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Abstract 

Bayesian updating is a powerful method to learn and calibrate models with data and 

observations. Because of the difficulties involved in computing the high-dimensional integrals 

necessary for Bayesian updating, Markov Chain Monte Carlo (MCMC) sampling methods have 

been developed and successfully applied for this task. The disadvantage of MCMC methods is 

the difficulty of ensuring the stationarity of the Markov chain. We present an alternative to 

MCMC that is particularly effective for updating mechanical and other computational models, 

termed BUS: Bayesian Updating with Structural reliability methods.  With BUS, structural 

reliability methods are applied to compute the posterior distribution of uncertain model 

parameters and model outputs in general. We propose an algorithm for the implementation of 

BUS, which can be interpreted as an enhancement of the classical rejection sampling algorithm 

for Bayesian updating. This algorithm is based on the subset simulation and its efficiency is not 

dependent on the number of random variables in the model. The method is demonstrated by 

application to parameter identification in a dynamic system, Bayesian updating of the material 

parameters of a structural system, and Bayesian updating of a random-field-based FE model of 

a geotechnical site. 

Keywords 

Bayesian updating; structural reliability; sampling; measurements; monitoring; FEM. 

 



Bayesian updating with structural reliability methods  2/34 

Introduction 

With advances in information and sensor technology, increasing amounts of data on 

engineering systems are collected and stored; examples include data on deformations and 

dynamic properties of structural systems, and data on ambient factors influencing deterioration 

of engineering structures. This information can – and should – be used to reduce the uncertainty 

in engineering models and optimize the management of these systems. As an example, a smart 

structure should use sensor information to automatically trigger actions like detailed inspections 

or system shut-downs.  

A consistent and effective framework for combining new information with existing models is 

provided by Bayesian analysis, in which prior probabilistic models are updated with data and 

observations. The Bayesian framework enables the combination of uncertain and incomplete 

information with models from different sources and it provides probabilistic information on the 

accuracy of the updated model. The latter is of particular relevance, since system predictions 

typically remain uncertain even with new information. For this reason, important decisions on 

engineering systems should be made on the basis of reliability and risk assessments, and 

Bayesian analysis is a cornerstone of such assessments.  

Bayesian updating of engineering and mechanical models has been considered since the 1960s. 

Benjamin and Cornell (1970) described the use of Bayesian updating for improved engineering 

decision making through examples from material testing and geotechnical site investigation. 

Tang (1973) recognized the potential of Bayesian updating for updating the probabilistic 

description of material imperfections and flaws with inspection information, an idea that later 

formed the basis for reliability- and risk-based planning of inspections using Bayesian 

principles (Yang and Trapp 1974; Straub and Faber 2005). Bayesian analysis has also been used 

extensively for structural identification, i.e. the task of identifying dynamic properties of 

structural systems based on vibration measurements (Natke 1988; Beck and Katafygiotis 1998). 

In hydrology, Bayesian analysis has been frequently applied for model calibration with 

measurements, e.g. of rainfall and discharge measurements (Kavetski et al. 2006; Beven 2008). 

The topic has also attracted the attention of the mathematical community (Kennedy and 

O'Hagan 2001). Overall, countless applications of Bayesian updating of mechanical, 

engineering and computational models are reported in the literature. Its popularity is further 

increasing as computational limitations are becoming less of a concern due to increased 

computing power and enhanced algorithms.  
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Bayesian updating requires the evaluation of the posterior probabilistic model given the prior 

model and the likelihood function describing observation data. With few exceptions, the 

posterior model must be evaluated numerically. For cases where the information contained in 

the data is much stronger than the prior model, the posterior can be approximated in terms of 

an asymptotic expression (Beck and Katafygiotis 1998; Papadimitriou et al. 2001). However, 

this expression requires determination of the possibly multiple local maxima of the likelihood 

function as well as evaluation of the Hessian of the likelihood at each corresponding parameter 

set. Most commonly, Bayesian updating is performed through sampling methods. The Markov 

Chain Monte Carlo (MCMC) method is particularly popular, since it allows direct sampling 

from the posterior distribution without the need to solve the potentially high-dimensional 

integral in the Bayesian formulation (Gilks et al. 1998; Gelman 2004). Many authors have 

applied and adopted MCMC to Bayesian updating of mechanical models, including (Beck and 

Au 2002; Cheung and Beck 2009; Sundar and Manohar 2013). A main problem of MCMC 

methods is that it cannot generally be ensured that the samples have reached the stationary 

distribution of the Markov chain, i.e. the posterior distribution (Plummer et al. 2006). Various 

alternatives to MCMC exist, which are mostly based on rejection sampling and importance 

sampling, e.g. the adaptive rejection sampling from a log-concave envelope distribution, which 

is effective for updating single random variables (Gilks and Wild 1992), or generalized 

sequential particle filter methods for updating arbitrary static or dynamic systems (Chopin 2002; 

Ching and Chen 2007). These methods are often combined with MCMC. 

An increasingly popular approach to represent probabilistic models in engineering is the 

Bayesian network (BN) framework, which allows decomposing joint probability distributions 

into local conditional distributions. As its name suggests, the BN modeling framework is 

particularly suitable for Bayesian updating. Under certain conditions, mechanical models can 

be effectively represented in a BN with discrete or discretized random variables and efficient 

algorithms are then available (Straub and Der Kiureghian 2010b). Examples of BN applied to 

updating of mechanical models are presented e.g. in (Mahadevan et al. 2001; Straub 2009; 

Straub and Der Kiureghian 2010a). The BN framework may also be combined with continuous 

random variables, e.g. it is ideally suited for applications of MCMC algorithms based on Gibbs 

sampling (Gilks et al. 1994). Unfortunately, the conditions for the effectiveness of BN, namely 

conditional independence among random variables, are often not given in mechanical models. 

In this paper, a novel approach to Bayesian updating of engineering models is presented, which 

combines a rejection sampling strategy with structural reliability methods. We term the method 

BUS (Bayesian Updating with Structural reliability methods). BUS is based on the approach 
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described in (Straub 2011) for Bayesian updating of the reliability of engineering systems. In 

this paper, the approach is extended to computing the posterior distribution of uncertain model 

parameters and model outputs in general. Key advantages of the BUS approach are its 

simplicity and that it enables using the whole portfolio of structural reliability methods and 

associated software for Bayesian updating. Here, we implement the BUS approach through 

subset simulation (Au and Beck 2001), which can efficiently handle models with many random 

variables. Three illustrative examples are included, which demonstrate the application of the 

method to structural identification, Bayesian updating of material parameters in a statically 

loaded structure, and updating of a random-field-based finite-element (FE) model.  

Bayesian updating of mechanical models  

Mechanical models consist of a set of equations and boundary conditions that describe the 

geometry, material properties and loading conditions. In many applications, some of the 

parameters of the model are uncertain. These parameters are modeled as random variables 𝐗, 

characterized through their joint probability density function (PDF) 𝑓(𝐱). The mechanical 

model itself is often uncertain, which can be reflected by introducing one or more additional 

random variables into 𝐗 to represent model errors.   

When new observations or data related to a mechanical model are available, these can be used 

to learn the mechanical model. As an example, observations of deformations of a structure 

under known loading provide information on the material properties of the structure. Since the 

uncertainty in the mechanical model and its parameters is reflected through 𝐗, learning from 

the observations is tantamount to updating the distribution of 𝐗. Bayes’ rule enables updating a 

prior probability distribution 𝑓′(𝐱)  with observations or data to a posterior probability 

distribution 𝑓′′(𝐱): 

𝑓′′(𝐱) =
𝐿(𝐱)𝑓′(𝐱)

∫ 𝐿(𝐱)𝑓′(𝐱)d𝐱
𝐗

. (1) 

Throughout this paper we use the convention ∫ d𝐱
𝐗

= ∫ … ∫ d𝑥1 … d𝑥𝑛
∞

−∞

∞

−∞
. The direct 

evaluation of the 𝑛-fold integral in Eq. (1) is not feasible in the general case, which has 

motivated the introduction of MCMC and other sampling techniques for Bayesian analysis.  

𝐿(𝐱) in Eq. (1) is the so-called likelihood function and describes observations and data (Fisher 

1922). It is defined as  



Bayesian updating with structural reliability methods  5/34 

𝐿(𝐱) ∝ Pr(𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛|𝐗 = 𝐱). (2) 

When observations are made, they often correspond to outcomes of the mechanical models. 

