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Abstract

A lot of interest has been directed towards wireless multiple-input multiple-
output (MIMO) interference channels in the past years. This interest was trig-
gered by interference alignment (IA), a technique which creates noise-limited
channels out of interference-limited channels through transmitter cooperation.
The existing literature on MIMO interference channels now covers a variety
of linear precoding techniques, whose advantages and disadvantages are well
understood by now.

On the other hand, much less results exist on the analytical performance
characterization of those techniques in terms of achievable rates. Such a char-
acterization is important for different reasons. For instance, closed-form rate
expressions reveal how different system parameters affect the resulting perfor-
mance, an aspect that is not revealed by simulations. Furthermore, closed-form
expressions are useful for benchmarking purposes, and save simulations time
and cost. Additionally, they can be used in a variety of optimization problems.

Random matrix theory tools alleviate the task of obtaining closed-form ex-
pressions substantially. Even though such tools result in expressions that are
only exact asymptotically, these expressions usually provide accurate estimates
for finite system parameters as well. In this thesis, we use random matrix theory
tools to derive closed-form rate expressions of IA techniques, and closed-form
rate lower bounds of eigenmode precoding in MIMO interference channels. Ad-
ditionally, rate lower bounds of the maximum ratio transmission technique are
derived. Due to the special nature of the latter, this can be performed without
the need for random matrix theory. The performance characterization of the lat-
ter two precoding types is especially important in scenarios where transmitters
are equipped with large antenna arrays (massive MIMO), in which case these
non- cooperative and relatively simple techniques exhibit a good performance.

The ultimate measure to characterize performance is the spectral efficiency,
which takes into account any signaling overheads not related to data transmis-
sion. The most important overheads to consider are the channel state informa-
tion acquisition training overheads, taking place over the air link. We calculate
the training overheads of the different considered precoding techniques in time-
division-duplex mode, which, in addition to the derived rate expressions, allow
characterizing the spectral efficiencies of these different techniques.

The spectral efficiency analysis allows investigating how many transmit an-
tennas do the considered non-cooperative techniques require to emulate the per-
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formance of a noise-limited system, i.e., to perform similarly to a system where
transmitters have a fixed number of antennas and employ IA. The reason for
such an investigation is that the considered non-cooperative techniques might
be more feasible than IA in practical systems for various reasons. Whereas the
literature on massive MIMO envisions transmitters with hundreds or unlimited
number of antennas where the simplest precoding techniques result in noise-
limited systems, this thesis gives a more realistic and relatively modest upper
bound on the number of transmit antennas that simple maximum ratio trans-
mission and eigenmode precoding techniques require to emulate the performance
of noise-limited interference channels through the use of IA. Furthermore, the
value of this upper bound drops significantly in fast-varying scenarios due to
the unavoidable higher training overheads of IA which considerably reduce its
theoretical promised gains and resulting spectral efficiency. Such overheads are
largely neglected in the literature which mainly considers channels with constant
coefficients.
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1. Introduction

1.1. Thesis Context

While early cellular networks such as the global system for mobile communi-
cations (GSM) mainly focused on ensuring reliable low-rate telephony services,
current cellular networks are driven by the need to increase user data rates.
Besides the fact that the increasing number of smart-phones connected to the
internet will necessitate major improvements to current network architectures,
future 5G wireless networks will comprise a multitude of different entities and
is expected to support different new services such as the internet of things,
device-to-device communication, and car-to-car communication. According to
initial forecasts, around 50 billion entities will be connected to the network by
2020 [1], which is around 100 times the current number. This huge number of
connected entities will require new physical layer, random access, as well as
upper layer architectures.

5G systems envision a 1000-fold increase in data rates compared to current
long-term evolution (LTE) systems’ rates [1, 2]. This figure includes users with
high mobility as well as cell-edge users. This 1000-fold increase can only be
achieved through a combination of different features, including network densifi-
cation, bandwidth expansion, new waveform designs, and advances in multiple-
input multiple-output (MIMO) systems. Each of these features has its share of
advantages and challenges from a theoretical and a practical point of view. This
thesis focuses on MIMO systems.

MIMO systems have received a lot of attention since the pioneering works
of Foschini in [3] and Telatar in [4], where the possibility for linear growths in
sum-rate and capacity were shown for the point-to-point (P2P) MIMO model,
which consists of a transmitter and a receiver with multiple antennas each.
Later on, similar conclusions were shown to hold for the MIMO broadcast
channel (BC), which consists of a transmitter and a number of decentralized
non-cooperating receivers, despite some fundamental differences between these
two channel models [5–7]. Despite the natural big gap between theoretical in-
vestigations and practical implementations, some simple MIMO techniques are
now part of the LTE standards in the downlink and uplink, including single-user
as well multi-user scenarios [8]. Additional schemes relying on spatial diversity
such as space-frequency block coding schemes are a part of the standards as
well, mainly used to improve reliability and combat multi-path fading.

1



1. Introduction

Achieving a 1000-fold increase in data rates is an especially challenging task
for cell-edge users, as the rates experienced by such users are still orders of mag-
nitudes lower than the cell average, even with initial coordinated multi-point
(CoMP) transmission schemes [9]. This is mainly due to large path losses, large
experienced interference power from neighboring base stations, and the lack
of accurate channel state information (CSI) at the base stations to jointly de-
sign the beamformers/precoders and mitigate interference on a multi-cell level.
While network densification and reduced cell sizes can reduce the path loss of
such users, advanced cooperative precoding designs are still necessary for effi-
cient inter-cell interference mitigation in current LTE systems. With accurate
multi-cell CSI exchanged between the transmitters, interference mitigation tech-
niques promise huge improvements in cell-edge rates [10–13]. A stronger form
of cooperation exists when transmitters exchange CSI as well as data symbols,
leading to what is called network MIMO [14–16]. With accurate multi-cell CSI,
network MIMO converts interference power from interferers into additional use-
ful signal power coming from the latter. In that case, the different transmitters
have the function of a distributed transmit array present in multiple cells and
the conventional concepts of “serving” and “interfering” transmitters or base
stations do not apply anymore. However, this thesis focuses on the former type
of cooperation.

An alternative way to fight interference is through the deployment of large
transmit antennas arrays serving a much smaller number of users, called mas-
sive MIMO systems, as advocated in [17,18]. The insight behind this approach
is that under sufficient antenna spacing and rich fading conditions, interference
coming from different transmitters equipped with large antenna arrays will sim-
ply "fade out" or add destructively at the receiver terminals, becoming negligible
with respect to the signal of interest. In such scenarios, cooperative precoding
techniques would no longer be necessary and each transmitter could revert back
to single-cell (non-cooperative) processing. Unfortunately, the above mentioned
references in addition to others in the literature assume that transmitters are
equipped with hundreds or unlimited number of antennas, which might be un-
feasible for different reasons including high deployment costs or lack of space in
dense urban areas.

1.2. Thesis Overview and Contributions

In this thesis, we aim to find out how much transmit antennas do single-cell
precoding techniques necessitate to result in a similar performance to the one
yielded by the cooperative interference mitigation precoding techniques. The
reason for such an investigation is that the need for accurate multi-cell CSI at
the transmitters and receivers, the mainly iterative nature and unpredictable
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1.2. Thesis Overview and Contributions

convergence behavior, and computational complexity are factors which, so far,
hinder the implementation of the latter techniques in a real system. On the
other hand, we consider two simple single-cell precoding techniques in this paper
which require modest CSI knowledge, are simple to compute and are therefore
more feasible in practical systems from a signal processing or algorithmic point
of view. The main challenge in this case, however, lies in ensuring feasible and
low cost hardware implementations of large non-conventional transmit arrays.

The task at hand requires a spectral efficiency analysis of the different pre-
coding techniques in question. That, in turn, includes:

1. an analysis of the achievable rates during data transmission, and

2. an analysis of the CSI acquisition training overheads, which take place
over the air link and occupy a portion of time that cannot be used for
data transmission.

In what follows, we briefly summarize the contents and contributions of each
chapter.

Chapter 2:

In this chapter, we discuss the advantages of MIMO systems and briefly
review linear precoding designs in P2P and BC MIMO scenarios. We motivate
the use of massive MIMO with a simple example, and present two commonly
used duplex transmission and reception modes.

Chapter 3:

In this chapter, we first introduce the thesis system model, the K-user
MIMO interference channel (IC). This model, which consists of K interfering
transmitter-receiver pairs, efficiently represents communication near cell-edges
in a cellular system. We distinguish three main communication modes according
to the system configuration in terms of the number of transmit antennas, receive
antennas, desired streams, and users. Focusing on the most challenging mode,
we review different linear precoding methods such as interference alignment
(IA) [10, 11]. Except for special cases, the methods in this mode are iterative
and require an alternating optimization procedure. We then discuss the possible
transmission strategies in the remaining two modes. At the end of that chapter,
we differentiate between cooperative and non-cooperative methods, listing the
advantages, disadvantages, and requirements of each method. Additionally, we
discuss how do the discussed cooperative methods relate to current LTE CoMP
methods.

3



1. Introduction

Chapter 4:

In this chapter, we focus on cooperative IA methods and derive closed-
form expressions of their achievable rates in MIMO ICs in the large system
limit. Random matrix theory (RMT) tools such as the Marc̆enko-Pastur
distribution [19–21] and the Shannon transform [21] are integral parts of this
chapter, and are first reviewed for completeness. The law of large numbers
(LLN), described in Appendix A.4, constitutes an important building block
of this chapter as well. Even though the derived expressions are only exact
asymptotically, simulation results show that these expressions provide accurate
estimates for small and finite system parameters as well. The derived expres-
sions hold for any variant of IA, given the designed precoders and receive filters
have orthogonal columns. Additionally, Chapter 4 reveals some interesting
observations about the asymptotic water-filling level which, contrary to the
finite case, is independent of the instantaneous eigenvalues and is completely
determined by the asymptotic eigenvalue distribution.

Chapter 5:

In this chapter, we focus on non-cooperative eigenmode precoding (cf.
Appendix B) and maximum ratio transmission (MRT) [22] methods. We derive
ergodic (average) lower bounds of the achievable rates of these methods in
MIMO ICs using a separate stream decoding assumption and Jensen’s inequal-
ity. The lower bounds for eigenmode precoding are derived using RMT tools as
well, while the special nature of MRT combined with relaxed CSI requirements
at the receiver allows deriving lower bounds without the need for RMT tools.
The bounds are observed by simulations to get tighter as the number of
interferers increases. This has a straightforward interpretation that we dis-
cuss, given the separate stream decoding assumption used to obtain the bounds.

Chapter 6:

In this chapter, we perform a training overhead analysis of IA, eigen-
mode precoding, and MRT in a time-division-duplex system. Along with the
derived expressions of Chapters 4 and 5, this allows characterizing the spectral
efficiency of these methods. We investigate the required number of transmit
antennas for the non-cooperative methods of Chapter 5 to perform similarly to
IA. We conclude that massive configurations are not necessary to emulate to
the performance of IA, and we find a relatively modest upper bound on that
required number. We show how the training overheads of IA can significantly
reduce its spectral efficiency in scenarios with short coherence times, and lead
to a considerable drop of the value of the found upper bound.
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1.3. Notations

Chapter 7:

In this last chapter, we summarize the main findings of this thesis and
we discuss open problems and possible future lines of work.

1.3. Notations

In this thesis, variables are written in italic font. In addition, lower case bold
italic letters denote column vectors while upper case bold italic letters denote
matrices.

Below, a list of notations frequently used throughout the thesis is presented.

[A]mn (m, n)th entry of A

λl(A) lth largest eigenvalue of A

σl(A) lth largest singular value of A

tr(A) trace of A

|A| determinant of A

A⊥ nullspace of A

||A||F Frobenius norm of A

A1:l first l columns of A

Al lth column of A

0N zero vector of size N

1N ones vector of size N

0N×M zero matrix of size N ×M

IN identity square matrix of size N ×N

diag(a1, a2, . . . , aK) diagonal matrix with elements a1, a2, . . . , aK

Bdiag(A1, A2, . . . , AK) block diagonal matrix with matrix elements

A1, A2, . . . , AK

et column vector of suitable size containing 1

on its tth entry and 0 elsewhere

5



1. Introduction

(•)T transpose of a vector or matrix

(•)H conjugate transpose (Hermitian) of a vector or matrix

||x||2 Euclidean norm of x

E[•] expectation

f(x)
∣
∣
∣

b

a
f(b)− f(a)

R the set of real numbers

R
+ the set of strictly positive real numbers

C the set of complex numbers

C
N the N -dimensional complex vector space

(•)∗ conjugate

log(•) base 2 logarithm

ln(•) natural logarithm

| • | absolute value

var(•) variance

ℜ(•) real part

ℑ(•) imaginary part

⌈•⌉ ceiling

N (µ, c) real Gaussian (normal) distribution with mean µ and variance c

NC(µ, c) circularly symmetric complex Gaussian distribution

with mean µ and variance c

NC(µ, C) circularly symmetric multivariate Gaussian distribution

with mean vector µ and covariance matrix C

(M, N, d)K the K-user MIMO IC with M antennas at each transmitter,

N antennas at each receiver, and d communicated

streams between each transmitter-receiver pair

6



2. MIMO Systems: An Overview

This chapter motivates the use of MIMO wireless communications systems.
After introducing a simple P2P MIMO model, we discuss the advantages of
MIMO communications and briefly review precoding strategies in P2P as well
as BC scenarios. We then explain why such strategies fail to deliver enough
data rates in interference-limited scenarios. We additionally motivate the use
of massive MIMO systems, and introduce two commonly used duplex modes in
practical systems.

2.1. MIMO Communications in Noise Limited Networks

2.1.1. Channel Capacity and Fundamental Limits of Communications

In 1948, C. E. Shannon developed the main information theoretic tools re-
quired to guarantee reliable communications over a wireless P2P link, where
the transmitter and receiver have a single antenna each [23]. By means of the
noisy-channel coding theorem, Shannon showed that given a link capacity C and
a desired transmission rate R < C, there exists channel codes that guarantee
reliable transmission over the P2P link, i.e., codes that make the bit error proba-
bility at the receiver arbitrarily small. The capacity C is therefore the maximum
data rate that can be reliably achieved and usually serves as an upper bound
for the achievable rates of practical systems. Achieving capacity requires coding
over arbitrarily large blocks of data or symbols, which is usually not the case in
practice.

C is hard to characterize in the general case. Nonetheless, when the link is
impaired by Gaussian noise, we have an additive white Gaussian noise (AWGN)
link and choosing symbols from a Gaussian distribution maximizes the trans-
mission rate and gives the corresponding capacity CAWGN. The latter is given
by the Shannon-Hartley theorem [24,25]:

CAWGN = log
(

1 +
p

σ2

)

bits/sec/Hz (2.1)

where p is the received power and σ2 is the Gaussian noise power. The ratio
p/σ2 is called the signal-to-noise-ratio (SNR). This simple equation reveals the
fundamental limits of communications in this simple single-input-single-output
(SISO) scenario. These are the received power, the additive noise power, and

7



2. MIMO Systems: An Overview

the available bandwidth. Additive noise is a natural phenomenon that can be
overcome through advancements in hardware or chip design for instance, but is
uncontrollable from an information theoretic point of view. Bandwidth is usually
an expensive resource that cannot be acquired easily, and in many practical
systems the available bandwidth is fixed. This leaves the received power as a
parameter that can be optimized. In the case of an omnidirectional antenna at
the transmitter, the transmitted power will radiate in all directions, and only a
small fraction will actually reach the receiver. Increasing the received power by
a certain factor requires thus increasing the transmit power by the same factor.
Keeping in mind that the transmit power cannot be arbitrarily increased due
to high power costs as well as practical and environmental reasons, this shows
a direct drawback of using single omnidirectional antennas.

2.1.2. Advantages of MIMO Systems

With this short introduction that highlighted the shortcomings of SISO systems,
we now introduce and explain the advantages of MIMO wireless systems. MIMO
systems offer different benefits, not all of which can be cultivated simultaneously
as will be elaborated.

First, we focus on a P2P MIMO link. Such a link consists of a transmitter
with M antennas and a receiver with N antennas, as shown in Fig. 2.1. In
the frequency domain, the transfer function between the transmitter (input)
and receiver (output) is modeled by the complex channel matrix H ∈ C

N×M ,
whose (k, l)th entry hkl contains the fading—attenuation or channel response
due to transmission over the air link [25]—between transmit antenna l and
receive antenna k. The system equation for the P2P link reads:

ŝ = Hx + n (2.2)

where ŝ ∈ C
N is the vector of received signals, n ∈ C

N is the additive noise
present at the receiver, and x ∈ C

M is the vector of signals fed to the transmit
antennas and sent over the air link. Note that this predominantly used linear
channel model (cf. Appendix A.1) is only an approximation of a real system as
it neglects D/A and A/D conversions, amplifications, etc., which are not linear
and are not considered to be part of the channel matrix H. The vector x can
be designed in a multitude of ways, according to the system configuration and
requirements. We start with beamforming.

Beamforming / Array Gain

A way to increase the received power without increasing the transmit power is
through the use of beamforming. Through a different phase weighting at each
transmit antenna, a beam with the desired data symbol is shaped and directed

8
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transmit

antenna 2

transmit

antenna M
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antenna 1
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antenna 2

receive

antenna N

h11

h21

hN1

hNM

Figure 2.1.: A P2P MIMO link

towards the intended receiver, which results in an increase in received power.
Thus,

x = vs

where
v = [exp(jθ1), . . . , exp(jθM )]T

is the steering vector whose lth entry contains the phase weighting θl at transmit
antenna l, and s is the transmitted data symbol. Forming narrow and focused
beams towards a certain receiver requires the transmit antennas to be closely-
spaced (namely, half a wavelength of the frequency of operation [26]), which
implies that the channel responses coming from the different transmit antennas
could be highly correlated. Similarly, receive beamforming can be applied to
further increase the received power. The details of beamforming are skipped as
it is outside the scope of the thesis.

Spatial Diversity

Provided that antenna correlation is low, the use of multiple transmit antennas
provides diversity in space, and helps in fighting fading conditions as the chan-
nel response between each transmit-receive antenna pair will not only have a
different phase but also a different amplitude. In such scenarios, the transmitted
vector reads

x = 1M s (2.3)

9



2. MIMO Systems: An Overview

where s is the transmitted symbol, i.e., each transmit antenna sends s without
any transformations. In ideal conditions, the fading experienced by different
transmit and receive antennas will be independent and identically distributed
(i.i.d.) with a Rayleigh distribution. Equivalently, this means [H]kl ∼ NC(0, 1),
∀k = 1, . . . , N , and ∀l = 1, . . . , M . Additionally, it implies

rank(H) = min(N, M)

with probability 1 as H will have independent rows or columns. Under such
conditions, the receiver will see MN independent copies of s and therefore
the probability that at least one of the copies doesn’t experience a deep fade
increases. Spatial diversity therefore constitutes a third type of diversity besides
frequency and time diversity.

In practice, increasing the antenna spacing will decrease correlation and im-
prove diversity. Rich scattering conditions decrease correlation between channel
responses as well. A typically used antenna spacing to ensure decorrelation at
the receiver terminals is only λ/2, where λ is the wavelength corresponding to
the frequency of operation [27, 28]. This is due to the fact that the receiver is
usually close to a multitude of scatterers which ensure a good scattering envi-
ronment. In contrast, the required antenna spacing to ensure decorrelation at
the transmitter side can go up to 10λ, as practical base stations are usually
present in elevated positions with very few scatterers close by, if any [28].

The Alamouti scheme [29] is a well-known scheme which combines spatial and
time diversity. It can be applied for M = 2 transmit antennas and any number of
receive antennas. LTE standards support a transmit diversity scheme with two
transmit antennas that is based on space-frequency block coding, which is very
similar to Alamouti’s scheme but operates in the frequency domain instead [8,
Section 10.3.2.1]. Diversity schemes can substantially improve the bit error rate
(BER) and are valuable in systems where low-rate, reliable communication is
desired.

Spatial Multiplexing

The capacity function is logarithmic; thus, in the high SNR regime, increasing
the SNR (e.g., increasing the transmit power) brings diminishing returns. For
this reason, beamforming can only provide limited gains. Additionally, diversity
techniques improve the BER but do not increase capacity, as these techniques do
not allow the transmission of multiple symbols in a single time slot. Therefore,
beamforming and diversity gains might not be sufficient, especially with the
ever increasing required rates in today’s communications systems. The natural
extension would be therefore to support multiple symbol transmission on the
same time and frequency resources, while splitting the transmit power between
the different symbols. This is referred to as spatial multiplexing in the literature.
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2.1. MIMO Communications in Noise Limited Networks

Given an accurate knowledge of the channel matrix H at the transmitter and/or
receiver, up to min(N, M) symbols can be simultaneously transmitted on the
MIMO link. This channel matrix knowledge is usually referred to channel state
information (CSI) in the literature. Section 2.4 will discuss in detail the CSI
acquisition mechanisms according to the used duplex mode. With available CSI
at the transmitter (CSIT), one can perform precoding, i.e., a joint transformation
of the data symbols prior to transmission over the air link. Precoding is thus
a transmit processing operation in the spatial domain. In this thesis, we will
focus on linear precoders where the output of each respective filter is a linear
transformation of the corresponding input. Linear processing is employed in
many practical systems due to simplicity. The performance of linear systems
[whether in terms of mean-squared-error (MSE), BER, or sum-rate] is also easier
to analyze and characterize in general when compared to non-linear processing.

Assuming F ∈ C
M×r is the linear precoder with rank r ≤ rank(H) ≤

min(N, M), x is related to the vector of data symbols s ∈ C
r by:

x = F s (2.4)

and consequently
ŝ = HF s + n (2.5)

[cf. (2.2)]. The capacity achieving precoder with perfect CSIT and CSI at the
receiver (CSIR) was originally derived in [4], and is revisited in Appendix B as
it will be required in later parts of the thesis. The optimal precoder is linear
and has a straightforward interpretation as it aligns the transmitted symbols
to the directions containing the maximum power (called the maximum chan-
nel eigenmodes). It splits the MIMO channel into up to min(N, M) parallel
non-interfering SISO links. The term min(N, M) is usually referred to as the
multiplexing gain as at high SNR, the capacity of the MIMO link CMIMO can
be approximated as (cf. [27])

CMIMO ≈ min(N, M) CAWGN (2.6)

when the channel entries are i.i.d. and where CAWGN is given by (2.1). In this
case, r = min(N, M) and spatial multiplexing provides a min(N, M)-fold in-
crease in capacity at high SNR using the same time-frequency resources. In
addition, this is obtained without any increase in transmit power.

