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I. INTRODUCTION

Both precise point positioning (PPP) [1–2] and attitude
determination have received a lot of attention recently.
Teunissen introduced an array-aided PPP in [3] to perform
PPP and attitude determination jointly. Thus, the
correlation introduced by using global positioning system
(GPS) measurements for both PPP and attitude
determination is exploited.

A tight coupling of global navigation satellite system
(GNSS) and inertial navigation system (INS) receivers for
position and attitude determination has been analyzed in
[4–6]. The coupling is attractive because both sensors are
complementary—GNSS provides an unbiased absolute
position and attitude information, while INS provides
high-rate angular rate and acceleration measurements,
which are robust to the environment.

However, current methods for tight coupling do not
focus on PPP and are not suited for low-cost mass-market
GNSS receivers. The lack of precise synchronization, a
code multipath of several tens of meters, and frequent
half- and full-cycle slips (that might affect multiple
satellites simultaneously) have to be taken into account.
The phase noise of mass-market GNSS receivers is,
however, in the order of a few millimeters, such that a
position accuracy comparable to geodetic receivers can
still be obtained if the particular error sources of
mass-market GNSS receivers are properly addressed.

This paper provides a joint PPP and attitude
determination method with tight coupling of
measurements from two low-cost mass-market GNSS
receivers and an inertial measurement unit (IMU).

Recent work on satellite bias determination for PPP
used a two-step procedure (see Gabor and Nerem [7], Ge
et al. [8], and Laurichesse et al. [9]): First, fractional
wide-lane biases are derived from the geometry-free,
ionosphere-free Melbourne Wübbena combination to
enable wide-lane integer ambiguity resolution.
Subsequently, receiver and satellite clock offsets, satellite
phase biases, tropospheric zenith delays, station
coordinate corrections, satellite orbit corrections, and
carrier phase integer ambiguities are derived in a Kalman
filter [10] using a network of GNSS receivers. As the
ionosphere-free combination and previously resolved
wide-lane ambiguities are used at this step, narrow-lane
ambiguities have to be resolved. Laurichesse et al.
analyzed the stability of the obtained satellite phase biases
and observed that these biases can be assumed constant on
a daily basis but might vary by up to 2 narrow-lane cycles
over a year.

Li et al. [11–12] and Ge et al. [13] included regional
augmentation corrections for atmospheric errors to fasten
undifferenced integer ambiguity fixing.

Zhang et al. [14] estimated residual ionospheric errors,
tropospheric zenith delays, satellite clock offsets, satellite
phase biases (lumped with absolute ambiguities of one
reference station), and double difference (DD) integer
ambiguities in a Kalman filter with a regional network of
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dual-frequency GNSS receivers. They observed very
stable satellite phase bias estimates with a variation of less
than 0.1 cycles over 24 h. The obtained corrections were
used for PPP and real-time kinematic (RTK) navigation.
The absolute position was determined with an uncertainty
of 1.3 cm, 0.9 cm, and 5.0 cm in the north, east and up
direction, respectively.

Odijk et al. [15] considered a regional network of
geodetic dual-frequency GNSS receivers. They first
resolved the DD integer ambiguities and subsequently
estimated the satellite clock offsets, satellite phase biases,
and interpolated ionospheric delays. A hypothesis testing
was performed by analyzing the stability of the phase
biases. The satellite phase bias time series per arc and the
respective variances were used to conclude that the biases
were stable. However, the hypothesis testing relied on the
correctness of the covariance matrix, which might not be
the case.

Odijk et al. also verified their corrections, i.e., the
absolute position, and ambiguities were determined for a
low-cost receiver using the previously determined satellite
clocks, phase biases, and interpolated ionospheric
corrections. Odijk distinguished between two types of
PPP: a “standard” PPP using ionospheric corrections from
global ionospheric maps, and an improved PPP/RTK using
a dense regional continuously operating reference station
(CORS) network to generate more precise ionospheric
corrections with Kriging interpolation. For the latter one, a
positioning accuracy of a few millimeters was obtained for
low-cost u-blox receivers. This accuracy was achieved
under ideal conditions; i.e., the code multipath was
negligible, and the measurements were taken in the solar
minimum with low ionospheric variations (October 2010).
It shall also be noted that a low-cost GNSS receiver was
only used for PPP but not for estimation of the satellite
phase bias estimates. If a network of low-cost GNSS
receivers were used for satellite bias determination, an
additional synchronization would be needed for each
measurement.

Odijk et al. further improved the PPP accuracy in
[16] by describing the stochastic nature of the network
corrections by a covariance matrix and by using this
covariance matrix for modeling the uncertainty of the
corrected measurements. A closed-form expression was
provided for the covariance matrix. The benefit of the
improved measurement covariance matrix was analyzed
with low-cost u-blox receivers: The time for ambiguity
resolution was reduced to 4 min, and a position accuracy
of 0.25 m, 0.19 m, and 0.39 m was achieved for PPP in
east, north, and up direction, respectively, and a position
accuracy of 5.6 mm, 7.1 mm and 20 mm, respectively, was
achieved for PPP-RTK. It has to be noted that these
accuracies were again achieved under ideal conditions,
i.e., negligible code multipath, minimum solar activity,
and no movement, which makes cycle slip detection easy.
A sensor fusion of GNSS and INS measurements is
needed for PPP in more challenging environments and
conditions.

Wen et al. additionally included a subset of code
multipath delays in the state vector to improve the
PPP accuracy [17]. The method was verified with
measurements from a few International GNSS Service
(IGS) stations. The position error was reduced by a
factor of 2.

Attitude determination has also received a lot of
attention. Teunissen derived the integer least-squares
estimation with a baseline length constraint in [18] and
[19]. The orthogonal decomposition of the sum of squared
errors was used as a starting point for the derivation of the
optimal estimator. Unfortunately, a priori information
solely on the baseline length is not sufficient to perform
single-epoch ambiguity resolution with low-cost GNSS
receivers in multipath environments because two out of
three receiver coordinates are not sufficiently constrained.

Henkel and Günther suggested the use of a priori
information on both the baseline length and attitude in
[20]. The a priori information was included as soft
constraints in the integer least-squares estimation. Soft
constraints have the advantage of enabling a more reliable
ambiguity fixing and being robust over errors in the a
priori information, which is not the case for hard
constraints [21].

II. OVERVIEW OF SYSTEM SETUP

In this section, we provide an overview of the system
setup. It includes two components: The first component
consists of the estimation of ionospheric corrections and
satellite phase biases with a network of static receivers.
The second component includes the joint estimation of the
position and attitude of a moving object. A GPS/INS
tightly coupled solution is determined, which takes the
ionospheric corrections and satellite phase biases into
account.

There are several new contributions involved in both
processing steps:

In the first step, a network of single-frequency
low-cost GNSS receivers is considered. This class of
receivers enables denser networks and, thus, the
monitoring of local ionospheric gradients. As
single-frequency receivers cannot exploit the dispersive
behavior of the ionospheric delay, the estimation of
ionospheric corrections and satellite phase biases is
ill-conditioned. We consider statistical a priori information
on ionospheric gradients and rates to enhance the
separation of phase biases and ionospheric corrections.

In the second step, we estimate the absolute position,
velocity, acceleration, attitude, angular rates, single and
double difference ambiguities, code multipath, and
accelerometer and gyroscope biases with an extended
Kalman filter. A code multipath parameter is estimated for
each satellite to prevent a projection of the multipath
parameter into other state parameters and to exploit time
correlation of the multipath parameter. Statistical a priori
information on the baseline length is also included in the
tree search; i.e., the search intervals are substantially
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Fig. 1. Estimation of satellite phase biases and ionospheric corrections with network of GNSS receivers: First, absolute receiver positions and clock
offsets are determined by least-squares estimation (LS pos.) using pseudorange measurements only. Obtained receiver and satellite positions and clock
offsets are then used to compute synchronization correction (Sync) for each satellite-satellite single difference (SS-SD) measurement of each receiver

(except first one, which serves as reference). Subsequently, absolute and relative receiver positions, SD code multipath, DD ambiguities, vertical
ionospheric delay corrections, and satellite phase biases (lumped with SD ambiguities of first receiver) are determined with network of receivers in
Kalman filter. Obtained float solution is improved by subsequent ambiguity fixing and readjustment of vertical ionospheric delay corrections and

satellite phase biases.

reduced, and the success rate of ambiguity resolution is
significantly increased. We obtain a centimeter-level
accuracy for kinematic positioning in a multipath
environment with two low-cost single-frequency receivers
and inertial sensors, which has not been achieved so far.

