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Abstract

Recent years have seen a strong increase in the functionality in vehicles based on software and
electronics. A growing number of these functions like advanced driver assistance systems or the
upcoming drive-by-wire have strict timing requirements. As a result, a clear trend towards time-
triggered systems for safety-critical functionality can be seen in the automotive domain. Time-
triggered communication buses such as FlexRay and Automotive Ethernet provide the necessary
basis for these systems. Time-triggered systems increase the safety and control quality due to
their deterministic behavior and minimal jitter. Moreover, simulation, integration, and testing
efforts are significantly reduced due to the predictability of the system. However, determining a
time-triggered schedule is a challenging task as various constraints have to be taken into account
concurrently.

This thesis investigates various aspects of the schedule synthesis for time-triggered architec-
tures in the automotive domain. It addresses the problems of (1) determining schedules for the
automotive FlexRay bus, (2) modular schedule synthesis, addressing the problem of integrating
independently developed functionality in a system and (3) concurrent schedule synthesis for
various architecture variants. The contributions are as follows.

(1) A schedule synthesis framework for the FlexRay bus is proposed. FlexRay is a latest-
generation automotive bus supporting a high bandwidth and a time-triggered communication.
The proposed approaches support the recently introduced FlexRay 3.0, while being compatible
with the current industry standard version 2.1. Three schedule synthesis approaches are pro-
posed. (a) An Integer Linear Programming approach determining an optimal solution, (b) a
heuristic with good scalability, and (c) a schedule integration approach capable of combining
previously generated subsystem schedules to a global schedule.

(2) A schedule integration approach exploiting the predictability of time-triggered systems
is proposed. It allows to generate individual application or subsystem schedules and integrates
them into a global schedule in a second step. As the schedule integration does not change
the general structure of the subsystem schedules, the previously defined constraints are not
affected. Through this divide-and-conquer approach the complexity is significantly reduced
while the system becomes highly composable. This approach allows to add or update appli-
cations in an iterative process, measurably reducing the integration efforts. During schedule
synthesis, all tasks executed on distributed Electronic Control Units (ECUs) and messages sent
on communication buses are taken into account. The proposed framework supports heteroge-
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neous architectures based on FlexRay and Automotive Ethernet. Several metrics are presented
to optimize subsystem schedules to improve the integration results.

(3) Finally, a multi-schedule synthesis is proposed which allows to generate individual sys-
tem schedules for different vehicle variants while assigning identical schedules to common
parts. It allows to clearly reduce testing and integration efforts as it only has to be done once
for common parts. This variant-aware schedule synthesis first identifies commonality between
different variants, before applying a schedule synthesis for common parts, and finally, integrat-
ing uncommon parts. As the complexity of multi-schedule synthesis is significantly increased
compared to conventional approaches, we also propose a divide-and-conquer approach based
on schedule integration to partition the problem, thus, clearly improving the scalability.
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Kurzfassung

In den letzten Jahren hat die Bedeutung von Software und Elektronik durch die Einführung
neuer Funktionalität im Automobil stark zugenommen. Eine steigende Anzahl dieser Funk-
tionen hat strikte Anforderungen an das Echtzeitverhalten des Systems. Hierzugehören etwa
komplexe Fahrerassistenzsysteme oder zukünftige Drive-by-wire Systeme. Dies hat zu einem
klaren Trend zu zeitgesteuerten Systemen für sicherheitskritische Anwendungen im Fahrzeug
geführt. Zeitgesteuerte Bussysteme, wie FlexRay und Automotive Ethernet, bilden die Grund-
lage für die darunterliegende Architektur. Ein zeitgesteuertes System erhöht die Sicherheit und
die Qualität von Regelungsalgorithmen durch sein deterministisches Verhalten und minimalen
Laufzeitabweichungen. Außerdem ist der Aufwand für Simulationen, die Integration von Kom-
ponenten und das Testen durch das determistische Verhalten des Systems geringer. Allerdings
ist die Bestimmung eines Ablaufplanes für zeitgesteuerte Systeme eine herausfordernde Auf-
gabe, da eine Vielzahl an Randbedingungen eingehalten werden müssen.

Die vorliegende Doktorarbeit beschäftigt sich mit verschiedenen Aspekten der Ablaufplan-
synthese für zeitgesteuerte Systeme im Automobilbereich. Die Arbeit befasst sich mit den fol-
genden Problemen: (1) Bestimmung von Ablaufplänen für den FlexRay Bus. (2) Untersuchung
eines modularen Ansatzes für die Ablaufplansynthese, der sich mit der Integration unabhänging
von einander entwickelter Funktionalität in ein gemeinsames System beschäftigt. (3) Unter-
suchung einer Ablaufplansynthese für verschiedene Varianten eines Systems. Die Arbeit leistet
dabei die folgenden Beiträge:

(1) Vorstellung einer Ablaufplansynthese für die Nachrichtenübertragung mit dem FlexRay
Bus. FlexRay ermöglicht eine hohe Bandbreite und eine zeitgesteute Kommunikation. Die en-
twickelten Methoden unterstützen die kürzlich vorgestellte Version 3.0 von FlexRay, während
sie gleichzeitig auch für den aktuellen Industriestandard 2.1 anwendbar sind. Drei Methoden
mit verschiedenen Eigenschaften werden vorgestellt. (a) Ein Verfahren basierend auf Ganz-
zahliger linearer Optimierung das eine optimale Lösung findet. (b) Eine Heuristik mit hoher
Skalierbarkeit. (c) Ein Verfahren zur Integration von Ablaufplänen, welches erlaubt zuvor er-
stellte Teilsystemablaufpläne in einen gemeinsamen Ablaufplan zu integrieren.

(2) Vorstellung einer Methodik zur Integration von Ablaufplänen in einen gemeinsamen
Ablaufplan. Sie erlaubt die unabhänginge Erstellung von Ablaufplänen für einzelne Anwendun-
gen oder Teilsysteme und integriert diese in einen gemeinsamen globalen Ablaufplan zu einem
späteren Zeitpunkt. Die Grundlage für diesen Ansatz bildet das deterministische Verhalten zeit-
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gesteuerter Systeme. Da während der Integration die generelle Struktur des Teilsystemablauf-
plans nicht verändert wird, sind dabei alle zuvor definierten Randbedingungen gültig. Durch die
Unterteilung der Ablaufplansynthese in mehrere Schritte wird die Komplexität und damit die
Laufzeit reduziert, während das Systemdesign modular wird. Diese Methodik erleichtert es da-
her, Anwendungen zum System hinzuzufügen oder zu aktualisieren. Das vorgestellte Verfahren
berücksichtigt sowohl Tasks auf Steuergeräten als auch Nachrichten, die auf den Kommunika-
tionsbussen ausgetauscht werden. Es unterstützt sowohl FlexRay als auch Automotive Ethernet.
Verschiedene Metriken werden vorgestellet, die es erlauben die Ablaufpläne von Teilsystem für
die spätere Integration zu optimieren.

(3) Vorstellung einer Methodik zur Erstellung von Ablaufplänen für verschiedenen Vari-
anten eines Systems. Bei der Ablaufplansynthese werden unabhängige Ablaufpläne für jede
Variante erstellt, die für gemeinsame Tasks und Nachrichten einen identischen Ablaufplan
definieren. Dies verringert den Aufwand für das Testen der Varianten und für die Integra-
tion gemeinsamer Komponenten in verschiedene Varianten. Die Methodik ermittelt zunächst
Gemeinsamkeiten in verschiedenen Varianten, bevor für diese gemeinsamen Teile ein gemein-
samer Ablaufplan erstellt wird. Anschließend müssen Teile in denen sich die Varianten unter-
scheiden in den Ablaufplan jeder Variante integriert werden. Da die Komplexität der Ablauf-
plansynthese dadurch höher als bei konventionellen Ansätzen ist, beinhaltet die Methodik auch
eine Partitionierungsheuristik, die es ermöglicht, die Ablaufplansynthese in kleinere Teilprob-
leme zu partitionieren. Die vorgestellte Integrationsmethodik erlaubt dann die einzelnen Teile
in einen gemeinsamen Ablaufplan zu integrieren.
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1
Introduction and Background

Recent years have seen a strong increase in the number of advanced driver assistance func-
tionality in modern vehicles. Functions like adaptive cruise control, lane departure warning,
or pre-crash belt pretensioners make vehicles safer and driving more comfortable. These new
functions are enabled by a radical change of automotive architectures from merely mechanical
systems to strongly electronics and software-based architectures in the last 30 years. Today,
innovation in the car industry is largely based on the software implemented on the Electrical/-
Electronic (E/E)-architecture of a vehicle.

One of the first advanced driver assistance functions was the Electronic Stability Control
(ESC). ESC is a safety function which adapts the behavior of the braking system and the drive-
train if necessary. It integrates the functionality of the Antilock Braking System (ABS), pre-
venting the wheels from locking during braking, and Traction Control System (TCS), preventing
the wheels from spinning. Both functions ensure that the wheels keep tractive contact with the
road. In addition, ESC as a system improves the stability of a vehicle by preventing oversteer
and understeer. This is achieved by braking or accelerating a single wheel to adjust the vehicle
dynamics. Figure 1.1 illustrates the E/E-architecture of an ESC system. Several sensors pro-
vide data to the ESC controller which calculates the current vehicle dynamics and sends control
signals to the braking system1 or the motor control.

Based on the sensor data from the current vehicle speed (i.e. rotational wheel speed), the
steering wheel input, and the brake activation, a control algorithm determines the intended vehi-
cle behavior. A sensor measuring the side angle acceleration allows the controller to estimate the

1The braking system today is commonly realized by an electronically controlled hydraulic power unit, but
might be replaced by brake-by-wire technology in the near future.
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Figure 1.1: Schematic illustration of the E/E-architecture of an Electronic Stability Control
(ESC) system. The ESC controller is connected to multiple sensors and controls the braking
system. The ESC controller also provides the motor controller with control instructions and
data. The controller is implemented on an Electronic Control Unit (ECU). See [Rob14] for
details.

slip angle deviating from the intended vehicle behavior. Based on this estimate, the controller
determines suitable values for the speed of each individual wheel and instructs the brake system
to slow down a certain wheel, or the motor controller to accelerate a wheel. ESC is a complex
control function which not only has to accurately determine its control instructions but also has
to do so in the time frame of a few milliseconds to efficiently stabilize the vehicle [Rob14].

Since the introduction of ESC in 1995, various additional advanced driver assistance func-
tions based on software and electronics have been introduced, like Adaptive Cruise Control
(ACC) or pedestrian detection. Today, the electrical and electronic parts of a vehicle already
account for more than 30 % of the production costs of a vehicle, despite the decreasing cost
of electronic components in general [Cha09, Rob14]. This trend will continue, as most new
advanced functions are electronics and software-based. All of these functions have in common
that they are highly distributed systems, accessing various sensors and actuators. For instance,
for ESC the location of senors and actuators, e.g., the rotational speed sensor at each wheel
and the input senor for the steering wheel angle, require a distributed control system. For more
advanced functions like ACC, allowing a semi-autonomous driving at low speeds, this effect is
even increased, as additional location constraint sensors and actuators, e.g., a radar sensor, are
required [BCG12].

Control functions like ESC or ACC are implemented on Electronic Control Units (ECUs).
While it would be generally feasible to connect ECUs with point-to-point connections, in re-
ality this is not practical as many functions require common data or interact with each other.
Figure 1.2 illustrates the data exchanged between four ECUs: The ESC, the engine control, the
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Figure 1.2: Schematic illustration of data exchanged between 4 ECUs. In modern vehicles the
communication of an ECU is not limited to the communication with sensors and actuators, but
ECUs also exchange various data between each other, both in the form of control instructions
as well as information.

transmission control and the climate control. As mentioned, the ESC controller sends instruc-
tions to the engine control, but it also provides the current vehicle speed, calculated from the
wheel rotation speed. Hence, instead of having multiple controllers access the wheel rotation
speed sensor individually, only the ESC-ECU has direct access to the sensor and provides the
calculated vehicle speed to the other ECUs. The ESC also receives the rotational speed limits
from the engine controller to ensure that the instructions sent to the engine controller do not
stall the engine. Similarly, the engine controller communicates with various ECUs. To fulfill
the strict emission requirements and to improve the performance, engine control units of mod-
ern vehicles employ highly complex algorithms to determine the optimal point in time and the
right amount of fuel to inject [SCTQ09]. The control algorithm therefore not only relies on
sensor data of the crankshaft position and the instructions from the gas pedal, but also on the
current vehicle speed or the information of the current gear selection in the transmission. For
instance, the engine control requires data from the transmission to maintain a minimal engine
speed during idle mode, i.e., if no gear is currently selected. But also functionality like the
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climate control interacts with the engine control, e.g., to request an increased energy demand,
or to adjust the engine cooling [Bor14]. This small excerpt from the in-vehicle communication
shows the strong connectivity between different functions. As a consequence, the point-to-point
connections between individual ECUs have been replaced by a networked architecture in state-
of-the-art vehicles. Communication buses connect multiple ECUs and allow them to exchange
messages with each other.

1.1 E/E-architecture

In Figure 1.3, the network structure of an automotive E/E-architecture is illustrated. A state-of-
the-art in-vehicle network might consist of up to 100 ECUs connected through shared communi-
cation buses [Cha09]. To handle the complexity of more than 2000 individual functions [Bro06],
the E/E-architecture is organized in domains. A domain groups functionality based on relations
between functions, i.e., data dependencies, as well as safety and hardware requirements, e.g.,
predictability and reliability. Car manufacturers commonly group their domains in the follow-
ing four groups: (1) The comfort domain containing body and cabin systems, e.g., the climate
control. (2) The infotainment domain containing display and entertainment systems. (3) The
drivetrain domain containing drivetrain and emission control systems, e.g., the engine control
and transmission control. (4) The chassis domain containing vehicle motion, safety and driver
assistance functions, e.g., the damper control [Rob14]. A central gateway connects the domains
and allows communication between ECUs from different domains2.

Each domain has very different requirements. For the comfort domain, flexibility and seam-
less integrability of various individual functions are required [Rob14, ZS14]. The infotainment
domain has a high demand in bandwidth to transfer audio or video data [Bor14]. Finally,
in the drivetrain and chassis domain the focus is on hard real-time functionality and relia-
bility [Rob14, ZS14]. As a consequence, automotive E/E-architectures are highly heteroge-
neous systems with a mix of different communication buses, depending on the domain. Latest-
generation in-vehicle networks therefore often implement both event-triggered as well as time-
triggered systems in the E/E-architecture.

1.1.1 Event-Triggered Systems

An event-triggered system reacts to an incoming event, e.g., the press of a button on the air-
conditioning control field, or the motor speed dependent sensor reading for the current piston
position of the engine controller [Rob14]. As event-triggered systems are not synchronized
with each other, two ECUs might try to access a shared communication bus at the same instant.
A collision avoidance in modern communication buses ensures that only one ECU is allowed

2Note that the general structure of the network might differ between different car manufacturers, e.g., instead of
having a central gateway, domain gateways might be connected by a backbone bus. However, most manufacturers
follow a domain-based architecture with a fully connected in-vehicle network. See [Rei14, Rob14] for details.
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Figure 1.3: Structure of the E/E-architecture of state-of-the-art vehicles. Sensors and actuators
connected to ECUs have been omitted for readability. Modern in-vehicle networks consist of
several different bus protocols such as CAN, MOST or FlexRay. See [BMW09] for details.

to transmit its data and other ECUs have to wait based on predefined priorities. Hence, high
priority functionality is processed and transmitted with minimal delays, while functionality
with a low priority might have to deal with significant delays if several ECUs with a high
priority intend to transmit their data at the same time. Event-triggered systems are well-suited
to react to asynchronous (i.e., unpredictable) events. The latency between the occurrence of an
event and the reaction is ideally lower than for a time-triggered system. However, depending
on the network traffic, the latency can vary strongly, leading to a non-deterministic system
behavior [Kop91]. The flexibility of event-triggered systems makes them well-suited for the
comfort domain where, depending on the customer’s preferences, various different systems
with low timing requirements need to be integrated.

1.1.2 Time-Triggered Systems

A time-triggered system is governed by a global time and a schedule which exactly defines at
which time instant each function sends its messages or starts software tasks. The deterministic
behavior of time-triggered systems is of particular importance for the introduction of electronic
drive-by-wire systems for steering and braking, replacing hydraulic components. Drive-by-wire
systems have strict requirements on the safety, fault-tolerance and availability of the commu-
nication system. Time-triggered systems provide these properties. A time-triggered system
partitions the time in time-slices during which a function can exclusively utilize a communica-
tion bus or an ECU. This provides an isolation between different functionality and guarantees
a fixed latency. As messages are transmitted at predefined time instants, the system behavior
is predictable and missing messages can be quickly detected. However, time-triggered sys-
tems also lead to an increased resource utilization and bandwidth demand, as resources that are
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preallocated might not be required at all times. Consequently, communication buses for a time-
triggered system should generally support a high bandwidth to ensure that all hard real-time
requirements are met [Kop91, Rob14].

1.1.3 Comparison of Event- and Time-Triggered Systems

Extending the discussion of event-triggered and time-triggered systems, in the following a short
discussion of the advantages and disadvantages of each is given.

The main difference between event-triggered and time-triggered systems lies in the system
scheduler. Event-triggered systems decide at runtime which task or message is released at the
current time instant, while time-triggered systems follow a predefined schedule. To determine
the system schedule, for time-triggered systems a periodic release is assumed. For the resource
requirements pessimistic assumptions, i.e., the Worst Case Execution Time (WCET) for tasks,
are made to always ensure the correct functionality of the system. This leads to an overesti-
mation of resource requirements compared to an event-triggered system which only transmits
messages when necessary. However, for safety-critical systems timing analysis methods are
also applied for event-triggered systems to guarantee the correct system behavior also for worst-
case scenarios. These timing analysis methods are also based on worst-case assumptions and
a periodic execution. Thus, while event-triggered systems use resources more efficiently than
time-triggered systems, to satisfy hard real-time requirements the estimated resource require-
ments are generally also pessimistic. Consequently, for safety-critical systems, event-triggered
systems do not necessarily lead to a higher system utilization [Kop91]. However, as event-
triggered systems react to events, for functionality with a high priority in most cases they are
able to react faster than a time-triggered system.

As time-triggered systems follow a predefined schedule, the system behavior is predictable
and deterministic. Consequently, testing efforts are reduced as the system behavior is easier
to reproduce, allowing a systematic testing approach. By contrast, for event-triggered systems
a multitude of execution scenarios need to be tested, increasing the testing efforts [Kop91].
The predefined schedule also leads to minimal jitter and allows to design control functions
based on a fixed and constant end-to-end delay. Event-triggered systems in contrast require the
design of robust control functions which handle a varying end-to-end delay well. In addition,
the time-triggered execution scheme of time-triggered systems provides a temporal isolation
of functionality. This allows to extend existing schedules if additional messages do not affect
previously scheduled ones. While event-triggered systems allow to easily add new functionality,
to give timing guarantees as required for critical functions, a timing analysis of the whole system
is generally necessary.

In summary, the suitability of event-triggered or time-triggered systems strongly depends
on the function requirements. For instance, for non-critical functionality in the comfort domain
which is generally highly asynchronous, event-triggered systems are clearly better suited to
efficiently use the available resources and react to the user input. For critical applications on the
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other hand, the deterministic behavior of time-triggered systems helps to reduce the design and
integration efforts.

1.2 Communication Buses

Since the introduction of the Controller Area Network (CAN) bus in a series vehicle in 1991,
various automotive communication buses have been introduced in series vehicles. While time-
critical functionality in the power train and chassis domains require high bandwidths, e.g., for
the ESC to react within a few milliseconds (ms) to a locked wheel, a reaction time of 100 ms
is sufficient for the comfort domain, as delays of less than 100 ms cannot be perceived by a
passenger. This allows the use of more economic low-speed buses. The infotainment domain
on the other hand, requires a high bandwidth of up to 4 Mbit/s for audio data and 50 Mbit/s
for video data [Bor14]. As a consequence, the communication protocols used in current vehicles
have very different properties. In the following, an overview is given over these bus protocols.

1.2.1 Controller Area Network

The CAN bus is the predominant bus protocol in current vehicles. The CAN protocol is
event-triggered and supports messages up to a size of 8 byte, supporting bandwidths of up
to 1 MBit/s. A Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) bus access
protocol prevents collisions if multiple ECUs try to send their messages at the same time. Pre-
defined priorities define which message is transmitted first in case of a conflict. To ensure a
sufficiently short response time of all ECUs, the supported cable length is limited by the band-
width, i.e., a longer cable supports a lower bandwidth [ZS14]. The CAN bus is used in multiple
domains of the vehicle with strongly differing requirements on the network. For instance, in
the drivetrain domain a significantly faster data exchange is required compared to the comfort
domain where the different ECUs are distributed in the whole vehicle and the cable length of the
bus needs to be long [Rob14]. As a consequence, two different CAN versions are currently in
use, the High-speed-CAN (CAN-C) [CAN13], supporting data rates of 125 kBit/s to 1 MBit/s,
and the Low-speed-CAN (CAN-B) [CAN06], supporting data rates of 5 kBit/s to 125 kBit/s.
Typical applications for CAN-C are the engine control, the transmission control and ESC. Typi-
cal applications for CAN-B are the climate control and seat adjustment [Rob14]. The two CAN
versions are not compatible.

Due to its limited bandwidth, the CAN bus has become a bottleneck for future functionality
such as advanced driver assistance systems. As alternative bus protocols like FlexRay require
a partial redesign of existing systems, for legacy reasons, many car manufacturers still rely on
the CAN bus [ZS14]. Robert Bosch GmbH has therefore recently proposed CAN with Flexible
Data-Rate (CAN FD) which increases the data rate up to 8x, compared to conventional CAN
while being backwards compatible [Har12]. CAN FD supports message sizes of up to 64 byte.
The bandwidth increase is achieved through increasing the bit rate after the arbitration phase
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to transmit the message payload. Hence, legacy ECUs not supporting CAN FD transmit their
messages with the bit rate of conventional CAN while CAN FD messages are transmitted at an
increased bit rate on the same bus [Bor14, ZS14].

Due to the event-triggered transmission schemes of CAN, the latency of low prior-
ity messages can differ strongly. While approaches to determine the maximal latency ex-
ist [TBW95, DBBL07], in complex E/E-architectures all constraints are often not known in full
detail or might quickly change during the design process [ZS14]. While this makes CAN still
suitable for many real-time applications, this non-deterministic behavior makes CAN unsuitable
for highly safety-critical applications, like brake-by-wire. As a consequence, Time-Triggered-
CAN (TTCAN) was developed, extending the CAN protocol with time-triggered communi-
cation [TTC04]. Based on the Time Division Multiple Access (TDMA) scheme, the time is
partitioned in time slots. While some time slots are exclusively assigned to an ECU to trans-
mit messages using time-triggered communication, other slots are used for CSMA/CA-based
event-triggered communication. A dedicated timing master sends cyclic reference messages
to synchronize all ECUs. While TTCAN provides a deterministic communication for critical
functionality, it is not compatible with conventional CAN and the low data rate of CAN remains.
TTCAN has therefore not found wide acceptance in the automotive industry [Rei14, ZS14].

1.2.2 Local Interconnect Network

The Local Interconnect Network (LIN) bus is a time-triggered low speed bus for simple sensor-
actuator-functionality, like door- or seat-electronics [ZS14]. The LIN bus was developed as
a low-cost alternative to Low-speed-CAN systems. The goal was to create a simple commu-
nication protocol that would not require an additional communication controller for low-end
micro-controllers [Rob14]. The communication is triggered by a master ECU, sending cyclic
requests to the slave ECUs which respond with the message transmission. The master also
triggers the communication between slave ECUs, making the LIN bus a deterministic proto-
col [Bor14, ZS14]. LIN supports data-rates of 1 kbit/s to 20 kbit/s. It commonly realizes
subsystems, e.g., for climate control, the air-conditioning controller uses the LIN bus to con-
nect to temperature sensors and fans [Rob14].

The latest LIN version 2.2A [LINar] includes various new features such as support for spo-
radic frames and event-triggered communication, as well as plug-and-play functionality to ease
the integration of functionality in different variants [Bor14, ZS14]. While these new features
increase the flexibility of the LIN bus, the cost for a LIN controller has also increased and the
intended goal to achieve a cost reduction of 50 % compared to a low speed CAN ECU is hard
to meet [ZS14].

1.2.3 Media Oriented Systems Transport

The Media Oriented Systems Transport (MOST) bus was specifically designed for multi me-
dia applications, providing a high data-rate. For a constant audio and video data transmis-
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sion, MOST supports a time-triggered communication [Bor14]. The protocol also supports
event-triggered communication for data without a fixed transmission rate, e.g., data of the
navigation system [ZS14]. A dedicated master ECU creates the message frames in which
the slave ECUs can send their messages. MOST is available in the three variants: MOST25,
MOST50 and MOST150, supporting data rates of 25 Mbit/s, 50 Mbit/s and 150 Mbit/s, re-
spectively [Grz11]. MOST150 also supports the transmission of Ethernet frames to ease the
integration of user devices like mobile phones that already support Ethernet protocols. MOST
is currently mainly used in top-of-the-range and mid-range vehicles [ZS14].

1.2.4 FlexRay

FlexRay [Fle13] is a hybrid communication protocol which supports both time- and event-
triggered communication. It was developed with highly safety-critical drive-by-wire func-
tionality in mind [ZS14]. FlexRay therefore combines a deterministic communication using
a time-triggered protocol with fault-detection and reliability functionality. To provide a re-
dundant message transmission, FlexRay supports two physical channels. In addition, optional
bus guardians provide a monitoring unit in the ECU to deactivate faulty parts of the network
if required [Rei14]. FlexRay provides data rates of 10 Mbit/s for each channel, clearly in-
creasing the bandwidth compared to CAN networks. Like TTCAN, FlexRay uses TDMA for
time-triggered communication. For event-triggered communication, a Flexible Time Division
Multiple Access (FTDMA) scheme is used. Compared to CAN, the supported network topolo-
gies as well as the number of ECUs and cable length is increased through the support of active
elements, i.e., a transceiver or repeater [ZS14]. With these properties, FlexRay is suitable for
both the drivetrain as well as the chassis domain [Rob14]. For state-of-the-art vehicles, FlexRay
is largely used in the chassis domain, for instance see [BMW09].

Despite these advantages, FlexRay is only gradually introduced in series vehicles. The main
reasons are the late availability of FlexRay hardware and the slow introduction of drive-by-wire
functionality, for which FlexRay is seen as a key enabler. Furthermore, a FlexRay bus configu-
ration requires a set of partially dependent parameters, preventing an easy adoption [ZS14]. A
more formal introduction to the FlexRay protocol is given in Section 2.3.2.

1.2.5 Automotive Ethernet

While Ethernet has long been the predominant communication protocol for interconnecting
computers, the lack of an implementation fulfilling automotive requirements, such as electro-
magnetic compatibility, made Ethernet an unsuitable candidate for automotive networks in the
past. With the introduction of BroadR-Reach [Ope15], an unshielded twisted-pair implementa-
tion of the physical layer of Ethernet, these obstacles have been overcome [KCBQ14, ZS14]. As
a consequence, all major car manufacturers are currently pursuing the integration of Automotive
Ethernet in their in-vehicle networks [Ope15]. However, standard Ethernet does not provide any
timing guarantees and is therefore unsuitable for real-time functionality. While several real-time
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extensions to standard Ethernet exist, such as PROFINET [PRO] or TTEthernet [TTA08], no
mutual standard was defined so far [ZS14]. Therefore, the Time Sensitive Networking (TSN)
standards [IEE15], currently under development, define a real-time Ethernet which can also be
deployed in the automotive domain. TSN will support time-triggered and event-triggered com-
munication, providing end-to-end performance guarantees, while still supporting standard Eth-
ernet best-effort message transmission [Ste14, IEE15]. Automotive Ethernet currently supports
a bandwidth of 100 Mbit/s while a 1 Gbit/s version is under development. The communica-
tion is full-duplex, i.e., an ECU can send and receive messages at the same time. Instead of
connecting ECUs directly to the Ethernet bus, a central switch is required, allowing the simul-
taneous communication of independent ECUs. Looking at the full network, Ethernet therefore
supports much higher throughputs than the specified base rate [KCBQ14, ZS14].

Ethernet as a communication bus requires a very different design approach compared to ex-
isting automotive bus systems. For instance, Ethernet only supports point-to-point connections.
Thus, messages between two ECUs are not visible to other network participants. In addition, to
support full-duplex, BroadR-Reach employs sophisticated digital signal processing techniques,
such as echo cancellation. This makes measuring and analyzing of bus data, as it is done with
existing automotive bus systems, not feasible. Concepts for established analysis and diagno-
sis tools for automotive buses can therefore not be directly applied. Furthermore, the need
for switches also increases the cost of an Ethernet network, as switch hardware and additional
cabling are required [KCBQ14]. While the introduction of Ethernet might require a radical
change in the design of automotive architectures, Ethernet also brings various advantages. As
Automotive Ethernet makes a large number of established protocols such as the Internet Proto-
col (IP) available in the vehicle, the integration of internet and user device related functionality
is strongly facilitated. At the same time, the switched network structure makes Ethernet well-
suited as a backbone bus, changing the structure of automotive architectures. Finally, the high
bandwidths supported by Ethernet allow the introduction of new driver assistance functions,
such as the 360-degree camera parking assist system [ABI14] based on Automotive Ethernet
which was introduced by BMW in 2013 [KCBQ14, ZS14]. Analysts are projecting that 40 %
of all new vehicles will ship with Ethernet by 2020 [ABI14]. A more formal introduction to
Automotive Ethernet is given in Section 2.3.3.

1.2.6 Comparison of Automotive Buses

Extending the introduction of automotive buses in the previous subsections, in the following,
a short discussion is given, comparing the different buses. Table 1.1 gives an overview of the
different properties of each protocol.

The bus systems deployed in vehicles today have been designed for specific purposes and
none of the current bus systems is suitable to replace all other bus types. For instance, the LIN
bus is well-suited for subsystems with simple ECUs and replacing LIN with a bus like Ethernet
or FlexRay would not be reasonable for practical and economical reasons. Similarly, the CAN
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Table 1.1: Overview of automotive communication buses. See [KCBQ14, Rob14, ZS14] for
details.

CAN-C CAN-B
LIN

High-speed-CAN Low-speed-CAN

protocol type event-triggereda event-triggered time-triggered

bit rate
≤ 1 Mbit/s

(≤4 Mbit/sb)
≤ 125 kbit/s ≤ 20 kbit/s

message size
≤ 8 byte

(≤ 64 byteb)
≤ 8 byte ≤8 byte

number of
nodes

10 24 16

network length 40 m 320 m 40 m

topologies bus bus bus

safety-critical yes no no

domain drivetrain comfort comfort

cost low low very low
a for TTCAN also time-triggered b for upcoming CAN FD

MOST FlexRay
Automotive

Ethernet

protocol type
time- and

event-triggered
time- and

event-triggered
time- and

event-triggered

bit rate ≤ 150 Mbit/s ≤ 10 Mbit/sc 100 Mbit/sd

message size
≤ 372 byte/
≤ 1524 bytee ≤ 256 byte 42-1500 byte

number of
ECUs

64 22 f -g

network length 20 m between nodes 24 m f 15 m per link

topologies ring, star bus, star, hybrid star, tree

safety-critical no yes yes

domain infotainment chassis various

cost high low high
c for single bus, ≤ 20 Mbit/s for dual channel, no redundnacy d per link, full-duplex, 1 Gbit/s in development

e time-triggered/event-triggered f for passive bus, with active elements up to 2048 ECUs and longer cable

g only limited by the number of ports on the switch
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bus employed in the comfort domain provides a flexibility and clear cost advantage that is not
matched by the other bus systems, making a replacement in the near future not reasonable.
On the other hand, in the infotainment domain it is very likely that Ethernet will replace the
MOST bus in the near future, as it supports all MOST functionality at similar cost while being
also suitable for other domains. Finally, in the safety-critical drivetrain and chassis domains,
developers have the choice between CAN FD, FlexRay, and Ethernet. While CAN will still
persist as an important part of the automotive in-vehicle networks due to legacy reasons, the
introduction of new functionality will require the use of other protocols. For drive-by-wire
applications, FlexRay is well-suited and the time-triggered communication supported by TSN
might also make Ethernet a suitable candidate for this class of applications. The introduction of
advanced driver assistance functions also leads to a strong demand for an increased bandwidth,
e.g., to transmit high resolution video data. Currently only Automotive Ethernet is able to
provide the required bandwidths if the application is safety-critical. Consequently, we believe
that in the near future an increasing number of in-vehicle networks will be using FlexRay and
Ethernet. In general, a clear trend towards time-triggered communication for safety-critical
systems is visible, while a mix of time- and event-triggered communication will prevail in
future automotive E/E-architectures.

1.3 Electronic Control Units

The previous section has discussed the different communication buses in state-of-the-art vehi-
cles, connecting the different ECUs. In the following, the hardware and software of ECUs are
introduced in more detail. The ECUs deployed in state-of-the-art automobiles are based on a
micro-controller and interface circuits to connect to peripheral sensors and actuators. Depend-
ing on the sensors, a preprocessing, e.g., to reduce noise, or a transformation might be required,
while an actuator might require power electronics to be controlled [Bor14, Rob14]. Depending
on the functionality, the hardware properties of the micro-controllers in use in state-of-the-art
vehicles strongly differ. For example, a low-end ECU might only have a 8 bit processor with
8 MHz, 4 kB flash memory, and 256 byte RAM while a top-end automotive ECU might have
a 32 bit multi-core processor with 200 MHz, 6 MB flash memory, and 384 kB RAM3. An im-
portant part of an ECU is the monitoring unit which observes the system behavior and reacts to
a fault. In the simplest cases, the monitoring unit might be a watchdog, initializing a reboot of
the ECU if required [Bor14]. A state-of-the-art in-vehicle network consists of up to 100 ECUs
depending on the car model [Cha09] with very different requirements and functionality.

Instead of implementing the software functionality directly on the micro-controller, ECUs
today employ real-time operating systems to manage system resources and to allow the imple-
mentation of multiple independent functions on one ECU. For instance, a combustion engine

3Data for FREESCALE automotive micro-controllers S08QD and MPC5676R, taken from
http://cache.freescale.com/files/microcontrollers/doc/roadmap/BRAUTOPRDCTMAP.pdf.
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controller implements various independent functions, such as the adjustment of the fuel injec-
tion while monitoring the rotational speed of the turbo charger [ZS14].