Therefore, the likelihood function must include the mechanical models to relate the observation 

to the model parameters 𝐗. As an example, if deformations of a structure are measured, the 

model predictions of these deformations for given values of 𝐗 are required. Let ℎ𝑖(𝐗) denote 

such a model prediction. Furthermore, let 𝑦𝑖 denote the corresponding observed deformation 

and let 𝜖𝑖 denote the deviation of the model prediction from the observation. This deviation is 

due to measurement errors and model errors (those not modeled explicitly through 𝐗); it is 

modelled through the PDF 𝑓𝜖𝑖
(∙) . The following relationship holds: 𝑦𝑖 − ℎ𝑖(𝐗) = 𝜖𝑖 . The 

likelihood function 𝐿𝑖(𝐱) describing this observation is therefore 

𝐿𝑖(𝐱) = 𝑓𝜖𝑖
[𝑦𝑖 − ℎ𝑖(𝐱)]. (3) 

Generally, one can distinguish two classes of observations (Madsen et al. 1985; Straub 2011):  

(a) Observations providing equality information. These are measurements 𝑦𝑖  of continuous 

quantities, for which equalities similar to 𝑦𝑖 − ℎ𝑖(𝐗) = 𝜖𝑖 can be formulated. The likelihood 

function for these observations is  

𝐿𝑖(𝐱) = 𝑓𝑌𝑖|𝐗(𝑦𝑖|𝐱)  . (4) 

𝑓𝑌𝑖|𝐗 is the PDF of the measured quantity given 𝐗 = 𝐱. Typically, 𝑓𝑌𝑖|𝐗 is defined by the PDF 

of the observation error 𝜖𝑖, which is often assumed to follow a Gaussian distribution. In case of 

an additive observation error 𝜖𝑖 , 𝐿𝑖(𝐱) is defined as in Eq. (3). In case of a multiplicative 

observation error 𝜖𝑖, the relationship between measurement 𝑦𝑖 and model prediction ℎ𝑖(𝐗) is 

𝑦𝑖 = ℎ𝑖(𝐗) ∙ 𝜖𝑖; solving for 𝜖𝑖 and inserting into 𝑓𝜖𝑖
(𝜖𝑖), the likelihood function is obtained as 

𝐿𝑖(𝐱) = 𝑓𝜖𝑖
(

𝑦𝑖

ℎ𝑖(𝐱)
). (5) 

(b) Observations providing inequality information. These are observations that are 

characterized by a finite probability of occurrence, e.g. observations of categorical values or 

observations of system performances such as failure/survival, but also censored data. 

Commonly, it is possible to formulate a model outcome ℎ𝑖(𝐗) such that the observation event 

is defined through 
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𝑍𝑖 = {𝐱 ∈ ℝ𝑛: ℎ𝑖(𝐱) ≤ 0}. (6) 

A model outcome ℎ𝑖(𝐗) of this form is known in structural reliability as limit state function. 

The corresponding likelihood function is then  

𝐿𝑖(𝐱) = Pr(𝑍𝑖|𝐗 = 𝐱) = 𝐼[ℎ𝑖(𝐱) ≤ 0]. (7) 

𝐼 is the indicator function. This likelihood thus takes on values 0 or 1.  

In the general case, 𝑚 observations are available, of which 𝑚𝑦 are of the equality type and 𝑚𝑧 

are of the inequality type. Under the common assumption that the measurement/observations 

are statistically independent given the model parameters 𝐱, the combined likelihood of all 

observations is 

𝐿(𝐱) = ∏ 𝐿𝑖(𝐱)

𝑚

𝑖=1

. (8) 

In case of statistically dependent observation errors ϵ𝑖 , the combined likelihood must be 

formulated as a function of the joint PDF of all ϵ𝑖 . An example of statistically dependent 

observation errors is included in the applications presented later in the paper. 

Through Eq. (8), all observations are combined in the single expression 𝐿(𝐱) . For the 

computations of the posterior distribution presented in the remainder of the paper, it is irrelevant 

whether the observations are of the equality type, the inequality type, or combinations thereof.  

It should be clear from the preceding discussion that every computation of the likelihood 

function requires up to 𝑚 model evaluations to determine ℎ𝑖, 𝑖 = 1, … , 𝑚. Luckily, for most 

applications, one model call is sufficient to compute all ℎ𝑖, so the necessary number of model 

evaluations is equal to the number of likelihood function calls. For advanced numerical models, 

such as the geotechnical finite element model presented later in the numerical applications, 

these evaluations are computationally costly. Our aim is therefore to perform Bayesian updating, 

Eq. (1), with a minimum number of likelihood function calls.  

Sampling algorithm  

The goal is an efficient algorithm for sampling from the posterior distribution 𝑓′′(𝐱). If direct 

evaluation of the integral in Eq. (1) is not feasible, the posterior PDF is known only up to a 

proportionality constant, i.e. 
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𝑓′′(𝐱) ∝ 𝐿(𝐱)𝑓′(𝐱). (9) 

Samples from 𝑓′′(𝐱) can be generated through a simple rejection sampling algorithm, which is 

introduced in the following.  

Let 𝑃 be a standard uniform random variable in [0,1]. Consider the augmented outcome space 

[𝐱; 𝑝] and define the domain 

Ω = {𝑝 ≤ 𝑐𝐿(𝐱)}. (10) 

where 𝑐 is a positive constant that ensures 𝑐𝐿(𝐱) ≤ 1 for all 𝐱. The selection of this constant 𝑐 

is discussed in Annex A. 

The posterior distribution of Eq. (1) can be written as 

𝑓′′(𝐱) =
∫ 𝑓′(𝐱)

𝑝∈Ω
d𝑝

∫ 𝑓′(𝐱)
[𝐱,𝑝]∈Ω

d𝑝 d𝐱
=  

∫ 𝐼([𝐱, 𝑝] ∈ Ω)𝑓′(𝐱)
1

0
d𝑝

∫ ∫ 𝐼([𝐱, 𝑝] ∈ Ω)𝑓′(𝐱)d𝑝
1

0𝐗
d𝐱

 . (11) 

The validity of this result can be demonstrated as follows. The denominator in (11) corresponds 

to a structural reliability problem with limit state function ℎ(𝐱, 𝑝) = 𝑝 − 𝑐𝐿(𝐱),. It is equal to 

the probability of being in Ω under the prior PDF 𝑓′(𝐱), i.e.  

∫ ∫ 𝐼([𝐱, 𝑝] ∈ Ω)𝑓′(𝐱)d𝑝

1

0𝐗

d𝐱 = ∫ {∫ 𝐼[𝑝 ≤ 𝑐𝐿(𝐱)]d𝑝

1

0

}

𝐗

𝑓′(𝐱)d𝐱 

= ∫ 𝑐𝐿(𝐱)𝑓′(𝐱)

𝐗

d𝐱  

(12) 

The numerator in (11) is equal to 

∫ 𝑓′(𝐱)

𝑝∈Ω

d𝑝 = ∫ 𝑓′(𝐱)

𝑐𝐿(𝐱)

0

d𝑝 = 𝑐𝐿(𝐱)𝑓′(𝐱)  (13) 

Inserting (12) and (13) in (11), the original Bayesian updating formulation of Eq. (1) is obtained.  

The posterior cumulative distribution function (CDF) is obtained by integrating Equation (11) 

on both sides: 
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𝐹′′(𝐱0) = ∫ 𝑓′′(𝐱)d𝐱

𝐱0

−∞

=
∫ (∫ 𝑓′(𝐱)

𝑝∈Ω
d𝑝) d𝐱

𝐱0

−∞

∫ 𝑓′(𝐱)
[𝐱,𝑝]∈Ω

d𝑝 d𝐱
  (14) 

Generating samples 𝐱(𝑘) from 𝑓′(𝐱) and samples 𝑝(𝑘) from the standard uniform distribution, 

𝑘 = 1, … , 𝐾, the following Monte Carlo approximation to the posterior CDF is obtained: 

𝐹′′(𝐱0) ≈
∑ 𝐼(𝐱(𝑘) ≤ 𝐱0)𝐼([𝐱(𝑘), 𝑝(𝑘)] ∈ Ω)𝐾

𝑘=1

∑ 𝐼([𝐱(𝑘), 𝑝(𝑘)] ∈ Ω)𝐾
𝑘=1

  (15) 

It follows that samples 𝐱(𝑘) generated from 𝑓′(𝐱) and falling into the domain Ω are distributed 

according to the posterior 𝑓′′(𝐱). This leads to the following rejection sampling algorithm, 

which generates 𝐾 samples of the posterior 𝑓′′(𝐱). Note that this algorithm is equivalent to a 

classical rejection sampling where the prior distribution is applied as an envelope distribution 

and the likelihood as a filter (Smith and Gelfand 1992). 

