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Abstract

A one-sided symbol of a one-sided bounded Itô-Lévy process is introduced and
possible ways for its computation as well as its relation to the infinitesimal generator
of the process are provided. Further, an integral criterion for invariant distributions
of the underlying process is derived which relies on the one-sided symbol. Several ap-
plications in settings of one-sided bounded as well as unbounded processes illustrate
the advantages of the new criterion in comparison to previous methods.
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1 Introduction

Over the last two decades, the so-called symbol of a stochastic process has proven to be
a useful tool in order to derive fine and global properties of the corresponding stochastic
process (cf. [10], [19], [22] and Chapter 5 of [6]). Following ideas of Jacob [12] and Schilling
[20], Schnurr has generalized this concept to homogeneous diffusions with jumps in the
sense of Jacod and Shiryaev [13]. In its most general form the symbol of an Rd-valued
homogeneous diffusion with jumps (Xt)t≥0 looks as follows. For x, ξ ∈ Rd

p(x, ξ) := − lim
t↓0

Exei(X
σ
t −x)′ξ − 1

t
(1.1)

whereXσ is the processX stopped at time σ, the first exit time of a compact neighborhood
of x, and x′ denotes the transpose of the vector x. The stopping time σ is vital in order to
derive the results on path properties for the most general classes of processes. Under mild
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regularity conditions the limit in (1.1) is always a continuous negative definite function
in the sense of Schoenberg (cf. the monograph by Berg and Forst [4]). This means in
particular that for each fixed x we obtain a Lévy-Khintchine exponent (cf. (2.1) below).

In [3] we derived an integral criterion for invariant measures of Itô-Lévy processes which is
based on the symbol. In that article, we had to use the above formula without the stopping
time as obviously distributional properties might be destroyed by stopping, while local
path properties are stable under stopping. This resulted in the fact that for the method
proposed in [3] the symbol has to satisfy a certain growth condition which corresponds
to bounded semimartingale characteristics of the treated processes and hence to bounded
coefficients of the SDEs in the background. Since this is a serious restriction, in this paper
we aim to show an alternative to the classical symbol, which then can be used in cases
without bounded characteristics/coefficients as long as the corresponding processes have
a lower or upper bound (e.g. are restricted to be positive in each component). Hereby,
we take up the classic idea of using Laplace transforms instead of Fourier transforms/
characteristic functions and define a one-sided symbol.

Thus, after setting the stage in Section 2, we will define the one-sided symbol in Section 3
which also includes several results on how to compute the one-sided symbol as well as on
its relation to the generator of the stochastic process. Section 4 then is devoted to the
derivation of an integral criterion for invariant measures of the underlying processes which
relies on the one-sided symbol. Several applications are added to exhibit the usability of
the derived criterion. In particular we also explore how the integral criterion may be
applied even in cases of unbounded processes.

2 Preliminaries

Recall that a Lévy process (Lt)t≥0 is a time- and space-homogeneous Markov process
with càdlàg paths which starts a.s. in 0 and which is completely characterized by its
characteristic triplet (ℓ,Q,N) or by its Lévy-Khintchine exponent, i.e.,

ϕL(ξ) := − logE[eiL′
1ξ] = −iℓ′ξ + 1

2
ξ′Qξ −

∫
Rd

(
eiξ

′y − 1− iξ′y1{∥y∥<1}(y)
)
N(dy). (2.1)

We refer to [18] for any further information on Lévy processes.

In this paper we will focus on the class of Itô-Lévy processes as defined below.

Definition 2.1. An Itô-Lévy process is a strong Markov process, which is a semimartin-
gale with respect to every Px having semimartingale characteristics of the form

B
(j)
t (ω) =

∫ t

0

ℓ(j)(Xs(ω)) ds, j = 1, ..., d,

Cjk
t (ω) =

∫ t

0

Qjk(Xs(ω)) ds, j, k = 1, ..., d,

ν(ω; ds, dy) = N(Xs(ω), dy) ds,

(2.2)
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for every x ∈ Rd with respect to a fixed cut-off function χ. Here ℓ(x) = (ℓ(1)(x), ..., ℓ(d)(x))′

is a vector in Rd, Q(x) is a positive semi-definite matrix and N is a Borel transition kernel
such that N(x, {0}) = 0. We call ℓ, Q and n :=

∫
y ̸=0

(1 ∧ ∥y∥2) N(·, dy) the differential
characteristics of the process.

These Itô-Lévy processes have been characterized in [7] as the set of solutions of very
general SDEs of Skorokhod-type. In particular this class includes the set of solutions of
Lévy driven SDEs which will play an important role in this paper. Recall that this class
of processes is sometimes in the literature simply called Itô processes (cf. [3]) or Lévy type
processes (cf. in particular [6]). Both terminologies have their advantages and drawbacks.
Different classes are called Itô process in the literature while Lévy type implicates that
these processes are ‘close to Lévy’ hiding the fact that entirely different techniques are to
be used in order to deal with this general class of processes.

Continuity of the differential characteristics of the treated Itô-Lévy processes is always
sufficient for our purposes. However, we have decided to use the concept of fine continuity
in order to derive even more general results. Loosely speaking, the advantage of fine
continuity is that one has to care about continuity only as far as the process can detect
it. Intuitively speaking a measurable set is finely open, if the process starting in the set
remains there for a positive amount of time. Let us recall the definition.

Definition 2.2. Let X be a Markov process with state space (E, E).
(a) A set A ⊆ E is called finely open if for each x ∈ A there is a set D ∈ En such that
Ac ⊆ D and Px(TD > 0) = 1. Here, En denotes as usual the nearly Borel sets (cf. [5, p.
60]) and TD is the first exit time from D.