Note that precoding was previously investigated for code-division-multiple-
access (CDMA) systems (see, e.g., [30–32]) where it can be applied even if
transmitters have single antennas and where the spreading sequences provide
the necessary degrees of freedom for precoding.
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Space-Division-Multiple-Access

In addition to providing spatial diversity / multiplexing for a single receiver,
multiple transmit antennas combined with precoding allow the serving of mul-
tiple receivers on the same time-frequency resources. This is known as space-
division-multiple-access (SDMA). A transmitter having M antennas can trans-
mit up to M symbols to different receivers on the same time-frequency resources,
making thus a better use of the available bandwidth. Such a model is usually
referred to as the MIMO broadcast channel (BC) in the literature, as shown in
Fig. 2.2. In contrast to broadcasting in the context of networking, radio, or TV
where receivers acquire the same data, receivers in wireless BCs usually request
and receive different data.

In a BC scenario, receivers are decentralized and cannot cooperate to jointly
process or decode the obtained symbols, in contrast to a P2P scenario where the
receive filter or decoder can be thought to be the result of cooperation among
the different receive antennas. Therefore, the capacity of a P2P link with M
transmit antennas and N receive antennas is an upper bound to the capacity of
a BC scenario with M transmit antennas and a number of receivers whose sum
of antennas is N . A formal proof of this statement was given by Sato in [33]. As
receivers cannot cooperate, precoding and therefore CSIT knowledge become
essential in providing multiplexing gains and ensuring low interference at the
receiver terminals, in contrast to the P2P case where receive filtering at the
receiver side can provide multiplexing gains even with no CSIT, e.g., through
the use of zero-forcing (ZF) filters (cf. [27, 34]). Similarly to the P2P case, the
multiplexing gain of the BC case is min(N, M).

The BC was and still is an ongoing area of research with many challenging
theoretical and practical problems. The capacity-achieving precoding technique
in the BC with perfect CSIT and single-antenna receivers was derived in [6, 7]
and is based on dirty paper coding (DPC) [35], a non-linear strategy relying on
user encoding and ordering. The capacity achieving strategy works as follows.
The transmitter first chooses a codeword for receiver 1. Then he chooses a
codeword for receiver 2 given the knowledge of the codeword for receiver 1 in
a way such that receiver 2 does not see interference from user 1. The process
is then repeated for the next users. Thus, user k only sees interference from
users 1 to k− 1. This successive interference pre-cancellation at the transmitter
parallels successive interference cancellation schemes at the receiver (e.g., [3]).

The user ordering and high complexity of DPC and its higher sensitivity to
CSI errors have hindered its implementation in practical systems so far. There-
fore, different linear sub-optimal precoding strategies with lower complexity
have been instead investigated for the BC. These strategies are well understood
by now and a multitude of papers in the literature have dealt with them in dif-
ferent contexts. Much of these popular strategies can be split into the following
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Figure 2.2.: A broadcast channel

approaches:

1. Minimum-mean-square-error (MMSE) /Wiener precoding (see, e.g, [32,
36]),

2. ZF precoding (see, e.g, [30,36] for single-receive antennas and [37] for the
general case),

3. matched filtering (see, e.g, [36,38]), and

4. signal-to-interference ratio / signal-to-interference-plus-noise ratio (SINR)
/ signal-to-leakage-and-noise ratio approaches (see, e.g, [39–41]).

Much of these linear precoding techniques are similar to the previously stud-
ied receiver equalization techniques [34, 36, 42–45]. The main difference is that
transmitters usually have a fixed transmit power which they can not exceed.
This translates into an additional constraint in each respective optimization
problem. The relatively new arising interest in linear and non-linear precoding
was motivated by the development of mechanisms allowing the feedback of CSI
information from the receiver to the transmitter in frequency-division-duplex
(FDD) mode (cf. Section 2.4), the most common duplex mode used in practical
wireless systems.

The performance of these strategies highly depends on the SNR level at the
receivers. For instance, ZF precoders aim at canceling inter-user interference
and have therefore a very good performance in the high SNR regime where
inter-user interference is the performance limiting factor. However, they suffer
at low SNR levels. Matched filters aim at maximizing the received signal power
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and therefore perform very good in the low SNR regime. However, as they
do not consider inter-user interference, they have a bad performance at high
SNR as the system becomes interference limited. MRT [22] is a very similar
precoding technique to matched filtering with the only exception that MRT
doesn’t take symbol correlations into account, which is the case for the matched
filter [36]. ZF precoders and matched filters/MRT precoders have thus opposite
performances at low and high SNR levels. MMSE precoders, also called Wiener
filters/precoders [46], have a superior performance at all SNR ranges as by
minimizing the MSE between the received and transmitted symbol, an implicit
tradeoff between noise and inter-user interference is found. Joham et al. showed
analytically in [36] using a BER analysis that the matched filter converges to
the MMSE precoder at low SNR, and that the ZF precoder converges to the
MMSE precoder at high SNR. SINR approaches have been observed to perform
very close to MMSE approaches.

It should be nonetheless noted that there exists more advanced ZF schemes
that operate close to capacity at all SNR ranges. For instance, authors in [47]
propose a greedy ZF method, where at each step a new data stream is allocated
to a certain user and the receive filter of that user is optimized in a way to
maximize the sum-rate under the ZF constraint. A non-linear precoding scheme
consisting of ZF and DPC was proposed in [48], and results in nearly optimum
achieved sum-rates over a wide SNR range.

2.2. MIMO Communications in Interference Limited Networks

In many wireless systems such as cellular systems, a transmitter and its served
receiver(s) do not constitute an isolated entity. Rather, there is a number of
transmitters each serving a certain number of receivers. Furthermore, as current
wireless systems are reaching their throughput limits, the whole frequency band
is now available for use across the whole system (factor one frequency-reuse).
This leads to another effect at the receiver side which was not considered so
far: interference coming from other transmitters in the system, caused by trans-
mission on the same time-frequency resources. This uncoordinated interference
can severely damage the system performance if it is not properly accounted
for. Fig. 2.3 depicts an example of this uncoordinated interference in a two-cell
network with two receivers located near the cell-edge of their respective cells.
In cellular networks, cell-edge users suffer from the highest level of interference.
This problem has triggered research on interference limited networks in the past
years and has resulted in a multitude of designs aiming at mitigating inter-cell
interference and improving achievable rates near cell-edges.

Fig. 2.3 depicted a simple scenario with two interfering transmitters and
receivers. A known theoretical model that captures a more general scenario
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intended signal

interference

Figure 2.3.: Communications near a cell-edge with factor one frequency-reuse

can be represented by a K-user interference channel (IC), which consists of
K transmitter-receiver pairs as shown in Fig. 2.4. Transmitter k transmits a
message to its intended receiver k and all other transmitters cause unintended
interference to receiver k. In case transmitters and receivers have multiple an-
tennas, the channel is called a K-user MIMO IC. This thesis will deal with the
K-user MIMO IC model.

Unlike the P2P MIMO and BC MIMO models which are relatively well under-
stood and whose strategy-achieving capacity is known, much less is known about
the IC. Except for the 2-user SISO case where the interference power is stronger
than the desired signal and where the capacity in that case is known [49,50], the
capacity of the IC is still an open problem in general. The capacity of the 2-user
SISO IC has been characterized to within one bit in [51]. Similar to the BC
scenario, capacity-approaching techniques in the IC rely on joint and non-linear
encoding/decoding over the users. For instance, the results in [51] are based on
the Han and Kobayashi scheme [52] which splits the transmitted information
into two parts: a private information to be decoded only at the intended re-
ceiver and a common information to be decoded at both receivers. By decoding
the common information, part of the interference can be canceled off, while the
remaining private information from the other user is treated as noise.

Naturally, adding antennas to both sides of the links increases the complexity
of the problem of determining the capacity-achieving strategy; therefore, many
contributions in the literature dealing with the MIMO IC have focused on linear
precoding and receive filtering techniques aiming at mitigating interference while
treating remaining interference as noise. This is motivated by two practical facts:
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Figure 2.4.: The K-user interference channel

the first one being that receivers are usually equipped with simple decoders;
the second one being that receivers do not in general know the coding and
modulation schemes employed by interfering transmitters in order to decode the
interference first and subtract it from the obtained signal. Many of the MIMO IC
precoding techniques are a generalization of the BC linear precoding techniques
which were discussed in the previous section. They require not only accurate
CSIT but also accurate CSIR due to the receive filter structure. Chapter 3 will
discuss in depth many of the different existing precoding schemes for the MIMO
IC. Chapter 3 will show yet an additional benefit of MIMO systems; namely,
the use of MIMO systems for joint precoding schemes in the context of inter-cell
mitigation.

2.3. Massive MIMO Systems

Massive MIMO—also called large-scale MIMO—systems are currently investi-
gated for future wireless systems [17,18]. The main idea behind massive MIMO
systems is to equip transmitters with a large number of antennas in order to
simplify precoding and receive filtering operations. This is due to the fact that
in the limit of an infinite number of antennas serving a finite number of users
and under ideal i.i.d. fading conditions, the effects of fast fading vanish and
the channels of different users become orthogonal by the law of large numbers
(cf. Appendix A.4). Therefore, the most simple precoding types such as MRT
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become optimal. The only remaining rate degradation is caused by CSI errors
caused by the reuse of pilot sequences from other cells, an effect known as pilot
contamination1. Mitigating pilot contamination by designing orthogonal pilot
sequences across multiple cells would cause the length of the resulting sequences
to grow with the number of cells, which makes training unfeasible especially in
scenarios with short coherence times. Therefore, the same pilot sequences are
reused across multiple cells, leading to pilot contamination. The effects of pilot
contamination have been studied in [17, 54, 55], while solutions to mitigate it
have been proposed in [56–60]. Real outdoor massive MIMO measurements have
been performed in the downlink using large linear and circular transmit arrays
in [61], where the antenna elements are separated by only half the wavelength
of the frequency of operation. The findings show the promising results that such
practical arrays with simple ZF precoding or MRT can achieve up to 90% of
the theoretical gains of massive MIMO and operate very close to the capacity
achieving DPC scheme in non-line-of-sight conditions with rich scattering and
line-of-sight conditions with well separated users.

As an example of how massive MIMO can simplify processing operations,
consider the P2P link scenario of Fig. 2.1, where the transmitted symbol vector
is s ∼ NC(0N , IN ), and H has i.i.d. entries drawn from a NC(0, 1) distribu-
tion. Assume the transmitter has no CSI and transmits with power Etx. In this
case, the best option is to transmit equally in all directions (cf. [27]) without
precoding. This can be represented by a transmit signal covariance:

E
[
xx

H
]

=
Etx

M
IM .

In addition, the receiver applies no filter. With perfect CSIR, the achievable
rate reads

R = log
∣
∣
∣IN +

Etx

M
HH

H
∣
∣
∣ (2.7)

where without loss of generality, we assumed a noise vector with uncorrelated
entries of power 1. Each element of the matrix HHH/M can be represented by a
random variable of variance 1/M [cf. (C.5) and (C.8)]. As M →∞, the variance
of each element goes to 0 and the elements become deterministic. Consequently,
we have:

lim
M→∞

Etx

M
HH

H = E
[

Etx

M
HH

H
]

= EtxIN . (2.8)

Therefore,
lim

M→∞
R = log |IN + EtxIN |

= N log(1 + Etx).
(2.9)

1Pilot sequences are used for channel estimation, as discussed in the next section.
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Figure 2.5.: FDD time-frequency structure

This example shows that in the limit of an infinite number of antennas,
interference-free communication with full-spatial multiplexing is possible with-
out precoding nor receive filtering. Nevertheless, it should be noted that an
accurate CSIR knowledge with arbitrarily large number of transmit antennas
induces arbitrarily high training overheads at the receiver, as explained next.

2.4. Duplex Modes and CSI Acquisition Mechanisms

Two commonly used duplex modes are the frequency-division-duplex (FDD)
mode and the time-division-duplex (TDD) mode. In FDD mode, transmissions
in the DL and UL are carried out concurrently in time but on different carrier
frequencies, as depicted in Fig. 2.5. Therefore, the fading encountered in the DL
is different than the one encountered in the UL. Furthermore, only the receiver
can determine the DL fading. In practice, the transmitter sends pilot sequences
which are known to the receiver, through which the receiver can estimate the
fading coefficients. As most precoding techniques require CSIT knowledge, the
receiver has to report the CSI to the transmitter in the uplink using a given
number of feedback bits after CSI quantization. Many LTE systems use FDD
mode.

Fig. 2.6 shows the TDD time-frequency structure. In contrast to FDD, TDD
transmissions occur on the same carrier frequency but are separated in time.
Therefore, under ideal channel reciprocity conditions, the fading experienced in
the DL is similar to the one experienced in the UL, and the transmitter can
estimate the CSI based on pilot sequences sent by the receiver in the uplink.
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In contrast to FDD mode where a pilot symbol is required from each transmit
antenna for CSIT estimation, additional transmit antennas are "overhead-free"
from the CSIT estimation point of view in TDD mode, as the uplink piloting
overhead scales with the number of receive antennas. Note that the time spent
on data transmission in the UL and DL directions need not be the same. In
the LTE standards, up to seven different configurations—six out of which are
asymmetric—can be set up according to the traffic demand [8, Chapter 9.4].
One drawback of TDD is the necessity for a guard period when switching from
the DL to the UL or vice versa. This is necessary to ensure that a transmission
in e.g., the UL, starts after all DL data is received. This guard period, which
is dictated by the fading environment and hardware, cannot be used for data
transmission and thus reduces spectral efficiency.

Note: Some of the methods that this thesis deals with necessitate CSI ex-
change between transmitters taking place over the backhaul link, which incurs
additional overheads besides piloting overheads. We mainly focus on the pilot-
ing overheads which take place via the air link. This is because such overheads
can be analytically characterized as will be performed in Chapter 6, while there
exists no specific measure to measure delays/overheads over backhaul links.
Nonetheless, one should keep in mind that such delays and overheads limit the
gains of such methods in practice.

If the transmitter(s) and/or receiver(s) have perfect or complete knowledge
of the CSI matrix coefficients of the required link(s) at each time instant, this
is referred to as perfect CSIT and CSIR knowledge. This assumption is not
realistic in practice due to channel estimation errors and outdating in both FDD
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and TDD systems, in addition to CSI quantization errors inherently present
in FDD systems. Even though the performance of many systems is limited
due to the inability to acquire accurate CSI, the perfect CSI assumption is
necessary in understanding fundamental limits. In some cases, the performance
with imperfect CSI can be deduced from the performance with perfect CSI.
For example, Jindal showed in [62] for BCs in FDD mode that a number of
feedback bits scaling with the number of transmit antennas and the SNR can
keep the multiplexing gain constant. In that case, the performance loss due
to imperfect CSIT corresponds to a right shift of the rate curve when plotted
against the SNR, i.e., a power loss. Hassibi et al. showed in [63] that the CSIR
error variance per antenna is inversely proportional to the number of time slots
spent on downlink piloting. In TDD mode and under ideal channel reciprocity,
this holds for CSIT as well. Therefore, the performance under imperfect CSIT
is equivalent to the perfect CSIT performance with an additional noise term.

In case the transmitter has no CSIT, no precoding can be performed. A good
option would be applying diversity techniques.

2.5. Figures of Merit

As one of the goals of future wireless systems is increasing user data rates,
the achievable rate measure—which in the MIMO case is a generalization of the
Shannon capacity formula in (2.1)—will be used as a figure to compare different
precoding strategies in this thesis. Even though we previously mentioned that
(2.1) is an upper bound, many systems are in fact operating very close to this
upper bound. A result in [64] obtains the LTE achievable rates as a simple
modification of (2.1). Therefore, the use of the achievable rate measure is well
justified.

2.6. Summary

This chapter presented the benefits of employing multiple antennas at both the
transmitter side and receiver side. Furthermore, it provided a quick overview
of precoding techniques in the P2P MIMO and BC MIMO scenarios, and mo-
tivated the use of massive MIMO systems. Advantages of MIMO systems in-
clude increased received power, spatial diversity, spatial multiplexing, and space-
division-multiple-access. Note that these advantages cannot be cultivated at
once. For instance, closely-spaced antennas will provide high beamforming gains
but not a good spatial diversity. Additionally, closely-spaced antennas might re-
sult in channels with reduced rank which do not support spatial multiplexing.
Diversity techniques can substantially improve the BER but do not improve the
maximum achievable rates. The converse holds for spatial multiplexing. The ma-
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terial of this chapter is by no means comprehensive; rather, it only serves as a
motivation for the remaining chapters of this thesis.

Ultimately, the transmission scheme and antenna spacing need to be designed
according to the system requirements. In this thesis, we focus on methods aiming
at maximizing the sum-rate performance; therefore, we mainly assume there is
enough antenna spacing and rich scattering environments to ensure full rank
channels and allow spatial multiplexing and/or interference mitigation, as will
be elaborated in the next chapter.
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Interference Channels

In the previous chapter, the advantages of MIMO systems were discussed and
a quick overview of precoding methods in MIMO P2P and BC scenarios was
presented. In this chapter, many existing linear precoding methods in MIMO
ICs are reviewed in depth. The material of this chapter provides the necessary
background for later chapters of this thesis.

First, the general thesis system model is presented.

3.1. System Model

3.1.1. The K-User MIMO Interference Channel

Recall Fig. 2.4, where a user denotes a transmitter/receiver pair. Let transmitter
k and receiver k have Mk and Nk antennas, respectively. Transmitter k transmits
data symbol(s) sk ∈ C

dk , sk ∼ NC(0dk , Idk ), to receiver k, where 1 ≤ dk ≤
min(Mk, Nk). These symbol(s) are precoded by a linear precoder F k ∈ C

Mk×dk

before transmission. dk is referred to as the degrees of freedom achieved by user
k, as will be explained in Section 3.1.3. Transmitter k has the transmit power
constraint

E
[
||F ksk||22

]
= tr

(
F

H
k F k

)
= Etx,k. (3.1)

In case F k has orthogonal columns, then it can be decomposed as

F k = F k,ort P
1

2

k (3.2)

where F k,ort ∈ C
Mk×dk is a matrix with orthonormal columns, i.e.,

F H
k,ortF k,ort = Idk . P k = diag(pk,1, . . . , pk,dk ) contains the power assigned to

the different streams on its main diagonal, and satisfies

tr(P k) = Etx,k (3.3)

which follows directly from (3.1). At receiver k, the obtained signal is perturbed
by AWGN nk ∈ C

Nk , nk ∼ NC(0Nk , σ2
nINk ), in addition to unintended inter-

ference coming from other transmitters l 6= k. Symbols intended for different
receivers are uncorrelated and additive noise is uncorrelated with the symbols
as well. A linear receive filter Gk ∈ C

Nk×dk is employed to mitigate interference

23



3. Linear Precoding Methods in MIMO Interference Channels

Figure 3.1.: The K-user MIMO interference channel with linear precoders and
receive filters

and maximize the achievable rate. Interference is treated as additional noise at
the receiver and is not decoded. The received symbol(s) ŝk at receiver k can be
written as:

ŝk = G
H
k

(

HkkF ksk +

K∑

l=1,l6=k

HklF lsl + nk

)

(3.4)

where Hkk ∈ C
Nk×Mk denotes the fast-fading channel matrix of the direct

link between transmitter k and receiver k while Hkl ∈ C
Nk×Ml , l 6= k, denotes

the fast-fading channel matrix of the interfering link between receiver k and
transmitter l. The entries of the different channel matrices are i.i.d., drawn
from a NC(0, 1) distribution. Correspondingly,

rank(Hkm) = min(Nk, Mm) ∀k, m ∈ {1, . . . , K}

with probability 1. A flat-fading model is assumed where the channels remain
constant over a given coherence interval. The slow-fading coefficients of all links
are normalized to 1. The chosen model represents communication near a cell-
edge in a cellular system, which is a worst case scenario. Fig. 3.1 shows the
K-user MIMO IC with linear precoders and receive filters.
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The achievable rate of user k, Rk, with interference treated as noise is given
by

Rk = log

∣
∣
∣
∣
Idk + G

H
k HkkF k

(
G

H
k HkkF k

)H×
( K∑

l=1,l6=k

G
H
k HklF l

(
G

H
k HklF l

)H
+ σ2

nG
H
k Gk

)−1∣
∣
∣
∣
.

(3.5)

From the above formula it is seen that any attempt to directly maximize the
achievable rates of the different users would be extremely tedious, if not in-
tractable. This is due to the fact that the achievable rate of each user is a
function of all the precoders in addition to the receive filter of that user which
makes the different variables coupled, not to mention the log det(•) nature of the
rate function which makes it hard to handle. Rather, the different approaches
for MIMO ICs have employed proxy optimization functions which are easier to
handle and optimize, as will be elaborated next. One of the cases where the rate
function is directly optimized is in [65], where in the context of the two-user
MISO IC a lower bound on the achievable sum-rate is maximized. However, the
scheme in [65] cannot be easily generalized to more users or to the MIMO case.

Some configurations are special in the sense that transmitters and/or receivers
have the same number of antennas. This gives rise to the following definitions.

Definition 3.1. Symmetric and asymmetric channels:
If Mk = M, Nk = N, dk = d, ∀k = 1, . . . , K, the channel is called symmetric

and is denoted by (M, N, d)K . Otherwise, it is called asymmetric.

Definition 3.2. Square symmetric channels:
If a symmetric channel satisfies M = N , it is called a square symmetric channel.

3.1.2. Number of Antennas and Precoding

The type of precoding used at the transmitters and/or receive filtering at the
receivers highly depends on the spatial degrees of freedom given by the number
of antennas at both ends of the communication links. There are different cases
that can be distinguished:

1. No simultaneous transmission possible,

2. Simultaneous transmission without full-spatial multiplexing possible, and

3. Simultaneous transmission with full-spatial multiplexing possible.
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Each case can be characterized by an inequality governing the set of parameters
in the MIMO IC, i.e., the set {Mk, Nk, dk}K

k=1 ∪ {K}. We will mainly focus on
the second case as it constitutes the most challenging case, though we discuss
the other cases as well.

3.1.3. Degrees of Freedom

Definition 3.3. If the sum-capacity of a given system can be expressed as

C(SNR) ≈ df log(SNR) + o(log(SNR)), (3.6)

then df is called the degrees of freedom (DoF) of the system [66, 67]. Recalling
(2.1), we have:

df = lim
SNR→∞

C(SNR)

log(SNR)
= lim

SNR→∞

C(SNR)

CAWGN
, (3.7)

which is the slope of the capacity curve at high SNR as shown in Fig. 3.2.

The DoF provides a capacity approximation that is accurate within
o(log(SNR)), and is therefore an important metric for characterizing achiev-
able rates in the high SNR regime.

Example 3.1. A P2P MIMO link with capacity achieving precoders achieves
min(N, M) DoF, where N and M are the number of receive and transmit an-
tennas, respectively.

For P2P MIMO links, the DoF is equivalent to the multiplexing gain. How-
ever, the DoF is a more general term that covers ICs and BCs as well (whether
MIMO, SISO etc.) as will be explained in the next section.

Having introduced the system model and necessary definitions, we start the
survey of linear precoding methods in MIMO ICs with interference alignment
methods.