Simple rejection sampling algorithm 

1. 𝑘 = 1. 

2. Generate a sample 𝐱(𝑘) from 𝑓′(𝐱). 

3. Generate a sample 𝑝(𝑘) from the standard uniform distribution in [0,1]. 

4. If [𝐱(𝑘), 𝑝(𝑘)] ∈ Ω 

a. Accept 𝐱(𝑘) 

b. 𝑘 = 𝑘 + 1 

5. Stop if  𝑘 = 𝐾, else go to 2. 

The rate of acceptance is equal to the denominator in Eq. (11),   

𝑝𝑎𝑐𝑐 = ∫ 𝑓′(𝐱)

[𝐱,𝑝]∈Ω

d𝑝 d𝐱 = ∫ 𝑐𝐿(𝐱)𝑓′(𝐱)

𝐗

d𝐱. (16) 

For a fixed number of initial samples 𝑁𝐼, the number of accepted samples is binomial distributed 

with parameters 𝑁𝐼  and 𝑝𝑎𝑐𝑐 . To generate a fixed number of accepted samples 𝐾, as in the 

above algorithm, the number of samples that must be generated 𝑁 has the negative binomial 

distribution: 

𝑝𝑁(𝑛) = (
𝑛 − 1
𝐾 − 1

) 𝑝𝑎𝑐𝑐
𝐾 (1 − 𝑝𝑎𝑐𝑐)(𝑛−𝐾) (17) 
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The mean value of 𝑁 is E[𝑁] = 𝐾/𝑝𝑎𝑐𝑐. Consequently, the expected number of samples to 

generate, and thus the expected number of evaluations of 𝐿(𝐱), is proportional to 1/𝑝𝑎𝑐𝑐.  

Let us consider a simple example to clarify the simple rejection sampling algorithm and its 

limitations. 

Illustration: Updating of a single random variable 

Let 𝑋  be a random variable with standard normal prior, i.e. 𝑓′(𝑥) =
1

√2𝜋
exp (−

𝑥2

2
) . A 

measurement of 𝑋 is made, resulting in a value of 2. The measurement is associated with an 

additive error 𝜖, which is normal distributed with zero mean and standard deviation 𝜎𝜖 = 0.5. 

The likelihood function is thus 𝐿(𝑥) =
1

0.5√2𝜋
exp (−

1

2

(𝑥−2)2

0.52 ). The parameter 𝑐 is chosen as 

𝑐 = [max 𝐿(𝑥)]−1 = 0.5√2𝜋 . For this example, an analytical solution can be obtained for 

comparison: The posterior is the normal distribution with mean 1.6 and standard deviation 

√0.2 = 0.45. 

The domain Ω, together with samples of 𝑋 and 𝑃, is shown in Figure 1a. In Figure 1b, the 

empirical frequency plot of the accepted samples is shown, together with the exact posterior 

CDF 𝐹′′(𝑥). The sample mean and standard deviation of the accepted samples are 1.62 and 

0.45; these values are close to the true solution.  

In this example, 25 out of 200 samples are accepted. The exact mean acceptance rate can be 

computed as 𝑝𝑎𝑐𝑐 = ∫ 𝑐𝐿(𝑥)𝑓′(𝑥)d𝑥
∞

−∞
= 0.09. Although not ideal, a mean acceptance rate of 

𝑝𝑎𝑐𝑐 = 0.09 would be acceptable for most problems. However, the acceptance rate decreases 

quickly with increasing number of observations 𝑚. If 𝑚 measurements are made of 𝑋 in the 

above example, all with independent identically distributed (iid) observation errors 𝜖𝑖 , the 

average acceptance rate is proportional to 
1

√𝑚
 (see Annex B). 
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Figure 1. Illustration of the simple rejection sampling algorithm: Updating a single random variable 
𝑋 with the observation 𝑋 + 𝜖 = 2, using 200 samples.(a) Joint samples of 𝑋 and 𝑃 drawn from the 
prior distribution; accepted samples are indicated by a cross. The shaded area is the 
observation/acceptance domain 𝛺. (b) Resulting empirical frequency plot of the accepted samples, 
together with the analytical solution.  

Note that the acceptance rate is directly proportional to the constant 𝑐 of Eq. (10). Therefore, 𝑐 

should be selected as large as possible, while still ensuring that 𝑐𝐿(𝐱) ≤ 1 for all 𝐱. In the above 

example, it is chosen as 𝑐 = [max 𝐿(𝐱)]−1, which is the optimal choice. However, in some real 

applications max 𝐿(𝐱) can be difficult to evaluate. Strategies for selecting an optimal value of 

𝑐 in such cases are discussed in Annex A. 

Bayesian updating with structural reliability methods (BUS) 

The above rejection sampling algorithm quickly becomes inefficient with increasing number of 

observations due to the large rejection rate, unless the posterior 𝑓′′(𝐱) is close to the prior 𝑓′(𝐱). 

This problem is inherent to any direct rejection sampling algorithm (Gelman 2004; Bolstad 

2011) and has motivated the development of MCMC techniques for simulating from the 

posterior  (Gilks et al. 1998). However, the advantage of the simple rejection sampling 
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algorithm over MCMC is that it is straightforward to implement and it is guaranteed to give 

exact, uncorrelated samples of the posterior. Therefore, in the following a method is proposed 

that maintains partly the advantages of the simple rejection sampling algorithm but has much 

higher efficiency. This method, which we call BUS, deals with the inefficiency problem of the 

rejection sampling by combining it with structural reliability methods.  

As pointed out earlier, the integral in the denominator of Eq. (11) corresponds to a structural 

reliability problem. In structural reliability, the domain Ω  describes the event of interest, 

typically a failure event; in the context of the Bayesian updating of Eq. (11), it describes an 

observation event, which we denote by 𝑍𝑒. The integral, and therefore Pr (𝑍𝑒), is equal to the 

acceptance rate 𝑝𝑎𝑐𝑐  of the simple rejection sampling algorithm, which decreases with the 

square root of the number of observations. In many applications, Pr (𝑍𝑒) will be too small for 

Monte Carlo simulation to be efficient. What is needed are methods that allow to more 

efficiently explore the domain Ω and compute Pr (𝑍𝑒) even when it is very small. Structural 

reliability methods such as FORM/SORM or importance sampling methods have been 

specifically developed to evaluate small probabilities (Ditlevsen and Madsen 1996; Rackwitz 

2001). They approximate either the limit state function or the PDF of 𝐗 in the neighborhood of 

the domain Ω with the highest probability density, which in the context of Bayesian updating 

corresponds to the region of the highest posterior probability density. These methods are 

therefore ideally suited to enhance the efficiency of the rejection sampling algorithm.  

When applying structural reliability methods, it is convenient to transform the problem from 

the outcome space of the original random variables 𝑃  and 𝐗  to a space with independent 

standard normal random variables 𝐔 = [𝑈0; 𝑈1; … ; 𝑈𝑛] ∈ ℝ𝑛+1 . Since 𝑃  and 𝐗  are 

independent, they can be transformed separately. The transformation from 𝐔 to 𝑃 and 𝐗 is 

𝑃 = Φ(𝑈0), (18) 

where Φ = standard normal CDF, and  

𝐗 = 𝐓(𝑈1, … , 𝑈𝑛). (19) 

𝐓 =  one of the classical transformations used in structural reliability methods. Both the 

Rosenblatt transformation (Hohenbichler and Rackwitz 1981) or the marginal transformation 

based on the Nataf model (Der Kiureghian and Liu 1986) can be applied.  

