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Abstract

Quantum systems of interest in physics and chemistry have many degrees of free-
dom. The goal of my thesis is to provide numerical methods capable of simulat-
ing the dynamics of such systems. I study the Herman–Kluk propagator, which
is capable of providing approximate solutions to the time-dependent semiclassical
Schrödinger equation in high dimensions. I derive a discretisation scheme and
prove rigorous error estimates. Moreover, this scheme as well as other semiclassi-
cal methods are of an intrinsically parallel nature. My contributions are the design
and implementation of highly efficient algorithms employing state of the art paral-
lelisation and vectorisation techniques.

Zusammenfassung

Quantensysteme, die in der Chemie und Physik von Interesse sind, weisen ge-
wöhnlich eine große Anzahl an Freiheitsgraden auf. Ziel dieser Dissertation ist die
Bereitstellung numerischer Methoden zur Simulation des Verhaltens derartiger Sys-
teme. Zu diesem Zweck untersuche ich den Herman–Kluk Propagator zur Approxi-
mation von Lösungen der semiklassischen, zeitabhängigen Schrödingergleichung.
Ich entwerfe ein Schema zur Diskretisierung des Herman–Kluk Propagators und
zeige rigorose Fehlerabschätzungen. Dieses Schema weist, wie auch andere se-
miklassische Methoden, von sich aus eine parallele Struktur auf. Darauf aufbauend
entwerfe und implementiere ich hochgradig effiziente Algorithmen unter Verwen-
dung der neusten zur Verfügung stehenden Parallelisierungs- und Vektorisierungs-
techniken.
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Chapter

1
Introduction

The behaviour of things on a very tiny scale is simply different. An
atom does not behave like a weight hanging on a spring and oscillat-
ing. Nor does it behave like a miniature representation of the solar
system with little planets going around in orbits. Nor does it appear to
be somewhat like a cloud or fog of some sort surrounding the nucleus.
It behaves like nothing you have ever seen before.

– Richard P. Feynman, The Character of Physical Law [Fey94]

Motivation

Throughout the history of mankind or at least the history of civilisation, even before
science in the modern sense existed, humans were wondering about their environ-
ment. They soon realised that ‘the behaviour of things’ changes in time. There is
seemingly continuous and endless movement, such as ocean waves crashing on a
beach, or more sudden movement like an apple falling from a tree. The first sys-
tematic investigations that we know of have their origins in the writings of various
natural philosophers in Ancient Greece. Many concepts we still use today, includ-
ing the idea of atomism, originate there. Nevertheless, it took almost two millennia
from these beginnings to the development of a suitable mathematical formulation,
most notably by Galileo Galilei and Isaac Newton. They initiated the study of what
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1 Introduction

we now call classical mechanics. To paraphrase the above quotation, classical me-
chanics describe how things behave on scales that we experience in our everyday
life. Through the course of the centuries to follow, various experiments suggested
that, as Feynman puts it, objects on very small scales are ‘simply different’. The es-
tablishment of a new theory was inexorable. The scientific ‘giants’ of the era initiated
it on the verge of the twentieth century and it was formulated in satisfactory mathe-
matical terms most prominently by Werner Heisenberg and Erwin Schrödinger. We
now call this theory quantum mechanics and it is still the fundamental description
of all processes involving ‘things on a very tiny scale’, such as atoms, molecules,
or photons. The principal equations of motion are readily written down, however,
the actual computation of solutions to them proves to be extremely difficult. Their
numerical solution is nowadays facilitated by the rapid development of ever more
powerful computers, but it continues to be a challenge, in particular for systems
with many degrees of freedom.

In a very broad sense my thesis aims to provide means to describe and predict
the behaviour of what Feynman calls ‘things on a very tiny scale’ by approximating
the full quantum mechanical evolution of a system with semiclassical methods. In
other words, an atom still ‘does not behave like a weight hanging on a spring and
oscillating’ but its behaviour can be approximated by studying numerous weights
hanging on numerous springs.

Mathematical setting and related research

In essence, quantum mechanics can be described by a single partial differential
equation that Erwin Schrödinger [Sch26d] introduced in 1926. In spite of the knowl-
edge of existence and uniqueness of a solution, computation of such a wave func-
tion proves difficult since the dimension of the Schrödinger equation is three times
the number of particles in the system. As a consequence, we require a model that
significantly reduces the number of degrees of freedom as well as efficient approxi-
mation schemes. The former is provided by the time-dependent Born-Oppenheimer
approximation, the latter is the main subject of this thesis.

The resulting model is described by the time-dependent semiclassical Schrödinger
equation

iε
d

dt
ψ(t, x) = Hεψ(t, x), ψ(0, ·) = ψ0 ∈ L2(Rd) (1.1)
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which expresses the motion of the nuclei in a molecule driven by the potential en-
ergy surfaces of the electrons. The operator Hε is a self-adjoint operator on L2(Rd)
called Born-Oppenheimer Hamiltonian. The semiclassical parameter ε > 0 is de-
fined as the square root of the mass ratio of electrons and nuclei.

How can we calculate solutions to Equation (1.1)? First, let me remark that there
are big risks involved when using conventional discretisation techniques such as
finite differences for Schrödinger calculations in the semiclassical regime. Certain
schemes produce completely wrong results under seemingly reasonable discreti-
sation strategies. What is even worse, we get no warning by the scheme, e.g. in
form of a blow-up, that something went wrong in the computation. One example
is the widely used Crank–Nicolson scheme for temporal discretisation. While it
shows some desirable properties, the scheme can violate the gauge invariance of
(1.1). Furthermore, even discretisation schemes, that are stable and consistent,
require huge computational resources in order to give accurate results for ε � 1.
For details, let me refer to Jin, Markowich, and Sparber [JMS11] and the references
therein.

Hence, totally different analytical and numerical techniques are required when deal-
ing with both d � 1 and ε � 1. I introduce several of these semiclassical meth-
ods such as Hagedorn’s semiclassical wave packets, Gaussian beam methods,
and quasi-classical methods below and elaborate in particular on the Herman–Kluk
Propagator. All these methods rely on the fact that for small ε, the solution to (1.1)
is closely related to the solution of the corresponding classical mechanical problem.

The current state of the art can be described as follows. On the one hand, we
have the works of theoretical chemists who have used semiclassical methods for
almost thirty years. They apply these methods with great success and give formal
derivations but do not prove them to be well defined, nor do they prove rigorous
error estimates. From their point of view, the most important feature of a method
is to provide results that are in accordance with and can be verified by actual ex-
periments. From the point of view of a mathematician, the first steps when defining
a new object is to prove them to be well defined, then carefully develop an algo-
rithm, and finally establish estimates on its approximation properties. In case of the
Herman–Kluk propagator, this has been done only quite recently in the mathemati-
cal literature by Swart and Rousse [SR09].

In my work I aim to combine these two points of view and mix them with yet an-
other one, namely the one of a computer scientist. My contributions are as follows.

3



1 Introduction

Based on work in theoretical chemistry as well as mathematical analysis, I design
a discretisation scheme and provide a rigorous error analysis thereof. Moreover, I
provide a way of implementing this algorithm in a highly efficient manner by sys-
tematically taking advantage of its inherently parallel nature.

Scope and outline of this work

This thesis is divided into three parts, one of which establishes the general physical
and mathematical framework, another gives a description and an analysis of the
discretisation scheme I propose for the Herman–Kluk Propagator, and the third the
implementation of the scheme using state of the art techniques from high perfor-
mance computing.

The parts themselves are further partitioned into chapters. I start with an overview
of classical mechanics or rather classical dynamics. It is one of the oldest disci-
plines in physics and describes the behaviour of physical bodies and their interac-
tion with each other and their environment. We use the concepts I introduce as a
base for semiclassical methods, which are described in Chapter 4. The presenta-
tion will be brief and concise since this thesis cannot and shall not be a book on
classical mechanics, especially since there are already excellent books written on
this topic, e.g. by Arnol’d [Arn89].

In the subsequent chapter I give a similar introduction to quantum mechanics start-
ing with the definition of the most important concepts as well as providing a short
overview of the historical development in Chapter 3.1. The correspondence be-
tween classical and quantum mechanics will be explored in Chapter 3.2. It is fol-
lowed by a description of quantum molecular dynamics where the time-dependent
Born–Oppenheimer approximation is discussed, which gives rise to the semiclas-
sical Schrödinger equation.

Chapter 4 introduces several semiclassical methods, such as Hagedorn’s semiclas-
sical wave packets, Gaussian beam methods, and quasi-classical approximations.
The latter includes the concept of the Wigner transform, which allows an alternative
description of quantum mechanical expectation values and is used to approximate
them by means of Egorov’s Theorem.

4



The first chapter of Part II finally gives a formal definition of the Herman–Kluk Prop-
agator and provides details of its most important features. In order to make this
definition rigorous we have to introduce the notion of Fourier integral operators,
which is the emphasis of Chapter 6. The following chapter introduces ‘the’ algo-
rithm that I propose for the discretisation of the Herman–Kluk Propagator. Chap-
ter 7.1 describes how the phase space integral is approximated by Monte Carlo
and quasi-Monte Carlo techniques, while Chapter 7.3 investigates the temporal
discretisation using symplectic integrators in order to solve the underlying system
of ordinary differential equations.

Chapters 8 and 9 provide a rigorous error analysis of phase space and time dis-
cretisation, respectively.

The third part consists of two chapters, of which the first one serves as a general
introduction to parallel programming. Thereupon, Chapter 11 provides details on
the highly efficient methods that I designed and implemented and which are based
on the algorithm described in Chapter 7 as well as an algorithm based on a quasi-
classical approximation introduced in Chapter 4.4. I eventually conclude my work
with some final remarks and possible directions for future research.

Let me give some directions to the reader. Taking Higham’s [Hig98][Chapter 4.31]
advice, I use the pronoun ‘I’ to refer to myself. ‘We’, on the other hand, is used
in the meaning of ‘the reader and I’. As you have probably already realised, I use
British English spelling throughout this thesis.

5
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Dynamics
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Chapter

2
Classical dynamics

One of the oldest branches of physics is the field of mechanics1. It is concerned
with the behaviour of physical bodies and their interaction with each other and their
environment. It has its origins in Ancient Greece with the writings of Aristotle and
Archimedes. The systematic investigation of general mechanical systems and the
development of a suitable mathematical formulation started with the monumental
works of Galilei [Gal55] and Newton [New87]. The ideas therein were advanced
and refined by the Italian-born mathematician and astronomer Lagrange [Lag88]
and the Irish physicist and mathematician Hamilton [Ham34]. They introduced two
different formalisms or views on mechanics that still preside over the field today.
What we now call Lagrangian formalism is based on variational principles which
can be generalised in order to describe quantum field theories. The Hamiltonian
approach on the other hand is of a more geometric nature and closely related to
quantum mechanics. This chapter is thought as an introduction to the topic of
dynamics, the branch of mechanics that is concerned with the motion of bodies
under the action of forces. Alternatively, paraphrasing Feynman once more, one
could say that this chapter explains the behaviour of ‘a weight hanging on a spring
and oscillating’ or of ‘a solar system with little planets going around in orbits’. The
presentation here will be concise, let me recommend the book by Arnol’d [Arn89]
as a detailed account of the field.

1from the Latin term ars mechanica, equivalent to the Greek term µηχανικη τεχνη, literally ‘the art
of inventing or utilising machines’, from µηχανη ‘tool’
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2 Classical dynamics

2.1 Lagrangian formalism

The Lagrangian reformulation of mechanics is based on the observation that vari-
ational principles govern the fundamental laws of force that were introduced by
Newton. Lagrange [Lag88] proposed the configurations of a physical system with d
degrees of freedom to be described by ‘generalised coordinates’ {q1, . . . , qd}. Math-
ematically, the set of all possible configurations may be described by a smooth d-
dimensional manifold Q. The evolution of the position of a particle is thought to be
a curve on Q. Of course, not any curve on this configuration manifold is qualified
to be the evolution of a mechanical system. The aim is to find the proper ones.
Let us introduce a smooth function L on the tangent bundle TQ of Q as well as the
following action functional. Together, they characterise the physical system.

Definition 2.1 (Action) The functional S : [0, T ]→ R that is defined by

S(t) :=

t∫
0

L (q(τ), q̇(τ)) dτ (2.1)

is called action integral or simply action along a curve (q(·), q̇(·)) on TQ.