3.2. Interference Alignment Methods

3.2.1. Concept and Conditions of Interference Alignment

Consider a K-user SISO IC where the interference power is comparable to the
desired signal power. Such a setup was thought to be interference-limited for a
long time, and the best solution to avoid interference was thought to be orthog-
onal access schemes, i.e., time-division-multiple-access (TDMA) or frequency-
division-multiple-access (FDMA) schemes. Under such schemes and if resources
are equally split among users, each user would get 1/K DoF. Cadambe et al.
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C(SNR)

log(SNR)

df

1

Figure 3.2.: DoF illustration

considered the time-varying K-user SISO IC in [10] and proved using the time-
varying structure that in fact, each user can achieve 1/2 degrees of freedom,
i.e., the sum-capacity of the—originally thought interference-limited—SISO IC
at high SNR was shown to be

C(SNR) ≈ K

2
log(SNR) + o(log(SNR)) (3.8)

which is half of the interference-free capacity. The achievable scheme is based on
the idea of interference alignment (IA). The scheme jointly designs the trans-
mit filters over multiple symbol slots such that interference occupies only a
subset of the total time slots at each receiver. This leaves an interference-free
number of slots which is used for desired transmission. By using longer symbol
extensions, the performance of the proposed scheme gets arbitrarily close to the
sum-capacity in (3.8), and each user gets arbitrarily close to achieving 1/2 DoF.
That was the concept of IA which was introduced for the SISO IC. Note that
similar ideas were introduced for the MIMO X channel around the same time
(see, e.g., [68]).

We now switch back to the main MIMO IC model and introduce IA in the
spatial domain. The main idea is to jointly design the precoders such that
interference only occupies, i.e., is aligned in, an Nk − dk dimensional subspace
at receiver k, so that a ZF receive filter can subsequently null this interference.
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3. Linear Precoding Methods in MIMO Interference Channels

This leaves a dk dimensional interference-free subspace that is used for data
transmission. By this choice of parameters, a receive filter of size Nk × dk can
be always found to null interference spanning an Nk−dk dimensional subspace.

The interference alignment and suppression conditions at the receivers read

G
H
k HklF l = 0dk×dl

∀k ∈ {1, . . . , K}, ∀l ∈ {1, . . . , K}\{k},
(3.9)

while the full rank condition

rank(GH
k HkkF k) = dk (3.10)

ensures that dk symbols can be transmitted between the kth transmit-
ter/receiver pair. Gk and F k are chosen independently of the direct channel
matrix Hkk as will be elaborated later. Correspondingly, (3.10) is automat-
ically satisfied as rank(Hkk) = min(Nk, Mk) with probability 1. An explicit
proof for this statement is given in Section 4.3.1, which proves that GH

k HkkF k

has zero-mean i.i.d. entries of the same variance when the precoders and receive
filters have orthogonal columns. In that case, GH

k HkkF k has full rank with
probability 1.

3.2.2. Closed-Form Solutions

We next present a scenario where closed-form precoder and receive filter so-
lutions can be found to satisfy (3.9) for the 3-user square symmetric IC. The
solution was presented in [10, Appendix IV]. For the rest of this section, we de-
note by N the number of antennas at each transmitter or receiver. The scheme
allows each user to exactly achieve d = N/2 DoF when N is even. The scheme
is a simpler version of the scheme presented for the SISO case. The idea is to
explicitly write the IA conditions at receivers 1 to 3 as follows:

span(H12F 2) = span(H13F 3) (3.11)

span(H21F 1) = span(H23F 3) (3.12)

span(H31F 1) = span(H32F 2). (3.13)

The conditions in (3.11)–(3.13) imply that each receiver dedicates half of its
receive space to receive the overlapping interference (forced to span an N/2
dimensional subspace), leaving the other half interference-free. These conditions
show that the IA precoder/receive filter solution set is not unique because only
the span of the respective matrices need to be the same. For instance, the set
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3.2. Interference Alignment Methods

of solutions is invariant to unitary rotations. To find a possible solution, the
conditions in (3.12) and (3.13) are tightened to

H21F 1 = H23F 3

H31F 1 = H32F 2,

and correspondingly
F 3 = H

−1
23 H21F 1.

F 2 = H
−1
32 H31F 1.

(3.14)

Plugging (3.14) into (3.11) yields

span(F 1) = span(EF 1) (3.15)

where
E = H

−1
31 H32H

−1
12 H13H

−1
23 H21. (3.16)

Choosing the columns of F 1 as the dominant d eigenvectors of E satisfies (3.15).
The chosen F 1 is plugged into (3.14) to obtain F 2 and F 3.

After finding the precoders, they can be adjusted to satisfy the trans-
mit power constraint without violating the alignment conditions. Choosing
Gk ∈ (F H

l HH
kl)

⊥ for any l 6= k provides a complete solution to the alignment
problem that satisfies the conditions in (3.9). Fig. 3.3 depicts the conditions in
(3.11)–(3.13) for the case N = 2. The graphs on the right correspond to the
two-dimensional receive spaces of the different receivers. Here, d = 1 and the
precoding design forces interference to lie in a one-dimensional subspace, i.e, on
a line.

Besides the above scenario, there exists no closed-form IA solutions of the
precoders and receive filters except for the method in [69], where the authors
present a closed-form solution of the square symmetric IC in the case where

K = N + 1

d = 1.
(3.17)

The details are skipped as the method is heuristic and doesn’t reveal any addi-
tional insights beyond the one already discussed above.

CSI requirements and implementation: There exists different ways in which
the precoders can be calculated among transmitters. We list some of them here.

In a distributed implementation, transmitter 1 calculates F 1 based on the CSI
of all interfering links [cf. (3.15) and (3.16)], signals it to transmitters 2 and 3
who can then calculate F 2 and F 3 based on (3.14). This would then necessitate
the CSI of interfering links seen by receiver 2 (resp. receiver 3) to be available
at transmitter 3 to calculate F 3 (resp. at transmitter 2 to calculate F 2). In a
centralized implementation, transmitter 1 could calculate all precoders (again
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3. Linear Precoding Methods in MIMO Interference Channels

Figure 3.3.: Depicting the conditions in (3.11)–(3.13): the (2, 2, 1)3 channel

based on the CSI of all interfering links) and signal F 2 and F 3 to transmitters
2 and 3, respectively. In both cases, the required CSI needs to be acquired
and exchanged between transmitters. An alternative centralized implementation
consists of a central controller who acquires the needed CSI from the respective
transmitters, calculates all precoders, and then signals each precoder to the
corresponding transmitter. Receiver k calculates Gk based on HklF l for any
l 6= k, which needs to be estimated in the downlink. Chapter 6 will discuss in
depth CSI training overheads of IA in both the downlink and uplink.

3.2.3. Iterative Solutions

The difficulty of obtaining IA solutions in MIMO ICs with arbitrary configura-
tions triggered research on iterative IA algorithms. The first proposed iterative
IA algorithm is the interference leakage (IL) algorithm [11], which aims at min-
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imizing the interference power present at the different receivers. Defining

Lk =
∑

l 6=k

E
[∣
∣
∣
∣G

H
k HklF lsl

∣
∣
∣
∣
2

2

]

=
∑

l 6=k

tr
(
G

H
k HklF lF

H
l H

H
klGk

) (3.18)

to be at the interference power at receiver k, then the IL algorithm can be
formulated as:

min
(F 1,...,F K )
(G1,...,GK )

K∑

k=1

Lk s.t. rank(GH
k HkkF k) = dk and tr(F H

k F k) = Etx,k ∀k.

(3.19)

The insight behind this approach is that any solution set yielding
∑K

k=1
Lk = 0

means IA is automatically achieved without having to explicitly solve for the IA
conditions such as in (3.11)–(3.13) for an arbitrary number of users or antennas.
Such a problem is non-convex in the 2K matrix variables; additionally, the
optimum solution set cannot be found in closed-form. However, the problem
can be split and solved iteratively using alternating minimization, as explained
next.

With all other variables fixed, the kth receive filter Gk is the solution of the
problem

min
Gk

Lk s.t. rank(GH
k HkkF k) = dk (3.20)

which can be directly deduced from (3.19). Enforcing Gk to have orthonormal
columns, the problem in (3.20) becomes a standard trace minimization problem.
Defining

Qk =

K∑

l=1,l6=k

HklF lF
H
l H

H
kl (3.21)

to be the interference covariance matrix at receiver k, then Gk is given by

Gk = V
Nk−dk+1:Nk
k (3.22)

where
Qk = V kΦkV

H
k (3.23)

is the eigenvalue decomposition (EVD) of Qk (cf. Appendix A.2). In other
words, the columns of Gk are the eigenvectors corresponding to the dk

smallest eigenvalues of Qk. This solution depends on the set of variables
{F 1, . . . , F k−1, F k+1, . . . , F K} through Qk.
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In a similar fashion, the kth precoder is the solution of the problem

min
F k

∑

m6=k

tr
(
F

H
k HmkGmG

H
mH

H
mkF k

)
s.t. rank(GH

k HkkF k) = dk

and tr(F H
k F k) = Etx,k

(3.24)

which also follows directly from (3.19) due to the property tr(AB) = tr(BA) for
any two matrices A and B of appropriate sizes. Enforcing F k to have orthogonal
columns and with equal stream power allocation, it is written as

F k =

√

Etx,k

dk
F k,ort. (3.25)

Consequently, the problem in (3.24) becomes a standard trace minimization
problem as well, whose solution is given by

F k,ort = X
Nk−dk+1:Nk
k (3.26)

with the EVD

∑

m6=k

Etx,m

dm
HmkGmG

H
mH

H
mk = XkΦ̂kX

H
k . (3.27)

The solution for F k depends on the set of variables
{G1, . . . , Gk−1, Gk+1, . . . , GK}.

The coupling of the different variables implies that the optimal precoders
and receive filters cannot be found in closed-form. To find a solution of the ini-
tial problem in (3.19), an iterative alternating minimization procedure is used,
whereby at each iteration 2K−1 matrix variables are kept fixed and the remain-
ing variable is solved in terms of the fixed variables. Arbitrary initial orthogonal
precoders can be chosen as a starting point for the algorithm. Algorithm 3.1
summarizes the IL procedure. The IL is shown to analytically converge to a lo-
cal optimum [11]. In Algorithm 3.1 and other algorithms to be later presented,
convergence is reached when the global objective function [e.g., the objective in
(3.19) for the IL procedure] becomes smaller than a certain defined threshold,
e.g., 10−3 or 10−6.

Other iterative IA algorithms include algorithms in [70–72]. Such algorithms
rely on different objective functions to achieve IA. For instance, the algorithm
in [71] takes the receive filters out of the optimization problem, and is based
on the concept of chordal distance between subspaces, which is conveniently
defined via orthogonal projectors. We review the algorithm in [71] next.
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Algorithm 3.1 The Interference Leakage Algorithm

Require: Initial F 1, F 2, . . . , F k with orthogonal columns.
repeat

Receive filter optimization:
for k = 1 to K do

Obtain EVD in (3.23).
Find Gk using (3.22).

end for

Precoder optimization:
for k = 1 to K do

Obtain EVD in (3.27).
Find F k using (3.26) and (3.25).

end for

until convergence

We start by defining orthogonal projectors. Let S ⊆ C
N be a subspace.

P ∈ C
N×N is called the orthogonal projector onto S if is satisfies the following

properties:
span(P ) = S,

P
H = P , and

P
2 = P .

(3.28)

Thus, by definition, if x ∈ C
N , then P x ∈ S and (IN −P )x ∈ S⊥. Orthogonal

projectors can be used to define a chordal distance measure between subspaces.
The chordal distance between two subspaces S1 and S2 of the same dimensionis
defined as (see, e.g., [73])

d(S1,S2) =
1√
2
||P 1 − P 2||F (3.29)

where P i is the orthogonal projector onto Si. A distance of 0 between two
subspaces means that these subspaces are aligned.

Using the chordal distance between subspaces, the alignment problem can be
formulated in terms of orthogonal projectors as follows. Let P kl be the orthog-
onal projector onto the column space of HklF l, ∀l and k 6= l. P kl uniquely
defines a receive interference subspace between receiver k and transmitter l and
can be written as (see, e.g., [74])

P kl = HklF l

(
F

H
l H

H
klHklF l

)−1
F

H
l H

H
kl ∈ C

Nk×Nk . (3.30)

It can be checked that P kl satisfies the properties in (3.28). Defining
α(F 1, ..., F K) to be the sum of squared distances between interfering subspaces
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over all receivers:

α(F 1, ..., F K) ,

K∑

k=1

K∑

l=1,l6=k

K∑

m=1,m>l,m6=k

1

2
||P kl − P km||2F , (3.31)

the IA problem in [71] was formulated as the problem of finding the precoders
that minimize α(F 1, ..., F K) subject to the transmit power constraint:

min
(F 1,...,F K )

α(F 1, ..., F K) s.t. tr
(
F

H
l F l

)
= Etx,l ∀l. (3.32)

Similar to the IL problem formulation, such a problem is non-convex in the
precoder variables [due to the inverse term in (3.30)], doesn’t yield closed-form
solutions, and alternating optimization is needed to solve it. For fixed precoders
F m∀m 6= l, the lth precoder is the solution of the following problem

min
F l

∑

k 6=l

∑

m>l,m6=k

||P kl − P km||2F
︸ ︷︷ ︸

αl(F l)

. (3.33)

αl(F l) is expanded as1

αl(F l) =
∑

k 6=l

∑

m>l,m6=k

(

(dl + dm)− 2 tr
[

F
H
l H

H
klP kmHklF l

(
F

H
l H

H
klHklF l

)−1
])

.

(3.34)
This is a sum of generalized Rayleigh quotients, whose minimizer does not have
a closed-form solution. However, αl(F l) satisfies

αl(F lQ) = αl(F l) (3.35)

for any invertible or unitary Q ∈ C
dl×dl . The invariance of αl(F l) to unitary

rotations means that the optimal precoder solution only depends on the sub-
space in which it lies and not on the precoder itself (as also observed in Section
3.2.2). In the context of iterative algorithms, this property is very useful because
it leads to a reduction of the dimension of the optimization problem; namely,
the search space is reduced to a search over subspaces. Thus, the local objec-
tive given by (3.34) can be minimized on the complex Grassmannian manifold
Gr(Ml, dl), defined next.

Definition 3.4. Complex Grassmannian Manifold:
The complex Grassmannian manifold Gr(M, d) of CM , d < M , is the set of all
d-dimensional complex subspaces of CM .

1Note that ||X||2

2
= tr(XXH).

34



3.2. Interference Alignment Methods

The solution to (3.33) can be found using an iterative steepest descent method
on the Grassmannian manifold that is especially tailored for unitary matrices
[75]. Thus, the initial problem in (3.32) can be solved for unitary precoders, i.e.,
F H

l F l = Idl where each stream is assigned unity power. The found solutions
can be then scaled to satisfy the power constraint. This scaling doesn’t change
the value of αl(F l), again due to (3.35). The method requires the evaluation of
αl(F l) and its gradient with respect to (w.r.t.) F l at each iteration. The latter
is given by

∇F l (αl) = 2
∂αl

∂F ∗
l

=

4
∑

k 6=l

[

H
H
klHklF l

(
F

H
l H

H
klHklF l

)−1
F

H
l AkF l −AkF l

](
F

H
l H

H
klHklF l

)−1

(3.36)
where ∂αl/∂F ∗

l denotes the partial derivative of αl w.r.t. F ∗
l which is calculated

in [71, Appendix], and

Ak , H
H
kl




∑

m/∈{l,k}

P km



Hkl. (3.37)

The resulting procedure is shown in Algorithm 3.2. Steps 1 to 7 consist of the
steepest descent method on the Grassmannian manifold needed to calculate
a given precoder. Step 1 is similar to the first step of the steepest descent
algorithm for scalar or vector variables. In step 2, the gradient is projected on
the tangent space of the Grassmannian manifold to find the descent direction on
the manifold Z. Step 3 checks whether the steepest direction is small enough,
and if so, convergence is reached. Steps 4 and 5 consist of Armijo’s rule for
choosing a proper step size and updating the precoder value [76]. Steps 4 and
5 result in a precoder update that lies outside Gr(Ml, dl). Therefore, Steps 6
and 7 project the obtained precoder back onto Gr(Ml, dl). Step 8 updates the
auxiliary variables required for the following precoder calculations.

After finding the precoder solutions, they can be adjusted to satisfy the
transmit power constraint. Provided the global solution is found, choosing
Gk ∈ (HklF l)

⊥ for any l 6= k provides a complete solution to the alignment
problem. This algorithm was shown to analytically converge to a local minimum
in [77] and numerically to converge to global optimums for different system pa-
rameters.

Note: A minor imprecision exists in the presented algorithm version of [71].
Namely, in steps 1 and 2 the gradient w.r.t. F l is replaced with the partial
derivative w.r.t. F ∗

l , i.e., the multiplication by 2 is missing. This is due to the
formulation in [75] which treats ∇F l (αl) and ∂αl/∂F ∗

l as equivalent. Nonethe-
less, this doesn’t affect the correctness of the algorithm as it only corresponds to
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Algorithm 3.2 Projector Based Interference Alignment via Alternating Mini-
mization
Require: Initial F 1, F 2, . . . , F K with orthogonal columns; initial step size γ =

1.
repeat

for l = 1 to K do

Steepest descent method on the Grassmannian manifold:
1) Calculate ∇F l (αl) [cf. (3.36) and [71]].
2) Compute the steepest direction Z = −(IM − F lF

H
l )∇F l (αl).

3) Calculate ||Z||2F = tr(ZHZ). If it is sufficiently small, go to step 8.
4) If αl(F l)− αl(F l + 2γZ) ≥ γ tr(ZHZ) set γ ← 2γ and repeat step 4.
5) If αl(F l)−αl(F l + γZ) < 0.5γ tr(ZHZ) set γ ← 0.5γ and repeat step
5.
6) Perform the QR decomposition of F l + γZ:
F l + γZ = QlRl.
7) F l = Q

1:dl
l . Go back to step 1.

Update auxiliary variables:
8) Update projectors P kl ∀k 6= l according to (3.30).

end for

until convergence

a real valued scaling operation of Z that is afterwards automatically corrected
in steps 4 and 5 while choosing the step size.

In [72], an IA design based on precoders only is also presented, where the
precoders are chosen to minimize the sum of the smallest eigenvalues of inter-
ference covariances matrices over all receivers, i.e., the IA problem is formulated
as:

min
(F 1,...,F K )

K∑

k=1

Nk∑

m=Nk−dk+1

λm(Qk) s.t. F
H
l F l = Idl ∀l (3.38)

where Qk is given by (3.21). The formulation is based on matrix differentials and
each precoder optimization step requires an iterative steepest descent method
on the Stiefel Manifold [75], defined as

St(M, d) = {X ∈ C
M×d : X

H
X = Id}. (3.39)

Note that a search over a Stiefel manifold necessitates a search over individual
unitary matrices and is therefore more costly than a search over a Grassmannian
manifold.

Unfortunately, the initial wish in [71,72] to simplify the iterative IA problem
by removing the receive filters from the optimization problem resulted in more
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complex and computationally expensive precoder solutions due to the iterative
steepest descent needed to obtain each precoder, as compared to the IL algo-
rithm where the precoders are obtained in closed-form given other variables are
fixed (cf. Algorithm 3.1).

CSI requirements and implementation: There exists different ways in which
the iterative IA algorithms can be implemented. We list some of them next.
For all of the listed implementations, the needed CSI needs to be acquired and
possibly exchanged between the concerned entities.

The IL algorithm or Algorithm 3.2 can be implemented in a centralized or
distributed manner. In any case, a centralized implementation requires the pro-
cessing entity to possess the CSI of all interfering links.

For the IL algorithm, there exists a decentralized implementation that in-
cludes receivers in the iterative process and works in a "ping-pong" manner as
follows. Starting with initial random precoders, this implementation alternates
between the following two points until convergence.

1. ∀k and l 6= k, receiver k calculates Gk and signals it to transmitter l.

2. ∀k and l 6= k, transmitter k calculates F k and signals it to receiver l.

This method necessitates more signaling over the airlink than conventional
methods or other IA implementations.

Algorithm 3.2 can be implemented in a distributed manner as outlined in [78].
Namely, at a given iteration, transmitter l calculates precoder F l and updates
the auxiliary variables P kl ∀k 6= l. He then signals these updated variables to
other transmitters which, given this knowledge, can then update their precoder
values in next iterations. Decentralized implementations necessitate the CSI of
interfering links Hkl ∀k 6= l to be present at transmitter l, as seen in (3.26) or
(3.33).

3.2.4. Feasibility of Interference Alignment

The initially proposed closed-form and iterative IA algorithms described in the
previous section could not analytically show whether the IA conditions in (3.9)
would be satisfied for a given choice of the parameters {d1, . . . , dK}. Rather, this
could only be checked numerically. Naturally, increasing the number of streams
beyond a certain value would cause the system to become interference-limited
again. This fact triggered research on the feasibility conditions of IA. One of
the earliest works on this topic is by Yetis et al. in [79], where the following
necessary condition to achieve IA was introduced:

K∑

k=1

dk(Mk + Nk − 2dk) ≥
K∑

k=1

K∑

l=1,l6=k

dkdl, (3.40)
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which simplifies to
M + N ≥ (K + 1) d (3.41)

in the symmetric channel case. This condition was shown to be necessary but
not sufficient for IA to hold in general. However, for the special case dk = 1∀k,
the authors in [79] showed it is a sufficient condition. In that case and for
i.i.d. channel entries, the conditions in (3.9) correspond to a system of linear
independent equations, where the unknowns correspond to the precoders and
receive filters entries. According to the number of equations and unknowns,
the linear system is either overdetermined (has no solution), has exactly one
solution, or is underdetermined (has infinitely many solutions). This counting
of equations and unknowns can be used to obtain (3.40) (or (3.41)). In the
multiple stream case, the authors noted that the equations become coupled and
the coefficients are repeated. Therefore, the same framework cannot be applied.
Later works on feasibility of IA were performed in [80, 81] and are based on
algebraic geometry. Authors in [80] extended the results of [79] and showed
that the necessary condition in (3.41) is also a sufficient condition for square
symmetric channels and holds for d ≥ 1. The authors in [81] extended the
results of [79, 80] by showing that this necessary condition is also sufficient for
symmetric channels with d ≥ 1. They also provided a set of lengthy conditions
in the general asymmetric channel case, which we skip for brevity and due to
the fact that later chapters dealing with IA will only consider symmetric or
square symmetric channels. As a summary, the condition M + N ≥ (K + 1)d
was shown to be sufficient and necessary for symmetric channels with d ≥ 1.

3.3. Other Approaches for MIMO Interference Channels

A number of other linear precoding methods were investigated for MIMO ICs.
These methods were motivated by two facts. The first one being that IA ap-
proaches do not optimize the direct channel gains and are thus suboptimal at low
SNR. The second one is that even at high but finite SNR, the rates achieved by
IA might still be o(log(SNR)) away from capacity (cf. Section 3.1.3). For a given
set of channel parameters, these methods have the same number of transmit-
ted streams of IA methods as these correspond to the DoF of a given system.
However, they have different optimization criteria and they can be split into
following categories, e.g.:

1. SINR based approaches (see, e.g., [11]),

2. MSE based approaches (see, e.g., [12,13,82]),

3. Rank optimization approaches (see, e.g., [83,84]), and

4. Pricing approaches (see, e.g., [85–87]).
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Again, different proxy functions are optimized instead of the rate functions. We
summarize some of these approaches next.

