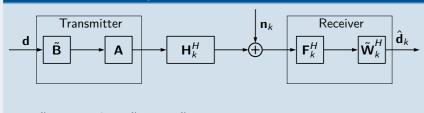
Motivation

- Massive MIMO provides significant advantages
 - **1** High spectral efficiency
 - 2 Relaxed Scheduling
- **3** Spatial Multiplexing Diversity Beamforming
- Until now only small MIMO (8x8) supported in LTE

Why no massive MIMO implementation?

1 Cost

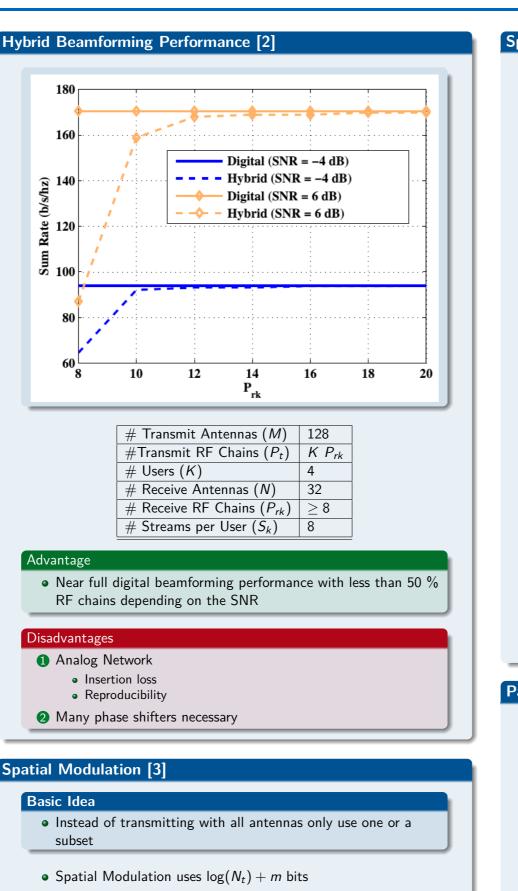
- Each antenna requires own RF chain
- 2 Size
- $\lambda/2$ distance between antennas
- **3** Power Consumption
 - Increases with number of RF chains


Possible Solutions

- Hybrid Beamforming
 - Using a combination of digital and analog beamforming
- 2 Spatial Modulation
 - Using the antenna index for modulation
- 3 Parasitic Antennas
- Only one active antenna element
- 4 UE RF Chain
 - Using the cost optimized RF chains of mobile phones

Hybrid Beamforming [1] RECEI VER Beam-Space Baseband Channel H_{bl} Basic Idea

• Use a combination of digital and analog beamforming to reduce the number of RF chains


Mathematical Description

- $\tilde{\mathbf{B}} \in \mathbb{C}^{P_t \times S} = [\tilde{\mathbf{B}}_1, \dots, \tilde{\mathbf{B}}_K]$: Digital precoding matrix for every user
- $\mathbf{A} \in \mathbb{C}^{M \times P_t}$: One analog precoding matrix (entries have constant envelope)

$$\hat{\mathbf{d}}_k = \tilde{\mathbf{W}}_k^H \mathbf{F}_k^H (\mathbf{H}_k^H \sum_{i=1}^K \mathbf{A} \tilde{\mathbf{B}}_i \mathbf{d}_i + \mathbf{n}_k)$$

• Generalized Spatial Modulation uses a subset of antennas $\Rightarrow \lfloor \log(\frac{N_t}{N_u}) \rfloor + m \text{ bits}$

Input bits	$N_t = 2, m = 4$		$N_t = 4, m = 2$	
	Antenna	Transmit	Antenna	Transmit
	number	symbol	number	symbol
000	1	+1+j	1	-1
001	1	-1+j	1	+1
010	1	-1-j	2	-1
011	1	+1-j	2	+1
100	2	+1+j	3	-1
101	2	-1+j	3	+1
110	2	-1-j	4	-1
111	2	+1-j	4	+1

efficiency \Rightarrow Infeasible Parasitic Antennas [4] Basic Idea antenna elements modes $\{\Phi_n(\phi)\}_{n=0}^{M-1}$ $P(\varphi) = \sum^{M-1} v$ Active element $\int d = \lambda/8$ ł Parasitic