1.3.1 OSEK/VDX

The Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug/Vehicle Dis-
tributed Executive (OSEK/VDX) standard [OSE06] defines a Real-Time Operating System
(RTOS) which has become the de facto standard for operating systems deployed on automo-
tive ECUs [Bor14]. OSEK/VDX RTOSs are deployed in a wide range of ECUs, ranging from
8 bit to 32 bit processors, however, they are limited to single-core ECUs [Bor14]. OSEK/VDX
was designed for distributed architectures, abstracting the communication between both internal
and external tasks by messages transmitted using a communication layer. While the standard
OSEK/VDX operating system is limited to event-triggered scheduling, a time-triggered version,
OSEK time is available. There, a predefined dispatch table defines at which time instants a task
is executed [Rei14]. An OSEK/VDX operating system is configured statically at design time
using a configuration file. Dedicated configuration tools commonly allow to auto-generate the
configured system [ZS14]. Various real-time operating systems that follow the OSEK/VDX
standard are available, for instance see [ETAb, Vec]. However, most OSEK/VDX implementa-
tions are incompatible with each other, making a direct migration of software from one system
to another a time-consuming task. This is largely due to the fact that, in particular, early ver-
sions of the OSEK/VDX specification did not specify all operating system parts in sufficient
detail, leading to differing RTOS properties [Bor14, ZS14].

1.3.2 AUTOSAR

To address the increasing complexity of automotive E/E-architectures and to account for the
rising number of software-based functionality in vehicles, the AUTomotive Open System AR-
chitecture (AUTOSAR) initiative was established in 2003. AUTOSAR defines a set of stan-
dards [AUT14] for an automotive software architecture which abstracts the underlying ECU
hardware to provide a uniform software platform for in-vehicle networks. The goal is to allow
developing application software independent of the ECU it is later deployed on. Consequently,
functionality could be easily added or updated [Lee09, Rob14].

The AUTOSAR architecture consists of three layers: (1) The hardware specific Basic Soft-
ware (BSW) layer abstracts the ECU hardware, providing hardware drivers and an RTOS. (2) In
the Application Software (ASW) layer the actual system functionality is implemented, e.g., the
control algorithm for an ESC system. (3) The VFB layer abstracts the internal, as well as the
external communication between the Software Components (SWCs) implemented in the ASW
layer [Rei11]. Figure 1.4 illustrates the AUTOSAR architecture. The underlying BSW layer is
based on the OSEK/VDX standards [ZDGSV11] and implemented on the ECU by the supplier.
The VFB layer is created statically during the design phase and abstracts the communication
within an ECU as well as between ECUs connected by a bus. The communication paths are
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RTE
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Figure 1.4: Schematic illustration of AUTOSAR architecture. Each ECU runs a standardized
RTOS providing the Basic Software (BSW) layer. The Virtual Function Bus (VFB) layer then
abstracts the network structure with its different buses, taking care of all communication. The
VFB is implemented by a Real-Time Environment (RTE) deployed on each ECU. Finally, in the
Application Software (ASW) layer the actual functionality is implemented as Software Com-
ponents (SWCs). The figure is reproduced from [Rei11].

defined in a configuration file from which tools can generate a Real-Time Environment (RTE)
deployed on the ECU [ZS14]. For the application development, communication between SWCs
is realized using ports, both for local as well as external communication. Based on these ports,
the Real-Time Environment (RTE) then takes care of the actual data transmission [Rei14, ZS14].
Configuring the VFB is currently still a time consuming task as available configuration tools are
unable to auto-generate most of the configuration parameters [ZS14]. AUTOSAR is supported
by all major car manufacturers and first ECUs implementing AUTOSAR standards have been
introduced into series vehicles since 2009 [Rei14].

1.4 Design of Automotive E/E-architectures

Car manufacturers traditionally rely on suppliers to develop the individual components of a
vehicle, such as brakes or seats. The car manufacturer focuses on competitive features such as
the vehicle design and the development of the vehicle engine. For the E/E-architecture, most
functionality is developed by suppliers and the car manufacturer is mainly concerned with the
integration into the system [Lee09, SZ13].
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While suppliers today commonly provide ECUs with pre-installed functionality, through
AUTOSAR the suppliers might soon provide the functionality as software [ZS14]. The integra-
tion of different components in the E/E-architecture is a highly complex task, as a multitude of
parameters need to be configured for each ECU and the correct timing behavior of the system
needs to be guaranteed. Complex ECUs might have up to 10000 parameters of which sev-
eral might have to be evaluated experimentally. While tools provide support in the parameter
definition, several parameter decisions have to be made by the system designer, e.g., to opti-
mally configure an engine controller [Bor14]. At an early design stage, timing analysis tools
such as Symbolic Timing Analysis for Systems (SymTA/S) [Sym15] or methods using Real-
Time Calculus (RTC) [TCN00] are commonly employed to determine maximum end-to-end
delays. The timing analysis allows to evaluate the specified architecture and to determine con-
flicts [ST12, ZS14]. During the whole design process, each component, as well as the overall
system are then tested to detect problems as early as possible, e.g., by simulating other ECUs
in the system, using a residual bus simulation. Tools such as CANoe [Vec15] aid during this
process [ZS14]. In recent years, model-based development tools such as Simulink [Mat15] or
ASCET [ETAa] are used by most car manufacturers to evaluate their systems at an early design
stage. Several of these tools also provide automated C-code generation. As the code generated
by these tools currently suffers from being hard to read and being inefficient, it is rarely used
in series vehicles [Bor14]. Despite the availability of various tools supporting the development
process of the E/E-architecture, the integration of all components and testing of the system is
still a time consuming and complex task. Systematic approaches are therefore required to aid
this process [SN13, WLMC13].

1.5 Challenges

The number of electronics and software-based functionality in the automotive domain has been
rapidly growing in the last years. Figure 1.5 illustrates how the number of ECUs and the num-
ber of transmitted signals has significantly increased for the Mercedes-Benz E-Class in the last
decades. This trend will continue in the future, and in particular the introduction of advanced
driver assistance functions based on video data will lead to a significant increase in bandwidth
requirements [ZS14]. This growing number of functionality, but also the increasing interaction
between highly distributed software components makes the integration of all components into
a seamless working system a challenging task. In this context, in particular three challenges
should be mentioned here: (1) Ensuring correct timing behavior of all components individu-
ally and in the interaction with other components. (2) The integration of independently de-
veloped components in a global system. (3) Efficient management of different variants of an
E/E-architecture, e.g., a variant for a petrol and a diesel engine.

The recently introduced ISO 26262 standard [ISO12] for functional safety in the automotive
domain requires freedom of interference. Hence, during the system design it has to be ensured
that the correct execution of a critical software component can never be compromised by another

15



1.5 Challenges

2 ECUs 

E/E: Electro-mechanics, 
switches, lamps 

E/E: Brake- and  
engine control, 

safety and comfort 

E/E: Driver assistance 
and telematics 

1961-1968 
(W110-112) 1967-1976 

(W114/115) 

1975-1986 
 (W123) 1984-1997 

 (W124) 

1995-2002 
 (W210) 2002-2009 

 (W211) 

since 2009 
 (W212) 

future 

~ 200 
signals 

~ 4100 
signals 

~ 6000 
signals 

7 ECUs 
1 bus 

30 ECUs 
3 buses 

52 ECUs 
5 buses 

67 ECUs 
9 buses 

required 
bandwidth 

signals 

ECUs 

Figure 1.5: Evolution of the E/E-architecture of the Mercedes-Benz E-Class over the last
decades. Figure reproduced from [ST12].

software component. Consequently, defining and guaranteeing a certain timing behavior be-
comes essential [SZ13]. AUTOSAR provides mechanisms such as End-to-End-Communication
Protection to detect timing violations and to contain faults. However, these mechanisms require
that the timing behavior of critical software components is clearly defined, making the timing
analysis an important part of the software development process [SZ13, ZS14]. Consequently,
the design process in the automotive industry is currently radically changing with time and
timing behavior becoming an important design parameter. Single software components can
no longer be regarded as independent modules that are later integrated in the system. Instead,
starting from the specification of the system, the correct functionality in the interaction with
other components needs to be evaluated during the whole design process to ensure a sufficient
isolation between components.

In the last years, automotive E/E-architectures have seen a strong increase in the number of
ECUs. However, this trend will not continue and it is expected that the number of ECUs will de-
crease from currently around 20-80 ECUs to only 10-20 powerful ECUs. At the same time, the
overall number of software functions will continue to grow [Rob14]. As most functionality will
then be provided as software components sharing few ECUs, the complexity of the integration
process will continue to rapidly increase. The current approach is to apply timing analysis meth-
ods for event-triggered systems and define schedules for time-triggered systems already at the
specification phase [B0̈7, ZS14]. While this is well-suited for legacy functionality, estimating
the exact timing requirements or the communication demand of a software component before
the implementation is challenging and might lead to an over- or underestimation of timing re-
quirements. Consequently, during the design process the initial configurations and schedules
have to be revised. Tools and methods that allow to efficiently integrate software components
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into the global system schedule are essential for the design of future E/E-architectures. While
AUTOSAR simplifies the integration process of the software components into a common ECU,
configuring the system and defining schedules is still a complex task and systematic methods
for the integration are required.

Finally, car manufacturers today offer a large variety of configuration options for their cus-
tomers, such as different engine variants. For the E/E-architecture of a vehicle model this means
that the number of ECUs differs depending on the customer selection, and that for each ECU
various configurations need to be maintained. This leads to an almost infinite number of possi-
ble configurations [SZ13, Bor14]. To ensure that all these configurations work correctly requires
sophisticated testing strategies. At the same time, managing and maintaining all these variants
is highly challenging. Consequently, approaches for an efficient variant management taking
both commonality as well as variant specific properties into account are required to minimize
the testing and integration efforts during the system design.

1.6 Thesis Contributions

In the automotive industry, a clear trend towards time-triggered systems for safety-critical func-
tions can be seen. Time-triggered systems provide a temporal isolation of components [Obe11],
making them well-suited to fulfill the requirements of ISO 26262. Consequently, there is an
increasing demand for design methods and tools supporting time-triggered systems. While an-
alyzing the timing behavior of time-triggered systems is generally straight-forward due to their
predictability, determining a time-triggered schedule for distributed systems is a challenging
task. This thesis investigates scheduling methods for time-triggered systems in state-of-the-art
and future automotive E/E-architectures. Addressing the problems discussed in the previous
section, this thesis makes the following main contributions:

• A schedule synthesis method for message scheduling on the FlexRay bus is presented.
The FlexRay bus was designed for upcoming drive-by-wire applications and will there-
fore play an important role in the next years. FlexRay offers a static segment for time-
triggered and a dynamic segment for event-triggered communication. As the dynamic
segment is commonly only used for maintenance and diagnosis data, the focus lies on
schedule synthesis for the static FlexRay segment. We follow the AUTOSAR specifi-
cation for FlexRay scheduling, i.e., support a multiplexing scheme. The proposed ap-
proaches are among the first supporting all new features of version 3.0 of FlexRay while
supporting the still predominantly used FlexRay 2.1, making them backwards compatible.

Three schedule synthesis methods are proposed with very different properties. (1) A
single-stage Integer Linear Programming (ILP) approach that determines an optimal so-
lution but does not scale. (2) A multi-stage ILP for combining previously generated
subsystem schedules to a global schedule. It clearly improves the scalability but is not
optimal. The multi-stage approach allows to integrate and convert existing FlexRay 2.1
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schedules into a FlexRay 3.0 schedule which is important for legacy reasons, i.e., to re-
duce testing and certification efforts. (3) A greedy heuristic which scales well and obtains
high quality solutions in comparison with the optimal solution, but is unsuitable to inte-
grate existing schedules.

A comparison with metaheuristic approaches based on Genetic Algorithms (GAs) or Sim-
ulated Annealing (SA) shows the benefits of the proposed approaches. Furthermore, the
results show that the new features of FlexRay 3.0 allow to improve the bandwidth utiliza-
tion.

Finally, we also present an extension of the single-stage ILP for a holistic scheduling. The
schedule synthesis then also takes the tasks on the ECUs into account when generating a
system schedule.

• Functionality in automotive E/E-architectures today is largely realized through software
components distributed over the in-vehicle network. As these functions are developed
independently, all components finally need to be integrated into a seamless working sys-
tem. This is a highly challenging task since all bus and processor constraints as well as
end-to-end timing constraints have to be taken into account concurrently. As a remedy,
the work at hand proposes a schedule integration framework for time-triggered systems.
It allows to generate subsystem schedules individually and integrate them into the global
schedule at a later stage.

We present a framework which efficiently realizes the schedule integration. It is based on
a Satisfiability Modulo Theories (SMT) approach which integrates the subsystem sched-
ules into a global schedule. As an integration might not always be feasible, we also
propose a conflict refinement that identifies conflicting subsystem schedules. The conflict
refinement then adapts the subsystem schedule, taking all timing constraints into account
to resolve the conflict. The framework is applicable to both FlexRay and Automotive Eth-
ernet. As the ease of integration depends on the structure of the subsystem schedules, we
also propose several metrics to optimize subsystem schedules for schedule integration.

The results of an extensive analysis give evidence of the benefits of the proposed approach
compared to conventional approaches, generating a schedule from the scratch. Finally,
we also propose a design flow describing how schedule integration might be applied in
an AUTOSAR-based development process.

• Car manufacturers provide a growing variety of models and configuration options for
customers. Managing these variants and increasing the reuse of functionality in different
variants has therefore become one of the key challenges. The work at hand addresses the
problem of generating variant schedules for time-triggered E/E-architectures, considering
tasks and messages concurrently.

We propose a multi-schedule synthesis approach that determines the common parts of
multiple variants and generates a schedule that exploits this commonality. Hence, a
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multi-schedule defines individual variant schedules with an identical schedule for tasks
common to different variants. This avoids the problem of treating each variant sepa-
rately, thus, reducing the testing and integration efforts, as it only has to be done once.
Multi-schedule synthesis involves several challenges, viz., identification of commonal-
ity between different variants, schedule synthesis for common parts, and the integration
of uncommon parts. Consequently, the schedule synthesis approach presented here is
very different from conventional approaches. The framework relies on a graph-based ap-
proach to identify commonality between variants and applies an SMT-based approach
for the schedule synthesis. Finally, to address the increased complexity, we also propose
a divide-and-conquer approach to partition the problem, improving the scalability. The
problem partitioning relies on the schedule integration proposed in this thesis.

The results give evidence of the benefits of the proposed multi-schedule synthesis and
the efficiency of the approach. The framework is also evaluated using the lab setup of an
automotive system.

1.7 Related Work

This section gives a brief overview of literature related to the schedule synthesis problems ad-
dressed in this thesis. A general overview of work related to each of the three specific problems
(as described in the previous section) is given. A more detailed discussion of work specifically
relevant for the proposed approaches is then given in the respective chapters.

For the design of embedded systems there are two general approaches to handle real-time
applications: (1) Following an event-triggered scheme which executes tasks and transmits mes-
sages once certain events occur, or (2) to apply a time-triggered scheme which starts tasks and
sends messages at predefined points in time. There has been a long debate in the scientific
community about the advantages of each approach [Kop91, ATB93, Kop95]. However, the
choice of the right approach strongly depends on the application [Alb04, TSPS12]. As a con-
sequence, the last years have seen the introduction of various bus protocols in the automotive
domain which support both a time-triggered as well as an event-triggered communication, such
as MOST, FlexRay and Automotive Ethernet. In this context, this thesis assumes an architecture
which provides predictability for safety-critical applications through a time-triggered execution
scheme. Remaining resources might be used by less critical applications following an event-
triggered execution scheme. In the work at hand, the focus lies on time-triggered scheduling.
However, the proposed approaches might be extended to also take a concurrent event-triggered
scheduling into account, i.e., through the use of suitable metrics during schedule synthesis. For
instance, [TSPS12] proposes a schedule synthesis approach for TTEthernet, applying an ob-
jective function to minimize the end-to-end delay for event-triggered communication when the
time-triggered schedule is generated. Furthermore, [MSKS13] investigates the timing behavior
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for Automotive Ethernet, and gives recommendations on generating a time-triggered schedule,
such that the latency for event-triggered communication is reduced.

The basic principles of time-triggered communication have been described in [KG94]. The
paper proposes the Time-Triggered Protocol (TTP), a bus supporting time-triggered commu-
nication. Based on the TTP protocol, [KB03] introduces the Time-Triggered Architecture, a
design methodology for a predictable E/E-architecture. The different challenges arising in the
design of a time-triggered system are discussed, such as clock synchronization and specified
communication interfaces, providing a temporal abstraction between components. Such a time-
triggered architecture forms the basis for the approaches presented in this thesis.

1.7.1 Message Scheduling on the FlexRay Bus

Various work has been done on the message scheduling using a standard TDMA policy. For
instance, [TC94] proposes a timing analysis to determine the worst-case response time analy-
sis for event-triggered tasks communicating through a TDMA bus. The paper also considers
the delays introduced by the protocol stacks in sending and receiving ECUs. In [HE05] Evo-
lutionary Algorithms (EAs) are applied to optimize the slot assignment of tasks for resources
applying a TDMA scheme. The paper proposes variation operators applicable for different
EAs. Furhermore, several protocol specific approaches have also been proposed for different
time-triggered protocols. For instance, [CV04] proposes a performance analysis for the Byte-
flight protocol [BPG00] which might be considered as the predecessor of FlexRay. In [PEP05]
a schedule synthesis approach is proposed for heterogeneous systems consisting of a time-
triggered TTP bus and an event-triggered CAN bus connected by a gateway. The paper is con-
cerned with the packing of messages to frames such that all end-to-end delay requirements are
meet. [ACZD94] proposes a schedule synthesis approach for a token ring network. The problem
of assigning bandwidth to nodes is addressed with the goal of meeting all message deadlines.
[SS07] proposes a schedule synthesis approach for message transmission with TTCAN. Sev-
eral performance metrics are proposed, such as bandwidth utilization and message jitter. The
paper also gives recommendations on desirable message properties. Finally, in [PEP04] four
approaches for message to slot packing are proposed for a distributed system, communicating
through TTP. For the implementation the paper proposes strategies based on greedy heuristics
and SA.

Message scheduling on time-triggered buses follows a TDMA policy. Thus, each ECU can
only transmit messages at predefined time intervals, referred to as slots. Each time-triggered
protocol then defines additional constraints, for instance, the TTP protocol assigns exactly one
slot to each ECU in one cycle while FlexRay supports multiple slots [Obe11]. FlexRay has very
specific protocol properties such as constraints on the slot usage for different ECUs, making ex-
isting approaches for other time-triggered protocols or standard TDMA scheduling policies not
directly applicable. A FlexRay specific approach becomes therefore necessary. Several work
has been done addressing the FlexRay bus such as [GHN08, PPE+08, LGTM09]. However,
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most of these approaches are concerned with FlexRay 2.1. The latest FlexRay version 3.0 has
introduced various changes, allowing a more efficient bandwidth usage. As existing approaches
for version 2.1 are not applicable for FlexRay 3.0, new methodologies become necessary. The
work at hand proposes a framework for FlexRay 3.0 that supports all new features, overcoming
limitations of existing approaches for FlexRay 3.0 [SVG11, KPJ13]. We propose a generalized
approach which is backwards compatible to FlexRay 2.1. A detailed discussion of work related
to schedule synthesis for FlexRay is given in Section 3.1.1.

1.7.2 Modular Schedule Synthesis

The schedule integration framework presented in the work at hand addresses the problem of
a holistic scheduling of tasks and messages in a time-triggered system, in the literature often
also referred to as static cyclic scheduling. Various approaches have been proposed for holistic
scheduling of time-triggered systems, see [LLP97, Obe11] for a detailed overview. A popular
heuristic approach is list scheduling [CJG72]. List scheduling assigns the start-times to tasks
based on an ordered list containing all tasks ready to be scheduled. Data-dependent tasks are
only considered once all predecessor tasks have been scheduled. For instance, [BJM97] pro-
poses a schedule synthesis for a distributed system communicating with an abstract commu-
nication bus. It applies a critical-path algorithm, i.e., tasks with the longest path in regards
of execution-time are selected first. [THW02] proposes the heterogeneous earliest-finish-time
algorithm, optimizing the schedule based on the task execution-times with the goal of minimiz-
ing the end-to-end delay. However, list scheduling approaches often include a mapping of tasks
to processors or ECUs, while in the automotive domain the task mapping is often predefined,
e.g., as sensors or actuators are attached to certain ECUs. In [EDPP00] a schedule synthesis
approach for a distributed system communicating with TTP is proposed. The approach is based
on list scheduling and assumes a predefined task mapping. As scheduling heuristics such as list
scheduling might get stuck in local optima, creating suboptimal solutions, several approaches
using metaheuristics have been presented to improve the obtainable solutions [Obe11]. For
instance, [MSS89] presents an approach based on SA for single processor scheduling. One re-
cent approach in [TSPS12] applies a tabu search-based algorithm to optimize the schedule for
a system communicating with TTEthernet. The time-triggered schedule is optimized to mini-
mize the end-to-end delay for event-triggered communication, sharing the communication bus
with time-triggered messages. A drawback of heuristic and metaheuristic approaches is that for
strongly constrained problems, e.g., if tight maximum end-to-end delays have been selected,
the approach might struggle to determine a solution which satisfies all constraints and a back-
tracking is required [HLW+14]. Schedule synthesis approaches using mathematical techniques
allow to solve these problems, often with the goal of obtaining optimal results. For instance,
[Ben96] proposes an ILP approach to schedule tasks on a heterogeneous multiprocessor system.
In addition, [ZDGSV11] recently proposed a schedule synthesis approach based on an ILP for-
mulation for task and message scheduling in a system communicating through a FlexRay bus.
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The drawback of mathematical approaches is their limited scalability, making them unsuitable
to schedule large numbers of tasks and messages. As a remedy, the work at hand proposes a
modular approach which allows to integrate independently developed subsystem schedules in a
global schedule. This divide-and-conquer approach allows to clearly improve the scalability of
the schedule synthesis compared to generating a schedule from the scratch.

A modular design approach was developed in the area of component-based design. In this
context, various work has addressed hierarchical scheduling which is concerned with the as-
signment of runtime budgets to subsystem schedulers [SL03, WT06]. Component-based de-
sign generally addresses scheduling of components on a single ECU, but might be extended
to support distributed systems [KWL+12]. However, if component-based design is applied
for distributed systems, distributed applications are split into several components. By contrast,
schedule integration considers each application as an entity during schedule synthesis, facil-
itating changes to the schedule. Another body of related work can be found in the areas of
extensibility, and incremental scheduling. The problem of extensibility is concerned with op-
timizing schedules to ease the integration of additional tasks and messages, while incremental
scheduling addresses the problem of extending a schedule with minimal changes to the initial
schedule. Examples for work addressing these problems are [PEPP04, WJP+05]. However,
while incremental scheduling iteratively extends an existing schedule, schedule integration is
concerned with a modular schedule synthesis, thus, with the integration of multiple individu-
ally generated schedules in a global schedule. Section 4.1 gives a more detailed discussion of
work related to the schedule integration problem and how it differs from our approach.

1.7.3 Variant-aware Schedule Synthesis

Despite the great importance of variant management for the industry, variant management so
far has only gained little attention by the scientific community. Beyond the design automation
domain, several approaches for product line optimization have been proposed. A product line
aims at developing a complete product family rather than several independent products. Thus,
product line optimization aims at selecting a limited number of products such that the costs are
kept minimal while achieving a high market share. [BFSS08] gives an overview of different
approaches for product line optimization. A related problem is the determination of a product
platform for a product line [NPP01], i.e., the selection of a common basis for different products,
minimizing the cost. For E/E-architectures in the automotive domain, some work has been done
concerning the management of different software product lines. For instance, [TH02] empha-
sizes on the importance of a systematic approach to variant management. An approach for mod-
eling component variants using the intended features is proposed. [TDH11] investigates how
a product line approach might be introduced for the software development with AUTOSAR.
Finally, [MSR13] proposes the introduction of an integrated feature modeling in the manage-
ment of different software product line variants, to document variant specific information such
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as dependencies or restrictions. However, all these approaches are concerned with subsystems
and do not address the whole E/E-architecture.

In [GGW+13] a system representation is proposed which allows to model all vehicle vari-
ants in a single system model referred to as overspecified application model. This application
model contains the software components of all variants as well as the relations between each
other. Based on this application model, [GGTL14] proposes a variant-aware Design Space Ex-
ploration (DSE). The proposed approach determines an individual architecture for each variant
while determining an overall architecture selection, optimizing the reuse of components based
on various objectives, such as overall cost. However, while the DSE proposed in [GGTL14] is
concerned with the determination of variant architectures, the work at hand proposes a schedule
synthesis approach to determine schedules for such variant architectures.

Work related to a variant-aware schedule synthesis can be found in the area of multi-
mode scheduling. Multi-mode systems support several modes with different system config-
urations between which the system might switch at runtime, e.g., based on external events
or fault detection. Schedule synthesis for multi-mode systems is therefore concerned with
generating different system schedules, often with the goal of minimizing the switching de-
lays [NNS+11, ACPF14]. By contrast, variant-aware schedule synthesis aims at minimizing
the differences between variants, making multi-mode approaches not directly applicable. Be-
sides this, there exist several approaches dealing with the concurrent scheduling of multiple
graph-based applications in distributed systems in the context of heterogeneous distributed sys-
tems. Examples for such approaches are [IO98, ZS06]. The goal is to equally distribute the
resources between the applications to minimize the overall makespan, i.e., schedule length. By
contrast, we are concerned with generating multiple schedules sharing common tasks and mes-
sages that are deployed in different variants of the architecture. The multi-schedule synthesis
proposed in this thesis is therefore among the first approaches addressing a variant-aware sched-
ule synthesis. A detailed review of work related to a variant-aware schedule synthesis is given
in Section 5.1.

1.8 Organization and Bibliographic Notes

Whereas this chapter introduces the background for the work described in this thesis, Chapter 2
gives a formal introduction to the schedule synthesis problems addressed here and introduces
our system model. In Chapter 3 schedule synthesis approaches for the time-triggered FlexRay
bus are presented. Section 3.1 presents different approaches for message scheduling on the
FlexRay bus. The results presented in this chapter will appear in [SLC]. Section 3.2 presents an
extension of this approach for holistic task and message scheduling, used as a baseline for the
following chapters. Chapter 4 presents the schedule integration framework. First, the schedule
integration methods are presented in Section 4.3, before metrics that allow to optimize the
individual subsystem schedules are proposed in Section 4.4. The approaches presented in this
chapter have been in parts published in [SLC13, SAW+14]. Chapter 5 presents a multi-schedule
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approach considering different variants of an E/E-architecture. The results presented in this
chapter have appeared in [SWS+16]. Finally, Chapter 6 concludes the thesis and discusses
future research directions.

1.9 Publications

The approaches presented in Section 3.1 will appear as the following publication:

(1) Florian Sagstetter, Martin Lukasiewycz, Samarjit Chakraborty, Generalized Asyn-
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ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), Delhi,
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2
System Representation

This chapter is intended to bridge the gap between the informal discussion on automotive
E/E-architectures in the previous chapter and the formal system specification used for the ap-
proaches presented in the following chapters. First, we present a general system model for a
time-triggered automotive architecture. Second, based on this model, schedule synthesis for a
time-triggered system is introduced formally, defining the requirements for generating a sched-
ule. Finally, we formally introduce the properties of the underlying hardware components and
their constraints, e.g., for the FlexRay protocol.

The general notation and the symbols used to introduce the system description and through-
out this thesis can be found in the List of Symbols (page xiii).

2.1 System Definition

The automotive architectures considered in this thesis are systems consisting of various net-
worked resources. A system consists of multiple ECUs which are connected by at least one
communication bus. Figure 2.1 illustrates an architecture consisting of four ECUs connected
by a communication bus. Each ECU might also have individual links to sensors or actuators.
If the system consists of multiple communication buses, single ECUs might be connected to
multiple buses. These gateways allow to forward data from one bus to another bus. Hence, in
accordance with current automotive architectures, an ECU can communicate with ECUs con-
nected to other communication buses. The software executed on an ECU is represented by tasks
and data is transmitted between ECUs in the form of messages. In the work at hand, tasks and
messages are modeled as follows.
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Figure 2.1: System specification consisting of task graphs of three applications and their map-
pings to four ECUs connected by a communication bus.

Definition 2.1.1 (process p): Both tasks executed on an ECU as well as messages transmitted
via a communication bus are referred to as process p. Each process is defined by its execution-
time τp and a period hp. The execution-time equals the Worst Case Execution Time (WCET)
for tasks executed on an ECU and the transmission time for a message sent on a communication
bus, respectively. All processes are assumed to be executed strictly periodic.

We assume that the WCET of all tasks and messages has been determined prior to applying
a schedule synthesis, using tools such as aiT [FH04]. While not being in the focus of this work,
sporadic processes might be transformed to periodic processes such that they can be considered
in this model.

Automotive architectures implement various advanced functionality that is based on several
distributed processes. For instance, a sensor process reads sensor data on one ECU which might
be processed by a process on a second ECU. Hence, processes have data-dependencies which
are considered by applications. Figure 2.1 illustrates a system executing three applications.

Definition 2.1.2 (application a): An application a is defined as a set of processes connected by
data-dependencies. It is defined by a direct acyclic task-graph Ga = (Pa, Ea), where Pa defines
the set of processes and Ea the edges or data-dependencies, respectively, of the application. An
application only contains processes which are weakly connected, i.e., have a data-dependency.
While the periods of applications might differ, all processes of one application have the same
period, due to the used activation model. An application commonly receives data from one or
multiple sensors and activates one or multiple actuators. It is assumed that applications do not
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have cycles. However, an application having cycles can be adapted appropriately to break the
cycles.

Each process is mapped to an ECU or communication bus on which it is executed. Figure 2.1
illustrates the mappings of processes to the respective ECUs.

Definition 2.1.3 (resource r): In the following, both ECUs and communication buses are re-
ferred to as resource r. It is assumed that each resource can only be utilized by one process at a
time instant. In addition, each process can only be mapped to exactly one resource.

While multi-core ECUs are not explicitly taken into account, this system model could be
easily extended to support multi-core ECUs where each core is considered as an individual
resource. This is also in accordance with the AUTOSAR standard where for each core an own
entity of AUTOSAR OS is installed, allowing to statically configure each core [ZS14].

Based on the process, application and resource definitions, the whole system is represented
by a specification, containing all required parameters for the scheduling problem. Figure 2.1
illustrates the specification of a small system including the process mappings.

Definition 2.1.4 (specification d): A specification defines the system description containing all
applications Ad and contains the properties of each process. For simplicity, in the following, the
processes of a specification might be referred to as Pd and all data-dependencies as Ed. Here,
Pd =

⋃
∀a∈Ad

Pa and Ed =
⋃
∀a∈Ad

Ea holds. A specification also defines the mapping for each

process p to a resource r.

The presented system definition forms the basis for the schedule synthesis approaches pre-
sented in Section 3.2, Chapter 4 and Chapter 5. While the system definition also hold for the
schedule synthesis approach in Section 3.1, there a simplified system description is used as the
focus is on message scheduling.

2.2 Time-Triggered Scheduling

All approaches presented in this thesis are based on a time-triggered architecture, where time-
triggered resources execute processes at time instants predefined by a schedule.

Definition 2.2.1 (time-triggered scheduling): A time-triggered schedule partitions the time into
time-windows which are assigned to periodic processes. We define these time intervals by their
start-time sp and the execution-time τp for a process p. For a given start-time sp, a process is
executed during the time intervals t given by:

sp + n · hp ≤ t ≤ sp + τp + n · hp, ∀t ∈ R, n ∈N0
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Figure 2.2: Time-triggered schedule for the system specification in Figure 2.1.

Hence, a time-triggered schedule reserves a time-window of the WCET τp with a temporal
offset defined by the start-time sp for each process p. This time-window is reserved for each
periodic activation of the process based on the process period hp.

Figure 2.2 illustrates a potential schedule for the specification in Figure 2.1 if all processes
mapped to different resources are scheduled in a global schedule. A schedule synthesis ap-
proach must determine a feasible schedule such that only one process p utilizes the resource
r at each point in time. To determine whether p utilizes r for a specific point in time t, the
following function is defined:

η(p, t) =

{
1 ∀t : sp + n · hp ≤ t ≤ sp + n · hp + τp, n ∈N0

0 otherwise
(2.1)

Based on this Equation, the first requirement for a valid time-triggered schedule is defined
as follows:

Requirement 2.2.1 (exclusive utilization): A resource can only be exclusively utilized by one
process at a time instant. Non-preemptive time-triggered scheduling is assumed such that a
resource r always completes the execution of one process before another process is started.
With r(p) denoting a function that returns the resource r to which the process p is mapped, the
exclusive utilization requirement for one resource is defined as follows:

t ∈ R+, p, p̃ ∈ Pd, p 6= p̃, r(p) = r( p̃) :

η(p, t) + η( p̃, t) ≤ 1 (2.2)
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Figure 2.3: For asynchronous scheduling each resource is scheduled individually. For this
exemplary illustration, a message is transmitted from one ECU to another. To generate an
asynchronous schedule, no knowledge of the sending or receiving tasks is required.

Therefore, to create a feasible schedule, two processes p, p̃ mapped to the same resource r must
not use r at the same point in time t.

For time-triggered scheduling, two different approaches have to be distinguished: (1) Asyn-
chronous scheduling and (2) synchronous scheduling. (1) For asynchronous scheduling no time
synchronization is applied, i.e., each resource is scheduled individually. (2) By contrast, for
synchronous scheduling all resources share a global time and all tasks and messages are exe-
cuted in a time-triggered paradigm. A global schedule defines the start-times of all tasks and
messages. In the following, first an introduction to asynchronous scheduling is given, before
synchronous scheduling is introduced.

2.2.1 Asynchronous Time-Triggered Scheduling

For asynchronous scheduling, schedules for each resource are generated individually. Hence, a
time-triggered schedule might be created for all processes on a resource without taking any data-
dependencies into account. For instance, Figure 2.3 illustrates the transmission of a message on
a time-triggered communication bus. The information about the sending ECU and the receiving
ECU(s) might be required for the schedule synthesis, e.g., for message to frame packing, but
no details about the sending or receiving tasks are necessary. Asynchronous scheduling is still
predominantly used in the automotive industry, as subsystems are generally developed inde-
pendently and asynchronous scheduling significantly reduces the integration efforts compared
to synchronous scheduling. A common objective for asynchronous scheduling is the minimum
bandwidth utilization of a bus. Section 3.1 presents an asynchronous time-triggered scheduling
approach for the FlexRay bus.
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2.2.2 Synchronous Time-Triggered Scheduling

For synchronous time-triggered scheduling, at runtime all tasks and messages are executed
by a predefined schedule that is triggered by a global time. Automotive buses like FlexRay
(see Section 2.3.2) or Automotive Ethernet (see Section 2.3.3) support time synchronization of
ECUs, providing a global clock. For synchronous scheduling a global schedule considering all
resources is generated. Figure 2.2 (page 30) illustrates a schedule for synchronous scheduling,
defining the start-times for all tasks and messages. For data-dependent processes it is essential
that data produced by a predecessor process is made available in a timely manner. Hence, during
schedule synthesis additional constraints have to be taken into account to ensure that processes
with data-dependencies are executed consecutively.