A. Estimation of Ionospheric Corrections and Satellite
Phase Biases

Fig. 1 gives an overview of the individual processing
steps for estimation of ionospheric corrections and
satellite-satellite single difference (SD) phase biases. First,
a synchronization correction c

k,l
1,r is computed for each DD

measurement. It requires a rough estimate of the clock
offsets δtr of receivers r∈{1, 2}, of the satellite positions
�x :k , and of the line-of-sight vectors �e:k

r . The
synchronization correction is needed for low-cost GNSS
receivers because the satellite movement within the time
difference of two receiver clock offsets can be on the order
of several meters. The DD ambiguities are no longer
integer valued if synchronization errors remain
uncorrected. The preprocessing also includes the
formation of satellite-satellite SD carrier phase and
pseudorange measurements {ϕk,l

1,r , ρ
k,l
1,r}, with a common

reference satellite indexed by l, the cycle slip corrections
(CSC) denoted by �N

k,l
1,r [26], and the application of

corrections for atmospheric delays, antenna phase center
offsets (PCO) and variations (PCV), earth tides, and phase
windup. Subsequently, the absolute position �x1 of one

reference receiver, the relative positions �b1,r , where
r∈{2, . . ., R}, the code multipath errors �ρMP k

r
, DD

ambiguities N
k,l
1,r , SD satellite phase biases βk,l (lumped

with SD ambiguities of the first receiver), vertical
ionospheric delays, and their rates are determined using a
Kalman filter [10]. The obtained float solution is improved
by subsequent ambiguity fixing and readjustment of
satellite phase biases and vertical ionospheric delays.

B. Kinematic PPP and Attitude Determination

The obtained satellite phase bias and vertical
ionospheric delay estimates are then provided to a mobile
receiver for joint PPP and attitude determination. The tight
coupling of measurements from two low-cost GNSS
receivers and an IMU requires a certain initialization time
to synchronize the GNSS and INS measurements. Once
the synchronization is completed, a state vector including
the absolute position, velocity, acceleration, attitude
angles, angular rates, SD ambiguities, code multipath
errors, and gyroscope and accelerometer biases is
determined with a Kalman filter [10]. The carrier phase,
code phase, and Doppler measurements from two GNSS
receivers and the three-dimensional (3D) angular rate and
acceleration measurements from an IMU are used to
update the state vector as shown in Fig. 2. An alternating
state update is performed as GNSS and INS measurements
are received at different time instances and as the
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Fig. 2. Tightly coupled PPP and attitude determination: State vector is
updated by both GPS and IMU measurements in alternating way. As
inertial measurements have higher date rate than GPS measurements,

subsequent IMU-based state updates exist additionally.

processing is immediately performed after signal
reception.

As inertial measurements have a higher date rate than
GPS measurements, subsequent IMU-based state updates
exist additionally.

This paper is organized as follows: In section II,
models for the carrier phase, pseudorange, Doppler,
acceleration, and angular rate measurements are described.
Section III includes a detailed description of the estimation
of satellite phase biases and vertical ionospheric delays
with a local network of single-frequency GNSS receivers.
Section IV provides some measurement results on the
estimation of the vertical ionospheric delays. The tight
coupling of two low-cost GNSS receivers and an inertial
sensor is described in detail in section V. It differs from
conventional tight couplings by DD synchronization
corrections to restore the integer property of ambiguities,
by including a code multipath offset for each satellite in
the state vector to exploit the time correlation of the code
multipath parameter and, thereby, to improve the absolute
positioning accuracy, and by the fixing of undifferenced
ambiguities. Section VI includes an analysis of the
measurement results from a test drive. Finally, section VII
concludes this paper.

III. MEASUREMENT MODELS

In this section, measurement models for joint PPP and
attitude determination with tight coupling are introduced.
We take the following particularities of low-cost GNSS
receivers into account:

1) lack of precise synchronization,
2) code multipath of several tens of meters,
3) frequent half- and full-cycle slips, and
4) single-frequency receivers, i.e., no elimination of

ionospheric delays by linear combination [23].

Low-cost GNSS receivers have no timing input and are
only synchronized with an accuracy of 1 ms to GPS
system time. Because satellites move with a speed of 3

km/s, the satellite position might change by several meters
within the time of the receiver clock offset. For relative
positioning, the satellite movement within the time
difference between both receiver clock offsets affects the
DD measurements. If this satellite movement is not
corrected, the DD ambiguities are no longer integer
valued, and the position accuracy is significantly reduced.

Therefore, we take the receiver clock offset explicitly
into account in each parameter of our measurement
models. The code multipath is also higher for mass-market
GNSS receivers due to the smaller receiver bandwidth and
smaller antenna size. Additionally, half-cycle slips occur
much more frequently than for geodetic receivers.

Satellite-satellite SD measurements with a common
reference satellite (indexed by l) eliminate
receiver-dependent biases and keep the absolute position
information. We model the SD carrier phase
measurements for satellites k and l and receiver r at time
tn + δtr (tn) (where tn is the received time as determined by
the receiver, and δtr[tn] is the receiver clock offset at time
tn) as

λϕ̃k,l
r (tn + δtr (tn))

= λϕ̃k
r (tn + δtr (tn)) − λϕ̃l

r (tn + δtr (tn))

= �ek
r (tn + δtr (tn))

(�xr (tn + δtr (tn)) + ��xETr (tn)

− �xk(tn + δtr (tn)) − ��xk(tn)
) − �el

r (tn + δtr (tn))

· (�xr (tn + δtr (tn)) + ��xETr (tn) − �xl(tn + δtr (tn))

−��xl(tn)
) + cδtk,l

r (tn) − I k,l
r (tn) + T k,l

r (tn)

+ λNk,l
r + λ/2�Nk,l

r (tn) + λβk,l(tn) + λ�ϕMPk,l
r

(tn)

+ λ�ϕPWk,l
r

(tn) + λ�ϕPCOk,l
r

(tn) + εk,l
r (tn), (1)

with the following notations:

λ wavelength of L1 carrier phase [0.19 m];
tn received time as determined by receiver [s];
δtr receiver clock offset [s];
�ek
r normalized line-of-sight vector pointing from

satellite k to receiver r;
�xr position of receiver r [m];
��xETr receiver position offset due to Earth tides [m];
�xk position of satellite k using precise orbits [m];
��xk error of satellite position [m];

c speed of light in vacuum [m/s];
δtkr clock offset of satellite k [s];
I k
r slant ionospheric delay [m];

T k
r slant tropospheric delay [m];

Nk
r integer ambiguity [cycles];

�Nk
r cycle slip [half cycles];

βk satellite phase bias [cycles];
�ϕMPk

r
receiver phase multipath [cycles];

�ϕPWk
r

receiver phase windup [cycles];
�ϕPCOk

r
antenna phase center offset [cycles]; and

εk
r phase noise [m].

In this paper, all terms are denoted in the
Earth-centered, Earth-fixed (ECEF) frame if not otherwise
stated. In (1), we have considered only the receiver and
satellite positions explicitly at time tn + δtr . All other
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parameters change less quickly, such that the change
within δtr is negligible.