SINR approaches

The max-SINR algorithm in [11] uses the SINR metric as a proxy to the capacity
function, and aims at maximizing the SINRs of the different user streams. Its
formulation is based on channel reciprocity in TDD mode2. Under perfect chan-
nel reciprocity in TDD mode, the signaling dimensions along which a receiver
sees the least interference from transmitters are also the same dimensions along
which this receiver will cause the least interference to other transmitters in a
reciprocal network where the roles of transmitters and receivers are reversed.
This property is used to formulate the max-SINR problem. The SINR of the
j-th stream of the k-th receiver in the original network equals

SINRk,j =
G

j,H
k HkkF

j
kF

j,H
k HH

kkG
j
k

G
j,H
k Bk,jG

j
k

Etx,k

dk
(3.42)

where Bk,j is the interference plus noise covariance matrix of the j-th stream
of the k-th receiver:

Bk,j =

K∑

l=1

Etx,l

dl

dl∑

u=1

HklF
u
l F

u,H
l H

H
kl−

Etx,k
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HkkF

j
kF

j,H
k H

H
kk + Cnk

(3.43)

(cf. [11]). With other variables fixed, the unit vector G
j
k that maximizes SINRk,j

is given by:

G
j
k =

B−1
k,jHkkF

:,j
k

||B−1
k,jHkkF

:,j
k ||2

. (3.44)

Similar SINR expressions can be obtained in the reciprocal network. After the
precoders and receive filters are randomly initialized, an iterative procedure
is performed between the original and reciprocal network: the receive filters
optimizing the SINR in the original network are calculated for fixed precoders
as in (3.44), then the precoders optimizing the SINR in the reciprocal network
are calculated for fixed receive filters. This continues till convergence. The max-
SINR algorithm exhibits a better performance than the IL algorithm, especially
in the low and medium SNR regimes.

MSE approaches

2The TDD-based formulation is only needed to find the precoder and receive filter solutions.
The method is also applicable to FDD systems.
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In [12,13], a sum MSE for the single-stream case is defined as

α =

K∑

k=1

E
[
|sk − ŝk|2

]
(3.45)

where the system equation reads

ŝk = g
H
k

(

Hkkfksk +

K∑

l=1,l6=k

Hklf lsl + nk

)

(3.46)

when dk = 1∀k. The following optimization problem is posed:

min
(f1,...,fK )
(g1,...,gK )

α s.t. ||fk||22 ≤ 1 ∀k. (3.47)

The Lagrangian function of the above problem is constructed as (see, e.g., [88])

L = α +

K∑

k=1

λk(||fk||22 − 1) (3.48)

where λk ≥ 0 is the Lagrangian multiplier associated with the kth transmit
power constraint. With other variables fixed, the kth receive filter that minimizes
α is given by

∂L

∂g∗
k

= 0 =⇒

gk =

(
K∑

m=1

Hkmfmf
H
mH

H
km + σ2

nIN

)−1

Hkkfk,

(3.49)

while similarly precoder fk is given by

∂L

∂f∗
k

= 0 =⇒

fk =

(
K∑

m=1

H
H
mkgmg

H
mHmk + λkIM

)−1

H
H
kkgk.

(3.50)

An explicit expression for λk cannot be given. However, the authors in [12] noted
that as ||fk||22 is convex and decreasing in λk, there exists a unique solution for
λk which can be found via Newton iterations for instance. Randomly initial-
ized, the receive filters and precoders can be calculated according to (3.49) and
(3.50) in a round robin fashion until convergence. The algorithm shows a similar
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3.3. Other Approaches for MIMO Interference Channels

performance to the max-SINR algorithm. In addition, it can be easily adapted
to the case where some users have more priorities over others, in which case the
optimization problem is reformulated as a weighted MSE minimization prob-
lem, and shows a better performance than the max-SINR in low and medium
SNR ranges. A later work by authors in [82] formulated a MSE minimization
problem and presented a corresponding solution in the dk ≥ 1 case.

Even though MSE and SINR based algorithms might not perfectly cancel
the interference at the different receivers, they show a better performance than
the IL algorithm in general because the former approaches are better proxies of
the achievable rates than the IA criterion in the finite SNR regime [11, 12, 82].
If the IL algorithm and its variants are regarded as generalized ZF algorithms
operating on lower dimensional subspaces and by recalling that ZF precoding
is suboptimal to SINR and MSE approaches in MIMO BCs in the finite SNR
regime, a direct link between the performance of the precoding methods in
MIMO ICs and precoding methods in MIMO BCs discussed in the previous
chapter can be established.

Rank optimization approaches

Rank optimization approaches were motivated by the fact that when perfect IA
is not possible or numerically reachable, algorithms such as the IL will result
in solutions with low interference leakage/power but the resulting interference
covariance matrices might possibly span multiple dimensions. Such solutions
are not tightly related to the DoF, which is the pre-log capacity factor at high
SNR. Indeed, the authors in [83] conjectured that solutions favoring interference
covariance matrices with low rank are more representative of the DoF and would
result in better sum-rate solutions than the IL algorithm or its variants when
perfect IA is not possible or numerically reachable. Defining

Jk ,
[
G

H
k Hk1F 1, . . . , G

H
k Hk,k−1F k−1, G

H
k Hk,k+1F k+1, . . . , G

H
k HkKF K

]

(3.51)
as the horizontal concatenation of interference matrices at receiver k, they re-
formulated the IA problem as the following rank constrained rank minimization
problem:

min
(F 1,...,F K )
(G1,...,GK )

K∑

k=1

rank(Jk) s.t. rank(GH
k HkkF k) = dk ∀k (3.52)

which is equivalent to maximizing the number of interference-free dimensions3.

3The authors include the rank constraint rank(GH

k HkkF k) = dk—with Gk and F k

unitary—when developing a solution of the precoders and receive filters. However, this
condition is satisfied with probability 1 as was discussed in Section 3.2.1. Therefore, we
conjecture that this constraint can be simply dropped from the optimization problem.
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3. Linear Precoding Methods in MIMO Interference Channels

Such a problem is non-convex in the precoder and receive filter variables. Even
if it were, minimizing ranks of matrices is not straightforward. Therefore, they
relaxed the problem and obtained a convex approximation of the objective. Such
an approximation is given by

conv

(
K∑

k=1

rank(Jk)

)

=
1

µ

K∑

k=1

||Jk||∗

=
1

µ

K∑

k=1

dk∑

t=1

σt(Jk)

(3.53)

where conv(f) denotes the convex envelope of f and ||A||∗ is the nuclear norm
of A, i.e., the sum of the singular values of A. When the maximum singular
value of the interference matrices is upper bound by µ, (3.53) provides a convex

approximation for
∑K

k=1
rank(Jk). They noted that the IL cost function can be

written as the sum of the squared corresponding singular values, which is the
main difference between the two approaches. The resulting problem was then
solved numerically using convex optimization toolboxes, and numerical results
showed that the proposed rank minimization algorithm results in performance
improvements over the IL algorithm when perfect IA is not possible. Its per-
formance in comparison to the max-SINR algorithm varied according to the
scenario and SNR range. A possible explanation is the unpredictable conver-
gence behavior of both algorithms.

Authors in [84] proposed a refinement of the nuclear norm approach. The
reason is that the nuclear norm operator sums the singular values, while the rank
operator sums the number of non-zero singular values. As a result, a nuclear
norm minimization approach penalizes the larger singular values more heavily
than the smaller ones, while a rank minimization approach treats them equally.
Such a fine difference is not seen when perfect IA is possible (or optimal, e.g.,
at high SNR) as both the rank of interference covariance matrices and their
nuclear norm would equal 0. However, in other cases, and to more accurately
resemble a rank function, they proposed to adapt the objective in (3.53) by left
multiplying Jk by a weight matrix that is iteratively updated as to contain the
inverse of the obtained singular values on its diagonal after each iteration. Such
a weighted nuclear norm approach shows performance improvements over the
unweighted one in low and medium SNR ranges. Its performance in comparison
to the max-SINR algorithm again varied according to the scenario and SNR
range.

As a final word in this section, we note that MMSE, SINR, or pricing algo-
rithms can be applied to the MISO IC as well, unlike the IA algorithms which
require at least 2 receive antennas to align the interference. Similarly, rank op-
timization approaches necessitate 2 receive antennas at least.
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3.4. Other Channel Configurations

CSI requirements and implementation: For the algorithms of this section
and besides the CSI of the interfering links, the CSI set of direct links
{H11, . . . , HKK} is also involved in the optimization process, as can be seen
from (3.44), (3.49), or (3.50). Besides this fact, the implementation of any of the
algorithms of this section follows similarly to the one of the previous section.

3.4. Other Channel Configurations

3.4.1. Configurations Where Interference Cannot be Overcome

As the number of streams that can be simultaneously transmitted depends on
the number of transmit antennas, receive antennas, and users, this implies that
there are some configurations where no simultaneous transmission is possible
across the K transmitter/receiver links. This case can be represented by the
inequality:

K∑

k=1

dk(Mk + Nk − 2dk) <

K∑

k=1

K∑

l=1,l6=k

dkdl (3.54)

which simplifies to
M + N < (K + 1) d (3.55)

in the symmetric channel case. As the conditions in (3.40) and (3.41) are nec-
essary, any system not satisfying them will be interference limited. This gives
(3.54) and (3.55).

Example 3.2. The scenario (2, 1, 1)3 is interference limited.

A possible solution to mitigate interference here is through orthogonal access
schemes. For instance, TDMA can be used to mute a subset of the transmitters
at each transmission interval. Muting one transmitter at each transmission inter-
val in the original (2, 1, 1)3 scenario would lead to a (2, 1, 1)2 scenario satisfying
(3.58) (cf. Section 3.4.2) which is not interference limited anymore. Another
solution would be moving a subset of transmissions to other frequency bands,
i.e, FDMA.

3.4.2. Configurations With Full-Spatial Multiplexing

So far, we have discussed configurations where either simultaneous transmis-
sions across the K links without full-spatial multiplexing are possible, or con-
figurations where simultaneous transmissions are not possible at all. We next
discuss configurations where enough antennas are available at the transmitters
and/or receivers to support full-spatial multiplexing, i.e., the transmission of up
to dk = min(Nk, Mk) data streams to receiver k. We focus on the case where
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3. Linear Precoding Methods in MIMO Interference Channels

transmitters are equipped with at least as many antennas as receivers. This case
yields dk = Nk.

It is first important to point out that all the iterative algorithms from Section
3.2.1 can still be used here. However, the additional number of antennas present
in this case allows for non-iterative algorithms to be implemented. One example
is the BD algorithm [37], which is a multi-user ZF scheme. It is mainly intended
for users with multiple antennas, and supports full-spatial multiplexing. Even
though originally presented for the MIMO BC, the BD can be implemented
in the MIMO IC as well. The BD uses the available degrees of freedom to
construct ZF precoders directly, without the need for an iterative design nor a
joint precoder-receive filter design. In contrast to (3.9) and with enough transmit
antennas, ZF precoders satisfy

HklF l = 0Nk×Nl

rank(HkkF k) = Nk

k ∈ {1, . . . , K}, l ∈ {1, . . . , K}\{k}.
(3.56)

Thus, all the processing is done at the transmitter side in this case and no
processing is required at the receiver side in contrast to Sections 3.2 and 3.3.
The BD is therefore a good option in fast-varying systems with short coherence
times. The conditions in (3.56) correspond again to a linear system consisting
of a number of equations and a number of unknowns. It yields a solution if and
only if:

Mk ≥
K∑

l=1

Nl (3.57)

which simplifies to
M ≥ KN (3.58)

in the symmetric channel case. The inequality in (3.57) was originally derived
in [37] based on a singular value decomposition analysis of the aggregate in-
terference matrix at each receiver. They can also be obtained from (3.40) by
setting dk = Nk.

Example 3.3. The scenario (8, 2, 2)3 satisfies condition (3.58).

If the above conditions are satisfied, interference can be simply zero-forced
by choosing F k to lie in the nullspace of

[

H
T
1k, . . . , H

T
k−1,k, H

T
k+1,k, . . . , H

T
Kk

]T

.

The last step consists in maximizing the achievable rate of user k given this
choice of F k. Writing the final precoder as F kF̃ k where F̃ k ∈ C

N×N , this is
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equivalent to solving the problem:

max
F̃ k:tr(F kF̃ kF̃

H

k F H
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log

∣
∣
∣IN +
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k F

H
k H

H
kk

∣
∣
∣ . (3.59)

This is a standard P2P rate maximization problem whose solution is given in
Appendix B. The receive filters are square matrices that do not perform any
rank reductions. Therefore, they can be simply set to Gk = INk as any other
choice would not improve the system performance from an achievable rate point
of view.

A modified version of BD, the regularized BD, was proposed in [89]. It aims
at improving the performance of BD at low SNR. The regularized BD solution
introduces an SNR dependent regularization term to the BD solution and can be
thus considered as a generalized Wiener filter design for receivers with multiple
antennas.

Yet one final case can be distinguished from the general case covered in this
section. It corresponds to the case

M ≫ KN. (3.60)

All algorithms covered in this chapter so far can be applied here. However,
this case deserves a special attention. To get a better understanding, we first
introduce MRT precoding. MRT is a simple and well known precoding strategy
which aims at maximizing the received power of a given user without considering
the interference that might be caused to other users. The precoder is a Hermitian
version of the CSI of the direct link, i.e.:

F k = αkH
H
kk (3.61)

where αk is a term used to satisfy the transmit power constraint. For simple
scenarios such as P2P MISO links where inter-user and inter-stream interference
are non-existent, MRT is optimal. However, in MIMO scenarios where M is
comparable to N and in the high SNR regime, MRT is suboptimal as it results in
strong interference to unintended users. Similar observations hold for eigenmode
precoding which is optimal in P2P links. As discussed in the previous chapter,
MRT becomes optimal in MIMO BCs as M → ∞. We can also generalize this
statement and say that all precoding strategies which only depend on the direct
channels, e.g., eigenmode precoding, are asymptotically optimal in MIMO ICs.
Therefore, in systems where (3.60) is satisfied, the simple MRT or eigenmode
precoding methods might constitute an attractive choice.
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3. Linear Precoding Methods in MIMO Interference Channels

3.5. Classification From a Game Theory Point of View

In game theory, it is usual to define a set of players, a set of actions by each
player, and a utility function for each player [90]. Furthermore, actions are split
into non-cooperative/selfish and cooperative strategies. An essential require-
ment for cooperation among players is achieving a benefit for all of them. In the
context of MIMO ICs, players correspond to users, actions correspond to pre-
coding strategies, and utility functions correspond to achievable rate functions.
All the algorithms discussed in this chapter except for MRT and eigenmode
precoding are considered to be cooperative strategies. This is because trans-
mitters design their precoders to minimize the interference to other receivers
in the system, instead of each transmitter trying to maximize the rate of its
dedicated receiver only. The result is increased achievable rates for all users.
A non-cooperative strategy such as eigenmode precoding and MRT where any
transmitter aims at maximizing the rate of its dedicated receiver would result
in strong interference to other receivers in general. Consequently, only a low
network sum-rate can be achieved.

3.6. Common Drawbacks of Cooperative Methods

One common problem with the cooperative methods of this chapter (except for
BD and the closed-form IA solutions) is the convergence behavior due to the
non-convex nature of the different optimization problems and the coupling of the
different variables. At best, iterative IA algorithms are analytically guaranteed
to converge to a local minimum. Even so, the alternating optimization proce-
dure is computationally expensive and might require hundreds or thousands of
iterations for medium-sized systems to converge. For this reason, they might
not be feasible in practical systems as by the time a solution is found, the users’
channels would have changed and the obtained solutions would be outdated.
The methods of Section 3.3 are not guaranteed to converge and their perfor-
mance can be only checked via simulations. The performance of many of these
methods was observed to be unpredictable in many scenarios (see, e.g., [83]).

Another issue that should be considered is the higher CSI requirements of
these methods compared to non-cooperative methods, as discussed in the pre-
vious sections. As elaborated in Section 2.4, CSI is acquired via pilot symbols
sent in the downlink and/or uplink. The knowledge of the CSI of additional
links necessitates more pilot symbols, which occupy more time slots that would
be otherwise used for data transmission. The effects of these piloting overheads
on spectral efficiency are often neglected and the required CSI is assumed to be
available for free. Finally, the dependency of such methods on CSI from multi-
ple links makes them highly non-robust to practical channel estimation errors,
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which lead to mismatched precoders as well as receive filters and consequently
limit the gains of cooperative methods in practice.

MRT or eigenmode precoding combined with a large number of transmit
antennas deserve a special attention because this combination allows climbing
out of the "interference-limited" regime merely because of the size of the transmit
antenna array. In addition, MRT and eigenmode precoding exhibit the following
properties which are desirable in practical systems:

1. the precoders can be obtained in closed-form for arbitrary system param-
eters,4

2. these methods are more robust to CSI errors than cooperative methods.

The second point is merely due to the inherent nature of non-cooperative meth-
ods in which receivers treat interference as noise and do not perform any pro-
cessing based on interfering links. Similarly, transmitters do not perform any
processing based on interfering links.

One of the goals of future cellular systems is creating noise-limited systems.
Naturally, this can be achieved through either cooperative precoding strategies
or through non-cooperative precoding strategies combined with large transmit
arrays. In the second case, however, the physical required number of antennas
has not been investigated so far. Keeping in mind that cooperative and non-
cooperative strategies translate to multi-cell and single-cell strategies, respec-
tively, such a number is important for designing the overall system architecture.
Initial massive MIMO architectures envisioning hundreds of antennas might not
be feasible due to high costs, lack of space in urban areas, etc. In this thesis, we
attempt to find out how much transmit antennas a non-cooperative strategy re-
quires so that it emulates the performance of a noise-limited system, i.e., so that
its resulting performance is similar to the one of a system where transmitters
with a fixed number of antennas employ a cooperative strategy.

3.7. Relation to LTE Cooperative Transmission Schemes

In the LTE standards, cooperation between transmitters is referred to as coor-
dinated multipoint transmission (CoMP) and is split into two categories [91]:

1. coordinated scheduling / beamforming (CS, CB), and

2. joint processing (JP), also called Network MIMO.

4MRT is especially attractive because the transmitter simply constructs its precoder as a
Hermitian version of the channel estimate without any decompositions nor inversions as
is the case for other designs.
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CS corresponds to the simplest cooperation type as transmitters only cooperate
to find the best scheduling decisions. An example of CS was already covered in
Section 3.4.1 which corresponds to a muting decision by one or more transmit-
ters to reduce interference. All the algorithms presented in this chapter except
for MRT and eigenmode precoding fall into the CB class.

When JP is employed, the same data symbol(s) are sent from multiple trans-
mitters to a particular receiver in contrast to CS and CB. JP is the most de-
manding class of cooperation as it requires CSI exchange as well as data sym-
bol(s) exchange among the transmitters. Information exchange occurs over the
backhaul link connecting the transmitters which is called the X2 interface in
LTE systems; therefore, JP requires a higher backhaul capacity than CS and
CB. Theoretically, JP can convert interference power from dominant interferers
into additional useful signal power coming from the latter, assuming transmis-
sion and reception procedures are properly synchronized. In order to keep the
backhaul requirements moderate, JP is not considered in this thesis and the
part of the thesis related to CoMP transmission will only deal with CB.

3.8. Summary

In this chapter, we presented different linear precoding methods for MIMO
ICs. We differentiated three main regimes according to the network configu-
ration in terms of the number of transmit antennas, receive antennas, desired
streams, and users. Two of these regimes allow simultaneous transmission over
the K links while at the same time mitigating interference. In one of these two
regimes, mainly iterative methods such as IA need to be used. We reviewed dif-
ferent iterative IA algorithms in that regime and a closed-form IA solution in one
special case. We then summarized other approaches such as MSE, SINR, or rank
based approaches. The other interference-mitigating regime allows additionally
for non-iterative methods such as BD to be used. In that regime, we identified
the massive MIMO special case and discussed possible precoding options when
transmitters are equipped with a large and non-conventional numbers of anten-
nas. In the last regime, there are too little antennas and/or too many users to
allow simultaneous transmission on the same time-frequency resources. Conse-
quently, transmissions have to be orthogonalized in time or frequency. We also
discussed the different methods’ CSI requirements and convergence behavior,
presented different possible centralized and decentralized implementations of
cooperative methods, and discussed some drawbacks of cooperative methods in
the context of practical systems. We finally showed how these methods relate
to current LTE cooperative transmission schemes.

This chapter didn’t include designs with limited CSI as this is outside the
scope of this thesis. Nonetheless, this is an important topic with ongoing re-
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search, most of which is concerned with IA. Recent publications include works
in [92–96]. Authors in [92] deal with single stream transmission and show that
for some channel configurations, interference can be first aligned in a subset of
the K interfering links. A Ks < K sub-IC is considered where the IA problem is
feasible and Ks precoders and Ks receive filters are designed given only the CSI
of interfering links of this sub-IC, resulting in a reduction of CSI requirements
for the given Ks users. Afterwards, the remaining K − Ks precoders/receive
filters can be aligned to the already constructed ones. This is done using the
CSI of all interfering links seen by the last K−Ks users, and doesn’t result in a
CSI reduction for these users. The works in [93–96] deal with limited feedback
and codebook design for IA. They build on the fact that optimal IA precoders
lie on Grassmannian manifolds to construct codebooks entries belonging to such
manifolds. They are therefore different from many conventional codebook con-
struction techniques.
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Alignment

In this chapter, we will derive rate expressions of cooperative IA methods when
applied to transmitters and receivers with large numbers of antennas. RMT
tools, large system analysis (LSA), and the law of large numbers (LLN) con-
stitute an integral part of this chapter. In general, analytical rate expressions
of MIMO algorithms are hard to obtain. However, LSA is a very useful tool
to overcome this problem. In an LSA, when two of system parameters, e.g.,
number of transmit and receive antennas, go to infinity at a finite fixed ratio,
algorithms’ performance metrics such as achievable rates or BERs become pos-
sible to obtain. This is due to the fact that the eigenvalue or singular value
distributions of large random matrices often converge to fixed asymptotic dis-
tributions. This important property can be used to derive analytical rate ex-
pressions in the large system limit. Examples of such distributions include the
Marc̆enko-Pastur distribution, which is the asymptotic eigenvalue distribution
of large Wishart matrices. Another example is the quarter circle distribution,
which is the asymptotic singular value distribution of large square matrices.