Let us consider the variational problem of finding the critical points of the action
integral S as a functional of curves on Q. By means of calculus of variations, one
finds that the extremal paths must follow the Euler–Lagrange equations

d

dt

∂L
∂q̇k

=
∂L
∂qk

. (2.2)

for all k ∈ {1 . . . d} Lagrange proved that these are in fact the curves along which
the physical system evolves according to Newton’s equations of motion. The Euler–
Lagrange equations, however, are invariant under a change of coordinates and can
be used to describe more general physical systems than Newton’s equations. Let
me now introduce the Hamiltonian formulation of classical mechanics which is in
fact equivalent to the Lagrangian one as revealed by Theorem 2.6.

2.2 Symplectic geometry

Let us consider a classical physical system with d degrees of freedom. The Hamil-
tonian description of a mechanical system is formulated on and closely connected

10



2.3 Hamiltonian formalism

to the geometry of the cotangent bundle T ∗Q of the configuration manifold Q. This
cotangent bundle, also called phase space, carries the structure of a symplectic
manifold, i.e. a pair of a smooth manifold and a closed, non-degenerate differential
two-form Ω.

Proposition 2.2 (Darboux Coordinates) Let Q be a manifold. Then there exist
local coordinates on (q1, . . . , qd, p1, . . . , pd) on the cotangent bundle T ∗Q in which
the canonical 2-form is given by Ω = dqk ∧ dpk.

Thus, the canonical 2-form establishes a symplectic structure on T ∗Q for any man-
ifold Q. This defines a very profound structure on the cotangent bundle. Functions
that preserve this structure are themselves called symplectic.

Definition 2.3 (Symplectic map) A linear map A : T ∗Q→ T ∗Q is called symplec-
tic if Ω(Aw,Az) = Ω(w, z) for all w, z ∈ T ∗Q. A differentiable function f : T ∗Q →
T ∗Q is called symplectic if its Jacobian matrix is symplectic wherever it is defined.

Symplectic maps preserve phase space volume, among other things, but the notion
of symplecticity has much deeper implications, cf. Theorem 2.4. I now want to leave
the setting of arbitrary smooth manifolds in order to introduce Hamiltonian systems
only on vector spaces. This is the setting we will need for the remainder of the
text and it is much more pleasant to write down the equations of motion without
considering local coordinate charts and general differential forms.

2.3 Hamiltonian formalism

Hamilton [Ham34] associates a ‘characteristic function’ to a dynamical system of
attracting and repelling points. This function is now commonly called Hamiltonian
function and denoted by h : R2d → R. It defines the equations of motion

ż = J ∇h(z), z(0) = z0 (2.3)

which depend on the canonic symplectic form on phase space R2d. This form is
represented by the matrix

J =

(
0 I

−I 0

)
∈ R2d×2d. (2.4)

11



2 Classical dynamics

These equations of motion will form the foundation on which the subsequent con-
siderations are based. For twice continuously differentiable Hamiltonian functions,
(2.3) has a unique solution which allows us to define the classical flow

Φt : R2d → R2d, z0 7→

(
Xt(z0)

Ξt(z0)

)
(2.5)

in such a way that z(t) = Φt(z) satisfies (2.3) with initial datum z(0) = z0. This flow
is in fact a symplectic transformation.

Theorem 2.4 (Poincaré [Poi99]) Let h be a twice continuously differentiable func-
tion on an open set h : U ⊂ R2d → R. Then the flow Φt is a symplectic transforma-
tion wherever it is defined.

But the notion of symplecticity plays an even more fundamental role. It is in fact a
characteristic property for Hamiltonian systems. Let us consider an arbitrary system
of differential equations ż = f(z).

Theorem 2.5 Let f : U ⊂ R2d → R be continuously differentiable. Then ż = f(z)

is locally Hamiltonian if and only if its flow Φt is symplectic for all z ∈ U and all
sufficiently small t.

A proof of these two theorems is found in the book by Hairer, Lubich, and Wanner
[HLW06, Chapter VI.2]. As a consequence, the flow of any mechanical system is
a symplectic transformation and any symplectic flow originates from a Hamiltonian
system. In this sense, Hamiltonian systems and symplecticity are inseparably in-
tertwined. This should, of course, be reflected when discretising such a system in
order to solve it numerically, cf. Chapter 2.4 as well as Chapter 7.3.

The Hamiltonian and the Lagrangian formulation are equivalent to each other. In
order to show this, the Hamiltonian function h is viewed as the Legendre transfor-
mation of the Lagrangian L with respect to the second variable, i.e.

h(q, p) := max
q̇
{p · q̇ − L(q, q̇)} (2.6)

If we additionally demand that for any q, the expression p = ∂L
∂q̇ (q, q̇) defines a

continuously differentiable bijection q̇ 7→ p for all k ∈ {1 . . . d}, we can prove the
following theorem.

12



2.3 Hamiltonian formalism

Theorem 2.6 The Euler–Lagrange equations

d
dt∂q̇L = ∂qL (2.2)

are equivalent to Hamilton’s equations of motion for z := (q, p)T , i.e.

ż = J ∇h(z). (2.3)

where h is defined by 2.6.

Proof The assumtion that

pk =
∂L
∂q̇k

(q, q̇) (2.7)

is a differentiable bijection shows that the Legendre transform (2.6) is equivalent to

h(q, p) = p · q̇(p)− L(q, q̇(p))

where q̇ is understood as a function of p by inverting (2.7). Moreover, it immediately
implies that

∂ph = q̇ + p (∂pq̇)− ∂q̇L (∂pq̇) = q̇

∂qh = p · (∂q q̇)− ∂qL − ∂q̇L · (∂q q̇) = −∂qL.

These two expressions allow us to show the equivalence between the Hamilton’s
and the Euler–Lagrange equations. Given (2.2), we have

∂ph = d
dtq

∂qh = −∂qL = − d
dt∂q̇L = − d

dtp

which are precisely Hamilton’s equations of motion. Conversely, if we assume (2.3)
we get

∂qL = −∂qh = d
dtp = d

dt∂q̇L

which are again the Euler–Lagrange equations (2.2). �

An immediate consequence of this is the following formula for the action integral.

Corrolary 2.7 The action integral (2.1) along the flow of a Hamiltonian system (2.3)
can be reformulated as

S(t, z) =

t∫
0

(
d
dτX

τ (z) · Ξτ (z)− h(Φτ (z))
)

dτ (2.8)

where the z variable describes the dependence of S on the initial values.

13



2 Classical dynamics

2.4 Numerical Methods

The governing equations for all classical mechanical systems present themselves
as ordinary differential equations. There is a sheer endless variety of numeric in-
tegrators at hand. Since we have just seen that nature seems to ‘behave in a
symplectic way’ the method of choice has to reflect that.

Definition 2.8 (Symplectic method) A numerical one-step method

z1 = Ψτ (z0) (2.9)

is called symplectic if the map Ψτ is symplectic whenever the method is applied to
a smooth Hamiltonian system.

The symplectic method I use for the calculation of classical trajectories is based
on the Størmer–Verlet scheme which I describe in detail in Chapter 7.3. As I have
already stated, symplectic methods have the same geometric properties as flows
of Hamiltonian systems. But what about their approximation properties? Hairer,
Lubich, and Wanner [HLW06, Ch. IX] give an elaborate explanation based on the
concept of backward error analysis. We will take a closer look at this in Chapter 9
since I use this kind of analysis in order to prove the approximation properties of
the Herman–Kluk propagator.

14



Chapter

3
Quantum dynamics

3.1 Fundamental concepts

The word ‘quantum’1 appears in scientific journals at the beginning of the 20th
century. Planck [Pla01] described the concept of quantisation while trying to under-
stand the emission of radiation from heated objects. As a result of his experiments,
Planck also proposed the numerical value of h, now known as the Planck constant.
He also found a more precise value for the Avogadro number and the unit of elec-
trical charge while using the word ‘quanta’ in the sense of ‘quanta of matter and
electricity’. In response to Planck’s work, Einstein [Ein05] postulated that radiation
existed in spatially localised packets which he called „Lichtquanta“, quanta of light.
Bohr [Boh13] eventually introduced his famous model for the hydrogen atom where
electrons can only orbit the nucleus in certain ‘stationary orbits’ without radiating,
i.e. ‘a miniature representation of the solar system with little planets going around
in orbits’. Even at the time, the Bohr model barely provided a partial theoretical
explanation to the experimental results.

Heisenberg and Schrödinger

It required the revolutionary works of Heisenberg [Hei25; Hei27] and Schrödinger
[Sch26a; Sch26b; Sch26c; Sch26d] to find a satisfactory mathematical theory of

1from the Latin ‘quantus’ meaning ‘how much’

15



3 Quantum dynamics

systems at on atomic and even smaller length scales. Their mutually equivalent2

formulations provide an axiomatic basis for quantum mechanics. In the years to
follow, these foundations of quantum mechanics were expanded by numerous au-
thors including exceptional scientists like Born, von Neumann, Dirac, Fermi, Pauli,
Hilbert, and many others.

I want to shortly excerpt from one of the Schrödinger’s original texts in order to
demonstrate how little has changed in the formalism since its original formulation
almost a century ago. Schrödinger [Sch26d] realises that the equations of what
he calls a re-establishment of mechanics are easier if one assumes that the fun-
damental quantity is a complex-valued function. This way he finds that the time
dependence of a wave function is given by

∂ψ

∂t
= ±2πi

h
E ψ (3.1)

He then eliminates the energy parameter E and obtains the two equations [Sch26d,
Eq. (4”)],

∆ψ − 8π2

h2
V ψ ∓ 4πi

h

∂ψ

∂t
= 0. (3.2)

They have since become the fundamental law of describing non-relativistic particles
in modern science. Schrödinger then postulates that ‘the complex wave function ψ
satisfies one of these equations’. The other is then solved by its complex conjugate.
Furthermore he states that, ‘if necessary, the real part of ψ may then be viewed as
the real wave function’3. Born later establishes a statistical interpretation where |ψ|2

is interpreted as a probability density. I will explain this in more detail after giving
some thoughts to the solvability of Schrödinger equations.

Existence of dynamics

So far we have not concerned ourselves with a crucial question. Is there a solution
to the Schrödinger equation? And if so, is it unique? We may find very general
answers using results from the spectral theory of self-adjoint operators on Hilbert
spaces. This field was founded by John von Neumann [Neu32a] in his masterpiece

2 „Ich habe daher im folgenden einen etwas anderen Weg betreten, der rechnerisch außerordentlich
viel einfacher ist und den ich für prinzipiell richtig halte.“ [Sch26d]

3„Wir werden verlangen, daß die komplexe Wellenfunktion ψ einer der beiden Gleichungen genüge.
Da alsdann die konjugiert komplexe Funktion ψ̄ der anderen Gleichung genügt, wird man als reelle
Wellenfunktion (wenn man sie benötigt) den Realteil von ψ ansehen dürfen“
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3.1 Fundamental concepts

„Mathematische Grundlagen der Quantenmechanik“ [Neu96, reprint]. The following
Theorem was originally stated by Stone [Sto32, Thm. A]. Von Neumann [Neu32b]
later generalised the statement of the theorem and gave an independent proof.

Theorem 3.1 If H is a self-adjoint transformation in an abstract Hilbert space H.
Then U(t) := eitH , t ∈ R, is a family of unitary transformations with the group
property

U(s+ t) = U(s) U(t) (3.3)

and the continuity property

‖U(t)ψ − ψ‖ → 0 as t→ 0. (3.4)

The expression eitH is understood by means of spectral calculus. As a conse-
quence of Stone’s theorem we know that everything is well defined when dealing
with a self-adjoint operator. So far we have not discussed if the Hamiltonians which
occur in the Schrödinger equation are in fact of such nature. For many physically
relevant cases, the Hamiltonian operators in question are indeed self-adjoint includ-
ing the one for molecules (3.9) which I introduce below. A noteworthy summary on
the questions of which Hamiltonians are self-adjoint and how to prove this is given
by Reed and Simon [RS75][Chap. X].

Statistical interpretation

Born [Bor26] observes that Heisenberg’s quantum mechanics had so far only been
used to calculate stationary states. To explain the phenomenon of transitions he
favours Schrödinger’s formulation of the theory. He solves the Schrödinger equation
for a scattering problem and writes the solution as an asymptotic expansion in terms
of eigenfunctions of the unperturbed atom. From this he concludes that if one
wants to interpret these findings in terms of particles the only possible solution
is to interpret the coefficients in the expansion as probabilities that an electron
is scattered in a certain direction. In a footnote he admits that the probability is
actually proportional to the square of the coefficients4. This leads to the usual
statistical interpretation of quantum mechanics which interprets the square of the
absolute value of the wave function, |ψ|2, as a probability density. If the system is

4„Anmerkung bei der Korrektur: Genauere Überlegung zeigt, daß die Wahrscheinlichkeit dem
Quadrat der Größe proportional ist.“
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3 Quantum dynamics

in a state ψ ∈ H, then the probability that the particle is found in a region Ω is given
by

P(x ∈ Ω|ψ) =

∫
Ω

|ψ(x)|2 dx

What is nowadays called Born’s rule refers to an even more comprehensive setting.