Requirement 2.2.2 (precedence): For data-dependent processes, it is essential that a data pro-
viding process terminates before a successor process p̂ processing the data is started. With the
edge e defining a data dependency and Ea defining all data-dependencies of an application a, it
must hold that:

∀e ∈ Ea, (p, p̂) = e:
sp + τp ≤ s p̂

Hence, all processes must finish their execution before successor processes are started. This
precedence constraint is of particular relevance when determining the end-to-end delay for an
application.

Automotive architectures implement distributed applications running on a number of net-
worked resources. Rather than defining deadlines for each single task, strict maximum end-
to-end timing delays are defined for distributed applications [SRN+09]. Figure 2.2 (page 30)
indicates the end-to-end delay for one of the applications. Note that for this illustrative ex-
ample, only the end-to-end delay from sensor task t3 to actuator task t5 is indicated while the
end-to-end delay from t4 to t5 was omitted for readability.

Definition 2.2.2 (source process psrc): We refer to a process which does not have a data-
dependency to a predecessor process, i.e., an incoming edge in the application task graph, as a
source process. A source process is commonly a sensor task mapped to an ECU reading data
from a sensor attached to it.

Definition 2.2.3 (sink process psnk): We refer to a process which does not have a data-
dependency to a successor process, i.e., an outgoing edge in the application task graph, as a
sink process. A sink process is commonly an actuator task mapped to an ECU controlling an
actuator connected to it.

As our system model supports applications with multiple source and sink processes, an
application might consist of multiple paths.
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Definition 2.2.4 (path φ): A path φ defines a subgraph of an application from a source (sensor)
to a sink (actuator) process. Each process in a path has only one predecessor and one successor,
i.e., φ = {p1, p2, .., pn}. All processes in a path are connected by an edge in the application
task graph. Sensor or source processes are obtained by the following function.

src(φ) = {p|∃p : ∀e ∈ φ,@e = ( p̌, p)}

Similarly, actuator or sink processes are obtained as follows.

snk(φ) = {p|∃p : ∀e ∈ φ,@e = (p, p̂)}

For each path we can now determine an end-to-end delay which must not exceed the maxi-
mum end-to-end delay.

Requirement 2.2.3 (maximum end-to-end delay θa): The maximum end-to-end delay of an
application θa defines the longest permitted time frame from the start of the earliest source
process to the finish of the latest sink process. With φ representing a path from a source to a
sink process and Φ(Ea) returning all paths of the application a, the maximum end-to-end delay
constrains an application as follows.

φ ∈ Φ(Ea), psrc = src(φ), psnk = snk(φ):

θa ≥ (spsnk + τpsnk)− spsrc

Hence, the delay from the start of all source processes until all sink processes finish must not
exceed the maximum end-to-end delay. The shortest feasible end-to-end delay is defined by the
path with the largest total execution-time.

Based on these requirements, a schedule synthesis approach might now determine a sched-
ule for a synchronous time-triggered system. For an efficient representation of the system sched-
ule we use a periodic representation of the schedule.

Definition 2.2.5 (periodic schedule): A time-triggered schedule defines a start-time sp for each
process p (cf. Definition 2.2.1). As the system model considered here focuses on periodic
processes, each process p is executed with its period hp. Without loss of generality, the start-
time sp is therefore limited as follows.

0 ≤ sp < hp

Hence, a data-dependent process might have a lower start-time than its predecessor process.
While this representation might require a short initialization phase when the system is started,
it allows an efficient and comprehensive representation of a time-triggered schedule. A time-
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triggered schedule for a specification d is then defined for the duration of a hyper-period hd.
The hyper-period is defined by the least common multiple of all processes in the specification:

hd = lcm
p∈Pd

(hp)

Figure 2.2 (page 30) illustrates such a periodic schedule. For instance, task t3 is started
close to the end of the specification period hd while the data dependent process m6 is started at
the beginning of the period.

A common objective for synchronous scheduling is a minimum end-to-end delay of dis-
tributed applications from sensor to actuator. The complexity of synchronous scheduling is sig-
nificantly higher than for asynchronous scheduling. The approaches presented in Section 3.2,
Chapter 4 and Chapter 5 address the problem of synchronous time-triggered scheduling.

2.3 Time-Triggered Communication Buses

The system definitions presented in the previous two sections considered the same properties for
tasks and messages. However, for the communication on a time-triggered communication bus,
additional message properties are required. The data exchanged between tasks is commonly
referred to as signals in the automotive domain, while the data transmitted over a communi-
cation bus is referred to as message. Signals are therefore packed into messages before being
transmitted on the bus. For our system model, we assume that signals are directly exchanged
via memory if two data-dependent tasks are mapped to the same resource. If data is transmitted
over a communication bus, we assume that all signals have already been packed into messages.
While most approaches presented in this thesis are generic and the framework might be extended
to support other automotive communication buses, the FlexRay bus and Automotive Ethernet
are exemplary used. In the following, first a formal definition of TDMA is given which forms
the basis for time-triggered communication protocols. Second, the FlexRay bus is introduced
in more detail. Finally, the Ethernet bus properties defined in this thesis are presented.

2.3.1 Time-Division Multiple Access

Time-triggered communication protocols like FlexRay or Automotive Ethernet follow a TDMA
scheme [Obe11] where the bandwidth is sliced into short time-intervals, i.e., time slots. A slot
is exclusively assigned to a single ECU, preventing collisions, and has a fixed size. If an ECU
does not transmit a message in an assigned slot, the slot remains unused. The slots assignment
to ECUs are defined in a schedule prior to operation. As the schedule is known to all network
participants, a message can be identified by the time slot it is sent in and no additional message
header is required. Figure 2.4 shows a time-triggered communication following the TDMA
scheme.
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Figure 2.4: Schematic illustration of a communication following a TDMA scheme.

2.3.2 FlexRay

In the following, a formal introduction of the FlexRay protocol is given. A more detailed prob-
lem specific introduction is given in the respective sections (see Section 3.1 and Section 4.3.4).
A FlexRay schedule is organized in cfr communication cycles. A FlexRay communication cy-
cle consists of four different segments as illustrated in Figure 2.5: (1) A static segment where
messages are transferred in a predefined schedule, (2) an optional dynamic segment to trans-
fer less critical and event-triggered data of variable length, (3) an optional symbol window for
transferring special symbols, e.g., for bus initialization, and (4) the network idle time for the
synchronization of network nodes. While all communication cycles have the same structure,
the messages transmitted in each cycle might change. Once all cycles have been scheduled, the
schedule is repeated.

The time-triggered static segment is commonly used for in-vehicle communication, while
the event-triggered dynamic segment is used for diagnostics and configuration. Therefore, the
focus of the work at hand lies on the static segment. The static segment follows a TDMA
scheme and consists of a fixed number of nfr slots of equal size. Each slot has a header, trailer
and a payload segment, carrying data between 0 and 254 bytes. With a focus on the static
segment, we define the following properties for a FlexRay bus.

Definition 2.3.1 (FlexRay bus): A FlexRay bus partitions the time of a periodically repeated
schedule in nfr time slots. At one time instant, a slot is exclusively used by the messages of a
single sending ECU. All slots are of a equal size time interval of τfr. We assume that this time
interval includes all additional delays introduced by the protocol. We also assume that the first
time slot starts at time instant 0. A FlexRay cycle has the duration of hfr, thus, a slot is available
for message transmission with a period of hfr, defining the minimal supported message period.

One slot might contain multiple messages if the slot payload segment is not exceeded. As
the payload size of a FlexRay slot lfr is measured in bytes rather than its temporal duration, the
process definition for messages is extended as follows.
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Figure 2.5: Basic structure of FlexRay protocol organized in communication cycles with a
detailed illustration of the static segment.

Definition 2.3.2 (FlexRay - message): A message m is defined by its period and its size mea-
sured in bytes. The process definition in Definition 2.1.1 is therefore extended by a size param-
eter lm.

As a slot needs to be packed before transmission, the message start-times must equal the
start-time of a slot. For synchronous time-triggered scheduling, we therefore define the follow-
ing requirement for FlexRay messages.

Requirement 2.3.1 (FlexRay - slot assignment): Based on Definition 2.3.1, for a message m
transmitted in slot slm ∈ {0, .., nfr− 1}, the message start-time sm needs to fulfill the following
requirement.

sm = slm · τfr

Hence, a message can only be released at the start-time of the slot the message is transmitted
in.

FlexRay versions. Several versions of the FlexRay protocol have been specified, introducing
different constraints on the scheduling problem. Of relevance for the industry are version 2.1
and 3.0. FlexRay 2.1 is still the predominantly used FlexRay version for automotive systems,
while FlexRay 3.0 is the most recent FlexRay version. All approaches presented in this thesis
support both protocol versions. One major difference between both versions is that FlexRay
2.1 assigns a slot exclusively to one ECU. On the other hand, FlexRay 3.0 allows sharing of
a slot between ECUs, such that a different ECU might transmit its messages in each cycle.
Figure 2.6 illustrates this difference. Hence, for FlexRay 2.1 scheduling, we introduce the
following requirement.

Requirement 2.3.2 (FlexRay 2.1 - exclusive slot usage): For FlexRay 2.1, a slot in the static
segment is exclusively assigned to one ECU. Hence, for all cycles of the FlexRay schedule only
one ECU is allowed to send its messages in one particular slot.
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Figure 2.6: Abstract illustration of slot to ECU assignment for FlexRay 2.1 and FlexRay 3.0,
if three ECUs ( , , ) send messages. For FlexRay 2.1, a slot is exclusively assigned to
one slot, while for FlexRay 3.0, different ECUs can send their messages in the same slot for
different cycles.

2.3.3 Automotive Ethernet

Automotive Ethernet is currently still in the specification phase, as discussed in the introduction.
However, various features and requirements have been specified, allowing to develop schedule
synthesis methods that are compatible with a future Automotive Ethernet implementation. Au-
tomotive Ethernet will follow the set of standards defined as TSN [IEE15]. For time-triggered
communication, a Time-aware shaper is introduced which prioritizes time-triggered commu-
nication over event-triggered communication based on a predefined schedule. TSN allows to
define slots freely, supporting flexible message release times, rather than assigning messages to
predefined slots as it is done for FlexRay. In our system model, we therefore consider Ethernet
messages like processes scheduled on an ECU to which we assign a start-time. The message
start-time and its transmission time then implicitly define the slot scheduled by the Time-aware
shaper.

Automotive Ethernet is not implemented as a bus to which all ECUs are connected, but
uses a switched network instead. Thus, an Ethernet network is realized by point-to-point con-
nections between ECUs and switches. Ethernet also allows to connect multiple switches. For
time-triggered scheduling this switched architecture signifies that multiple messages can be
transmitted concurrently if the message paths in the network do not intersect [KCBQ14]. In ad-
dition, Ethernet supports a full-duplex communication, allowing an ECU to concurrently send
and receive messages. Figure 2.7 illustrates the architecture from Figure 2.1 if realized by a
central Ethernet switch. As switches today can handle multiple transmissions concurrently, for
this example the central switch would allow to send the messages m2, m3 and m5 concurrently.
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sw → r4 m3, m4, m6

Figure 2.7: Illustration of an implementation of the architecture in Figure 2.1 based on full-
duplex switched Ethernet. The table lists the messages sharing each link, connecting the switch
with an ECU.

The latest AUTOSAR standard for Automotive Ethernet offers support for Internet Proto-
col version 6 (IPv6) to define sending and receiving ECUs in the network. For the message
transmission, the Transmission Control Protocol (TCP) and User Datagram Protocol (UDP)
are supported. TCP is a stream-based protocol that requires to establish a connection between
sender and receiver before data transmission. TCP includes various mechanisms to ensure a
correct data transmission. However, these mechanisms also lead to a non-deterministic be-
havior, making TCP an unsuitable candidate for safety-critical applications [ZS14]. UDP is a
message-based protocol which also supports multicast transmission as it is common for auto-
motive applications [KCBQ14]. For the Ethernet communication, we therefore assume a UDP
and IPv6-based communication which would be suitable for real-time applications. For these
protocols, Ethernet introduces a significant overhead of 78 byte of header data for each trans-
mitted message. Table 2.1 gives an overview of the header size. For 100 Mbit/s Ethernet the
minimal message transmission time of a 64 byte UDP message on a link is then 11.36 µs. For
switched Ethernet, each switch forwarding the message commonly adds an additional delay of
5 µs [ZS14]. In this thesis, an abstract model of the Ethernet bus is assumed which does not
take the timing delays of each switch into account explicitly. Instead, to account for multiple
switches and additionally introduced delays we assume a worst case transmission time for a
message of 65 µs (for 64 byte message data) if not stated differently.
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Table 2.1: Structure of Ethernet message header.

protocol overhead per message

Ethernet 100 Mbit/s 30 byte1

IPv6 on Ethernet 30 + 40 =70 byte
UDP/IPv6 on Ethernet 30 + 40 + 8 =78 byte

For details see [ZS14]

1 Sum of Preamble, MACs, VLAN tag, Type, FCS
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3
Schedule Synthesis for FlexRay

In the previous chapter, a system model for a time-triggered automotive architecture was in-
troduced. Based on this model, this section presents schedule synthesis approaches for a
time-triggered system communicating via FlexRay. First, an approach for asynchronous time-
triggered scheduling is proposed for the message scheduling on the FlexRay bus. Second, the
message scheduling for FlexRay is extended with a concurrent task scheduling for synchronous
scheduling. This extension also considers Automotive Ethernet.

To overcome the drawbacks of the predominant event-triggered CAN bus for automotive in-
vehicle communication, a consortium of car manufacturers and suppliers developed the FlexRay
protocol. It offers a hybrid topology layout with a high bandwidth, supporting time-triggered
communication in the static segment, and event-triggered communication in the dynamic seg-
ment (see Section 2.3.2). With these characteristics, the FlexRay protocol is perfectly suitable
for functions with very high safety demands such as drive-by-wire applications [YM09]. Car
manufacturers like Audi or BMW already introduced the FlexRay bus in top-of-the-range se-
ries vehicles using version 2.1 of the protocol [B0̈7, KP08]. However, with the release of the
FlexRay 3.0 standard in 2010 [Fle10], the FlexRay consortium introduced major changes, al-
lowing a higher utilization of the bus. At the same time, the complexity of the protocol has
increased and as a result new schedule synthesis techniques became necessary.

While schedule synthesis for FlexRay 2.1 has been extensively studied in literature, existing
FlexRay 3.0 approaches have limitations regarding the obtainable results or do not consider all
parameters required for a successful message scheduling1. As a remedy, this chapter proposes
a systematic approach for FlexRay 3.0 schedule synthesis which at the same time is applicable

1A FlexRay schedule requires a slot, base-cycle and offset assignment for each message.

41



3.1 Asynchronous Time-Triggered Scheduling

to version 2.1. In accordance with the current design approach in the automotive industry, the
focus lies on message scheduling in the static segment, while the dynamic segment is com-
monly only used for configuration or diagnosis. As the FlexRay protocol has introduced addi-
tional constraints compared to traditional TDMA, like constraints on the slot usage for different
senders, or the appended dynamic segment, TDMA scheduling policies are not applicable and
a FlexRay specific approach is required.

Contributions and related work. This section presents a general, version-independent,
scheduling framework for FlexRay. In Section 3.1 several approaches for message schedul-
ing are presented. In this area, various work has been done for FlexRay 2.1 schedul-
ing [GHN08, LGTM09, SS09b], however these approaches are not applicable to FlexRay 3.0.
Existing FlexRay 3.0 approaches [SVG11, KPJ13] only consider frame to slot or message to
frame packing, respectively, and omit a message offset assignment as in [DKK14]. By contrast,
all approaches presented here are comprehensive. Our approaches not only obtain a message
to slot assignment, but also assign a message offset within the slot, as required by the FlexRay
specification. Offset assignment is required to efficiently use all new features of FlexRay 3.0,
i.e., a variable cycle number. A single-stage ILP to determine an optimal solution and a heuristic
with a good scalability are presented. Both approaches apply a direct message to slot packing
to achieve minimal bandwidth utilization compared to a two-stage approach including frame
packing. Furthermore, a multi-stage ILP approach is presented to improve the scalability of
the ILP approach and to optimize legacy FlexRay 2.1 schedules. To evaluate these approaches,
a Genetic Algorithm (GA) and a Simulated Annealing (SA) approach are also presented. The
focus of these approaches is on message scheduling over the FlexRay bus, addressing the prob-
lem of asynchronous scheduling with the goal of a high bandwidth utilization. Section 3.2 then
presents an extension of the single-stage ILP to support synchronous scheduling. The approach
considers both the message scheduling on the FlexRay bus as well as the task scheduling on
the ECUs. The proposed schedule synthesis allows to generate schedules for heterogeneous
systems communicating with multiple FlexRay and Ethernet buses.

A more detailed introduction to the addressed problems including related work is given in
Section 3.1 for asynchronous FlexRay scheduling, and in Section 3.2 for synchronous schedul-
ing of heterogeneous networks.

3.1 Asynchronous Time-Triggered Scheduling

In the following, several schedule synthesis approaches for message scheduling with the
FlexRay bus are presented. Thus, this section addresses asynchronous time-triggered schedul-
ing suitable for robust control functions that are not affected negatively by additional delays like
many automotive applications. Consequently, the proposed approaches are also in accordance
with the current design approach in the automotive industry.
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r1 r2 r3

r4 r5

FlexRay

message

signal0 signal1
...

Figure 3.1: FlexRay communication of two ECUs. Signals are packed into messages before
being transfered over the bus.

In the context of asynchronous scheduling, the literature often distinguishes between ap-
proaches for signals and messages. The data tasks of an application exchange are signals as
shown in Figure 3.1. A signal could be physical data like the vehicle speed or a single control
instruction. For message transmission on a communication bus, several signals of an ECU are
then packed into a message. The system model applied in this thesis assumes that all signals are
already packed into messages if tasks communicate using a communication bus like FlexRay2.
Messages are measured in bytes as the smallest unit. A message might only be sent in a pre-
defined time slot. Figure 3.2 gives an overview of the data structure of a FlexRay slot and the
common terminology. Messages are packed into frames which equal the payload of a slot. A
slot might contain multiple frames. FlexRay supports cycle multiplexing such that for each
cycle, a slot may contain different messages. For FlexRay synthesis, generally two approaches
exist. (1) A two-stage approach, first packing messages into frames before packing the frames
into slots. (2) A direct packing of messages into slots, implicitly defining the frame packing.
The two-stage approach reduces the problem complexity, while it might lead to suboptimal so-
lutions with respect to the number of required slots. This section presents a single-stage ILP
and a greedy heuristic providing a direct packing of messages to slots for a minimal bandwidth
requirement. Furthermore, a multi-stage ILP applying the two-stage approach, which supports
the integration of legacy systems, is presented.

Contributions. The scheduling problem addressed in this section is the determination of a
schedule for a set of messages with the goal of a minimal bandwidth utilization. The schedule
defines a slot, base-cycle, and offset for each message. Several techniques for scheduling the
FlexRay static segment are presented that fulfill different requirements in terms of runtime and
quality of results:

2Note that a direct packing of signals to frames compared to packing of messages to frames has no influence
on the bandwidth requirements. A message solely groups signals, but does not introduce an overhead.
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frame

message

signal

slot

Figure 3.2: Basic data structure of a FlexRay schedule. Signals are packed into messages before
being sent by an ECU. Messages are sent in a frame assigned to a predefined time slot.

• A single-stage ILP formulation to obtain an optimal schedule, suitable for problems with
a moderate size and complexity.

• A multi-stage ILP approach which allows to first determine subsystem schedules before
integrating them into a global schedule for the entire network. This is in particular relevant
for legacy systems as testing and certification efforts are clearly reduced if an existing
configuration is reused, instead of creating a new configuration from the scratch. The
approach allows to convert or integrate existing FlexRay 2.1 schedules to FlexRay 3.0
schedules, optimizing their bandwidth usage.

• A greedy heuristic that determines schedules for full state-of-the-art in-vehicle networks,
sending up to 1000 messages within few seconds while minimizing the required band-
width.

• To evaluate the approaches, a GA and a SA approach were implemented. An exten-
sive case study shows the benefits of our approaches compared to GA and SA-based
approaches.

All approaches support both FlexRay 2.1 and 3.0, complying with the AUTOSAR standard used
in the automotive industry for all FlexRay implementations [AUT14]. A FIeld Bus Exchange
Format (FIBEX) import and export allows to integrate the approaches in existing tool-chains.
FIBEX is the standard data/information exchange format to define and configure automotive
networks [ASA10].

Table 3.1 gives an overview of the capabilities of all approaches. The ILP produces optimal
results, but for FlexRay 3.0 it does not scale well and scheduling 130 messages might already
take more than 24 hours as the results indicate. The multi-stage ILP approach overcomes this
limitation through integrating independently created subsystem schedules into a global sched-
ule. However, its results are not globally optimal. Finally, the greedy heuristic determines close

44



3. Schedule Synthesis for FlexRay

Table 3.1: Characteristics of approaches proposed for FlexRay scheduling.

method
bandwidth

scalability
extensibility/

usage modularity

Single-stage ILP ++1 - - - -
Multi-stage ILP ◦2 + ++
Greedy Heuristic ++ ++ - -

Genetic Algorithm + + - -
Simulated Annealing + + - -
1 optimal approach, determining minimal bandwidth usage

2 average bandwidth utilization

to optimal results and scales well as our case studies show. While both the single-stage ILP
and the greedy heuristic require generating a schedule from the scratch, the multi-stage ILP ap-
proach supports a modular design approach. It allows to integrate and extend schedules created
by the two other approaches. For completeness, a GA and a SA approach are also presented.
However, for large message sets, both are outperformed by the greedy heuristic which requires
up to 7 % less bandwidth while being about 3 orders of magnitude faster. A large case-study
consisting of 420 test-cases and a realistic test case of a full in-vehicle network are presented to
give evidence of the efficiency of the proposed scheduling approaches. At the same time, the
results show the possible advantages of FlexRay 3.0 over FlexRay 2.1 in terms of the utilization
of the bus.

Outline. Section 3.1.1 first gives a detailed discussion of related work. Section 3.1.2 gives a
detailed problem description and introduces our framework. Section 3.1.3 presents the single-
stage ILP formulation, while Section 3.1.4 proposes the multi-stage ILP approach. Section 3.1.5
introduces the greedy heuristic approach including a sorting strategy based on a GA and a
SA approach. Finally, Section 3.1.6 evaluates our approaches using an extensive performance
analysis and a realistic case study.

3.1.1 Related Work

The FlexRay protocol specification was developed by the FlexRay consortium including Bosch,
BMW, General Motors and Volkswagen. The protocol was finalized in 2010 with the release of
FlexRay 3.0. After its first implementation in a series-production vehicle with the BMW X5 in
2006 [B0̈7], the FlexRay bus is currently becoming an integral part of the in-vehicle networks of
top-of-the range cars [BPS08, KP08]. All current series-production vehicles using the FlexRay
bus are compliant with the FlexRay AUTOSAR Interface Specification [AUT14].
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Recent publications cover various topics regarding FlexRay networks. In [BKPS07], an
introduction to the configuration of FlexRay applications is given. An optimization method to
define optimal parameters for the static segment and the communication cycle can be found in
[PS11]. In [Cen06] and [HBC+07], a timing and performance analysis of the FlexRay protocol
is proposed with a focus on the dynamic segment. Several schedule optimization methods have
been proposed for the dynamic FlexRay segment like in [PPEP07, SS09a, SYP+09]. However,
here the focus is on the static segment as the dynamic segment is commonly only used for
diagnosis and configuration.

Approaches for synchronous scheduling in the static FlexRay segment have been presented
in [ZDGSV11] and [LSGC12], applying a concurrent task and message scheduling. However,
the approaches presented in this section are concerned with asynchronous scheduling. Sec-
tion 3.2 then presents an extension of the optimal ILP approach for synchronous scheduling.

In the automotive domain, ECUs, their functions, and their schedules are currently still
largely developed and determined independently, preventing a synchronous scheduling. As a re-
sult, many applications and robust control functions do not require synchronization of tasks such
that asynchronous scheduling may be applied. This reduces the complexity of the scheduling
and integration efforts significantly. [DMTT05, DTT08] present an approach for asynchronous
FlexRay scheduling using a GA. The approach also takes the timing delay from sending to
receiving tasks into account. However, as the authors state in [Din10], GAs do not scale for
non-trivial problems, and therefore propose a hybrid approach using a mix of a bin-packing al-
gorithm and a GA. In [SS09b] a two-stage ILP approach is proposed. It packs signals to frames
in a first step before determining a schedule from the frames. Two scheduling approaches, com-
plying with the AUTOSAR standard, can be found in [GHN08] and [LGTM09]. In [GHN08],
FlexRay schedules are obtained by a heuristic, assuming one signal per frame and, thus, lead-
ing to inferior bandwidth utilization. In [LGTM09], the authors present a schedule synthesis
that considers the packing of messages to slots based on the bin-packing problem [LMV02].
In summary, all discussed approaches are tailored to FlexRay 2.1 and are not applicable for
FlexRay 3.0. As a remedy, a generalized approach that obtains asynchronous schedules and is
applicable to the different versions of FlexRay is presented.

Approaches supporting FlexRay 3.0 features have been proposed in [HLW+14] and [DK14],
addressing the problem of holistic scheduling with FlexRay. [HLW+14] proposes heuristic ap-
proaches based on list scheduling while [DK14] applies a transformation to the strip packing
problem to schedule the messages. While both approaches support slot sharing as introduced
by FlexRay 3.0, they do not consider a variable cycle number. A variable cycle number might
allow to clearly reduce the bandwidth requirements as our results show. An approach for asyn-
chronous FlexRay 3.0 scheduling is presented in [SVG11]. In contrast to the work at hand,
the paper only considers a packing of frames to slots, and assumes the packing of messages
to frames was done in a previous design step. It is therefore not applicable to many relevant
automotive scenarios that rely on the AUTOSAR specification where a given frame packing is
not assumed. [KPJ13] presents an approach for packing signals to frames, supporting multi-
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ple periods in a frame as supported by FlexRay 3.0. To generate the final schedule, it relies
on the scheduling analysis proposed in [PPE+08]. While these approaches reduce the prob-
lem complexity, they also lead to clearly worse results than an implicit frame packing that is
defined by scheduling of messages directly into slots. Finally, in [DKK14] an approach for
holistic scheduling for a system connected by a FlexRay bus is presented. The paper proposes
an ILP approach which considers a direct packing of messages to slots suitable for FlexRay 3.0
scheduling. However, [DKK14] does not consider a message offset assignment. Offset as-
signment becomes necessary for FlexRay 3.0 where a variable cycle number allows to send
messages with repetitions that only share 1 as greatest common divisor in one slot, as discussed
in detail in Section 3.1.2.2. As a remedy, this section proposes several approaches that comply
with the AUTOSAR specification and considers a direct message to slot packing for the single-
stage ILP and the greedy approach, obtaining the best possible utilization of the bus. In addition,
the multi-stage ILP allows to convert legacy FlexRay 2.1 schedules to FlexRay 3.0 schedules
with reduced bandwidth requirements. All approaches include a message offset assignment
which has been omitted by previous work.

3.1.2 FlexRay Scheduling

This Section first introduces the general scheduling in the FlexRay static segment and its nota-
tion. Second, a depiction of the differences between FlexRay 2.1 and 3.0 is given. Finally, the
framework is introduced.

3.1.2.1 FlexRay Parameters

Extending the high-level introduction in Section 2.3.2, in the following, a general introduc-
tion to FlexRay scheduling is given which applies to both FlexRay 2.1 and 3.0. All major
car manufacturers follow the AUTOSAR standard for their FlexRay implementations in series-
production vehicles. To increase the bandwidth usage of the FlexRay bus, AUTOSAR suggests
cycle multiplexing. Cycle multiplexing allows to alternate the messages sent in one slot from
cycle to cycle to increase the utilization, for instance, see messages m01 and m02 alternating in
Figure 3.3.

FlexRay requires the configuration of various parameters. The number of communication
cycles cfr, the cycle duration hfr, the payload size of a static slot lfr in bytes, and the number
of available static slots nfr in one cycle. A message m is defined by its size lm and its period
hm. To schedule a set of messages m ∈ M, FlexRay requires that all message periods are a
multiple of the communication cycle duration hfr. If this is the case, the message period can be
represented by the message repetition ρm = hm

hfr
. Hence, the message repetition ρm represents

the message period as a multiple of the FlexRay cycle duration. Given a message m with its
size lm and repetition ρm, scheduling is formally defined as follows. To schedule m, FlexRay
requires ρm to be a divisor of the number of cycles cfr to allow a periodic occurrence. If this is
not the case, oversampling becomes necessary, i.e., a smaller value of ρm has to be chosen. To
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Figure 3.3: Comparison of version 2.1 and 3.0 of FlexRay. FlexRay 2.1 limits the cycle number
cfr to 64 while 3.0 allows to customize cfr. Selecting a suitable cycle number with FlexRay 3.0
might prevent oversampling and save bandwidth. Here, the messages m01 and m02 can be sent
with their initial periods ρm01 = 6 and ρm02 = 3 for cfr = 60 cycles while oversampling is
required for cfr = 64 as it is not divisible by 3 or 6.

schedule a message m, three parameters need to be determined. (1) The slot slm in which m is
scheduled. (2) The base-cycle bm that indicates the first cycle in which m is scheduled. (3) The
x-offset xm, indicating at which position in the slot the message m is scheduled. For instance,
in Figure 3.3 m02 is scheduled in slot 0 with a base-cycle 1 and x-offset 0. Thus, a message m
is scheduled in all cycles cci with:

i = (bm + ρm · n) mod cfr, n ∈N0 (3.1)

This scheduling has to be performed such that no messages intersect. Two messages m and m̃
scheduled in the same slot, at the same payload position, do not intersect if they never share the
same cycle:

∀i, j ∈N0:
(bm + ρm · i) mod cfr 6= (bm̃ + ρm̃ · j) mod cfr (3.2)

Schedules for single FlexRay slots are illustrated in Figure 3.3 and 3.4. The representation
is derived from Figure 2.5 (page 36) through introducing a row for each cycle on the y-axis.
Hence, bm is the offset on the y-axis and xm is the offset on the x-axis within a slot.
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3.1.2.2 FlexRay Versions

The FlexRay 3.0 standard introduces several changes (in comparison to version 2.1) to the
FlexRay protocol. In particular, for scheduling the static segment, the following two major
changes are highly relevant and might improve the utilization of the bus. (1) The number of
cycles cfr is variable and (2) slots can be shared by different ECUs.

(1) The number of cycles cfr of a FlexRay schedule is configured at design time. For
FlexRay 3.0, cfr can be any even number of cycles between 8 and 64. A message can only
be scheduled with a repetition ρm that is a common divisor of cfr, hence cfr mod ρm = 0
must hold. As example for cfr = 60, a message m might be sent with repetitions of ρm ∈
{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60} cycles. By contrast, for version 2.1 of FlexRay, the num-
ber of cycles of a FlexRay schedule is fixed to cfr = 64, defining ρm ∈ {1, 2, 4, 8, 16, 32, 64}.
The variable cycle number of FlexRay 3.0 might allow a higher flexibility in terms of available
repetition values. Hence, a lower bandwidth utilization can be achieved by preventing over-
sampling. Figure 3.3 illustrates how two messages need to be oversampled for cfr = 64 in
comparison to cfr = 60. For this example, scheduling with cfr = 60 leads to over 30 % less
bandwidth utilization compared to the cfr = 64 of FlexRay 2.1. The unused slot space might
then be used to schedule other messages and reduce the total number of slots. However, while
cfr = 64 only supports message repetitions which are a multiple of 2, a variable cycle num-
ber allows to send messages with repetitions that only share 1 as greatest common divisor in
one slot. Hence, while message offsets might be trivially defined for FlexRay 2.1, version 3.0
requires a specific offset assignment3.

(2) Additionally, while for FlexRay 2.1 a slot is exclusively assigned to one ECU to send
messages, version 3.0 allows slot sharing between different ECUs. Thus, for each communi-
cation cycle, a different ECU might send its messages in a specific slot. Figure 3.4 shows how
three messages sent by two ECUs can be scheduled in a single slot with FlexRay 3.0 while
version 2.1 requires two slots to schedule the same messages. While this new feature allows to
use slots more efficiently, the problem complexity is clearly increased as a concurrent schedul-
ing of all ECUs becomes necessary. Hence, while the schedule synthesis might be applied for
each ECU independently for version 2.1, FlexRay 3.0 requires a global scheduling approach
that requires a more complex optimization model.

3.1.2.3 Schedule Synthesis Framework

We propose a framework to determine a FlexRay schedule for a set of messages. The framework
allows a schedule synthesis for FlexRay 3.0, taking into account all its new features. At the same
time, all approaches are backwards compatible to FlexRay 2.1. The main optimization objective
is the minimization of required slots which is a common approach for asynchronous scheduling
since it implicitly improves the utilization of the FlexRay bus.

3For two messages m and m̃ with 1 < ρm < ρm̃ and gcd(ρm, ρm̃) = 1, Eq. (3.2) is not satisfied for any
base-cycle combination. Therefore, the offset assignment must ensure that m and m̃ are placed after each other.
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Figure 3.4: Comparison of version 2.1 and 3.0 of FlexRay. FlexRay 2.1 requires a slot to be
explicitly assigned to one ECU while 3.0 supports multiple ECUs per slot. Slot sharing allows
to further reduce the bandwidth usage with FlexRay 3.0.

The framework is illustrated in Figure 3.5. As input, the optimization algorithm requires the
parameters of the FlexRay bus such as the communication cycle duration hfr, the available pay-
load in a static slot lfr, and the number of static slots nfr. The set of messages M defines a size
lm and repetition ρm for each message m. To comply with design tools used in the automotive
industry, the framework supports the FIBEX data/information exchange format [ASA10]. The
XML-based FIBEX format is the common exchange format to describe automotive networks,
supporting various protocols like CAN or FlexRay. It specifies the network topology, ECU in-
formation, the FlexRay network configuration, message4 and frame definitions. Based on this
information, our framework determines a schedule and exports the results to a FIBEX file. This
allows to easily integrate our schedule synthesis with other tools in the automotive domain.