The domain Ω describing the observation can now be transformed to an equivalent domain Ω𝑈 

in standard normal space: 
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Ω𝑈 = {Φ(𝑢0) ≤ 𝑐𝐿(𝐓(𝑢1, … , 𝑢𝑛))}. (20) 

For convenience, we define Ω𝑈 in terms of a function 𝐻, 

𝐻(𝐮) = 𝑢0 − Φ−1 (𝑐𝐿(𝐓(𝑢1, … , 𝑢𝑛))), (21) 

so that Ω𝑈 = {𝐻(𝐮) ≤ 0}. 𝐻 is a limit state function describing the observations in standard 

normal space, as may be evident from the correspondence of {𝐻(𝐮) ≤ 0} to the definition of 

the inequality observation in Eq. (6). 

For illustration, Figure 2 shows the transformation of the observation domain Ω and the samples 

of 𝐗 shown in Figure 1a to the corresponding domain Ω𝑈 and samples in standard normal space. 

In order to obtain samples from the posterior, the samples falling into the domain Ω𝑈 must be 

transformed to the original space using Eq. (19). 

  

Figure 2. Observation domain and samples of Figure 1a transformed to standard normal space.  

A main advantage of BUS is that it can potentially be combined with a large number of available 

structural reliability methods. It is not the intention of this paper to identify the most optimal 

method, since this choice will depend on problem as well as on the preferences and experience 

of the analyst. The strength of expressing the observations and data through limit state functions 

𝐻 is exactly the flexibility that it provides.  

Among the available structural reliability methods, importance sampling (IS) methods are 

suitable for generating (weighted) samples from the observation domain Ω𝑈. Such IS methods 
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may be based on the design point (the Most Likely Failure Point MLFP) identified by means of 

the first-order reliability method (FORM). Note that in the context of Bayesian updating, the 

design point corresponds to the mode of the posterior distribution. Axis parallel IS based on the 

design point (also known as line sampling) was applied in an example presented in (Straub 

2011) for the updating of the failure probability; it would also be efficient for updating the 

probability distribution of 𝐗 using BUS. Since the identification of the design point is an 

optimization problem, alternative IS methods that do not require the design point may be 

preferable. In addition to classical adaptive IS methods (e.g. Bucher 1988), newly proposed 

approaches such as the one of (Kurtz and Song 2013) appear to be promising for the application 

with BUS. When applying IS concepts, the resulting samples are weighted. To obtain 

unweighted samples, a resampling scheme must be applied: In an additional step, independent 

samples are drawn from a discrete probability distribution defined through the original samples 

and their weights (Doucet et al. 2001).  

In principle it is possible to use FORM (or SORM) in the context of the BUS approach. If 

FORM was applied, the posterior distribution in 𝐔-space would be approximated by a censored 

standard multi-normal distribution; the censoring is defined through the hyperplane given by 

∇𝐻(𝐮∗)T(𝐮 − 𝐮∗) = 0 , where 𝐮∗  is the design point and ∇𝐻  is the gradient vector of the 

observation limit state 𝐻 of Eq. (21). However, the use of FORM or SORM is not advocated 

without further investigations on its accuracy. As can be observed from Figure 2, the shape of 

the observation domain differs from the failure domains typically encountered in structural 

reliability.  

An alternative to FORM/SORM and importance sampling methods is subset simulation (SuS) 

proposed by (Au and Beck 2001), which is particularly efficient for structural reliability 

problems where the number of random variables 𝑛 is large. For the considered implementation 

in BUS, the SuS has the additional advantage that in its final step it directly produces samples 

from the posterior distribution.  

BUS algorithm based on subset simulation 

In the following, we introduce an algorithm that uses SuS to generate samples in the observation 

domain Ω𝑈. It assumes that the observation event is transformed to 𝐔-space by means of Eq. 

(21). The algorithm is applied in the numerical examples. We restrict the presentation of SuS 

to a summary of its main principles. For details on its implementation in the examples presented 

later in the paper, the reader is referred to (Papaioannou et al. 2014).  
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SuS, originally proposed by Au and Beck (2001), evaluates the probability Pr(𝑍𝑒) of an event 

𝑍𝑒 associated with a limit state function 𝐻(𝐮) and here defined as 𝑍𝑒 = {𝐮 ∈ ℝ𝑛+1: 𝐻(𝐮) ≤ 0}. 

SuS is based on expressing the event 𝑍𝑒 as the intersection of 𝑀 intermediate events that are 

nested, i.e. it holds 𝑍1 ⊃ 𝑍2 ⊃ ⋯ ⊃ 𝑍𝑀 = 𝑍𝑒. The probability Pr(𝑍𝑒) is then expressed as 

Pr(𝑍𝑒) = Pr (⋂ 𝑍𝑖

𝑀

𝑖=1

) = ∏ Pr(𝑍𝑖|𝑍𝑖−1)

𝑀

𝑖=1

 (22) 

where 𝑍0 is the certain event. Thus the possibly small probability Pr(𝑍𝑒) is expressed as the 

product of larger conditional probabilities. The intermediate events 𝑍𝑖, 𝑖 > 0, are defined as 

𝑍𝑖 = {𝐮 ∈ ℝ𝑛+1: 𝐻(𝐮) ≤ 𝑏𝑖}, where 𝑏1 > 𝑏2 > ⋯ > 𝑏𝑀 = 0. The values of 𝑏𝑖 can be chosen 

adaptively, so that the estimates of the conditional probabilities correspond to a chosen value 

𝑝0 . To this end, 𝐽  samples are simulated from the random vector 𝐔  conditional on each 

intermediate domain 𝑍𝑖−1. For each sample, the limit state function 𝐻(𝐮) is evaluated and the 

samples are ordered in increasing order of magnitude of their limit state function values. The 

threshold 𝑏𝑖 is then set to the 𝑝0-percentile of the ordered samples. This procedure is repeated 

until the maximum level 𝑀  is reached, for which 𝑏𝑀 = 0. The samples conditional on the 

certain event 𝑍0 are obtained by crude Monte Carlo sampling. The samples conditional on the 

events 𝑍𝑖, for 𝑖 = 1, … , 𝑀 − 1, are computed by simulating states of Markov chains through 

MCMC starting from the samples conditional on 𝑍𝑖−1 for which 𝐻(𝐮) ≤ 𝑏𝑖. It is noted that the 

seeds of the Markov chains always follow the target distribution and hence the applied MCMC 

does not suffer a convergence (burn-in) problem (Zuev et al. 2012; Papaioannou et al. 2014). 

The probability of Pr(𝑍𝑒) can be approximated by: 

Pr(𝑍𝑒) ≈ 𝑝0
𝑀−1𝑃̂𝑀, (23) 

where 𝑃̂𝑀 is the estimate of the conditional probability Pr(𝑍𝑀|𝑍𝑀−1) and is given by the ratio 

of the number of samples for which 𝐻(𝐮) ≤ 0 over the total number of samples 𝐽 simulated 

conditional on 𝑍𝑀−1. The value 𝑝0 of the intermediate probabilities and the number of samples 

𝐽 in each intermediate step are chosen by the analyst. Au and Beck (2001) suggested using 𝑝0 =

0.1 , whereas Zuev et al. (2012) showed that a choice of 𝑝0 ∈ [0.1,0.3]  leads to similar 

efficiency. 𝐽 should be selected large enough to give an accurate estimate of 𝑝0.  

The SuS algorithm can be slightly modified for application to Bayesian updating, where Pr (𝑍𝑒) 

is not the main result. For Bayesian updating, one is interested in obtaining samples that fall 

into the domain Ω, i.e. samples conditional on 𝑍𝑒. Therefore, we add a final step, which is the 



Bayesian updating with structural reliability methods  15/34 

generation of such samples. In this final step, 𝐾 samples are generated, where 𝐾 can be freely 

chosen. The resulting algorithm is presented in the following. 

 

SuS-based algorithm for BUS 

Define: 𝐽  (number of samples in each intermediate step), 𝐾  (number of final samples), 𝑝0 

(probability of intermediate subsets). 

Sample from the original distribution: 

1. Generate 𝐽  samples 𝐮1
(𝑗)

, 𝑗 = 1, … , 𝐽 , from the (𝑛 + 1)-variate independent standard 

normal distribution, 𝜑𝑛+1. 

2. Define the domain Ω1 = {𝐻(𝐮) ≤ 𝑏1}, wherein 𝑏1 is chosen as the 𝑝0-percentile of the 

samples 𝐻(𝐮1
(𝑗)

) , 𝑗 = 1, … , 𝐽. 