Definition 3.2 (Born’s Rule) Any self-adjoint operator A : D(A) ⊂ H → H is
called an observable. Its average or expected value in the state ψ ∈ D(A) is given
by

E[A] = 〈ψ,Aψ〉 . (3.5)

Even more general, one defines the probability P(A ∈ Ω|ψ) that a result in Ω ⊂ R is
found when an observable A is measured by virtue of the unique spectral measure
corresponding to A that is defined by the spectral theorem.

3.2 Quantisation

Quantisation is a mathematical setting for the correspondence principle between
classical and quantum mechanics that was introduced by Bohr [Boh20]. It asso-
ciates a quantum observable, i.e. a self-adjoint operator on L2(Rd), to every classi-
cal observable, i.e. real-valued function on phase space. A natural way of doing this
was first introduced by Weyl [Wey27] and is called Weyl quantisation accordingly.

Definition 3.3 (Weyl quantisation) Let a ∈ S(R2d) and ψ ∈ S(Rd) be Schwartz
functions. The action of the Weyl quantisation opε(a) of a on the state ψ is given by
the absolutely convergent integral

(opε(a)ψ) (x) = (2πε)−d
∫
R2d

a
(

1
2(x+ y), ξ

)
e

i
ε
ξ(x−y)ψ(y) dy dξ. (3.6)
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3.3 Quantum molecular dynamics

3.3 Quantum molecular dynamics

A molecule is an ensemble of N nuclei and L electrons which are bound together
by the electrostatic force between them. All electrons carry the same mass m and
charge −e.5 The individual masses of the nuclei are denoted by Mn and their
electric charges by Zne for all n ∈ {1 . . . N}. The Hamiltonian operator describing
such a molecule is composed of several terms. Let us denote the coordinates for
the electronic degrees of freedom by yl ∈ Rd and the ones for the nuclei by xn ∈ Rd.
The operators

TN := −
N∑
n=1

~2

2Mn
∆xn and Te := −

L∑
l=1

~2

2m
∆yl (3.7)

describe the contributions to the kinetic energy of nuclei and electrons respectively.
The potential is a sum of the electrostatic repulsion between every pair of nuclei
and every pair of electrons and the attraction between nuclei and electrons, i.e.

Vmol(x, y) =
∑

1≤k<n≤N

ZkZne2

‖xk − xn‖
+

∑
1≤j<l≤N

e2

‖yj − yl‖
−

N∑
n=1

L∑
l=1

Zne2

‖xn − yl‖
(3.8)

Let us define the molecular Hamiltonian as the sum

Hmol = TN + Te + Vmol (3.9)

of (3.7) and (3.8) respectively. Then, the time-dependent Schrödinger equation

i
d

dt
ψ(t) = Hmolψ(t), ψ(0) = ψ0 (3.10)

describes the full quantum-mechanical motion of a molecule if one neglects the
spin degrees of freedom and relativistic effects. Kato’s Theorem [Kat51, Theorem
1] corroborates that the molecular Hamiltonian Hmol is self-adjoint. The spectral
theorem (Theorem 3.1) then guarantees the existence and uniqueness of the solu-
tion to (3.10).

The time-dependent Born–Oppenheimer approximation

In spite of the knowledge of existence and uniqueness of a solution, the actual
computation of it, even for a small-sized molecules, proves to be difficult. Consider

5In SI units the elementary charge has a measured value of e ≈ 1.602176565 10−19 Coulomb and
the mass of an electron m ≈ 9.10938215 10−31 kilograms.
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3 Quantum dynamics

e.g. an azane (i.e. ammonia) molecule which consists of one nitrogen and three
hydrogen atoms. Counting its 4 nuclei and 10 electrons, the resulting Schrödinger
equation is a partial differential equation in 42 variables. As a consequence, ef-
ficient approximation schemes alone will not be sufficient. We require a consid-
erable reduction of degrees of freedom, which is provided by the time-dependent
Born-Oppenheimer approximation. It has been introduced to the mathematical lit-
erature by Hagedorn [Hag80a]. Prior to that, the approximation has already been
widely used in the chemical physics literature and is usually attributed to Born and
Oppenheimer [BO27] despite the fact that their original paper does not consider
time dependent problems at all. Spohn and Teufel [ST01] generalise Hagedorn’s
analysis from coherent states to arbitrary wave functions.

The underlying physical picture is that the nuclei behave almost classically be-
cause of their large mass and that the electrons rapidly adjust to the slow nu-
cleonic motion. This motion is governed by the Born–Oppenheimer Hamiltonian
Hε = − ε2

2 ∆ + V and is driven by the potential energy surface V of the electrons.
The semiclassical parameter ε > 0 is the square root of the mass ratio of elec-
trons and nuclei and is thus very small. The actual computation of the electronic
surfaces, i.e. the solution of the stationary Schrödinger eigenvalue problem for the
electrons is one of the central goals in computational quantum chemistry. Here, let
us just assume that the problem is solved in a sufficient manner. From now on, we
concentrate on the following problem.

Definition 3.4 (The time-dependent semiclassical Schrödinger equation)
Our aim is to find the solution to the time-dependent semiclassical Schrödinger
equation

iε
d

dt
ψ(t, x) = Hεψ(t, x) (3.11)

for an initial wave function ψ(0, ·) = ψ0 ∈ L2(Rd) of norm ‖ψ0‖ = 1.

It is this equation that will be the fundamental model for the remainder of this thesis.
The fact that ε� 1 suggests the analysis through semiclassical methods which are
described in the subsequent chapter. The lowest order contributions come from
the flow Φ of the classical Hamiltonian function h(q, p) = 1

2p
2 + V (q) on nucleonic

phase space which is defined such that Hε = opε(h) is the Weyl quantisation of h.
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3.4 Numerical methods

3.4 Numerical methods

Lubich [Lub08] provides a general review of model reduction via variational approx-
imations as well as numerical methods used for time-dependent Schrödinger equa-
tions. He describes different methods for space discretisation including Galerkin
and collocation approaches using Hermite and Fourier bases. For up to about
10 degrees of freedom these methods can be extended via hyperbolic cross ap-
proximations and sparse grids. Several strategies for time-stepping algorithms are
presented as well. Schemes based on the Lanczos method or on Chebyshev poly-
nomials are used to approximate the unitary group of a discrete Hamiltonian op-
erator. Splitting methods and their high-order refinements by composition are also
presented. Moreover, Lubich [Lub08, Chapter II.3.3] gives an introduction to the
multi-configuration time-dependent Hartree (MCTDH) method which was proposed
by Meyer, Manthe, and Cederbaum [MMC90]. This method approximates the wave
function of the full system by a linear combination of tensor products of wave func-
tion for single particles.

Finally, let me mention the split-step Fourier method since I use this particular
method to create a reference solution for my numerical experiments. It is based
on symmetric Strang operator splitting. Consider an approximation ψn ≈ ψ(tn) of
the solution to the Schrödinger equation with Hamiltonian H = T + V at time tn

where T and V are the kinetic and potential energy operator respectively. Then the
new approximation ψn+1 ≈ ψ(tn+1) at time tn+1 = tn + τ is given by

ψn+1 = e−i τ
2
V e−iτT e−i τ

2
V ψn.

Lubich [Lub08, Ch. III.3] supplies a detailed account on its structure preserving
properties such as unitarity, symplecticity, and time-reversibility as well as error
bounds and higher-order methods based on composition strategies. For these rea-
sons, I consider this the method of choice for the solution of a Schrödinger equa-
tions in dimensions d ∈ {1, 2, 3} where it is implemented very efficiently using the
Fast Fourier Transform.
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Chapter

4
Semiclassical methods

There exist numerous approaches for the approximation of solutions to the semi-
classical time-dependent Schrödinger equation

iε
d

dt
ψ(t, x) = Hεψ(t, x).

Conventional discretisation techniques such as finite differences or the Crank–
Nicolson scheme, however, are not the methods of choice. These schemes poten-
tially produce wrong results under seemingly reasonable discretisation strategies
and even if they are stable and consistent, they require huge computational re-
sources in order to give accurate results for both, d � 1 and ε � 1. For details, let
me again refer to Jin, Markowich, and Sparber [JMS11] and the references therein.
They also provide a review on semiclassical techniques such as Gaussian beam
methods. Nevertheless they fail to mention Hagedorn’s semiclassical wave packets
as well as quasi-classical approximations which I present in Chapters 4.2 and 4.4
respectively.

4.1 Gaussian wave packets

An important class of functions in semiclassical calculations are called Gaussian
wave packets ϕε[z, C, θ] ∈ S(Rd) and they are defined by

ϕε[z, C, θ](x) := (πε)−d/4 exp
(

i
2ε(x− q)

TC(x− q) + i
ε p · (x− q) + i

ε θ
)
. (4.1)
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4 Semiclassical methods

Each individual function is characterised by a set of three parameters, a phase
space point z = (q, p)T ∈ R2d around which it is centred, a complex symmetric
matrix C = CT ∈ Cd×d with positive definite imaginary part which determines its
width, and a global phase θ ∈ C. The phase θ is chosen properly with respect to
the width matrix C such that

‖ϕε[z, C, θ]‖2 =

∫
Rd

|ϕε[z, C, θ](x)|2 dx = 1.

A general Gaussian wave packet can be propagated unitarily by evolving its centre
along the flow of the classical Hamiltonian system

ż = J∇h(z) (2.3)

which is supplemented by a Riccati equation for the width matrix C and an ordinary
differential equation for θ in order to ensure the correct phase and normalisation.
Then, one finds for every T > 0 a constant c ≥ 0 such that for all ε > 0

sup
t∈[0,T ]

‖ϕε0[zt, Ct, ξt]−Uε
tϕ

ε
0[z0, C0, ξ0]‖ ≤ c

√
ε.

In particular, if the potential function V is a polynomial of degree ≤ 2, then c = 0,
and the Gaussian wave packet approximation is exact. Over decades, general
Gaussian wave packets have been used as a flexible tool in chemical physics, see
e.g. Heller [Hel76] or Littlejohn [Lit86]. They have also been considered more re-
cently for the systematic construction of numerical integrators by Faou and Lubich
[FL06].

4.2 Hagedorn’s semiclassical wave packets

Hagedorn [Hag80b; Hag98] notices that, when considering a general Gaussian
wave packet (4.1), important features and conclusions are obtained by factorising
the matrix C into two matrices with special properties. A key result in this context is
the following lemma.

Lemma 4.1 (Hagedorn [Hag98, Section 3]) Any complex symmetric matrix C ∈
Cd×d with positive definite imaginary part can be represented as a product C =

PQ−1, where P,Q ∈ Cd×d are invertible and satisfy

QTP − P TQ = 0,

Q∗P − P ∗Q = 2i I.
(4.2)

24



4.2 Hagedorn’s semiclassical wave packets

Conversely, for any two complex matrices P,Q ∈ Cd×d that satisfy (4.2), the product
C := PQ−1 is complex symmetric with positive definite imaginary part ImC =

(QQ∗)−1.

Note that I use the a notation that is also favoured by Lubich [Lub08, Chapter V.1].
The matrices Q and P in Lemma 4.1 correspond to the matrices A and iB in Hage-
dorn’s original paper. Furthermore, Lubich observes that the conditions in (4.2) are
equivalent to the matrix (

ReQ ImQ

ReP ImP

)

being symplectic. In order to facilitate notation, let me introduce the rectangular
matrix

Z =

(
Q

P

)
∈ C2d×d

for matrices Q and P satisfying (4.2). This motivates the definition of the wave
packet

ϕε0[z, Z](x) := (πε)−d/4 det(Q)−1/2 exp
(

i
2ε(x− q) · PQ

−1(x− q) + i
εp · (x− q)

)
which is parametrised by the matrix Z and a phase space point z = (q, p)T ∈ R2d.
The correct normalisation, i.e.

‖ϕε0[z, Z]‖ = 1

is a consequence of (4.2). Taking ϕε0[z, Z] as a starting point allows an elegant
construction of an orthonormal basis

{ϕεk[z, Z], k ∈ Nd}

of L2(Rd). The basis functions

ϕεk[z, Z] =
1√
k!
A†[z, Z]kϕε0[z, Z]

are constructed by the iterated application of the raising operator

A†[z, Z] =
i√
2ε
Z∗J(ẑ − z), where (ẑψ)(x) =

(
xψ(x)

−iε∇ψ(x)

)
.
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4 Semiclassical methods

For the unitary propagation of these semiclassical wave packets one complements
the Hamiltonian equations (2.3) by a rectangular version of its variational equation,
i.e.