(b) Let f : Rd → R be a Borel-measurable function. Then f is called finely continuous, if
it is continuous with respect to the topology defined above.

We will use fine continuity in a way that is governed by the subsequent result which was
established in [5, Thm. II.4.8].

Proposition 2.3. Let X be a Markov process and f : Rd → R be a Borel-measurable
function. Then f is finely continuous if and only if the function

t 7→ f(Xt) = f ◦Xt (2.3)

is right continuous at zero Px-a.s. for every x ∈ Rd.

3 The Laplace symbol

3.1 Definition of the Laplace symbol

The Laplace symbol can be seen as a state-space dependent right hand side derivative
at zero of the Laplace transform of a stochastic process. Since the Laplace transform
characterizes the distribution of a random variable, the Laplace symbol in a certain way
reflects the infinitesimal changes in the distribution over time.
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Definition 3.1. Let (Xt)t≥0 be a Markov process in Rd
+. Define for every x, ξ ∈ Rd

+ and
t ≥ 0 the quantity

hξ(x, t) :=
Ex[e−(Xt−x)′ξ]− 1

t
.

We call λ : Rd
+ × Rd

+ → R given by

λ(x, ξ) := − lim
t↓0

Exe−(Xt−x)′ξ − 1

t
= − lim

t↓0
hξ(x, t) (3.1)

the Laplace symbol of X with domain Dλ ⊆ Rd
+ ×Rd

+ whenever the limit exists for every
x, ξ ∈ Dλ.

Remark 3.2. Obviously the Laplace symbol as in Definition 3.1 can also be defined for
any Markov process which is componentwise bounded from below. Throughout this article
we use the bound 0 to ease notation. Similarly, for Markov processes bounded from above,
one may define a one-sided symbol λ− : Rd

− × Rd
− → R.

As a first example we consider subordinators.

Example 3.3. A subordinator is a Lévy process in R+ with only positive increments and
it is well known (cf. [18]) that the Laplace transform of such a process (Xt)t≥0 can be
written as

E0
[
e−ξXt

]
= e−tλ(ξ)

where

λ(ξ) = ℓξ −
∫
(0,∞)

(
e−ξy − 1

)
N(dy).

with ℓ ≥ 0 and a Lévy measure N on R+ such that
∫
(0,∞)

(1 ∨ x)N(dx) < ∞. Using the

fact that subordinators are homogeneous in space we obtain

−
Ex
[
e−(Xt−x)ξ

]
− 1

t
= −

E0
[
e−Xtξ

]
− 1

t
= −e−tλ(ξ) − 1

t

which converges to λ(ξ) for t ↓ 0. Therefore, in this case the Laplace symbol is constant
in the first variable and coincides with the Laplace exponent.

Another class of processes for which the Laplace symbol is obviously relevant are Itô-Lévy
processes conditioned to stay positive in some way. As an example we consider a Brownian
motion absorbed at zero.

Example 3.4. Let (Bt)t≥0 be a standard Brownian motion in R and define (Xt)t≥0 via
Xx

t = x+Bt∧τ , where τ = inf{t ≥ 0, Bt = −x}. Then it follows by standard computations
that

λ(x, ξ) = − d

dt
Ex[e−(Xt−x)ξ]|t=0 = − d

dt
E0[e−Bt∧τ ξ]|t=0 = −ξ

2

2
, x > 0, ξ ∈ R+,

while

λ(0, ξ) = − d

dt
E0[e−Bτ ξ]|t=0 = 0, ξ ∈ R+.
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Remark 3.5. Obviously, by comparing the symbol and the Laplace symbol defined above,
one recognizes that at least formally we have

‘λ(x, ξ) = p(x, iξ)’.

Nevertheless, we chose not to define the Laplace symbol via an analytic extension of the
symbol. The reason for this is simple. For a characteristic function to be analytic it is
necessary that the corresponding distribution has moments of all orders (c.f. Lukacs [15, p.
198]). Since we are interested in an extension of the results in [3] to the case of unbounded
characteristics/moments, this restriction obviously would have been to strong.
Still we will sometimes in this paper abuse the above notation, as it simplifies formulas a
lot.

3.2 Computing the Laplace symbol

In order to establish the following main result of this section, we need a boundedness as-
sumption which is very weak. In fact it is sufficient that for each differential characteristic
d the function d(·) exp(−·) is bounded. Hence, polynomially bounded is sufficient in order
to establish the following result and for all our applications.

Theorem 3.6. Let (Xt)t≥0 be an Rd
+-valued Itô-Lévy process with polynomially bounded,

finely continuous differential characteristics. For every ξ ∈ Rd the limit

λ(x, ξ) := − lim
t↓0

Exe−(Xt−x)′ξ − 1

t
= − lim

t↓0
hξ(x, t)

exists and the functions hξ are globally bounded in x (and t) for every ξ ∈ Rd
+. As the

limit we obtain

λ(x, ξ) = ℓ(x)′ξ − 1

2
ξ′Q(x)ξ −

∫
Rd\{0}

(
e−y′ξ − 1 + y′ξ · χ(y)

)
N(x, dy). (3.2)

Since the proof is very similar to the one of [3, Lemma 3.4] we only sketch it here.