GNSS receivers also provide an unambiguous
pseudorange measurement. We model the satellite-satellite
SD of the pseudorange measurements similar to the SD
carrier phase measurement, i.e.,

ρ̃k,l
r (tn + δtr (tn))

= �ek
r (tn + δtr (tn))

(�xr (tn + δtr (tn)) + ��xETr (tn)

− �xk(tn + δtr (tn)) − ��xl(tn)
) − �el

r (tn + δtr (tn))

· (�xr (tn + δtr (tn)) + ��xETr (tn) − �xl(tn + δtr (tn))

− ��xl(tn)
) + cδtk,l

r (tn) + I k,l
r (tn) + T k,l

r (tn)

+bk,l(tn) + �ρMPk,l
r

(tn) + ηk,l
r (tn), (2)

with the satellite code bias bk, the code multipath �ρMPk
r
,

and the code noise ηk
r as additional parameters.

GNSS receivers also track the Doppler frequency for
each satellite and, thereby, provide information on the
receiver velocity. We model the SD Doppler
measurements according to Misra and Enge [24] as

f̃
k,l
Dr

(tn) = −fc
(�ek

r (tn)(�vr (tn) − �vk(tn))/c

−�el
r (tn)(�vr (tn) − �vl(tn))/c

)
+fcδτ̇

k,l(tn) + εf
k,l
Dr

(tn), (3)

with the carrier frequency fc, the receiver velocity �vr , the
satellite velocity �vk , the satellite clock drift δτ̇ k , and the
measurement noise εf

k,l
Dr

.
The SD carrier phase measurements are rearranged for

receiver 1; i.e., all known terms are brought to the left side.
We use the ultrarapid (half-predicted) precise orbits and
clocks from IGS [2]. As the ionospheric corrections are
not sufficiently accurate for satellite phase bias estimation
and ambiguity resolution, we determine a vertical
ionospheric delay for each satellite at its respective
ionospheric pierce point. We consider the Chapman profile
of the ionosphere and use a multilayer model of the
ionosphere as described by Hoque and Jakowski in [25]. A
slant delay I k,i

r is determined for each layer, and the total
slant delay is given by the sum of individual delays,

I k
r =

∑
i

I k,i
r , (4)

where the slant ionospheric delay of the ith layer is
obtained from projective geometry and the Chapman
distribution:

I k,i
r = I i

vr√
1 −

(
(hi+Re) cos(Ek,i

r )
hmIPP+Re

)2
· (erf(hi+1) − erf(hi)) ,

(5)
with the height hi of the ith layer, the satellite elevation
Ek,i

r at the ith layer, the peak ionization height hmIPP, and
the error function erf(·). The multilayer model takes the
spatial gradient ∂Ivr

∂x
of the ionospheric delay into account;

i.e., the vertical delay at the ith layer is modeled by

I i
vr

= Ivr
(xmIPP) + ∂Ivr

∂x

(
xIPPi

r
− xmIPP

)
, (6)

with xIPPi
r

being the location of the ionospheric pierce
point of the ith layer.

The obtained ionospheric slant delay is interpreted as
the product of an improved mapping function mI(Ek

r ) and
a vertical ionospheric delay at the peak ionization height.
The vertical ionospheric delay is modeled as the sum of a
rough estimate I k

vr
and a precise correction I k

vr
. Thus, the

SD slant ionospheric delay is modeled as

I k,l
r = mI(E

k
r )

(
I k

vr
+ �Ik

vr

) − mI(E
l
r )(I l

vr
+ �Il

vr
) + ηIkl

r
,

(7)
with the mapping function obtained from the multilayer
model.

The tropospheric delays are decomposed into a dry
component and a wet component, which are determined
with the MOPS model (RTCA DO-229D) of ESA. This
leaves the absolute position, SD ambiguities and phase
biases, vertical ionospheric delay errors, and SD phase
multipath delays as unknowns:

λϕ
k,l
1 (tn + δt1(tn)) :

= λϕ̃
k,l
1 (tn + δt1(tn)) − �ek

1(tn + δt1(tn))

· (��xET1 (tn) − �xk(tn + δt1(tn)) − ��xk(tn + δt1(tn))
)

+ �el
1(tn + δt1(tn))

(
��xET1 (tn) − �xl(tn + δt1(tn))

− ��xl(tn + δt1(tn))
) − cδt

k,l
1 (tn) + mI(E

k(tn))I k
v (tn)

− mI(E
l(tn))I l

v(tn) − T
k,l

1 (tn) − λ�ϕPWk,l
1

(tn)

− λ�ϕPCOk,l
1

(tn) − λ/2�N
k,l
1 (tn)

= �ek,l
1 (tn + δt1(tn))�x1(tn + δt1(tn))

+ λ(Nk,l
1 + βk,l(tn)) − mI(E

k
1(tn))�Ik

v1
(tn)

+ mI(E
l
1(tn))�Il

v1
(tn) + λ�ϕMPk,l

1
(tn) + ε

k,l
1 (tn). (8)

The SD code measurements are rearranged in the same
manner. For the Doppler measurements, the satellite
velocities and clock drifts are a priori known [24], which
enables us to rewrite (3) as

f
k,l
Dr

(tn) : = f̃
k,l
Dr

(tn) − fc�ek
r (tn)�vk(tn)/c

+ fc�el
r (tn)�vl(tn)/c − fcδτ̇

k,l(tn)

= −fc�ek,l
r (tn)�vr (tn)/c + εf

k,l
Dr

(tn). (9)

Inertial sensors provide high-rate acceleration and
angular rate measurements, which are not affected by
GNSS signal reception conditions and enable a reliable
detection and correction of cycle slips for kinematic
receivers. The acceleration and angular rate are sensed in
the sensor-fixed (s-) frame, which is centered at the
sensor’s chip and aligned with the principal axes of the
chip. We assume that the s-frame is aligned with the
body-fixed (b-) frame, which is centered at the vehicle and
aligned with the longitudinal and transversal axes of the
vehicle.
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As GNSS and inertial measurements are obtained in
different frames, a frame transformation is needed. We use
the e-frame (also ECEF frame) for the sensor fusion. It is
centered at the Earth’s center with the x-axis pointing in
the equatorial plane towards the 0◦ meridian and the z-axis
pointing toward the geographic north pole. The navigation
(n-) frame is centered at the vehicle and aligned with the
east, north, and up directions. The n-frame serves as a
reference frame for the attitude of the vehicle. The
acceleration measurement is provided in the b-frame and
is modeled according to Jekeli [26] as

ab(tn) = Rb
n(tn)Rn

e (tn)ae(tn) + bb
a(tn)

+ g

⎛
⎜⎝

sin(θ(tn))

cos(θ(tn)) sin(ϕ(tn))

cos(θ(tn)) cos(ϕ(tn))

⎞
⎟⎠ + εb

a(tn), (10)

with the rotation matrices Rn
e and Rb

n, the acceleration ae in
the e-frame, the acceleration biases bb

a of the sensor in the
b-frame, the gravitational acceleration g, the pitch angle θ ,
the roll angle ϕ, and the measurement noise εb

a . The
rotation from the e-frame into the n-frame depends on the
latitude ϕ1 and longitude λ1 of receiver 1 and is given by

Rn
e (tn) = R1(π/2 − ϕ1(tn))R3(π/2 + λ1(tn)). (11)

The rotation from the n-frame into the b-frame depends on
the heading ψ and pitch θ of the vehicle and is given by

Rb
n(tn) = R2(−θ (tn))R3(π/2 − ψ(tn)). (12)

The gyroscope senses the angular rates ωb
ib of the

body-fixed (b-) frame with respect to the inertial (i-) frame
in the b-frame. The angular rate measurements can be
expressed as the sum of ωb

in, ωb
nb, a bias bb

ωib
, and a noise

ηb
ωib

; i.e.,

ωb
ib(tn) = Rb

n(tn)ωn
in(tn) + ωb

nb(tn) + bb
ωib

(tn) + ηb
ωib

(tn).
(13)

The angular rates ωb
nb are related to the rates of the

Euler angles according to Jekeli [26] as

ωb
nb = R1(ϕ)R2(θ )

⎛
⎝ 0

0
ψ̇

⎞
⎠ + R1(ϕ)

⎛
⎝ 0

θ̇

0

⎞
⎠ +

⎛
⎝ ϕ̇

0
0

⎞
⎠

=
⎛
⎝ 1 0 − sin(θ)

0 cos(ϕ) cos(θ ) sin(ϕ)
0 − sin(ϕ) cos(θ ) cos(ϕ)

⎞
⎠

⎛
⎝ ϕ̇

θ̇

ψ̇

⎞
⎠ , (14)

with Ri(α) being a rotation around the ith axis by an angle
α. The rotation ωn

in of the navigation frame with respect to
the inertial frame depends on the latitude ϕ1, the rates
{ϕ̇1, λ̇1} of latitude and longitude, and Earth’s rotation rate
ωe, and it is given by Jekeli [24] as

ωn
in =

⎛
⎜⎝

(λ̇1 + ωe) cos(ϕ1)

−ϕ̇1

−(λ̇1 + ωe) sin(ϕ1),

⎞
⎟⎠ . (15)

IV. ESTIMATION OF SATELLITE PHASE BIASES AND
VERTICAL IONOSPHERIC DELAYS

In this section, the satellite phase biases are
determined with a network of low-cost GNSS receivers.
As the clock offsets of low-cost GNSS receivers are in the
order of 1 ms, a synchronization correction is required for
each SD measurement of receiver r ∈{2, . . ., R}. The first
receiver serves as a reference receiver. The measurement
model of (8) is used for the reference receiver.