3.1.3 ILP-based Optimal Schedule Synthesis

This section presents a single-stage ILP formulation to determine a message to slot assignment.
It determines a schedule, using a minimal number of slots for a given set of messages, implicitly
minimizing the bandwidth usage. As the FlexRay specification also requires a message offset
within the slot, this Section also presents an ILP approach to determine suitable offsets in a
second step. Figure 3.6 illustrates this approach.

4Messages are defined in the form of AUTOSAR Protocol Data Units.
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FIBEX → requirements

schedule synthesis algorithm

schedule → FIBEX

hfr, lfr, nfr ∀m ∈ M : lm, ρm

∀m ∈ M : sl, bm, xm

Figure 3.5: Framework for FlexRay scheduling. For a set of requirements, a feasible schedule is
determined. These user defined requirements include the FlexRay parameters and the message
set sent over the FlexRay bus.

3.1.3.1 Single-stage ILP for Slot and Base-Cycle Assignment

The ILP determines a slot sl and a base-cycle bm for each message m in a given set M. For
FlexRay 3.0, this schedule is determined for all ECUs in a global ILP. If slot sharing is not
possible like in FlexRay 2.1, the ILP is applied to each ECU separately and the allocated slots
are combined to the global schedule afterwards. The ILP is based on the following constants,
as introduced in detail in Section 3.1.2:

• sl ∈ Sl - denotes index for slot.

• m ∈ M - message, where M denotes the set of all messages.

• ř ∈ Ř - ECU, where Ř contains all ECUs sending at least one message.

• M(ř) : R→M - function returning all messages sent from ř.

• c ∈ {0, .., cfr − 1} - cycle, where cfr denotes the number of cycles of the FlexRay sched-
ule.

• lfr - denotes length of a slot in byte.

• ρm - repetition rate representing the period of message m as multiple of FlexRay cycles.

• lm - size of message m in byte.

The ILP uses the following variables:

• ȳsl ∈ {0, 1} - binary variable indicating if a slot sl is allocated

• z̄(m,sl,b) ∈ {0, 1} - binary variable indicating if message m is scheduled in slot sl with
base-cycle b
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requirements

slot/ base-cycle ILP formulation (Section 3.1.3.1)

message offset ILP formulation (Section 3.1.3.2)

schedule

m ∈ M

ILP solver ∀m ∈ M : sl, bm

ILP solver ∀m ∈ M : sl, bm, xm

Figure 3.6: Optimization flow determining a schedule with minimal bandwidth utilization. A
single-stage ILP approach first assigns a slot and base-cycle to a message, before the message
offset is determined in a second step.

• v̄(ř,sl,c) ∈ {0, 1} - binary variable indicating ownership of an ECU ř for slot sl in cycle c

The ILP formulation minimizes the following objective:

min ∑
sl∈Sl

ȳsl (3.3)

Hence, the number of allocated slots is minimized. Here, an upper bound of required slots
is defined by the cardinality of Sl. Based on this objective, the following constraints determine
a schedule defining a slot and base-cycle for each message m:
∀m ∈ M:

∑
sl∈Sl

ρm−1

∑
b=0

z̄(m,sl,b) = 1 (3.4)

∀sl ∈ Sl, c = {0, ..., cfr − 1}:

∑
m∈M

b=c mod ρm

z̄(m,sl,b) · lm ≤ lfr (3.5)

∀sl ∈ Sl, m ∈ M, b = {0, ..., ρm − 1}:

ȳsl − z̄(m,sl,b) ≥ 0 (3.6)

∀sl ∈ Sl, c = {0, ..., cfr − 1}:
∑
ř∈Ř

v̄(ř,sl,c) ≤ 1 (3.7)
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∀sl ∈ Sl, c = {0, .., cfr − 1}, ∀ř ∈ Ř, m ∈ M(ř), b = c mod ρm:

v̄(ř,sl,c) − z̄(m,sl,b) ≥ 0 (3.8)

Constraint (3.4) ensures that each message is scheduled in exactly one slot with a specific
base-cycle. To ensure that messages scheduled in a slot do not exceed the slot size, the sum of
all message sizes in one cycle must not be larger than the slot length as stated in Constraint (3.5).
Furthermore, a message can only be scheduled in slots that have been allocated as defined in
Constraint (3.6). Constraint (3.7) ensures that each cycle in a slot can only be filled by messages
from not more than one ECU. If a message is scheduled in a specific cycle, its sender needs to
be assigned as cycle owner as stated in Constraint (3.8).

For FlexRay 2.1 scheduling, cfr = 64 is fixed and a slot is exclusively assigned to one
sender. Hence, the ILP is executed for each ECU separately, and Constraints (3.7) and (3.8) are
omitted.

3.1.3.2 ILP for Message x-Offsets

The ILP presented in the previous section assigns a slot and a base-cycle to all messages. As
several messages can be scheduled in one slot in the same cycle, additionally an offset xm needs
to be assigned to each message m. To determine appropriate values for the message offset, a
second ILP for each slot is formulated which uses the previously calculated allocation of m to
sl and bm to determine:

• xm ∈N0 - integer-variable for x-offset of message m

• x̄(m,m̃) ∈ {0, 1} - binary variable indicating that message m is placed before message m̃
in the slot

The ILP is applied to each slot separately and formulated as follows:
∀m ∈ Msl:

0 ≤ xm ≤ lfr − lm (3.9)

∀m, m̃ ∈ Msl, ∃c ∈ {0, .., cfr − 1}, c mod ρm = bm ∧ c mod rm̃ = bm̃:

xm + lm ≤ xm̃ + lfr · x̄(m,m̃) (3.10)

xm̃ + lm̃ ≤ xm + lfr · x̄(m̃,m) (3.11)

x̄(m̃,m) + x̄(m,m̃) = 1 (3.12)

The ILP first defines appropriate bounds for the x-offset for each message in Con-
straint (3.9). If two messages are sent in at least one cycle together, it holds that either the
first message is transmitted before the second one starts or vice versa, see Constraints (3.10)
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Figure 3.7: Optimization flow for the multi-stage ILP approach. First, the single-stage ILP
approach is applied for each subsystem individually, before the integration ILP combines the
results to a global schedule. Finally, the message offsets are determined.

and (3.11). Here, the binary variables x̄(m,m̃) and x̄(m̃,m), respectively, are used as switch vari-
ables. Only one of the switch variables can be active as stated in Constraint (3.12). As the ILP is
applied to each slot individually, the problem size is small compared to the slot/base-cycle ILPs.
As a result, the computational complexity of the x-offset calculation is negligible compared to
the slot/base-cycle calculation.

3.1.4 Multi-stage ILP: ILP- based Heuristic Solution

The single-stage ILP has a limited scalability for FlexRay 3.0 where messages of all ECUs
are scheduled concurrently. For instance, determining a schedule for 130 messages already
requires more than 24 hours. However, if the scheduling problem is partitioned as it is the
case for FlexRay 2.15, the scalability is only limited by the number of messages sent by each
single ECU instead. This makes the single-stage ILP applicable for FlexRay 2.1 scheduling
of a full state-of-the-art in-vehicle network since the number of messages sent by each ECU is
usually much smaller. As a remedy, this section presents a multi-stage ILP which partitions the
scheduling problem, i.e., it determines a message to slot assignment for each ECU individually,
using the single-stage ILP. A second ILP allows to combine slots to a single slot, following the
FlexRay 3.0 specification, see Figure 3.4 (page 50).

Figure 3.7 illustrates the optimization flow of the multi-stage ILP. In the first stage, the
single-stage ILP is applied to each ECU e individually. It implicitly determines a frame f ∈ F

5 For FlexRay 2.1 the messages sent by each ECU are scheduled individually since slot sharing is not permitted.
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for each used slot. A frame f ∈ F contains the messages m ∈ M f . M f is defined for a slot sl
as follows:

m ∈ M f ⇐⇒ ∃b ∈ {0, .., ρm − 1} : z̄(m,sl,b) = 1

Thus, if a message m is scheduled in slot sl, it is also part of the message set M f of frame
f contained in sl6. A frame uses the cycles C f which is defined as follows:

c ∈ C f ⇐⇒ ∃m ∈ M f , n · ρm + b = c : z̄(m,sl,b) = 1

Therefore, all cycles used by the messages in slot sl are also used by frame f . In the second
stage, an ILP integrates the individually generated subsystem schedules in a global schedule.
Hence, it assigns frames f using the cycles C f to slots, determining the final slot and base-cycle
for each of the frames. The results obtained by this multi-stage approach might not be optimal
anymore, but the scalability is significantly increased. The ILP formulation is based on the
following constants:

• sl ∈ Sl - denotes index for slot.

• m ∈ M - message, where M f indicates all messages sent in the frame f .

• C f - set of cycles used by frame f , hence, cycles in which at least one message is sent.

• ρ f - smallest repetition of all messages scheduled in f , ρ f = argmin
m∈M f

(ρm), determining

the largest possible base-cycle for f .

The ILP uses the following variables:

• ȳsl ∈ {0, 1} - binary variable indicating if a slot sl is allocated.

• ū( f ,sl,b) ∈ {0, 1} - binary variable indicating if f is scheduled in slot sl with base-cycle b.

The integration ILP is formulated as:

min ∑
sl∈Sl

ȳsl (3.13)

∀ f ∈ F:

∑
sl∈Sl

ρ f−1

∑
b=0

ū( f ,sl,b) = 1 (3.14)

6The variable z̄(m,sl,b) indicates that message m is scheduled in slot sl with a base-cycle of b as introduced in
the previous subsection.
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Figure 3.8: Schedule synthesis with the greedy heuristic.

∀sl ∈ Sl, c = {0, ..., cfr − 1} :

∑
f∈F

∑
b∈{0,..,ρ f−1}

(c−b) mod cfr∈C f

ū( f ,sl,b) ≤ 1 (3.15)

∀sl ∈ Sl, f ∈ F, b = {0, ..., ρ f − 1}:

ȳsl − ū( f ,sl,b) ≥ 0 (3.16)

The objective function (3.13) minimizes the number of allocated slots. The upper bound is
the number of slots required if slots are not shared. Constraint (3.14) ensures that each f is only
placed once. It also implies that b must be smaller than ρ f . Furthermore, each cycle in a slot
cannot be used by more than one frame as stated in Constraint (3.15). As the used cycles in C f
do not necessarily have a constant repetition, all base-cycles which would lead to a utilization
of cycle c are determined. Constraint (3.16) ensures that the frame f can only be scheduled in
slots that have been allocated.

In the automotive industry, legacy subsystems commonly have to be integrated in the archi-
tecture. Configurations for these subsystems have already been intensively tested and certified
for previous product generations. The multi-stage approach allows to integrate these subsystem
schedules in a global system, clearly minimizing the efforts for testing and certification.

3.1.5 Greedy Heuristic

This section first presents a greedy approach for schedule synthesis, before an optimized order
for the greedy approach as well as GA and SA approaches are proposed.

3.1.5.1 Schedule Synthesis

In the following, a schedule synthesis based on a greedy approach is presented. For FlexRay 3.0,
this approach is applied to the entire set of messages. For FlexRay 2.1, slots cannot be shared
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Algorithm 3.1: Greedy heuristic for FlexRay scheduling.
Input: set of messages M
Output: slot slm and base-cycle bm assignment for each message m ∈ M

1 Sl = ∅
2 σ(M) = defineOrder(M) // sorted message list

3 for m ∈ σ(M) do
4 for sl ∈ Sl do
5 C(sl,ř) = availableCycles(sl, ř(m))

6 if place(m, sl, C(sl,ř)) then
7 continue with next m
8 end
9 end

10 create new sl and add it to Sl
11 C(sl,ř) = {0, 1, ..., cfr − 1}
12 place(m, sl, C(sl,ř))

13 end

by ECUs and, thus, the approach is applied to the message set of each ECU separately and
the slots are finally combined to a schedule. In contrast to the ILP approaches, the greedy
approach assigns the slot sl, basecycle bm and offset xm to a message m in a single iteration,
see Figure 3.8. With C(sl,ř) denoting the set of cycles in slot sl in which the ECU ř might send
its messages, the greedy heuristic is outlined in Algorithm 3.1. It iteratively fills the slots with
messages and allocates new slots if necessary.

The algorithm starts with an empty set of slots Sl. After the messages M have been put
in order (line 2), the heuristic tries to place each message m in one of the existing slots sl
(line 3-9). If a message cannot be placed in any existing slot in Sl, a new slot sl is allocated
and the message is placed in this new slot (line 10-12). Before a message is placed in sl, the
function availableCycles(sl, ř(m)) determines the set of cycles C(sl,ř) in which the sender
of the current message ř(m) is allowed to schedule its messages (line 5). This set of cycles
C(sl,ř) might be sparse in case another ECU already scheduled a message in the same slot. In
a next step, the function place(m, sl, C(sl,ř)) tries to place the message m into the slot sl by
considering the available cycles and determining a valid base-cycle bm and offset xm. Here, a
message m can be placed in the slot sl if (1) the base-cycle bm is smaller than the message rep-
etition ρm and (2) m does not intersect with other messages for all its repetitions. The function
place(m, sl, C(sl,ř)) places messages in lower cycle numbers first and fills them from the left to
achieve a dense scheduling. If a suitable bm and offset xm can be found, place(m, sl, C(sl,ř))

returns true and the algorithm continues with the next message. In case the message cannot be
scheduled in any existing slot, a new slot is allocated in which the message is scheduled. The
proposed heuristic is a greedy algorithm and the runtime depends on the number of messages
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as well as the number of assigned slots. The complexity is therefore defined as O(|M| · |Sl|),
being polynomial in the number of messages as O(|M| · |Sl|) ≤ O(|M|2).

3.1.5.2 Determine Message Order

The order of messages σ(M) strongly affects the results obtained by the heuristic. The follow-
ing order is proposed: (1) Messages are arranged by ascending repetition, (2) messages with the
same repetition are arranged by their message size in descending order. The greedy heuristic
benefits from (1), as messages with the same repetition are scheduled in one group and can
therefore be easily combined in one slot. At the same time, messages with a high repetition rate
are placed later and used to fill unused cycles in a slot as they occupy less cycles ( cfr

ρm
) and are

therefore more flexible in their placement. Similarly, (2) ensures that large messages are placed
first while smaller messages are used to fill remaining payload in the slot.

In the following, the order is introduced formally. Given a set of messages
{m0, m1, .., mn} ∈ M, the message order is defined by the permutation σ : N0 → N0. Ar-
ranging the message set by the repetition ρm is defined as:
∀m ∈ M, i, j ∈N0, i 6= j, rmσ(i) ≤ rmσ(j) :

0 ≤ i ≤ j ≤ n (3.17)

The resulting list is then defined as σ(M) = {mσ(0), mσ(1), .., mσ(n)}. As two messages
might have equal repetitions, messages with a larger size lm are additionally ordered to the front:
∀m ∈ σ(M), i, j ∈N0, i 6= j, rmσ(i) = rmσ(j) , lmσ(i) ≥ lmσ(j) :

0 ≤ i ≤ j ≤ n (3.18)

The ordered message list σ(M) improves the results obtained by the greedy heuristic com-
pared to an unsorted list as shown in the results.

3.1.5.3 Genetic Algorithm-optimized Order

In the following, an efficient Genetic Algorithm (GA) [Mic96] approach is presented for
FlexRay scheduling. The main procedure of an GA is based on reproduction and selection that
are performed alternately in an iterative process to optimize a given objective. Reproduction
creates new individuals from the current population, using mutation and crossover operators.
For the experimental results, a population size of 100 is used, generating 25 offspring individ-
uals in each generation. The task of selection is to remove the worst individuals in terms of
their fitness function to ensure a convergence of the algorithm towards the optimal solutions.
Here, elitism selection is used that always removes the worst 25 individuals in each genera-
tion. These parameters are default values of the used optimization framework [LGRT11] and
might be adapted to further improve the results which, however, is beyond the scope of this
thesis. In our experiments, we use 200 generations and, thus, the optimization is stopped after
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5000 evaluated solutions. Generally, a longer runtime of meta-heuristics improves the quality
of results.

One important factor of a GA optimization is the problem encoding. While it would be
possible to encode the mapping of each message to a slot, this would result in many infeasible
solutions as particularly for larger problems obtaining overfull slots is highly probable. Instead,
we use a decoding-based approach such that each individual is feasible: The genetic represen-
tation of an individual in this case is a permutation of messages σ(M) that is always decoded
to a feasible scheduling, using the greedy heuristic (Algorithm 3.1). In this case, the initial
population is determined by a random order of messages σ(M) while the fitness function is the
number of required slots of the currently determined schedule. As a result, the runtime for the
evaluation of a single individual is dominated by Algorithm 3.1 which is polynomial.

For the crossover and mutation operator, we rely on the standard operators in [LGRT11].
Here, the crossover takes a sublist of the first permutation from the beginning to a random cut
point and fills the remaining elements from the second permutation. The mutation is applied
with a probability of 1/|M| and either moves a single element, swaps two elements, or reverts
a random sublist.

3.1.5.4 Simulated Annealing-optimized Order

We further apply Simulated Annealing (SA) [KGV83] which is an optimization algorithm in-
spired by the annealing process in metallurgy. The algorithm varies a single solution by a
neighborhood operator. The common neighborhood operator for binary problems is a bit flip
or the sampling from a normal distribution for real-valued problems. Corresponding to the GA
approach, a permutation of messages is used to represent a solution to ensure the feasibility
of the solution by using the greedy heuristic from Algorithm 3.1 as decoder. The neighbor is
determined by the neighbor operator for permutations in [LGRT11]: Either a single element is
moved, two elements are swapped, or a sublist is reverted.

SA improves a single solution iteratively. Here, we accept and continue with an order
σ(M)′, which is the neighbor of σ(M), if ν(σ(M)′) < ν(σ(M)) where ν(·) is the fitness
function that uses the heuristic in Algorithm 3.1 to determine the number of required slots. In
case the neighbor solution does not improve the number of slots, it is accepted with a probability
of

e
ν(σ(M))−ν(σ(M)′)

Ti (3.19)

where Ti is the temperature at iteration i. As cooling function,

Ti = T0 ·
n− i

n
(3.20)

is used with an initial temperature of T0 = 1 and the number of iterations n = 5000. A high
number of iterations generally improves the solutions but also increases the runtime linearly.
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Figure 3.9: Analysis of bandwidth utilization and runtime for 420 synthetic test cases for
FlexRay 2.1. To improve legibility, the test cases are grouped by their message number and
the average value displayed.
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Figure 3.10: Analysis of bandwidth utilization and runtime for 420 synthetic test cases for
FlexRay 3.0.

61



3.1 Asynchronous Time-Triggered Scheduling

3.1.6 Experimental Results

To evaluate the schedule synthesis techniques, an extensive performance analysis and a large
automotive case study is presented. All optimizations have been carried out on an Intel Xeon
3.2 GHz Quad Core with 12GB RAM. CPLEX in version 12.6 [ILO] was used as ILP solver
for solving the ILP formulations and Opt4J 3.1.2 [LGRT11] for solving the GA and SA. As a
measure for the quality of the obtained schedules, the number of slots required to schedule a set
of messages is used. One additional major criterion is the runtime of the method since in partic-
ular methods based on ILP formulations might not scale well. Note that the schedule is obtained
at design time such that runtimes of several minutes and even hours are still acceptable. As an
upper bound for the number of slots for the single-stage ILP formulation the result obtained by
the greedy heuristic is used. The times stated include the generation of the subsystem sched-
ules and message offsets. In the following, first an extensive performance analysis is presented.
Second, an automotive case study representing a full in-vehicle network is discussed.

3.1.6.1 Performance Analysis

In the following, an extensive case study consisting of 420 grouped synthetic test cases is pre-
sented. The size of the test cases ranges from 40 to 300 messages sent by 8 ECUs. The message
size and period distribution is similar to message sets used in the automotive industry. For
FlexRay 2.1, the schedule obtained by the multi-stage ILP is identical with the single-stage ILP.

Figure 3.9 shows the results obtained for this case study with FlexRay 2.1, while Figure 3.10
illustrates the results for FlexRay 3.0. The number of FlexRay cycles is cfr = 64 for both
FlexRay 2.1 and version 3.0. The results show that all approaches enable a better bandwidth
utilization with FlexRay 3.0. At the same time, the runtime is increased due to the increased
complexity. For FlexRay 3.0 the single-stage ILP is unable to terminate its calculation before
reaching a time-out of one hour for test cases with more than 100 messages. If the greedy
heuristic is applied to an ordered message set, it is able to determine close to optimal results for
both FlexRay versions. The GA and SA approaches are also able to determine close to optimal
results for small message sets, but with an increasing problem size they are outperformed by
the heuristic with an ordered message set. For FlexRay 2.1, for 6.0 % and 4.0 % of the test
cases, respectively, GA and SA find a better solution than the heuristic which finds a better
solution for 13.6 % of the test cases. For FlexRay 3.0, the heuristic finds a better solution for
83.5 % of the test cases while GA and SA do not outperform the heuristic for any test case.
Increasing the number of iterations or fitness function evaluations, respectively, for GA and SA
or improving their parameterization would reduce this gap at the cost of additional runtime or
configuration. For FlexRay 3.0, the multi-stage ILP is able to reduce the bandwidth utilization
for several test-cases compared to FlexRay 2.1 scheduling. Finally, if the greedy heuristic is
applied to a randomly-ordered message set, it is clearly outperformed by all other approaches.
The greedy heuristics determine all their solutions in less than a second. Note that the runtime
of the metaheuristics scales linearly in the number of fitness function evaluations while each
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Figure 3.11: Distribution of message periods and sizes for automotive case study.

of these requires the decoding with the greedy heuristic and, thus, for 5000 evaluations their
runtime is about three orders of magnitude higher. The runtime of the multi-stage ILP for
FlexRay 3.0 strongly depends on the runtime of the first stage, determining a schedule for each
ECU individually. Here, the runtime increase depends less on the overall number of messages,
but rather the number of messages sent by each ECU.

Please note, the runtime in general increases with the number of messages. However, the
test cases differ in their complexity. Single test-cases might therefore have an increased runtime
compared to test cases with a larger message number. For instance, the deviations at 160 and
240 for the multi-stage ILP are resulting from single test cases with an increased complexity.

3.1.6.2 In-vehicle Network Case Study

This section presents a case study modeling an entire state-of-the-art in-vehicle network con-
nected by a FlexRay bus. The network consists of 32 ECUs, sending 932 messages of different
sizes and periods as illustrated in Figure 3.11. The parameters of the FlexRay bus were pre-
defined such that the static segment consists of 62 slots with a slot payload of 42 bytes. As
AUTOSAR requires that 1 byte of the payload is reserved for update bits, only lfr = 41 bytes
can be used for scheduling. The duration of a communication cycle was set to hfr = 5 ms.

The results in Table 3.2 show that with FlexRay 2.1 it is not possible to schedule all messages
within 62 slots. For FlexRay 3.0, the greedy heuristic based on a ordered message set is able
to schedule the messages with the given FlexRay parameters. If, in addition, the cycle number
is selected as 60, the GA and SA algorithms are also able to schedule all messages. 60 cycles
lead to a clear reduction of bandwidth utilization for all approaches. Here, the number of slots
might be reduced by up to 10 %, depending on the applied approach. The results furthermore
show that the ILP approach is unable to find a solution within 24 hours. The multi-stage ILP
shows its ability to efficiently integrate independent schedules but is unsuitable for the current
case study.
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Table 3.2: Results of automotive case study.

Method 60 cycles 64 cycles
runtime slots runtime slots

FlexRay 2.1
ILP1 = ILP2 - 3.8s 76!

Greedy order - 0.039s 76!

Genetic Algorithm - 172.2s 76!

Simulated Annealing - 173.4s 76!

FlexRay 3.0
ILP1 (single-st.) 24h1 - 24h1 -
ILP2 (multi-st.) 88.0s 63!/702 448.5s 69!/762

Greedy order 0.76s 54 1.01s 60
Genetic Algorithm 2198.1s 57 3167.9s 63!

Simulated Annealing 2218.4s 57 3201.6s 63!

! exceeds number of slots in static segment

1 timeout

2 result without applying integration ILP

3.1.7 Summary

This section proposed a generic framework to schedule the static segment of the FlexRay
bus using asynchronous communication. The presented results showed the clear potential of
FlexRay 3.0 to improve the bandwidth usage compared to version 2.1, making optimal ap-
proaches for FlexRay 3.0 necessary. Previous work largely addressed FlexRay 2.1 and does not
extend to version 3.0 while existing approaches for 3.0 are non-optimal in several aspects. By
contrast, the scheduling approaches presented here support all features of version 3.0 while be-
ing backwards compatible. Several scheduling approaches were presented. (1) A single-stage
ILP approach determining an optimal solution. (2) A multi-stage ILP, integrating previously
generated subsystem schedules into a global schedule. (3) A greedy heuristic obtaining good
results with a minimal runtime. (4) A GA and a SA approach to evaluated the proposed ap-
proaches.

An extended performance analysis and a realistic case study were presented. The re-
sults showed that the proposed algorithms are capable of finding feasible solutions for both
FlexRay 2.1 and FlexRay 3.0. They also reflected the benefits of the new FlexRay 3.0 features
to reduce the bandwidth requirements. At the same time, it was shown that for FlexRay 3.0,
the ILP approach does not scale well and becomes intractable for large sets of messages. How-
ever, for small size problems where runtimes of up to several days are acceptable, it provides
an optimal solution. The greedy heuristic generates highly competitive results in a short time
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if the messages are arranged by their repetition and size before scheduling. It might therefore
be applied for large message sets where the ILP approach becomes intractable. The GA and
SA approaches were only able to obtain better results than the heuristic for small test cases and
FlexRay 2.1. For large message sets and, in particular FlexRay 3.0, the heuristic clearly out-
performed the metaheuristics in terms of obtained results and runtime. Furthermore, the results
showed that the multi-stage ILP is suitable for optimizing schedules in an incremental design
approach. It might be applied to convert existing legacy FlexRay 2.1 schedules to 3.0, or to
integrate existing subsystems into an architecture if reduced testing and integration efforts are
more important than optimal bandwidth usage. The large case study showed the necessity for
FlexRay 3.0 where the novel features help to obtain a feasible schedule. Here, in particular
setting the number of cycles to 60 allowed a better bandwidth utilization.

The multi-stage ILP presented in this chapter is based on a schedule integration approach
that integrates individually generated FlexRay schedules into a global schedule for asyn-
chronous scheduling. In Chapter 4, schedule integration is further investigated in the context of
synchronous time-triggered systems to enable a modular schedule synthesis.

The focus in this section was on asynchronous scheduling. The following section will
present an extension of the single-stage ILP to support a synchronous scheduling which also
considers the task scheduling on ECUs.

3.2 Synchronous Time-Triggered Scheduling

With the introduction of an increasing number of advanced driver assistance functionality such
as ACC, the timing requirements of automotive architectures are getting stricter. Synchronous
time-triggered scheduling helps to increase the predictability of the system and give clear timing
guarantees as all maximum end-to-end delays are fixed. The previous section has introduced a
schedule synthesis for asynchronous message scheduling on the FlexRay bus. In the following,
this approach is extended with a concurrent task scheduling and a support for Automotive Ether-
net. The resulting ILP formulation is applied to generate subsystem schedules for the schedule
integration approach presented in Chapter 4 and to evaluate our approaches in the following
chapters.

Problem description. This section addresses the problem of defining a global schedule for
all tasks and messages for ECUs communicating with one or more FlexRay/ Ethernet buses.
As discussed in detail in Chapter 2, we assume a system specification which already defines a
mapping of tasks to ECUs as it is commonly the case in the automotive domain. The schedule
synthesis then addresses the problem of assigning start-times for all tasks and release-times for
messages such that each resource is utilized exclusively (cf. Requirement 2.2.1), all precedence
constraints are satisfied (cf. Requirement 2.2.2), and all end-to-end timing delays are met (cf.
Requirement 2.2.3). For FlexRay scheduling, in addition a message to slot packing is defined.
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Outline. In the following, Section 3.2.1 first gives an overview over related work. Section 3.2.2
introduces the basic formulation for an ILP-based schedule synthesis. Section 3.2.3 discusses
an extension to support FlexRay scheduling. Finally, Section 3.2.4 extends these equations to
support Automotive Ethernet.

3.2.1 Related work

The discussion of related work in the introduction has already given an overview of work done in
the area of holistic time-triggered scheduling. Existing heuristic and meta-heuristic approaches
generally scale well for large problems [Obe11]. However, for strongly constrained problems,
e.g., for tight end-to-end delays and a high utilization, the approaches might be unable to find a
feasible solution and back-tracking is required [HLW+14]. In addition, the results obtained by
heuristic approaches might be suboptimal. As a consequence, we rely on mathematical tech-
niques to implement a holistic schedule synthesis which provides a baseline for the approaches
presented in the following chapters. Two recent approaches addressing holistic scheduling for
a system communicating with a FlexRay bus have been proposed in [ZDGSV11, LSGC12].
Both papers apply an ILP to determine a system schedule. The ILP formulation presented in
the following is based on these approaches, adding a support for Automotive Ethernet.

3.2.2 Schedule Synthesis

In the following, a schedule synthesis approach for holistic scheduling of a synchronous time-
triggered system is presented. The schedule synthesis is based on the following constants.

• p - process referring to both tasks and messages. Defined in detail in Definition 2.1.1.

• hp - process period defining time interval after which p is executed again.

• τp - execution-time for a task or transmission time for a message.

• a ∈ Ad - defines an application with its task graph Ga = (Pa, Ea). Described in detail in
Definition 2.1.2.

• d - specification describing a task graph Gd = (Pd, Ed). Described in detail in Defini-
tion 2.1.4.

• r(p) : P → R - returns the predefined process mapping to a resource. Defined in detail
in Definition 2.1.3.

• h(p, p̃) = lcm(hp, h p̃) : P → R - returns the hyper period of the process periods of p
and p̃. Here, lcm(·) defines the least common multiple. Defines period after which the
schedule for p and p̃ repeats.
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• e = (p, p̃) ∈ E - data-dependency of p̃ from p, defining the process precedence.

• θa - deadline of application a. Defines maximum end-to-end delay from all source to all
sink processes.

• φ - path or subgraph from a source to a sink task, e.g., φ = {p1, p2, .., pn}. The processes
must be pairwise connected with an edge e. Defined in detail in Definition 2.2.4.

• Φ(Ea) : E → {Φ} - returns all paths φ of application a. Applies a Depth-first search
algorithm to determine paths [Eve11].

In addition, the schedule synthesis approach is based on the following variables.

• sp ∈ R - variable for the start-time of p.

• fp ∈ R - variable for finish-time of p.

• w(p,p̃) ∈ R - variable for waiting-time between two data-dependent processes p, p̃. The
waiting-time is defined as the delay between the finish-time of p and start-time of p̃.

• q̄fp ∈ {0, 1} - binary variable indicating if fp exceeds the period of p.

• q̄w(p,p̃) ∈ {0, 1} - binary variable indicating if w(p,p̃) exceeds the period of p and p̃.

• x̄(p,p̃,i,j) ∈ {0, 1} - binary variable indicating if p is placed before p̃ for the indexes i
and j.

The goal of the schedule synthesis is to determine a synchronous time-triggered schedule
as illustrated in Figure 3.12. The figure also illustrates the basic variables determined during
schedule synthesis. The ILP approach for time-triggered scheduling is then defined as follows.
∀p ∈ Pd:

0 ≤ sp < hp (3.21)

0 ≤ fp < hp (3.22)

∀a ∈ Ad, e ∈ Ea, (p, p̃) = e:

0 ≤ w(p,p̃) < hp (3.23)

∀p ∈ Pd:

fp = sp + τp − q̄fp · hp (3.24)
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Figure 3.12: Time-triggered schedule determined during a holistic schedule synthesis. The
schedule defines a start-time sp for each periodically executed task or message. Instead of
considering task deadlines, we define a maximum end-to-end-delay for the application.

∀a ∈ Ad, e ∈ Ea, (p, p̃) = e:

w(p,p̃) = sp̃ − fp + q̄w(p,p̃) · hp (3.25)

∀p, p̃ ∈ Pd, p 6= p̃, r(p) = r( p̃), i =
{

0, .., 2·h(p,p̃)
hp
− 1
}

, j =
{

0, .., 2·h(p,p̃)
h p̃
− 1
}

:

sp + τp + i · hp ≤ sp̃ + j · h p̃ + 2 · h(p, p̃) · (1− x̄(p,p̃,i,j)) (3.26)

sp̃ + τp̃ + j · h p̃ ≤ sp + i · hp + 2 · h(p, p̃) · x̄(p,p̃,i,j) (3.27)

∀a ∈ Ad, φ ∈ Φ(Ea) :

θa ≥ ∑
p∈φ

τp + ∑
(p,p̃)∈φ

w(p,p̃) (3.28)

For the schedule synthesis a periodic scheduling model is applied, as defined in Defini-
tion 2.2.1. Constraints (3.21) and (3.22) therefore ensure that the process start-time as well as
the finish-time are within the process period. As a consequence, also the waiting-time cannot
exceed a process period, as stated in Constraint (3.23). Through the definition of a lower bound
of 0, the constraint ensures that the precedence constraint defined in Requirement 2.2.2 is ful-
filled. Based on these boundaries, the finish-time is defined in Constraint (3.24). The switching
variable ensures that the finish-time does not exceed the process period. Similarly, the waiting-
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time is defined in Constraint (3.25). The Constraints (3.26) and (3.27) ensure that two processes
which are mapped to the same resource are executed consecutively. Hence, a process p either
terminates its execution before a second process p̃ is started, or starts after the other process is
terminated, ensuring that the exclusive utilization defined in Requirement 2.2.1 is satisfied. Fi-
nally, Constraint (3.28) ensures that the maximum end-to-end delay is not exceeded, as defined
in Requirement 2.2.3.

These constraints determine a time-triggered schedule for tasks and messages of a system
communicating with a bus that allows to selected slot start-times freely. In addition, an objective
might be defined, as discussed in detail in Section 4.4.

3.2.3 FlexRay Scheduling

This section presents an extension for the holistic scheduling to integrate the asynchronous
FlexRay schedule synthesis in Section 3.1. The FlexRay scheduling is based on the ILP de-
termining an optimal solution in Section 3.1.3. The Constraints (3.4)- (3.8) (page 52) for
asynchronous scheduling might then be integrated with the schedule synthesis for synchronous
scheduling through the definition of message start-times (cf. Requirement 2.3.1). Thus, in addi-
tion to the constraints defined for asynchronous scheduling, we also define Constraints (3.21)-
(3.25) and Constraint (3.28) for each FlexRay message. Here, the execution-time of a FlexRay
message is defined as the duration of a static slot, τm = τfr, as a message must be available
at the beginning of the slot it is transmitted in and it is only available once the whole slot was
received. Hence, the delay introduced by the message transmission equals the slot duration. We
assume that the first static slot starts at the time instant 0 (cf. Definition 2.3.1).