Ż(t) = J∇2h(z(t))Z(t) (4.3)

and the action integral S(t) defined by (2.8). This generalises the Gaussian wave
packet approximation discussed in the previous section as follows.

Theorem 4.2 (Hagedorn [Hag98, Theorem 2.9]) For all k ∈ Nd and all T > 0

there exists a constant c ≥ 0 such that for all ε > 0

sup
t∈[0,T ]

∥∥∥Uε
tϕ

ε
k[z(0), Z(0)]− e

i
ε
S(t)ϕεk[z(t), Z(t)]

∥∥∥ ≤ c√ε.
Furthermore, Hagedorn [Hag98, Theorem 2.5] shows that if the potential V is a
quadratic polynomial, then c = 0, which means that in this case e

i
ε
S(t)ϕεk[z(t), Z(t)]

is the exact solution to the Schrödinger equation. Using this property for harmonic
Hamiltonians Faou, Gradinaru, and Lubich [FGL09] and Gradinaru and Hagedorn
[GH14] develop Galerkin methods with time-splitting for a convergent discretisation
based on the unitary evolution of Hagedorn’s semiclassical wave packets.

4.3 Gaussian beam methods

A complementary type of semiclassical approximations is built for initial data that
is less localised in position space than semiclassical wave packets. Wentzel–
Kramers–Brillouin (WKB) wave functions

wε0(x) = α0(x) e
i
ε
σ0(x), x ∈ Rd,

are defined by a complex-valued amplitude function α0 ∈ C∞(Rd) and a real-valued
phase function σ0 ∈ C∞(Rd). A first order Gaussian beam approximation of the uni-
tary Schrödinger dynamics carries WKB initial data by continuously superimposing
general Gaussian wave packets according to

bε(t) = (2πε)−d/2
∫
Λ0

α(t, z) e
i
ε
σ(t,z) ϕε[Φt(z), C(t, z), σ(t, z)] dz. (4.4)

The centres of the initial Gaussians are chosen from the set

Λ0 = {(x,∇σ0(x)) | x ∈ supp(a0)} ,
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4.4 Quasi-classical approximations

while the propagation of the beam parameters α(t, z) ∈ C, σ(t, z) ∈ R, and C(t, z) ∈
C2d×d is determined by a system of coupled ordinary differential equations driven by
the classical Hamiltonian flow Φt. Its building blocks resemble the variational equa-
tion and the equation for the action integral. Zhen [Zhe14, Theorem 5.1] proves
that for all T > 0 there exists a constant c ≥ 0 such that for all ε > 0

sup
t∈[0,T ]

‖Uε
tw

ε
0 − bεt‖ ≤ c ε.

Higher order Gaussian beam approximations with O(εN/2) accuracy, N ∈ N, have
been developed as well [LRT13]. The discretisation of the continuous Gaussian
beam superposition (4.4) and its higher order versions have been addressed by grid
based numerical quadrature. Thus, the numerical applications have been restricted
to systems in dimension d = 1 and d = 2.

4.4 Quasi-classical approximations

The methods we have discussed so far all provide approximations to the full time-
evolved wave function ψ(t, ·) = Uε

tψ0. Practical applications often need derived
quadratic quantities. This is particularly the case in physics and chemistry since
expectation values

Eqm[A](t) = 〈ψ(t),Aψ(t)〉

for a given self-adjoint operator A are the quantum mechanical quantities that can
be actually measured in experiments. Typical observables are ε-scaled pseudodif-
ferential operators and can be expressed as the Weyl quantisation A = opε(a) of a
smooth phase space function a : R2d → R. Chapter 6 will provide the definition of
such objects and show them to be well-defined. The most popular quasi-classical
approximation [Mil74; TW04; LR10] takes advantage of the properties of the Wigner
transform.

The Wigner Transform

Wigner [Wig32] made an attempt to express quantum mechanical expectation val-
ues in the same form as the averages in classical statistical mechanics. As a con-
sequence he introduced the following transformation.
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4 Semiclassical methods

Definition 4.3 For any ψ ∈ L(Rd) and z = (q, p) ∈ R2d let us define

Wψ(z) := (2πε)−d
∫
Rd

e
i
ε
p·y ψ (q + y/2) ψ (q − y/2) dy.

The function Wψ : R2d → R is called Wigner transform of ψ.

One of the best-known properties of the Wigner transform is that it has features
similar to those of a probability distribution.

Proposition 4.4 Assume that ψ ∈ L1(Rd) ∩ L2(Rd) and denote by F the ε-scaled
Fourier transform. Then∫

Rd

Wψ(z) dp = |ψ(q)|2 and
∫
Rd

Wψ(z) dq = |Fψ(p)|2 (4.5)

and hence ∫
R2d

Wψ(z) dz = ‖ψ‖L2(Rd) = ‖Fψ‖L2(Rd) . (4.6)

A proof of this result, amongst many others, can be found in the enlightening book
by Gosson [Gos06, Ch. 6.4]. It follows immediately from (4.6) that

∫
R2dWψ(z) dz =

1 if ‖ψ‖ = 1. Therefore the Wigner transform of a normalised wave function is
sometimes called a quasi-probability density. It would be a probability density if
in addition Wψ ≥ 0 was true, which is not the case for any wave functions ψ. In
fact, the Wigner quasi-probability density Wψ is a true density if and only if ψ is
the exponential of a quadratic polynomial, i.e. a Gaussian wave packet. This was
shown by Hudson [Hud74] for one-dimensional systems and generalised by Soto
and Claverie [SC83] for systems with an arbitrary number of degrees of freedom.

Example 4.5 Consider a general Gaussian wave packet (4.1) centred at z0 ∈ R2d

with width matrix C = iI and global phase θ = 0, i.e.

ϕ(x) := ϕε[z0, I, 0](x) = (πε)−d/4 exp
(
− 1

2ε |x− q0|2 + i
ε p0 · (x− q0)

)
.

Its Wigner transform is then given by

Wϕ(z) = (2πε)−d
∫
Rd

e
i
ε
p·y ϕ (q + y/2) ϕ (q − y/2) dy

= (πε)−d/2 e−
1
ε
|q−q0|2 (2πε)−d

∫
Rd

e
i
ε
(p−p0)·y− 1

4ε
|y|2 dy

= (πε)−d/2 e−
1
ε
|q−q0|2 (πε)−d/2 e−

1
ε
|p−p0|2 .

28



4.4 Quasi-classical approximations

This expression shows that Wϕ > 0 and makes it easy to check that the two for-
mulae in (4.5) are fulfilled.

There is a fundamental relationship between the Wigner transform and the Weyl
pseudo-differential calculus which we will see in Chapter 6. Let me just state a
result due to Moyal [Moy49]. It permits us to express the expectation value of a
Weyl quantised operator A = opε(a) (cf. Definition 3.3) in terms of the Wigner
transform and the Weyl symbol.

Proposition 4.6 Let A = opε(a) and ψ ∈ L2(Rd) be a wave function of norm ‖ψ‖ =

1. Then the expectation value of A in the state ψ may be expressed by the formula

〈ψ,Aψ〉 =

∫
R2d

a(z)Wψ(z) dz. (4.7)

This suggests that the expectation value ofA is obtained by ‘averaging’ the classical
observable a with respect to Wψ.

Egorov’s Theorem

An idea on how to calculate an approximation to the time evolution of expectation
values of a Weyl quantised operator may be derived from formula (4.7). What
if, instead of considering the full quantum evolution, we just evolved the classical
observable a along the Hamiltonian flow Φt : R2d → R2d? Let us define this quasi-
classical expectation value by

Eqcl[a](t) =

∫
R2d

(a ◦ Φt)(z)W (ψ0)(z) dz. (4.8)

Is this an adequate approximation of the quantum expectation value Eqm[A](t)? An
answer is provided by Egorov [Ego69] through the following theorem.

Theorem 4.7 For all T > 0 there exists a constant c ≥ 0 such that for all ε > 0

sup
t∈[0,T ]

|Eqm[A](t)− Eqcl[a](t)| ≤ c ε2. (4.9)

The constant c depends on the observable A and derivatives of the flow Φt, but is
uniformly bounded for all normalised initial data with ‖ψ0‖ = 1.
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4 Semiclassical methods

Robert [Rob87] supplies a rigorous and more modern statement and proof of this
result. This theorem permits the calculation of expectation values up to an error of
order ε2 by only knowing the dynamics of the corresponding classical equations of
motion. Methods based on this approach are also called linearised semiclassical
initial value representation (LSC-IVR).

Remark 4.8 As for the Hagedorn wave packets, it holds that c = 0 if the potential
V is a quadratic polynomial, i.e. the time evolution is exact in this case.

In Part III we will take a closer look on a specific quasi-classical approximation.
Lasser and Röblitz [LR10] introduce a discretisation scheme based on (4.8). Due
to its inherently parallel structure I use it as a starting point to design an efficient
method for high dimensional problems. Details are presented in Chapter 11.4.
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Part II

Discretising the Herman–Kluk
Propagator
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Chapter

5
The Herman–Kluk propagator

Herman and Kluk [HK84] observe that ‘if wave functions become delocalised after
relatively short periods of time, a single wave packet cannot accurately approximate
a quantum system’. For this reason they propose to use a set of localised packets
instead and provide a formal justification of this method that we now call Herman–
Kluk propagator. A similar heuristic justification is proposed by Heller [Hel81] for
the Frozen Gaussian approximation.

This chapter provides an intuitive introduction to the Herman–Kluk propagator, a
formal definition and an idea why it could be a useful approximation of the unitary
time evolution group. Chapter 6 provides a rigorous definition based on the theory
of pseudo-differential and Fourier integral operators and results on the approxima-
tion properties of a class of operators which contains the Herman–Kluk propagator
as a prominent example.

5.1 Gaussian wave packets and the FBI Transform

As introduced in Chapter 4.1, Gaussian wave packets are an important tool in semi-
classical analysis. Let me remind you of the definition of a general Gaussian wave
packet ϕε[z, I, 0] in (4.1). It is characterised by a centre point z = (q, p) ∈ R2d, a
complex symmetric width matrix C ∈ Cd×d with positive definite imaginary part and
a global phase θ ∈ C. Since we will study the special case of C = I and θ = 0 most
of the time, I would like to introduce the following notation.
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5 The Herman–Kluk propagator

Definition 5.1 Let us define a Gaussian wave packet gεz ∈ S(Rd) centred at z =

(q, p)T ∈ R2d by

gεz(x) := ϕε[z, I, 0](x) = (πε)−
d
4 exp

(
− 1

2ε
|x− q|2 +

i

ε
p · (x− q)

)
. (5.1)

Again, S(Rd) denotes the space of Schwartz functions over Rd.

Iagolnitzer [Iag75] uses these wave packets to develop a generalisation of the
Fourier transform.

Definition 5.2 For all ψ ∈ S(Rd) and z = (q, p)T ∈ R2d let us define T εψ ∈ S(R2d)

by

(T εψ)(z) := (2πε)−d/2 〈gεz, ψ〉 = (2πε)−d/2 (πε)−
d
4 e

i
ε
p·q
∫
Rd

e−
i
ε
p·x ψ(x) e−

1
2ε
|x−q|2 dx

This introduces a mapping

T ε : S(Rd) −→ S(R2d), ψ 7→ T εψ

which is called Fourier–Bros–Iagolnitzer (FBI) transform.

Martinez [Mar02, Chapter 3.1] rigorously proves this transformation to be well-
defined. Furthermore, he shows that T ε maps L2(Rd) isometrically into L2(R2d)

and that for all ψ ∈ L2(Rd) the convenient formula

ψ = (2πε)−d
∫
R2d

gεz 〈gεz, ψ〉 dz (5.2)

holds. From this we get the formal expression

Uε
tψ = (2πε)−d

∫
R2d

(Uε
tg
ε
z) 〈gεz, ψ〉 dz.

which motivates to approximation of the unitary propagator Uε
t by the approxima-

tion of the unitary propagation of Gaussian wave packets, which should be easier
and require less effort. In the chemical literature such methods are known as Ini-
tial Value Representations (IVR), see [TW04]. From a mathematical point of view
they are Fourier Integral Operators with complex valued phase functions which are
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5.2 Definition of the Herman–Kluk propagator

defined in Chapter 6. Heller [Hel81] institutes ‘a very simple semiclassical approxi-
mation’

U εt g
ε
z ≈ e

i
ε
S(t,z)gεΦt(z).

which is called Frozen Gaussian approximation. It evolves the wave packet’s centre
according to the classical flow Φt of the Hamiltonian system ż = J∇h(z) (2.3) with
initial datum z(0) = z. The phase of the wave packet changes according to the
action integral (2.8) along the classical trajectory as described in Chapter 4.1 while
its width stays ‘frozen’.