For all other receivers, we bring all known terms to the
left side and consider the satellite and receiver position at
time tn + δτ1(tn) [instead oftn + δτr (tn)] to obtain

λϕk,l
r (tn + δtr (tn)) :

= λϕ̃k,l
r (tn + δtr (tn)) − �ek

r (tn)
(
��xETr (tn) − ��xk(tn)

)
+ �el

r (tn)
(
��xETr (tn) − ��xl(tn)

)
+ �ek

r (tn + δt1(tn))�xk(tn + δt1(tn))

− �el
r (tn + δt1(tn))�xl(tn + δt1(tn))

− cδtk,l
r (tn) − T k,l

r (tn) + mI(E
k
r (tn))I k

vr
(tn)

− mI(E
l
r (tn))I l

vr
(tn) − λ�ϕPWk,l

r
(tn)

− λ�ϕPCOk,l
r

(tn) − λ/2�Nk,l
r (tn), (16)

which can also be expressed in terms of the unknown
parameters as

λϕk,l
r (tn + δtr (tn))

= �ek,l
1 (tn + δt1(tn))�xr (tn + δt1(tn))

−mI(E
k
r (tn))�Ik

vr
(tn) + mI(E

l
r (tn))�Il

vr
(tn)

+λ(Nk,l
r + βk,l(tn)) + c

k,l
1,r (tn) + εk,l

r (tn), (17)

with the synchronization correction c
k,l
1,r , which describes

the change of the receiver and satellite positions within
δtr (tn) − δt1(tn) and is given by

c
k,l
1,r (tn)

= �ek
r (tn + δtr (tn))(�xr (tn + δtr (tn)) − �xk(tn + δtr (tn)))

− �el
r (tn + δtr (tn))(�xr (tn + δtr (tn)) − �xl(tn + δtr (tn)))

− �ek
1(tn + δt1(tn))(�xr (tn + δt1(tn)) − �xk(tn + δt1(tn)))

+ �el
1(tn + δt1(tn))(�xr (tn + δt1(tn)) − �xl(tn + δt1(tn))).

(18)

The receiver clock offsets δtr(tn) can be obtained by a
stand-alone standard least-squares estimation of the
receiver position and clock offset.

Cycle slips need to be corrected as well. Since the
receivers are static for satellite bias determination, it is
sufficient to use triple difference (TD) phase
measurements for the correction of half-cycle slips; i.e.,

�Ň
k,l
1,r (tn) =

[(
λϕ

k,l
1,2(tn) − λϕ

k,l
1,2(tn−1)

)
/(λ/2)

]
. (19)

The position �xr, r = {2, . . . , R}, can be expressed in
terms of �x1 and the baseline vector �b1,r between both
receivers:

�xr (tn) = �x1(tn) − �b1,r (tn). (20)
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Similarly, we express the SD ambiguities Nk,l
r of the rth

receiver in terms of N
k,l
1 and of the DD integer

ambiguities N
k,l
1,r as

Nk,l
r = N

k,l
1 − N

k,l
1,r , (21)

which enables us to rewrite (16) as

λϕk,l
r (tn + δtr (tn))

:= λϕ̃k,l
r (tn + δtr (tn)) − �ek

r (tn)
(
��xETr (tn) − ��xk(tn)

)
+ �el

r (tn)
(
��xETr (tn) − ��xl(tn)

)
+ �ek

r (tn + δt1(tn))�xk(tn + δt1(tn))

− �el
r (tn + δt1(tn))�xl(tn + δt1(tn))

− cδtk,l
r (tn) − T k,l

r (tn) + mI(E
k
r (tn))I k

vr
(tn)

− mI(E
l
r (tn))I l

vr
(tn) − λ�ϕPWk,l

r
(tn) − λ�ϕPCOk,l

r
(tn)

− λ/2�Nk,l
r (tn), (22)

which can also be written in terms of the remaining
unknowns as

λϕk,l
r (tn + δtr (tn))

= �ek,l
1 (tn + δt1(tn)) · (�x1(tn + δt1(tn)) − �b1,r (tn + δt1(tn)))

− mI(E
k
r (tn))�Ik

vr
(tn) + mI(E

l
r (tn))�Il

vr
(tn)

+ λ(Nk,l
1 − N

k,l
1,r + βk,l(tn)) + c

k,l
1,r (tn) + εk,l

r (tn). (23)

It is sufficient to use only carrier phase and pseudorange
measurements for satellite bias determination with static
receivers. We stack all measurements at time tn in a vector
to obtain

zn = (
λϕT

1 (tn), . . . , λϕT
R(tn), ρT

1 (tn), . . . , ρT
R(tn)

)T
, (24)

where SD phase and code measurements are synchronized
and half-cycle slips are precorrected; i.e.,

λϕT
r =

(
λϕ1,l

r − c
1,l
1,r − λ/2�Ň

1,l
1,r , . . . ,

λϕ32,l
r − c

32,l
1,r − λ/2�Ň

32,l
1,r

)T
,

ρT
r =

(
ρ1,l

r − c
1,l
1,r , . . . , ρ

32,l
r − c

32,l
1,r

)T
. (25)

Additionally, all unknown parameters at time tn are
stacked in the state vector

xn =
(

�xT
1 (tn), �bT

1,2(tn), . . . , �bT
1,R(tn),

�IT
v1

(tn), . . . , �IT
vR

(tn), �İT
v1

(tn), . . . , �İT
vR

(tn),

�ρT
MP1

(tn), . . . , �ρT
MPR

(tn),

NT
1 (tn), NT

1,2(tn), . . . , NT
1,R(tn)

)T

, (26)

with

�Ivr
= (

�I 1
vr

, . . . , �I 32
vr

)T ∈ R
32×1

�ρMPr
=

(
�ρMP1,l

r
, . . . , �ρMP32,l

r

)T
∈ R

32×1

N1 =
(
N

1,l
1 + β1,l , . . . , N

32,l
1 + β32,l

)T
∈ R

32×1

N1,r =
(
N

1,l
1,r , . . . , N

32,l
1,r

)T
∈ Z

32×1. (27)

The modeling of the state parameters over time shall
also be considered in the parameter estimation. Obviously,
the absolute and relative positions and ambiguities are
constants.

The vertical ionospheric delay corrections �Ik
vr

can be
separated from the absolute ambiguities (lumped with
satellite phase biases) only by a change of the ionospheric
mapping function. Because an accurate separation is
essential for precise satellite bias estimation, we consider
the measurements of multiple epochs and introduce a state
space model. We model the temporal behavior of the
vertical ionospheric delay by a piecewise linear function
over time [27].