To integrate the asynchronous FlexRay constraints into a holistic schedule synthesis, an ad-
ditional constraint is required. It is based on the binary variable z̄(m,sl,b) used for asynchronous
FlexRay scheduling. z̄(m,sl,b) indicates if the FlexRay message m is sent in slot sl with a base-
cycle of b. The start-time of a FlexRay message is then defined as:
∀m ∈ {p|p ∈ Pd, ∃p : r(p) ∈ Rfr}:

sm = ∑
sl∈Sl

∑
b={0,..,ρm}

z̄(m,sl,b) · (sl · τfr + b · hfr) (3.29)

The set Rfr represents all resources that are a FlexRay bus. Constraint (3.29) then defines
that a FlexRay message might only be sent at the beginning of the slot it is assigned to. To
determine the x-offset xm for each message in the slot sl, we apply the ILP from Section 3.1.3.2.

FlexRay 2.1. For version 2.1 of FlexRay, slots can only be exclusively utilized by one ECU
to send messages. For asynchronous scheduling, we therefore apply the schedule synthesis
for each slot individually. As this is not feasible for a holistic scheduling, the equations for
asynchronous scheduling need to be adapted for a holistic schedule synthesis. We therefore
introduce an additional variable.
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• v̄(ř,sl) ∈ {0, 1} - binary variable indicating if slot sl is assigned to ECU ř.

Constraints (3.7) and (3.8) (page 52) can then be adapted as follows.
∀sl ∈ Sl:

∑
ř∈Ř

v̄(ř,sl) ≤ 1 (3.30)

∀sl ∈ Sl, ∀ř ∈ Ř, m ∈ M(ř), b = {0, ..., ρm − 1}:

v̄(ř,sl) − z̄(m,sl,b) ≥ 0 (3.31)

The repetition ρm represents the period of a message in FlexRay cycles: ρm = hm
hfr

. The
constraints ensure that only one resource is sending its messages in a slot defined by Require-
ment 2.3.2.

3.2.4 Scheduling for Automotive Ethernet

As explained in Section 2.3.3, for messages transmitted on the Ethernet bus we assume the
same properties as for tasks mapped to a resource. Thus, applying the ILP formulation allows
to determine a valid time-triggered schedule for Automotive Ethernet. However, as Automotive
Ethernet is realized using a switched network and supports a full-duplex communication, this
would not consider concurrent message transmission, overestimating the bandwidth require-
ments. Therefore, we introduce the following additional function:

• ψ(p) : P → Ψ - returns the routing for a message sent on the Ethernet bus, i.e., ψ(p)
returns all paths containing the data links that connect the sending resource to all receiving
resources. For instance, ψ(p) =

{
(r, sw1), (sw1, sw2), (sw2, r̃)

}
describes the routing

from resource r to r̃ via the switches sw1 and sw2.

The condition of Constraints (3.26) and (3.27) can then be adapted for Ethernet messages
as follows.

∀p, p̃ ∈ Pd, p 6= p̃, r(p) = r( p̃) ∈ Reth, ψ(p) ∩ ψ( p̃) 6= ∅,

i =
{

0, ..,
2 · h(p, p̃)

hp
− 1
}

, j =
{

0, ..,
2 · h(p, p̃)

h p̃
− 1
}

:
(3.32)

Here, Reth represents the set of all resources that are an Ethernet bus. Ethernet messages
might be sent concurrently if the routings of the two messages do not share a common path.
As the routings also define the direction of the link, this formulation also considers full-duplex
communication. This formulation is based on the assumtion that the transmission time defined
for an Ethernet message considers transmission delays introduced by the switches, as defined
in Section 2.3.3.
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3.2.5 Summary

This section presented an extension of the single-stage ILP introduced in Section 3.1 to sup-
port synchronous scheduling of a time-triggered system. A holistic scheduling was presented
which considers the task scheduling on ECUs as well as the message scheduling on FlexRay
and Automotive Ethernet communication buses. The approach is applicable for heterogeneous
architectures consisting of multiple communication buses.

In the following, Chapter 4 presents a modular schedule synthesis approach to integrate
subsystem schedules in a global schedule. The ILP approach presented in this section is then
used to generate the subsystem schedules. In addition, the ILP approach is used to evaluate the
schedule integration approach in Chapter 4 and the variant-aware schedule synthesis presented
in Chapter 5.
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Modular Schedule Synthesis for

Heterogeneous Architectures

The previous chapter has introduced approaches for the schedule synthesis of time-triggered
systems, both for asynchronous systems as well as synchronous systems. The focus there is on
generating schedules from the scratch. In this chapter, a schedule synthesis approach is pre-
sented that allows to integrate independently created subsystem schedules into a global sched-
ule. The problem is addressed for synchronous time-triggered scheduling.

The functionality in automotive E/E-architectures is largely developed by suppliers. While
the software-based functionality today is still mainly implemented on ECUs, in the near future it
is likely to be delivered to the manufacturer as AUTOSAR Software Components. The integra-
tion of all functionality into a seamless working system is a highly challenging task, as various
constraints have to be taken into account for each application. These include resource con-
straints, data-dependency constraints and end-to-end timing delay constraints. Timing-analysis
tools and defining resource requirements at an early design stage help to reduce the complexity
of the integration process. However, they cannot substitute a systematic approach allowing a
reliable and efficient integration of components. The demand for such integration methodolo-
gies will further rise with an increasing use of Over-The-Air programming (OTA) updates to fix
software problems [WZ15], and the introduction of in-vehicle appstores.

This chapter addresses the problem of integrating individually generated subsystem sched-
ules into a global schedule. We assume a time-triggered architecture as presented in Chapter 2,
applying synchronous time-triggered scheduling. Figure 4.1 illustrates the specification of a
small system on which three independently developed applications should be implemented. To
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Figure 4.1: System specification consisting of task graphs of three applications and their map-
pings to four ECUs connected by a communication bus.

generate the system schedule, the manufacturer currently has to synthesize a schedule from the
scratch or apply an incremental approach, trying to extend legacy schedules with new func-
tionality. For time-triggered systems, the schedule is commonly defined at the specification
phase [B0̈7]. Changes to the initially defined timing behavior or the introduction of additional
tasks or messages to an application during the development then often require a time-consuming
modification of the schedule to minimize the effects on other applications. As a remedy, this
section introduces a schedule integration framework. It allows to integrate independently devel-
oped application/subsystem schedules into a global system schedule. This divide-and-conquer
approach significantly reduces the integration complexity while the system becomes highly
composable.

Methodology. Figure 4.2 illustrates the design process based on schedule integration for the
applications specified in Figure 4.1. For each of the applications, a schedule synthesis is applied
to determine a subsystem schedule, e.g., for testing and evaluation. To integrate the individual
application schedules into a single global schedule, we apply a schedule integration approach.
It ensures that the timing constraints of each subsystem are satisfied in the resulting global
schedule, i.e., that the hard real-time requirements of all applications are met. The basis for
the proposed schedule integration framework is formed by a time-triggered architecture, as it
provides temporal composability [KB03, ATD+09]. Hence, if a subsystem schedule can be
integrated into a global schedule such that its general structure is not altered, all constraints,
defined when the subsystem schedule was created, are still satisfied. At the same time, the com-
plexity is reduced through this divide-and-conquer approach, as for integrating a subsystem
schedule only a subset of constraints is required. For this example, we focused on single ap-
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schedule app1 schedule app3schedule app2

global schedule

SCHEDULE INTEGRATION

Figure 4.2: Schematic illustration of schedule integration problem for the applications specified
in Figure 4.1.

plications. However, schedule integration might also be applied to clusters containing multiple
applications such as the drivetrain or chassis domain.

Related work. In the area of hierarchical scheduling for component-based systems, the prob-
lem of integrating independent local schedulers into a global scheduling through assigning run-
time budgets is studied [WT06, SL08]. The hierarchical scheduler provides isolation between
the different components and allows to develop subsystems individually. However, hierarchi-
cal scheduling generally addresses single resources and existing approaches addressing dis-
tributed systems such as [KWL+12] have drawbacks. Another body of related work addresses
the problem of extensibility of a time-triggered schedule [WJP+05, ZDGSV11]. The goal is
to generate a system schedule such that extending the schedule with additional applications is
facilitated. By contrast, schedule integration is concerned with integrating subsystem schedules
in a common schedule rather than generating an extensible schedule from the scratch. Re-
lated to the problem of extensibility, several approaches have been presented for incremental
scheduling [PEPP01, PEPP04]. Incremental scheduling addresses the problem of extending a
legacy schedule with additional applications with the goal of minimizing the changes to the
initial schedule. While incremental scheduling is concerned with extending a single schedule,
schedule integration addresses the problem of integrating multiple schedules concurrently into
a common schedule. Incremental scheduling approaches are therefore not directly applicable
for schedule integration, while, in turn, schedule integration might be applied for incremental
scheduling. A detailed discussion of related work is given in Section 4.1.

Contributions. This chapter proposes a framework for the integration of subsystem schedules
in a global schedule. Compared to traditional approaches, schedule integration (1) allows to
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significantly reduce the runtime of the schedule synthesis and (2) enables a highly modular
system design, as subsystems can be easily added and updated.

We propose an SMT-based approach to combine all subsystem schedules to a single global
schedule. As integrating individually generated subsystem schedules in a single schedule might
not always be feasible, we also propose a conflict refinement to adapt conflicting schedules.
During conflict refinement, all previously defined constraints, such as end-to-end delays are
taken into account such that all timing requirements are fulfilled. For the conflict refinement, a
partitioning heuristic identifies suitable subproblems which might be solved individually to fur-
ther increase the scalability. The proposed schedule integration framework supports both Auto-
motive Ethernet and FlexRay. As the integrability of different subsystem schedules depends on
their structure, this chapter also investigates several metrics aiming at an improved integrability.
The proposed schedule integration framework addresses synchronous time-triggered schedul-
ing as it exploits the temporal composability of a time-triggered architecture. The focus here is
not to obtain a globally optimal schedule, but rather to integrate locally optimized application
configurations according to their specific requirements. We also propose a design flow based
on a data-centric description which allows to integrate our framework into an AUTOSAR tool
chain.

In summary, this chapter proposes a framework for scheduling modular time-triggered sys-
tems which is well-suited for solving large and complex scheduling problems.

Outline. In the following, Section 4.1 discusses related work. Section 4.2 introduces sched-
ule integration formally. Section 4.3 presents the schedule integration approach supporting
FlexRay and Automotive Ethernet. The section also presents our conflict refinement. Sec-
tion 4.4 presents several metrics to improve the integrability of subsystem schedules. Sec-
tion 4.5 analyzes our framework using three extensive case studies. Finally, Section 4.6 dis-
cusses how schedule integration might be integrated in an AUTOSAR-based design flow.

4.1 Related Work

The impact of software in automotive E/E-architectures is constantly growing, requiring new
design paradigms to cope with the growing inherent complexity. The AUTOSAR partnership
is one of the efforts undertaken to define an open and uniform software platform to improve
the portability of software [AUT14]. Our schedule integration framework in combination with
a data-centric description [PCFW05] might be integrated in the AUTOSAR tool chain to im-
prove the composability of the architecture for time-triggered systems, as discussed in detail
in Section 4.6. The focus lies on a modular schedule synthesis for synchronous time-triggered
scheduling.

We would like to distinguish our framework from work which uses the term modular
scheduling in a different context. The approaches presented in [Fea04, Fea06] address the
problem of generating a schedule for the execution of a synchronous program in the context
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of parallel computing. To improve the scalability of the schedule generation, the papers pro-
pose a modular scheduling, splitting a large program into several modules which might then be
scheduled individually. This problem is very different from the schedule integration problem
addressed here and is therefore not comparable with our work.

In the area of hierarchical scheduling for component-based systems, various research has
been carried out on modular systems [SL03, WT06]. It addresses the problem of integrat-
ing independent local schedulers into a global schedule through assigning runtime budgets.
This allows to apply different scheduling strategies like Earliest Deadline First (EDF) or Rate-
Monotonic (RM) scheduling for individual schedulers. In contrast to this component-based
scheduling which is often limited to single resources, automotive architectures implement dis-
tributed applications running on several networked resources. Hence, instead of defining dead-
lines for single tasks, a maximum end-to-end delay is defined. In [KWL+12] hierarchical
scheduling is applied to a distributed system by splitting the maximum global end-to-end delay
into local deadlines which allows to estimate the required runtime budget for each single task.
While this simplifies the problem, it also limits the obtainable schedules, e.g., in the achievable
minimal end-to-end delay. In addition, splitting an application task-graph into multiple com-
ponents which are scheduled by different local hierarchical schedulers makes changes to the
system schedule difficult. By contrast, schedule integration allows to efficiently integrate and
update application schedules.

Related to component-based design, in the area of partition scheduling various work has
been done to integrate applications of different criticality levels in a single node [LKY+00,
TSP11]. Partition scheduling is often used in the context of Integrated Modular Avionics
(IMA) [Pri92], a system partitioning approach which provides temporal and spatial isolation
of applications. Partition scheduling aims at determining suitable partitions such that the timing
constraints of all applications are satisfied. For instance, in [LKY+00] a heuristic approach is
presented to determine suitable partitions for an architecture consisting of distributed proces-
sors connected by a TDMA bus. The paper considers a preemptive, event-triggered execution
of tasks within the partitions and defines the partitions as a time-triggered schedule for each
node. In [TSP11] an approach to determine time-partitions for distributed applications is pro-
posed. The paper applies an approach based on simulated annealing which considers both time-
and event-triggered tasks. However, while partition scheduling is concerned with determin-
ing suitable system partitions, schedule integration is concerned with the integration of cluster
schedules in a global schedule. Nevertheless, if partition scheduling is applied to determine
suitable partition schedules for distributed applications, schedule integration provides an effi-
cient way to integrate these distributed partitions into a global schedule. This would also allow
to apply schedule integration for event-triggered scheduling.

Our framework is based on a fully time-triggered system, providing the basis for temporal
composability [KB03, ATD+09] which is an asset in this domain. Scheduling of time-triggered
systems is a challenging task and various approaches have been proposed. The discussion
of related work in the introduction has already given a basic overview of existing work for
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time-triggered scheduling. In addition, a schedule synthesis approach using the model-checker
SAL to determine a system schedule is presented in [VSE09]. An SMT-based approach to
generate time-triggered schedules for TTEthernet is presented in [Ste10]. Finally, two ILP-
based approaches are presented for the FlexRay bus in [ZDGSV11, LSGC12]. While [LSGC12]
applies the schedule optimization on task-level, [ZDGSV11] addresses the problem on job-level.
Most of these approaches perform well for small subsystem schedules, but do not scale well for
larger systems. By contrast, the modular framework presented here is well-suited for solving
large and complex scheduling problems. Schedule integration might therefore be applied to
integrate the cluster schedules determined with one of the above mentioned approaches in a
global system schedule.

Various work has been done in the area of extensibility of schedules. This body of work ap-
plies extensibility metrics during schedule synthesis to ease the integration of additional applica-
tions at a later stage. In this context, [SGC+11] proposes metrics for the message scheduling on
the FlexRay bus. The paper considers the sustainability of a schedule, i.e., ensures that message
deadlines will not be violated if the schedule is extended, and extensibility, i.e., the schedule
can accommodate future messages. [ZDGSV11] presents a schedule synthesis approach for
a holistic scheduling for a system communicating over a FlexRay bus. The paper proposes
an extensibility metric minimizing the number of FlexRay slots and maximizing the slack us-
age. Similarly, the work in [WJP+05] proposes an extensibility metric for tasks and message
scheduling in a system connected by a TDMA bus. Finally, in [PEPP04] two extensibility met-
rics are presented for non-preemptive scheduling in a time-triggered system, as addressed here.
The metrics aim at (1) generating long connected idle time segments to accommodate tasks
with a long execution-time, and at (2) providing periodic idle time segments to accommodate
tasks with a small period. The metrics proposed in Section 4.4 also address the problem of
extensibility and the proposed metrics share the objectives of maximizing the available slack
and optimizing the use of idle time. In contrast to approaches addressing the extensibility of a
system, schedule integration is concerned with the actual integration of individually developed
schedules into a single global schedule.

Related to the problem of the extensibility of a schedule, various work has been done in the
area of incremental scheduling. Incremental scheduling deals with the extension of an existing
schedule with new functionality such that a minimal number of changes to the initial schedule
is required. Extending the schedule is often combined with a second objective, optimizing the
extensibility of the system. An approach for incremental scheduling of a system communi-
cating with a TDMA bus is presented in [PEPP01]. The paper proposes a mapping heuristic,
selecting suitable resources for tasks such that an existing legacy schedule is not affected when
additional applications are integrated in the system. The approach also takes the extensibility
of the generated schedule into account. In [PEPP04] an approach for incremental scheduling
that addresses synchronous time-triggered systems is presented. The paper proposes a heuristic
which identifies a minimal subset of processes which need to be shifted or mapped to a different
resource for a TDMA-based task and message scheduling. Schedule integration might be ap-
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plied for the problem of incremental scheduling, i.e., if additional constraints fixing the position
of legacy schedules are defined. However, the aim of the proposed schedule integration frame-
work is a modular schedule synthesis where multiple independently developed application and
cluster schedules should be integrated in a global system schedule. Consequently, approaches
for incremental scheduling are not directly applicable to the problem of schedule integration.

Finally, we have presented two approaches for schedule integration in [SLC13]
and [SAW+14]. The approach in [SLC13] is concerned with schedule integration for the
FlexRay bus. The focus lies on the message scheduling and the approach therefore differs
from the schedule integration framework presented in this chapter. [SAW+14] forms the ba-
sis for the framework presented in this chapter and was extended to support both FlexRay and
Automotive Ethernet.

4.2 Framework

This section first introduces the basic principles of schedule integration before the proposed
framework is presented.

4.2.1 Schedule Integration

The schedule integration addressed here is based on time-triggered synchronous scheduling as
introduced in detail in Section 2.2.2. A schedule defines the exact timing of each of the tasks
on the ECUs and the message transmission times on the buses. In state-of-the-art vehicles,
various applications are implemented over several spatially distributed ECUs. Very often ap-
plications are developed independently or several applications are grouped to clusters based
on their functionality with distinct requirements regarding performance, reliability, and safety.
In this chapter, clusters are assumed to be predefined but there might exist also graph-based
approaches to determine clusters of an entire system by using techniques like the approach
presented in Section 5.3.3. While not all ECUs might be shared between clusters, through AU-
TOSAR an increasing number of applications and clusters will share ECUs. In the following,
we will refer to all subsystems as clusters. An example of an architecture that shares resources
between clusters is illustrated in Figure 4.3(a). For the sake of simplicity, each cluster is defined
by a single application in this example. Defining a schedule for the complete system becomes
a computationally intensive task, and mathematical methods like [LSGC12] and [ZZD+09] are
not capable of delivering a feasible solution within a reasonable amount of time due to scal-
ability issues. Moreover, it is common practice to develop each cluster separately and, thus,
also to determine the schedules separately. In a final step, an integration of the subsystems
becomes necessary such that for a large time-triggered system, a schedule integration has to be
performed. To avoid conflicts in the resulting schedule, we propose two techniques as illustrated
in Figure 4.3(b) and 4.3(c) which are described formally in the following.
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Figure 4.3: (a) The illustration shows an architecture consisting of two domains connected with
the backbone bus1. Four clusters ( , , , ) share the resources r3, r4, and bus3. (b) During
schedule integration, the entire cluster schedules are shifted such that a feasible global schedule
is obtained. (c) Additionally, cluster schedules might be modified by shifting single processes
within the time frame defined by predecessor and successor processes.
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As defined in Chapter 2, one resource can only be utilized by one process p at a time
instant. Hence, in many cases a direct schedule integration where cluster schedules are simply
combined will lead to conflicts by violating Equation (2.2). As a remedy, a schedule integration
approach is presented to merge existing schedules of subsystems that share resources. Thus,
also the complexity of the scheduling is reduced by a divide-and-conquer approach. Cluster
schedules are combined by shifting the whole schedule and process start-times, respectively.
These two techniques increase the chance to find a feasible schedule for the entire system. The
two techniques are described in the following for the general case.

One way to merge the schedules of two clusters d and d̃ is to shift the cluster schedules by
a constant time which is denoted as od and od̃, respectively. Shifting the schedule by a constant
time does not influence the behavior of the subsystems since the shift is performed for the entire
cluster, i.e., all processes within the cluster. This approach is illustrated in Figure 4.3(b). Thus,
the requirement in Equation (2.2) is extended as follows:

η(p, t− od) + η( p̃, t− od̃) ≤ 1 (4.1)

Hence, if a process is shifted by a positive cluster offset, it occupies the resource at a later
point in time. In this case, suitable offsets od and od̃ have to be found. If a cluster d is shifted
by od, the previously defined start-times for all messages and tasks are shifted by od.

The second technique to obtain a feasible schedule for the entire system is by shifting
the start-times of single processes within certain bounds. This approach is illustrated in Fig-
ure 4.3(c). The process offset variable op then allows to adjust the process start-time within the
cluster. The boundaries for op of a process p with both a predecessor and a successor process
are defined as follows.

f p̌ ≤ sp + op ≤ s p̂ (4.2)

Here, f p̌ is the latest finish-time of any preceding process p̌ ∈ Pd and s p̂ is the earliest
starting time of any succeeding process p̂ ∈ Pd. Thus, the requirement from Equation (4.1) is
extended as follows:

η(p, t− od − op) + η( p̃, t− od̃ − op̃) ≤ 1 (4.3)

In this case, additionally, suitable offsets op and op̃ have to be found. On the one hand,
both approaches help to find a feasible schedule for the entire system. On the other hand, the
search space might become very large, in particular with the process shifting approach. In the
following, an efficient implementation of this framework is shown.
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Figure 4.4: The proposed schedule integration framework first tries to determine a global sched-
ule by only adapting the cluster offsets. If no solution exists, a conflict refinement is applied
to resolve infeasibilities in conflicting clusters optimizing both the cluster as well as the pro-
cess offsets. In case the conflict refinement fails, it provides information to refine the system
configuration.

4.2.2 Schedule Integration Framework

The proposed schedule integration framework merges a set of cluster schedules into a global
schedule. For cluster schedule generation we apply the ILP approach presented in Section 3.2.
To optimize the integrability of a cluster schedule, Section 4.4 presents various metrics.

For an efficient implementation, the schedule integration is based on multiple stages as il-
lustrated in Figure 4.4. First, the schedule integration approach tries to adapt the start-times
sp of all processes for a cluster d by only using the cluster offset od. However, as the general
structure for each cluster is fixed, no feasible schedule might exist such that all constraints,
defining the offset boundaries, are satisfied (SAT). In case no feasible solution exists for the
initial set of clusters (UNSAT), a conflict refinement is required. It adapts the individual pro-
cess start-times with op, while ensuring that the maximum end-to-end timing delay defined for
each application is not violated. Therefore, while the conflict refinement modifies the timing be-
havior of cluster schedules, all previously defined constrains are still valid. Instead of applying
the conflict refinement to all clusters, only conflicting cluster schedules are adapted. Therefore,
during conflict refinement at first all conflicting cluster schedules in the form of disjunct Irre-
ducible Inconsistent Sets (IISs) are determined. An IIS represents a subset of clusters causing
the schedule integration to be infeasible. Once all IISs have been identified, existing conflicts
are resolved through adapting individual process start-times. Finally, the adapted clusters are
merged into a single cluster (merge) to guarantee termination. The implementation details are
described in the sections indicated in Figure 4.4.
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This schedule-integration framework allows to design cluster schedules individually which
might then be integrated in a global schedule using the proposed framework.

4.3 Integration

This section first presents a schedule integration approach to define an offset for each cluster.
Second, a conflict refinement allowing to adapt incompatible cluster schedules is proposed. Fi-
nally, extensions to the framework supporting Automotive Ethernet and FlexRay are discussed.

4.3.1 Schedule Integration

During schedule integration, independently created cluster schedules are combined to a global
schedule. An offset od ∈ R is defined for each cluster schedule d ∈ D which allows to shift the
whole cluster schedule by a constant time. As the cluster schedule is executed with the period
hd = lcm

p∈Pd
(hp)1, the boundaries for od might have any value between 0 and hd. To significantly

reduce the search space, i.e., clearly reducing the runtime for determining offsets for each clus-
ter, a two stage approach is applied: (1) Feasible intervals for the relative offset for each cluster
pair d, d̃ ∈ D are computed. The relative offset is defined as od − od̃, hence it defines the rela-
tion between the two offsets. (2) The final offsets for the whole set are determined with an SMT
approach. Based on Equation (4.1), the set defining all feasible offsets for a single resource r is
computed as follows.

O(r,d,d̃) = {x|x = od − od̃, od ∈ [0, hd], od̃ ∈ [0, hd̃], p ∈ Pd, p̃ ∈ Pd̃,

r(p) = r( p̃) = r, ∃t : η(p, t− od) + η( p̃, t− od̃) ≤ 1}
(4.4)

Hence, for each process pair p and p̃ that are part of different clusters but are mapped to the
same resource, the feasible relative offsets are determined. O(r,d,d̃) represents the intersection
of these offsets for all process pairs mapped to resource r, containing all feasible values. Since
a cluster is commonly distributed across multiple resources, we need to consider all shared
resources in order to compute the relative cluster offset. With R(d) denoting the set of resources
used by cluster d, we determine O(d,d̃), defining all feasible values for the relative cluster offset
for d and d̃:

O(d,d̃) =
⋂

r∈R(d)∩R(d̃)

O(r,d,d̃) (4.5)

Now that we have determined all feasible values for the relative offset, the following equa-
tion organizes the set of feasible values into intervals δ = [δ, δ].

1Defines the least common multiple of all process periods in cluster d.
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∆(d,d̃) = {[δ0, δ0], [δ1, δ1], ..., [δk, δk]} with (
⋃

x∈∆(d,d̃)

x) = O(d,d̃)

and ∀i, j, i 6= j : [δi, δi] ∩ [δj, δj] = ∅
(4.6)

Based on these intervals, the following SMT formulation determines the cluster offsets:
∀d ∈ D :

0 ≤ od < hd (4.7)

∀d, d̃ ∈ D, d 6= d̃: ⊕
∀δ∈∆(d,d̃)

δ ≤ od − od̃ ≤ δ
(4.8)

Constraint (4.7) defines the boundaries for od, while Constraint (4.8) ensures that all od lie
in the previously determined intervals. Here, the symbol ⊕ represents an exclusive or (XOR)
operation. Updating the process start-times for each cluster with the obtained offsets leads to
the global system schedule.

4.3.2 Conflict Refinement

The schedule integration approach assigns an offset to each cluster schedule without altering its
structure. However, as each cluster schedule is determined individually, it might not be feasible
to integrate all cluster schedules into a global schedule. Figure 4.5 gives an example of two
conflicting clusters and how the conflict might be resolved. To overcome such infeasibilities, in
the following, a conflict refinement is presented. First, an approach is presented to determine all
IISs, representing minimal subsets of clusters which cannot be integrated into a schedule. Sec-
ond, an approach to resolve conflicts through adapting the initial cluster schedules is proposed.

4.3.2.1 Determine all IISs

While modern SMT solvers might provide the functionality to determine an IIS, these ap-
proaches do not allow the use of domain knowledge and analyze each constraint independently.
Therefore, we propose an approach tailored to the schedule integration problem. Instead of
removing each constraint independently to isolate the constraints leading to the infeasibility,
we apply a group-based approach where a whole cluster d, including all affected constraints, is
removed from D. The approach is based on the following additional constants and functions:

• Πd - set of constraints related to cluster d during schedule integration.

• DI IS - set of IISs, each IIS contains a set of clusters |DI IS| ≥ 2.
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p ep hp r(p) sp

t1 1ms 5ms r1 0ms
t2 1ms 5ms r1 2.5ms
t3 2ms 10ms r1 !
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r1

r2

bus

t1 t2 t1

! !

ht1 = 5ms

(a) Conflicting cluster schedule
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t1 t2 t1
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(b) Resolved conflict
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ht1 = 5ms

Figure 4.5: Exemplary illustration of conflicting cluster schedules and conflict refinement.
(a) The schedule for cluster d1, containing t1 and t2 and illustrated by the grayed out areas,
conflicts with the execution-time of t3, part of cluster d2. (b) During conflict refinement the
start-time of t2 is adapted to support both clusters in one global schedule.

• β(p) : P → R - schedule defining the start-times of processes. It returns the process
start-time sp for a process p ∈ P.

To determine all IISs, first the domain knowledge obtained during the interval calculation
is exploited. If the calculated interval ∆(d,d̃) is empty, no feasible solution exists. Hence, in a
first step,DI IS is initialized with all pairs of clusters with an empty interval which indicates that
both cluster schedules cannot be combined:

DI IS = {{d, d̃}|d, d̃ ∈ D, ∆(d,d̃) = ∅} (4.9)

After all initial pair-wise infeasibilities have been determined, an extended deletion filter
is applied. While a common deletion filter only determines a single infeasibility [Chi07], here
an iterative approach is applied until the remaining set of clusters is feasible. A set of cluster
schedules leading to an infeasibility is denoted as β 2 ΠD̃

2, indicating that no schedule β could
be determined which satisfies all constraints ΠD̃. In addition, to indicate that all sets in a set of
sets X are merged to a single set we use the notation X =

⋃X .
Algorithm 4.1 iteratively applies a deletion filter to the problem until the remaining subset

D̃ ⊂ D is feasible (lines 2-10). The deletion filter removes the groups of constraints that affect
one cluster iteratively (lines 3-7). If the reduced set remains infeasible (line 4), the cluster is

2x � Π is read as x satisfies Π and x 2 Π as x does not satisfy Π.
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Algorithm 4.1: Iterative Deletion Filter extending DI IS until the remaining subset D̃ is
feasible.

Input: set of cluster specifications D for which the schedule integration is unfeasible
Output: set of all subsets of clusters causing an infeasibility DI IS
// initialize subset D̃ which should contain the maximal feasible subset

of clusters

1 D̃ = D \⋃DI IS
// as long as the schedule integration for the clusters in D̃ is

intractable continue

2 while β 2 ΠD̃ do
3 for d ∈ D̃ do

// if the problem is still infeasible after the constraints for d

have been removed, remove d from D̃

4 if β 2 ΠD̃ \Πd then
5 D̃ = D̃ \ d
6 end
7 end
8 DI IS = {D̃} ∪ DI IS
9 D̃ = D \⋃DI IS

10 end

removed from the infeasible set (line 5), otherwise it remains part of it. After an IIS has been
determined, it is added to DI IS (line 8), and the process is repeated for an updated D̃ (line 9).

4.3.2.2 Resolve all IISs

Once all conflicting cluster schedules have been determined, a conflict refinement is required to
resolve all conflicts. This section proposes an SMT-based approach to adapt the start-times of
individual processes in addition to the cluster offset. In the following, first a problem partition-
ing is proposed to determine which IISs need to be resolved concurrently. Second, we discuss
how the process offset intervals might be selected. Finally, the conflict refinement approach is
presented.

Problem partitioning. To resolve the conflicts determined in the set of IISs, various constraints
have to be taken into account, i.e., an offset has to be determined for each process and for
each cluster concurrently. In contrast to determining cluster offsets (Section 4.3.1), the conflict
refinement might therefore suffer from a limited scalability. However, if multiple IISs have been
determined which do not concern the same clusters, the IISs can be addressed individually. We
therefore propose a partitioning heuristic that identifies suitable partitions for the set of IISs
DI IS to improve the scalability.
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Automotive E/E-architectures are partitioned into domains, thus, different clusters might
only share few or no resources. Hence, if IISs are distributed over different domains, resolving
each individually is feasible, while IISs concerning clusters from the same domain might require
an additional conflict refinement if not resolved concurrently. Figure 4.6(a) shows a system
which implements four clusters in two domains. The clusters in the two domains only share
resource r4. Hence, if in each domain an IIS was determined, resolving each IIS individually
and integrating the resolved schedules into the global schedule is likely to lead to a feasible
solution. The partitioning is defined as:

{D̃ I IS, ...} = partition(DI IS)

D̃ I IS ⊆ DI IS

IISs are strongly correlated if they share multiple resources and the feasible cluster offsets
are strongly limited. The feasible cluster offset relation, as defined in Equation (4.6), quantifies
this relation well. For instance, if two clusters do not share any resource, the feasible cluster has
the maximal interval length ∆(d,d̃) = {[−hd̃, hd]}. Based on the feasible cluster offsets ∆(d,d̃),
we therefore introduce the following metric to determine the correlation of two IISs D and D̃:

µcorrelation(D, D̃) =
1√

|D|+ |D̃| − 1︸ ︷︷ ︸
scale to number

of clusters

· ∑
d∈D

∑
d̃∈D̃

(
1−

∑δ∈∆(d,d̃)
(δ− δ)

hd + hd̃︸ ︷︷ ︸
percentage of
feasible offset

ratios

)
(4.10)

The metric determines the percentage of feasible offset ratios by calculating the sum of all
intervals divided by the maximal interval length, i.e., if two clusters do not share any resources.
We subtract this value from 1 to obtain a value of 0 if two clusters do not share any resources,
and a value of 1 if both clusters conflict, i.e., no feasible cluster offset combination exists. The
metric forms the sum of all these cluster relations between two IISs, determining the correlation
between both. As IISs might strongly differ in the number of clusters, we finally relate this
sum to the number of clusters in the IISs. We apply the square root to the number of clusters
and subtract 1 to normalize the metric value for the smallest IIS size of 2. Figure 4.6(b) gives
an example on how µcorrelation(D, D̃) is determined for the system illustrated in Figure 4.6(a).
Based on this correlation metric, the partitioning heuristic partitions the set of all IISs in subsets
with a low correlation between each other.

As a cluster might be part of multiple IISs, the partitioning heuristic starts with identifying
IISs which contain common clusters. These IISs have to be handled concurrently, independent
of the correlation value determined by the metric. Once these extended IISs have been identi-
fied, we apply our correlation metric to all IIS pairs. Two IISs are part of the same partition if
their correlation is above the threshold εcorrelation, i.e., µcorrelation(D, D̃) > εcorrelation. If all
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(a) Domain-based architecture (b) Partitioning metric

Figure 4.6: (a) Automotive systems are realized by a domain-based architecture where clusters
distributed over different domains only share few resources. (b) The partitioning metric de-
termines the correlation between two cluster sets DI IS and D̃I IS based on the feasible relative
cluster offsets ∆(d,d̃). For this example the cluster period for all clusters is 5 ms.

