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Motivation

Instabilities of the oscillators used for up- and down-conversion
of signals in communication systems give rise to the
phenomenon known as phase noise.
The impairment on the system performance can be severe even
for high-quality oscillators:

If the continuous-time waveform is processed by long filters at
the receiver side;

When the symbol time is very long, as happens when using
orthogonal frequency division multiplexing.

Typically, the phase noise generated by oscillators is a random
process with memory, and this makes the analysis of the
capacity challenging.
In the available literature, many papers do not consider the
continuous-time nature of phase noise, thus overlooking the
random amplitude fluctuations caused by filtering the phase
noise process.

Contribution

Analytical upper and lower bounds to the capacity of
discrete-time Wiener phase noise channels

Analytical lower bounds to the capacity of continuous-time
Wiener phase noise channels

Phase Noise Models

Wiener phase noise (random walk)
Lasers

Free-running oscillators

40-20 model, Pink frequency model
Phase-locked loop oscillators

White model

Normalized frequency, fT
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Wiener Phase Noise

The phase process is given by

Θ(t) = Θ(0) + γ
√

TB(t/T ), 0 ≤ t ≤ T , (1)

where B(·) is a standard Wiener process:
B(0) = 0,
for any 1 ≥ t > s ≥ 0, B(t)− B(s) ∼ N (0, t − s) is
independent of the sigma algebra generated by {B(u) : u ≤ s},
B(·) has continuous sample paths.

One can think of the Wiener phase process as an accumulation of
white noise:

Θ(t) = Θ(0) + γ

∫ t

0
B′(τ) dτ, 0 ≤ t ≤ T , (2)

where B′(·) is a standard white Gaussian noise process.
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Wiener Phase Noise Channel

Discrete-Time Model

Tx Detector

Denoting by ∆ and Tsymb the sampling and symbol time, the model
obtained by sampling at time instants t = k∆ is

Θk = Θk−1 + γ
√

∆Nk (3)

Yk = Xdk∆/Tsymbee
jΘk + Wk (4)

where the Wk ’s are independently and identically distributed (iid)
random variables with Wk ∼ CN (0, 1).

Continuous-Time Model With Integrate-and-Dump Receiver

Tx

Integrate

and dump

Detector

Considering the filtering of Θ(·) leads to the model [1]

Θk = Θk−1 + γ
√

∆Nk (5)

Yk = Xdk∆/Tsymbee
jΘk

1
∆

∫ k∆

(k−1)∆
ej(Θ(t)−Θk ) dt︸ ︷︷ ︸
,Fk

+Wk (6)

Determine the probability density function (pdf) of Fk is
challenging [2], but some moments can be computed [1, 3].

Limits of Reliable Communication

What is the best possible detector?
Given input symbols XN

1 = (X1,X2, . . . ,XN) evaluate

I (X ; Y ) , lim
N→∞

1
N I
(
XN

1 ; YN
1

)
= lim

N→∞

1
N E

[
log2

p(YN
1 |XN

1 )

p(YN
1 )

]
(7)

where Yk = Y (k−1)L+L
(k−1)L+1 and L = Tsymb/∆ is the oversampling

factor.
Under an average transmit power constraint and assuming iid
input symbols, the best detector achieves the capacity

C (SNR) = max
E[|Xk |2]≤SNR

I (X ; Y ) (8)

Capacity pre-log

We derived analytical results on the so-called capacity prelog:

lim
SNR→∞

C (SNR)

log(SNR)
(9)

Example: for an additive white Gaussian noise channel,
C (SNR) = log(1 + SNR), therefore the prelog is 1
We let the sampling time ∆ scale with the SNR as

∆ =
1

SNRα , 0 < α < 1 (10)

Discrete-time Model With L = 1 (α = 0) and γ
√

Tsymb = 0.5 [4]

SNR, [dB]
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Discrete-Time Model: Analytical Bounds [1, 5, 6]
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A capacity achieving scheme for 0 ≤ α ≤ 1/2 is the following:
Choose a uniform pdf for ∠Xk and

p|Xk |2(x) =
∆

SNR∆2 − 1 exp
(
− ∆x − 1
SNR∆2 − 1

)
, x ≥ 1/∆

(11)

Amplitude modulation: Use the statistic

Vk =
L∑

i=1
|Y(k−1)L+i |2 (12)

to detect |Xk |.

Phase modulation: Use the statistic

∠Ỹk = ∠

(
Y(k−1)L+1

(Y(k−1)L
Xk−1

)?)
(13)

to detect ∠Xk .

Continuous-Time Model: Analytical Lower Bound [1, 3]
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For L = 1 (α = 0) the capacity is proportional to log log(SNR)
[7]

The input distribution is chosen uniform in the phase and as

p|Xk |2(x) =

{
1
λ exp

(
− x−∆−t

λ

)
x ≥ ∆−t

0 elsewhere
(14)

where λ = SNR∆−∆−t > 0 with 0 < t < α−1 − 1.

The detector is the same as in (12) and (13).
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