�Ik
vr

(t) = �Ik
vr

(ti−1) + (t − ti) · �İk
vr

(ti−1) + ηIk
vr

(t)

for ti−1 < t < ti, (28)

where ti − ti−1 has to be chosen sufficiently large such that
it enables a separation of biases and ionospheric delays
and sufficiently small such that the modeling error is still
small. The parameter estimation remains ill-conditioned
because ti − ti−1 can be only in the order of a few minutes.
Therefore, we include additional constraints on the
ionospheric vertical delays [27] to improve the
conditioning. The constraints are added as statistical a
priori information, i.e., as soft instead of hard constraints
[28]. The a priori information on the vertical ionospheric
delay correction is modeled as

�Īk
vr

= �Ik
vr

+ η�Ik
vr
, η�Ik

vr
∼ N

(
0, σ 2

�Ik
vr

)
, (29)

with the Gaussian distribution N (·), the true vertical
ionospheric delay correction �Ik

vr
, and the variance σ 2

�Ik
vr

of the a priori information. Similarly, we constrain the
magnitude of the rate of the vertical ionospheric delay
correction by modeling it as

�İk
vr

∼ N
(

0, σ 2
�İk

vr

)
. (30)

The vertical ionospheric delays and their rates are also
spatially correlated [28]. Therefore, we also include some
constraints on the difference between vertical ionospheric
delays, i.e.,

�Ik
vr

− �Il
vr

∼ N
(

0, σ 2
�Ik

vr
−�Il

vr

)
∀ : {k, l}, (31)

where σ 2
�Ik

vr
−�Il

vr

depends on the distance between both
ionospheric pierce points. Similar a priori information can
be added on the difference in rates of the vertical
ionospheric delay corrections.

The code multipath of static receivers is also correlated
over time. Therefore, the SD code multipath is modeled as

�ρMPk,l
r

(tn) = �ρMPk,l
r

(tn−1) + η�ρ
MPk,l

r

(tn). (32)

Obviously, the correlation introduced by single differences
with a common reference satellite has to be taken into
account.
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At any epoch, only a subset of satellites is visible. We
denote the subset of available measurements by sz

n(zn).
Similarly, the set sx

n of indices is introduced to describe the
subset of state parameters that can be updated at time tn.
Both the measurements and the statistical a priori
information are linear with respect to the unknown state
parameters; i.e.,

(
sz
n(zn)

sx
n (x̄n)

)
=

(
Hz

n

H x̄
n

)
sx
n (xn) +

(
ηsz

n(zn)

ηsx
n (x̄n)

)
, (33)

with

x̄n =
(

�Ī 1
v1

, . . . , �Ī 32
v1

, . . . , �Ī 1
vR

, . . . , �Ī 32
vR

,

� ¯̇I
1

v1
, . . . , � ¯̇I

32

v1
, . . . , � ¯̇I

1

vR
, . . . , � ¯̇I

32

vR
,

�Ī 1
v1

− �Ī l
v1

, . . . , �Ī 32
v1

− �Ī l
v1

, . . . ,

�Ī 1
vR

− �Ī l
vR

, . . . , �Ī 32
vR

− �Ī l
vR

,

� ¯̇I
1

v1
− � ¯̇I

l

v1
, . . . , � ¯̇I

32

v1
− � ¯̇I

l

v1
, . . . ,

� ¯̇I
1

vR
− � ¯̇I

l

vR
, . . . , � ¯̇I

32

vR
− � ¯̇I

l

vR

)T

, (34)

and where Hn is implicitly defined by the measurement
models of (8) and (23). We assume that the measurements
and the a priori information are statistically independent
and that their noises are Gaussian distributed,

ηsz
n(zn) ∼ N (0, �sz

n(zn)) and ηsx
n (x̄n) ∼ N (0, �sx

n (x̄n)).
(35)

The state transition is also described by a linear model
according to the previous description. In matrix-vector
notation, the state space model is written as

sx
n (xn) = �sx

n (xn) + ηsx
n (xn), (36)

with the state transition matrix � and process noise ηsx
n (xn).

The state vector is estimated with a Kalman filter [10].
The a posteriori state estimate is given by

sx
n (x̂+

n ) = sx
n (x̂−

n ) + Kn

((
sz
n(zn)

sx
n (x̄n)

)
− Hns

x
n (x̂−

n )

)
, (37)

with the predicted state estimate sx
n (x̂−

n ) = �sx
n (x̂+

n−1) and
the Kalman gain

Kn = �sx
n (x̂−

n )H
T
n

(
Hn�sx

n (x̂−
n )H

T
n + �sz

n(zn)

)−1
. (38)

The covariance matrix of the float solution of (37) is given
by

�sx
n (x̂+

n ) = (1 − KHn)�sx
n (x̂−

n ). (39)

The accuracy of the state estimation can be significantly
improved if the integer property of the DD ambiguities is
taken into account. We denote by N̂+ the subset of state
parameters describing the DD float ambiguity estimates in
(37). The ambiguities are fixed by an integer least-squares

estimation [29], so

Ň = arg min
N

‖N̂+ − N‖2
�−1

N̂+

= arg min
N

‖L−1(N̂+ − N)‖2
D−1, (40)

where an LDLT decomposition was applied to the
covariance matrix �N̂+ , which was obtained from �x̂+ .
The sum of squared decorrelated ambiguity residuals can
also be expressed in terms of conditional ambiguities. Let
N̂j |1,...,j−1, where j ∈ {1, . . . , K}, denote the jth
conditional ambiguity, and let σ 2

N̂j |1,...,j−1 = D−1
j,j be its

variance, then the integer estimate of N is given by

Ň = arg min
N1,...,NK

k∑
j=1

(Nj − N̂j |1,...,j−1)
2

σ 2
N̂j |1,...,j−1

. (41)

The integer least-squares estimation requires a search
of the “best” candidate inside a predefined search space
volume χ2:

‖N̂+ − N‖2
�−1

N̂+
≤ χ2. (42)

Writing the sum of squared ambiguity residuals in terms
of the conditional ambiguities [18], and rearranging,
yields a quadratic inequality for determining Ni:

(Ni − N̂ i|1,...,i−1)
2

σ 2
N̂ i|1,...,i−1

≤ χ2 −
∑
j 
=i

(Nj − N̂j |1,...,j−1)
2

σ 2
N̂j |1,...,j−1

≤ χ2 −
i−1∑
j=1

(Nj − N̂j |1,...,j−1)
2

σ 2
N̂j |1,...,j−1

. (43)

Solving (43) for Ni gives a lower and an upper bound:

Ni ≥ N̂ i|1,...,i−1 − σN̂i|1,...,i−1

√
αi

Ni ≤ N̂ i|1,...,i−1 + σN̂i|1,...,i−1

√
αi, (44)

with

αi = χ2 −
i−1∑
j=1

(Nj − N̂j |1,...,j−1)
2

σ 2
N̂j |1,...,j−1

. (45)

Once the tree search is completed and the candidate of
smallest sum of squared errors is selected, all real-valued
parameters can be readjusted. The obtained fixed solution
has a far higher accuracy than the float solution if the
ambiguities are fixed correctly.

Finally, the vertical ionospheric delay corrections and
the real-valued lumped sum of the SD satellite phase
biases and integer ambiguities of the first receiver serve as
a correction for kinematic PPP. For the latter value, it is
sufficient to provide the real-valued part of this sum,

βk,l + N
k,l
1 − [βk,l − N

k,l
1 ] = βk,l − [βk,l], (46)

as the kinematic receiver is determining an integer
ambiguity for each SD measurement.
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TABLE I
Measurement Noise Assumptions for Bias Estimation

Phase noise (undifferenced) σϕ = {2 mm . . . 4 mm}
depending on satellite elevation

Code noise (undifferenced) σρ = {0.5 m . . . 1 m}
depending on satellite elevation

TABLE II
A Priori Information on Ionospheric Delays

Vertical ionospheric delay corrections �Īk
vr

= 0 m ∀ {r, k}
σ

�Īk
vr

= 10 m ∀ {r, k}
Difference of vertical ionospheric delay �Īk

vr
− �Ī l

vr
= 0 m

corrections σ
�Īk

vr −�Ī l
vr

= 0.5 m

∀ {r, k}
Rates of vertical ionospheric delay � ¯̇I

k

vr
= 0 m ∀ {r, k}

Corrections σ
� ¯̇I

k

vr

= 0.1 mm/s

V. MEASUREMENT RESULTS FOR VERTICAL
IONOSPHERIC DELAY ESTIMATION

The proposed method for vertical ionospheric delay
and satellite phase bias estimation was verified with a
local network of three single-frequency low-cost u-blox
LEA 6T GPS receivers and patch antennas. The
receivers were mounted on a field at λ1 = 10.74427◦,
ϕ1 = 52.38332◦, λ2 = 10.74575◦, ϕ2 = 52.38332◦, and
λ3 = 10.74427◦, ϕ3 = 52.38278◦ with open sky conditions
on February 26, 2014. The interstation distance was 100 m
between receivers 1 and 2 and 60 m between receivers 1
and 3. These short distances result in a high correlation of
the ionospheric delays. This correlation is exploited by our
constraints on the ionospheric gradients and rates.