IISs share a strong correlation, the outcome of this metric might be that the conflict refinement
should consider all IISs concurrently. The conflict refinement is then applied for each partition
individually, before the partition schedules are integrated in a global schedule with the approach
presented in Section 4.3.1.

Determine intervals for process offsets. The conflict refinement adapts the process offsets for
conflicting cluster schedules. To ensure all constraints defined for the cluster schedule are not
affected by adapting process start-times, the conflict refinement must ensure that the previously
defined constraints such as the maximum end-to-end delay are not violated. Thus, suitable
process offsets must be determined. For intermediate processes, i.e., processes having both a
predecessor and a successor, this means that the selected process offset ensures that the prece-
dence constraints are satisfied. As stated in Equation 4.2, the process offset op for a process p
is limited by the finish-time of a predecessor task p̌ it receives data from, and the start-time of
a successor task p̂ processing data sent by p. Figure 4.7 illustrates the offsets for the interme-
diate process m5. Its predecessor m̌5 = t1 and its successor m̂5 = t2 define the boundaries for
om5 to δom5

= [−wt1,m5 + ot1 , wm5,t2 + ot2 ]. Here, w(p,p̃) denotes the waiting-time between
data-dependent processes. Adapting the process offset of intermediate processes such that the
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precedence constraints are satisfied, does not affect the end-to-end delay of an application and
allows to determine a valid schedule.

To determine suitable intervals for each process offset, the following additional parameters
are introduced:

• δop = [δop , δop ] - interval defining the lower and upper bound for the process offset.

• δopsrc , δopsnk
- lower bound of a source and upper bound of sink process, respectively. A

source process does not have a predecessor while a sink process does not have a successor.
See Definitions 2.2.2 and 2.2.3.

• w(p,p̂) = s p̂ − fp - waiting-time from the finish-time of p to the start-time of the data-
dependent successor process p̂.

• a ∈ Ad - defines an application with its task graph Ga = (Pa, Ea). Described in detail in
Definition 2.1.2.

• Ě(φ, p) : Φ, P→ E - returns all edges in the path φ from the source process to p.

• Ê(φ, p) : Φ, P→ E - returns all edges in the path φ from p to the sink process.

• src(φ), snk(φ) : Φ→ P - the functions return the source and the sink process in path φ,
respectively.

The offset interval for a process op ∈ δop = [δop , δop ] can then be defined by the following
boundaries.
∀d ∈ DI IS, p ∈ Pd, φ ∈ {x|x ∈ Φ(Ea), ∃x : p ∈ x},
psrc = src(φ), psnk = snk(φ):

δop = argmax
φ

(
δopsrc − ∑

( p̃, ˆ̃p)∈Ě(φ,p)

w( p̃, ˆ̃p)

)
(4.11)

δop = argmin
φ

(
δopsnk

+ ∑
( p̃, ˆ̃p)∈Ê(φ,p)

w( p̃, ˆ̃p)

)
(4.12)

Constraint (4.11) defines the lower bound for the process offset. It is defined by the sum
of all waiting-times between data-dependent processes in a path and the offset defined for the
source process. As a process might have multiple source or sink processes, several paths might
have to be taken into account and the strictest lower bound, i.e., the largest value, is selected.
Constraint (4.12) defines the upper bound for op accordingly. For the upper bound the strictest
bound is defined by the lowest value for all paths. The interval δop = [δop , δop ] then contains
all feasible offset values that still satisfy all precedence and end-to-end-delay constraints.

In addition to adjusting the offsets of intermediate processes, in some cases it might also be
necessary to adjust the offsets of source or sink processes, e.g., if the initial cluster schedules de-
fine a tight end-to-end delay. For the source and sink process offsets, we suggest two options to
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Figure 4.7: During conflict refinement the process offsets are adapted individually. The illus-
tration shows the intervals for the process offsets if the end-to-end delay of the cluster schedule
is fixed. This is only illustrated for one of the two applications. Here, the white areas indicate
the waiting-time between data-dependent processes. As the offset optimization of all processes
is done concurrently, the offset interval also depends on the offset of predecessor and successor
tasks ( ).

define the boundaries of op. (1) Keep all end-to-end delays as defined for subsystem schedules.
(2) Allow adapting the end-to-end delay up to the maximum end-to-end delay θa. Both options
ensure that the timing requirements defined by the application designer are satisfied. Depending
on the subsystem requirements, for each cluster or application the more suitable option should
be selected. For instance, if an application does not benefit from a minimal end-to-end delay,
option (2) allows a more flexible conflict refinement.

For option (1), the end-to-end delay of an application might be tightened, i.e., the end-to-end
delay can be decreased, but not increased. Therefore, the source and sink processes might only
be shifted in one direction. The lower bound for the source process δopsrc , and the upper bound

for the sink process δopsnk
are then defined as:

δopsrc = 0 (4.13)

δopsnk
= 0 (4.14)

For instance, see processes t1 and t2 in Figure 4.7. The boundaries for the source process
t1 are defined as ot1 ∈ [0, wt1,m5 + om5 ]. Similarly, for the sink process t2: ot2 ∈ [−wm5,p2 +

om5 , 0].
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Figure 4.8: Illustration of intervals for the process offsets if the offsets for source and sink
processes might increase the end-to-end delay up to the maximum end-to-end delay defined for
an application. Here, the white areas indicate the offset if predecessor or successor tasks are not
shifted, while the areas indicated by indicate the dependency on the offsets assigned to these
processes.

For option (2), the maximum end-to-end delay of an application might be increased up to
the full maximum end-to-end delay. To be able to evenly distribute the additional slack or laxity,
we introduce the following function.

• ctr(a) : A → R - returns the temporal center of an application, i.e., the time instant
forming the median between the process with the earliest start-time and the process with
the latest finish-time.

The lower bound for the source process δopsrc , and the upper bound for the sink process δopsnk
can then be defined as:

δopsrc = s(p=src(φ)) − θa + ctr(a) (4.15)

δopsnk
= s(p=snk(φ)) + θa − ctr(a) (4.16)

Constraint (4.15) determines the temporal center between the start of all source processes
and the termination of all sink processes with the function ctr(a). Based on this central time
instant, the feasible lower bound for the source process is determined. This offset is evenly
distributed between source and sink processes. Similarly, Constraint (4.16) determines the
upper bound for sink processes. Figure 4.8 illustrates the intervals for the process offsets of an
application, if the end-to-end delay is allowed to be increased during conflict refinement.
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SMT-based approach. Once suitable intervals have been determined for each offset,
we apply an SMT-based conflict refinement. The conflict refinement is applied to each of the
previously defined partitions D̃ I IS ⊆ DI IS individually. We therefore merge the set of IISs
D̃ I IS to a single set of clusters DI IS =

⋃ D̃ I IS. The conflict refinement is then formulated as
follows.
∀d ∈ DI IS:

0 ≤ od < hd (4.17)

∀d ∈ DI IS, ∀p ∈ Pd, δop = [δop , δop ]:

δop ≤ op ≤ δop (4.18)

∀d, d̃ ∈ DI IS, ∀p ∈ Pd, ∀ p̃ ∈ Pd̃, p 6= p̃, r(p) = r( p̃),
i = {0, .., 3·h(p,p̃)

hp
− 1}, j = {0, .., 3·h(p,p̃)

h p̃
− 1}:

od + op + i · hp + sp + τp ≤ j · h p̃ + s p̃ + op̃ + od̃

⊕ od + op̃ + j · h p̃ + s p̃ + τp̃ ≤ i · hp + sp + op + od
(4.19)

∀d ∈ DI IS, a ∈ Ad, φ ∈ Φ(Ea), (p, p̂) ∈ φ:

op ≤ op̃ + w(p,p̂) (4.20)

Constraint (4.17) and Constraint (4.18) define the boundaries for the cluster offsets and the
process offsets, respectively. Constraint (4.19) ensures that two processes which are mapped to
the same resource do not intersect for the selected cluster and process offsets, i.e., that one of
the processes finishes its execution before the other process is started (cf. Requirement 2.2.1).
Note that this constraint also includes processes that are part of the same cluster. Finally, Con-
straint (4.20) ensures that the precedence constraints (cf. Requirement 2.2.2) are not violated.
Feasible values for the process offset must therefore ensure that the assigned offset only shifts
the process p up to the adapted start-time of the successor task p̂.

After the conflict refinement has determined a valid schedule, all clusters in DI IS are merged
to a single cluster dI IS to prevent repeated optimization and ensure termination of the algorithm.

Reduce the need for a conflict refinement. Compared to the schedule integration solely defin-
ing an offset for each cluster, the conflict refinement is computationally more expensive, as var-
ious additional constraints need to be taken into account. Thus, ideally the number of conflicts
should be low. Conflicts are in particular likely if each cluster consists of multiple applications.
However, as applications are generally independent of each other, it is often not necessary to
assign the same cluster offset to all applications. If this is the case, considering each application
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as an individual cluster clearly decreases the probability that a conflict refinement needs to be
applied.

4.3.3 Automotive Ethernet

The schedule integration and the conflict refinement presented in the previous sections might
be directly applied for Automotive Ethernet relying on TSN for a time-triggered communica-
tion. However, as these formulations do not consider the switched network and a full-duplex
communication, concurrent message transmission would be omitted and the bandwidth require-
ments overestimated. To support these Ethernet properties we therefore introduce the following
parameters.

• reth ∈ Reth - resource representing an Ethernet bus. It holds that all resources r ∈ Reth
represent an Ethernet bus.

• ψ(p) - function determining all routings for a message sent on the Ethernet bus, i.e., it
returns all paths containing the data links that connect the sending resource to all receiving
resources. For instance, ψ(p) = {(r, sw1), (sw1, sw2), (sw2, r̃)} describes the routing
from resource r to r̃ via the switches sw1 and sw2.

Based on ψ(p), the Equation (4.4) defining the relative cluster offsets for each resource
O(r,d,d̃) can be adapted to support Ethernet:

O(reth,d,d̃) = {x|x = od − od̃, od ∈ [0, hd], od̃ ∈ [0, hd̃], p ∈ Pd, p̃ ∈ Pd̃,

r(p) = r( p̃) = reth, ψ(p) ∩ ψ( p̃) 6= ∅, ∃t : η(p, t− od) + η( p̃, t− od̃) ≤ 1}
(4.21)

The relative offset is only considered for messages which share at least one link between
switches and/ or resources in the same direction. Similarly, for Constraint (4.19) in the conflict
refinement, the conditions can be redefined for Ethernet messages:

∀d, d̃ ∈ DI IS, ∀p ∈ Pd, ∀ p̃ ∈ Pd̃, p 6= p̃, r(p) = r( p̃) ∈ Reth,

ψ(p) ∩ ψ( p̃) 6= ∅, i = {0, .., 3·h(p,p̃)
hp
− 1}, j = {0, .., 3·h(p,p̃)

h p̃
− 1} :

(4.22)

If these constraints are applied for all Ethernet resources, support for full-duplex switched
Ethernet networks is added to our schedule integration framework.

4.3.4 FlexRay

This section presents an extension of our framework to support schedule integration for the
FlexRay bus. Section 3.1.3.2 proposed a schedule integration approach for FlexRay message
scheduling in an asynchronous system. While this schedule integration approach might be
integrated into our framework, it would require the introduction of various additional constraints
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to integrate the binary variables. Instead, we have selected a more efficient approach which
only adds few additional constraints to the general schedule integration framework introduced
in Sections 4.3.1 and 4.3.2. The additional constraints are based on the following constants.

• slm - slot message m is assigned to in the cluster schedule.

• bm - base-cycle assigned to m in the cluster schedule.

• nfr - number of slots in static FlexRay segment.

• τfr - duration of a static FlexRay slot.

• hfr - period of a FlexRay cycle.

• ř(m) : M→ R - ECU sending the message m.

• Rfr - set of all resources representing a FlexRay bus.

A FlexRay schedule assigns a slot and base-cycle to each message, while the schedule in-
tegration framework assigns start-times to processes which are defined by their execution-time.
The relation of the FlexRay message parameters to this temporal representation might be de-
fined as follows (cf. Requirement 2.3.1).
∀m ∈ {p|p ∈ Pd, ∃p : r(p) ∈ Rfr}:

τm = τfr (4.23)

sm = slm · τfr + bm · hfr (4.24)

For the transmission time defined in Constraint (4.23) we assume the duration of a static
FlexRay slot. Note that this slot might still contain several messages, but as all data needs to be
available at the beginning of the slot and is only available once the whole slot was received, the
transmission time perceived by data-dependent processes is therefore the slot duration. Con-
straint (4.24) relates the message start-time to its slot and base-cycle assignment.

The FlexRay static segment is partitioned into nfr slots to which messages can be assigned.
We assume that the first static slot starts at the time instant 0 for all cluster schedules (cf.
Definition 2.3.1). The start-times of all FlexRay messages must equal the start-time of one
of the slots. As FlexRay also supports additional segments, e.g., the dynamic segment, this
requirement also ensures that no messages are scheduled outside the static segment. For the
schedule integration approach in Section 4.3.1, for each FlexRay message we can define feasible
cluster offsets:
∀m ∈ {p|p ∈ Pd, ∃p : r(p) ∈ Rfr}:

δfr
(d,m) = [0, τfr, ..., (nfr − 1− slp) · τfr, ..., hfr − slp · τfr, ..., hfr, hfr + τfr, ..., hd − τfr] (4.25)
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Figure 4.9: Offset interval determination for a message scheduled on the FlexRay bus. Feasible
values for the cluster offset are start-times of all slots illustrated in white.

The cluster offset can only be adjusted in steps of the slot duration of τfr. Depending on
the slot m is assigned to, feasible offset values are defined to ensure that messages are only
shifted within the static segment. Figure 4.9 gives an exemplary illustration of this interval.
For the schedule integration, the intervals for a cluster offset od might then be defined as the
intersection of all FlexRay messages of a cluster:

δfr
d =

⋂
∀m∈{p|p∈Pd,
∃p:r(p)∈Rfr}

δfr
(d,m)

(4.26)

Based on these cluster offsets, the relative cluster offset determination from Equation (4.4)
can be adapted to support FlexRay as follows.
Md = {p|p ∈ Pd, ∃p : r(p) ∈ Rfr}, Md̃ = {p|p ∈ Pd̃, ∃p : r(p) ∈ Rfr}:

O(rfr,d,d̃) = {x|x = od − od̃, od ∈ δfr
d , od̃ ∈ δfr

d̃ , m ∈ Md, m̃ ∈ Md̃,

r(m) = r(m̃) = rfr, ∃t : η(m, t− od) + η(m̃, t− od̃) ≤ 1}
(4.27)

The function determines feasible relative offsets, taking all FlexRay constraints into account.
In addition, also the conflict refinement (see Section 4.3.2) requires additional constraints to
support FlexRay. We assume it holds that the duration of a FlexRay cycle hfr is a multiple of
the duration of a static slot, thus, hfr mod τfr = 0. We can then define the theoretical number
of static slots in a FlexRay cycle if the dynamic segment, symbol window and network idle time
are included:

nall =
hfr

τfr
(4.28)
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In addition, we introduce the following variable:

• im ∈ N0 - integer variable indicating to which slot and base-cycle a FlexRay message is
mapped to

For the SMT approach in the conflict refinement, we then define the following additional
constraints for FlexRay messages, extending the Constraints (4.17)- (4.20) (page 92):
∀d ∈ D, m ∈ {p|p ∈ Pd, ∃p : r(p) ∈ Rfr} :

sm + od + om = im · τfr (4.29)

⊕
b∈{0,.., hm

hfr
−1}

b · nall ≤ im < b · nall + nfr (4.30)

Constraint (4.29) ensures that the start-time of a FlexRay message equals the start-time of
a static slot. Constraint (4.30) defines the boundaries for im, ensuring that messages are only
mapped to static slots.

For the FlexRay extension to our schedule integration framework, we assume that messages
of different clusters do not share the same slot in a cycle and therefore do not consider a repack-
ing of messages to slots.

FlexRay 2.1. The FlexRay extensions discussed in this section are suitable for FlexRay 3.0
scheduling which allows to share a slot between different ECUs. To support FlexRay 2.1, the
schedule integration must ensure that a slot is exclusively used by one ECU. For both the sched-
ule integration as well as the conflict refinement, this constraint can be efficiently implemented
by introducing a hypothetical process period hfr

m of the duration of a FlexRay cycle:
∀d, d̃ ∈ D, m ∈ {p|p ∈ Pd, ∃p : r(p) ∈ Rfr}, m̃ ∈ {p|p ∈ Pd̃, ∃p : r(p) ∈ Rfr},
m 6= m̃, r(m) = r(m̃) :

hfr
m, hfr

m̃ =

{
hfr, hfr ř(m) 6= ř(m̃)

hm, hm̃ otherwise
(4.31)

If the messages are not sent from the same resource, instead of using the actual process
period, smaller periods equal to the duration of a FlexRay cycle are selected. This ensures that
messages sent by different resources are never mapped to the same slot (cf. Requirement 2.3.2).
Hence, replacing the period of a FlexRay message with hfr

m, according to Equation (4.31), allows
to apply the schedule integration framework for FlexRay 2.1 scheduling.

4.4 Metrics for Subsystem Scheduling

The previous sections were concerned with the integration of cluster schedules into a single
global schedule. The integrability of different cluster schedules into a common schedule and
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the need for a conflict refinement depends on the structure of each cluster schedule. In the
following, we therefore discuss several metrics that allow to optimize cluster schedules for
schedule integration. The focus lies on optimizing the individual cluster schedules without
having knowledge about other clusters the schedule should be integrated with. The proposed
metrics extend the ILP approach presented in Section 3.2. The metrics can be grouped in two
types: (1) Metrics to increase the variability of single processes, i.e., increasing the degree to
which single process offsets might be adapted without affecting other processes. (2) Metrics
to optimize the cluster schedule such that the idle times between the activation of processes
are cumulated. In the following, we first propose two metrics falling in group (1): A metric
to maximize the slack usage of applications and a metric to evenly distribute processes on
resources. Finally, we propose a metric for optimizing the cluster schedule for the maximal
continuous idle time, which falls in group (2).

4.4.1 Maximize Slack Usage

Applications in the automotive domain define maximum end-to-end delays below which a cor-
rect functionality is guaranteed. While minimizing the end-to-end delay might improve the per-
formance, it is often not required, as satisfying the maximum end-to-end delay already ensures
a correct and accurate behavior. To improve the integrability of a cluster we therefore propose
a metric which maximizes the slack usage of applications. The slack defines the time differ-
ence between the maximum end-to-end delay and the actual end-to-end delay of an application.
The goal of the metric is to introduce an evenly distributed idle time between data-dependent
processes. This allows to adjust the start-time of single processes without having to adjust the
start-times of the predecessor and successor processes. The metric is based on the following
variables:

• w(p,p̃) ∈ R - variable for waiting-time between the two processes p and p̃.

• τa ∈ R - variable for minimal waiting-time between processes of application a.

Figure 4.10(a) illustrates the metric measuring the slack utilization of an application. The
ILP formulation in Section 3.2.2 is then extended with the following constraint.
a ∈ Ad, e ∈ Ea, (p, p̃) ∈ e

τa ≤ w(p,p̃) (4.32)

The constraint defines a lower bound for the waiting-time between data-dependent pro-
cesses. Based on this lower bound, we define the following objective.

max

(
∑

e∈Ed,(p,p̃)∈e
w(p,p̃) + ∑

a∈Ad

τa

)
(4.33)

97



4.4 Metrics for Subsystem Scheduling

r1

r2

bus

t1

t2 t3

m1

t1

t2t3

(a) Measure slack usage

w(t2,t3)
θa

τa τa

r1

r2

bus

t1

t2 t3

m1

t1

t2

t4

t5

m2

t5

(b) Evenly distribute processes

τr1 τr1

τr2 τr2 τr2 τr2

r1

r2

bus

t1

t2 t3

m1

t1t4

t5

m2

t5

(c) Cumulate idle time

τidle

Figure 4.10: Illustration of proposed metrics to evaluate the integrability of a cluster schedule.
(a) Evaluates the integrability by the waiting-time between processes and the spread of this
waiting-time. The upper bound for the process distribution is the maximum end-to-end delay θa.
(b) Measures the distribution of processes on each resource. (c) Evaluates the integrability by
the longest available idle segment over all resources.

The objective maximizes the overall waiting-time between all data-dependent processes and,
thus, maximizes the slack usage of the cluster schedule. In addition, the objective also considers
the lower bound for the waiting-time and therefore ensures that a minimal delay is introduced
between all data-dependent processes. Thus, based on this metric, the idle time between all
data-dependent processes of an application might be evenly distributed.

4.4.2 Evenly Distribute Processes

The previous subsection proposed a metric to increase the variability of processes within one
application. However, the variability of a process does not only depend on its data-dependent
predecessor and successor tasks, but also on the processes it shares a resource with. To im-
prove the variability on each resource we therefore propose a metric which evenly distributes
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processes on a resource. This does not only improve the variability, but also might facilitate the
integration of additional processes as the idle segments are evenly distributed. The following
additional constants and variables are introduced:

• h(p, p̃) : P→ R - returns the hyper-period of the two processes p and p̃.

• τr ∈ R - variable for lower bound of minimal idle-time between processes on resource r.

• x̄(p,p̃) ∈ {0, 1} - binary variable indicating if p is started before p̃.

Figure 4.10(b) illustrates the metric measuring the even distribution of processes on each
resource. Based on these variables, we can then define the following additional constraints for
the ILP formulation to determine cluster schedules.
p, p̃ ∈ Pd, p 6= p̃, r = r(p) = r( p̃), i = {0, .., h(p,p̃)

hp
}, j = {0, .., h(p,p̃)

h p̃
}:

τr ≤ sp̃ + τp̃ + j · h p̃ − (sp + i · hp) + h(p, p̃) · (1− x̄(p,p̃)) (4.34)

τr ≤ sp + τp + i · hp − (sp̃ + j · h p̃) + h(p, p̃) · x̄(p,p̃) (4.35)

The constraints define a lower bound for the idle time between the termination of a process
and the start of another process on the same resource. The switching variable x̄(p,p̃) ensures that
only one of the constraints is active while the other constraint is trivially satisfied. Based on the
lower bound for each resource, we determine the following objective.

max

(
∑
r∈R

τr

)
(4.36)

The objective maximizes the sum of all lower bounds, thus, introducing a minimal idle time
between all processes on one resource.

4.4.3 Maximize Cumulative Idle Time in Schedule

The metrics proposed in the previous subsections were concerned with spreading processes
either within an application or single resources. In addition, this subsection proposes a metric
to maximize the idle time within the whole cluster schedule, i.e., to generate a long idle time
segment over all resources. To implement this metric, we introduce a phantom process pidle
representing the idle segment with the following properties.

• hpidle - period of pidle which equals the smallest process period in the cluster hpidle =

argmin
p∈Pd

(hp).

• spidle ∈ R - start-time of idle segment.
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• τpidle ∈ R - variable representing the duration of the idle segment.

Figure 4.10(c) illustrates the metric measuring the maximal available idle segment. We can
then define the following additional constraints for the ILP formulation (see Section 3.2.2).

0 ≤ τpidle (4.37)

∀p ∈ Pd, i = {0, .., 2·h(p,pidle)
hp

− 1}, j = {0, .., 2·h(p,pidle)
hpidle

− 1} :

i · hp + sp + τp ≤ j · hpidle + spidle + h(p, pidle) · (1− x̄(p,pidle)
) (4.38)

j · hpidle + spidle + τpidle ≤ i · hp + sp + h(p, pidle) · x̄(p,pidle)
(4.39)

Constraint (4.37) first ensures that the idle segment has a positive value. Constraints (4.38)
and (4.39) then ensure that no processes are scheduled in the idle segment. Based on these
constraints we define the following objective:

max

(
τpidle

)
(4.40)

The objective maximizes the duration of the idle segment, generating long idle segments to
accommodate other cluster schedules.

4.5 Experimental Results

This Section presents several experimental results, evaluating our schedule integration frame-
work. First, a scalability analysis comparing our framework with an ILP approach which gener-
ates schedules from the scratch is presented. Second, we analyze the feasibility of the schedule
integration if a minimal end-to-end delay optimization is applied, and discuss drawbacks of
schedule integration. Finally, an evaluation of the metrics for optimizing the cluster schedules
is presented. The schedule synthesis has been carried out on an Intel i7 3.4GHz with 16GB
RAM. We use Microsoft’s Z3 version 4.3.0 as SMT solver for our framework [MB08]. For
the schedule integration, we consider each application as an individual cluster independent of
the initial cluster size. The ILP approach is based on the formulation in Section 3.2. We use
CPLEX in version 12.6 as ILP solver [ILO]. Note that the schedule is obtained at design time
such that runtimes of several minutes are still acceptable.

4.5.1 Scalability Analysis for Schedule Integration

To evaluate the scalability of our framework, we compare its runtime with the runtime of the
ILP from Section 3.2. For our framework we also include the runtime for generating subsystem
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Figure 4.11: Runtime comparison of our Schedule Integration framework with an ILP approach
for 1000 synthetic testcases. To improve legibility, the test cases are grouped by their average
process number.

schedules. We have generated 1000 synthetic test cases with different properties. Starting
from a small architecture, consisting of three ECUs connected by an Ethernet bus, we add
randomly generated applications with varying periods and task execution-times to the system3.
The utilization of the ECUs is about 50 %. For each 15 tasks an additional ECU is added to
the system. Once the system consists of more than 10 ECUs, we introduce a second domain
that also communicates through an Ethernet bus. The ECUs are evenly distributed between the
domains and one ECU serves as central gateway. For this case study, we have selected a cluster
size of 5 applications. These highly heterogeneous test cases allow to evaluate the influence of
various properties, such as the number of tasks, the number of resources and domains. For this
scalability analysis we omit concurrent message transmission and assume only one message
might be transmitted on a bus at a time instant.

For the scalability analysis, we have not defined an optimization metric for the cluster sched-
ule as well as the ILP approach, thus, the schedule synthesis terminates once the first feasible
solution is found. For the schedule integration, we have selected a flexible end-to-end delay.

3The application task graphs are generated using OPENDSE [Ope] which uses an implementation of Task
Graphs For Free (TGFF) [DRW98] to generate applications.
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Hence, the schedule integration might increase the end-to-end delay of the initial cluster sched-
ule. Figure 4.11 illustrates the results of the scalability analysis. The results show that for small
test cases the schedule integration is outperformed by the ILP approach, as schedule integration
introduces a certain overhead compared to generating a schedule from the scratch. However,
with an increasing problem size the ILP is unable to find a solution for several test cases within
1 hour, while our framework always finds a solution in less than 70 seconds in average. In
particular, the introduction of the second domain leads to a clear increase in the runtime of the
ILP, while the additional domain does not have a significant effect on the schedule integration.
The reason for this runtime increase is the higher complexity, as all clusters containing pro-
cesses mapped to multiple domains share the same gateway. Thus, the scheduling problem is
stronger constrained compared to a single domain architecture. Schedule integration handles
these strongly constrained problems better than the ILP. For 4.9 % of the test cases a conflict
refinement was needed for the schedule integration.

The results of this scalability analysis clearly show the potential of schedule integration to
efficiently address the problem of scalability for holistic scheduling of time-triggered systems.

4.5.2 Feasibility Analysis for Schedule Integration

The scalability analysis has shown the advantages of the divide-and-conquer approach applied
for schedule integration. However, as cluster schedules are generated individually, in several
cases it might be necessary to apply a conflict refinement which adapts the initial cluster sched-
ule. In particular, if the end-to-end delay is fixed, schedule integration might be unable to solve
schedule synthesis problems that can be solved if the system schedule is generated from the
scratch. To analyze this drawback, in the following, we perform a feasibility analysis. The case
study consists of the same 1000 synthetic test cases as for the scalability analysis. However,
here we consider each application as an individual cluster. For the feasibility analysis, we have
defined the following objective minimizing the end-to-end delay:
∀a ∈ Ad, φ ∈ Φ(Ea) :

θa ≥ ∑
p∈φ

τp + ∑
(p,p̃)∈φ

w(p,p̃) (4.41)

min

(
∑

a∈Ad

θa

)
(4.42)

The objective minimizes the overall end-to-end delay of all applications. It is applied for
generating both the cluster schedules as well as to generate a schedule from the scratch (see
Section 3.2). Thus, for our framework we generate a schedule with a minimal end-to-end delay
for each application individually and try to integrate these schedules into a global schedule. The
end-to-end delay determined for the cluster schedule is fixed and might not be extended during
conflict refinement.
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Figure 4.12: Analysis of runtime and feasibility of our Schedule Integration framework with
an ILP approach if an objective to minimize the end-to-end delay is defined.
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Figure 4.12 shows the results for the feasibility analysis. The runtime analysis shows that
the ILP reaches the time-out of 1 hour already for test cases consisting of 65 processes. While
the ILP is able to determine a feasible solution within this time-frame, the obtained solutions
might not be optimal. By contrast, schedule integration terminates the schedule synthesis in less
than 30 seconds in average for all problem sizes. This is due to the limited flexibility during
conflict refinement.

Analyzing the feasibility in Figure 4.12 shows that the schedule integration is only able to
find a solution for 46 %− 88 % of the test cases if the problem only consist of one domain
(up to about 100 processes), while the ILP approach is able to solve 100 % of these test cases.
However, with an increasing problem size and in particular through the introduction of the
second domain, also for the ILP the feasibility is clearly reduced and it is unable to find a
feasible solution for several test cases within the given time frame. For large test-cases our
framework is able to find a solution for various test cases which the ILP is unable to solve within
the time frame of 1 hour. For this cases study, our framework applies a conflict refinement for
more than 38 % of the test cases.

Note that the number of feasible test cases generally decreases for the schedule integration
with a rising number of processes. However, as various parameters are adjusted concurrently
during test case generation, the complexity might differ for some of the test cases. For instance,
the deviations for 45 processes and 78 processes are related to how certain applications are
mapped to the resources.

This case study illustrates the drawbacks of our schedule integration framework. If strict
constraints are defined for each cluster schedule, schedule integration might be unable to find
a feasible solution, while generating a schedule from the scratch is feasible given a sufficiently
long time frame.

4.5.3 Feasibility Analysis for Integrability Metrics

This section analyzes the influence of the cluster structure on schedule integration by evaluating
the metrics proposed in Section 4.4. To evaluate the different metrics, we have generated 1750
synthetic test-cases using the same test case generator as for the scalability analysis. To analyze
the influence of different parameters, for the test cases we alternate not only the number of
processes, but also the maximal utilization of each ECU and the number of processes per ECU.
For this case study, we consider each application as an individual cluster.

To evaluate the integrability metrics, we compare them also with an objective determining a
minimal end-to-end delay as proposed in the feasibility analysis. We have defined the following
objective functions for the ILP to evaluate their influence on the feasibility of test cases:

(1) Minimize the end-to-end delay (see Section 4.5.2).

(2) Maximize the slack usage (see Section 4.4.1).

(3) Optimize the idle time distribution on each resource (see Section 4.4.2).
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Figure 4.13: Feasibility analysis of schedule integration depending on the metrics optimized
during cluster schedule generation for a different utilizations of ECUs.

(4) Objective combining (2) and (3), aiming at an increased variability.

(5) Optimize cumulation of idle time over all resources (see Section 4.4.3).

(6) Objective combining (2), (3) and (5), increasing the variability and the general cluster
integration.

For the objectives combining several metrics, we have selected the same weight for each
metric. For this case study the end-to-end delay for each cluster schedule is fixed, thus, might
not be increased during conflict refinement.

Figure 4.13 shows the percentage of feasible test cases depending on the utilization of ECUs.
The results show that with an increasing utilization, the number of feasible test cases decreases
for all metrics. It can also be seen that objective (1), minimizing the end-to-end delay, is outper-
formed by all other objectives. It suffers in particular from the increased complexity of a higher
utilization, as the tight end-to-end delay bounds limit the variability. Hence, objective (2), max-
imizing the slack usage, shows clearly better results as the variability to integrate schedules is
increased. However, (2) is outperformed by the remaining objectives. Objective (3), evenly
distributing processes, shows especially for a high utilization a good performance, as integrat-
ing cluster schedules is facilitated through the even distribution of the processes. Objective (4),
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Figure 4.14: Feasibility analysis of Schedule Integration depending on the metrics optimized
during cluster schedule generation for different numbers of processes on each ECU. Note that
the utilization of ECUs is the same for all process numbers.

combining (2) and (3), performs particularly well for a utilization of 50 % but suffers from the
poor performance of (2) for a higher utilization. The good performance for 50 % utilization
can be explained by the facilitated cluster integration through the high variability of the cluster
schedules. Overall, objective (5), introducing a maximal idle time over all resources, and (6),
combining all integrability metrics, show the best performance of all metrics. Optimizing the
idle time is especially beneficial for problems with a low utilization, as the created idle times
accommodate additional clusters well. However, also for a high utilization optimizing the idle
time is beneficial, as the idle segments facilitate the integration and aid the conflict refinement.
Objective (6) overall leads to the highest number of feasible test cases.

In addition, Figure 4.14 evaluates the overall feasibility for a varying number of processes
per ECU for the same 1750 test cases. The results show that for the same utilization a low num-
ber of processes with a high execution-time leads to a lower feasibility compared with a high
number of processes with a low execution-time. While these results might seem counterintu-
itive, they verify the outcome of the scalability and feasibility analysis, indicating that schedule
integration deals well with strongly constrained problems if the flexibility is high, i.e., in this
case the number of processes on a resource and their offsets. The analysis of the objective func-
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Table 4.1: Analysis of influence of applied objective function for cluster scheduling on the
feasibility of the schedule integration.

metric
(1) (2) (3) (4) (5) (6)

Min. e2e Max. sl. Ev. dist. (2)&(3) Cum. idle (2),(3)&(5)

feasible 48.97 % 52.52 % 54.01 % 54.41 % 54.98 % 55.10 %
av.
runtime

11.37 s 25.09 s 28.23 s 31.02 s 36.14 s 34.94 s

tions reflects very similar results as for the evaluation based on the utilization. Objective (4)
shows the best performance for the test cases with a medium difficulty and metric (6) shows the
best overall performance. However, objective (4), combining (2) and (3), is outperformed by
both for 20 processes per ECU. Similarly, objective (5) performs slightly better than (6) for 10
processes per ECU. This indicates that fine-tuning the weights for objectives (4) and (6) would
allow to improve their results.

Table 4.1 gives an overview of the overall feasibility of all applied objective functions and
the average runtime of each approach. The runtime comparison shows that the improved feasi-
bility also leads to an increased runtime for the respective objective function. Note that not all
test cases might be feasible as only for 65.17 % of them at least one of the objective functions
allowed to find a solution. Thus, the actual percentage of feasible test cases might be higher for
all metrics.

These results have shown the general potential of the different integrability metrics, but
also indicate the need for an extensive analysis of different parameters to further improve the
integrability.