Even though the resulting expressions are only exact asymptotically, they
usually provide a very good estimate for a finite number of system parameters
as well. It has been applied to CDMA systems [97–102] as well as to multi-user
MIMO systems. It has been used in [103] to derive rate lower bound expressions
of the successive-encoding-successive-allocation method [48] in the MIMO BC.
In [104], an LSA is performed in the MIMO BC and rate expressions of the BD
algorithm and rate lower bound expressions of BD with dirty paper coding are
derived. LSA has been applied to IA in [105,106]. In [105], the optimal rate curve
offset (the y-axis intercept) of IA in the single stream square symmetric MIMO
IC is analyzed using LSA. In [106], an uplink two-cell scenario with Ricean
channels is considered and the impact of the Ricean factor on IA performance
is analyzed using LSA. LSA for MRT and ZF has been performed in [54] for
non-cooperative multi-cell MISO systems. In [107], a two cooperating MISO cell
network is considered and an LSA is performed to obtain asymptotic values of
the SINRs and bit rates.

In this chapter, large system rate expressions will be obtained in closed-form
under equal power allocation, and in quasi closed-form for the optimal water-
filling (WF) power allocation. The resulting expressions in the latter case depend
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on the asymptotic WF level which has to be found numerically. An intermediary
needed result on the asymptotic eigenvalue distribution of the direct channel
gains resulting from IA will be obtained as well. As explained in Chapter 3,
different IA variants can be grouped together in one class as they aim at align-
ing and subsequently canceling interference from other transmitters through a
proper precoder/receive filter design. Afterwards, the rate of the different users
can be maximized through WF. Thus, we expect the obtained large system ex-
pressions to be valid for different IA variants. A similar conjecture applies for
the obtained asymptotic eigenvalue distribution. The simulation results at the
end of the chapter will validate these conjectures.

We start this chapter by revisiting some of the main RMT tools which up-
coming derivations will be based on. These tools will be needed to characterize
the performance of eigenmode precoding in Chapter 5 as well. The material of
this chapter has been published in [108].

4.1. Preliminaries

4.1.1. The Marc̆enko-Pastur Distribution

Let A be a real or complex random s× t matrix with i.i.d. zero mean elements
of variance 1/s. As s, t → ∞ at a fixed ratio t/s = α, the distribution of
the eigenvalues of AHA converges almost surely to a fixed distribution with
density [19–21]

fMP(λ) =
(

1− 1

α

)+

δ(λ) +

√
(λ− a)+(b− λ)+

2παλ
(4.1)

where a = (1−√α)2, b = (1 +
√

α)2, and y+ = max(0, y).

4.1.2. The Shannon Transform

The Shannon transform of a non-negative random variable x is defined as

Vx(γ) = E [log(1 + γx)] (4.2)

where γ ∈ R
+. If x follows a Marc̆enko-Pastur distribution, its Shannon trans-

form is additionally a function of α which is given in Section 4.1.1 and is found
in closed form as [21]

V(γ, α) = log
(

1 + γ − 1

4
F(γ, α)

)

+

1

α
log
(

1 + γα− 1

4
F(γ, α)

)

− log(e)

4γα
F(γ, α),

(4.3)
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where e is Euler’s number and

F(γ, α) =
(√

γ(1 +
√

α)2 + 1−
√

γ(1−√α)2 + 1
)2

.

4.1.3. The Quarter Circle Distribution

Let A be a real or complex square random s × s matrix with i.i.d. zero mean
elements of variance 1/s. As s → ∞, the distribution of the singular values of
A converges almost surely to a fixed distribution with density [20,21]

fQC(σ) =
1

π

√

4− σ2, σ ∈ [0, 2). (4.4)

4.2. Equivalent Modified Channel and Transmit Power Models

Without loss of generality and for brevity of expressions, we focus on the sym-
metric channel (M, N, d)K (cf. Def. 3.1). We later show that the analysis is
easily extendable to asymmetric ones. The analysis is performed for precoders
with orthogonal columns. In case the obtained precoders do not satisfy this
(e.g., closed-form solution in Section 3.2.2), they can be right-multiplied by a
rotation matrix to restore the orthogonality condition without violating the IA
conditions.

Recall the system model of Section 3.1.1 which will be used throughout this
chapter. However, for the purpose of derivations, we use a modified but equiva-
lent channel and transmit power model. Namely, we divide the channel matrices
by
√

d and multiply the precoders by
√

d, i.e.,

H̃ =
1√
d

H

F̃ =
√

d F = F uni

(√
dP

1

2

)

︸ ︷︷ ︸

P̃
1/2

(4.5)

where the user indices have been dropped. This modified system model will be
mainly needed for the rate derivation in the case of WF. As H̃F̃ = HF , this
model is equivalent to the one of Section 3.1.1. The equivalent model results
in modified i.i.d. channel entries having variance 1/d, i.e., [H̃]i,j ∼ NC(0, 1/d)
∀i, j. The modified transmit power constraint of transmitter k equals

Qk = tr(P̃ k) = Etx,k d (4.6)

which grows with d. The fading power and transmit power in the equivalent
model are modified; however, the received power is still the same as the one in
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4. Large System Performance of Interference Alignment

model of Section 3.1.1. The equivalent model will be used subsequently used in
this chapter as it substantially facilitates the performed derivations. However,
the simulations will be run using the model of Section 3.1.1 in order to check
the validity of the obtained expressions.

After the IA precoders and receive filters are found and supposing they lead
to a global optimum of the IA problem, the K-user MIMO IC is decomposed
into K interference-free P2P MIMO links. The rate of user k is expressed as

Rk = log det
(

Id +
1

σ2
n

F
H
k,uniH̃

H
kkGkG

H
k H̃kkF k,uniP̃ k

)

= log det
(

Id +
1

σ2
n

H
H
kk,effHkk,effP̃ k

)

where
Hkk,eff = G

H
k H̃kkF k,uni ∈ C

d×d (4.7)

is the effective channel of the kth pair and P̃ k = diag(pk,1, pk,2, . . . , pk,d). Rk

can be rewritten as

Rk =

d∑

l=1

log
[

1 +
1

σ2
n

pk,l λl

(

H
H
kk,effHkk,eff

)]

(4.8)

where the set of powers {pk,l} is chosen according to equal power allocation or

according to the optimal WF rule. The set of powers satisfies
∑d

l=1
pk,l = Qk

as explained in (4.6). The achievable rate of user k depends on the eigenvalues
of the matrix HH

kk,effHkk,eff .

4.3. Large System Rate Analysis

To perform an LSA of the achievable rates, we first assume the system is fully
loaded, i.e., the maximum number of streams is transmitted (this condition
will be relaxed later). In this case, the IA feasibility condition is achieved with
equality:

M + N = (K + 1) d (4.9)

[cf. (3.41)]. In an LSA, it is common to let two system parameters go to infinity
at a finite fixed ratio, while keeping the remaining one(s) fixed. The system
parameters at hand are K, M, N (and implicitly d). As we would like to obtain
expressions for an arbitrary large number of streams, the LSA is performed
under the assumption that d→∞. As d ≤ min(N, M), this furthermore neces-
sitates that both N and M go to infinity. By fixing K and letting M and N go
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4.3. Large System Rate Analysis

to infinity at a finite fixed ratio β, d will go to infinity as well at a finite fixed
ratio r w.r.t. the sum M + N :

M →∞, N →∞ with β =
M

N
=⇒

d→∞ with r =
M + N

d
= K + 1.

(4.10)

No conditions are imposed on the ratio β which can take any finite value. For
the rest of this chapter, we abbreviate the conditions in (4.10) by simply d→∞.
The following Lemma presents the asymptotic distribution of the eigenvalues of
HH

kk,effHkk,eff .

4.3.1. Direct Channels’ Asymptotic Eigenvalue Distribution

Lemma 4.1. As d → ∞, the distribution of the eigenvalues of HH
kk,effHkk,eff

converges almost surely to a Marc̆enko-Pastur distribution with α = 1 and cor-
responding density

f(λ) =

√
λ(4− λ)

2πλ
, λ ∈ (0, 4), (4.11)

irrespective of the ratios r and β.

Proof. In the IL algorithm or its variants, the pairs of matrices {Gk, F uni,k} are
chosen based on the interfering links—independently of the direct links—to align
interference in lower dimensional subspaces at the receivers before subsequently
canceling it. {F uni,k} are unitary matrices and {Gk} are chosen as unitary
zero-forcing filters. Left and right multiplying the matrix H̃kk—containing i.i.d.
Gaussian entries—by the independent, unitary, and known matrices Gk and
F k,uni respectively leads to a new matrix with i.i.d. Gaussian entries of the same
variance [21]. Note that the matrices Gk and F k,uni need not to be constant
for this to hold. This is the case here as these matrices change for every set

of channel realizations. As H̃kk has i.i.d. entries drawn from a NC

(

0, 1/d
)

distribution (cf. Section 4.2), the matrix Hkk,eff = GH
k H̃kkF k,uni ∈ C

d×d has

i.i.d. elements drawn from a NC

(

0, 1/d
)

distribution1 as well. The result of

the above Lemma can then be directly obtained by replacing α = d/d = 1 in
(4.1).

Note: In some cases, the parameters of a symmetric channel do not allow
for a fully loaded scenario, i.e., the spatial degrees of freedom are not totally
utilized and we have M + N > (K + 1) d (e.g., K = 3, M = 6, N = 4 results

1The distribution is conditioned on Gk and F k,uni.
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4. Large System Performance of Interference Alignment

in d = 2 and a non-fully loaded scenario). Here, no explicit ratio r can be
found relating M + N and d. However, the result obtained in (4.11) still holds
as long as d grows with min(N, M) to infinity as the asymptotic eigenvalue
distribution is independent of r or any other system parameter. Therefore, it
holds for fully loaded as well as non-fully loaded systems. Consequently, the
derived large system rates per stream in the next sections hold for fully loaded
as well non-fully loaded systems.

Alternatively, the degrees of freedom can be fully utilized by assigning a subset
of users more streams than the remaining users. In this case, we will have a
fully loaded non-symmetric channel. Again, the derived asymptotic eigenvalue
distribution and the derived large system rates per stream hold. However, the
total achievable rate in this case is higher than the non-fully loaded scenario
because more streams are transmitted.
In what follows, we drop the index k for brevity.

4.3.2. Large System Analysis and The Law of Large Numbers

Convergence in distribution is the weakest type of convergence of random vari-
ables: it does not imply that the eigenvalues (λ1, . . . , λd) themselves converge to
fixed values. Nonetheless, an important consequence of the convergence in dis-
tribution of the eigenvalues is the following. Let g(λ) be an arbitrary function,
well defined on the interval λ ∈ (0, 4). Then, the averaged sum over l of g(λl)
converges as d→∞ according to:

∑d

l=1
g(λl)

d
−→

d→∞
Eλ[g(λ)] =

∫ 4

0

g(λ)f(λ)dλ (4.12)

as a consequence of the LLN (cf. Appendix A.4). The left-hand side corresponds
to a single realization of a large matrix with eigenvalues (λ1, . . . , λd) while the
right-hand side corresponds to an expectation over a random variable λ whose
distribution is f(λ), the Marc̆enko-Pastur distribution given by (4.11). Eq. (4.12)
combines the large system assumption in (4.10), the Marc̆enko-Pastur distribu-
tion, and the LLN. It constitutes a very useful identity as g(λ) can correspond
to the rate function as well as any other needed function as will be observed in
Section 4.3.4.

4.3.3. Achievable Rates Under Equal Power Allocation

When equal power is allocated to each stream, we have

pl =
Q

d
= Etx (4.13)
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[cf. (4.6)] and the rate formula reads as

REP =

d∑

l=1

log
[

1 +
Etx

σ2
n

λl

(

H
H
effHeff

)]

.

A direct application of (4.12) implies that the achievable rate per stream REP/d
converges to the large system rate per stream RLS,EP as d→∞:

REP

d
−→

d→∞
RLS,EP, (4.14)

where

RLS,EP = Eλ(HH

eff
Heff )

[

log
[

1 +
Etx

σ2
n

λ
(

H
H
effHeff

)]]

(4.15)

which is the Shannon transform of λ(HH
effHeff) evaluated at Etx/σ2

n [cf. (4.2)].
As the eigenvalues follow a Marc̆enko-Pastur distribution with α = 1, RLS,EP

can be expressed in closed form as

RLS,EP = V
(

Etx

σ2
n

, 1
)

= 2 log

(

1 +
Etx

σ2
n
− 1

4
F
(

Etx

σ2
n

, 1
))

− 1

4
log(e)F

(
Etx

σ2
n

, 1
)

σ2
n

Etx

(4.16)

[cf. (4.3)]. The obtained expression is a function of Etx and σ2
n only.

Under equal power allocation, all streams have the same received signal-to-
noise ratio (SNR), averaged over all variables. Furthermore, the SNR, denoted
SNRIA, equals Etx/σ2

n:

SNRIA =

E

[∣
∣
∣e

T
l HeffP̃

1/2
s

∣
∣
∣

2
]

E
[∣
∣eT

l GHn
∣
∣
2
] =

E
[
eT

l HeffP̃ HH
effel

]

E
[
eT

l GHnnHGel

]

=
eT

l EtxId el

eT
l σ2

nId el
=

Etx

σ2
n

(4.17)

with the stream index l = 1, . . . , d and the used identities P̃ = EtxId and
E[HeffHH

eff ] = Id. Therefore, the large system rate expression under equal power
allocation is a function of the average received SNR of each stream.
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4. Large System Performance of Interference Alignment

4.3.4. Achievable Rates Under Water-Filling

Recall (4.8):

R =

d∑

l=1

log
(

1 +
1

σ2
n

pl λl

)

(4.18)

and remember that the eigenvalues are arranged in a decreasing order

λ1 ≥ λ2 ≥ . . . λd.

In the finite case, the solution to pl under WF is given by (cf. Appendix B.2)

pl = max

(

0, η − σ2
n

λl

)

, (4.19)

where η is the WF level given by

η =
1

t

(

Q +

t∑

j=1

σ2
n

λj

)

(4.20)

and where 1 ≤ t ≤ d is the number of served streams, i.e., streams with strictly
positive power. From (4.19) it is seen that a stream with λl ≤ σ2

n/η is not
served.

The main challenge in deriving the large system WF rates consists in finding
the asymptotic WF level η∞. This is because there is no explicit relationship be-
tween t and d, and in addition (4.20) doesn’t hold asymptotically. The following
Lemma shows how η∞ can be calculated.

Lemma 4.2. The asymptotic WF level η∞ is the solution of the fixed-point
equation:

η∞ =
Etx +

∫ 4

λ∞
min

σ2
n

λ
f(λ)dλ

∫ 4

λ∞
min

f(λ)dλ
, (4.21)

where

λ∞
min =

σ2
n

η∞ (4.22)

is the asymptotic smallest served eigenvalue and f(λ) is given by (4.11). η∞ is
constant over different channel realizations.

Proof. To find an expression of η∞, we first proceed by writing t, the number
of served streams, as a sum of indicator functions:

t =

d∑

l=1

I(λl) (4.23)

58



4.3. Large System Rate Analysis

where

I(λl) =







1, λl >
σ2

n
η

,

0, λl ≤ σ2
n

η
.

Dividing both sides of (4.23) by d, we get

t

d
=

∑d

l=1
I(λl)

d
,

which is the sample average of the function I(λ). Applying (4.12) with g(λ) =
I(λ) yields

lim
d→∞

t

d
= lim

d→∞

∑d

l=1
I(λl)

d
=

E[I(λ)] =

∫ 4

0

I(λ)f(λ) dλ =

∫ λ∞
min

0

I(λ)f(λ) dλ +

∫ 4

λ∞
min

I(λ)f(λ) dλ =

∫ 4

λ∞
min

f(λ) dλ,

(4.24)

where 0 < λ∞
min < 4 is the asymptotic smallest served eigenvalue [cf. (4.22)], and

I(λ) = 0 for λ < λ∞
min. Thus, as d→∞, the limit of the ratio t/d is independent

of instantaneous channel realizations and their corresponding eigenvalues and is
only a function of the asymptotic eigenvalue distribution. This follows directly
from the LLN.

Next, consider the term
(
∑t

j=1

σ2
n

λj

)

/t. Considering (4.12) again, it can be

observed that this term converges to the conditional expectation2

E

[
σ2

n

λ

∣
∣
∣ λ > λ∞

min

]

as d→∞, and therefore [109]

lim
d→∞

(

1

t

t∑

j=1

σ2
n

λj

)

=

∫ 4

λ∞
min

σ2
n

λ
f(λ)dλ

∫ 4

λ∞
min

f(λ)dλ
. (4.25)

Similarly, the limit of the above ratio is independent of the instantaneous eigen-
values and is only a function of the asymptotic eigenvalue distribution.

2The considered term only contains the t served eigenvalues. Thus, as d → ∞ the condition
λ > λ

∞
min

has to be included.
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4. Large System Performance of Interference Alignment

The asymptotic WF level can be then written using (4.20), (4.24), and (4.25)
as

η∞ = lim
d→∞

η

= lim
d→∞

1

t

(

Q +

t∑

j=1

σ2
n

λj

)

=
limd→∞

Q
d

+
∫ 4

λ∞
min

σ2
n

λ
f(λ)dλ

∫ 4

λ∞
min

f(λ)dλ

=
Etx +

∫ 4

λ∞
min

σ2
n

λ
f(λ)dλ

∫ 4

λ∞
min

f(λ)dλ
.

(4.26)

Evaluating the integrals in (4.26) and substituting λ∞
min =

σ2
n

η∞ leads to [110]

η∞
[
√

λ(4− λ) + 2 arcsin
(

λ− 2

2

)]
∣
∣
∣
∣

4

σ2
n

η∞

−

σ2
n

(

−2

√

4− λ

λ
− arcsin

(
λ− 2

2

)
)∣
∣
∣
∣
∣

4

σ2
n

η∞

=

2π Etx

(4.27)

which can be further arranged as a fixed-point equation in η∞ and solved for
η∞. Furthermore, λ∞

min is obtained using (4.22). This concludes the proof.

The main difference between WF in the finite and infinite case is that in the
finite case there is a different WF level for each channel realization. In contrast,
the asymptotic WF level is constant across different channel realizations and
only depends on the asymptotic eigenvalue distribution as observed in (4.26)
and (4.27). Applying (4.12) again allows us to state the following Theorem.

Theorem 4.1. As d→∞, the achievable WF rate per stream converges to the
large system WF rate per stream RLS,WF:

RWF

d
−→

d→∞
RLS,WF, (4.28)
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where

RLS,WF =

2

π ln(2)

[(

ln(σ)− 1

2

)(
σ

2

√

4− σ2 + 2 arcsin
(

σ

2

))]
∣
∣
∣
∣

2

σmin

+ log
(

η∞

σ2
n

)
1

π

[
σ

2

√

4− σ2 + 2 arcsin
(

σ

2

)]
∣
∣
∣
∣

2

σmin

− 2

π ln(2)
A(σ)

∣
∣
∣

2

σmin

,

(4.29)

σmin =
√

λ∞
min, and

A(σ) =

∞∑

n=0

(
2n
n

)

4n (2n + 1)2

(
σ

2

)2n

σ (4.30)

is an infinite series which converges for 0 ≤ σ ≤ 2.

Proof. Looking at (4.12) and (4.18), the stream rate function in the WF case
reads

g(λ) = log
(

1 +
1

σ2
n

p λ
)

. (4.31)

As pl is implicitly a function of λl, the index l of pl is dropped. RLS,WF can be
then written as:

RLS,WF =

∫ 4

λ=0

log
(

1 +
1

σ2
n

p λ
)

f(λ) dλ

=

∫ 4

λ=0

log
(

max
(

1,
η∞

σ2
n

λ
))

f(λ) dλ

=

∫ λ∞
min

λ=0

log(1)f(λ) dλ +

∫ 4

λ∞
min

log
(

η∞

σ2
n

λ
)

f(λ) dλ

=

∫ 4

λ∞
min

log
(

η∞

σ2
n

λ
)
√

λ(4− λ)

2πλ
dλ.

(4.32)

We evaluate this integral using the quarter circle distribution of the singular
values instead of the Marc̆enko-Pastur eigenvalue distribution as it results in
tractable expressions. As

λ
(
A

H
A
)

= σ2 (A)
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for any matrix A, using the change of variable σ2 = λ in (4.32) results in

RLS,WF =
1

π

∫ 2

σmin

log
(

η∞

σ2
n

σ2
) √

4− σ2 dσ (4.33)

which is the asymptotic WF rate expressed in terms of σ2 (Hkk,eff). In addition,

σmin =
√

λ∞
min and

fQC(σ) =
1

π

√

4− σ2

is the quarter-circle distribution of the singular values of the square matrix
Hkk,eff (cf. Section 4.1.3). The integral in (4.33) can be expressed as

RLS,WF = log
(

η∞

σ2
n

)
1

π

∫ 2

σmin

√

4− σ2 dσ

+
2

π

∫ 2

σmin

log(σ)
√

4− σ2 dσ.

(4.34)

Evaluating the first operand yields [110]

log
(

η∞

σ2
n

)
1

π

[
σ

2

√

4− σ2 + 2 arcsin
(

σ

2

)]
∣
∣
∣
∣

2

σmin

, (4.35)

and the second operand is integrated by parts to give

2

π ln(2)

[(

ln(σ)− 1

2

)(
σ

2

√

4− σ2 + 2 arcsin
(

σ

2

))]
∣
∣
∣
∣

2

σmin

− 2

π ln(2)

∫ 2

σmin

2

σ
arcsin

(
σ

2

)

dσ.

(4.36)

The last integral doesn’t have a solution in closed form. To solve this problem,
we use the Taylor/Maclaurin series expansion of arcsin

(
σ
2

)
[110]:

arcsin
(

σ

2

)

=

∞∑

n=0

(
2n
n

)

4n (2n + 1)

(
σ

2

)2n+1

=

∞∑

n=0

bn(σ),

(4.37)

where bn(σ) is the implicitly defined n-th term of the infinite series. This rep-
resentation of the arcsin(•) function is valid, i.e., the infinite series converges,
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Table 4.1.: Finding the Large System Water-Filling Rate

1) Calculate the asymptotic WF level η∞, the solution of a fixed-point

equation [cf. (4.27)].

2) Calculate the asymptotic smallest served eigenvalue λ∞
min [cf. (4.22)].

3) Calculate σmin =
√

λ∞
min.

4) Calculate the large system WF rate per stream [cf. (4.29)].

when |σ/2| ≤ 1. As 0 ≤ σ < 2 [cf. (4.4)], the convergence condition is always
satisfied. Then,

2

σ
arcsin

(
σ

2

)

=

∞∑

n=0

(
2n
n

)

4n (2n + 1)

(
σ

2

)2n

, σ 6= 0. (4.38)

Therefore,
∫ 2

σmin

2

σ
arcsin

(
σ

2

)

dσ =

∫ 2

σmin

∞∑

n=0

(
2n
n

)

4n (2n + 1)

(
σ

2

)2n

dσ =

∞∑

n=0

(
2n
n

)

4n (2n + 1)2

(
σ

2

)2n

σ
∣
∣
∣

2

σmin

= A(2)−A(σmin).