10

10

10

 10^{-6}

10-7

Advantages

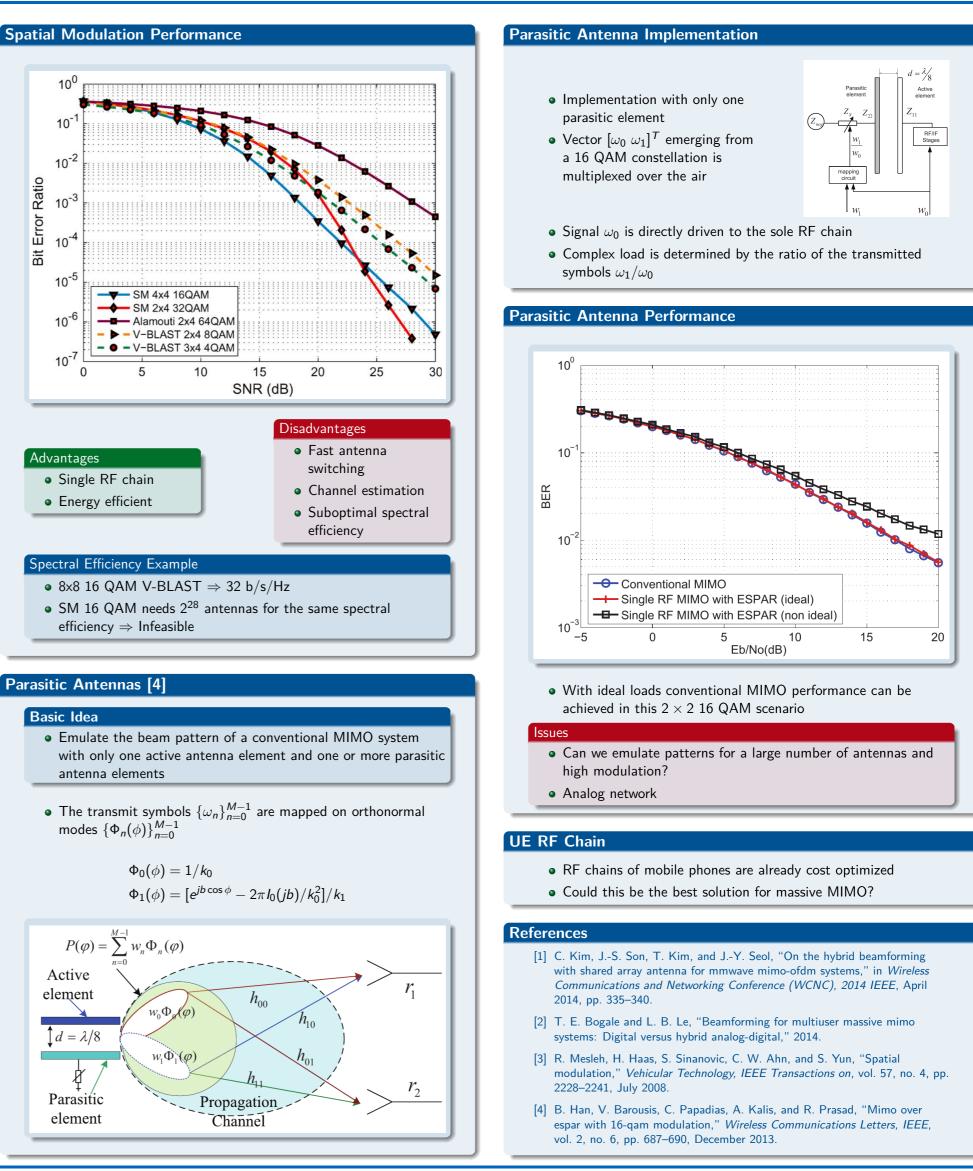
0

Ratio

Error

Bit

Unterstützt von / Supported by


element

Alexander von Humboldt Stiftung/Foundation

Massive MIMO Transmitter Design

Markus Jäger

markus.jaeger@tum.de

Technische Universität München