4.6 Design Flow: Enabling Highly Modular Architectures
Based on Schedule Integration

The schedule integration framework presented in this chapter addresses the problem of integrat-
ing individually designed subsystem schedules into a global schedule. This section proposes
an extension of our schedule integration framework with a data-centric description to enable
highly modular architectures. A data-centric description allows to decouple the design process
of individual software components, as functionality can be implemented independently of the
underlying hardware architecture. This design approach is in accordance with the AUTOSAR
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architecture which aims at abstracting the underlying hardware and provides common interfaces
(see Section 1.3.2). In the following, first the subsystem design is discussed in more detail, be-
fore a design flow from an individual software component to a fully configured E/E-architecture
is presented.

4.6.1 Data-centric Design

A data-centric description specifies application requirements together with interfaces defined
by topics. This helps to decouple the development process of individual software components
and forms the basis for a modular system that is highly composable [PCFW05]. In a data-
centric system, the supported and required properties of each software component are described
explicitly. This includes intrinsic properties like the processing time, memory footprint, exe-
cution period, and security level as well as extrinsic properties like the required and provided
data with quality-of-service descriptions or end-to-end delay requirements. Either a design tool
or an appropriate middleware is responsible to find a suitable matching between the different
property sets and to calculate a configuration for the whole system, including schedules and
routing of messages. The benefit of this approach is that developers can focus on the proper-
ties of local software components and do not have to consider the global interaction between
them. Each application can have a set of publishers for sending data and a set of subscribers
for receiving data. Each publisher/subscriber is associated with a certain topic which exactly
defines the type of data and a name, e.g., {Steering Wheel Angle} ( ) might have the type {de-
gree [rad]}. The system designer abstracts any hardware-specific functionality, like reading
sensor data through an interface defined by an explicit topic. This has the major advantage that
hardware components or applications can easily be replaced. Figure 4.15 shows the resulting
task graph for a steer-by-wire application after the links between the application tasks and the
sensor and actuator tasks have been established.

While AUTOSAR does not directly follow a data-centric approach, topics might be realized
in a more rigid and simple form using ports. Links and communication paths are then statically
configured during the system design.

4.6.2 Data-centric Design Flow

The proposed design flow is illustrated in Figure 4.16. It is based on a data-centric design and
a time-triggered architecture. (1) The application developer implements software components
independently of the hardware platform of deployment. Interfaces to other applications are de-
fined by topics, clearly specifying the required or provided data. (2) To integrate a data-centric
application, links between publishers (e.g. sensor task) and subscribers (e.g. computation task)
are established, obtaining the final task graphs. To access sensor data or control actuators,
the system designer implements interfaces which applications might subscribe to depending on
their topic. (3) As tasks abstracting hardware peripherals are explicitly bound to a particular
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Figure 4.15: Exemplary illustration of a data-centric steer-by-wire application. The application
subscribes to two sensor topics ( , ) to calculate the steering angle published to the actuator
topic ( M ). An indicator topic ( ) allows indicating errors. The application tasks tc and tm only
have data but no hardware dependencies.

hardware resource, an implicit task mapping is given. For applications distributed over sev-
eral network nodes, additional messages are introduced if required. The resulting specification
defines all process properties and resource mappings required to apply a schedule synthesis.
(4) An application schedule is created, specifying the exact starting times for all tasks and mes-
sages. For this schedule synthesis, the approach presented in Section 3.2 is applied. Depending
on the application requirements, an optimization objective might be defined for a minimal end-
to-end delay, the control performance [GLSC12], or the integrability to ease the subsequent
schedule integration (Section 4.4). (5) The schedule integration approach presented in this
chapter is applied to integrate the individual subsystem schedules into a global schedule. It
allows to add or update application or subsystem schedules in an iterative process, measurably
reducing the integration efforts.

AUTOSAR allows to apply this design-flow for the design of current automotive E/E-
architectures, as it provides a homogeneous software platform and abstracts the communication
between participants for the application. A data-centric description might therefore extend the
current AUTOSAR interfaces and ports. After our framework was applied to synthesize the
system schedule, a data-centric design-tool might then generate AUTOSAR configuration files
defining the communication paths and schedules. This would allow to integrate the proposed
design flow using schedule integration in an AUTOSAR-based system design with the goal of
a static configuration.

In addition, with an increasing number of software functions, updating and maintaining
software in the field will gain importance in the next years. Furthermore, the introduction of an
extended in-vehicle appstore, allowing to update and install also safety-critical functionality, is a
likely scenario. The proposed data-centric design flow would then allow to efficiently integrate
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Figure 4.16: Design flow from a data-centric application definition to a fully configured system.
Schedule integration is applied to integrate the individual application schedules in a global
system schedule.
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new functionality in the system, giving real-time guarantees if a valid configuration can be
found. The basis for such a flexible architecture forms a data-centric middleware. For instance,
the middleware SOME/IP based on Ethernet developed by BMW [Völ13], or the middleware
CHROMOSOME [BGG+14] already provide publish-and-subscribe mechanisms at runtime and
might form the basis for a flexible architecture where applications can be easily added and
updated.

4.7 Summary

In this chapter we presented a schedule integration framework enabling a modular schedule
synthesis. Schedule integration allows to integrate independently developed application or sub-
system schedules into a global system schedule. We proposed a multi-stage approach which
first applies an SMT-based integration of subsystem schedules without altering the initial struc-
ture. If this basic integration fails, we apply a conflict refinement which adapts conflicting
subsystem schedules if required. A partitioning metric allows to reduce the complexity of the
conflict refinement by defining suitable subproblems that might be solved individually. The
framework supports holistic scheduling for E/E-architectures communicating with Automotive
Ethernet and FlexRay. In addition, three integrability metrics to optimize subsystem schedules
for schedule integration were presented.

The results, consisting of a scalability and a feasibility analysis showed the benefits of sched-
ule integration. In particular, the very good scalability of schedule integration in comparison
to a conventional ILP approach generating the schedule from the scratch was shown. This al-
lows to apply our schedule integration framework also to large problems where conventional
schedule synthesis approaches become intractable. Furthermore, the results show that schedule
synthesis is suitable for a modular design approach where subsystem schedules can be generated
independent of each other.

In this chapter, we assumed that all subsystem schedules were developed completely in-
dependent of each other, i.e., conflicting cluster schedules are likely. For instance, the results
indicated that fixing the end-to-end delay for subsystem schedules might reduce the feasibility
of schedule integration. However, the results also showed that for large test cases this feasibil-
ity still noticeably exceeds the results obtained by the ILP if a maximal runtime is defined. To
improve the integrability of clusters, we therefore proposed several integrability metrics. The
results showed that the metrics are suitable to improve the integrability of cluster schedules
and help to increase the applicability of schedule integration. Optimizing the weights for each
metric if several are combined to one objective, might allow to further improve these results.

In summary, our schedule integration framework has shown that it (1) allows to clearly
improve the scalability of mathematical approaches for holistic scheduling, and (2) enables a
modular schedule synthesis in accordance with the design approach of automotive systems.
Schedule integration is therefore well-suited to enable highly composable architectures as envi-
sioned by AUTOSAR. To further improve its applicability, an important line of future work is
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an extensive analysis selecting suitable weights for the integrability metrics and to incorporate
available knowledge about other clusters in the cluster schedule generation.

In the following chapter, a variant-aware schedule synthesis is proposed which relies on
schedule integration to improve the scalability. We also present a partitioning heuristic which
allows to select suitable clusters.
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The previous chapter has investigated a modular schedule synthesis using schedule integration.
In this chapter we investigate another aspect of schedule synthesis, generating schedules for
multiple system variants. In this context, schedule integration is applied to improve the scala-
bility of the variant-aware schedule synthesis presented in the following.

Today, variant management is one of the key challenges that car manufacturers face. In the
automotive industry, all mass production manufacturers provide their customers with various
car models and a large variety of customization options. For instance, AUDI currently offers
49 different car models and this number will increase to 60 by 2020, each offering hundreds
of configuration options [Cap13]. Handling all these variants is a significant challenge both
during design and manufacturing. Efficient variant management not only reduces development
cost, it also allows to manufacture different models at one assembly line and is therefore a
significant economical and competitive factor. While concepts like the Modular Transverse
Matrix of Volkswagen Group exist in industry [Lup12], techniques for variant management of
E/E-architectures have not been systematically studied so far.

This chapter addresses the problem of a variant-aware schedule synthesis. We assume
a time-triggered architecture as presented in Chapter 2, applying synchronous time-triggered
scheduling. Figure 5.1 illustrates the architectures of three vehicle variants, e.g., versions for a
petrol, a diesel and a battery electric vehicle. All three variants share common applications, e.g.,
Anti-lock Braking System (ABS), but also have exclusive applications such as Adaptive Cruise
Control, Lane Assist or the motor control for different engine types. To generate system config-
urations for these variants, the manufacturer has three options. (1) Determining an independent
configuration and schedule for each variant, (2) defining a single global schedule for all vari-
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Figure 5.1: Hardware architectures of three different variants, consisting of a different number
of ECUs connected over a bus.

ants, and (3) multi-schedule synthesis, as proposed here. Option (1) suffers from a significantly
increased testing and integration effort as common applications are not variant-independent and
have to be tested individually for each variant. As opposed to this, options (2) and (3) allow to
test application configurations independently of the variant they are deployed in and common
applications have to be tested only once. Option (2) leads to a significant overestimation of
resource requirements as exclusive applications, like the motor control for a petrol and a diesel
engine, considered in the global schedule, will not be deployed in the same variant and reserved
resources remain unused. By contrast, option (3) generates an individual schedule for each
variant but contains an identical schedule for tasks and messages common to multiple variants.
This leads to an efficient usage of available resources, while the testing and integration efforts
are reduced. For instance, the configuration of a diagnosis tool might be reused for all variants,
or the integration of ECUs is facilitated as the configuration has to be done only once [DH14].

The significance of a variant-aware schedule synthesis becomes apparent when looking at
the design process of automotive architectures. The basic system schedule is defined at an early
design stage and the applications are then developed independently. Here, our multi-schedule
synthesis can particularly reduce the impact of a cost-intensive and error-prone integration test-
ing, which verifies the function, performance and reliability of the entire system [SN13], as
each application is variant-independent and can be tested individually. During the integration,
the time-triggered multi-schedule then ensures that applications do not interfere in different
variants. As a result, the testing and integration effort is reduced, leading to a reduction of the
overall design time of the vehicle.

Methodology. Figure 5.2 illustrates the task graphs of the three vehicle variants from Figure 5.1,
sharing common tasks and messages but differing in the underlying architecture. We propose
a schedule synthesis approach generating a time-triggered multi-schedule that defines release-
times for periodic tasks and messages, as illustrated in Figure 5.3. Our framework determines
common parts in multiple variants and defines an identical schedule for this commonality. For
instance, for m1 and t2, common to all variants, the same schedule is assigned. As the com-
monality between all variant specifications might be low, we propose an incremental approach
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Figure 5.2: Task graphs including a task to resource mapping for three variants. Variant spec-
ification d1 describes the task graph of the full system using four ECUs, while d2 and d3 are
variants utilizing three and two ECUs, respectively. For instance, d3 only supports application
a1, but not a2.

which also considers commonality in a subset of variants, e.g., t4, m3, and t5 shared by variants
d1 and d2.

Related work. The problem of defining multiple configurations for a system has been addressed
in the area of multi-mode scheduling, however, with a different objective. While multi-mode ap-
proaches focus on optimizing the switching of the system configuration of a single system, often
with the goal of minimizing the transmission delays between modes, e.g., [NNS+11, ACPF14],
we address the problem of determining variant schedules with minimal differences for multiple
architectures. Furthermore, several approaches have been proposed for concurrent scheduling
of multiple graph-based applications, e.g., [IO98, ZS06]. While these approaches address a sim-
ilar problem of merging different applications into a single task graph, the goal is to generate a
single schedule instead of multiple variant schedules. Furthermore, despite various tools being
available to assist in the variant management in the automotive domain [pur06, Vec08, Men10],
the problem of a comprehensive and holistic variant management still remains open. Despite its
importance for the industry, variant management has gained only little attention in the scientific
community. For instance, in [BD07] a graph-based representation to enable the use of graph
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Figure 5.3: A multi-schedule defines the same schedule for tasks and messages shared by the
three variants d1,d2,d3 defined in Figure 5.2

theoretic analysis tools is presented, while [GGTL14] proposes a multi-variant based DSE. Fi-
nally, a variant-aware schedule synthesis was first addressed in [DH14]. The authors propose
an approach specific to message scheduling for the FlexRay bus. By contrast, the work at hand
proposes a holistic approach, taking both tasks and messages into account during schedule syn-
thesis. A detailed survey of existing work is given in Section 5.1.

Contributions. This chapter proposes a framework for multi-schedule synthesis for variant
management. Multi-schedule synthesis involves several challenges, viz., the determination of
common parts in a set of variant schedules, the generation of a common schedule for these parts,
and the integration of uncommon parts. In addition, the complexity of the schedule synthesis is
clearly increased, as multiple variant schedules have to be scheduled concurrently. We therefore
propose an incremental approach which first determines a multi-schedule for common parts in
all variants, before addressing commonality in variant subsets, extending the multi-schedule. A
graph-based approach determines common parts in variants and an SMT approach is applied
for schedule synthesis. To improve the scalability, we also propose a partitioning heuristic us-
ing graph-based metrics to divide the schedule synthesis problem into smaller problems. This
approach is in accordance with the organization of automotive architectures in domains, i.e.,
partitions, corresponding to the functionality such as chassis or drivetrain applications (see Sec-
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tion 1.1). Schedule integration (see Chapter 4) is applied to integrate the partition schedules
in a common schedule. The focus here lies on non-preemptive time-triggered scheduling as
we exploit the temporal composability of time-triggered architectures [KB03, ATD+09] for the
incremental extension and the partitioning. Our framework does not aim at obtaining glob-
ally optimal schedules, but rather at determining variant schedules with minimal differences,
satisfying predefined maximum end-to-end delays. Multi-schedule synthesis minimizes the dif-
ferences between different variants and therefore reduces the testing and integration efforts, as
it only has to be done once, while using available resources efficiently.

In summary, our contributions are, (1) an incremental multi-schedule approach generating
time-triggered variant schedules that consider commonality, and (2) a heuristic partitioning of
the schedule synthesis problem which enables a divide-and-conquer approach to significantly
reduce the runtime.

Outline. The rest of the chapter is structured as follows. The next section discusses related
work. Section 5.2 gives a high-level introduction to our framework. Section 5.3 presents im-
plementation details of our multi-schedule synthesis and the partitioning metric. Finally, Sec-
tion 5.4 evaluates our framework with three case studies and an automotive lab setup.

5.1 Related Work

In this chapter, we address the problem of multi-schedule synthesis, generating individual vari-
ant schedules while assigning the same release-times to shared tasks and messages. We would
like to distinguish our approach from work which has used the terms multi-schedule genera-
tion and multi-schedule synthesis in a different way. For instance, [DP94] proposes a "multi-
schedule approach" in the context of digital circuit design, where the problem of a premature
pruning of the design space using a single schedule is overcome by generating and synthesizing
multiple optimal schedules. However, as that approach tries to find an optimal solution for one
given specification, it is not comparable with our work.

Variant management for automotive E/E-architectures is highly important for the industry,
being reflected in the increasing number of industrial tools. The growing product complexity
and model diversity give variant management a prominent position within the software de-
velopment process where features describe the commonalities and variabilities of a product
line [pur06, Men10] and complex calibration processes are structured [Vec08]. Although, cur-
rently, these commercial tools do not address the schedule synthesis problem of time-triggered
schedules, our techniques could be incorporated into such tools in the future. In [BD07] the au-
thors propose to transfer variants from the multiple-domain matrix representation into a graph
representation in order to apply graph theoretic analysis tools to variant management. In the
context of E/E-architectures, our framework follows this approach by using graph-based spec-
ification models to generate variant schedules. One recently published approach proposes a
multi-variant-based DSE [GGTL14]. Based on a 0-1 ILP, the authors develop architectures for
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all defined variants as well as the overall architecture selection, called Baukasten, but do not
address the schedule synthesis problem itself. Our approach, on the other hand, assumes that
the architectures are given and applies the multi-schedule synthesis on them. Hence, as both
works cover different stages of the E/E-architecture design, we cannot directly compare them.
Nevertheless, the system models of functional variants might be used as input for our multi-
schedule framework in order to generate suitable variant schedules. To this effect, the approach
in [GGTL14] can be regarded as a form of preparatory work for our multi-schedule synthesis.

Several approaches have been proposed to improve the extensibility of E/E-architectures,
hence, minimizing changes necessary to add additional functionality or update the current soft-
ware. For instance, [ZYN+10] presents a task allocation and priority assignment approach for
event-triggered scheduling which optimizes the system based on potential changes, i.e., the in-
crease of task execution-times. Similarly, [EB10] presents a task allocation approach which
minimizes the changes required in the future, e.g., changing a task priority, based on potential
change scenarios. An upgrading algorithm allows to extend the initial system configuration
with a minimal number of changes. While defining different variants as scenarios would the-
oretically make these approaches applicable for variant-management, the approaches aim at
optimizing a single system instead of finding an optimal solution for multiple system variants.
Consequently, approaches optimizing the extensibility of a single system suffer from an in-
ferior resource utilization compared to a variant-aware approach optimizing multiple variants
concurrently.

In the area of hierarchical scheduling for component-based systems [DB05, SL08,
KWL+12] and the related area of partition scheduling [LKY+00, TSP11] various research has
been carried out on modular systems. The basic idea is to partition the available resources into
suitable runtime budgets or partitions which are then exclusively assigned to a subsystem. If a
time-triggered partition scheduler is applied, the resource is then partitioned into time-windows
during which one subsystem has exclusive access to the resource. In each component or parti-
tion an individual scheduler is responsible to determine the task execution. Thus, the component
abstracts the resource requirements of the underlying tasks and the approaches are concerned
with determining suitable timing requirements for each component. This would make this body
of work theoretically applicable for a variant-aware schedule synthesis, i.e., by defining an up-
per bound for the timing requirements of different component variants. Based on these upper
bound requirements a single global schedule might then be created in which the variant specific
components are deployed. However, similar to a global schedule where the tasks and mes-
sages of all variants are scheduled in a single schedule, this would lead to an overestimation
of the resource requirements. Instead, if approaches for component-based design and parti-
tion scheduling are used to determine timing requirements for different variants, the proposed
multi-schedule synthesis framework might be extended to schedule event-triggered tasks and
messages.

In the area of multi-mode scheduling the problem of generating multiple configurations for
a system has been addressed. Here, the focus generally lies on optimizing the switching of
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the system configuration, often with the goal of reducing the mode change transition latency,
i.e., the settling time during the switching from one application mode to another, and the cor-
responding timing constraint guarantees. For instance, in [SPT09] the authors propose a multi-
mode timing analysis method for single-processor systems using Fixed Priority (FP) and EDF
scheduling, whereas in [NGA09] two mode transition protocols for preemptive FP scheduling
on multiprocessors are presented. However, these approaches focus on event-triggered systems
and do not explicitly consider a message-based communication and are therefore not compa-
rable with our work. An algorithm to determine an upper bound for mode change transition
latencies for communication-based applications is presented in [NNS+11], targeting a static
preemptive priority-based scheduling and asynchronous mode change protocols. By contrast,
the authors in [ACPF14] use TDMA for state-based scheduling. More precisely, a workflow for
generating communication schedules with optimized average mode-change delays is presented.
However, the paper addresses the problem of minimizing transition times, while our approach
aims at the minimization of differences between variant schedules addressing a very different
problem.

Besides this, there exist several approaches dealing with the concurrent scheduling of mul-
tiple graph-based applications in a heterogeneous distributed system. In [ZS06] the authors
present four methods to merge different Directed Acyclic Graphs (DAGs) into one composite
DAG in order to enable the use of any conventional single-graph scheduling algorithm. Thereby,
the objective is to minimize the overall makespan (i.e., the total length of the schedule) and
achieve fairness in terms of an equal delay for all DAGs due to a shared utilization of resources.
In contrast to this, in [IO98] a dynamic DAG scheduling framework for multiple applications
in a distributed environment is presented. Here, the scheduling is done in a decentralized man-
ner, with each application making its own scheduling decisions based on the estimated network
loads. Although, these approaches might perform well for the actual scheduling of multiple
graph-based applications they do not consider possible shared processes among the different
DAGs. To the best of our knowledge, our approach is the first one to merge common tasks and
messages of different DAGs with the objective to generate individual variant schedules with
minimal differences between them.

The proposed multi-schedule framework applies a holistic schedule synthesis for syn-
chronous time-triggered scheduling which has been discussed in detail in the introduction (see
Section 1.7) and the previous chapter (see Section 4.1). All these approaches address the prob-
lem of generating a single schedule for a system. Our framework can therefore be seen as an
extension of these approaches, generating individual variant schedules using a multi-schedule.

Finally, a first approach for a variant-aware schedule synthesis was presented in [DH14].
The paper addresses the problem of multi-schedule synthesis for time-triggered communication
on the FlexRay bus. The focus lies on the message transmission, while in the work at hand we
apply a holistic approach for concurrent task and message scheduling. A holistic approach intro-
duces various additional challenges, e.g., task and message relations and an increased problem
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complexity. Consequently, we have selected a very different technique than [DH14], relying on
a graph-based representation and an iterative SMT approach.

5.2 Framework

In the following, we first introduce the multi-scheduling problem formally, before presenting
our multi-schedule framework.

5.2.1 Problem Description

This chapter addresses the problem of multi-schedule synthesis for time-triggered systems
which determines individual schedules for a set of variants that share the same schedule for
common parts. Figure 5.3 (page 116) illustrates a multi-schedule, defining an identical sched-
ule for shared tasks and messages, e.g., for m1 and t2 common to all variants. Furthermore, it
considers commonality within a subset of variants, e.g., t′1 shared by variants d2 and d3 or t4,
m3, and t5 shared by d1 and d2. The objective of the multi-schedule synthesis is to minimize
the differences between variant schedules while satisfying all maximum end-to-end delays. To
determine variants of a single application, we assume that the application designer has already
selected a suitable level of granularity, such that common functionality is implemented in a
common task rather than being included in different tasks. Due to the distributed nature of
automotive E/E-architectures, this is generally the case.

5.2.2 Multi-Schedule Synthesis Framework

Our framework is based on an incremental schedule synthesis. (1) Common tasks and messages
are determined. (2) A comprehensive task graph is generated, representing an extended task
graph containing the processes of all variants with data-dependencies to the common processes.
(3) A multi-schedule is determined. These steps are repeated for all variant subsets, extending
the multi-schedule.

Figure 5.4 illustrates the first two iterations of the multi-schedule synthesis for the three
variants in Figure 5.2 (page 115). We first determine shared processes for all variants as illus-
trated in Figure 5.4(a). Based on this common subset, we define a comprehensive task graph.
A comprehensive task graph contains all processes and their data-dependencies of applications
that share processes, e.g., the comprehensive task graph in Figure 5.4(b) not only contains the
shared processes m1 and t2, but also the exclusive processes t1 and t′1, as well as t3 and t′3.
Hence, a comprehensive task graph represents a set of variants in a single task graph. Based on
this representation, we determine a time-triggered multi-schedule as illustrated in Figure 5.4(c).
In the second iteration, we extend this multi-schedule with applications shared by d1 and d2.
We first determine common parts as illustrated in Figure 5.4(d), only taking processes into ac-
count which have not been scheduled yet. After a comprehensive task graph was created (Fig-
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Figure 5.4: First two iterations of a multi-schedule synthesis for variants from Figure 5.2.
Each iteration (1) determines shared processes (a,d), (2) extends these to comprehensive task
graphs (b,e), (3) generates a multi-schedule for the comprehensive task graph (c,f). Grayed out
elements represent parts which have already been handled in a previous iteration. For schedule
synthesis these elements are taken into account when the schedule is generated.
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ure 5.4(e)), we extend our multi-schedule as illustrated in Figure 5.4(f). The process scheduling
determined in the previous iteration, illustrated as a grayed out schedule, is taken into account
in the form of additional constraints. This iterative process is continued until all processes
have been scheduled. Finally, the obtained multi-schedule is converted into individual variant
schedules.

Partitioning. Automotive networks are organized in domains, allocating applications within
one domain to common ECUs. Hence, applications of different domains only share few re-
sources. To exploit this property, we propose a partitioning-based method to increase the scala-
bility of our framework. Partitioning a task graph and solving the scheduling problem for each
generated subgraph is possible as re-integrating the individual solutions to a multi-schedule can
be done efficiently using schedule integration as shown in the previous chapter. We therefore
propose a partitioning approach to generate suitable subproblems for multi-schedule synthe-
sis. Note that for small subsystems no partitioning might be necessary and the entire system is
considered as a single partition.

Framework. The framework iteratively schedules subsets of variants with common parts.
For each iteration, it first determines a comprehensive task graph before calculating a multi-
schedule. We apply a partitioning heuristic which splits the comprehensive task graph into
suitable subgraphs1. The schedule synthesis is then applied to each subgraph independently. It
calculates a start-time for each process, extending the multi-schedule of previous iterations. As
iterative scheduling might lead to conflicts, we also present a conflict refinement. It determines
already scheduled applications, causing a conflict, and adds these applications to the currently
processed subgraph to adjust the initial schedule, thus, resolving the conflict. After all sub-
graphs have been scheduled, schedule integration combines the subschedules in each iteration.
Once all processes have been scheduled, the multi-schedule is converted into individual variant
schedules. Figure 5.5 illustrates the flow chart of our framework. For implementation details
and a description of the notation, refer to the indicated sections.

Trade-offs. The goal of multi-schedule synthesis is to minimize the differences between vari-
ants, consequently reducing costs through a reduced testing and integration effort. However,
while generating individual schedules allows to optimize the application performance for each
variant, multi-schedule synthesis might lead to suboptimal performance due to additional con-
straints for the commonality between variants. Our framework ensures that all end-to-end re-
quirements are fulfilled, thus, guarantees the correct functionality of applications while not
guaranteeing optimal performance. This is in accordance with the design approach in the auto-
motive industry where a minimal cost implementation fulfilling all requirements is generally the

1 Instead of applying the partitioning for each iteration, the multi-schedule synthesis might also be applied
for each domain/partition individually before integrating the final multi-schedules into a global multi-schedule.
However, as the number of variants generally clearly exceeds the number of domains, to improve scalability, we
apply the partitioning of the whole system for each iteration.
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Figure 5.5: Flow chart of multi-schedule synthesis framework. Individual schedules are iter-
atively determined for a set of variants. The framework first determines a multi-schedule for
shared processes and extends this schedule iteratively with remaining processes. A conflict
refinement resolves infeasibilities with schedules from previous iterations.

goal. However, in some cases, obtaining a multi-schedule might not be feasible while a solution
for generating each variant schedule individually is possible. In this case, our framework could
provide information about conflicting parameters to the system designer, serving as guidelines
on how to adapt the system specification, e.g., through adjusting the number of variants. Note
that a single global schedule deployed in all variants not only includes all common parts in the
schedule but also the uncommon parts of all variants. Consequently, if a single global schedule
exists, also multi-schedule synthesis is applicable but not vice versa.

5.3 Multi-Schedule Synthesis

This section proposes the multi-schedule framework, as illustrated in Figure 5.5. We first intro-
duce the outer-loop of our framework which incrementally iterates over the subsets. Second, we
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present an algorithm to determine comprehensive task graphs, as introduced in Section 5.2.2.
Third, we propose a partitioning approach to improve the scalability of our framework. Finally,
an SMT-based scheduling approach is presented, followed by our conflict refinement approach.
Note that multi-schedule synthesis is strongly constrained and backtracking is required. As
heuristic approaches struggle with these late decisions we have selected an SMT-based approach
that allows to efficiently solve the scheduling problem.

5.3.1 Methodology

The algorithm iteratively constructs a multi-schedule, starting with scheduling applications
sharing processes for all variants. It then iterates over all subsets of variants from larger to
smaller subsets, scheduling applications which have not been considered in previous iterations.
This leads to a quickly increasing number of iterations with the number of variants. However,
the complexity of the algorithm is dominated by the SMT-based schedule synthesis which is
only applied for processes that have not been scheduled yet. While schedule synthesis might
become intractable, efficient solvers such as Z3 [MB08] generally allow to solve moderate size
problems in a reasonable amount of time. Hence, the reduction of the problem size for the
scheduling algorithm through this iterative approach clearly out-weights any runtime increase.
Our algorithm is based on the following parameters:

• d ∈ D - variant specification describing a task graph Gd = (Pd, Ed), representing the
processes as vertices Pd and their data-dependencies as edges Ed. D denotes a set of all
variant specifications. Described in detail in Definition 2.1.4.

• Gλ - comprehensive task graph Gλ = (Pλ, Eλ), describing the relations of different
variants to shared tasks, as illustrated in Figure 5.4(b) (page 121).

• β(p) : P → R - multi-schedule defining the start-times of processes. It returns the
process start-time sp for a process p ∈ P, see Figure 5.4(c) (page 121).

Algorithm 5.1 outlines the outer-loop for our multi-schedule synthesis. The algorithm first
initializes an empty comprehensive task graph Gλ′ and an empty schedule β (line 1-2), which
are iteratively filled with processes that have been scheduled, and their assigned start-times,
respectively. The algorithm iterates through all subsets D̃ ⊆ D, starting from the complete set
with |D| elements down to each single variant (line 3-4). Processes which have already been
scheduled are removed from D̃ (line 5), before a comprehensive task graph is generated (line 6).
The comprehensive task graph Gλ abstracts the set of variants, containing all applications with
shared processes. If a comprehensive task graph exists (line 7), a multi-schedule is generated,
and β and Gλ′ are updated (lines 8-9). Figure 5.4 (page 121) illustrates two iterations with this
algorithm.

The functions getComprehensiveTaskGraph(D̃), determining a comprehensive task
graph, and generateMultiSchedule(Gλ, Gλ′ , β), determining a multi-schedule, are described
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Algorithm 5.1: Outer-loop of multi-schedule synthesis
Input: set of variant specifications d ∈ D
Output: multi-schedule β

// initialize multi-schedule β, and comprehensive task graph for

scheduled applications Gλ′:

1 β = ∅
2 Gλ′ = (∅, ∅)

// iterate through all variant subsets D̃:

3 for k ∈ {|D|, .., 1} do
4 for each D̃ ⊆ D and |D̃| = k do

// only consider processes which have not been scheduled yet and

calculate current comprehensive task graph Gλ:

5 D̃ = {d̃ := Gd̃ = (Pd \ Pλ′ , Ed \ Eλ′)|d ∈ D̃}
6 Gλ(Pλ, Eλ) = getComprehensiveTaskGraph(D̃)

7 if Pλ 6= ∅ then
// determine multi-schedule β and update Gλ′:

8 β = generateMultiSchedule(Gλ, Gλ′ , β)

9 Gλ′ = (Pλ′ ∪ Pλ, Eλ′ ∪ Eλ)

10 end
11 end
12 end

in detail in Sections 5.3.2 and 5.3.3-5.3.5, respectively. Note that if none of the variants shares
any commonality with another variant, an individual schedule is created for each variant.

5.3.2 Determine Comprehensive Task Graph

This section proposes an algorithm to determine a comprehensive task graph. We define a
comprehensive task graph as a task graph containing all vertices and edges of applications
sharing a subgraph. Our algorithm uses the following additional parameter:

• a ∈ Ad - defines an application with its task graph Ga = (Pa, Ea). An application
represents a weakly connected component of the task graph Gd of specification d (Pa ⊆
Pd, Ea ⊆ Ed), hence all processes p ∈ Pa are connected through a path in the task graph.

Described in detail in Definition 2.1.2.

To determine common subgraphs, usually the maximum common subgraph-isomorphism
problem has to be solved which is known to be NP-hard [Lev73]. However, as our system
model defines tasks and messages using very specific properties including task and message
ids, we apply a significantly more efficient approach using sets.
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Algorithm 5.2: Determine comprehensive task graphs

1 Function getComprehensiveTaskGraph((D̃))
Input: subset of variant specifications D̃ ⊆ D
Output: comprehensive task graph Gλ

// determine processes P̃ common to all variants in D̃:

2 P̃ =
⋂

d̃∈D̃
Pd̃

3 if P̃ 6= ∅ then
// initialize comprehensive task graph Gλ:

4 Gλ = (∅, ∅)

// interate through all applications a of each variant d̃:

5 for d̃ ∈ D̃ do
6 for a ∈ Ad̃ do

// if a contains a process common to all variants in D̃,

add a to Gλ:

7 if Pa ∩ P̃ 6= ∅ then
8 Gλ = (Pλ ∪ Pa, Eλ ∪ Ea)

9 end
10 end
11 end
12 return Gλ

13 else
14 return (∅, ∅)

15 end
16 end

Algorithm 5.2 determines the comprehensive task graph for a set of variants. The algorithm
first determines a common subset P̃ of processes shared by all variants in the subset D̃ (line 2)
(see Figure 5.4(a), page 121). If a common induced subgraph exists (line 3), we initialize an
empty comprehensive task graph Gλ (line 4) which is iteratively extended to the comprehensive
task graph. The algorithm iterates through all variants (line 5), and their applications (line 6),
determining if the application contains processes of the common subset P̃ (line 7). If the appli-
cation shares processes in P̃, it is added to the comprehensive task graph Gλ (line 8). Finally,
the algorithm returns Gλ (line 12), or if no common subset exists, it returns an empty task
graph (line 14). Figure 5.4(b) (page 121) shows the comprehensive task graph Gλ for the three
variants presented earlier. As the comprehensive task graph might contain parts that are not
common to all variants in the current subset, the algorithm also maintains a set specifying the
variants each process is part of.
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Figure 5.6: (a) Automotive Architectures are organized in domains, i.e., partitions, which only
share few resources. (b) To partition the scheduling problem we convert the task graphs into
a graph-based representation where each application a represents a vertex, and for each shared
resource an edge is introduced between two applications.

5.3.3 Partitioning

Before applying our variant-aware schedule synthesis, we apply a graph partitioning heuristic.
It allows to apply a divide-and-conquer approach, scheduling each partition individually before
re-integrating the generated schedules using schedule integration. Figure 5.6(a) illustrates two
domains domain1 and domain2 of an automotive E/E-architecture, consisting of applications
which are mainly executed on different resources, but share ECU r4. Hence, the problem might
be partitioned following this domain-based architecture. As shown in Chapter 4, partitioning of
the problem to reduce the search space has proven beneficial to clearly improve the scalability
of solving time-triggered scheduling problems.