5.2 Definition of the Herman–Kluk propagator

The approximate propagator established by Herman and Kluk in [HK84] is more
sophisticated as it accounts for the changes of the width of a wave packet. Let me
recall that we aim to find an approximation of the solution to the time-dependent
semiclassical Schrödinger equation

iε
d

dt
ψ(t, x) = Hεψ(t, x) (3.11)

for ε � 1. The Hamiltonian operator Hε = opε(h) is the Weyl quantisation of the
classical Hamiltonian function h(q, p) = 1

2p
2 + V (q) on phase space. The defini-

tion of the Herman–Kluk propagator requires quantities that are derived from the
classical flow (2.5) of this particular Hamiltonian function.

Definition 5.3 For any initial wave function ψ0 ∈ L2(Rd) and time t ∈ [0, T ] the
Herman–Kluk propagator is defined by

Iεt ψ0 = (2πε)−d
∫
R2d

u(t, z) e
i
ε
S(t,z)gεΦt(z) 〈g

ε
z, ψ0〉 dz. (5.3)

As mentioned, its time evolution depends on the classical flow Φt = (Xt,Ξt) of the
Hamiltonian system (2.3) and its corresponding action (2.8), i.e.

S(t, z) =

t∫
0

(
d
dτX

τ (z) · Ξτ (z)− h(Φτ (z))
)

dτ.

The quantity u(t, z) is called Herman–Kluk prefactor. It incorporates the compo-
nents of the Jacobian matrix of the flow

(DΦt)(z) =

(
∂qX

t(z) ∂pX
t(z)

∂qΞ
t(z) ∂pΞ

t(z)

)
∈ R2d×2d
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5 The Herman–Kluk propagator

and is defined by

u(t, z) :=
√

2−d det (∂qXt(z)− i∂pXt(z) + i∂qΞt(z) + ∂pΞt(z)) (5.4)

for all z = (q, p)T ∈ R2d.

Rousse and Swart [RS08] prove the well-posedness of a general class of opera-
tors which includes the Herman–Kluk propagator Iεt . I present some of their results
in Chapter 6.1 after introducing a precise definition of Fourier Integral Operators.
Furthermore, Swart and Rousse [SR09, Theorem 2] provide a theorem on the ap-
proximation properties of such operators.

Theorem 5.4 (Swart and Rousse [SR09, Theorem 2]) Let Uε
t be the unitary time

evolution of (3.10) with subquadratic potential V . The Herman–Kluk propagator Iεt
satisfies

sup
t∈[0,T ]

‖Uε
t − Iεt ‖L2(Rd)→L2(Rd) ≤ c ε,

where T > 0 is a fixed time and c > 0 is independent of ε.

This theoretical approximation estimate calls for a numerically stable and efficient
algorithm to actually compute the Herman–Kluk propagator in practice. This is
one of the contributions of the present thesis. Chapter 7 describes a discretisa-
tion scheme for the Herman–Kluk propagator. In the process of proving an error
estimate for this scheme, cf. Theorem 9.1, I also review the idea of a proof of The-
orem 5.4.

Remark 5.5 As an intermediate result of the original proof, [SR09, Lemma 2.]
shows that for any time t ∈ [0, T ] the Herman–Kluk prefactor z 7→ u(t, z) is a smooth
function and is uniformly bounded away from 0.

Remark 5.6 Note that for t = 0 the Herman–Kluk propagator reduces to the FBI
inversion formula (5.2), i.e. Iε0ψ0 = ψ0 for all ψ0 ∈ L2(Rd), since Φ0(z) = z, u(0, z) =

1, and S(0, z) = 0.

5.3 The Herman–Kluk propagator in momentum space

The Fourier transform of the wave function is of interest in many situations as well,
e.g. when calculating the expectation values of the momentum operator ψ 7→ iε∇ψ
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5.4 Comparison to further semiclassical methods

or the kinetic energy operator ψ 7→ − ε2

2 ∆ψ. Since in general we want to avoid
the evaluation of the Herman–Kluk wave function on a uniform grid, using the
Fast Fourier Transform is not an option. There is, however, a way to calculate the
Herman–Kluk propagator and its Fourier transform simultaneously by considering
the following argument. For all ξ ∈ Rd let

(Fψ)(ξ) = (2πε)−d/2
∫
Rd

e−
i
ε
x·ξ ψ(x) dx (5.5)

be the ε-scaled Fourier transform. Then,

F (Iεt ψ0) = (2πε)−d F

∫
R2d

u(t, z) e
i
ε
S(t,z)gεΦt(z) 〈g

ε
z, ψ0〉 dz


= (2πε)−d

∫
R2d

u(t, z) e
i
ε
S(t,z)

(
FgεΦt(z)

)
〈gεz, ψ0〉 dz.

This is made rigorous by Fubini’s theorem. Once one manages to calculate the
Herman–Kluk propagator, it is sufficient to know the Fourier transform of a single
Gaussian wave packet, i.e.

Fgε(q,p) = e−
i
ε
p·q gε(p,−q),

in order to calculate its Fourier transform. In numerical simulations these calcula-
tions are performed simultaneously without substantial additional effort.

5.4 Comparison to further semiclassical methods

Let us take another look at the Herman–Kluk prefactor (5.4), i.e.

u(t, z) =
√

2−d det (∂qXt(z) + ∂pΞt(z) + i∂qΞt(z)− i∂pXt(z)).

As mentioned above, it incorporates the components of the Jacobian matrix

(DΦt)(z) =

(
∂qX

t(z) ∂pX
t(z)

∂qΞ
t(z) ∂pΞ

t(z)

)
∈ R2d×2d

of the Hamiltonian flow Φt. The time evolution of DΦt is determined by the varia-
tional equation

Ẇ (t) = J ∇2h(Φt)W (t), W (0) = I (5.6)
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5 The Herman–Kluk propagator

that corresponds to the Hamiltonian system ż = J ∇h(z). In Chapter 7.3 I ex-
plain in detail how to solve (5.6) numerically. Here, I just want to make the fol-
lowing observation. In addition to the classical flow, the Herman–Kluk propagator
requires only the solution to the variational equation. This is a feature that is shared
with Hagedorn’s semiclassical wave packets as well as Gaussian beam methods,
cf. Chapters 4.2 and 4.3 respectively. Thus, the reason why these semiclassical
methods are suitable approximations to quantum mechanics is encoded in a varia-
tional equation similar to (5.6).

In terms of computational effort for the time discretisation of the ordinary differential
equations, all three methods are equivalent. The advantage of the Herman–Kluk
propagator with respect to Hagedorn’s semiclassical wave packets is simply the
higher order of approximation, O(ε) for Herman–Kluk versus O(

√
ε) for the wave

packets. With respect to Gaussian beams the superiority lies in the discretisation
of the phase space integral. An efficient quadrature rule for the integral in (5.3)
is more readily available than for the one in (4.4), particularly in high dimensions,
which is illustrated in Chapter 8.
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Chapter

6
Fourier Integral Operators

The Herman–Kluk propagator is originally introduced by Herman and Kluk [HK84]
using a formal derivation based on the path integral formulation of quantum me-
chanics. The previous chapter provides a different but still heuristic definition. In
this chapter I want to place this intuitive definition on a rigorous foundation by view-
ing it in the context of Fourier integral operators. Nevertheless, I do not go into
too much detail since I want to keep the focus on the development of an efficient
discretisation scheme.

6.1 Well-posedness of the Herman–Kluk Propagator

Rousse and Swart [RS08] consider a general class of Fourier integral operators by
viewing a symplectic transformation φ and a smooth function v as parameters of
the operator

Iε[φ; v]ψ = (2πε)−d
∫
R2d

v(z) e
i
ε
S(z)gεφ(z) 〈g

ε
z, ψ〉 dz.

The Herman–Kluk propagator is included in this class by choosing φ = Φt and v

equal to the Herman–Kluk factor u. In order to formulate a general result on the
well-definedness of such operators we need to introduce the notion of symbols and
symbol classes.
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6 Fourier Integral Operators

Definition 6.1 (Symbol class) Let m ∈ R and d ∈ N and α ∈ Nd a multi-index. A
function a ∈ C∞(Rd,C) is called a symbol of class S[m; d] if the expressions

Mm
k (a) := max

|α|=k
sup
z∈Rd

∣∣∣∣(1 + |z|2
)−m/2

∂αz a(z)

∣∣∣∣ <∞
for all k ∈ N.

This allows me to quote the following theorem which provides the continuity of the
aforementioned class of Fourier integral operators on L2.

Theorem 6.2 (Swart and Rousse [SR09, Theorem 1]) Let v ∈ S[0; 2d] be a sym-
bol, then Iε[φ; v] can be extended in a unique way to a linear bounded operator
L2(Rd;C)→ L2(Rd;C) such that

‖Iε[φ; v]‖L2→L2 ≤ 2−d/2 ‖v‖L∞ .

There is a corresponding result on Weyl-quantised pseudo-differential operators,
the well-known Calderón-Vaillancourt Theorem. Let me refer to Martinez [Mar02,
Theorem 2.8.1] for the statement and the proof thereof.

6.2 Composition of PDOs and time-derivatives with FIOs

The proof of Theorem 9.1, my main result on the approximation properties of a dis-
crete version of the Herman–Kluk propagator, requires information about the com-
position of pseudo-differential operators and time derivatives with Fourier integral
operators. Let me formulate two lemmata which are special cases of two propo-
sitions by [SR09]. In order to do so, let us now consider Φt = (Xt,Ξt) to be an
arbitrary family of symplectic maps on T ∗Rd, not necessarily the flow of the under-
lying Hamiltonian system. Its Jacobian DΦt ∈ S[0; 2d] is required to be point-wise
continuously differentiable with respect to time and to fulfil

sup
t∈[0,T ]

M0
k

(
DΦt

)
<∞, and sup

t∈[0,T ]
M0
k

(
DΦt

)
<∞.

I facilitate the presentation by using a notation similar to the one of Kay [Kay06]
which I find more convenient. In the following calculations I treat z := q + ip ∈ Cd
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6.2 Composition of PDOs and time-derivatives with FIOs

as a complex variable. Note that this does not change the symplectic structure of
the system. Furthermore, let me define the short hand notations

∂z := ∂q − i∂p and Zt := Xt + i∂pΞ
t (6.1)

for the complex version of a derivative that already reflects the symplectic structure
and the complex version of Φt.

Lemma 6.3 (Swart and Rousse [SR09, Prop. 2]) Let h ∈ S[mh; 2d] be polyno-
mial in p and u ∈ S[mu; 2d]. Then the action of the Weyl quantised Hamiltonian
operator Hε = opε(h) on Iε(Φt;u) is given by

Hε
(
Iε(Φt;u)

)
= Iε(Φt;w0 + εw1) + ε2 Iε(Φt;wε2)

which is understood as an equation of operators from S(Rd) to S(Rd). The functions
w0, w1 ∈ S[mu +mh; 2d] are given by

w0 = u (h ◦ Φ) ,

w1 = −∂z ·
(
u
(
∂zZ

t
)−1

(∂zh ◦ Φ)
)

+ u 1
2tr
((
∂zZ

t
)−1

∂z (∂zh ◦ Φ)
)
.

The function wε2 ∈ S[(mh,mu + mh); (d, 2d)] is provided by a linear partial differ-
ential operator Lε2 which depends on derivatives of order 3 and 4 of h acting on u,
i.e. wεN+1(x, ·) = Lε2u.

Lemma 6.4 (Swart and Rousse [SR09, Prop. 3]) Let u ∈ C1(R, S[m; 2d]) be a
family of time-dependent symbols with ( ddtu)(t, ·) ∈ S[m; 2d]. Then,

i ε ddt
(
Iε(Φt;u)

)
= Iε(Φt; v0 + εv1)

where v0, v1 ∈ C (R, S[m; 2d]) are explicitly given by

v0(t, z) = u(t, z)
(
− d
dtS(t, z) +

(
d
dtX

tz
)
· Ξtz

)
,

v1(t, z) = i ddtu(t, z)− i ∂z ·
(
u(t, z)

(
∂zZ

tz
)−1 ( d

dtZ
tz
))
.