3. 𝑖 = 1 

Sample from the conditional distributions: 

4. Repeat while 𝑏𝑖 > 0. 

a. 𝑖 = 𝑖 + 1 

b. Generate 𝐽  conditional samples 𝐮𝑖
(𝑗)

, 𝑗 = 1, … , 𝐽 , from the (𝑛 + 1) -variate 

independent standard normal distribution conditional on Ω𝑖−1 , 𝜑𝑛+1(𝐮|Ω𝑖−1) , 

using a MCMC algorithm, e.g. (Au and Beck 2001) or (Papaioannou et al. 2014).  

c. Define the domain Ω𝑖 = {𝐻(𝐮) ≤ 𝑏𝑖}, wherein 𝑏𝑖 is chosen as the 𝑝0-percentile of 

the samples or 0, whichever is larger. 

Sample from the posterior distribution: 

5. Identify all samples from 𝐮𝑖 that are in the domain Ω𝑈 = {𝐻(𝐮) ≤ 0}. Set Λ equal to 

the number of these samples 

6. Generate 𝐾  conditional samples 𝐮(𝑘) , 𝑘 = 1, … , 𝐾 , from the (𝑛 + 1) -variate 

independent standard normal distribution conditional on Ω𝑈, 𝜑𝑛+1(𝐮|Ω𝑈). This uses a 

MCMC algorithm where the seeds are the Λ samples identified in 5.   

7. Transform the samples 𝐮(𝑘) to the original space to obtain samples from the posterior 

distribution: 𝐱(𝑘) = 𝐓(𝑢1
(𝑘)

, … , 𝑢𝑛
(𝑘)

), 𝑘 = 1, … , 𝐾. 

Estimate the acceptance probability: 

8. 𝑝𝑎𝑐𝑐 = Pr (𝑍𝑒) ≈ 𝑝0
𝑀−1 ∙

Λ

𝐽
 , following Eq. (23), with 𝑀 = 𝑖. 
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As pointed out earlier, the necessary computational effort is determined mainly by the number 

of likelihood function calls. In the above algorithm, the first and each intermediate step require 

𝐽 likelihood function calls; the final step (sampling from the posterior) requires an additional 

𝐾 − Λ likelihood function calls. The total number of calls associated with the above algorithm 

is thus equal to 𝑀 ∙ 𝐽 + 𝐾 − Λ , where 𝑀  is the total number of steps. It is 𝑀 ≈

⌊log 𝑝𝑎𝑐𝑐 / log 𝑝0 ⌋, hence the computational effort is approximately proportional to log 𝑝𝑎𝑐𝑐. 

Note that the number of likelihood function calls in the BUS approach is approximately equal 

to the number of limit state function calls in the traditional use of SuS (or other structural 

reliability methods), when evaluating the probability of an event with probability 𝑝𝑎𝑐𝑐. For BUS, 

the fact that accuracy in computing 𝑝𝑎𝑐𝑐 is typically not crucial can motivate a reduction in the 

number of samples 𝐽 in each step as compared to the original SuS, for which values of 𝐽 = 500 

and 𝑝0 = 0.1 were proposed by (Au and Beck 2001). However, we do not investigate such 

further optimization in this paper.  

Bayesian inference 

Once 𝐾  samples 𝐱(𝑘)  from the posterior distribution are obtained, any property of this 

distribution can be estimated using a MCS approach. When the 𝐱(𝑘) are generated following 

the SuS algorithm outlined above, it must be taken into account that the samples 𝐱(𝑘) can be 

correlated (this is in analogy to MCMC). While this does not affect the estimates below, it does 

affect their accuracy. 

The expected value of any function 𝑌 of 𝐗 is estimated as 

E[𝑌(𝐗)] ≈ 𝐾−1 ∑ 𝑌(𝐱(𝑘))

𝐾

𝑘=1

. (24) 

Accordingly, an estimate of the distribution of 𝑌(𝐗) is obtained as 

𝐹𝑌(𝐗)(y) = Pr(𝑌(𝐗) ≤ 𝑦) = E[𝐼(𝑌(𝐗) ≤ 𝑦)] ≈ 𝐾−1 ∑ 𝐼[𝑌(𝐱(𝑘)) ≤ 𝑦]

𝐾

𝑘=1

. (25) 

Alternatively, kernel density approximations may be used for the posterior of 𝐗  or 𝑌(𝐗) 

(Turlach 1993). 
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If the interest is in computing the posterior probability of a failure event 𝐹, defined through a 

limit state function 𝑔(𝐗) as 𝐹 = {𝐱 ∈ ℝ𝑛: 𝑔(𝐱) ≤ 0}, the corresponding function is 𝑌(𝐗) =

𝐼(𝑔(𝐗) ≤ 0). A MCS estimate from the posterior samples following Eq. (24) is inefficient 

when the posterior probability of failure is small. In such cases, which are common in structural 

reliability problems, it is beneficial to follow the procedure in (Straub 2011). Thereby, the 

intersection of 𝐹 with the observation event 𝑍𝑒  is computed directly by means of structural 

reliability methods.  

Illustrative applications 

Three applications are presented. The first one demonstrates the applicability of BUS to 

problems that are not globally identifiable. The second demonstrates its applicability to 

problems for which a larger number of measurements with correlated errors are available. The 

third example demonstrates the applicability of the method to FE-based analysis, including a 

random field modeling of material (soil) properties.  

Parameter identification in a two DoF system 

This example is due to (Beck and Au 2002). The mechanical model, the prior distributions as 

well as the data are taken from the original reference, so that the results can be compared.  

The example is a two degree of freedom (DoF) system, whose uncertain spring coefficients are 

to be determined based on measurements of the first two eigenfrequencies. The problem is not 

globally identifiable, i.e. there are multiple combinations of values of the model parameters that 

can well explain the measured eigenfrequencies. In (Beck and Au 2002), the problem was 

solved through Bayesian updating using a MCMC approach. Here, we employ the proposed 

BUS method implemented through the SuS-based algorithm.   

A two-story frame-structure is modeled through a shear building model with two DoF (Figure 

3). The story masses, which include the mass contributions from the columns, are taken as 

deterministic values with 𝑚1 = 16.531 ∙ 103  kg and 𝑚2 = 16.131 ∙ 103  kg. The inter-story 

stiffness values are modeled as 𝐾1 = 𝑋1𝑘𝑛 and 𝐾2 = 𝑋2𝑘𝑛, where 𝑘𝑛 = 29.7 ∙ 106 N/m is the 

nominal value and 𝑋1, 𝑋2 are correction factors. Damping is not considered in the analysis. 

Observations of the first two eigenfrequencies 𝑓1 and 𝑓2 are used to update the prior distribution 

of 𝐗 = [𝑋1; 𝑋2] to its posterior distribution. Following (Beck and Au 2002), the likelihood 

function is  
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𝐿(𝐱) ∝ exp [−
𝐽(𝐱)

2σϵ
2

], (26) 

where 

𝐽(𝐱) = ∑ 𝜆𝑗
2 [

𝑓𝑗
2(𝐱)

𝑓𝑗
2

− 1]

2

 

2

𝑗=1

 (27) 

is a modal measure-of-fit function. 𝑓𝑗
2(𝐱) is the 𝑗th eigenfrequency predicted with the model 

with parameters 𝐱 and 𝑓𝑗
2 is the corresponding measurement. 𝜆1 = 𝜆2 = 1 are the means and 

σϵ =
1

16
 is the standard deviation of the prediction error. The measured eigenfrequencies are 

𝑓1̃ = 3.13Hz and 𝑓2̃ = 9.83Hz . 

 

Figure 3. Two DoF shear building model. 

The prior probability distributions of 𝑋1, 𝑋2  are uncorrelated lognormal distributions with 

modes 1.3 and 0.8 and standard deviations σ𝑋1
= σ𝑋2

= 1. The proportionality constant in the 

formulation of the likelihood function, Eq. (26), is selected as 1 and the constant 𝑐  in the 

observation limit state function 𝐻 is taken as 1. (The largest possible value of the likelihood 

function occurs for 𝐽(𝐱) = 0, in which case it is 𝐿(𝐱) = 1. Therefore, with 𝑐 = 1 it is 𝑐𝐿(𝐱) ≤

1 for all 𝐱.) 