Section 4.3.2 has proposed a partitioning approach to determine suitable partitions for the
conflict refinement during schedule integration. However, while the purpose there was to select
suitable partitions based on the cluster schedules, here we aim at selecting suitable clusters
prior to schedule synthesis. To determine suitable partitions for the comprehensive task graph,
we first introduce a graph-based representation to indicate application relations with regard to
shared resources. We convert the comprehensive task graph Gλ = (Pλ, Eλ) to a representation
GClλ = (AClλ , EClλ) with applications AClλ as vertices and their resource dependencies as
edges. Figure 5.6(b) illustrates such a graph for the applications illustrated in Figure 5.6(a). For
instance, application a2 and a3 execute one task each on ECU r4 and are therefore connected

127



5.3 Multi-Schedule Synthesis

by one edge. Similarly, a1 and a2 share three resources, r2, r3 and bus2, resulting in three
edges. For this example, a partitioning might be done by removing the edge between a2 and
a3, generating two subgraphs. Schedules are then determined for each of the partitions {a1, a2}
and {a3, a4} separately, and the partition schedules are integrated in a second step.

The partitioning is defined as:

Λ = partition(λ)

λ̃ ∈ Λ, Gλ̃ = (Pλ̃, Eλ̃) : Pλ̃ ⊆ Pλ, Eλ̃ ⊆ Eλ

Additionally we introduce the following parameter.

• cl ∈ Clλ - cluster representing a subset of applications of variant specification Gλ as
Graph Gcl = (Acl, Ecl).

Metrics. The partitioning metrics presented in the following are not only limited to domains,
but also determine subclusters within a domain. Our partitioning algorithm applies two metrics,
a cost function evaluating the number of cuts required per application in a partition, and a
balancing of the number of applications between the partitions. Balancing has proven beneficial
in reducing partitions with single applications and leads to a similar processing time for each
partition due to equal numbers of applications. Consequently, we define the balancing metric
as:

µimbalance(Clλ) =
1
|Clλ|

· ∑
cl∈Clλ︸ ︷︷ ︸

average over
all clusters

√√√√√( |Acl|
|AClλ

|
|Clλ|︸ ︷︷ ︸

deviation of |Acl |
from average node
number per cluster

−1

)2

(5.1)

With this metric we want to determine how much the number of nodes per cluster deviates
from a perfectly balanced partitioning where each cl would obtain the same number of appli-
cations |Acl|. Consequently, we first calculate the deviation of the number of vertices in each
cluster compared to the average. Note that we subtract 1 in order to obtain the result of 0 if no
imbalance exists and take the absolute value in case the imbalance calculation would result in
a negative value. Finally, we calculate the average of the imbalance per cluster for the whole
partitioning.

A partition that contains a high number of interlacing edges e = (a, ã) between the sub-
graphs cannot be re-integrated efficiently. Therefore, we want to evaluate the number of cross-
ing edges between partitions. Hence, we first define the function maxcross determining the
maximum number of crossing edges between the subgraph and its adjacent subgraphs.

maxcross(cl) = argmax
|e|

{
|e|
∣∣∣ ai ∈ Acl ∧ aj ∈ Ac̃l

}
for all c̃l ∈ Clλ \ cl (5.2)
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Here, we identify the maximum number of edges where vertices of a cluster are connected
to vertices that are not in this particular cluster. Such edges are considered as crossing edges.
Based on these considerations, we can determine a metric representing the average number of
maximum crossing edges for all partitions in the graph.

µavgcross(Clλ) =
1
|Clλ| ∑

cl∈Clλ

maxcross(cl) (5.3)

Partitioning heuristic. Now that we can evaluate the quality of a graph partition, the actual
algorithm that performs the partitioning, controlled by the two quality metrics, has to be defined.
The graph shall be split such that a minimal imbalance µimbalance(Clλ) is achieved while the
subgraphs have an acceptable number of interlacing edges µavgcross(Clλ):

minimize µimbalance(Clλ) s.t. µavgcross(Clλ) < εcross (5.4)

For this purpose, we apply the efficient polynomial time Girvan-Newman algorithm [GN02]
which determines subgraphs as communities with a higher number of connections between the
vertices by iteratively removing edges from the graph until subgraphs are formed. Here, the
number of removed edges per vertex is the parameter influencing if the initial graph is split at
all, and how many subgraphs are created.

We start with the edge-removal parameter set to 1 and increase the number of removed
edges per vertex by 1 in each iteration. For each iteration we calculate µimbalance(Clλ) and
µavgcross(Clλ) and decide whether the result of the graph partitioning is suitable according to
our metrics. Consequently, we only start to evaluate µimbalance(Clλ) once the first splitting in
the graph has occurred, as an unpartitioned graph is inherently balanced. We only accept a
partition if µavgcross(Clλ) is below a threshold of εcross. As µavgcross(Clλ) is either the same or
increases between two iterations, this metric can result in suggesting that the graph should be
processed as a whole.

As we monitor µimbalance(Clλ) while iterating the number of removed edges, we compare
its value to the result from the previous step. The algorithm is designed to achieve a certain
balance after some iterations, before µimbalance(Clλ) again increases. Hence, we use the last
splitting result before the imbalance in the graph increases.

Preprocessing. So far the proposed partitioning heuristic assumes that domains are also
mapped to separate hardware domains, and hence, that most applications in different domains
do not share resources. However, if multiple domains share the same communication bus, this
is not given anymore and all applications share a common edge, forming a clique. To partition
such graphs, we apply a preprocessing and remove the edges of a shared communication bus
before applying our partitioning heuristic.

Schedule integration. After partitioning the comprehensive task graph to subgraphs, we apply
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the schedule synthesis described in Section 5.3.4 for each subgraph individually. To re-integrate
the individual partition schedules into a global schedule, we apply the schedule integration
approach described in Chapter 4.

5.3.4 Schedule Synthesis

In the following, we present an SMT-based multi-schedule synthesis. Applied to the generated
comprehensive task graph, it schedules applications of multiple variant specifications in par-
allel, generating a multi-schedule as depicted in Figure 5.4(f) (page 121). The multi-schedule
represents all individual variant schedules.

We assume a bus that allows to freely allocate time slots, such as for Automotive Ethernet.
As the focus here is on variant-aware scheduling, we do not explicitly consider a switched
network supporting a concurrent message transmission. However, an extension of the proposed
approach to support a switched Ethernet network is possible (see Sections 3.2.4 and 4.3.3). The
schedule synthesis is based on the following additional parameters:

• p - process, referring to both tasks and messages. Defined in detail in Definition 2.1.1.

• hp - process period, time after which p is repeated.

• τp - execution-time for a task or transmission time for a message.

• r(p) : P → R - returns the predefined process mapping to a resource. The set of
resources R consists of both ECUs and communication buses. Defined in detail in Defi-
nition 2.1.3.

• D(p) : P→ D - returns all variant specifications containing a process p.

• h(p, p̃) = lcm(hp, h p̃) : P → R - returns hyper period of p and p̃ where lcm(·) defines
the least common multiple. Defines period after which the schedule for p and p̃ repeats.

• e = (p, p̃) ∈ E - data-dependency of p̃ from p, defining the process precedence.

• θa ∈ R - deadline of application a. Defines maximum end-to-end delay from all source
to all sink processes.

• φ - path or subgraph from a source to a sink task, e.g., φ = {p1, p2, .., pn}. The processes
must be pairwise connected with an edge e. Defined in detail in Definition 2.2.4.

• Φ(Ea) : E → {Φ} - returns all paths φ of application a. Applies a Depth-first search
algorithm to determine paths [Eve11].

Based on these parameters our schedule synthesis determines a schedule using the following
variables.
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• sp ∈ R - variable for start-time of p.

• fp ∈ R - variable for finish-time of p.

• w(p,p̃) ∈ R - variable for waiting-time between two data-dependent processes p, p̃, de-
fined as the delay between the finish-time of p and start-time of p̃.

• oa ∈ R - variable for application offset, applied to applications scheduled in a previous
iteration.

The following constraints determine a schedule for the comprehensive task graph Gλ.
∀p ∈ Pλ :

0 ≤ sp < hp (5.5)

∀p, p̃ ∈ Pλ, p 6= p̃, D(p) ∩ D( p̃) 6= ∅, r(p) = r( p̃),
i = {0, .., 2·h(p,p̃)

hp
− 1}, j = {0, .., 2·h(p,p̃)

h p̃
− 1} :

i · hp + sp + τp ≤ j · h p̃ + sp̃

⊕ j · h p̃ + sp̃ + τp̃ ≤ i · hp + sp
(5.6)

∀a ∈ Aλ, e ∈ Ea, (p, p̃) ∈ e :

fp = (sp + τp) mod hp (5.7)

w(p,p̃) = (sp̃ − fp) mod hp (5.8)

∀a ∈ Aλ, φ ∈ Φ(Ea) :

θa ≥ ∑
p∈φ

τp + ∑
(p,p̃)∈φ

w(p,p̃) (5.9)

Here, the symbol ⊕ represents an exclusive or (XOR) operation. Constraint (5.5) defines
the boundaries for the start-time. As processes are periodically executed, their start-time cannot
exceed their process period hp (cf. Definition 2.2.5). Constraint (5.6) ensures that two processes
in the same variant specification are not executed at the same point in time if both are mapped
to the same resource, and therefore finish execution before another process is started for any
of their periods (cf. Requirement 2.2.1). Constraint (5.7) calculates the finish-time fp. Con-
straint (5.8) determines the waiting-time between two data-dependent processes p, p̃. Finally,
Constraint (5.9) ensures that the maximum delay based on the execution and waiting-times of
an application for each respective path does not exceed the application deadline (cf. Require-
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ment 2.2.3). The modulo operation mod in Constraints (5.7) and (5.8) is defined as a function
in our SMT formulation with the following properties:

0 ≤ i mod j < j

Hence, for i < 0 it returns a positive value, e.g., for −j < i < 0 : i + j. This ensures that
the values for both the finish- and the waiting-time are positive, satisfying Requirement 2.2.2

Schedules of previous iterations. Our multi-schedule approach iteratively generates an indi-
vidual schedule for each variant, scheduling common parts first, before extending each variant
schedule with variant specific parts in a consecutive iteration. To take parts of the schedule
created in a previous iteration into account, additional constraints are required. The processes
Pλ′ scheduled in previous iterations are considered as temporal intervals where processes of the
current comprehensive task graph Pλ cannot be scheduled if they are part of the same variant
and are mapped to the same resource, see grayed out parts in Figure 5.4(f) (page 121). To allow
modifications to applications scheduled in a previous iteration, we introduce an application off-
set oa, defining a common offset for all processes p ∈ Pa. As all task and message start-times
are adjusted concurrently through this offset, the general structure of the application schedule
is not altered and therefore all previously defined constraints are not affected. Corresponding to
Constraint (5.6), we define the following constraints:

∀a ∈ Aλ′ :

0 ≤ oa < ha (5.10)

∀p ∈ Pλ, ∀a ∈ Aλ′ , p̃ ∈ Pa, D(p) ∩ D( p̃) 6= ∅, r(p) = r( p̃),
i = {0, .., 2·h(p,p̃)

hp
− 1}, j = {0, .., 2·h(p,p̃)

h p̃
− 1} :

i · hp + sp + τp ≤ j · h p̃ + s p̃ + oa

⊕ j · h p̃ + s p̃ + oa + τp̃ ≤ i · hp + sp
(5.11)

∀a, ã ∈ Aλ′ , p ∈ Pa, p̃ ∈ Pã, D(p) ∩ D( p̃) 6= ∅, r(p) = r( p̃),
i = {0, .., 2·h(p,p̃)

hp
− 1}, j = {0, .., 2·h(p,p̃)

h p̃
− 1} :

i · hp + sp + oa + τp ≤ j · h p̃ + s p̃ + oã

⊕ j · h p̃ + s p̃ + oã + τp̃ ≤ i · hp + sp + oa
(5.12)

Constraint (5.10) defines the boundaries for the application offset. Constraint (5.11) en-
sures that a currently scheduled process does not intersect with already scheduled processes.
The application offsets oa hereby allow to alter the structure of parts which have already been
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scheduled in a previous iteration. Finally, Constraint (5.12) ensures that altering the application
offsets does not lead to intersections between previously scheduled applications.

5.3.5 Conflict Refinement

Iterative schedule synthesis might lead to conflicts which manifest in the currently scheduled
applications not being combinable with a schedule generated in a previous iteration. We there-
fore propose a conflict refinement which determines conflicting parts and resolves the conflict
through adapting the schedules. Our conflict refinement approach first determines conflicting
application schedules and updates the comprehensive task graph Gλ and the comprehensive task
graph of previously scheduled processes Gλ′ to resolve the conflicts, as illustrated in the design
flow in Figure 5.5 (page 123).

To determine conflicting application schedules in Gλ and Gλ′ , we determine all IISs using
the extended deletion filter presented in Section 4.3.2.1. An IIS represents a smallest set of con-
flicting constraints which might be resolved by removing any of these conflicting constraints.
The extended deletion filter removes groups of constraints until the remaining set of constraints
is feasible. For multi-schedule synthesis, the constraint groups are defined by applications.
Thus, the extended deletion filter iteratively removes the constraints of one application from the
schedule synthesis problem until it is solvable. The last removed application is then returned to
the set and the process is continued until the remaining problem is unfeasible and removing any
of the conflicting applications would resolve the conflict. However, as the schedule synthesis
for Gλ might contain multiple IISs, we apply the deletion filter multiple times until all IISs have
been determined.

To resolve the conflicts determined with the IISs, we extend Gλ with the conflicting appli-
cations, Gλ = (Pλ ∪ PIISs, Eλ ∪ EIISs), and remove these applications from Gλ′ for all IISs,
Gλ′ = (Pλ′ \ PIISs, Eλ′ \ EIISs). The schedule synthesis is then applied to the updated Gλ and
Gλ′ .

5.4 Experimental Results

To evaluate our proposed multi-schedule framework, we first compare the resource require-
ments of a global schedule, i.e., one single schedule for all variants, to our multi-schedule
approach. Second, we analyze the deviation of variant schedules created by a variant-unaware
ILP approach, i.e., generating an individual schedule for each variant ignoring commonality,
compared to our framework. Third, a scalability analysis evaluates our framework in compari-
son to a variant-aware ILP. Finally, we present a case study using an experimental prototype of
an automotive architecture which allows to adapt the architecture and switch the system sched-
ule. The schedule synthesis has been carried out on an Intel Xeon 3.2 GHz Quad Core with
12GB RAM. We use Microsoft’s Z3 version 4.3.0 as SMT solver for multi-schedule synthe-
sis [MB08]. For the graph partitioning, we have determined a threshold of εcross = 1.3 for our
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average crossing metric (see Section 5.3.3) as beneficial through an experimental analysis. For
the ILP approach we apply the ILP formulation defined in Section 3.2. Note that the schedule
is obtained at design time such that runtimes of several minutes are still acceptable.

5.4.1 Resource Utilization

To generate time-triggered schedules for different variants, car manufacturers commonly gen-
erate a single global schedule, including the tasks and messages of all variants, to reduce testing
and integration efforts. This leads to the allocation of resources for tasks which are not executed
in each variant. Therefore, the number of applications which might be deployed in a variant is
limited through the worst case resource utilization assumption of the global schedule, while the
actual resource utilization is low. For instance, if we consider a system with two variants, shar-
ing one common application, such as ABS, and having variant specific applications, like the
motor control for a diesel and a petrol engine, then the global schedule needs to accommodate
three applications in a single schedule, i.e., the ABS application and both the diesel as well as
the petrol application. By contrast, the multi-schedule distributes these three applications as two
applications in each variant schedule. In the following, we analyze the number of applications
supported by a set of variants if scheduled by a global schedule and our framework. To generate
a global schedule, we apply the non-variant-aware ILP approach from Section 3.2 which adds
both common as well as individual tasks and messages to a single schedule. We use CPLEX in
version 12.6 as ILP solver [ILO].

We have created a set of synthetic applications of which 60 % are common, hence, these
applications are added to all variant schedules. The remaining applications are variant specific
and are only part of a single variant2. For a given small subsystem, we randomly select appli-
cations from this set and iteratively add them to the subsystem, until no feasible solution can
be found within a timeout of 5 minutes. For the global schedule, both common and individ-
ual applications are added to the scheduling problem. For our multi-schedule synthesis only
common applications are added to all variant schedules while individual applications are only
added to one variant schedule. The metric applied for this analysis is the number of applications
supported by the schedule synthesis approaches.

Figure 5.7 shows the average results for 3200 synthetic test cases. The results clearly show
the benefits of multi-schedules compared to a global schedule. The global schedule only sup-
ports a limited number of approx. 3.5 applications on average which is independent of the
number of variants. By contrast, a multi-schedule uses the available resources significantly
more efficiently, and the number of supported applications increases with the number of vari-
ants. Note that common and individual applications are selected randomly such that for this case
study the resulting average application number supported by a multi-schedule might be lower

2An application consists of 3 to 7 tasks communicating via up to 6 messages. For instance, application a1
in specification d1 in Figure 5.2 consist of 3 tasks communicating via 2 messages, having one sensor and one
actuator task. For this case study we also consider applications with multiple sensor and actuator tasks sending
and receiving multiple messages. All task periods are harmonic and range from 5 ms to 80 ms.
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Figure 5.7: Comparison of application number supported by a single global schedule for all
variants and a multi-schedule generating an individual schedule for each variant. A higher
number of applications for a set of variants indicates a more effective resource utilization. The
average values obtained for 3200 synthetic test cases are shown.

than the number of variants. These results indicate to which extent the worst case resource
utilization assumption of the global schedule overestimates the actual resource requirements,
leading to a poor resource utilization. By contrast, the generation of multi-schedules leads to a
clearly improved resource utilization and in consequence allows to deploy the same applications
on an architecture with less ECUs.

5.4.2 Analysis of Variant-Awareness

To ensure an efficient resource utilization, for each variant a schedule could be created indepen-
dently. However, as each variant schedule is created individually, the schedules strongly differ.
This leads to significantly increased testing and integration efforts as common applications have
to be tested for each variant individually. To evaluate the differences between independently
created variant schedules, in the following, we compare the results of a non-variant-aware ILP
with our framework. The single-stage ILP is applied to each variant independently. Hence,
in contrast to our framework, the resulting variant schedules do not have the same start-times
assigned to shared tasks.
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Figure 5.8: Analysis of differences in schedules created by a non-variant-aware ILP approach
and our variant-aware multi-schedule framework, depending on the ratio of common tasks to
all tasks including variant specific tasks. We consider tasks to share the same schedule if their
start-times differ less than 0.1 ms.

To evaluate the approaches, we use 210 synthetic test cases with hardware architectures
consisting of up to 20 ECUs connected by an Ethernet bus. A test case consists of 40 to 446 tasks
and messages which are distributed in 4 to 16 variants3. The number of processes common to the
variants range from 10 % to 100 % of all tasks and messages. In the following, we first analyze
the differences in variant schedules determined by the non-variant-aware ILP compared to our
framework, before presenting a runtime and an end-to-end delay analysis of both approaches.

Variant-awareness. Figure 5.8 illustrates the number of shared tasks with identical schedules
for different variants. The results for the ILP show that for more than 65 % of the test-cases
the start-times for all tasks differ more than 0.1 ms. A detailed analysis has shown that the
average difference for common parts lies between 2 ms and 33 ms for the ILP, indicating a
clear difference between common parts of variant schedules. With an increasing commonality
between different variants, the number of identical schedules for common tasks might increase
slightly, but stays below 10 % for most cases. These results do not come as a surprise, as

3A single variant might consist of up to 131 tasks and messages. All tasks have harmonic periods ranging from
5 ms to 80 ms.
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each variant schedule is generated individually and common start-times are by chance and not
intentional. Our framework instead assigns an identical schedule to all shared tasks. These
results show the necessity of a variant-aware approach to reduce testing and integration efforts.

Runtime evaluation. Evaluating the runtimes for this case study shows that for 80 % of the
test cases our framework is faster in creating a multi-schedule than the non-variant-aware ILP
in generating all variant schedules individually. On average, the ILP calculation takes 7 times
longer than the multi-schedule synthesis to determine a schedule for each variant. This result
shows the efficiency of our framework to deal with the increased complexity of variant-aware
scheduling in comparison to conventional non-variant-aware approaches. Note that this runtime
only accounts for the time required for the schedule synthesis but does not quantify the time
savings achievable through reduced testing and integration efforts.

End-to-end delay analysis. To evaluate the drawbacks of multi-schedule synthesis, we com-
pare the overall end-to-end delay of the applications in all variants for 120 of the test cases for
which both approaches find a solution. Both approaches ensure that the maximum end-to-end
delays defined for each application are satisfied. However, generating an individual schedule
for each variant leads to a lower end-to-end delay for 72 % of the test cases. On average, the
determined multi-schedules have an end-to-end delay which equals 94.0 % of the maximum
end-to-end delays, while generating each variant schedule individually leds to 85.5 %. These
results indicate that the additional constraints imposed by the concurrent schedule synthesis
might lead to an increased application end-to-end delay and consequently to a reduced control
function performance. However, if this reduction in system performance is acceptable, variant-
aware schedule synthesis helps to reduce development costs as testing and integration efforts
are reduced. This is generally the case for automotive applications which are robust and per-
form well with an increased end-to-end delay, as long as their maximum end-to-end delay is not
exceeded. These results are obtained without applying an objective function.

5.4.3 Runtime Analysis

The previous two case studies have evaluated the benefits of the proposed multi-schedule syn-
thesis compared to a single global schedule and a non-variant-aware approach. As these ap-
proaches are not completely comparable with multi-schedule synthesis, in the following, we
compare our framework with a variant-aware ILP approach to evaluate the efficiency. The ILP
approach generates all variant schedules in a single iteration, taking commonality into account.
We evaluate the approaches using the same 210 synthetic test cases as introduced in the previous
section.

Figure 5.9 shows the results of the runtime analysis. We have defined a timeout of 15
minutes and consider test cases which cannot be solved within this time frame as infeasible. The
results show that our multi-schedule framework performs well compared to the variant-aware
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Figure 5.9: Runtime comparison of our framework generating a multi-schedule with a variant-
aware ILP approach generating all variant schedules concurrently.

ILP. While for some test cases our framework might introduce an overhead, in particular for
difficult test cases it outperforms the ILP. On average, our framework is 14 times faster, showing
the benefits of our iterative approach in combination with the problem partitioning. For various
test cases the ILP is unable to find a solution within 15 minutes while our framework finds a
solution. For the multi-schedule synthesis, the framework requires 4 iterations on average to
determine all variant schedules for one test case, but not more than 11. About 74 % of all test
cases require a conflict refinement. The problem partitioning proposed in Section 5.3.3 accounts
for a runtime reduction of 21.4 % for all test cases and 72.6 % for test cases with a runtime of
over 120 seconds without partitioning. This indicates that, in particular for large and difficult
test cases, the partitioning clearly improves the scalability of our approach.

5.4.4 Automotive Case Study

To illustrate the importance of a variant-aware schedule synthesis, in the following, we apply
multi-schedule synthesis for the lab setup of a time-triggered automotive architecture. The
system is able to adapt the hardware architecture and switch between predefined schedules at
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runtime. This allows to evaluate multiple variant schedules on the platform. To minimize the
changes of the system configuration induced when switching schedules, shared tasks require an
identical schedule for different variants. As multi-schedule synthesis fulfills this property, this
experimental prototype provides an ideal testbed to evaluate our framework.

In the area of multi-mode systems various work has been done on switching between system
configurations. In this context, we address the problem of minimizing the differences between
modes, i.e., variant schedules. However, the objective of this case study is not to obtain minimal
switching delays, but rather to evaluate multi-schedule synthesis. A more detailed discussion of
related work was given in Section 5.1.

We have defined 9 variants for our experimental prototype, of which 3 are shown in Fig-
ure 5.2 (page 115). The lab setup allows to turn off single ECUs, thus, changing the underlying
architecture. Each ECU runs an online diagnosis detecting deactivated ECUs. We use this
mechanism to switch the current system schedule and to evaluate our framework. In the follow-
ing, we present the results obtained with our multi-schedule synthesis and the non-variant-aware
ILP from Section 3.2. Note that this case study gives an example where determining a single
global schedule is not feasible, as a global schedule is unable to accommodate the applications
of all 9 variants.

Scheduling results. The 9 variant schedules have been generated with both our framework and
the variant-unaware ILP introduced in the previous section. To generate all variant schedules,
our framework takes 50 ms while the ILP takes 90 ms. Here, the incremental approach and
scheduling multiple variants concurrently reduce the runtime compared to the ILP approach. As
we have predefined the start-times of the system tasks PTP and FD, the schedule synthesis was
applied only for the applications STR and IMG. While the variant schedules generated with our
framework (Figure 5.10) take the commonality of multiple variants into account, the schedules
generated by the ILP (Figure 5.11), clearly differ in the start-times for common parts. For
instance, while our framework has assigned the same start-times for the shared tasks tSTRPROC

and m1, their start-times differ for all schedules generated by the ILP, e.g., tSTRPROC is scheduled
with sSTRPROC = 1.2 ms, sSTRPROC = 3.0 ms, and sSTRPROC = 0.6 ms, in Figure 5.11(1),(2) and
(3), respectively. Figure 5.11 shows the differences between schedules generated individually,
requiring individual testing and integration of all variant schedules. By contrast, our framework
generates homogeneous variant schedules, as illustrated in Figure 5.10, clearly reducing the
testing and integration efforts as schedules for common applications only need to be tested
once, and only distinctive applications require individual testing.

Trade-offs. These results also indicate limitations of our approach. For instance, while we have
not defined a minimal end-to-end delay as an objective for the schedule synthesis, for the variant
schedules illustrated in Figure 5.11, generating each schedule individually has led to a reduced
end-to-end delay for the application STR compared to the results obtained by a multi-schedule
in Figure 5.10. This can in particular be seen in Figure 5.10(3) where a delay is introduced
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Figure 5.10: Schedules for three variants created by our framework. The variant task graphs are
defined in Figure 5.2. Note that we follow a periodic execution model. Hence, sink processes
(e.g. tIMGPROC) might appear to be executed before source processes (e.g. tIMGSEND), however,
in this case data generated in the previous period is processed.
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Figure 5.11: Variant schedules determined by an ILP approach, generating variant-unaware
schedules.
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between tSTRPROC and tSTRWHEEL for m1 scheduled in the other variants. Hence, variant-aware
scheduling might lead to an increased end-to-end delay, and consequently to a reduced control
function performance. However, as our approach ensures that all defined maximum end-to-
end delays are not violated, the control performance might be slightly reduced but the correct
functionality is guaranteed while the testing and integration efforts are significantly reduced.

5.5 Summary

This chapter addressed the problem of generating multi-schedules for variant management in
time-triggered architectures. A multi-schedule defines an individual schedule for each variant
which shares the same schedule for common parts of different variants. We proposed a frame-
work for multi-schedule synthesis which determines commonality in multiple variants and cal-
culates an identical schedule for these common parts. We apply an incremental approach which
also considers commonality in variant subsets. To improve the scalability of our approach, we
also presented a partitioning heuristic, generating subproblems which might be solved indepen-
dently and are re-integrated using schedule integration.

The experimental results, consisting of an extended analysis of resource requirements, the
deviation between variants, and scalability as well as an automotive lab setup, showed the ben-
efits of our approach. As our approach generates variant-specific schedules, the resource re-
quirements are clearly improved as compared to a single global schedule, used in all variants.
Multi-schedule synthesis only allocates the resources which are required in each variant. At
the same time, the deviation between variants is significantly reduced compared to a variant-
unaware approach, generating individual schedules without taking commonality into account.
This leads to a clear reduction of testing and integration efforts compared to a variant-unaware
approach, as applications can be designed independently of the variant they are deployed in.
These results show the need for an efficient variant-aware approach.

The graph-based partitioning heuristic presented in this chapter gives an example on how
suitable clusters might be selected for the schedule integration presented in Chapter 4. It allows
to identify subsets of applications which have minimal correlations, both aiding the develop-
ment as well as the integration process.

In this chapter we have shown the benefits of a variant-aware schedule synthesis and pro-
posed an efficient implementation based on multi-schedule synthesis. The focus here was on
minimizing the differences between variants. Taking into account additional objectives such
as control performance might therefore be an interesting extension of our work. In addition,
here the focus was on time-triggered systems. An important line of future work is therefore a
variant-aware approach considering event-triggered tasks and messages.
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With an increasing number of advanced driver assistance systems and the upcoming drive-by-
wire, a clear trend towards time-triggered architectures can be seen in the automotive domain.
This thesis investigated various aspects of schedule synthesis for time-triggered systems, with
a focus on automotive E/E-architectures.

6.1 Summary

This thesis first addressed schedule synthesis for message transmission in the static segment of
the automotive FlexRay bus. The focus was on developing new methods that support all new
features of the latest FlexRay version 3.0, while being applicable to the previous version 2.1
to the same extent. We presented various approaches: An ILP generating a schedule with a
minimal bandwidth utilization, a heuristic approach with a good scalability and an ILP-based
heuristic approach which integrates individually generated FlexRay schedules in a common
schedule. An extensive case-study showed the benefits of the proposed approaches compared
to GA and SA approaches. The results also indicate the potential of FlexRay 3.0 to make
the bandwidth utilization more efficient. Furthermore, we also showed how this asynchronous
FlexRay scheduling, focusing on message transmission, can be extended to a holistic scheduling
that takes both tasks and messages into account.

Second, a modular schedule synthesis for task and message scheduling was proposed. The
schedule integration framework allows to integrate previously generated subsystem schedules
into a global schedule. To improve the scalability and minimize the changes required to sub-
system schedules, a multi-stage approach was presented. The framework first tries to integrate
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all subsystem schedules without altering their structure. As integrating individually generated
subsystem schedules in a single schedule might not always be feasible, we also proposed a con-
flict refinement which identifies conflicting schedules and resolves the conflict by altering the
subsystem schedules. A partitioning heuristic reduces the complexity of the conflict refinement
process through identifying subproblems which might be solved individually. The framework
supports both Automotive Ethernet as well as FlexRay. To facilitate the schedule integration, we
also investigated several integrability metrics which optimize subsystem schedules for schedule
integration. The results showed the significantly better scalability of schedule integration com-
pared to a conventional holistic scheduling. An extended discussion illustrated how schedule
integration might enable a highly composable system, allowing to easily update and add appli-
cations. We also discussed how this design approach might be integrated with an AUTOSAR
design flow.

Finally, a multi-schedule synthesis approach was presented which determines schedules for
different system variants. The proposed framework generates an individual schedule for each
variant, while taking into account commonality between variants. Thus, the individual variant
schedules share an identical schedule for common parts. The framework not only identifies
tasks and messages common to all variants, but also determines commonality between subsets
of variants. We apply an iterative approach to handle the increased complexity of a variant-
aware schedule synthesis. In addition, a partitioning heuristic was proposed which allows to
determine suitable clusters for which a schedule might be determined individually. Schedule in-
tegration then allows to integrate the cluster schedules in a common multi-schedule. The results
give evidence of the benefits of the proposed approach, both in regards to variant-awareness as
well as scalability.

6.2 Future Work

The proposed schedule synthesis approaches are extensible to a large extent. In the following,
potential future work is discussed.

Asynchronous FlexRay scheduling. The FlexRay scheduling framework proposed in Sec-
tion 3.1 addresses the problem of message scheduling of a single bus. However, in the auto-
motive industry it is common that applications communicate with multiple domains. Thus, a
message might not only be sent on a single bus but is forwarded to other buses via gateways. A
future extension might therefore consider multiple buses. An additional objective would then
be to pack messages to slots such that message repacking in the gateways is minimized.

Schedule integration. Several extension possibilities exist for the schedule integration frame-
work presented in Chapter 4. While the framework allows to efficiently integrate cluster sched-
ules without altering the general structure, the conflict refinement suffers from a limited scala-
bility if partitioning the problem is not feasible. Improving the scalability of the conflict refine-
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ment would therefore be a valuable extension to the schedule integration framework. For the
SMT-based approach, selecting suitable processes for which the offsets are adjusted instead of
considering all processes might already lead to a clear runtime reduction, as the search space is
reduced. However, also investigating if heuristic approaches are suitable for the conflict refine-
ment might be an interesting direction for future work.

Moreover, we have shown several metrics to optimize the cluster schedules for their integra-
bility. Combining several of these metrics to define an objective allows to determine competitive
results. An extensive analysis might allow to determine suitable weights for each metric and
further improve the integrability of cluster schedules.

Incorporating knowledge of other clusters during cluster schedule generation would also al-
low to further improve the integrability of clusters. Developing suitable metrics, accounting for
either the structure of a legacy cluster schedule or information of task and message distributions
in other clusters, is therefore an interesting line of future work.

Furthermore, the schedule integration framework currently only considers time-triggered
systems. However, automotive architectures implement a mix of event-triggered and time-
triggered systems depending on the application. Thus, a valuable extension of our framework
would be the support of mixed critical systems, supporting both time- and event-triggered tasks
and messages. For the schedule integration approach such a support of event-triggered systems
could be realized by (1) defining suitable constraints for the time-triggered schedule synthe-
sis, or by (2) applying a partition scheduling approach to determine suitable time-triggered
cluster schedules, abstracting the event-triggered applications. For (1), a timing analysis of
the event-triggered application allows to determine constraints for the schedule synthesis of
the time-triggered schedule such that the idle-time is arranged to accommodate event-triggered
applications, satisfying their timing constraints. For instance, the approaches and guidelines
presented in [TSPS12, MSKS13] might form the basis of such an extension. For (2), the com-
bination of partition scheduling with schedule integration might allow to efficiently integrate
event-triggered applications with time-triggered applications while keeping the system highly
modular. Essential for this approach will be to determine suitable constraints for the distributed
partitions which are applied if a conflict refinement is necessary.

Schedule synthesis for variant management. Also for the multi-schedule synthesis presented
in Chapter 5, various extension opportunities exist. In this thesis we focused on determining
variant schedules such that the difference between variants is minimal. However, as the re-
sults show, this might lead to suboptimal variant schedules compared to generating each variant
schedule individually. In future work, the multi-schedule synthesis framework might be ex-
tended to take additional design objectives such as the control performance of applications into
account. The framework might then decide to define individual schedules to common parts in
favor of an increased system performance. A multi-objective optimization might then allow to
determine variant schedules for optimized system performance while the development cost is
minimized due to variant-awareness.
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Moreover, an important line of future work is also to investigate variant-aware event-
triggered scheduling. Similar to the extension proposed for schedule integration, approaches
from the domain of component-based design and partition scheduling might allow to abstract
event-triggered tasks and messages as time-triggered components. These components could
then be represented by processes in our system model and allow to apply our variant-aware
schedule synthesis for event-triggered applications. Selecting suitable constraints for distributed
applications, consisting of multiple components, will then be essential.
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