In addition, I need yet another lemma, due to Hagedorn [Hag98, Lemma 2.8], that
turns an asymptotic solution into an approximate one.
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6 Fourier Integral Operators

Lemma 6.5 Let U εN+1(t) be an asymptotic propagator of order N + 1, i.e.(
i ε ddt −H

ε
)
U εN+1(t)ψ = RεN+1(t)ψ, U εN+1(0) = Id

for all ψ ∈ S(Rd) and ∥∥RεN+1

∥∥
L2→L2 ≤ r(t) εN+1.

Then U εN+1 approximates Uε
t in the sense that

∥∥Uε
t − U εN+1

∥∥
L2→L2 ≤ εN

t∫
0

r(τ) dτ.

Note that by passing from an asymptotic to an approximate solution we lose one
power in ε.

6.3 Higher order approximations

As mentioned above, the Herman–Kluk propagator is an approximation of order
one in ε to the unitary propagator. It would of course be desirable to construct
higher order approximations. Swart and Rousse [SR09, Theorem 2] show that, in
principle, this is possible. They give a rigorous proof by expanding the symbol of a
general Fourier integral operator in powers of ε. The coefficients of the expansion
are determined by ordinary differential equations involving ever higher derivatives
of the potential and the classical flow.

Hochman and Kay [HK06] pursue a formal but more constructive approach. They
introduce a corrected propagator that differs from the Herman–Kluk formula only by
replacing the prefactor u(t, z) by u(t, z)

∑N
n=0 vn(t, z)εn. They find the equation of

the lowest-order correction to be

i
d

dt
v1 = (1− V2)

(
5

8
b22 −

1

4
b3

)
+ V3

(
5

12
b2c1 −

1

6
c2

)
− 1

8
V4c

2
1.

The functions Vk are given by the k-th derivative of the potential along the classical
flow,

Vk(t, z) :=
(
∂kq V

)
(Φt(z)).
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6.3 Higher order approximations

The expressions for bk and ck involve derivatives of the classical flow and are given
by

bk(t, z) :=
∂kzZ

t(z)

(∂zZt(z))
k

=
(∂q − i∂p)

k (Xt(z) + iΞt(z)
)

((∂q − i∂p) (Xt(z) + iΞt(z)))k

and

ck(t, z) :=
∂kzX

t(z)

(∂zZt(z))
k

=
(∂q − i∂p)

kXt(z)

((∂q − i∂p) (Xt(z) + iΞt(z)))k

respectively. The zeroth order term in the expansion is of course v0 = 1 so that for
N = 0 the Herman–Kluk propagator is recovered. The corresponding equations for
higher-order corrections are ‘more lengthy and involve sums and products of bk, ck,
and Vk with larger k’. Nevertheless, this approach seems a promising starting point
for further investigation. In fact, a similar investigation has already been conducted
by Gaim and Lasser [GL14] for the method that is portrayed in Section 4.4. They
derive an expression for a correction term to the symbol in order to achieve an
approximation of O(ε4) [GL14, Theorem 2.1].
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Chapter

7
The algorithm

So far we have concentrated on the theoretic properties of the Herman–Kluk prop-
agator. I will now present ‘the’ algorithm that I propose for actual computations. In
order to do so let me recall the definition of the Herman–Kluk propagator (5.3), i.e.

Iεt ψ0 = (2πε)−d
∫
R2d

u(t, z) e
i
ε
S(t,z)gεΦt(z) 〈g

ε
z, ψ0〉 dz

for ψ0 ∈ S(Rd) and t ∈ [0, T ]. The evaluation of the wave function at just one instant
t ∈ R and one point x ∈ Rd in state space requires two nested integrations. The
outer one is an integral over the phase space R2d, the inner one the scalar product
on the state space Rd and has to be evaluated for each phase space point. Both
integrals have potentially highly oscillatory integrands. The time evolution of the
wave function requires knowledge of the classical flow Φt(z), the classical action
S(t, z), and the Herman–Kluk factor u(t, z) for all times t ∈ R as well as every phase
space point z ∈ R2d. In this chapter I describe discretisation strategies for phase
space and time. It also contains a schematic description of the resulting algorithm.
Chapters 10 and 11 present the parallelisation and efficient implementation of the
algorithm.
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7 The algorithm

7.1 Phase space discretisation

Grid based quadrature methods are not a suitable choice for this problem since
they would require N3d points if we used N quadrature nodes in each direction.
For high dimensional integrands Monte Carlo and quasi-Monte Carlo techniques
have become the methods of choice. Their shortcoming of having a low order of
accuracy is of little consequence here since the total error is already dominated by
the asymptotic error of order ε, see Theorem 5.4. In order to apply these methods
let me specify the class of initial wave functions to choose from by means of the
following assumption.

Assumption 7.1 Let ψ0 ∈ S(Rd) such that for all z ∈ R2d there is a multiplicative
decomposition

(2πε)−d 〈gεz, ψ0〉 =: rε0(z) · µε0(z), (7.1)

where µε0 ∈ S(R2d) is a probability distribution on R2d and the complex-valued func-
tion rε0 ∈ C∞(R2d) ∩ L1( dµε0) is growing at most polynomially for z →∞.

This sounds like a huge limitation at first but it is not. The assumption still allows
a variety of initial wave functions, especially the ones that are commonly used in
semiclassical calculations, including Hermite functions as well as Hagedorn’s semi-
classical wave packets. Lasser and Troppmann [LT14] provide analytic formulae for
their respective FBI transforms. In addition, linear combinations of functions ful-
filling the assumption are also admissible since the Herman–Kluk propagator is
linear with respect to the initial wave function. In particular, one may approximate
an arbitrary wave function with a linear combination of Hermite functions and use
this as initial data. By means of the decomposition formula (7.1) the Herman–Kluk
propagator can be reinterpreted as a weighted integration over phase space,

Iεt ψ0 =

∫
R2d

rε0(z)u(t, z) e
i
ε
S(t,z) gεΦt(z) dµε0(z). (7.2)

Note that r0 and µε0 depend on the initial wave function ψ0 only. We will use Monte
Carlo or quasi-Monte Carlo quadrature to approximate (7.2). In both cases the
approximate wave function is given by

ψM (t) =
1

M

M∑
m=1

r0(zm)u(t, zm) e
i
ε
S(t,zm) gεΦt(zm) (7.3)
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7.2 Calculation of expectation values

where z1, . . . , zM ∈ R2d are sampled from µε0. I will present rigorous error estimates
in Chapter 8. For now, let me give the following example.

Example 7.2 A common choice as initial wave function in semiclassical calcula-
tions is a Gaussian wave packet (5.1) centred at a phase space point z0 = (q0, p0) ∈
R2d, i.e.

ψ0(x) = gεz0(x) = (πε)−d/4 exp
(
− 1

2ε |x− q0|2 + i
ε p0 · (x− q0)

)
.

In this case, the explicit formula for the scalar product that occurs in the FBI trans-
form can be calculated by completing the square in the exponent.

〈gεz, ψ0〉 =

∫
Rd

gεz(x) gεz0(x) dx

= (πε)−d/2
∫
Rd

exp
(
− 1

2ε

(
|x− q0|2 + |x− q|2

)
+ i

ε (p0 · (x− q0)− p · (x− q))
)

dx

= exp
(
− 1

4ε |z − z0|2 + i
2ε (p+ p0) · (q − q0)

)
.

Thus we can rewrite the Herman–Kluk propagator as

Iεt ψ0 = (2πε)−d
∫
R2d

u(t, z) e
i
ε
S(t,z)+ i

2ε
(p+p0)·(q−q0) gεΦt(z) e−

1
4ε
|z−z0|2 dz.

This translates to (7.2) with the probability density

µε0(z) = (4πε)−de−
1
4ε
|z−z0|2

on R2d and

r0(z) = 2de
i
2ε

(p+p0)·(q−q0).

For the corresponding explicit formulae for Hermite and Hagedorn functions let me
refer once more to Lasser and Troppmann [LT14].

7.2 Calculation of expectation values

As mentioned before, one of the great advantages of the Herman–Kluk propagator
is the ability to compute the full wave function including its phase. On the other
hand, expectation values

Eqm[A](t) = 〈ψ(t),Aψ(t)〉 (7.4)
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7 The algorithm

for a given self-adjoint operator A are often the quantities of interest in physics
and chemistry. These observables include position or momentum as well as kinetic
or potential energy. Formula (7.4) suggests that in order to calculate expectation
values we would have to perform yet another numerical quadrature. The compu-
tational effort would thus grow quadratically in the number of quadrature points.
Fortunately, there is a way to compute expectation values without actually evalu-
ating the wave function using the same idea that led to the interpretation of the
Herman–Kluk propagator as a weighted integration over phase space (7.2), i.e.

Iεt ψ0 =

∫
R2d

rε0(z)u(t, z) e
i
ε
S(t,z) gεΦt(z) dµε0(z).

Let µε0 and rε0 be defined according to Assumption 7.1 and let us abbreviate the
integrand by

f ε(t, z) := rε0(z)u(t, z) e
i
ε
S(t,z). (7.5)

If we rewrite the expectation value of an observable with respect to the Herman–
Kluk wave function, we get

〈Iεt ψ0,AIεt ψ0〉 =

∫
Rd

Iεt ψ0(x) (AIεt ψ0(x)) dx

=

∫
R2d

∫
R2d

f(t, w) f(t, z)
〈
gεΦt(w),A g

ε
Φt(z)

〉
dµε0(w) dµε0(z)

=

∫
R4d

f(t, w) f(t, z)
〈
gεΦt(w),A g

ε
Φt(z)

〉
d (µε0 ⊗ µε0) (w, z).

Thus we may interpret the expectation value as a weighted integral on R4d with
respect to the product measure µε0⊗µε0 instead of two separate integrations on R2d.
Consider a sequence of (Monte Carlo or quasi-Monte Carlo) quadrature points

(w1, z1), . . . , (wM , zM ) ∈ R4d

that are sampled from µε0 ⊗ µε0. Then

AM (t) :=
1

M

M∑
m=1

f(t, w) f(t, z)
〈
gεΦt(wm),A g

ε
Φt(zm)

〉
(7.6)

is an approximation to (7.4). Note that the computational effort grows linearly in the
number of quadrature points albeit on a space of twice the dimension. In addition,
the inner product of two Gaussian wave packets with distinct centres〈

gεΦt(w),A g
ε
Φt(z)

〉
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7.3 Time discretisation

is easier to handle than the one with arbitrary wave functions. There are even ana-
lytic expressions for several observables including position, momentum, and kinetic
energy operators, as well as all polynomial potentials and the torsional potential.
Some examples are presented in Appendix A.

7.3 Time discretisation

In addition to the classical flow Φt(z), the Herman–Kluk propagated wave function
at time t ∈ R requires the knowledge of the classical action

S(t, z) =

t∫
0

(
d
dτX

τ (z) · Ξτ (z)− h(Φτ (z))
)

dτ (2.8)

as well as the Herman–Kluk factor

u(t, z) =
√

2−d det (∂qXt(z)− i∂pXt(z) + i∂qΞt(z) + ∂pΞt(z)) (5.4)

at each phase space point z ∈ R2d. Let me remind you that in order to compute
u(t, z) we need to solve the variational equation

Ẇ (t) = J ∇2h(Φt)W (t), W (0) = I (5.6)

that corresponds to the Hamiltonian system (2.3). Again, W (t) = DzΦ
t is the

derivative of the flow with respect to the initial values and ∇2h is the Hessian of
the Hamiltonian function. This equation inherits the symplectic structure of (2.3),
similar to the one for the matrices in Hagrdorn’s wave packets in Chapter 4.2. It
is therefore favourable to solve (5.6) with the same symplectic method as (2.3).
The following idea lets us treat the action S(t, z) in a similar manner. It is just the
application of the fundamental theorem of calculus on the action integral (2.8).

Proposition 7.3 Consider a Hamiltonian function h(q, p) = T (p) + V (q) that sepa-
rates in a kinetic part T (p) only depending on the variable p ∈ Rd and a potential
V (q) only depending on q ∈ Rd. Then the classical action may be seen as solution
to the initial value problem

Ṡ(t, z) = T (Ξt(z))− V (Xt(z)), S(0, z) = 0 (7.7)

for all z = (q, p) ∈ R2d.
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7 The algorithm

In order to solve (7.7) by the same symplectic method as (2.3) and (5.6), let us
artificially spilt it into two equations, defining Sq and Sp by(

Ṡq(t, z)

Ṡp(t, z)

)
=

(
T (Ξt(z))

−V (Xt(z))

)
,

(
Sq(0, z)

Sp(0, z)

)
=

(
0

0

)
. (7.8)

Furthermore, we need a way to convert the matrix-valued variational equation into
a vector-valued form.