Proof. We consider the one dimensional situation, since the multidimensional version
works alike. Let x, ξ ∈ R+. First we use Itô’s formula under the expectation and obtain

1

t
Ex
(
e−(Xt−x)ξ − 1

)
=

1

t
Ex

(∫
(0,t]

−ξe−(Xs−−x)ξ dXs

)
(I)

+
1

t
Ex

(
1

2

∫
(0,t]

ξ2e−(Xs−−x)ξ d[X,X]cs

)
(II)

+
1

t
Ex

(
exξ

∑
0<s≤t

(
e−ξXs − e−ξXs− + ξe−ξXs−∆Xs

))
. (III)

One has to deal with these terms one-by-one.
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In order to calculate term (I) we use the canonical decomposition of a semimartingale
(see [13, Thm. II.2.34])

Xt = X0 +Xc
t +

∫
(0,t]

χ(y)y
(
µX(·; ds, dy)− ν(·; ds, dy)

)
+ X̌t(χ) + At(χ). (3.3)

where At(χ) is the finite variation part and X̌t =
∑

s≤t(∆Xs(1 − χ(∆Xs)). It is easy
to show that the integrals with respect to the martingale parts yield again martingales
as they trivially are local martingales which can be shown to be bounded. To this end
observe that [

e−(X−x)ξ •Xc, e−(X−x)ξ •Xc
]
t
=

∫
(0,t]

(e−(Xs−x)ξ)2 d[Xc, Xc]s

= e2xξ
∫
(0,t]

(
e−2XsξQ(Xs)

)
ds.

The last term is uniformly bounded in ω and, therefore, finite for every t ≥ 0. The
integral with respect to the compensated sum of small jumps can be treated alike. Hence,
the expected values of the two martingale parts are zero. The remaining jump part has
to be put together with term (III).

Now we deal with term (II). Here we have [X,X]ct = [Xc, Xc]t = Ct = (Q(Xt) • t). Hence

1

2

∫
(0,t]

ξ2e−(Xs−−x)ξ d[X,X]cs =
1

2
ξ2
∫
(0,t]

e−(Xs−−x)ξQ(Xs) ds. (3.4)

Since Q is finely continuous and since w 7→ e−wξQ(w) is bounded we obtain by dominated
convergence

lim
t↓0

1

2
ξ2
1

t
Ex

∫
(0,t]

e−(Xs−x)ξQ(Xs) ds =
1

2
ξ2Q(x).

The remaining part of term (I) as well as the jump part work alike. Putting the terms
together, we obtain in addition∣∣∣∣Exe−(Xt−x)′ξ − 1

t

∣∣∣∣ = ∣∣∣∣−ξ 1tEx

∫
(0,t]

e−(Xs−−x)ξℓ(Xs) ds+
1

2
ξ2
1

t
Ex

∫
(0,t]

e−(Xs−−x)ξQ(Xs) ds

+
1

t
Ex

∫
(0,t]

e−(Xs−−x)ξ

∫
R\{0}

(
e−yξ − 1 + yξχ(y)

)
N(Xs, dy) ds

∣∣∣∣
≤ |ξ| t

t

∥∥e−ξ·ℓ(·)
∥∥
∞ + ξ2

t

2t

∥∥e−ξ·Q(·)
∥∥
∞

+ Cξ
t

t

∥∥∥∥e−ξ·
∫
y ̸=0

(1 ∧ |y|2) N(·, dy)
∥∥∥∥
∞
,

a bound which is uniform in t and x.

Remark 3.7. As a consequence of the above result it is a simple task to derive the
semimartingale characteristics of the process, if they have not been known a-priori. One
just has to calculate the Laplace symbol and write it in the form (3.2), extract ℓ, Q and
N and plug these quantities into equations (2.2).
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In many cases Itô-Lévy processes are described by a Lévy driven SDE. If this is the
case, one can directly determine the Laplace symbol from the SDE and the characteristic
exponent of the driving Lévy process as shown in the following theorem. We will write Xx

for the solution starting in x. Recall that it is always possible to enlarge the probability
space and define a family of probability measures (Px)x∈Rd

+
on this enlargement in a way

that P(Xx
t ∈ B) = Px(Xt ∈ B) (cf. [17, Section 5.6]).

Theorem 3.8. Let (Lt)t≥0 be an Rn-valued Lévy process with characteristic exponent

ϕ(ξ) = −iℓ′ξ + 1

2
ξ′Qξ −

∫
Rn\{0}

(
eiy

′ξ − 1− iy′ξ · 1{|y|<1}(y)
)
N(dy), ξ ∈ Rn,

and consider the SDE

dXx
t = Φ(Xx

t−)dLt, Xx
0 = x ∈ Rd

+, (3.5)

where Φ : Rd
+ → Rd×n

+ is locally Lipschitz continuous and of linear growth. Then there
exists a unique strong solution (Xx

t )t≥0 of (3.5). Assume that Xx
t ∈ Rd

+ holds a.s. for all
t ≥ 0, then this solution has Laplace symbol λ : Rd

+ × Rd
+ → R given by

λ(x, ξ) = ϕ(iΦ(x)′ξ)

= ℓ′Φ(x)′ξ − 1

2
(Φ(x)′ξ)′Q(Φ(x)′ξ)−

∫
Rn\{0}

(
e−Φ(x)′ξy − 1 + Φ(x)′ξy · 1{|y|<1}(y)

)
N(dy).

Proof. By [13, Cond. IX.6.7] the given SDE has a unique solution. Since this solution is
assumed to be positive (in all components) the Laplace symbol exists. The calculation of
the Laplace symbol is very similar to the classical one which can be found in [21, Thm.
3.1]. Therefore, we only sketch the one-dimensional proof here.