The samples obtained with the SuS-based rejection sampling algorithm are shown in Figure 4, 

including the samples from the intermediate steps. The parameters of the algorithm were 

selected as 𝐽 = 500, 𝐾 = 500 and 𝑝0 = 0.1, without attempting any optimization. The number 

of subset simulation steps is 𝑀 = 3 and the number of additional samples in the last step is 𝐾 −

Λ = 349. It follows that the total number of samples, and hence the total number of likelihood 

function evaluations, is 1849.  
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Figure 4. Bayesian updating of the correction factors 𝑿 = [𝑋1; 𝑋2]. Samples from the prior 
distribution, the intermediate subsets and the final posterior distribution, shown in the outcome space 
of 𝑿. In each step, 500 samples were generated, but some samples are coinciding. 

In Figure 5, the resulting posterior marginal CDF of 𝑋1 is shown for several randomly selected 

runs of the algorithm. The bi-modal nature of the posterior distribution, which is already evident 

from Figure 4, can be clearly observed also in the marginal CDF. The comparison with the 

exact result reveals that the shape of the distribution around the two modes is well captured by 

the samples. The probability of the two modes is estimated with less accuracy, as evident from 

the scatter in the value of the CDF between 0.5 and 1.5. The same observation is made in (Beck 

and Au 2002). This scatter could be reduced by increasing the number of samples; alternatively, 

additional importance sampling evaluations may help to reduce this scatter. For most practical 

applications the accuracy of the presented results would be sufficient. The more important result 

is that the proposed method can successfully identify both modes of the posterior distribution.  
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Figure 5. Posterior CDF of 𝑋1 obtained from 6 repeated runs of the proposed algorithm, together with 
the exact result. 

The results shown in Figure 4 and Figure 5 are consistent with the results given in (Beck and 

Au 2002), where further details and discussion of the example can be found.  

Bayesian updating of the flexibility of a cantilever beam 

This example demonstrates the application of the proposed method to learning a random field 

with measurements whose errors are correlated. The example has an analytical solution, which 

allows a validation of the method.  

We update the spatially variable flexibility 𝐹(𝑥) of a cantilever beam based on measurements 

of the beam deflections. The beam has length 𝐿 = 5m and is subjected to a deterministic point 

load 𝑉 = 20kN at the free end (Figure 6). The flexibility 𝐹(𝑥) is defined as the reciprocal of 

the bending rigidity of the beam, so that 𝐹(𝑥) = 1 𝐸(𝑥)𝐼⁄ , where 𝐸(𝑥) is the Young’s modulus 

at location 𝑥 and 𝐼 is the moment of inertia. We assume that the prior distribution of 𝐹(𝑥) is 

described by a homogeneous Gaussian random field with mean μ𝐹 = 10−7N−1m−2  and 

exponential auto-covariance function Γ𝐹𝐹(𝑥1, 𝑥2) = σ𝐹
2 exp (−

|𝑥1−𝑥2|

𝜆
) , where σ𝐹 = 3.5 ×

10−8N−1m−2 is the standard deviation and λ = 2m the correlation length. 
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Figure 6. Beam subjected to point load 𝑉; measured deflection. 

The second derivative of the vertical deflection 𝑊(𝑥) is a function of 𝐹(𝑥) and the bending 

moment 𝑀(𝑥): 

𝑑2𝑊(𝑥)

𝑑𝑥2
= −𝑀(x)𝐹(𝑥) = 𝑉(𝐿 − 𝑥)𝐹(𝑥) . (28) 

Taking the double integral of the above, it is: 

𝑊(𝑥) = ∫ ∫ 𝑉(𝐿 − 𝑡)𝐹(𝑡) d𝑡
𝑠

0

d𝑠
x

0

 . (29) 

Using the prior information on 𝐹(𝑥), one can evaluate the prior mean and auto-covariance 

function of 𝑊(𝑥). Moreover, because 𝐹(𝑥) is Gaussian and 𝑊(𝑥) is a linear function of 𝐹(𝑥), 

the prior distribution of 𝑊(𝑥) will also be Gaussian. The mean of 𝑊(𝑥) reads: 

μ𝑤(𝑥) = ∫ ∫ 𝑉(𝐿 − 𝑡)μ𝐹 d𝑡
𝑠

0

d𝑠
x

0

=
𝜇𝐹

6
𝑥2(3𝐿 − 𝑥) (30) 

The auto-covariance function of 𝑊(𝑥) is: 

Γ𝑤𝑤(𝑥1, 𝑥2) = ∫ ∫ ∫ ∫ 𝑉2(𝐿 − 𝑡1)(𝐿 − 𝑡2)Γ𝐹𝐹(𝑡1, 𝑡2) d𝑡1

𝑠1

0

d𝑡2

𝑠2

0

d𝑠1

𝑥1

0

d𝑠2

x2

0

 

= ∫ ∫ ∫ ∫ 𝑉2(𝐿 − 𝑡1)(𝐿 − 𝑡2)σ𝐹
2 exp (−

|𝑡1 − 𝑡2|

λ
) d𝑡1

𝑠1

0

d𝑡2

𝑠2

0

d𝑠1

𝑥1

0

d𝑠2

x2

0

 . 

(31) 

The above integral can be solved analytically, however the resulting expression is lengthy and 

hence omitted here. 



Bayesian updating with structural reliability methods  22/34 

Measurements 𝐰𝑚 of the deflection are made at 50 points (0.1m, 0.2m, …, 5m) along the beam 

using optic measurements. The measurements are subjected to additive errors, which are 

described by a joint normal PDF 𝑓𝛜 with zero mean and covariance matrix 𝐂𝛜𝛜, whose elements 

are determined from the auto-covariance function Γϵϵ(𝑥1, 𝑥2) = σϵ
2 exp (−

|𝑥1−𝑥2|

𝜆𝜖
) with 𝜆𝜖 =

1m . The standard deviation of the measurement error is σϵ = 1mm . The simulated 

measurements are shown in Figure 6, together with the true (but in real applications unknown) 

deflection of the beam. 

The likelihood function describing these measurements is  

𝐿(𝐟) = 𝑓𝛜[𝐰(𝐟) − 𝐰𝑚] (32) 

where 𝐟 = [𝑓(0.1m); 𝑓(0.2m); … ; 𝑓(5m)]  is a vector describing the flexibility at the 50 

discretization points and 𝐰(𝐟) is the vector of deflections at these 50 locations computed from 

𝐟 following Eq. (29). 

Bayesian updating of the flexibility at the locations 𝐱 = [0.1m; 0.2m; … ; 5m] is performed 

with BUS using the SuS-based algorithm with 𝐽 = 103 , 𝐾 = 5 × 103  and 𝑝0 = 0.1 . The 

constant 𝑐 is selected as the inverse of the likelihood function value at the MLE following 

Annex A. The resulting number of subsets is 𝑀 = 4.  

Estimates of the flexibility based on the deflection measurements are presented in Figure 7. The 

results show the advantage of a Bayesian analysis over MLE for this problem. Due to the fact 

that 50 (correlated) measurements are available for estimating 50 parameters, the problem is 

ill-posed and MLE leads to overfitting. The Bayesian analysis with informative prior 

distribution regularizes the problem and provides a good approximation to the true values.  

  

Figure 7. Posterior credible interval of the flexibility computed with BUS, together with the true value 
and the maximum likelihood estimate (MLE).  
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Figure 8 presents the deflection of the beam, comparing the true value, the measured value, the 

MLE and the Bayesian estimate. Figure 8a illustrates that the measured values are very similar 

in absolute terms. To enable an appraisal of the differences in the estimates, Figure 8b presents 

the difference of the deflections from the ones computed with the prior mean of 𝐹(𝑥). The 

Bayesian analysis provides a good estimate of the actual deflections, whereas the MLE leads to 

an overfitting to the measurements in agreement with the results of Figure 7.  

Since the prior distribution of 𝑊(𝑥) is Gaussian and the measurement errors are additive and 

also jointly Gaussian, an analytical solution of the posterior joint PDF of 𝑊(𝑥) can be obtained 

for validating the results obtained with BUS. The results in Figure 8 show that the posterior 

credible intervals obtained with BUS coincide almost perfectly with those calculated 

analytically. Further proof of the accuracy of BUS is available from Figure 9, which shows a 

comparison of the analytically calculated posterior CDF of the deflection at the free end with 

the BUS solution. 

