ti
4,z

4T3,x
3Ti

2,z
2TW =

= W T2
2T j

3,z
3T4,xTi j

5,z(φ
i j
b )4T3,x

3Ti
2,z

2TW . (B.2)

The homogeneous transform Ti j
5,z(φ

i j
b ) has entries measured in frame 4 and describes a relative

rotation by an angle φ i j
b about axis b̂. Recall from Fig. 2.2, that b̂ is nothing but the z-axis of

frames 4 and 5. Note that the right superscripts i and j only occur at matrices that describe the

joint movement. Next introduce the 4× 4 identity I = (2Ti
3,z)

−1(W T2)
−1W T2

2Ti
3,z right after

the matrix 2T j
3,z to obtain

Ti j
B = W T2

2T j
3,z(

2Ti
3,z)

−1(W T2)
−1W T2

2Ti
3,z

3T4,xTi j
5,z(φ

i j
b )4T3,x

3Ti
2,z

2TW =

= (W T2Ti j
3,z(φ

i j
a )(W T2)

−1)(W T2
2Ti

3,z
3T4,xTi j

5,z(φ
i j
b )4T3,x

3Ti
2,z

2TW ) =

= (W T2Ti j
3,z(φ

i j
a )2TW )(W Ti

4Ti j
5,z(φ

i j
b )4Ti

W ). (B.3)

Expanding the transformation W T2Ti j
3,z(φ

i j
a )2TW yields

W T2Ti j
3,z(φ

i j
a )2TW =

(
W R2Ri j

3,z(φ
i j
a )2RW (E−W R2Ri j

3,z(φ
i j
a )2RW ) ·W t2

0T 1

)
, (B.4)
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B. Kinematics Equations of Spatial RR Chains

where the composition W R2Ri j
3,z(φ

i j
a )2RW represents a coordinate transformation of a rotation

about the z-axis of frames 2 and 3 (see again Fig. 2.2). When Ri j
3,z is written in angle-axis-

representation (see Eq. (A.5)) it’s easy to see that this transformation only acts on the direction

of the rotation axis and yields its coordinates measured in W . Here this is nothing but the

direction a of the fixed axis â = (a, pa ×a)T , which allows to write Eq. (B.4) as

W T2Ti j
3,z(φ

i j
a )2TW = Ti j

3 (φ
i j
a , â) =

(
Ri j

3 (φ
i j
a ,a) (E−Ri j

3 ) ·W t2

0T 1

)
. (B.5)

The translation vector locates â in space and may be written as W t2 = pa +λa, which yields

(E−Ri j
3 ) ·W t2 = (E−Ri j

3 ) ·pa +λ (E−Ri j
3 ) ·a. (B.6)

However, the last term satisfies (E−Ri j
3 ) · a = 0, since a represents the rotation axis of Ri j

3 .

Hence, one may simply replace W t2 by pa in Eq. (B.5) and compare with Eq. (A.18) to see that

this is nothing but a relative displacement in terms of the parameters of the fixed axis of the RR

chain.

A similar result is obtained for the second matrix W Ti
4Ti j

5,z(φ
i j
b )4Ti

W in Eq. (B.3), which

shows that this is nothing but a relative displacement in terms of the parameters of the moving

axis of the RR chain in configuration i:

Ti j
5 (φ

i j
b , b̂i) =

(
Ri j

5 (φ
i j
b ,bi) (E−Ri j

5 )p
i
b

0T 1

)
. (B.7)

Using this the relative displacement form of the kinematics equations of a general RR chain

take the simple form:

Ti j
B = Ti j

3 (φ
i j
a , â)Ti j

5 (φ
i j
b , b̂i). (B.8)

Eq. (B.8) can be used to describe the movement of the end effector of a RR chain with respect

to a reference configuration i and will be used in sect. C.3. By straight forward extending the

approach shown here also relative kinematics equations of chains with more than two joints can

be derived.
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C. Algebraic Solutions of Finite Position
RR Synthesis

This chapter provides specific algebraic solution procedures that are particularly required in

sect. 4.3.3 and 4.3.4. The procedures correspond to the four-position synthesis problem of

planar and spherical RR chains as well as the three-position synthesis of spatial RR chains.