Tables I and II include our assumptions for the
measurement noise and a priori information. The
measurement noise statistics were determined in static
conditions as follows: DD measurements were performed
and analyzed over a (short) period of 30 s. As static DDs
can be well approximated by a linear model over such
short time periods, a least-squares estimation of the
coefficients of the linear model was performed. The
standard deviations of the DD noises were then obtained
from the root mean square of the residuals of the
least-squares estimation. The standard deviations of the
undifferenced measurements were obtained by scaling of
the standard deviations of the DDs.

In Table II, the a priori information on the vertical
ionospheric delay is rather loose to enable an ionospheric
correction also in the absence of European Geostationary
Navigation Overlay Service (EGNOS) corrections.
However, the rates of the vertical ionospheric delays were
assumed to be constant over ti − ti−1 = 3 min and tightly
constrained to enable a separation of biases and
ionospheric delays.

The standard deviations of the process noise of the
code multipath are modeled by an elevation-dependent

Fig. 3. Estimation of ionospheric delays with local network of low-cost
single-frequency GNSS receivers: Slant ionospheric delays correspond to

projection of vertical ionospheric delay estimates into slant direction.
Variation in time is mainly caused by changes in mapping functions and

only to a small extent by changes in zenith delays. Noise level of
ionospheric delay estimates is in order of millimeters and, thus, much
more accurate than conventional code minus phase–based ionosphere

estimation.

exponential function,

σ�ρMPk
r
(Ek

r ) = c0 · e−Ek
r /c1, (47)

where the coefficients c0 and c1 were chosen such that
σ�ρMPk

r
∈ {0.5 m, . . . , 1 m} for Ek

r ∈ {15◦, . . . , 90◦}.
Fig. 3 shows the slant ionospheric delays obtained

from a projection of the vertical ionospheric delay
estimates. The vertical delays were determined jointly
with the absolute and relative receiver positions, the SD
ambiguities (lumped with the SD satellite phase biases),
the DD ambiguities, and the SD code multipath with a
local network of low-cost GNSS receivers. The variation
in time of the slant ionospheric delays is mainly caused by
changes in the mapping functions and only to a small
extent by changes in zenith delays. The noise level of the
ionospheric delay estimates is in the order of millimeters,
as the estimation mainly relies on the precise phase
measurements. It is much more accurate than a
conventional code minus phase–based ionospheric
delay estimation, which is heavily affected by code
multipath.

Fig. 4 shows the carrier phase residuals for the
estimation of the absolute and relative receiver positions,
SD ambiguities (lumped with SD satellite phase biases),
DD integer ambiguities, vertical ionospheric delays, and
SD code multipath delays with a regional network of
low-cost GNSS receivers. The residuals are unbiased and
drift-free, which indicate the correctness of the model. The
noise level of the residuals is in the order of a few
centimeters, which corresponds to some short-term
ionospheric variations and SD phase multipath.
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Fig. 4. Carrier phase residuals of satellite phase bias and ionospheric
delay estimation with local network of low-cost GNSS receivers:

Residuals are unbiased and drift-free, which indicates correctness of
model. Noise level of residuals is in order of a few centimeters, which
corresponds to some short-term ionospheric variations and SD phase

multipath.

VI. KINEMATIC PPP AND ATTITUDE
DETERMINATION: GPS/INS SENSOR
FUSION WITH TIGHT COUPLING

In this section, a joint PPP and attitude determination
method is described. The measurements from two
low-cost GNSS receivers, an accelerometer, and a
gyroscope are tightly coupled in an extended Kalman filter
[10]. The vertical ionospheric delay and satellite phase
bias estimates of (46) are used to restore the integer
property of the absolute SD ambiguities and, thereby, to
improve the absolute position accuracy.

As the gyroscope provides the rate of heading, pitch,
and roll, we parameterize also the baseline vector �b1,2 in
terms of the attitude angles:

�b1,2 = �x1 − �x2 = l ·

⎛
⎜⎝

sin(ψ) cos(θ )

cos(ψ) cos(θ )

sin(θ)

⎞
⎟⎠ . (48)

The set of measurements is divided into two types γ n

∈ {1,2} of subsets sz
n(γn, zn): A first subset of GNSS

measurements that is denoted by sz
n(1, zn) and a second

subset of INS measurements described by sz
n(2, zn). The

introduction of the subset type γ n enables an elegant
notation because the state estimation based on GNSS and
INS measurements can be described with the same
expressions. At each epoch, there is only a subset of
measurements (subset of K satellites or
gyroscope/acceleration measurements) available. The first
subset is given by

sz
n(1, zn) = (

λϕT
1 (tn), λϕT

2 (tn), ρT
1 (tn), ρT

2 (tn),

f T
D1

(tn), f T
D2

(tn)
)T

, (49)

where the SD carrier phases are corrected for the
ionospheric delays and SD satellite phase biases of (46) in
addition to the synchronization and cycle-slip corrections,

i.e.,

λϕT
r = (

λϕ1,l
r − c

1,l
1,r − λ/2�N

1,l
1,r − λ(β̂1,l − [β̂1,l])

+ mI(E
1
r )�I 1

vr
− mI(E

l
r )�Il

vr
,

...

λϕK,l
r − c

K,l
1,r − λ/2�N

K,l
1,r − λ(β̂K,l − [β̂K,l])

+ mI(E
K
r )�IK

vr
− mI(E

l
r )�Il

vr

)T
. (50)

The second subset includes the angular rate and
acceleration measurements and is given by

sz
n(2, zn) =

(
(ωb

ib(tn))
T
, (ab(tn))

T
)T

. (51)

Similarly, we introduce two subsets of state parameters:
The set of state parameters updated by GNSS
measurements [30] is written as

sx
n (1, xn) = (�x T

1 (tn), �v T
1 (tn), �a T

1 (tn),

ψ(tn), ψ̇(tn), θ(tn), θ̇ (tn), ϕ(tn), ϕ̇(tn),

NT
1 (tn), NT

1,2(tn), �ρT
MP1

(tn), �ρT
MP2

(tn),

(bb
ωib

(tn))
T
, (bb

a(tn))
T)T

. (52)

Note that the IMU biases are also included in the state
vector, although they are not directly observable by GPS.
However, the Doppler measurements of the first receiver
provide unbiased information on the velocity. The change
of the velocity over time gives unbiased information on
the acceleration and, thus, enables the correction of
acceleration biases. Similarly, the Doppler measurements
of the second receiver provide unbiased information on the
angular rates and, thereby, can correct also the biases of
the angular rates. These biases are directly observable by
the gyroscope but cannot be separated from the angular
rates without GPS. The subset of state parameters updated
by INS measurements is given by

sx
n (2, xn) = (�x T

1 (tn), �vT
1 (tn), �a T

1 (tn),

ψ(tn), ψ̇(tn), θ(tn), θ̇ (tn), ϕ(tn), ϕ̇(tn),

(bb
ωib

(tn))
T
, (bb

a(tn))
T)T

. (53)