Definition 7.4 (Vectorisation of a matrix) For any matrix A ∈ Rm×n let

~vec (A) := (A1,1, . . . Am,1, A1,2, . . . Am,2, . . . . . . A1,n, . . . Am,n)T ∈ Rmn

denote the linear transformation that converts the matrix into a column vector.

This allows us to the define the following system of ordinary differential equations.

Proposition 7.5 Consider a separable Hamiltonian function h(q, p) = T (p) + V (q).
For any z = (q, p) ∈ R2d let us define the vectors Zt(z) ∈ R2d+4d2+2 and F

(
Zt(z)

)
∈

R2d+4d2+2 by

Zt(z) :=



Xt(z)

Ξt(z)

~vec
(
∂qX

t(z)
)

~vec
(
∂pX

t(z)
)

~vec
(
∂qΞ

t(z)
)

~vec
(
∂pΞ

t(z)
)

Sq(t, z)

Sp(t, z)


and F

(
Zt(z)

)
:=



∂pT (Ξt(z))

−∂qV (Xt(z))

~vec
(
∂2
ph(Φt(z)) · ∂qΞt(z)

)
~vec
(
∂2
ph(Φt(z)) · ∂pΞt(z)

)
~vec
(
−∂2

qh(Φt(z)) · ∂qXt(z)
)

~vec
(
−∂2

qh(Φt(z)) · ∂pXt(z)
)

T (Ξt(z))

−V (Xt(z))


(7.9)

respectively. Then the classical flow of (2.3), and the solutions to the corresponding
variational equation (5.6), as well as the classical action (7.8) are simultaneously
found by solving

Żt(z) = F
(
Zt(z)

)
(7.10)
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7.3 Time discretisation

with initial values 

X0(z)

Ξ0(z)

~vec
(
∂qX

0(z)
)

~vec
(
∂pX

0(z)
)

~vec
(
∂qΞ

0(z)
)

~vec
(
∂pΞ

0(z)
)

Sq(0, z)

Sp(0, z)


=



q

p

~vec (I)

0

0

~vec (I)

0

0


. (7.11)

This is the foundation for all numerical calculations in Part III of this thesis.

Symplectic integrator

As I point out in Chapter 2.2, the dynamics of a Hamiltonian system are inextricably
linked to the notion of symplecticity. In order to preserve the symplectic structure of
the classical system

ż = J ∇h(z) (2.3)

it is crucial to use a suitable numerical integrator. I cannot stress this fact enough.
Any non-symplectic method inevitably changes the nature of dynamics, even if it
is a good approximation in terms of ordinary differential equations. Mere energy
conservation is not sufficient, the method has to be symplectic in the sense of
Definition 2.8.

My method of choice is based on the Størmer–Verlet scheme which is introduced by
Størmer [Stø07] for numerical computations of the trajectories of charged particles
in order to describe the aurora borealis. Verlet [Ver67] proposes this method for
computations of thermodynamical properties of molecules. It has since become a
widely used integration scheme in molecular dynamics. For a separable system of
the form h(q, p) = T (p) + V (q), the Størmer–Verlet method admits an explicit one-
step formulation Ψt : zn 7→ zn+1 which is useful for actual computations. A single
step of the method is given by

pn+1/2 = pn − τ
2 ∇V (qn)

qn+1 = qn + τ ∇T (pn+1/2)

pn+1 = pn+1/2 − τ
2 ∇V (qn+1).
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7 The algorithm

Hairer, Lubich, and Wanner [HLW06] investigate this scheme in great detail and
show that it is a symplectic and symmetric method of order two. The order of the
scheme can be further increased by applying a composition strategy. Kahan and Li
[KL97] provide composition constants which are custom-built for the task.

Complex square root

Another issue arises from the fact that we have to evaluate a complex square root
in order to compute the Herman–Kluk factor

u(t, z) =
√

2−d det (∂qXt(z)− i∂pXt(z) + i∂qΞt(z) + ∂pΞt(z)).

for t ∈ [0, T ] and z ∈ R2d. The function u is continuous with respect to t and
therefore we need find a way to reflect this in our calculations. In order to do so,
let us introduce the following notion. Let γ : [0, T ] → C r {0} be a path in C not
passing through the origin. A continuous map θ : [0, T ]→ R such that

γ(t) = |γ(t)|eiθ(t)

is called continuous choice of argument along γ. Let me refer to Stewart and Tall
[ST83, Theorem 7.1] for a proof of the existence of such a map.

Proposition 7.6 For any γ : [0, T ] → C r {0} there exists a continuous choice
of argument. Moreover, any further continuous choice of argument from this by a
constant integer multiple of 2π.

Since u is uniformly bounded away from 0, this makes it possible to define a con-
tinuous complex square root by√

u(t, z) :=
√
|u(t, z)| exp

(
i

2
θ(t)

)
where θ is a continuous choice of argument along u. Thus, in addition to the sys-
tem (7.10) of ordinary differential equations which evolves the matrices ∂qXt, ∂pXt,
∂qΞ

t, and ∂pΞt in time, the time-stepping algorithm also has to calculate the abso-
lute value and a continuous argument for

det
(
∂qX

t(z)− i∂pX
t(z) + i∂qΞ

t(z) + ∂pΞ
t(z)

)
.

This allows us to evaluate u(t, z) whenever we need it. It also eliminates additional
error sources that may arise from numerically checking the continuity of the square
root.
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7.4 Schematic description of the algorithm

7.4 Schematic description of the algorithm

Our goal is to calculate either a wave function, more precisely the solution to the
Schrödinger equation, or expectation values of operators along this solution. The
two tasks require different sampling points but may use the same time-stepping
algorithm.

1. a) Sample z1, . . . , zM ∈ R2d from µε0;

or

b) Sample (w1, z1), . . . , (wM , zM ) ∈ R4d from µε0 ⊗ µε0;

2. Allocate an array Z ∈ R(2d+4d2+2)×M containing the sampling points and the
corresponding initial values (7.11);

3. Evolve the columns of Z according to (7.10) by means of the high-order,
symplectic, and symmetric numerical integration method described above to
some desired time t;

4. Compute the Herman–Kluk factor with a continuous phase;

5. a) Calculate the approximate wave function by (7.3), i.e.

ψM (t) =
1

M

M∑
m=1

r0(zm)u(t, zm) e
i
ε
S(t,zm) gεΦt(zm); (7.12)

or

b) Calculate expectation values by (7.6), i.e.

AM (t) :=
1

M

M∑
m=1

f(t, w) f(t, z)
〈
gεΦt(wm),A g

ε
Φt(zm)

〉
;

Because of the parallel nature of Step 3, this algorithm can be implemented in a
highly efficient manner, which is the subject matter of Part III.
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Chapter

8
Phase Space Discretisation

This chapter contains a rigorous error analysis of the phase space discretisation
that I introduce in Chapter 7.1. Let me recollect the crucial ideas. We want to
discretise the phase space integral of the Herman–Kluk Propagator (5.3). Monte
Carlo and quasi-Monte Carlo methods are well suited for the quadrature over phase
space since we want to solve this for as many degrees of freedom as possible. In
order to apply these quadrature methods, only specific initial wave functions are
admissible. This permits to interpret the Herman–Kluk Propagator as a weighted
integral over phase space,

Iεt ψ0 =

∫
R2d

rε0(z)u(t, z) e
i
ε
S(t,z) gεΦt(z) dµε0(z), (7.2)

where µε0 and rε0 are defined in accordance with Assumption 7.1. In order to facilitate
notation let us denote the integrand

f εt (z) := rε0(z)u(t, z) e
i
ε
S(t,z)gεΦt(z) ∈ S(Rd) (8.1)

for all z ∈ R2d and t ∈ [0, T ].

8.1 Error Estimate for Monte Carlo quadrature

I want to introduce the concept of Monte Carlo quadrature methods directly applied
to the problem at hand. The presentation is based on the book by Krommer and
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8 Phase Space Discretisation

Ueberhuber [KU98, Chapter 6.4.] which I recommend as a general introduction to
the topic of numerical integration. In essence, Monte Carlo methods are based
on the computation of a deterministic object by means of stochastic quantities. In
our case, let us interpret the integrand f εt as a random variable with values in the
Hilbert space L2(Rd) which is distributed according to the probability measure µε0.
Then the phase space integral is its expected value, i.e.

Iεt ψ0 =

∫
R2d

f εt (z) dµε0(z) = E[f εt ]. (8.2)

A fundamental technique in statistics is to estimate an expected value using a sam-
ple mean. By taking M independent samples z1, . . . , zM ∈ R2d of the probability
distribution µε0 we define the Monte Carlo estimator

ψεM (t) :=
1

M

M∑
m=1

f εt (zm) ∈ L2(Rd). (8.3)

which is simply a linear combination of classically evolved Gaussian wave packets.
From a stochastic point of view we regard the samples z1, . . . , zM ∈ R2d as realisa-
tions of a sequence of independent, identically distributed random variables. By the
strong law of large numbers, the Monte Carlo estimator converges almost surely to
the expected value. However, this does not provide us with any information about
the error for a specific sample of size M .

A measure for the accuracy of the Monte Carlo method is the expected mean
squared error. It is defined as the expected value of the square of the error be-
tween the estimator and what is estimated, i.e.

E
[
‖ψεM (t)− Iεt ψ0‖2

]
. (8.4)

The following proposition provides an estimate for the mean squared error which
shows an accuracy of O(M−1/2) with respect to the number of sample points. This
is the typical convergence rate of the error in integration formulas based on Monte
Carlo methods and, most importantly, it does not depend on the dimension d.

Proposition 8.1 Let the initial wave function ψ0 ∈ S(Rd) satisfy Assumption 7.1
and let ψεM (t) be the Monte Carlo estimator defined in (8.3). Then, the mean
squared error is given by

E
[
‖ψεM (t)− Iεt ψ0‖2

]
=

V(f tε)

M
,
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8.1 Error Estimate for Monte Carlo quadrature

where V[f εt ] is the variance of f εt . It satisfies

V[f εt ] ≤ 3

∫
R2d

|u(t, z)rε0(z)|2 dµε0(z) + ‖Iεt ψ0‖2

for all t ∈ [0, T ] and ε > 0.

Proof We observe that

E[ψεM (t)] =
1

M

M∑
M=1

E[f εt ] = Iεt ψ0. (8.5)

Since the samples are independent and identically distributed, we get

E
[
‖ψεM (t)− Iεt ψ0‖2

]
= V[ψεM (t)] =

1

M2

M∑
m=1

V[f εt ] =
V[f εt ]

M
,

Moreover, by definition of V,

V[f εt ] = E
[
‖f εt − Iεt ψ0‖2

]
=

∫
R2d

‖f εt (z)− Iεt ψ0‖2 dµε0(z)

=

∫
R2d

‖f εt (z)‖2 dµε0(z)− 2

∫
R2d

<〈f εt (z), Iεt ψ0〉 dµ0(z) + ‖Iεt ψ0‖2 .

By writing ∫
R2d

〈f εt (z), Iεt ψ0〉dµε0(z) =

∫
R4d

〈f εt (z), fεt (w)〉 d(µε0 ⊗ µε0)(w, z)

and estimating

|〈f εt (z), fεt (w)〉| ≤ ‖f εt (z)‖ ‖f εt (w)‖ ≤ 1

2
(‖f εt (z)‖2 + ‖f εt (w)‖2)

we find that ∣∣∣∣∣∣
∫
R2d

〈f εt (z), Iεt ψ0〉 dµε0(z)

∣∣∣∣∣∣ ≤
∫
R2d

‖f εt (z)‖2 dµε0(z).

Since ‖f εt (z)‖ = |u(t, z)rε0(z)|, this concludes the estimate

V[f εt ] ≤ 3

∫
R2d

|u(t, z)rε0(z)|2 dµε0(z) + ‖Iεt ψ0‖2 . �

57



8 Phase Space Discretisation

Note that the final estimate of Proposition 8.1,

V[f εt ] ≤ 3

∫
R2d

|u(t, z)rε0(z)|2 dµε0(z) + ‖Iεt ψ0‖2 ,

is dominated by its first summand, since Theorem 5.4 provides

‖Iεt ψ0‖ = ‖Uε
tψ0‖+O(ε) = ‖ψ0‖+O(ε).

In case of our previous example we may even calculate the initial variance V[f ε0 ]

analytically and observe ε-independence as well as convergence to one as d→∞.