Fix x, ξ ∈ R+. As in the proof of Theorem 3.6 we apply Itô’s formula for jump semi-
martingales to the function exp(−(· − x)ξ) and obtain

1

t
Ex
(
e−(Xt−x)ξ − 1

)
=

1

t
Ex

(∫
(0,t]

−ξ e−(Xs−−x)ξ dXs +
1

2

∫
(0,t]

ξ2 e−(Xs−−x)ξ d[X,X]cs

+ exξ
∑
0<s≤t

(
e−Xsξ − e−Xs−ξ + ξe−Xs−ξ∆Xs

))
. (3.6)

For the first term we get

1

t
Ex

∫
(0,t]

(
−ξ e−(Xs−−x)ξ

)
dXs

=
1

t
Ex

∫
(0,t]

(
−ξ e−(Xs−−x)ξ

)
d

(∫
(0,s]

Φ(Xr−) dLr

)
=

1

t
Ex

∫
(0,t]

(
−ξ e−(Xs−−x)ξΦ(Xs−)

)
d(ℓs) (3.7)

+
1

t
Ex

∫
(0,t]

(
−ξ e−(Xs−−x)ξΦ(Xs−)

)
d

( ∑
0<r≤s

∆Lr1{|∆Lr|≥1}

)
(3.8)
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where we have used the Lévy-Itô decomposition. Since the integrands are bounded by
our assumptions, the two martingale terms of the Lévy process yield martingales whose
expected value is zero.

First we deal with (3.8) containing the big jumps. Adding this integral to the third
expression on the right-hand side of (3.6) we obtain

1

t
Ex
∑
0<s≤t

(
e−(Xs−−x)ξ

(
e−Φ(Xs−)∆Lsξ − 1 + ξΦ(Xs−)∆Ls1{|∆Xs|<1}

) )
t↓0−→
∫
R\{0}

(
e−Φ(x)yξ − 1 + ξΦ(x)y1{|y|<1}

)
N(dy)

Here, as well as in the calculation of the other terms we make use of the simple fact
that Φ(y) · exp(−y) is bounded. The calculation above uses some well known results
about integration with respect to integer valued random measures, see [11, Section II.3],
which allow us to integrate ‘under the expectation’ with respect to the compensating
measure ν(· ; ds, dy) instead of the random measure itself. In the case of a Lévy process
the compensator is of the form ν(· ; ds, dy) = N(dy) ds, see [11, Example II.4.2].

We can treat the drift part (3.7) as well as the second expression on the right-hand side
of (3.6) in a similar way. In the latter case we have to consider in addition

[X,X]ct =
([∫

(0,·] Φ(Xr−)dLr,
∫
(0,·]Φ(Xr−)dLr

]c
t

)
=

∫
(0,t]

Φ(Xs−)
2 d[L,L]cs

=

∫
(0,t]

Φ(Xs−)
2 d(Qs).

In the end we obtain

λ(x, ξ) = ℓ(Φ(x)ξ)− 1

2
(Φ(x)ξ)Q(Φ(x)ξ)

−
∫
R\{0}

(
e−(Φ(x)ξ)y − 1 + (Φ(x)ξ)y · 1{|y|<1}(y)

)
N(dy)

= ϕ(iΦ(x)ξ).

Note that in the multi-dimensional case the matrix Φ(x) has to be transposed.

Remark 3.9. The condition of non-negativity of the solution of the given Lévy driven
SDE as posed in the above theorem can be checked case by case. We are not aware of any
general necessary and sufficient conditions for this. Sufficient conditions for non-negativity
of the solution of a Lévy driven SDE can e.g. be found in [17, Thms. V.71 and V.72].

In the next special case, non-negativity of the solution of the SDE is easily checked.
Therefore, we obtain the following corollary to Theorem 3.8.

Corollary 3.10. Let (Lt)t≥0 be a subordinator with Laplace exponent λL(ξ), ξ ≥ 0 and
consider the SDE

dXx
t = Φ(Xx

t−)dLt, Xx
0 = x ∈ Rd

+, (3.9)
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where Φ : Rd
+ → Rd×1

+ is locally Lipschitz continuous and of linear growth. Then there
exists a unique strong solution (Xx

t )t≥0, X
x
t ∈ Rd

+, of (3.9) and this solution has Laplace
symbol λ : Rd

+ × Rd
+ → R given by

λ(x, ξ) = λL(Φ(x)ξ).

We end this section by establishing the connection of the Laplace symbol and the generator
of an a.s. non-negative Itô-Lévy process. Therefore, we have to define the following sub-
class of C∞

0 ((0,∞)d), the continuous, infinitely often differentiable functions on (0,∞)d,
vanishing (componentwise) at infinity.

S :=

{
f ∈ C∞

0 ((0,∞)d) :

∫
R+

∣∣∣∣(−1)k
∂kf

∂xki
(x)|xi=k/t(k/t)

k+1

∣∣∣∣ dt <∞, (3.10)

for all k = 1, 2, . . . , xℓ fixed, ℓ ̸= i = 1, . . . , d, and for xℓ fixed, ℓ ̸= i = 1, . . . , d,

lim
j→∞
k→∞

∫
R+

∣∣∣∣(−1)k
∂kf

∂xki
(x)|xi=k/t(k/t)

k+1 − (−1)j
∂jf

∂xji
(x)|xi=j/t(j/t)

j+1

∣∣∣∣ dt = 0

}
,

where xi denotes the i’th component of the vector x.

Theorem 3.11. Let (Xt)t≥0 be an Rd
+-valued Itô-Lévy process with polynomially bounded,

finely continuous differential characteristics and with generator (A, D(A)). Then for all
f ∈ D(A) ∩ S, we have

Af(x) = −
∫
Rd
+

e−x′ξλ(x, ξ)f̌(ξ)dξ, x ∈ Rd
+, (3.11)

where f̌ denotes the inverse Laplace transform of f .