However, due to the fact that the spatial synthesis solution procedure is more extensive and

complex than the planar and spherical counterparts this problem is only considered roughly in

the corresponding section. More detailed derivations may be found in [30]. A fundamental

reference providing a unified treatment of the algebraic finite position synthesis theory is [33].

C.1. Four-Position Synthesis of Planar RR Chains

The synthesis of a planar RR chain whose end links may reach four arbitrarily prescribed (pla-

nar) poses requires the solution of a set of three bilinear design equations (2.47):

(p1
b)

T ·M1i ·p1
a +(�λ 1i)T ·p1

b +(�μ1i)T ·p1
a +δ 1i = 0, i = 2,3,4. (C.1)

Recall from sect. 2.3.2 that (i) 2× 1 vectors p1
b and p1

a are the unknown W -frame coordinates

that define the location of the two R joints in configuration 1 of the chain and (ii) the parameters

M1i,�λ 1i, �μ1i and δ 1i are given in terms of position data.

In order to solve Eq. (C.1) for the unknowns it is convenient to rearrange, such that(
(p1

b)
T ·M1i +(�μ1i)T)︸ ︷︷ ︸
((ai(p1

b) bi(p1
b))

·p1
a =−

(
(�λ 1i)T ·p1

b +δ 1i
)

︸ ︷︷ ︸
ri(p1

b)

, i = 2,3,4. (C.2)

This is a linear system of equation, which may also be written as⎛
⎝ a2(p1

b) b2(p1
b)

a3(p1
b) b4(p1

b)
a4(p1

b) b4(p1
b)

⎞
⎠

︸ ︷︷ ︸
K

·
(

x1
pa

y1
pa

)
︸ ︷︷ ︸

p1
a

=

⎛
⎝ r2(p1

b)
r3(p1

b)
r4(p1

b)

⎞
⎠

︸ ︷︷ ︸
v

. (C.3)

For this linear system to have a solution the augmented coefficient matrix (K|v) must satisfy

Rg(K|v)≤ 2. Another way of saying this is that the determinant of (K|v) must satisfy

det(K|v) = 0. (C.4)

This yields a cubic polynomial in the W -frame coordinates p1
b, which may be written as

det(K|v) = k1 ·
(
y1

pb

)3
+

(
k2 · x1

pb
+ k3

) · (y1
pb

)2
+
(

k4 ·
(
x1

pb

)2
+ k5 · x1

pb
+ k6

)
· y1

pb
+

+k7 ·
(
x1

pb

)3
+ k8 ·

(
x1

pb

)2
+ k9 · x1

pb
+ k10 = 0. (C.5)
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C. Algebraic Solutions of Finite Position RR Synthesis

Any point p1
b on this cubic curve may be chosen as a R joint of the planar RR chain. This may

be done by selecting an arbitrary x1
pb

and afterwards solving the polynomial for y1
pb

. The result

may be as many as three real solutions, since the polynomial is of order three. Substituting a

resulting p1
b into Eq. (C.3) allows to solve for the remaining p1

a, which describes the second R

joint of the planar RR chain that can reach the four initially prescribed planar poses.

Remark: In the case of five given planar poses of the end links of a planar RR chain there are

four design equations, which can be reduced to a single univariate polynomial of order four, see

e.g. [33], pp. 108-109. This may have zero, two or either four real solutions, which correspond

to either zero, two or four different planar RR chains that can reach the given set of poses.

C.2. Four-Position Synthesis of Spherical RR Chains

The synthesis of a spherical RR chain whose end links may reach four arbitrarily prescribed

spatial orientations requires the solution of a set of three bilinear design equations (2.52):

(b1)T ·M1i ·a1 = 0, i = 2,3,4. (C.6)

Recall from sect.2.3.4 that (i) 3 × 1 vectors a1 = (x1
a,y

1
a,z

1
a)

T and b1 = (x1
b,y

1
b,z

1
b)

T are the

unknown W -frame coordinates that define the orientation of the two R joints in configuration 1

of the chain and (ii) the matrices M1i are given in terms of position data.