  

Figure 8. (a) Posterior credible interval of the deflection, together with the true value, the 
measurements and the maximum likelihood estimate (MLE). (b) As in (a), but showing the difference 
of the deflection to its prior mean. 
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Figure 9. Marginal CDF of the deflection at the end of the cantilever 𝑊(5𝑚). Prior CDF, together 
with the posterior CDF computed using the proposed method and the analytical solution. 

 

Finite element model updating of a geotechnical construction 

This example is based on previous reliability analysis and updating presented in (Papaioannou 

and Straub 2012). We update the material properties of the soil surrounding a geotechnical site 

based on a deformation measurement performed in situ. 

The site consists of a 5.0m deep trench with cantilever sheet piles in a homogeneous soil layer 

of dense cohesionless sand with uncertain spatially varying mechanical properties (see Figure 

10). The soil is modelled in 2D with plane-strain finite elements. For simplicity, neither 

groundwater nor external loading is considered. Additionally, we take advantage of the 

symmetry of the trench and model just half of the soil profile, although this implies an 

approximation when randomness in the soil material is taken into account. The material model 

used is an elasto-plastic model with a prismatic yield surface according to the Mohr-Coulomb 

criterion and a non-associated plastic flow. The sheet pile is modelled using beam elements and 

the interaction between the retaining structure and the surrounding soil is modelled using 

nonlinear interface elements. The corresponding FE model is implemented in the SOFiSTiK 

program (SOFiSTiK 2012). Further details on the mechanical model and the simulation of the 

excavation process can be found in (Papaioannou and Straub 2012). 
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Figure 10. Sheet pile wall in sand. 

Homogeneous non-Gaussian random fields describe the prior distributions of the uncertain 

material properties: Young’s modulus 𝐸 , friction angle 𝜙  and specific weight 𝛾 . The joint 

distribution at each pair of locations is modelled by the Nataf distribution (Kiureghian and Liu 

1986) with marginal distributions according to Table 1. The auto-correlation coefficient 

function is given by a separable exponential model 𝜌𝑋𝑍(𝜏𝑥, 𝜏𝑧) = exp(−
𝜏𝑥

𝜆𝑥
−

𝜏𝑧

𝜆𝑧
), where 𝜏𝑥, 𝜏𝑧 

are the absolute distances in the 𝑥  (horizontal) and 𝑧  (vertical) directions. The correlation 

lengths are 𝜆𝑥 = 20m and 𝜆𝑧 = 5m for all uncertain soil material properties. Cross-correlation 

between the different material properties is not included. The random fields are discretized by 

the midpoint method (Der Kiureghian and Ke 1988) using a stochastic mesh, consisting of 144 

deterministic FE patches. The stochastic discretization resulted in a total of 3 × 144 = 432 

basic random variables gathered in a vector 𝐗. In Figure 11, the stochastic and deterministic FE 

meshes are shown. Figure 11c shows the deformed configuration at the final excavation stage 

computed with the mean values of the random fields. 

Table 1. Prior marginal distributions of the material properties of the soil. 

Parameter Distribution Mean COV 

Specific weight γ [kN/m3] Normal 19.0 5% 

Young’s modulus 𝐸 [MPa] Lognormal 125.0 25% 

Poisson’s ratio 𝜈 - 0.35 - 

Friction angle φ [°] Beta(0.0,45.0) 35.0 10% 

Cohesion 𝑐 [MPa] - 0.0 - 

Dilatancy angle ψ [°] - 5.0 - 
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Figure 11. (a) Stochastic and (b) deterministic finite element mesh of the geotechnical site, shown for 
the situation prior to the excavation; (c) deformed configuration at full excavation for the mean values 
of the material properties. 

We assume that a measurement of the horizontal displacement at the top of the trench 𝑢𝑥,𝑚 =

60mm is made at full excavation. The measurement is subjected to an additive error 𝜖, which 

is described by a normal PDF 𝑓𝜖  with zero mean and standard deviation 𝜎𝜖 =5mm . The 

likelihood function describing the measurement is  

𝐿(𝐱) = 𝑓𝜖[𝑢𝑥,𝑚 − 𝑢𝑥(𝐱)] (33) 

where 𝐱 describes the material properties at the midpoints of the stochastic elements and 𝑢𝑥(𝐱) 

is the displacement evaluated by the FE program. Bayesian updating of the vector 𝐗  is 

performed with BUS using the SuS-based algorithm with 𝐽 = 103, 𝐾 = 1.5 × 103 and 𝑝0 =

0.1. The constant 𝑐 is selected as 𝑐 = σϵ, which satisfies the condition 𝑐𝐿(𝐱) ≤ 1. 

The prior mean of 𝑢𝑥(𝐗) is 50.2mm, which indicates that the prior model underestimates the 

measured tip displacement. Figure 12 and Figure 13 show the posterior mean of the Young’s 

modulus 𝐸  and friction angle 𝜙 , respectively. The posterior means of the elements in the 

vicinity of the trench are smaller than the prior mean, which reflects the effect of the measured 

displacement. The effect is local, since the values of the stiffness and strength of the soil farther 

away from the trench have limited influence on the deformation at the location of the 

measurement. Moreover, the results show the influence of the auto-correlation of the prior 

distribution. The change of the posterior means is steeper in the vertical than in the horizontal 

direction, which is due to the fact that the prior correlation length in the horizontal direction is 

larger than in the vertical direction. The low values of the Young’s modulus observed in the 

bottom right of Figure 12 cannot be explained by the measurement and hence are attributed to 

sampling error. 
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Figure 12. Posterior mean of the Young’s modulus 𝐸 of the soil. 

 

Figure 13. Posterior mean of the friction angle 𝜙 of the soil. 

Discussion 

Bayesian updating using structural reliability methods (BUS) has been developed for learning 

and calibrating engineering and computer models. By interpreting Bayesian updating as a 

structural reliability problem, the existing suite of methods for solving such problems is 

available, including importance sampling, subset simulation and first- and second-order 

reliability methods (FORM/SORM). For analysts with experience in these methods, it is 

straightforward to implement the BUS approach.  

The presented implementation of BUS through the subset simulation (SuS) algorithm is ready-

to-use for many practically relevant applications. The presented numerical applications as well 

as further numerical investigations not reported in this paper showed that the SuS-based 

algorithm works robustly and efficiently for a broad range of problems. It also has the advantage 

of being applicable in high dimensions – at least theoretically its performance does not decrease 

with increasing number of random variables. It is pointed out that the algorithm uses MCMC 
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to generate the conditional samples required by SuS. Since the initial samples of these Markov 

chains are already from the target distribution, it is ensured that all samples follow this target 

distribution and convergence of the chain is not an issue. However, the MCMC procedure does 

introduce a correlation among the resulting samples, which must be taken into account when 

evaluating the posterior statistics. 

BUS has originally been developed for problems with an informative prior, i.e. when relevant 

information on the uncertain variables is available a-priori. This is a common situation when 

learning mechanical models, where significant prior knowledge on uncertain parameters is 

often available. But BUS is a viable alternative to existing methods also for problems with 

weakly or non-informative prior distributions (e.g. in parameter identification), as demonstrated 

by application 1 in this paper.  

In this work, no attempt was made to optimize the structural reliability methods for their use in 

BUS. We are currently investigating further optimizations of SuS targeted towards its 

implementation in BUS, including an adaptive choice of the constant 𝑐. In addition, we believe 

that there is a significant potential in identifying alternative structural reliability methods that 

can be more efficient than SuS in combination with BUS for specific types of applications. As 

an example, the use of importance sampling methods around the design point (which in BUS 

corresponds to the mode of the posterior distribution) appears promising, but has not been 

considered here. 

In the applications presented in this paper, the number of model evaluations required for 

Bayesian updating is on the order of 103 − 104, which is similar to existing state-of-the-art 

methods such as transitional MCMC proposed in (Ching and Chen 2007) or the hybrid MCMC 

approach of (Cheung and Beck 2009). While the presented implementation of BUS certainly 

offers room for a further enhancement of the computational efficiency, we do not believe that 

this number can be significantly reduced with any purely sampling-based approach. For 

expensive computational models, the BUS approach can be combined with surrogate models 

(response surfaces) to further reduce the number of model evaluations. Experience with 

adaptive response surfaces available in the structural reliability community may be used for this 

purpose.   