Proof. First, observe that by a straightforward multivariate extension of [23, Thm. VII.17a],
every f ∈ S admits an integrable inverse Laplace transform f̌ . Hence, starting with the
definition of the Laplace symbol we obtain∫

Rd
+

e−x′ξλ(x, ξ)f̌(ξ)dξ = −
∫
Rd
+

e−x′ξ lim
t→0

1

t

(
Ex[e−(Xt−x)′ξ]− 1

)
f̌(ξ)dξ

= −
∫
Rd
+

lim
t→0

1

t

(
Ex[e−X′

tξ]− e−x′ξ
)
f̌(ξ)dξ

= − lim
t→0

1

t

∫
Rd
+

(
Ex[e−X′

tξ]− e−x′ξ
)
f̌(ξ)dξ,

where in the last step we used Lebesgue’s dominated convergence theorem, which is jus-
tified by Theorem 3.6. Further∫

Rd
+

(
Ex[e−X′

tξ]− e−x′ξ
)
f̌(ξ)dξ =

∫
Rd
+

(∫
Rd
+

e−z′ξdPXx
t
(z)− e−x′ξ

)
f̌(ξ)dξ

=

∫
Rd
+

f(z)dPXx
t
(z)− f(x)

= Ex[f(Xt)]− f(x)
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by an application of Fubini’s Theorem, such that altogether∫
Rd
+

e−x′ξλ(x, ξ)f̌(ξ)dξ = − lim
t→0

1

t
(Ex[f(Xt)]− f(x)) = −Af(x).

4 Invariant Distributions

In [3] it was shown under certain boundedness conditions that a probability measure µ is
invariant for a given rich Itô-Lévy process if and only if∫

Rd

eix
′ξp(x, ξ)µ(dx) = 0 for all ξ ∈ Rd, (4.1)

where p(x, ξ) is the (probabilistic) symbol of the Itô-Lévy process. Recall that an Itô-
Lévy process is rich if and only if the domain of its generator contains the test functions
C∞

c (Rd).
A similar criterion based on the Laplace symbol shall be established in the following. The
main advantage of this new criterion is the fact, that we can drop the formerly needed
boundedness conditions. Further, in the case of bounded Itô-Lévy processes richness can
be a serious restriction as the bound directly influences the domain of the generator. As
an example, recall that while e.g. Brownian motion is a rich Itô-Lévy process, the domain
of the generator of the Brownian motion absorbed at zero as treated in Example 3.4 only
contains functions with zero second derivative in zero.

Remark that proofs of necessity and sufficiency of (4.1) for µ to be invariant rely on
completely different techniques, which is the reason why we will give two distinct theorems
for the two directions in the following, starting with the necessity part.

Theorem 4.1. Let (Xt)t≥0 be an Rd
+-valued Itô-Lévy process with polynomially bounded,

finely continuous differential characteristics which admits an invariant distribution µ and
whose Laplace symbol is given by λ(x, ξ), x, ξ ∈ Rd

+. Then∫
Rd
+

e−x′ξλ(x, ξ)µ(dx) = 0 for all ξ ∈ Rd
+. (4.2)

Proof. Using Theorem 3.6 we obtain by Lebesgue’s dominated convergence theorem∫
Rd
+

e−x′ξλ(x, ξ)µ(dx) =

∫
Rd
+

e−x′ξ lim
t→0

Ex

[
e−(Xt−x)′ξ − 1

t

]
µ(dx)

= lim
t→0

1

t

∫
Rd
+

e−x′ξ Ex[e−(Xt−x)′ξ − 1]µ(dx),

= lim
t→0

1

t

(∫
Rd
+

Ex
[
e−X′

tξ
]
µ(dx)−

∫
Rd
+

e−x′ξµ(dx)

)
= 0,

as had to be shown.
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We continue with the sufficiency part.

Theorem 4.2. Let (Xt)t≥0 be an Rd
+-valued Itô-Lévy process with polynomially bounded,

finely continuous differential characteristics, with generator (A, D(A)) and with Laplace
symbol λ(x, ξ). Assume that the set of functions f ∈ D(A) ∩ S with S as in (3.10)
contains a core. Further assume there exists a probability measure µ on Rd

+ such that∫
Rd
+
e−x′ξ|λ(x, ξ)|µ(dx) < ∞ and

∫
Rd
+
e−x′ξλ(x, ξ)µ(dx) = 0 for all x ∈ Rd

+. Then µ is

invariant for (Xt)t≥0.

Proof. By Theorem 3.11 the generator A admits the representation (3.11) with integrable
Laplace inverse f̌ for all f ∈ D(A) ∩ S. Therefore, for these functions f we obtain using
Fubini’s theorem∫

Rd
+

Af(x)µ(dx) =
∫
Rd
+

∫
R+

e−x′ξλ(x, ξ)f̌(ξ)dξf(x)µ(dx)

=

∫
Rd
+

∫
R+

e−x′ξλ(x, ξ)µ(dx)f̌(ξ)dξ

= 0.

Hence ∫
Rd
+

Af(x)µ(dx) = 0, for all f ∈ D(A)

from which the assertion follows (see Remark 4.3).