(4.39)

Summing (4.35), (4.36) and (4.39) gives the desired result in (4.29). RLS,WF is
given in a quasi closed-form expression due to the dependency on η∞ which has
to be obtained numerically via a fixed-point equation. A(2) and A(σmin) have
to calculated numerically as well.

What yet remains is proving that the infinite series A(σ) is convergent on the
interval 0 ≤ σ ≤ 2. The proof is presented in Appendix C.3. A summary for
finding the large system WF rate per stream is presented in Table 4.1.

The large system expressions usually provide accurate approximations of the
ergodic (average) rates for finite system parameters (this will be checked in the
simulations section). Therefore, the average rates achieved with equal power
allocation and WF can be approximated as:

EHkk [REP] ≈ d RLS,EP

EHkk [RWF] ≈ d RLS,WF

(4.40)
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Figure 4.1.: IA performance: Scenario (N, N, N/2)3 with SNRIA = 0 dB

for finite system parameters.

4.4. Simulation Results and Discussion

Simulation results are averaged over 250 i.i.d. channel realizations, where the
individual entries of all links are drawn from a NC(0, 1) distribution. Through-
out the simulations, we set Etx,k = Etx = 1 ∀k. The fixed-point iteration in
(4.27) is allowed to run for up to 1000 iterations. First, the fully loaded scenario
(N, N, N/2)3 is considered. In this case, closed-form solutions of precoders and
receive filters can be obtained according to the method described in Section
3.2.2. Figure 4.1 shows the derived large system rates, the average of the simu-
lated rates, in addition to the 250 scattered individual rate values around their
average for an increasing number of streams with SNRIA = 0 dB, where SNRIA

is given by (4.17). Figure 4.2 shows the same results with SNRIA = 20 dB.
First, it can be seen that the derived large system rates provide accurate ap-
proximations of the average achievable rates, even for a small number of streams
d = 4 (which corresponds to M = N = 8). This is in line with numerous pre-
vious works on LSA, which show via numerical results that LSA expressions
provide accurate approximations of the average rates for finite system parame-
ters. Second, the variance of the simulated rate values decreases as the number
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Figure 4.2.: IA performance: Scenario (N, N, N/2)3 with SNRIA = 20 dB

of streams increases (this can be observed by the cloud of scattered rate val-
ues around the large system rates getting smaller and denser); correspondingly,
with an increasing number of streams, the large system rates provide increas-
ingly better estimates of the achievable rates of any channel realization and not
only of the average. This matches the theoretical results in (4.14) and (4.28). As
expected, WF provides a noticeable performance improvement over equal power
allocation when SNRIA = 0 dB and a minor improvement when SNRIA = 20
dB.

Figures 4.3 and 4.4 correspond to the scenarios (4, 4, 2)3 and (8, 8, 4)3, where
the average rates and the large system rates are plotted against the SNR. Figure
4.3 shows that the large system expressions provide good approximations of the
average achievable rates even with a very small parameter d = 2, especially at
low and medium SNR. Figure 4.4 with d = 4 confirms this as well for all SNR
ranges and it is observed that all curves converge at high SNR.

Next, the fully loaded scenario (3N/2, N, N/2)4 is considered. In this case,
no closed-form solutions exist and iterative algorithms are required to find the
precoders and receive filters. The IL algorithm from Section 3.2.3 is run. Figures
4.5 and 4.6 show the large system rates, the average of the simulated rates, and
the scattered individual rate values with SNRIA = 0 dB and SNRIA = 20
dB, respectively. Similar observations to the ones made in Figures 4.1 and 4.2
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Figure 4.3.: IA performance: Scenario (4, 4, 2)3

can be made. The large system rates provide an accurate approximation of
the average rates for a finite number of streams. Moreover, as the number of
streams increases, the large system rates provide increasingly better estimates of
the achievable rates of any channel realization. In addition, the simulated rates
of the two different algorithms, i.e., the closed-form solution and IL, converge
to the large system rates with an increasing number of streams. This asserts
the hypothesis posed in the beginning of this chapter; namely, that different IA
variants belong to the same class and that the obtained large system expressions
are valid for different IA variants. Finally, for the same SNR, the simulated
rates per stream are almost identical for two different scenarios having different
system parameters β and K (compare Figure 4.1 and Figure 4.5, or Figure 4.2
and Figure 4.6). This shows that the achievable rates per stream are independent
of the system parameters, as concluded from the analytical rate expressions.

4.5. Summary

In this chapter, large system rate expressions of IA were derived for both equal
power allocation and the optimal WF power allocation. The key for deriving
the rate expressions was finding the asymptotic eigenvalue distribution of the

66



4.5. Summary

0 5 10 15 20 25

1

2

3

4

5

6

7

10 log(SNR)

A
ch

ie
va

bl
e 

ra
te

 / 
us

er
 / 

st
re

am

 

 

Large system: WF
Large system: equal power allocation
Average: WF
Average: equal power allocation

Figure 4.4.: IA performance: Scenario (8, 8, 4)3

resulting channel gains using RMT tools in order to calculate the large system
rate per stream in each case. The derived expressions were found to be functions
of the transmit power and noise power and are independent of any other system
parameters. Simulation results showed that the achievable rates of different IA
algorithms converge to the large system rates as the number of transmit and
receive antennas increases, thereby showing that the large system expressions
are valid for different IA variants. Moreover, simulation results showed that large
system expressions provide accurate estimates of the average achievable rates for
small and finite system parameters. The asymptotic eigenvalue distribution—
also accurate for finite system parameters—is a useful result by itself as it can
be used in other applications of IA.

Even though we assumed the channel entries to be Gaussian distributed, such
an assumption didn’t play any role in the derivations as the Marc̆enko-Pastur
distribution only depends on the mean and variance of the channel entries.
Consequently, the derived large system expressions are valid for channel entries
which are non-Gaussian distributed as well, given their means and variances
equal 0 and 1, respectively. We also note that the derived expressions do not hold
in the case where a further precoder optimization is performed after obtaining
the IA solution to improve the achievable rates as done in, e.g., [111].
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Figure 4.5.: IA performance: Scenario (3N/2, N, N/2)4 with SNRIA = 0 dB

We focused on IA as it results in an attractive and tractable interference-free
model. The large system characterization of other cooperative methods, e.g., the
ones reviewed in Section 3.3, is not a straightforward task. This is due to the
fact that in these methods, the precoder/receive filter set of user k, {F k, Gk},
depends on the direct channel Hkk. This creates an effective channel GH

k HkkF k

whose statistics are harder to evaluate due to the dependency between the dif-
ferent terms. In addition, such methods result in non-zero residual interference
at the receivers in general. Characterizing the statistics of the remaining inter-
ference is a non-trivial task when the precoders and/or receive filters are not
unitary, which is the case for many of the methods of Section 3.3.
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Figure 4.6.: IA performance: Scenario (3N/2, N, N/2)4 with SNRIA = 20 dB

69





5. Performance of Non-Cooperative Methods

In this chapter, we characterize the performance of two non-cooperative methods
in the MIMO IC. These are the eigenmode precoding and MRT which were
discussed in Section 3.4.2. These methods result in non-zero interference at the
receiver side, which makes obtaining analytical expressions harder than in the
previous chapter. Nonetheless, due to the properties of each precoding type this
interference can be characterized and lower bounds of achievable rates based on
separate stream decoding can be obtained. Similar to IA, the performance of
eigenmode precoding will be studied asymptotically. For MRT, the analysis is
non-asymptotic, i.e., the expressions hold for arbitrary system parameters.

We focus on the symmetric MIMO IC where M ≥ N . Furthermore, we con-
sider full spatial multiplexing with each transmitter transmitting d = N symbols
to its corresponding receiver. F k ∈ C

M×N and Gk ∈ C
N×N are chosen based

on the direct link between the kth transmitter/receiver pair only. This models
single-cell precoding in a cellular system.

5.1. Large System Performance of Eigenmode Precoding

The eigenmode precoder is the capacity achieving precoder in a P2P scenario,
but is suboptimal in the MIMO IC as it causes interference to other users.
Defining

Hkk = UkΦkV
H
k

to be the singular value decomposition (SVD) of Hkk, precoder F k is given by
(cf. Appendix B)

F k = V
1:N
k P

1/2
k (5.1)

where P k = diag(pk,1, . . . , pk,N ). The entries of P k satisfy

N∑

t=1

pk,t = Etx,k

and are either given by the optimal WF rule or are equally allocated over the
N streams. We first focus on the latter case and later discuss the former one.
The receive filter Gk is given by

Gk = Uk. (5.2)
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5. Performance of Non-Cooperative Methods

Under the assumption that the entries of Hkk are i.i.d., Hkk and HH
kkHkk have

rank N with probability 1. Thus, the diagonal elements of

ΦkΦ
T
k = diag

(

λ1

(

H
H
kkHkk

)

, . . . , λN

(

H
H
kkHkk

))

(5.3)

are non-zero.
With equal power allocation, (5.1) reads

F k =

√

Etx,k

N
V

1:N
k . (5.4)

Using (5.2) and (5.4), the obtained symbol vector ŝk at receiver k reads

ŝk =

√

Etx,k

N
Φ

1:N
k sk +

K∑

l=1,l6=k

G
H
k HklF lsl + nk (5.5)

where we used the fact that ΦkV H
k V 1:N

k = Φ1:N
k . Noting that

Φ
1:N
k

(
Φ

1:N
k

)T
= ΦkΦ

T
k , (5.6)

the achievable rate with interference treated as noise reads

Rk = log

∣
∣
∣
∣
IN +

Etx,k

N
ΦkΦ

T
k

(
∑

l 6=k

G
H
k HklF l

(
G

H
k HklF l

)H
+ σ2

nIN

)−1
∣
∣
∣
∣
∣

= log

∣
∣
∣
∣
IN +

Etx,k

N
ΦkΦ

T
k

(
∑

l 6=k

Etx,l

N
G

H
k HklV

1:N
l

(
G

H
k HklV

1:N
l

)H
+ σ2

nIN

)−1
∣
∣
∣
∣
∣
.

(5.7)

5.1.1. Achievable Lower Bounds

Eq. (5.7) is hard to evaluate analytically due to the interference caused by
transmitters l 6= k. Therefore, we first present a lower bound of (5.7) obtained by
assuming receivers perform separate stream decoding. With separate decoding,
the off-diagonal entries of the interference covariance matrix

H int,k =
∑

l 6=k

Etx,l

N
G

H
k HklV

1:N
l

(
G

H
k HklV

1:N
l

)H
(5.8)

are not taken into account, which is suboptimal unless the off-diagonal entries of
H int,k equal 0. The separate decoding assumption is merely used here to obtain
tractable analytical expressions. As Lemma 5.1 shows, the bound is an ergodic
one as the statistics of the interfering links are used to replace the K-user MIMO
IC with K proxy P2P MIMO channels.
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5.1. Large System Performance of Eigenmode Precoding

Lemma 5.1.

E{Hkl}∀l 6=k
[Rk|Hkk] ≥

N∑

t=1

log

(

1 +
Etx,k

N

λt(H
H
kkHkk)

∑

l 6=k
Etx,l + σ2

n

)

. (5.9)

Proof. With separate decoding and using (5.3) and (5.6), the decoded tth stream
equals [cf. (5.5)]:

ŝk,t = e
T
t ŝk

= e
T
t

√

Etx,k

N
Φ

1:N
k sk + e

T
t

(
∑

l 6=k

√

Etx,l

N
G

H
k HklV

1:N
l sl + nk

)

=

√

Etx,k

N

√

λt(H
H
kkHkk)[sk]t + e

T
t

(
∑

l 6=k

√

Etx,l

N
G

H
k HklV

1:N
l sl + nk

)

(5.10)
t = 1, . . . , N . The achievable rate R̂k ≤ Rk obtained with separate decoding
reads

R̂k =

N∑

t=1

R̂k,t (5.11)

where

R̂k,t = log

(

1 +
(Etx,k/N) λt(H

H
kkHkk)

∑

l 6=k
(Etx,l/N)

∣
∣
∣
∣eT

t GH
k HklV

1:N
l

∣
∣
∣
∣
2

2
+ σ2

n

)

(5.12)

is the rate of the tth stream.
Remember that Hkl has i.i.d. NC(0, 1) entries. With eigenmode precoding,

V 1:N
l is a unitary matrix that is chosen based on H ll, and is therefore inde-

pendent of Hkl. A similar argument holds for Gk that is chosen based on Hkk.
Using the fact that left and right multiplying a matrix with i.i.d. entries by
independent matrices with orthonormal columns results in a new matrix with
i.i.d. entries having the same variance as those of the initial matrix, we con-
clude that GH

k HklV
1:N
l ∈ C

N×N has i.i.d. NC(0, 1) entries [21]. Therefore, the
following holds by definition:

E
[∣
∣
∣
∣e

T
t G

H
k HklV

1:N
l

∣
∣
∣
∣
2

2

]

= N, t = 1, . . . , N and l 6= k. (5.13)

Finally, we note that with λt(H
H
kkHkk) fixed, R̂k,t(λt(H

H
kkHkk)) is a convex

function in

u =
∑

l 6=k

Etx,l

N

∣
∣
∣
∣e

T
t G

H
k HklV

1:N
l

∣
∣
∣
∣
2

2
+ σ2

n. (5.14)
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Consequently, using Jensen’s inequality and performing an expectation over the
set of independent variables {Hkl}∀l 6=k yields [112]

E[R̂k,t|Hkk] ≥ log

(

1 +
Etx,k

N

λt(H
H
kkHkk)

E[u]

)

= log

(

1 +
Etx,k

N

λt(H
H
kkHkk)

∑

l 6=k
Etx,l + σ2

n

)

.

(5.15)

Using (5.15), (5.11), and Rk ≥ R̂k gives the result of Lemma 5.1.

The proof and result of Lemma 5.1 show that the interference power present
at a given receiver is bounded by the transmit power coming from interfering
transmitters, but is independent of the number of antennas of interfering trans-
mitters. Consequently, increasing the number of antennas at all transmitters
simultaneously increases the array gain and achievable rates for all receivers
without causing any additional interference, as elaborated next.

5.1.2. Large System Analysis

In this section, we perform an LSA to obtain closed-form expressions of the
obtained bound. Similarly to Section 4.2 and to facilitate the LSA, we rewrite
λt(H

H
kkHkk) as:

λt(H
H
kkHkk) = λt

[(
1√
N

H
H
kk

)(
1√
N

Hkk

)

N

]

= Nλt

(

H̃
H
kkH̃kk

) (5.16)

where

H̃kk =
1√
N

Hkk (5.17)

has i.i.d. NC(0, 1/N) entries. Using (5.16), we rewrite the bound in Lemma 5.1
as

RLB,k =

N∑

t=1

log
(

1 + ck λt

(

H̃
H
kkH̃kk

))

(5.18)

where

ck =
Etx,k

∑

l 6=k
Etx,l + σ2

n
. (5.19)

Similarly to the previous chapter and for our scenario of interest, we fix K and
assume that

M →∞, N →∞ with β =
M

N
≥ 1. (5.20)

Next, we present the asymptotic eigenvalue distribution of H̃
H
kkH̃kk.
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5.1. Large System Performance of Eigenmode Precoding

Direct Channels’ Asymptotic Eigenvalue Distribution

With the conditions in (5.20) and H̃kk having i.i.d. entries of variance 1/N ,

the distribution of the eigenvalues of H̃
H
kkH̃kk converges almost surely to a

Marc̆enko-Pastur distribution with density

fMP(λ) =

(

1− 1

β

)

δ(λ) +

√
(λ− a)+(b− λ)+

2πβλ
(5.21)

where a = (1−√β)2, b = (1 +
√

β)2, and y+ = max(0, y).
The result in (5.21) is a direct application of Section 4.1.1 to the scaled channel

matrices.

Large System Bounds

Recall (4.12), which we apply to (5.18). Note that as rank (H̃
H
kkH̃kk) = N with

probability 1, there exists M − N zero eigenvalues that constitute part of the
distribution in (5.21) and have to be accounted for. Therefore, the summation
in (4.12) needs to be taken over M and not over N . Then:

1

M

M∑

t=1

log(1 + ckλt) =

1

M

N∑

t=1

log(1 + ckλt) −→
N,M→∞
β=M/N

Eλ [log(1 + ckλ)] .

(5.22)

The right-hand side of (5.22) is the Shannon transform V(ck, β) of λ. As λ
follows a Marc̆enko-Pastur distribution, its Shannon transform can be obtained
in closed-form as

V(ck, β) = log
(

1 + ck − 1

4
F(ck, β)

)

+

1

β
log
(

1 + ckβ − 1

4
F(ck, β)

)

− log(e)

4ckβ
F(ck, β)

(5.23)

as explained in Section 4.1.2.
It is usually desired to define an achievable rate per stream, or in our case a

lower bound of the achievable rate per stream. Multiplying (5.22) by β leads to
the following theorem.

Theorem 5.1. As N, M → ∞ at a fixed ratio β = M/N , the lower bound of
the achievable rate per stream of the kth user using eigenmode precoding in a

75



5. Performance of Non-Cooperative Methods

MIMO IC converges under equal power allocation as follows:

1

N
RLB,k =

1

N

N∑

t=1

log(1 + ckλt) −→
N,M→∞
β=M/N

β V(ck, β) (5.24)

where ck and V(ck, β) are given by (5.19) and (4.3), respectively.

Theorem 5.1 shows that asymptotically, the bound of any channel realization
[left-hand side of (5.24)] converges to a quantity that only depends on the
parameters β and ck, and is independent of the instantaneous eigenvalues [right-
hand side of (5.24)].

The large system expressions usually provide accurate approximations of the
ergodic rates for finite system parameters (this will be checked in the numerical
results section). Therefore, Therorem 5.1 can be written as:

EHkk [RLB,k] ≈M V(ck, β), (5.25)

and consequently
E{Hkm}∀m

[Rk|Hkk] ≥M V(ck, β) (5.26)

for finite M and N . The last inequality holds because under the assumption
that the channel entries are i.i.d., the channel matrices are independent; thus,
the expectation over the matrices {Hkm}∀m can be performed in any random
order. An expectation over the interfering links first gives the bound in Lemma
5.1, then an expectation over the direct link Hkk gives the large system approx-
imation of the obtained bound and consequently (5.26).

5.1.3. Comparison To Interference Alignment Large System
Properties

It is useful at this point to compare the large system properties of eigenmode
precoding to the large system properties of IA. The first observation is the
asymptotic eigenvalue distribution. IA algorithms consist of rank reducing pre-
coders and receive filters which lead to square effective channel matrices of size
d × d. The result is that the parameter β doesn’t appear in the asymptotic
eigenvalue distribution of the direct channels in (4.11). In contrast, in the case
of eigenmode precoding, the asymptotic eigenvalue distribution of the effective
channel gains in (5.21) depends on β. Similarly, the large system lower bound
expressions are a function of β in contrast to the IA obtained expressions in
(4.16) and (4.29) which are independent of β.

The second observation follows closely from the first one. So far, the analysis
in this chapter assumed equal power allocation. Unlike the previous chapter,
obtaining quasi closed-form expressions in the case of WF power allocation is
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only possible in the case β = 1. Recall that the rate function in the case of IA
depends on the terms

λ1

(
H

H
kk,effHkk,eff

)
, . . . , λd

(
H

H
kk,effHkk,eff

)

[cf. (4.8)]. Evaluating the rate function using the Marc̆enko-Pastur distribution
is intractable. However, this is circumvented by noting that IA methods result
in a square Hkk,eff regardless of β. Consequently, the quarter circle distribution
of the singular values of Hkk,eff can be used instead to obtain quasi closed-form
expressions. In the case of eigenmode precoding, the rate function depends on
the terms

λ1

(
H

H
kkHkk

)
, . . . , λN

(
H

H
kkHkk

)
,

and Hkk is not square in general. Thus, the quarter circle distribution cannot
be used to obtain closed-form expressions. Hkk is only square in the case β = 1.
In this case, a WF analysis follows exactly as in Section 4.3.4. Achievable lower
bounds with WF can be obtained by replacing σ2

n by σ2
n +

∑

l 6=k
Etx,l in the

fixed-point equation (4.27) and the WF achievable rate per stream (4.29).

5.2. Performance of Maximum Ratio Transmission

So far, we analyzed the performance of two precoding schemes in this thesis
using LSA. Nonetheless, there exists some other cases where performance can
be characterized without the need for LSA. MRT with limited CSIR constitutes
one of these cases, and is covered next. The material of this section has been
published in [113]. In order to keep a unified framework in this chapter, a dif-
ferent proof for the main result in (5.36) than the one in [113] is provided here,
and is similar to the one developed in Section 5.1.1.

The MRT precoder is a Hermitian version of Hkk, which needs to be properly
scaled to satisfy the transmit power constraint. Here, we relax the instantaneous
transmit power constraint to an average one1, i.e.:

E
[
tr
(
F

H
k F k

)]
= E

[
||F k||2F

]
= Etx,k. (5.27)

With equal power allocated to the N streams, this results in

F k =

√

Etx,k

MN
H

H
kk (5.28)

as E
[
||Hkk||2F

]
= MN . In the M ≫ 1 regime, there is little difference between

an instantaneous and an average power constraint. The reason is that ||Hkk||2F

1Averaging is done over the symbols and over the desired channel as well.
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can be expanded as

||Hkk||2F =

N∑

i=1

M∑

j=1

|[Hkk]i,j |2

which is a sum of MN ≫ 1 variables. As by definition {[Hkk]i,j} is a set of
i.i.d. variables with mean 0 and variance 1, {|[Hkk]i,j |2} is a set of i.i.d. variables
with mean 1. Therefore, we have:

||Hkk||2F
MN

≈ 1 =⇒ ||Hkk||2F ≈ E
[
||Hkk||2F

]
(5.29)

for any channel realization by the LLN. As the instantaneous Frobenius norm of
any channel realization is close to its average, there is little difference between
an instantaneous and an average power constraint in the M ≫ 1 regime. As it
suffices to normalize the MRT precoders by a quantity depending on the physical
parameters instead of computing the norm of each channel realization, this
implies a simpler implementation of MRT in practice. It also makes obtaining
analytical expressions easier, especially for the N > 1 case. The system equation
then reads:

ŝk =

√

Etx,k

MN
HkkH

H
kksk +

∑

l 6=k

√

Etx,l

MN
HklH

H
ll sl + nk

= H̃kksk +
∑

l 6=k

H̃klsl + nk

(5.30)

where we defined the effective channels

H̃km =

√

Etx,m

MN
HkmH

H
mm ∈ C

N×N , m = 1, . . . , K (5.31)

seen at receiver k for brevity. Furthermore, we have set Gk = IN in order to
find a lower bound on the achievable rate as explained next.