For convenience Eq. (C.6) is rewritten as

(ai(b1) bi(b1) ci(b1)) ·a1 = 0, i = 2,3,4, (C.7)

where (ai(b1) bi(b1) ci(b1)) = (b1)T ·M1i. This is a linear homogeneous system of equations,

which may also be written as⎛
⎝ a2(b1) b2(b1) c2(b1)

a3(b1) b3(b1) c3(b1)
a4(b1) b4(b1) c4(b1)

⎞
⎠

︸ ︷︷ ︸
K

·
⎛
⎝ x1

a
y1

a
z1

a

⎞
⎠

︸ ︷︷ ︸
a1

=

⎛
⎝ 0

0

0

⎞
⎠ . (C.8)

For this to have a solution other than a1 = 0 the matrix K must satisfy Rg(K) ≤ 2, which is

equivalent to saying that the determinant of K must satisfy

det(K) = 0. (C.9)

This yields a cubic polynomial in the coordinates of b1, which is the equation of a surface

through the origin of W . The polynomial is furthermore homogeneous, because each monomial

is of order three:

det(K) = k1 ·
(
y1

b
)3

+
(
k2 · x1

b + k3 · z1
b
) · (y1

b
)2

+
(

k4 ·
(
x1

b
)2

+ k5 · x1
b · z1

b + k6 ·
(
z1

b
)2
)
· y1

b +

+k7 ·
(
x1

b
)3

+ k8 ·
(
x1

b
)2 · z1

b + k9 · x1
b ·

(
z1

b
)2

+ k10 ·
(
z1

b
)3

= 0. (C.10)

However, homogeneity means that if a certain b1 solves Eq. (C.10), then λb1, λ ∈ R, is a

solution as well. This identifies Eq. (C.10) as the equation of a ruled surface through the origin

of W - a cubic cone.

In order to find coordinates b1 that solve Eq. (C.10) one may set z1
b = 1, which yields the

equation of a cubic curve similar to that, obtained from four-position synthesis of planar RR
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C. Algebraic Solutions of Finite Position RR Synthesis

Figure C.1.: Properties of the Bennett Linkage: (a) four revolute joint axes with intersecting

adjacent common normals (b), (c) opposite sides as well as opposite twist angles

measured between the different joint axes must be equal (d) Angles that describe

the joint movement and which are measured among normals

chains. In fact this is the curve of intersection between a plane through z1
b = 1 and the cubic

cone Next, selecting an arbitrary x1
b and afterwards solving the polynomial for y1

b may yield as

many as three real solutions for b1. Substituting a resulting b1 into Eq. (C.8) allows to solve for

the remaining a1, which describes the second R joint of the spherical RR chain that can reach

the four initially prescribed spatial orientations.

Remark: In the case of five given orientations of the end links of a spherical RR chain there

are four design equations, which can be reduced to a single univariate polynomial of order six,

see e.g. [33], pp. 221-222. This may have zero, two, four or either six real solutions, which

correspond to either zero, two, four or six different spherical RR chains that can reach the given

set of orientations.

C.3. Bennett’s Spatial Four-Bar Linkage and the Cylindroid

As already mentioned in the introduction of sect. 2.3.5 an algebraic solution procedure of

the polynomial design equations (2.55), (2.57) and (2.59) yields that there exist two spatial RR

chains for three specified task poses of frame B, which together form a Bennett four-bar linkage.

Figure C.1 shows a Bennett linkage, which in fact is just the one determined in sect. 4.3.4 and

which satisfies several geometric conditions in order to provide single-d.o.f. movement [13].

As shown in Fig. C.1a) the consecutive common normals between the joint axes intersect.

Next, opposite sides as well as opposite twist angles measured between the different joint axes

must be equal, i.e. a = b, c = d, α = β and γ = δ (Fig. C.1 b) and c)). Furthermore, these

parameters satisfy
sinα

a
=

sinγ
c

or
sinβ

b
=

sinδ
d

. (C.11)

Through these conditions it can be shown that a Bennett linkage moves with mobility 1. Based

on the parameters it can be shown that the linkage satisfies the following angular relationship
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C. Algebraic Solutions of Finite Position RR Synthesis

between the angles θ and φ (Fig. C.1 d)), [115]:

tan
φ
2
= k tan

θ
2

, where k =
sin

α+γ
2

sin
α−γ

2

. (C.12)