Remark 4.3. Observe that in the previous article [3] we made a distinction between
invariant measures and so-called infinitesimal invariant measures, that is measures µ which
fulfill

∫
Rd Af(x)µ(dx) but not necessarily∫

Rd

Ttf(x)dµ(x) =

∫
Rd

f(x)dµ(x), ∀f ∈ C0(Rd), t ≥ 0,

where (Tt)t≥0 is the semigroup associated to the generator (A, D(A)) with D(A) being a
subset of C0(Rd), the continuous, real-valued functions on Rd vanishing at infinity. This
distinction can also be found in some of the literature concerning the subject as e.g. [1, 2].
Actually, in our setting such a distinction is not necessary as we are always a priori
assuming the existence of a given Markov process and, therefore, are equipped with a
given proper generator and semigroup. Hence e.g. the proof of [8, Prop. 9.2, b)⇔c)] can
be applied without any further assumptions, implying that invariance and infinitesimal
invariance are equivalent here (as well as in the setting of [3]).

4.1 Some applications

Example 4.4. The Cox-Ingersoll-Ross (CIR) process is defined as the solution of the
SDE

dXx
t = a(b−Xx

t )dt+ σ
√
Xx

t dBt, t ≥ 0, Xx
0 = x > 0,

11



for some constants a, b, σ > 0 and a real-valued standard Brownian motion (Bt)t≥0. This
process is a.s. non-negative (given 2ab ≥ σ2 it even is a.s. positive) and using Theorem
3.8 we hence obtain the Laplace symbol of (Xx

t )t≥0 as

λ(x, ξ) = a(b− x)ξ − 1

2
σ2xξ2 = abξ − (aξ +

1

2
σ2ξ2)x, x, ξ ≥ 0.

Hence by Theorem 4.1 any stationary distribution µ of the CIR process has to fulfil

0 =

∫
Rd
+

e−x′ξλ(x, ξ)µ(dx)

= abξ

∫
Rd
+

e−x′ξµ(dx)− (aξ +
1

2
σ2ξ2)

∫
Rd
+

e−x′ξxµ(dx)

= abξψµ(ξ) + (aξ +
1

2
σ2ξ2)ψ′

µ(ξ).

This first order linear ODE is uniquely solved by

ψ(ξ) = c(2a+ ξσ2)−
2ab
σ2

for some constant c. Since limξ→0 ψ(ξ) = 1 we observe that c = (2a)
2ab
σ2 such that

ψ(ξ) =

(
2a

2a+ ξσ2

) 2ab
σ2

which is the Laplace transform of a Gamma distribution, the well-known unique stationary
distribution of the CIR process.

Example 4.5. The stochastic Verhulst model is a stochastic population growth model
where the population size (Xt)t≥0 solves

dXx
t = Xx

t (a−Xx
t )dt+ σXx

t dBt, Xx
0 = x ≥ 0, (4.3)

with a, σ > 0 and a real-valued standard Brownian motion (Bt)t≥0. This SDE has an
a.s. non-negative unique solution (cf. [16, Exercise 5.15]) and hence we obtain its Laplace
symbol by Theorem 3.8 as

λ(x, ξ) = x(a− x)ξ − 1

2
σ2x2ξ2, x, ξ ≥ 0.

Hence if the stochastic Verhulst model had an invariant law, its Laplace transform ψ had
to fulfil

0 = −aξψ′(ξ)− (ξ +
1

2
σ2ξ2)ψ′′(ξ). (4.4)

This second order linear ODE is for 2a ̸= σ2 uniquely solved by

ψ(ξ) =
c1(2 + σ2ξ)1−

2a
σ2

σ2 − 2a
+ c2

12



for constants c1, c2. From limξ→0 ψ(ξ) = 1 we further derive c2 and obtain that

ψ(ξ) = 1 + c1
(2 + σ2ξ)1−

2a
σ2 − 21−

2a
σ2

σ2 − 2a
.

The case c1 = 0 corresponds to the Dirac measure in 0 and obviously X0
t = 0 is a station-

ary solution of (4.3) with starting value 0.
From Bernsteins theorem we further observe that if ψ is a Laplace transform of a proba-
bility measure, then

ψ′(ξ) = c1
(2 + σ2ξ)−

2a
σ2

σ2
≤ 0,

such that c1 ≤ 0. This then implies automatically (−1)nψ(n)(ξ) ≥ 0 for all n ∈ N\{0}. So
for ψ to define the Laplace transform of a non-trivial probability measure it is necessary
and sufficient that c1 < 0 and ψ(ξ) ≥ 0 for all ξ > 0. Letting ξ tend to infinity in the
above formula in the case σ2 > 2a this yields to a contradiction. In the case σ2 < 2a
ψ(ξ) ≥ 0 is equivalent to

(2 + σ2ξ)1−
2a
σ2 − 21−

2a
σ2 ≥ σ2 − 2a

c1
> 0

which leads to a contradiction for ξ → 0.
In the case 2a = σ2 the unique solution to (4.4) is given by

ψ(ξ) = c1
log(aξ + 1)

a
+ c2

for some constants c1, c2 and a similar reasoning as above again leads either to a Dirac
measure in 0 or to a contradiction.
Hence in the stochastic Verhulst model no (non-trivial) invariant probability measure
exists.

Example 4.6. Consider a continuous-state branching process with immigration (CBI),
i.e. a Markov process on R+ whose Laplace symbol is given by

λ(x, ξ) = F (ξ) + xG(ξ),

where F and G are of Lévy-Khintchine form, that is

F (ξ) = aF ξ +

∫
R+

(1− e−uξ)νF (du), and

G(ξ) = aGξ − σ2
Gξ

2 +

∫
R+

(1− e−uξ − uξ1(0,1](u))νG(du),

where aF , σ
2
G ≥ 0, aG ∈ R and νF , νG are Lévy measures (see e.g. [14] for details).