5.2.1. Limited CSIR Model

We assume receiver k has no CSI except for the mean of the effective channel
gain E[H̃kk], which can be estimated on a long-term basis for instance. This
facilitates obtaining analytical expressions and has been used previously in,
e.g., [54, 55]. Furthermore, this might be desirable in scenarios with very short
coherence times in TDD mode, as estimating the CSIR requires downlink pilots
sent by the transmitter. In scenarios with very short coherence times, it might
be desired to free up the time slots occupied by these downlink pilots and use
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them for data transmission instead2. The CSI of interfering links are neither
known to a given transmitter nor receiver. The received signal at receiver k is
decomposed as:

ŝk = E
[
H̃kk

]
sk

+
(
H̃kk − E

[
H̃kk

])
sk +

K∑

l=1,l6=k

H̃klsl

︸ ︷︷ ︸

n̂k

+nk. (5.32)

E[H̃kk] is the channel gain estimated by the receiver and (H̃kk − E[H̃kk])sk

is an additional noise term resulting from the mismatch between the instanta-
neous channel gain and its mean. The CSIR error vector and the interfering
symbol vectors are collected into n̂k. Eq. (5.32) represents a MIMO additive
noise channel model, where the channel gain consists of statistical information
only.

5.2.2. Ergodic Lower Bounds

In order to obtain lower bound expressions, expectations of different matrix
products are required. In Appendix C.2, we show that if {H, A} ∈ C

N×M are
two uncorrelated matrices with i.i.d. NC(0, 1) entries, we have:

E
[
HH

H/
√

M
]

=
√

M IN

E

[(
1√
M

HH
H

)2
]

= (M + N) IN

E
[

1

M
HA

H
(
HA

H
)H
]

= N IN .

(5.33)

As the channel matrices are modeled to be uncorrelated with i.i.d. NC(0, 1)
entries, using (5.33) with an appropriate scaling yields:

E
[
H̃kk

]
=

√

M Etx,k

N
IN

E
[

H̃kkH̃
H
kk

]

=
(M + N) Etx,k

N
IN

E
[

H̃klH̃
H
kl

]

= Etx,l IN , l 6= k.

(5.34)

2This discussion is not related to the uplink channel estimation which is needed in any case
to obtain the CSI at the transmitter.
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As H̃kk is estimated by its mean which is a scaled identity matrix, inter-stream
interference is neglected at the receiver. Using (5.34) and the statistical proper-
ties of the data symbols, the covariance matrix of n̂k—averaged over the data
symbols and channels statistics—can be calculated as:

Cn̂k
= E

[(
H̃kk − E

[
H̃kk

]) (
H̃kk − E

[
H̃kk

])H
]

+

K∑

l=1,l6=k

E
[

H̃klH̃
H
kl

]

= Etx,k IN +

K∑

l=1,l6=k

Etx,l IN =

K∑

m=1

Etx,m IN .

(5.35)
Using (5.35), we can state the main result of this section.

Theorem 5.2. The ergodic rate of receiver k achieved with perfect CSIT, lim-
ited CSIR, and full multiplexing is lower bounded by:

RMRT,LB = N log

(

1 +
M Etx,k

N
(∑K

i=1
Etx,i + σ2

n

)

)

. (5.36)

Proof. For the model of (5.32) and with separate stream decoding, the decoded
tth stream equals

ŝk,t = e
T
t ŝk

=

√

M Etx,k

N
[sk]t + [n̂k]t + [nk]t.

(5.37)

The achievable rate R̂k,t of the tth stream obtained with separate stream de-
coding equals

R̂k,t = log

(

1 +
M Etx,k

N

1

Es[|[n̂k]t|2] + σ2
n

)

(5.38)

where Es[•] refers to an expectation over the symbols. Similarly to Section 5.1.1,
we can use Jensen’s inequality in combination with (5.35) to conclude that

E[R̂k,t] ≥ log

(

1 +
M Etx,k

N
(∑K

m=1
Etx,m + σ2

n

)

)

(5.39)

where the averaging in (5.39) is additionally done over the channels.

80



5.3. Simulation Results and Discussion

Due to the i.i.d. assumption, all streams have the same ergodic lower rate
bound and therefore the total achievable ergodic rate under separate stream
decoding E[Rk] can be bounded by

E[Rk] =

N∑

t=1

E[Rk,t]

≥
N∑

t=1

E[R̂k,t]

≥ N log

(

1 +
M Etx,k

N
(∑K

m=1
Etx,m + σ2

n

)

)

= RMRT,LB.

(5.40)

Looking at (5.36), it is observed that the denominator of the SINR term—
which includes the CSIR error and interference—scales with the number of
receive antennas while its numerator scales with the number of transmit anten-
nas. Thus, increasing the number of antennas at all transmitters simultaneously
with the use of MRT doesn’t increase the interference level at the receivers.
Rather, it only increases the numerator and resulting SINR given a fixed trans-
mit power. This also confirms why MRT is considered an attractive option in
massive MIMO scenarios.

5.3. Simulation Results and Discussion

We first check the validity of the large system expressions obtained for eigen-
mode precoding by illustrating Theorem 5.1. To that purpose, consider first
a (2N, N, N)3 IC. For 250 channel realizations and Etx/σ2

n = 10 dB, Fig. 5.1
plots the average of the simulated bound values in Theorem 5.1, the separate
scattered bound values around their average, and the large system derived ex-
pressions. It can be seen that the derived large system rates provide accurate
approximations of the average achievable rates, even for the case M = 8, N = 4.
This is in line with numerous previous works on LSA, which show via numerical
results that LSA expressions provide accurate approximations of the average
rates for finite system parameters. Second, the variance of the simulated bound
values decreases as the number of streams increases; this can be observed by the
cloud of scattered rate values around the large system rates getting smaller and
denser. Correspondingly, as the number of streams N increases, the large system
expressions provide increasingly better estimates of the achievable rates of any
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Figure 5.1.: Validating Theorem 5.1: Scenario (2N, N, N)3 at Etx/σ2
n = 10 dB

channel realization and not only of the average. This matches the theoretical
results of Theorem 5.1 which predict that the achievable rate (bound) of any
channel realization converges to the large system rate (bound) as M, N → ∞.
These conclusions are similar to the ones of Section 4.4.

Having validated Theorem 5.1 holds, we proceed to check whether (5.26)
holds. Here, the results are averaged over 1000 channel realizations. Given N =
4, K = 3, and Etx/σ2

n = 10 dB, Fig. 5.2 plots the derived bound and the
average of the simulated rates with separate and joint decoding against M . The
bound holds but there exists a performance loss between separate and joint
decoding which is not negligible with 4 receive antennas. A horizontal curve
shift can be approximated to correspond to 5−7 transmit antennas between the
derived bound and simulated rates with joint decoding. Nonetheless, increasing
the number of interferers will make the obtained bound tighter, as elaborated
next. Fig. 5.3 shows the achievable rate curves and derived rate bound for the
scenario where the number of interferers is double the one of the scenario of Fig.
5.2, i.e., K = 5, with all other parameters kept fixed. This is due to the fact
that with more interferers which according to the system model are independent,
the interference covariance matrix in (5.8) tends to become white—a diagonal
matrix—containing less information that can be exploited when joint decoding
is performed. Consequently, the performance gap between separate and joint
decoding decreases.
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Figure 5.2.: Eigenmode precoding performance: Scenario (M, 4, 4)3 at Etx/σ2
n =

10 dB

We next check the validity of the derived expressions for MRT, where the
results are averaged over 1000 channel realizations. We consider the scenario
N = 2, K = 3 and plot the derived bound and the average of the simulated
rates with separate and joint decoding against M in Fig. 5.4. The simulated
rates with joint and separate decoding are based on perfect CSIR. In Fig. 5.5,
a similar scenario is simulated but the number of interferers is doubled (K =
5). The figures show that the derived expression in (5.36) holds. Additionally,
comparing both figures leads to similar conclusions to the ones made in the case
of eigenmode precoding; namely, that the performance gap between separate and
joint decoding decreases as the number of independent interferers increases. As
we are mainly interested in K ≥ 3 scenarios, the expressions derived in this
chapter will provide a good basis for comparing eigenmode precoding or MRT
to IA in the next chapter.

5.4. Summary

In this chapter, we obtained analytical lower bound rate expressions for eigen-
mode precoding and MRT assuming separate stream decoding. In the first case
and similarly to Chapter 4, the bounds were obtained using RMT tools such
as the Marc̆enko-Pastur distribution and the Shannon transform. In the second
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Figure 5.3.: Eigenmode precoding performance: Scenario (M, 4, 4)5 at Etx/σ2
n =

10 dB
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Figure 5.4.: MRT performance: Scenario (M, 2, 2)3 at Etx/σ2
n = 10 dB
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Figure 5.5.: MRT performance: Scenario (M, 2, 2)5 at Etx/σ2
n = 10 dB

case, we made use of a special model based on a limited CSIR assumption.
Along with the fact that precoders which are scaled versions of the users’ chan-
nels facilitates characterizing the interference power, MRT rate lower bounds
were obtained. Naturally, the obtained bounds with limited CSIR served as
bounds for the perfect CSIR case. It is observed that the bounds are around 0.5
(resp. 0.3) bits/sec/Hz away from the perfect CSIR case with joint decoding for
the case K = 3 (resp. K = 5) for the given choice of Etx/σ2

n. Alternatively, the
limited CSIR assumption can be used to reduce the piloting overheads which
need to be included in the spectral efficiency analysis, as will be performed in
Chapter 6.

For both precoding types, it was observed that increasing the number of
interferers makes the obtained bounds tighter. This is due to the fact that with
more interferers, the interference covariance matrix of each receiver tends to
become a diagonal matrix containing less information that can be exploited
when joint decoding is performed. As our main interest consists in K ≥ 3
scenarios, the expressions derived in this chapter will provide a good basis for
comparing the performance of eigenmode precoding or MRT to the one of IA
in Chapter 6.
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6. How Much Antennas is "Massive"?

In Chapters 4 and 5, we obtained analytical rate expressions—or lower bounds
thereof—of different cooperative and non-cooperative linear precoding methods.
Even though these constitute standalone results, our ultimate goal lies in finding
how many transmit antennas do non-cooperative methods need to emulate the
performance of a noise-limited system, i.e., so that their resulting performance
is similar to the one of a system where transmitters have a fixed number of
antennas and employ the IA strategy. One could use the obtained expressions
in Chapters 4 and 5 to answer that question. However, this does not consti-
tute a fair comparison in real systems, as CSI acquisition overheads vary from
method to method. IA and other cooperative methods require additional train-
ing overheads compared to non-cooperative methods due to their higher CSI
requirements at both the transmitter and receiver side. These overheads take
up a possibly large number of time slots, and result in a smaller portion left
for data transmission for a given coherence interval. This can have a big effect
on the spectral efficiency in scenarios with short coherence times. Therefore, a
direct application of the expressions in Chapters 4 and 5 is not valid, except in
special cases discussed at the end of the chapter.

The literature dealing with the tradeoff between training and/or feedback
overheads on one side and data transmission on the other include works in
[63, 114–117], most of which deal with FDD mode. Such works mainly aim at
optimizing the training interval length and/or number of feedback bits such
that the spectral efficiency is maximized for a given coherence interval length.
A P2P unprecoded MIMO link is considered in [63] and the optimal number of
downlink training pilots maximizing a lower bound to capacity is found. The
analysis is valid for both FDD and TDD modes. The optimal training and
feedback resource allocation in FDD mode maximizing spectral efficiencies or
lower bounds thereof is treated in [114] for a two-way P2P link MISO link,
in [115] for a two-way P2P MIMO link, in [116] for a MIMO BC with ZF
precoding, and in [117] for the MIMO IC with IA precoding and analog feedback.

Literature dealing with cooperative and non-cooperative strategies in a single
framework include [118], where MRT and the cooperative ZF strategy were
studied from a game theoretic point of view for the two-user MISO IC. The
authors in [119] show that for the latter system model, any achievable rate
pairs lying on the Pareto boundary correspond to linear combinations of ZF
and MRT precoders.
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6. How Much Antennas is "Massive"?

uplink pilots to estimate

the CSI of the direct links

N 1 T - N - 1

data transmission 

precoder calculation 
T time slots

Figure 6.1.: Coherence interval structure of MRT

The framework of this chapter is different from the above mentioned refer-
ences as the tradeoff between training overheads and spectral efficiency in the
context of cooperative and non-cooperative strategies will be given by a required
number of transmit antennas. We focus on square symmetric ICs where the IA
solution can be found in closed-form as explained in Section 3.2.2 for the fol-
lowing reasons. Scenarios which require iterative alternating minimization make
it hard to estimate the number of time slots required for the precoders/receive
filters calculation. Furthermore, they might not be feasible in practical systems
as by the time a solution is found, the users’ channels might have changed and
the obtained solutions would be outdated. Thus, the resulting performance in
these scenarios would be worse than in scenarios where the IA solution can be
obtained in closed-form. Parts of this chapter have been published in [120].

6.1. Coherence Interval Structures

In this section, we calculate the training overheads associated with CSI ac-
quisition for each precoding type, assuming the channels remain constant for
a coherence interval of length T time slots. The analysis is done for a TDD
system assuming ideal channel reciprocity. The number of time slots spent on
piloting is not optimized in this analysis; rather, we assume the minimum num-
ber of slots is spent. Furthermore, we assume that the used pilot sequences
by receivers and transmitters are orthogonal. Thus, the analysis does not take
pilot contamination into account for the simple reason that in case it occurs,
the performance of IA would heavily deteriorate. This would defeat the original
purpose of comparing both precoding methods assuming IA reaches its best
theoretical performance. For the same reason, even though the rate expressions
used here are based on perfect CSIT and/or CSIR, we note that in practice CSI
estimation errors would cause higher rate degradations for IA as it relies on the
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6.1. Coherence Interval Structures

CSI of more links. Therefore, CSI errors would reduce the number of antennas
required for MRT or eigenmode precoding to perform similarly to IA.

6.1.1. Maximum Ratio Transmission

For transmitter k to estimate Hkk ∈ C
N×M , receiver k has to send a sequence

of orthogonal pilots in the uplink for a duration of at least N time slots. The
overhead of channel estimation in the uplink is independent of the number
of transmit antennas in TDD mode. Transmitter k then calculates F k, which
we heuristically assume to take one time slot. Even if this assumption is not
completely true, it would not affect the main message and conclusions of this
chapter. The lower bound on the achievable rate is based on the assumption that
receiver k only needs the term E[HkkF k] to decode the data symbols. With this
assumption, no instantaneous downlink pilots are necessary, and an overhead of
N + 1 time slots is spent on CSIT estimation and precoder calculation before
data transmission, as shown in Fig. 6.1. The coherence interval structure here
is similar to existing ones in the literature (see, e.g., [53]).

6.1.2. Eigenmode Based Precoding

Similarly to MRT, N + 1 time slots are first necessary to obtain the CSIT of
each direct link and perform the precoder calculation. Additionally, the receiver
needs to estimate the resulting effective channel HkkF k ∈ C

N×N to obtain Gk

and apply it to decode the received symbols. This is done by sending downlink
orthogonal pilot symbols precoded by F k during N time slots at least. Therefore,
a minimum of of 2N + 2 time slots are spent before data transmission as shown
in Fig. 6.2. This leaves T − 2N − 2 time slots for data transmission.

6.1.3. Interference Alignment

Here, each transmitter sends d = dIA symbols to its corresponding receiver. The
following overheads are required:

1. The CSI of interfering links Hmk ∈ C
N×M ∀m 6= k needs to be known at

transmitter k for the precoder to be calculated

2. The CSI of the effective channels HkmF m ∈ C
N×dIA ∀m needs to be

known at receiver k:

• The terms HklF l, ∀l 6= k are required for the kth receive filter to
be calculated according to the obtained precoders and zero-force the
interference

• The term HkkF k is required to decode the received symbols.
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Figure 6.2.: Coherence interval structure of eigenmode precoding
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6.2. Spectral Efficiency Analysis

Table 6.1.: Summary of CSIR and CSIT requirements

MRT eigenmode precoding IA

CSIT of direct links instantaneous instantaneous none

CSIR of direct links statistical instantaneous instantaneous

CSIT of interfering links none none instantaneous

CSIR of interfering links none none instantaneous

For the transmitters to be able to properly separate and estimate the CSI cor-
responding to K receivers with N antennas each, the receivers have to send
orthogonal pilot sequences for a minimum duration of KN symbol slots. This
corresponds to the overhead of step 1. For step 2, estimating the effective chan-
nels is done by sending pilot symbols precoded by F m at transmitter m. These
channels have size N × dIA. In a P2P link, a transmitter would have to send
precoded pilots over a period of at least dIA time slots to the receiver. In an
IC, if K transmitters simultaneously send orthogonal pilot sequences, then the
receivers can estimate the required effective channels in the downlink after a
minimum of KdIA time slots. In addition, precoder and receive filter calcula-
tions at the transmitters and receivers respectively last 1 time slot each. In total,
a minimum of

To = KN + KdIA + 2 (6.1)

time slots are spent on piloting and calculation before data transmission starts,
as shown in Fig. 6.3. Table 6.1 summarizes the CSI requirements of the different
precoding types given their system model assumptions.

6.2. Spectral Efficiency Analysis

For the rest of the chapter, we assume without loss of generality that all trans-
mitters transmit with power Etx. This results in SNRIA,k = SNRIA [cf. (4.17)]
and ck = c [cf. (5.19)] ∀k where c is calculated in terms of SNRIA as

c =
SNRIA

(K − 1) SNRIA +1
. (6.2)

6.2.1. Eigenmode Precoding vs. Interference Alignment

We combine the rate results of Chapters 4 and 5 with the coherence inter-
val structures of Section 6.1. Data transmission using eigenmode precoding oc-

91



6. How Much Antennas is "Massive"?

curs over a portion of (T − 2N − 2)/T of the coherence interval with a mini-
mum ergodic rate MV(c, β) [cf. (5.26)], while data transmission using IA occurs
over a portion of (T − To)/T of the coherence interval with an ergodic rate
dIAV(SNRIA, 1) [cf. (4.40) and (4.16)]. To find the minimum number of anten-
nas Mmin required for transmitters employing eigenmode precoding to match
the performance of transmitters with N antennas employing IA, the following
equality is posed:

(
T − 2N − 2

T

)

MV(c, M/N) =

(
T − To

T

)

dIAV(SNRIA, 1).

(6.3)

The left-hand side is the minimum eigenmode precoding spectral efficiency while
the right-hand side is the IA spectral efficiency. Eq. (6.3) is then solved in M for
a given fixed set of parameters T , N , K, and SNRIA (dIA is implicitly defined
by K and N). The smallest integer satisfying (6.3) gives Mmin. Mmin cannot
be found in closed form; nonetheless, noting that the left-hand side of (6.3) is
increasing in M , a bisection method can be used to get a solution for Mmin.
The results for the K-user IC with constant channel coefficients can be obtained
from (6.3) by setting T →∞. In that case, both fractions appearing before the
rate terms in (6.3) equal 1 and all discussed overheads in Section 6.1 have no
effect on the spectral efficiency.

6.2.2. Maximum Ratio Transmission vs. Interference Alignment

Similarly to (6.3), we can set up an equality to find how much antennas are
required for MRT to perform similarly to IA:

(
T −N − 1

T

)

RMRT,LB =

(
T − To

T

)

dIAV(SNRIA, 1).

(6.4)

Defining

f =
dIAV(SNRIA, 1)(T − To)

N(T −N − 1)
, (6.5)

then Mmin can be found in closed-form as

Mmin =
⌈

N(2f − 1)
K SNRIA +1

SNRIA

⌉
(6.6)

which again is a function of the set {T, N, K, SNRIA}.
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6.3. Numerical Examples

6.2.3. Closing Remarks

The found Mmin corresponds in fact to an upper bound on the required number
of antennas as

1. the left-hand sides of (6.3) and (6.4) constitute lower bound of the spectral
efficiencies obtained with eigenmode precoding and MRT, and

2. CSI errors would cause higher spectral efficiency degradations for IA.

In the analysis, we assumed that a transmission of N data streams with eigen-
mode precoding and MRT but only a transmission of N/2 data streams with
IA. This models the most naive non-cooperative strategy vs. the smartest co-
operative strategy. Note that a transmission of more than N/2 streams while
attempting IA would cause the system to be interference limited. Thus, the
choice of N/2 streams in the latter case is optimal. In contrast, the considered
non-cooperative strategies simply transmit the maximum number of streams de-
spite possibly causing large inter-symbol interference. From the result of Lemma
5.1, it can be observed that streams suffer from a high level of interference. Con-
sequently, a higher achievable rate for eigenmode precoding could be achieved
via WF; namely, shutting off the weak streams and transmitting less than N
streams. However, this is not considered to model the most naive type of a given
transmitter which has no information about the interference caused by other
transmitters.

Finally, the left and right-hand sides of (6.3) and (6.4) constitute stand-
alone results as they can used to calculate the spectral efficiency of any of the
considered precoding methods for a given set of parameters, taking into account
the piloting overheads.

6.3. Numerical Examples

We solve (6.3) using a bisection method and evaluate (6.6) for different values
of the set {T, N, K, SNRIA}. We are not interested in the low SNR regime, as
cooperation would only bring small benefits in this regime. We first consider the
IA (4, 4, 2)3 scenario where each stream has a receive SNRIA = 20 dB, corre-
sponding to an average spectral efficiency of approximately 11 bits/s/Hz/user
when T → ∞. Fig. 6.4 plots the resulting required number of antennas Mmin

against T for both eigenmode precoding and MRT to perform similarly to IA.
Fig. 6.5 plots the same scenario for a receive SNRIA = 15 dB, correspond-
ing to an average spectral efficiency of approximately 8 bits/s/Hz/user when
T → ∞. The results of the constant IC are also plotted for comparison. Fig.
6.4 shows that in the worst-case corresponding to the constant IC, transmitters
with less than 70 and 50 antennas employing MRT and eigenmode precoding
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Figure 6.4.: (Mmin, 4, 4)3 vs. IA (4, 4, 2)3: SNRIA = 20 dB

respectively perform similarly to transmitters with 4 antennas employing IA.
In Fig. 6.5, this number drops to less than 40 and 30 for MRT and eigenmode
precoding, respectively. This is due to the fact that increasing the noise level
reduces the performance gap between IA and MRT or eigenmode precoding1;
consequently, Mmin decreases with decreasing SNR. Most importantly, Figs.
6.4 and 6.5 show the relationship between T and Mmin: the smaller T is, the
smaller the required Mmin. Note, for instance, the big difference between Mmin

at T = 40 and T → ∞. This is an expected result as the training overheads
of IA take a much larger portion of the coherence interval for small values of
T compared to the overheads of MRT or eigenmode precoding (cf. Figs. 6.1,
6.2, and 6.3). As a result, MRT or eigenmode precoding have a much larger
portion of the coherence time left for data transmission and a relatively small
Mmin—corresponding to small transmit array gains—is already enough to give
spectral efficiencies comparable to IA.