In many instances, one is interested in updating the reliability of a mechanical system, or more 

generally in updating the probability of a rare event 𝐹 with observations. Unlike other methods 

presented in the literature, BUS does not require that one first updates the joint probability 

distribution of the relevant variables 𝐗 and then computes the updated probability of 𝐹 based 
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on an approximation of the posterior PDF of 𝐗. With BUS, the observation is represented by 

the event 𝑍𝑒 and the posterior probability of 𝐹 is equal to Pr(𝐹|𝑍𝑒) = Pr(𝐹 ∩ 𝑍𝑒) / Pr(𝑍𝑒), see 

(Straub 2011). Therefore, Bayesian updating reduces to solving two structural reliability 

problems.  

Conclusion 

A novel approach to Bayesian updating of mechanical and general engineering models was 

proposed, termed BUS. It is based on interpreting the Bayesian updating problem as a structural 

reliability problem. This enables one to use the whole portfolio of existing structural reliability 

methods for performing Bayesian updating. In this paper, subset simulation was used to obtain 

samples of the posterior distribution. Three application examples were included to demonstrate 

the versatility and efficiency of BUS. 
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Annex A: How to select the constant 𝒄 defining the observation domain?  

BUS requires the selection of the constant 𝑐 in Eq. (10). On the one hand, it is required that 

𝑐𝐿(𝐱) ≤ 1 for any 𝐱. On the other hand, the acceptance rate is directly proportional to 𝑐; i.e. 

the larger 𝑐 , the larger Pr([𝐗, 𝑃] ∈ Ω) , which is beneficial for the MCS-based rejection 

sampling as well as for BUS in combination with subset simulation. It follows that an optimal 

choice of 𝑐 is 

𝑐 =
1

sup 𝐿(𝐱)
. (34) 

In some instances, sup 𝐿(𝐱) is directly available. In case of pure inequality observations, it is 

sup 𝐿(𝐱) = 1 and it follows that 𝑐 = 1. In case of a single measurement with error ϵ, sup 𝐿(𝐱) 

is equal to maximum of the PDF of ϵ, which is readily available. However, it is not always 

straightforward to evaluate Eq. (34) when there are several observations with corresponding 

likelihoods 𝐿𝑖(𝐱), 𝑖 = 1, … , 𝑚. sup 𝐿(𝐱) occurs at the location of the maximum likelihood, so 

if it is possible to determine the maximum likelihood estimator 𝐱𝑀𝐿𝐸 using an optimization 

algorithm, it is sup 𝐿(𝐱) = 𝐿(𝐱𝑀𝐿𝐸). In case 𝐱𝑀𝐿𝐸 is not available, an alternative suboptimal 

choice is  

𝑐 =
1

∏ [sup 𝐿𝑖(𝐱)]𝑚
𝑖=1

. (35) 

For large 𝑚, i.e. when many individual observations are available, this choice is inefficient. In 

these situations, one can get an estimate of the statistical properties of sup 𝐿(𝐱) to obtain a more 

efficient value of 𝑐, as demonstrated through an example in the following.  

Consider a case where all measurements 𝑦𝑖  have random errors ϵi  that are independent 

identically distributed (iid) following a normal distribution with mean zero and standard 

deviation σϵ. The likelihood function is 

𝐿(𝐱) = ∏ 𝐿𝑖(𝐱)

𝑚

𝑖=1

 

= ∏ exp {−
1

2

[ℎ𝑖(𝐱) − 𝑦𝑖]
2

σϵ
2

}

𝑚

𝑖=1

 

= exp {−
1

2

1

σϵ
2

∑[ℎ𝑖(𝐱) − 𝑦𝑖]
2

𝑚

𝑖=1

}. 

(36) 
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Let us assume that the model is perfect if the true parameters 𝐱0 are used, i.e. ℎ𝑖( 𝐱0) are the 

true values of the measured quantities. In this case, the actual measurements 𝑦  are 𝑦𝑖 =

ℎ𝑖( 𝐱0) + ϵ𝑖 , i.e. they are normal iid random variables with means ℎ𝑖( 𝐱0)  and standard 

deviation σϵ. The maximum of the log-likelihood is then approximately 

max ln 𝐿(𝐱) ≈ ln 𝐿( 𝐱0) 

= −
1

2

1

σϵ
2

∑[ℎ𝑖(𝐱0) − 𝑦𝑖]
2

𝑚

𝑖=1

 

= −
1

2

1

σϵ
2

∑ ϵ𝑖
2

𝑚

𝑖=1

 

= −
1

2
∑ 𝑈𝑖

2

𝑚

𝑖=1

, 

(37) 

where 𝑈𝑖  are independent standard normal random variables. The approximation becomes 

better with increasing 𝑚. It follows from Eq. (37) that {−2 max ln 𝐿(𝐱)} is approximately chi-

squared distributed with 𝑚 degrees of freedom. Therefore, the distribution of the maximum 

likelihood is independent of the observation error ϵi and depends only on the number 𝑚 of 

independent measurements. One can thus select a value of 𝑐, for which it holds 𝑐𝐿(𝐱) ≤ 1 with 

given probability 𝑝, as 

𝑐 =
1

exp [−
1
2 𝐹𝛸2(𝑚)

−1 (𝑝)]
. (38) 

where 𝐹𝛸2(𝑚)
−1 is the inverse CDF of the chi-squared distribution with 𝑚 degrees of freedom. E.g. 

if the number of independent measurements is 𝑚 = 50, a value 𝑐 = 3.5 × 107 will ensure that 

𝑐𝐿(𝐱) ≤ 1 for all 𝐱 with probability 𝑝 = 0.05. 

In reality, the model will not be perfect, which will lead to additional deviations of the model 

prediction from the observations. Therefore, the maximal log-likelihood will be lower than 

predicted by Eq. (37), and the probability that 𝑐 is too large will be smaller than 𝑝. 
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Annex B: Probability of accepting samples in the simple rejection 

sampling algorithm 

To illustrate the dependence of the average acceptance rate of samples 𝑝𝑎𝑐𝑐 on the number of 

observations, we consider 𝑚 measurements of the quantity 𝑋, all with iid observation errors. 

This is in analogy to the illustration of the simple rejection sampling algorithm provided in the 

paper. 

The likelihood function with 𝑚 observations 𝑦𝑖 , 𝑖 = 1, … , 𝑚, with iid normal additive error 

with zero mean is:  

𝐿(𝑥) ∝ exp [−
1

2
∑

(𝑥 − 𝑦𝑖)
2

𝜎𝜖
2

𝑚

𝑖=1

]  (39) 

The measurement values can be written as 𝑦𝑖 = 𝑥0 + ϵ𝑖 = 𝑥 − Δ𝑥 + ϵ𝑖, where 𝑥0 is the true 

(but unknown) value of 𝑋, ϵ𝑖 is the observation error and Δ𝑥 = 𝑥0 − 𝑥 is the distance between 

𝑥 and the unknown true value of 𝑋. Inserting this relationship in (39), setting the proportionality 

constant to 1 and taking logarithms, one obtains 

ln 𝐿(𝑥) = −
1

2
∑

(Δ𝑥 − ϵ𝑖)
2

𝜎𝜖
2

𝑚

𝑖=1

 

= −
1

2

1

𝜎𝜖
2

∑ Δ𝑥2 − 2ϵ𝑖Δ𝑥 + ϵ𝑖
2

𝑚

𝑖=1

. 

(40) 

The expected value with respect to the observation errors ϵ𝑖 is 

E[ln 𝐿(𝑥)] = −
1

2

1

𝜎𝜖
2

(𝑚Δ𝑥2 + 𝑚E[ϵ𝑖
2]) = −

𝑚

2
(

Δ𝑥2

𝜎𝜖
2

+ 1). (41) 

The first-order approximation of the expected value of the likelihood is  

E[𝐿(x)] ≈ exp [−
𝑚

2
(

Δ𝑥2

𝜎𝜖
2

+ 1)]. (42) 

The width of this likelihood function is proportional to 1/√𝑚. It follows that the expected 

number of samples falling into this domain, and consequently 𝑝𝑎𝑐𝑐 , is also proportional to 

1/√𝑚. 
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