Then for any probability measure µ with Laplace transform ψµ we have∫
R+

e−xξλ(x, ξ)µ(dx) = F (ξ)ψµ(ξ) +G(ξ)ψ′
µ(ξ), ξ ≥ 0,

13



and this equals 0 if and only if

ψµ(ξ) = exp

(∫
(0,ξ)

F (u)

G(u)
du

)
which is the form of the Laplace transform of the invariant measure of a CBI process as
shown in [14, Thm. 2.6].

4.2 Symmetric processes

Stationarity of a Markov process is kept when applying a measurable function on the val-
ues of the process. We can use this fact to apply the above results also in case of processes
which are not one-sided bounded as will be demonstrated in the following proposition and
example.

Proposition 4.7. Let L,Z be independent Lévy processes in R and assume that Z is
symmetric. Consider the unique solution of the SDE

dXt = Φ(Xt−)dLt + dZt, t ≥ 0. (4.5)

where Φ is Lipschitz continuous, polynomially bounded and odd. Let µ be invariant for X,
then for all ξ > 0

2σ2
Lξ

2

∫
R
e−ξx2

x2Φ2(x)µ(dx) + 2σ2
Zξ

2

∫
R
e−ξx2

x2µ(dx)

= 2ℓLξ

∫
R
e−ξx2

xΦ(x)µ(dx) + σ2
Lξ

∫
R
e−ξx2

Φ2(x)µ(dx) + σ2
Zξ

∫
R
e−ξx2

µ(dx)

+

∫
R
e−ξx2

∫
R
(1− e−u2Φ2(x)ξ)NL(du)µ(dx) +

∫
R
(1− e−u2ξ)NZ(du)

∫
R
e−ξx2

µ(dx).

In particular if Z is symmetric strictly α-stable, 0 < α < 2, with characteristic exponent
ϕZ(ξ) = |ξ|α we obtain

2σ2
Lξ

2

∫
R
e−ξx2

x2Φ2(x)µ(dx) = 2ℓLξ

∫
R
e−ξx2

xΦ(x)µ(dx) + σ2
Lξ

∫
R
e−ξx2

Φ2(x)µ(dx)

+

∫
R
e−ξx2

∫
R
(1− e−u2Φ2(x)ξ)NL(du)µ(dx) +

1

α
Γ(1− α/2)ξα/2

∫
R
e−ξx2

µ(dx).

Proof. Since Z is symmetric, we also have that X given by

Xt = X0 +

∫
(0,t]

Φ(Xt−)dLt + Zt

is symmetric, whenever the starting distribution of X0 is symmetric.

14



Consider the process Yt := X2
t , then by Itô’s formula

dYt = dX2
t = 2Xt−dXt + d[X,X]t − 2Xt−∆Xt

= 2Xt−(Φ(Xt−)dLt + dZt) + (Φ(Xt−))
2d[L,L]t + d[Z,Z]t

− 2Xt−(Φ(Xt−)∆Lt +∆Zt)

=: 2Xt−(Φ(Xt−)dL
c
t + dZc

t ) + (Φ(Xt−))
2d[L,L]t + d[Z,Z]t

= 2sgn(Xt−)
√
Yt−(Φ(sgn(Xt−)

√
Yt−)dL

c
t + dZc

t )

+ (Φ(sgn(Xt−)
√
Yt−))

2d[L,L]t + d[Z,Z]t

= 2
√
Yt−Φ(

√
Yt−)dL

c
t + 2sgn(Xt−)

√
Yt−dZ

c
t

+ (Φ(
√
Yt−))

2d[L,L]t + d[Z,Z]t

where Zc
t = Zt−

∑
0<s≤t ∆Zs is just the Brownian part of Z, since Z is symmetric. Further

[L,L]t = σ2
Lt+

∑
0<s≤t

∆L2
s has Laplace exponent λ[L,L](ξ) = σ2

Lξ +

∫
R
(1− e−u2ξ)NL(du),

and the Laplace exponent of [Z,Z]t looks similar. Hence by Theorem 3.8, the Laplace
symbol of Y is given by

λY (y, ξ) = ϕLc(i2
√
yΦ(

√
y)ξ) + ϕZc(i2sgn(x)

√
yξ) + λ[L,L](Φ

2(
√
y)ξ) + λ[Z,Z](ξ)

= 2ℓL
√
yΦ(

√
y)ξ − 4

σ2
L

2
yΦ2(

√
y)ξ2 − 4

σ2
Z

2
yξ2

+ σ2
LΦ

2(
√
y)ξ +

∫
R
(1− e−u2Φ2(

√
y)ξ)NL(du) + σ2

Zξ +

∫
R
(1− e−u2ξ)NZ(du),

where ϕLc and ϕZc denote the characteristic exponents of Lc and Zc, respectively.
If X has an invariant (symmetric) distribution µ, then Y has the invariant distribution µ̃
with µ̃ = T (µ) and T : x 7→ x2. Hence by Theorem 4.1 above

0 =

∫
(0,∞)

e−ξyλY (y, ξ)µ̃(dy)

= 2ℓLξ

∫
(0,∞)

e−ξy√yΦ(√y)µ̃(dy)− 2σ2
Lξ

2

∫
(0,∞)

e−ξyyΦ2(
√
y)µ̃(dy)

− 2σ2
Zξ

2

∫
(0,∞)

e−ξyyµ̃(dy) + σ2
Lξ

∫
(0,∞)

e−ξyΦ2(
√
y)µ̃(dy) + σ2

Zξ

∫
(0,∞)

e−ξyµ̃(dy)