The measurements of both observation types are used to
update the state vector in a tight coupling. As the
measurement rate of most low-cost gyroscopes and
accelerometers is 100 Hz and, thus, higher than the
measurement rate of most low-cost GNSS receivers, the
state vector is updated more often by IMU than by GNSS
measurements. The measurements are nonlinear functions
of the state vector due to the trigonometric relationship
between the Euler angles and the baseline vector; i.e.,

sz
n(γn, zn) = hn(sx

n (γn, xn)) + ηzn
(sz

n(γn, zn)), (54)

with hn(·) being implicitly defined by the measurement
models, and where ηzn

(sz
n(γn, zn)) ∼ N (0, �sz

n(γn,zn)) is the
Gaussian measurement noise. The vehicle dynamics and
temporal variations of the code multipath errors, and
gyroscope and acceleration biases are described in the
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state space model. We consider a linear state space model,

sx
n (γn, xn) = �sx

n (γn, xn−1) + ηxn
(sx

n (γn, xn)), (55)

with the state transition matrix � and the process noise
ηxn

(sx
n (γ )) ∼ N (0, �xn(sx

n (γ ))).
The state vector is determined with an extended

Kalman filter [10]. It includes the state prediction

sx
n (γn, x̂

−
n ) = �sx

n (γn, x̂
+
n−1), (56)

with the covariance matrix of the predicted state

�sx
n (γn,x̂

−
n ) = ��sx

n (γn,x̂
+
n−1)�

T + �sx
n (γn,xn), (57)

and the state update

sx
n (γn, x̂

+
n ) = sx

n (γn, x̂
−
n )

+ Kn

(
sz
n(γn, zn) − hn(sx

n (γn, x̂
−
n ))

)
. (58)

The latter expression requires the evaluation of a
nonlinear function. As the statistics of a nonlinear function
cannot be determined analytically, the baseline �b1,2 of (48)
is linearized as

�b1,2 ≈ (�b1,2)0 + ∂ �b1,2

∂ψ

∣∣∣∣∣ ψ=ψ0

θ=θ0

· (ψ − ψ0) + ∂ �b1,2

∂θ

∣∣∣∣∣ ψ=ψ0

θ=θ0

·(θ − θ0). (59)

The Doppler measurement of the second receiver
depends on the velocity of the second receiver, which is
given by

�v2 = �̇x2 = �̇x1 − �̇b1,2 = �̇x1 − l ·
⎛
⎝

⎛
⎝ cos(ψ) cos(θ )

− sin(ψ) cos(θ )
0

⎞
⎠ · ψ̇

+
⎛
⎝ − sin(ψ) sin(θ)

− cos(ψ) sin(θ)
cos(θ)

⎞
⎠ · θ̇

⎞
⎠ , (60)

and, thus, is also nonlinear in ψ and θ . Therefore, the
baseline rate is also linearized as

�̇b1,2 ≈ ( �̇b1,2)0 +
(

∂ �̇b1,2

∂ψ
,
∂ �̇b1,2

∂θ
,
∂ �̇b1,2

∂ψ̇
,
∂ �̇b1,2

∂θ̇

)∣∣∣∣∣ ψ=ψ0,ψ̇=ψ̇0

θ=θ0,θ̇=θ̇0

·

⎛
⎜⎜⎝

ψ − ψ0

θ − θ0

ψ̇ − ψ̇0

θ̇ − θ̇0

⎞
⎟⎟⎠ . (61)

Once hn(·) is linearized, the covariance matrix of the
state update can be easily determined as

�sx
n (γn,x̂

+
n ) = (1 − KnHn)�sx

n (γn,x̂
−
n ). (62)

The accuracy of the state estimates improves if the SD
and DD integer ambiguities are fixed correctly to integers.
The initial ambiguity fixing can be performed already in
static conditions, i.e., without inertial measurements. In
this case, the state vector of (52) simplifies to

sx
n (γn, xn) = (�x T

1 (tn), �b T
1,2(tn), NT

1 (tn), NT
1,2(tn),

�ρT
MP1

(tn), �ρT
MP2

(tn)
)T

. (63)

The reliability of the fixing of DD ambiguities
increases if the baseline length a priori information is also
taken into account. Therefore, the unconstrained integer
least-squares estimation of (40) is extended to [19, 18],
where

N = arg min
N

(∥∥N̂+ − N
∥∥2

�−1
N̂+

+ min
ξ

(∥∥ξ̌ (N ) − ξ
∥∥2

�ξ̌ (N )
+ ( ‖Sξ‖ − l)2/σ 2

l

))
,

(64)

with l and σl being the a priori information on the baseline
length and its uncertainty, respectively, and where S is a
selection matrix for selecting the baseline coordinates in
xn. The constrained integer least-squares estimation of (64)
requires again a search, which is written as an inequality:

∥∥N̂+ − N
∥∥2

�−1
N̂+

+ min
ξ

(∥∥ξ̌ (N ) − ξ
∥∥2

�ξ̌ (N )
+ (‖Sξ‖ − l)2/σ 2

l

)
≤χ2. (65)

Expressing the ambiguity residuals in terms of the
conditional ambiguity estimates and solving for Ni result
in a lower and upper bound for each ambiguity according
to (44) but with different

αi = χ2 −
i−1∑
j=1

(Nj − N̂j |1,...,j−1)
2

σ 2
N̂j |1,...,j−1

− min
ξ

(∥∥ξ̌ (N ) − ξ
∥∥2

�ξ̌ (N )
+ (‖Sξ‖ − l)2/σ 2

l

)
. (66)

As the αi values of (66) are smaller than those in (45),
the search intervals are smaller for the constrained than for
the unconstrained tree search. However, the computation
of the lower and upper bounds becomes more demanding.

VII. MEASUREMENT RESULTS FOR KINEMATIC PPP
AND ATTITUDE DETERMINATION

In this section, the proposed kinematic PPP and
attitude determination method is verified with real
measurements from low-cost GNSS receivers and an
inertial sensor. First, the hardware setup is described.
Subsequently, the measurement and process noise
assumptions are provided, and the obtained measurement
results are analyzed. The measurement test was performed
with a vehicle on which the following hardware was
mounted:

1) 2 u-blox LEA 6T GPS receivers with 5 Hz data rate;
2) 2 L1 patch antennas mounted on the roof of a

vehicle along its longitudinal axis with a baseline
length of l = 1.2 m and σ l = 1 cm;

3) an MPU 9150 inertial sensor from Invensense
with a 3D gyroscope, a 3D accelerometer, and a 3D
magnetometer mounted on the roof of the vehicle,
providing measurements with a rate of 100 Hz; and
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TABLE III.
Measurement Noise Assumptions

Doppler noise (undifferenced) σfD
= {1 Hz . . . 10 Hz}

depending on satellite elevation
Angular rates σωb

ib,i
= 0.001 rad/s ∀ i ∈ {1, 2, 3}

Acceleration σab
i

= 0.1 m/s ∀ i ∈ {1, 2, 3}

TABLE IV.
Process Noise Assumptions

Acceleration σ n
ax

= 2.5 m/s2

σ n
ay

= 2.5 m/s2

σ n
az

= 0.25 m/s2

Derivatives of angular rates σψ̈ = 25◦/s2, σθ̈ = 25◦/s2

Single difference ambiguities σN = 0.1 cycles
Code multipath {2 m, . . . , 5 m}

depending on satellite elevation
Gyroscope biases σbb

ωib,i
= 2 × 10−7rad/s, i ∈ {x, y, z}

Accelerometer biases σbb
ai

= 10−9m/s2, i ∈ {x, y, z}

4) a reference system, consisting of a high-grade
inertial sensor and geodetic GNSS receiver (tightly
coupled).

A. Measurement and Process Noise Assumptions

The statistics of the phase and code measurement
noises are chosen according to Table I.