Fig. 6.6 corresponds to the (4, 4, 1)5 scenario with SNRIA = 20 dB. In this
case and for a given value of T , Mmin is smaller than its corresponding value
in Fig. 6.4 because 3 receive antennas are reserved for IA and cancellation and
only 1 data stream can be transmitted. As MRT and eigenmode precoding allow
full spatial multiplexing with 4 transmitted streams, it doesn’t take much more
additional antennas to perform similarly to IA, despite possibly large existent

1Remember that IA is a desired strategy at high SNRs while MRT or eigenmode precoding
are desired strategies at low SNRs.
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Figure 6.5.: (Mmin, 4, 4)3 vs. IA (4, 4, 2)3: SNRIA = 15 dB

inter-symbol interference. The relationship between T and Mmin is seen in this
figure as well. Figs. 6.4-6.6 emphasize the importance of including the training
overheads in the spectral efficiency calculations to allow a fair performance com-
parison between cooperative and non-cooperative precoding techniques. Figs.
6.4-6.6 show that even the simple MRT strategy does not require massive con-
figurations to emulate noise-limited systems. Additionally, the required number
of antennas for eigenmode precoding is smaller, as the latter has a better per-
formance than MRT.

Finally, we consider the (5, 5, 2)4 IC scenario. This configuration doesn’t yield
a closed-form IA solution; nonetheless, we focus on the constant coefficients case
and plot Mmin against SNRIA in Fig. 6.7, covering average spectral efficiencies
up to 14 bits/s/Hz/user. The conclusions of the previous figures hold here as
well; namely, it is observed that Mmin increases with increasing SNR. Figs. 6.4,
6.5, 6.6, and 6.7 show that for practical systems with short coherence times
and finite SNRs and in the context of inter-cell interference cancellation, non-
cooperative (single-cell) precoding strategies do not necessitate massive numbers
of antennas to emulate the performance of interference-free cooperative systems
operating with traditional numbers of antennas.
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Figure 6.6.: (Mmin, 4, 4)5 vs. IA (4, 4, 1)5: SNRIA = 20 dB
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6.4. Summary

6.4. Summary

This chapter provided a framework for comparing the spectral efficiencies of
IA, MRT, and eigenmode precoding schemes in a MIMO IC. This was achieved
through the following two points:

• considering scenarios where the IA solution can be found in closed-form,
and

• studying the coherence interval structures of each precoding type and
including the training overheads in the spectral efficiency analysis.

Using the rate expressions from Chapters 4 and 5 in combination with the
training overhead analysis in TDD mode allowed obtaining the minimum num-
ber of transmit antennas Mmin required by naive transmitters employing MRT
or eigenmode precoding to result in good enough achievable rates—occurring
over a larger portion of the coherence interval—to match the performance of a
system where smart cooperating transmitters have a fixed number of antennas
and employ the IA scheme. Mmin was observed to vary significantly according
the coherence interval length and the SNR. In practice, CSI errors—whether
related to estimation errors or pilot contamination—would reduce Mmin for a
given transmit to noise power ratio as IA relies on the CSI of more links and
is therefore more sensible to CSI errors. Along with the fact that the MRT and
eigenmode precoding analytical expressions correspond to lower bounds, the
found Mmin in each case corresponds to an upper bound on the number of an-
tennas for practical systems. Whereas massive MIMO literature envisions base
stations with hundreds or even thousands of antennas to facilitate precoding
operations and create noise-limited systems, the conclusions of this chapter are
that in the context of inter-cell interference cancellation, even the simple MRT
strategy does not require massive configurations to emulate the performance of
noise-limited systems in practical scenarios with finite SNRs and short coherence
times. This is mainly due to two reasons. The first one being the larger CSIT
acquisition overhead for cooperative systems such as IA, which takes a larger
portion of the coherence interval and reduces the resulting spectral efficiency.
The second reason is the limited benefits of IA at finite SNRs.

The investigations of this chapter lead to interesting unanswered questions,
as we did not claim that cooperation among transmitters having Mmin antennas
(e.g., through ZF precoders) would not lead to any benefits at all compared to
non-cooperative methods. The answer to that question cannot be deduced from
the performed analysis. A possible line of work consists in investigating whether
there exists a threshold given again, by, a number of transmit antennas, where
cooperative methods would not provide performance gains compared to non-
cooperative methods at medium and high SNRs. The framework of this chapter
could be a starting point for such an analysis.
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7. Conclusions

In this thesis, the rate performance of different linear precoding methods was
characterized. These methods were split into cooperative methods (e.g., multi-
cell precoding) and non-cooperative ones (e.g., single-cell precoding). These
methods were compared and an upper bound on the required number of transmit
antennas of the single-cell methods to perform similarly to multi-cell methods
operating with a fixed number of antennas was found. The i.i.d. channel en-
tries assumption used throughout this thesis was used as it results in a superior
performance of cooperative methods, compared to scenarios where individual
channels’ entries and/or channels of different users are correlated, as explained
in Chapter 6. Next, we provide a brief summary of the thesis chapters and follow
up by a final discussion on cooperative methods.

Chapter 2 of this thesis motivated the need for MIMO systems by discussing
several advantages of MIMO systems including capacity increase, spatial diver-
sity, spatial multiplexing, etc. Additionally, it briefly reviewed the linear pre-
coding designs in P2P and BC MIMO scenarios.

Chapter 3 introduced the thesis system model, the K-user MIMO IC, and
reviewed many of the existing linear precoding methods for this model. Three
main communication modes were distinguished, according to the system config-
uration in terms of the number of transmit antennas, receive antennas, desired
streams, and users. We focused on the most challenging mode, and reviewed dif-
ferent linear precoding methods in that mode such as IA. We then discussed the
possible transmission options in the other two modes. We additionally differen-
tiated between cooperative and non-cooperative methods, listing the advantages,
disadvantages, and requirements of each method.

In Chapter 4, we focused on the class of IA methods due to its analytical
tractability and derived large system closed-form expressions of its achievable
rates using RMT tools. Even though the derived expressions are only exact
asymptotically, simulation results showed that these expressions provide accu-
rate estimates for small and finite system parameters as well. IA methods al-
ways result in square effective channel matrices with the result that—contrary
to other methods—achievable rates under WF power allocation can always be
found in quasi closed-form expressions. Chapter 4 also revealed some interesting
observations about the asymptotic WF level which, contrary to the finite case,
is independent of the instantaneous eigenvalues and is completely determined
by the asymptotic eigenvalue distribution.

99



7. Conclusions

In Chapter 5, we focused on the non-cooperative eigenmode precoding and
MRT techniques and derived achievable rate lower bounds using a combination
of separate stream decoding assumption and Jensen’s inequality. The bounds
for eigenmode precoding were derived using RMT tools as well, while the spe-
cial nature of MRT combined with the limited CSIR model allowed deriving
lower bounds without the need for RMT. Simulation results showed that the
bounds become tighter as the number of interferers increases, because the inter-
ference covariance matrix of each receiver in that case would approach a white
(diagonal) matrix, containing less information that can be exploited when joint
decoding is performed.

In Chapter 6, we used the derived expressions of Chapters 4 and 5 in the con-
text of a spectral efficiency analysis, which included the training overheads of
the different precoding methods in a TDD system. We investigated the required
number of transmit antennas for the non-cooperative strategies of Chapter 5
to perform similarly to IA. We derived a relatively modest upper bound Mmin

on that required number when compared to the literature assumptions, and
concluded that massive configurations are not necessary to emulate the perfor-
mance of noise-limited ICs using IA. We showed how the training overheads of
IA can significantly reduce its spectral efficiency in scenarios with short coher-
ence times, and lead to a considerable drop of the value of this upper bound.
The findings emphasize the importance of including the training overheads in
the spectral efficiency calculations to allow a fair performance comparison be-
tween cooperative and non-cooperative precoding techniques. Such overheads
are predominantly neglected in the literature which focuses on channels with
constant coefficients. We did not claim that cooperation among transmitters
having Mmin antennas would not lead to any performance improvements over
non-cooperative methods. Such an answer cannot be deduced from the per-
formed analysis and necessitates further investigations using a similar frame-
work to the one of Chapter 6.

The conclusions of Chapter 6 do not hold for FDD systems, as acquiring CSIT
requires downlink piloting and feedback from the receiver side; consequently,
each additional transmit antenna increases piloting and feedback overheads.
Nonetheless, we focused on TDD mode as it is the most suitable mode of oper-
ation for massive MIMO systems from the point of view of CSI acquisition and
precoding, given hardware aspects are properly handled (e.g., the calibration of
the transmit and receive hardware chains at the transmitter to ensure channel
reciprocity and mitigate any CSI mismatch between the uplink and downlink
directions).

It is yet unclear whether IA or other reviewed cooperative methods in this
thesis will be implemented in practice, and whether the theoretical gains of such
methods can be retained in a real implementation. Recent papers on IA have
contradicting views regarding this aspect [121–123]. In any case, even though
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IA is well understood by now, it still has open research problems. As explained
in Chapter 3, closed-form solutions have been only obtained in two special cases
and the problem of obtaining closed-form solutions is still open in general. This
problem is interesting from a theoretical as well as practical point of view, as
closed-form solutions facilitate practical implementations. One interesting line
of work consists in investigating whether similar ideas to the ones in [92] can
be applied to find closed-form solutions for new cases. That would involve first
reducing the MIMO IC to a sub-IC where IA is feasible and where closed-form
solutions can be found (e.g, a three-user square symmetric channel), then trying
to construct the final precoders and decoders as a function of the precoders and
decoders of the initial sub-IC without the need for iterative algorithms. It is
unclear at this point whether such a problem has a tractable solution.

Even though a lot of questions on the MIMO IC have been answered, it still
has its share of interesting unsolved problems and will continue to attract a lot
of interest in the future.
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A. Mathematical Basics

A.1. Linear Transformations

A transformation T : C
n → C

m is called linear if and only if the following
relationships hold for all vectors u and v in C

n and all scalars c ∈ R [124]:

1. T (u + v) = T (u) + T (v)

2. T (c u) = c T (u).

It can be easily checked that all the precoding and receive filtering operations
considered in this thesis correspond to linear transformations of the input of the
corresponding filters.

A.2. The Eigenvalue Decomposition

A widely used matrix decomposition is the EVD. Let S ∈ C
N×N . By the theory

of eigenvalues and eigenvectors of matrices, the eigenvalues (φ1, . . . , φN ) and
eigenvectors (x1, . . . , xN ) of S are the solutions of the following equations [74]:

S xl = φl xl

for l = 1, . . . , N . If S is full rank, its eigenvalues are non-zero and its eigenvectors
are distinct. The EVD of S is then defined as [74]

S = XΦX
−1

where Φ = diag(φ1, . . . , φN ), φ1 ≥ φ2 ≥ . . . ≥ φN , and X = [x1, . . . , xN ].
If S is Hermitian (full rank or rank deficient), then the EVD can be written

as
S = XΦX

H.

A.3. The Central Limit Theorem

Let {x1, x2, . . . , xN} be N ≫ 1 independent complex random variables. Let the
mean and variance of xl equal µl and σ2

l , l = 1, 2, . . . , N . Then, the distribution
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A. Mathematical Basics

of the sum x1+x2+. . .+xN approaches a Gaussian distribution, whose mean and
variance equal the sum of the individual means and variances, respectively [109]:

x1 + x2 + . . . + xN
d−→ NC

(
N∑

l=1

µl,

N∑

l=1

σ2
l

)

.

A.4. The Law of Large Numbers

The LLN describes the outcome of an experiment when repeated a large
number of times. Let x be a random variable with mean µ, and let the set
{xs,1, xs,2, . . . , xs,N} correspond to N samples or realizations of x. The LLN
states that as the number of realizations grows without bounds, the sample
average converges to the mean, i.e.:

lim
N→∞

1

N

N∑

l=1

xs,l = µ

(cf. [109]).
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B. Capacity of Point-to-Point MIMO Links

B.1. Capacity-Achieving Precoders

The link between the N receive antennas and the M transmit antennas is mod-
eled by H ∈ C

N×M . The system equation of the P2P link reads

y = Hx + n (B.1)

where y ∈ C
N , x ∈ C

M , and n ∼ NC(0N , σ2
nIN ) ∈ C

N denote the received
signal vector, the transmitted signal vector, and the noise vector at the receiver,
respectively. The transmit power constraint reads

E
[
||x||22

]
= tr(Q) ≤ Etx (B.2)

where Q ∈ C
M×M is the covariance matrix of x.

Besides the additive noise, inter-symbol interference is another bottleneck in
such a scenario. The capacity of this link is given by [27]

CMIMO = max
f(x):E[||x||2

2
]≤Etx

I(y; x) (B.3)

where I(y; x) is the mutual information between the output and input of the
channel [112], and f(x) is the probability density function of x. It can be shown
that I(y; x) is maximized when x is circularly symmetric complex Gaussian
(CSCG). In that case, I(y; x) can be found in closed-form as

I(y; x) = log
∣
∣
∣IN +

1

σ2
n

HQH
H
∣
∣
∣ . (B.4)

What remains is choosing Q to maximize (B.4). The argument of the deter-
minant is non-negative definite. By Hadamard’s inequality, (B.4) is maximized
when the non-negative definite argument is a diagonal matrix [125, Theorem
7.8.1]. Defining

H
H

H = V ΦV
H (B.5)

to be the EVD of HHH, choosing

Q = V P V
H (B.6)
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where P = diag(p1, . . . , pM ) maximizes the mutual information and results in

I(y; x) = log |IM + ΦP | . (B.7)

The real entries of P correspond to the power loading coefficients and are chosen
according to the WF rule, as explained in Appendix B.2. Defining r = rank(H),
then rank(HHH) ≤ r and consequently

CMIMO =

r∑

l=1

log(1 + φlpl) (B.8)

as no more than r eigenvalues of HHH are non-zero. The last M − r entries of
P are thus set to 0.

To obtain the optimal precoder F ∈ C
M×r from (B.6), we write x = F s

where s ∼ NC(0r, Ir) is the input symbol vector. The input covariance matrix
in this case is Q = F F H due to the statistical properties of s. Consequently,
one solution for F can be obtained from (B.6) as

F = V
1:r

P̂
1/2

(B.9)

where P̂ = diag(p1, . . . , pr). This choice keeps the desired CSCG properties of

x. This is because left multiplying the CSCG s by P̂
1/2

only corresponds to a

scaling operation and keeps P̂
1/2

s CSCG. Similarly, it can be checked that left

multiplying the CSCG P̂
1/2

s by the unitary V 1:r keeps the resulting product
CSCG.

The chosen precoder aligns the data symbols to the strongest eigenmodes of
the channel, i.e., it directs the transmission to the subspace containing the max-
imum signal power, and splits the MIMO link into r parallel and non-interfering
SISO links with the end result that inter-symbol interference is cancelled. The
obtained precoder is linear.

B.2. Water-Filling Power Allocation

The entries of P̂ are given by the WF rule [27], i.e.,

pl = max

(

0, µ− σ2
n

φl

)

, ∀l = 1, . . . , r (B.10)

where µ is the WF level. Additionally,

r∑

l=1

pl = Etx. (B.11)
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B.2. Water-Filling Power Allocation

WF assigns more transmit power to directions with strong power and less to
directions with weak power to reach capacity. If t ≤ r eigenvalues are served,
then µ can be calculated from (B.10) and (B.11) as

µ =
1

t

(

Etx +

t∑

l=1

σ2
n

φl

)

. (B.12)

µ and {p1, . . . , pt} are coupled. By noting that (B.12) holds if t = r or if µ <
1/φt+1 with t < r as seen from (B.10), the following procedure can be used to
find a solution for µ:

1. Start with t = 1.

2. Find µ using (B.12).

3. If µ < 1/φt+1 or t = r, then the solution is found. Else, set t← t + 1 and
go back to step 2.

At low SNRs, WF can shut off transmissions in certain directions and even only
allow single-stream transmission. In this case, the multiple receive antennas
serve as to increase the received signal power without spatial multiplexing [27].
In contrast, µ converges to Etx/r at high SNR and all streams with non-zero
eigenvalues are approximately allocated equal power.
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C. Derivations and Proofs

C.1. Distributions of Inner Vector Products

Let {h, a} ∈ C
M be two uncorrelated Gaussian vectors with i.i.d. entries of

mean 0 and variance 1. We wish to find the distributions of the vector products
hHh/

√
M and hHa/

√
M . To find the distribution of the first term, we expand

hHh as

h
H

h =

M∑

l=1

|hl|2 =

M∑

l=1

(
ℜ(hl)

2 + ℑ(hl)
2
)

which is a sum of 2M ≫ 1 real Gaussian i.i.d. variables. The expectation and
variance of each of the variables are given by:

E
[
ℜ(hl)

2
]

= E
[
ℑ(hl)

2
]

=
1

2
,

E
[
ℜ(hl)

4
]

= 3
(

1

2

)2

,

var
(
ℜ(hl)

2
)

= E
[
ℜ(hl)

4
]
−
(
E
[
ℜ(hl)

2
])2

=
1

2
= var

(
ℑ(hl)

2
)

,

(C.1)

l ∈ {1, . . . , M} (cf. [109]). Therefore,

var(hH
h) = var

(
M∑

l=1

(
ℜ(hl)

2 + ℑ(hl)
2
)

)

=

M∑

l=1

var
((
ℜ(hl)

2
)

+ var
(
ℑ(hl)

2
))

= M.

(C.2)

Furthermore, E[hHh] = M by definition. Based on the central limit theorem
(cf. Appendix A.3), we have:

h
H

h
d−→ N (M, M) (C.3)

for M ≫ 1. With a scaling of 1/
√

M and 1/M , we obtain:

1√
M

h
H

h
d−→ N (

√
M, 1) (C.4)
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and
1

M
h

H
h

d−→ N
(

1,
1

M

)

. (C.5)

Similarly to the above, the inner product hHa is expanded as

h
H

a =

M∑

l=1

h∗
l al

which is a sum of M ≫ 1 i.i.d. complex variables. Similar to (C.3), it can be
shown that:

h
H

a
d−→ NC(0, M). (C.6)

Consequently:
1√
M

h
H

a
d−→ NC(0, 1) (C.7)

and
1

M
h

H
a

d−→ NC

(

0,
1

M

)

. (C.8)

C.2. Moments of Matrix Products

Let {H, A} ∈ C
N×M be two uncorrelated matrices with i.i.d. NC(0, 1) entries.

We wish to calculate the following quantities:

R = E

[
1√
M

HH
H

]

P = E

[(
1√
M

HH
H

)2
]

Q = E
[

1

M
HA

H
(
HA

H
)H
]

.

The lth row of H is hT
l , i.e., H = [h1, . . . , hN ]T. Similarly, A = [a1, . . . , aN ]T.

To obtain R, the term HHH/
√

M is first expanded as

1√
M

HH
H =

1√
M








hT
1 h∗

1 hT
1 h∗

2 . . . hT
1 h∗

N

hT
2 h∗

1 hT
2 h∗

2 . . . hT
2 h∗

N

...
...

...
...

hT
N h∗

1 hT
N h∗

2 . . . hT
N h∗

N








. (C.9)
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C.2. Moments of Matrix Products

Noting that the matrix entries of (C.9) are the complex conjugates of the quan-
tities in (C.4) and (C.7), we obtain R =

√
M IN .

To calculate P , we focus on its (i, j)th entry pij which equals:

pij =
1

M
E
[
e

T
i

(
HH

H
) (

HH
H
)

ej

]

=
1

M
E








[
h

T
i h

∗
1, h

T
i h

∗
2, . . . , h

T
i h

∗
N

]








hT
1 h∗

j

hT
2 h∗

j

...

hT
N h∗

j















=
1

M
E
[

h
T
i h

∗
1h

T
1 h

∗
j + h

T
i h

∗
2h

T
2 h

∗
j + . . .

+ h
T
i h

∗
i h

T
i h

∗
j + . . . + h

T
i h

∗
N h

T
N h

∗
j

]

.

(C.10)

Correspondingly, using (C.4) and (C.7) yields:

pij =
1

M

{
0, i 6= j,

E
[∣
∣hT

i h∗
i

∣
∣
2
]

+
∑

l 6=i
E
[∣
∣hT

i h∗
l

∣
∣
2
]

, i = j.

=







0, i 6= j,

E

[∣
∣
∣

1√
M

hH
i hi

∣
∣
∣

2
]

+
∑

l 6=i
E

[∣
∣
∣

1√
M

hH
i hl

∣
∣
∣

2
]

, i = j.

=

{
0, i 6= j,

M + N, i = j.

(C.11)

Thus, P = (M + N)IN .
Using a similar procedure, the (i, j)th term qij of Q equals:

qij =
1

M
E
[

e
T
i

(
HA

H
) (

HA
H
)H

ej

]

=
1

M
E
[

h
T
i a

∗
1a

T
1 h

∗
j + h

T
i a

∗
2a

T
2 h

∗
j + . . .

+ h
T
i a

∗
i a

T
i h

∗
j + . . . + h

T
i a

∗
N a

T
N h

∗
j

]

=
1

M

{
0, i 6= j,

E
[
∑N

l=1

∣
∣hT

i a∗
l

∣
∣
2
]

, i = j.

=

{
0, i 6= j,

N, i = j.

(C.12)

Therefore, Q = N IN .
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C.3. Convergence Proof of A(σ)

Rewriting an(σ), the n-th term of the infinite series A(σ) as

an(σ) =

(
2n
n

)

4n (2n + 1)

(
σ

2

)2n+1 2

2n + 1
, (C.13)

and comparing it with bn(σ) [cf. (4.37)], it can be observed that

an(σ) = bn(σ)
2

2n + 1
, (C.14)

and therefore an(σ) < bn(σ) for n ≥ 1. As
∑∞

n=1
bn(σ) is a convergent series for

0 ≤ σ ≤ 2, this implies that
∑∞

n=1
an(σ) is a convergent series for 0 ≤ σ ≤ 2.

Furthermore, this implies that the infinite series

A(σ) = σ +

∞∑

n=1

an(σ)

converges for 0 ≤ σ ≤ 2.
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D. Abbreviations and Acronyms

AWGN additive white Gaussian noise

BC broadcast channel

BD block diagonalization

BER bit error rate

CB coordinated beamforming

CDMA code-division-multiple-access

CLT central limit theorem

CoMP coordinated multipoint transmission

CS coordinated scheduling

CSCG circularly symmetric complex Gaussian

CSI channel state information

CSIR channel state information at the receiver

CSIT channel state information at the transmitter

DoF degrees of freedom

DPC dirty paper coding

EVD eigenvalue decomposition

FDD frequency-division-duplex

FDMA frequency-division-multiple-access

IA interference alignment

IC interference channel

IL interference leakage (algorithm)

i.i.d. independent and identically distributed

JP joint processing

LLN law of large numbers

LSA large system analysis

LTE long term evolution (systems)
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D. Abbreviations and Acronyms

MIMO multiple-input-multiple-output

MISO multiple-input-single-output

MSE mean-squared-error

MMSE minimum-mean-square-error

MRT maximum ratio transmission

MU-MIMO multi-user MIMO

OFDM orthogonal frequency division multiplexing

P2P point-to-point

RMT random matrix theory

SINR signal-to-interference-plus-noise ratio

SISO single-input-single-output

SNR signal-to-noise ratio

SDMA space-division-multiple-access

TDD time-division-duplex

TDMA time-division-multiple-access

WF water-filling

w.r.t. with respect to

ZF zero-forcing
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