+

∫
(0,∞)

e−ξy

∫
R
(1− e−u2Φ2(

√
y)ξ)NL(du)µ̃(dy) +

∫
R
(1− e−u2ξ)NZ(du)

∫
(0,∞)

e−ξyµ̃(dy)

= 2ℓLξ

∫
R
e−ξx2

xΦ(x)µ(dx)− 2σ2
Lξ

2

∫
R
e−ξx2

x2Φ2(x)µ(dx)

− 2σ2
Zξ

2

∫
R
e−ξx2

x2µ(dx) + σ2
Lξ

∫
R
e−ξx2

Φ2(x)µ(dx) + σ2
Zξ

∫
R
e−ξx2

µ(dx)

+

∫
R
e−ξx2

∫
R
(1− e−u2Φ2(x)ξ)NL(du)µ(dx) +

∫
R
(1− e−u2ξ)NZ(du)

∫
R
e−ξx2

µ(dx)
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as claimed.
If Z is symmetric, strictly α-stable, 0 < α < 2, with characteristic exponent ϕZ(ξ) = |ξ|α
we have NZ(du) = |u|−1−αdu and thus∫

R
(1− e−u2ξ)NZ(du) =

∫
R
(1− e−u2ξ)|u|−1−αdu

=
1

2

∫
(0,∞)

(1− e−vξ)v−1−α/2dv

=
1

2

(α
2

)−1

Γ(1− α/2)ξα/2.

Example 4.8. Consider a symmetric generalized Ornstein-Uhlenbeck (GOU) process
solving (4.5) with Φ(x) = x. Then its invariant measure fulfills by the above theorem for
all ξ > 0

2σ2
Lξ

2

∫
R
e−ξx2

x4µ(dx) + 2σ2
Zξ

2

∫
R
e−ξx2

x2µ(dx)

= 2ℓLξ

∫
R
e−ξx2

x2µ(dx) + σ2
Lξ

∫
R
e−ξx2

x2µ(dx) + σ2
Zξ

∫
R
e−ξx2

µ(dx)

+

∫
R
e−ξx2

∫
R
(1− e−u2x2ξ)NL(du)µ(dx) +

∫
R
(1− e−u2ξ)NZ(du)

∫
R
e−ξx2

µ(dx).

Denoting the Laplace transform
∫
R e

−ξx2
µ(dx) by λ2(ξ) this further reduces to

2σ2
Lξ

2λ′′2(ξ)− 2σ2
Zξ

2λ′2(ξ)

= −2ℓLξλ
′
2(ξ)− σ2

Lξλ
′
2(ξ) + σ2

Zξλ2(ξ)

+

∫
R
e−ξx2

∫
R
(1− e−u2x2ξ)NL(du)µ(dx) +

∫
R
(1− e−u2ξ)NZ(du)λ2(ξ).

In particular, for the well-studied special case of Z being a Brownian motion and Lt = ℓLt
being deterministic we deduce

2(ℓL − σ2
Zξ)λ

′
2(ξ) = σ2

Zλ2(ξ),

which yields

λ2(ξ) =

(
ℓL

ℓL − σ2
Zξ

)1/2

=

(
1− σ2

Z

ℓL
ξ

)−1/2

from which we see that for ℓL < 0, the squared process admits a Gamma(1
2
, −ℓL

σ2
Z
) invariant

distribution from which we recover that the GOU process has a normal invariant law.

4.3 Processes on Rd

Using a similar idea as in the last subsection, we observe that the Laplace symbol can
even be used in order to analyze the stationary distribution of processes defined on the
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whole space Rd. To this end one has to trnasform the given process by a C2-bijection
f : Rd → (0,∞)d which grows at most polynomially.
More precisely, let X be an Itô-Lévy process with state space R (to keep the notation
simple). Denote the finely continuous and polynomially bounded differential characteris-
tics of X by ℓ, Q and n :=

∫
y ̸=0

(1∧∥y∥2) N(·, dy). As we are in the one-dimensional case,

we could use the C2-bijection

f(x) := exp(x) · 1(−∞,0](x) +

(
1

2
x2 + x+ 1

)
· 1(0,∞)(x)

It is a simple consequence of Itô’s formula that we obtain for the transformed process
X̃ := f(X) with state space R+\{0} the differential characteristics

ℓ̃(Xt−) = f ′(Xt−)ℓ(Xt−) +
1

2
f ′′(Xt−)Q(Xt−)

+

∫
(χ̃(f(Xt− + y)− f(Xt−))− f ′(Xt−)χ(y)) N(Xt−, dy)

Q̃(Xt−) = f ′(Xt−)Q(Xt−)f
′(Xt−)

Ñ(Xt−, A) =

∫
A

(f(Xt− + y)− f(Xt−)) N(Xt−, dy) for A ∈ B(R\{0}).

(4.6)

Here, χ and χ̃ denote the truncation functions on R with respect to which the character-
istics of X, respectively X̃, are defined.

Substituting Xt− by f−1(X̃t−) in (4.6) we obtain that X̃ is again an Itô-Lévy process.
If the differential characteristics of this process are again polynomially bounded, we can
use our methods on this new process. Its Laplace symbol λ(x̃, ξ) is derived by plugging

(4.6) into (3.2). The process X̃ can then be analyzed by the method above. If we find a
stationary distribution µ̃, we can transform it by f−1 to derive the stationary distribution
of the original process X.
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erty of Lévy type operators. Potential Analysis 13, 147–168.

[2] Albeverio, S., Di Persio, L., Mastrogiacomo, E., Smii, B. (2014) A class of Lévy driven
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