Tables III and IV include our assumptions for the
additional measurements and process noise statistics. For
any measurement type, the noise statistics were again
obtained by (1) taking the measurements in static
conditions, (2) by introducing a linear model for the
measurements over a short period of time, and (3) by
deriving the noise standard deviations from the residuals
of a linear least-squares fitting. Let z(tj) be a measurement
at time tj and {α0, α1} be the coefficients of a linear
model, then the variance of the least-squares fit is given by

σ 2(z) = min
α0,α1

J∑
j=1

(z(tj ) − (α0 + α1 · (tj − t0)))2. (67)

It shall be noted that both the Doppler measurements
and the difference of carrier phase measurements (from
two subsequent epochs) provide velocity information.
Thus, there is a certain correlation between both
measurements. However, the carrier phase measurements
of one single epoch cannot provide any velocity
information. The velocity obtained from the phase
difference refers to a different time (i.e., time between two
Doppler measurements) than the Doppler measurement.

The process noise assumptions were chosen according
to the dynamics of the vehicle, the temporal variation of
multipath errors, and the sensor characteristics. The carrier
phase ambiguities are in principle constant over time.
Because phase multipath, uncorrected cycle slips, and

Fig. 5. Northern part of vehicle’s track during test drive as determined
by proposed PPP with tight coupling of two low-cost GNSS receivers, a

gyroscope, and an accelerometer. Enlarged sections show start and
passing below a bridge. Each blue point refers to GPS-based state update.

Fig. 6. Southern part of vehicle’s track. Enlarged section shows track at
highway crossing with two passages below bridge. Width of bridge is 45

m. Each marker refers to GPS-based state update.

residual ionospheric delays are mapped to the ambiguities,
we have chosen a small process noise of 0.1 cycles.

B. Measurement Results

Figs. 5 and 6 show the vehicle’s track as obtained from
the absolute position estimates �̂x1. The starting point is in
the right part of Fig. 5. The initial heading was –98◦; i.e.,
the car was oriented in a western direction. The track
includes also passages below several bridges. These
passages are also enlarged with additional markers at every
epoch using a GPS-based state update. As INS-based state
updates occur 20 times more frequently than GPS-based
state updates, no markers are included. One can observe a
continuous path despite the GNSS signal interruption and
increased multipath. As some satellites are at low
elevation and as signals are also reflected, a GNSS-based
state update can still be performed during the first meters
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Fig. 7. Absolute positioning accuracy: Deviation between obtained
position of low-cost GPS receivers deviates by only a few centimeters

from geodetic reference solution.

Fig. 8. Code multipath estimates for receiver 1: Substantial correlation
over time indicates slow temporal variation of multipath. Correlation

between satellites arises from common reference satellite for all single
differences.

of driving below the bridge. Once all tracking loops have
lost lock, the reacquisition also takes some time, which
explains the distance between the end of the bridge and
the first GPS-based state update after the bridge.

Fig. 7 shows the deviation between the absolute
position obtained with the proposed tight coupling of two
low-cost GPS receivers and the absolute position of a
reference system for the first part of the track. The
difference is in the order of a few centimeters, which
indicates the accuracy of the previously determined
ionospheric corrections. The enlarged section shows the
absolute position error between two GPS-based state
updates. It is a continuous curve with 20 state updates
based on the inertial sensor.

Fig. 8 shows the satellite-satellite SD code multipath
estimates for receiver 1. Each curve represents one SD
with a common reference satellite. The code multipath
reflects the geometry of the environment. The multipath
offsets of up to 15 m exceed the code noise level and are
significantly correlated over time and between satellites.

Fig. 9. Speed of vehicle in eastern direction: Speed estimate of tightly
coupled low-cost GPS/INS differs by 0.1 m/s from reference system.

Fig. 10. Heading estimation with tight coupling: Comparison of
heading between low-cost GPS/INS hardware and reference solution.

The correlation between satellites arises from the single
differencing with a common reference satellite.

The correlation over time was not enforced by our
model, as the process noise standard deviation of {2 m,
. . ., 5 m} per epoch allows much larger variations over
time. Thus, the correlation arises from slow variations of
the code multipath and/or from other error sources that are
slowly varying in time and are projected into the code
multipath estimate. Clearly, the observed substantial
correlation indicates the strong benefit of estimating a
code multipath parameter per satellite.

The estimated speed of the vehicle in the eastern
direction is shown in Fig. 9. The difference between the
speed estimate using low-cost GPS and INS hardware and
the geodetic-grade GPS/INS reference solution is in the
order of only 0.1 m/s. It is also drift-free, which indicates
correct modeling and estimation of the acceleration biases.

Fig. 10 shows the heading of the vehicle. The heading
estimate based on low-cost GPS and INS hardware closely
follows the reference solution throughout the complete
measurement period. The enlarged section refers to a
bridge underpass. The heading estimate is continuous, and
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Fig. 11. Heading estimation with tight coupling: Difference between
heading based on low-cost GPS/INS hardware and reference solution.

Fig. 12. Cumulative distribution of heading error: Heading error is less
than 0.27◦ in 68.3% (1σ ) and less than 0.73◦ in 95.4% (2σ ) of all epochs.

the heading error remains less than 0.2◦ despite the GNSS
signal interruption.

This indicates 1) an accurate coasting of the heading
with the gyroscope measurements, 2) a precise
determination of the gyroscope bias before the signal
interruption, 3) a reliable correction of all cycle slips
(which occur frequently at the edges of a bridge), and 4) a
correct refixing of all DD integer ambiguities after the
bridge.

Fig. 11 shows the difference between the heading
estimate obtained from the low-cost GPS/INS hardware
and the reference solution. The heading offset is less than
0.5◦ for most of the time. As this error corresponds to a
relative position error of only 1 cm, the DD ambiguities
were most likely resolved correctly.

Fig. 12 shows the cumulative distribution of the
heading error including all passages below bridges. The
heading error is less than 0.27◦ in 68.3% (1σ ) and less
than 0.73◦ in 95.4% (2σ ) of all epochs.

The figure also shows the statistics of the heading
estimate from a state-of-the-art technique: As the carrier
phase integer ambiguities are not resolved in the receiver

Fig. 13. Comparison of rate of heading estimate of low-cost GPS/INS
system with reference system. Accuracy is in order of 0.1◦/s.

firmware of currently available low-cost GNSS receivers,
the heading is derived from the velocity, which is obtained
solely from the Doppler measurements of a single GNSS
receiver. A drawback of this GNSS approach is that no
meaningful heading information can be obtained in static
conditions. Moreover, the Doppler frequency also cannot
be tracked below bridges. Therefore, the availability of a
precise heading is significantly lower than for the
proposed tight coupling with carrier phase integer
ambiguity resolution.

Fig. 13 compares the rate of heading estimate using
low-cost GPS/INS hardware with the rate of heading of the
reference system. The accuracy is in the order of 0.1◦/s.

VIII. CONCLUSION

The highly automatized driving of vehicles requires a
precise and reliable position and attitude information with
high rate. The use of low-cost hardware is mandatory for
this application.

In this paper, we described a method for satellite phase
bias estimation and joint PPP and attitude determination
with low-cost GNSS receivers and an inertial sensor. We
took the particularities of these receivers into account and
showed that the achievable accuracies are comparable to
the ones of geodetic receivers. There were two processing
steps:

In the first step, vertical ionospheric delays and
satellite phase biases were determined by a network of
static GNSS receivers. The absolute position of one GNSS
receiver, the relative positions between this and all other
GNSS receivers, the SD code multipath delays, the DD
ambiguities, the vertical ionospheric delays, their rates,
and the satellite phase biases (lumped with SD
ambiguities) were estimated with a Kalman filter.

In the second step, the vertical ionospheric delay and
satellite phase bias estimates were used for kinematic PPP
and attitude determination. A tight coupling of carrier
phase, pseudorange, Doppler, angular rate, and
acceleration measurements was performed to estimate the
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position, velocity, acceleration, attitude, angular rates, SD
and DD ambiguities, code multipath offsets, and biases of
the gyroscope and accelerometer. The reliability of
ambiguity fixing was improved by including a priori
information on the baseline length between both receivers
into the tree search.

The proposed method was verified in a test drive with
two single-frequency u-blox LEA 6T GPS receivers and
the inertial sensor MPU 9150 of Invensense. The absolute
position was found with centimeter-level accuracy. A
heading accuracy of 0.27◦ (1σ ) and of 0.73◦ (2σ ) was
observed for a baseline length of 1.2 m.
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