A single spatial RR chain with axes â and b̂ whose joint movement is constrained to follow

this relationship is also called a mechanically constrained spatial RR chain since its movement

is determined by a mechanical transmission relationship. In the case of a given angle θ this

means that the rotation around b̂ is determined as φ(θ) obtained from Eq. (C.12). For relative

rotations with respect to a specific reference configuration 1 this yields θ 1i = θ i−θ 1 and φ 1i =
φ i(θ i)−φ 1(θ 1). The relative kinematics equations of the mechanically constrained spatial RR

chain may then be written in terms of the fixed and moving axis as

T1i
B = T1i (θ 1i, â

)
T1i (φ 1i, b̂1

)
=

=

(
R1i(θ 1i,a) (E−R1i)pa

0T 1

)(
R1i(φ 1i,b1) (E−R1i)p1

b
0T 1

)
, (C.13)

where i = 2, . . . ,n. (See section B.1 , Eq. (B.2) to (B.8) for a detailed derivation of these

equations). Recall here, that positions of B are measured with respect to a given world frame

W .

For given line screws â and b̂1 as well as a given and

Figure C.2.: Qualitative example

of a cylindroid

calculated set of angles θ 1i and φ 1i Eq. (C.13) results in

a set of matrices with numerical values on the left hand

side. Using the procedure from sect. A.4 yields a cor-

responding set of screw axes ŝ1i, which, due to relation

(C.12), form a cylindroid, [116]. Figure C.2 provides an

example of this ruled surface, which can be obtained by

rotating and translating a line around and along another

perpendicular line. A particular feature of this surface is

that two generators intersect at right angles just in the mid-

dle of the perpendicular line, which allows the definition

of a specific coordinate frame known as the principal axis
frame.

The fundamental property of a principal axis frame H
of a cylindroid, generated from the relative screw axes of Bennett’s linkage, is, that joint axes â
and b̂1 in a RR chain can be described using four parameters, measured in H, [30]. In the case

of a three-position synthesis of a RR chain these parameters are unknown and the reduction of

the number of unknowns from ten to four synthesis parameters corresponds to the fact that the

six normal constraints from Eq. (2.59) are identically satisfied. However, since H is not a priori

given, the key step for synthesis is to find the location and orientation of this frame relative

to W , based on the given three positions of frame B. This can be done following Hunt [115],

who derives that a cylindroid can be seen as any possible linear combination of two screws (a

two-system) and who shows how to obtain H for two such given screws. In fact, because two

screws can be associated with the the relative transform T12
B and T13

B of the three task poses of

the spatial RR synthesis problem one may find H.

In order to solve the four design equations (2.55) and (2.57), measured in H, the motion

parameters R1i
B and s1i, originally measured in W , need to be transformed, such that they cor-

respond to the movement of B measured in H. Assuming that the location and orientation of
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C. Algebraic Solutions of Finite Position RR Synthesis

principal axis frame H with respect to W is known this is easily done using the composition

HTi
B =

(W TH
)−1 W Ti

B, i = 1,2,3 (C.14)

Note that W TH has no right superscript since W and H are fixed. Afterwards computing the rel-

ative displacement using Eq. (2.4) yields T1i
B , i = 2,3, measured in H. The rotational submatrix

of this homogeneous transform can then be substituted into Eq. (2.55). Next, computing the

Rodriguez vectors h12 and h12 from this rotation using Eq. (A.2) allows to compute s12 = h12

|h12|
and s13 = h13

|h13| measured in H. s1i can then be substituted into Eq. (2.57). This together with Eq.

(2.55) can then be solved for the four independent design parameters of the spatial RR chain

chain.

The cylindroid-based three-position synthesis can be found in detail in [30], where also an

algebraic elimination procedure is presented that reduces the four design equations to an uni-

variate polynomial of order 3. This has only one single real root, which corresponds to two

four-parameter sets, which represent two different spatial RR chains. These together form a

Bennett linkage that can reach the three task positions The approach with corresponding screw

axes ŝ12 and ŝ13, principal axis frame H and one of the RR solutions are required in the synthesis

procedure of a spherically constrained spatial RR chain in sect. 4.3.4.
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