Example 8.2 For the initial mean squared error of the sampling of a single Gaus-
sian wave packet ψ0 = gεz0 , there is an analytic expression for the variance. We
have

f ε0 (z) = rε0(z)gεz = 2d e
i

2ε (p+p0)·(q−q0)gεz and E[f ε0 ] = gεz0

so that

V[f ε0 ] =

∫
R2d

∫
Rd

∣∣rε0(z)gεz(x)− gεz0(x)
∣∣2 dx dµε0(z) = 1− 4−d.

Figure 8.1 shows the sampling error for the initial wave function with respect to the
number of Monte Carlo quadrature points M .
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−
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‖ L
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d = 1

211 213 215 217
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‖ψ
M
−
ψ

0
‖ L

2

d = 2

ε = 10−1 ε = 10−2 ε = 10−3
√

1− 4−d/
√
M

Figure 8.1: Initial sampling error with respect to the number of Monte Carlo quadra-
ture points M .
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8.2 Error Estimate for quasi-Monte Carlo quadrature

Each wave function is produced by averaging over 10 independent samples. The
two pictures show the error for one and two space dimensions respectively. Note
that the error shows no dependence on the value of ε.

8.2 Error Estimate for quasi-Monte Carlo quadrature

Quasi-Monte Carlo quadrature rules are number-theoretic integration formulas that
define well-chosen deterministic quadrature points in order to cover the integra-
tion domain more uniformly. Such sequences of points are called low discrepancy
sequences. I will not go into details on that point and take for granted that such
sequences exist, since I only use quasi-Monte Carlo integration as a tool. Find-
ing such sequences by means of number-theoretic considerations is a vast field of
study itself. Niederreiter [Nie92] provides an excellent introduction to the topic in
general. I will only introduce the important notions, such as the following.

Definition 8.3 (Discrepancy function) Let µ be a probability measure on Rd. For
any x1, . . . , xM ∈ Rd and all x ∈ Rd let us define the discrepancy function of µ by

DM (x1, . . . , xM ;x) :=
1

M

M∑
m=1

χ]−∞,x](xm)− µ(]−∞, x]).

The discrepancy function quantifies the deviation of the empirical distribution for the
d-dimensional rectangular interval ]−∞, y] which is defined by

]−∞, y] := ]−∞, y1]× · · ·×]−∞, yd] ⊂ Rd

for every y = (y1, . . . , yd)
T ∈ Rd. If the measure µ is the product of one-dimensional

probability measures and the inverses of the one-dimensional cumulative distri-
bution functions are accessible, then the well-established low discrepancy sets
for the uniform measure on the unit cube [0, 1]d allow the construction of points
x1, . . . , xM ∈ Rd with

sup
x∈Rd

|DM (x1, . . . , xM ;x)| = O
(

(logM)d−1

M

)
,

see [AD15, Theorem 4]. The following lemma illuminates why the discrepancy
function is a crucial quantity for this type of quadrature.
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8 Phase Space Discretisation

Lemma 8.4 Let f ∈ S(Rd) and µ a probability measure on Rd such that f ∈
L1( dµ). Then, for all x1, . . . , xM ∈ Rd,

1

M

M∑
m=1

f(xm)−
∫
Rd

f(x) dµ(x)

= (−1)d
∫
Rd

∂1:df(y)

(
1

M

M∑
m=1

χ]−∞,y](xm)− µ(]−∞, y])

)
dy.

The proof adjusts the argumentation of the proof of the Koksma–Hlawka inequal-
ity by Aistleitner and Dick [AD15, Theorem 1] from the integration of functions of
bounded variation on the unit cube to the integration of Schwartz functions on un-
bounded domains.

Proof For any x ∈ Rd we have

f(x) = −
∞∫
x1

∂1f(y1, x2, . . . , xn) dy1

= (−1)d
∞∫
x1

· · ·
∞∫
xd

∂1:df(y1, . . . , yd) dyd · · · dy1

= (−1)d
∫

[x,∞[

∂1:df(y) dy.

This implies for the arithmetic mean

1

M

M∑
m=1

f(xm) =
(−1)d

M

M∑
m=1

∫
Rd

χ[xm,∞[(y) ∂1:df(y) dy

= (−1)d
∫
Rd

∂1:df(y)
1

M

M∑
m=1

χ]−∞,y](xm) dy

and for the integral∫
Rd

f(x) dµ(x) = (−1)d
∫
Rd

∂1:df(y)µ(]−∞, y]) dy,

where the last equation also uses Fubini’s theorem. �
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Let us now apply this result on the phase space discretisation of the Herman–Kluk
propagator. Let us recall Equations (8.1) and (8.3), i.e.

f εt (z) = rε0(z)u(t, z) e
i
ε
S(t,z)gεΦt(z) ∈ S(Rd)

and

ψεM (t) :=
1

M

M∑
m=1

f εt (zm) ∈ L2(Rd), (8.6)

respectively, for z ∈ R2d and t ∈ [0, T ]. Then we obtain the following weak conver-
gence result.

Proposition 8.5 Let ψ0 ∈ S(Rd) and rε0, µ
ε
0 be defined according to Assumption 7.1

and consider ψεM (t) as defined in (8.3). Furthermore, let DεM (z1, . . . , zM ; z) be the
discrepancy function of µε0. Then,

ψεM (t)− Iεt ψ0 =

∫
R2d

∂1:2d
z f εt (z)DεM (z1, . . . , zM ; z) dz. (8.7)

In particular,

lim
M→∞

sup
z∈R2d

|DεM (z1, . . . , zM ; z)| = 0

implies

lim
M→∞

〈φ, ψεM (t)− Iεt ψ0〉 = 0 (8.8)

for all test functions φ ∈ S(Rd).

Proof For all φ ∈ S(Rd) the mapping z 7→ 〈φ, fεt (z)〉 defines a Schwartz function
on R2d. Therefore we apply Lemma 8.4 and obtain

〈φ, ψεM (t)− Iεt ψ0〉 =

∫
R2d

∂1:2d
z 〈φ, fεt (z)〉DεM (z1, . . . , zM ; z) dz,

which means

ψεM (t)− Iεt ψ0 =

∫
R2d

∂1:2d
z f εt (z)DεM (z1, . . . , zM ; z) dz.

Moreover,

|〈φ, ψM (t)− Iεt ψ0〉| ≤ sup
z∈R2d

|DεM (z1, . . . , zM ; z)|
∫
R2d

∣∣∣∂1:2d
z 〈φ, fεt (z)〉

∣∣∣ dz,
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8 Phase Space Discretisation

so that

lim
M→∞

sup
z∈R2d

|DεM (z1, . . . , zM ; z)| = 0

implies (8.8). �

Even though we have proven weak convergence, we notice that the mixed deriva-
tive of the integrand f εt (z) depends unfavourably on various parameters as the fol-
lowing example illustrates.

Example 8.6 Let us examine the mixed derivative of the initial integrand f ε0 (z) for
a Gaussian wave packet ψ0 = gε0 centred in the origin z0 = 0. A straightforward
calculation shows that

∂1:2df ε0 (z) = f ε0 (z)
d∏
j=1

i

2ε2

(
(x− qj − ipj)(x− 1

2qj)
)

and ∥∥∥∂1:2df ε0 (z)
∥∥∥2

= ε−4d
d∏
j=1

(
1
8ε(q

2
j + 6ε) + 1

4p
2
j (q

2
j + 2ε)

)
.

Hence, the norm of the mixed derivative of f ε0 has a factor ε−2d in front of a polyno-
mial in z.
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Figure 8.2: Propagation of the error between the Herman-Kluk and the reference
solution for the torsional potential in the L2 norm.
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8.2 Error Estimate for quasi-Monte Carlo quadrature

Our numerical experiments confirm that the smaller ε and the larger the dimen-
sion d, the more quadrature points are required. However, it seems that beneficial
cancellations in the key equation (8.7) allow for a much smaller M than expected.
Figure 8.2 shows the error between the reference solution and the Herman–Kluk
wave function in the L2 norm. The total error is a combination of the asymptotic
error of order ε and the quadrature error which depends on the number M of quasi-
Monte Carlo points.
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Chapter

9
Time Discretisation

As a result of Theorem 5.4 we are aware that the Herman–Kluk propagator Iεt ap-
proximates the unitary time evolution Uε

t of the semiclassical Schrödinger equation
with a Weyl quantised Hamiltonian operator Hε = opε(h). More precisely, for any
T > 0 there exists a c > 0 such that

sup
t∈[0,T ]

‖Uε
t − Iεt ‖L2(Rd)→L2(Rd) ≤ c ε.

In this chapter I prove a similar theorem for the time-discretisation of the Herman–
Kluk propagator. Consider the numerical solution to the system (7.10) of ordinary
differential equations by means of the method that is described in Section 7.3. In
the spirit of backward error analysis of symplectic methods I interpret these solu-
tions as the exact solutions to a modified system of equations, which I explain in
Chapter 9.1. For now, let me formulate the main result of this chapter.

Theorem 9.1 Let Φ̃t, S̃ and ũ be calculated from the numerical solutions to (7.10)
by a symmetric and symplectic method of order γ ∈ N and let

(Ĩεt ψ)(x) := (2πε)−d
∫
R2d

ũ(t, z) e
i
ε
S̃(t,z) 〈gεz, ψ〉 gεΦ̃t(z) dz. (9.1)

be the corresponding Herman–Kluk propagator. Then Ĩεt is an approximation to the
exact propagator Uε

t , meaning that for any t > 0 there exist c0, c1, c2 > 0 such that
for all ε > 0 ∥∥∥Ĩεt −Uε

t

∥∥∥ ≤ τγ

ε
c0 + τγ c1 + c2 ε+O(τγ+2)
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9 Time Discretisation

where τ > 0 is the time step size of the symplectic method. The constants c0, c1,
and c2 depend on the final time T but neither on τ nor on ε.

This theorem allows us to achieve an overall error of order O(ε) for a sufficiently
small time step τ > 0. The proof consist of three main steps. First of all it requires a
backward error analysis of symplectic methods, which I introduce by reviewing the
main ideas of Hairer, Lubich, and Wanner [HLW06] on this topic. As a second step,
I make use of the results on the composition of pseudo-differential operators and
time derivatives with Fourier integral operators that are stated in Chapter 6.2 to find
that Ĩεt is indeed an asymptotic propagator. Finally, I apply Lemma 6.5 to turn this
asymptotic propagator into an approximate one.

9.1 Backward error analysis for symplectic methods

The fundamental idea of backward error analysis is to interpret the errors in the
output of an algorithm as additional errors in the input. This dates back to Wilkinson
[Wil60] for problems in numerical linear algebra and was eventually also applied to
ordinary differential equation. Hairer, Lubich, and Wanner [HLW06, Chapter IX]
provide a systematic study of the concept.

Consider a numerical method Ψt to solve an ordinary differential equation ż = F (z).
As mentioned, the idea of backward error analysis is to look for a modified equation

˙̃z = F̃ (z̃) (9.2)

such that the exact flow of this modified equation is equal to the numerical solution
of the original by Ψt. Let us now consider a Hamiltonian system

ż = J ∇h(z), z(0) = z0

and a one-step method described by zn+1 = Ψτ (zn) with step size τ > 0. Further-
more, let Ψτ allow for a Taylor series expansion Ψτ =

∑
k∈N τ

kDk(y) with smooth
Dk, k ∈ N. Then we have the following result which is a combination of [HLW06,
Ch. IX, Theorem 1.2] and [HLW06, Ch. IX, Theorem 3.1].

Lemma 9.2 Suppose that the method Ψτ is symplectic and of order γ ∈ N, i.e.

Ψτ (y) = Φτ (y) + τγ+1Dγ+1(y) +O(τγ+2)
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9.2 Error estimate for the time discretisation

where Φτ denotes the exact flow of ż = J ∇h(z). Then the modified equation
(9.2) is again a Hamiltonian system. More precisely, there exist smooth functions
hk : R2d −→ R for k ∈ {2, 3, . . . }, such that

˙̃z = J ∇h(z̃) + τγJ ∇hγ+1(z̃) + τγ+1J ∇hγ+2(z̃) + . . .

with z̃(0) = z0 and J ∇hγ+1(z) = Dγ+1(z).

When using a symmetric method such as the one proposed in Chapter 7.3 there
are additional advantages. Not only is the order of the method even but also the
following statement holds, cf. [HLW06, Ch. IX, Theorem 2.2].

Lemma 9.3 The coefficient functions of the modified equation of a symmetric
method Ψτ satisfy Fk(y) = 0 whenever k is even, so that (9.2) has an expansion in
even powers of τ .

These two lemmata allow us to treat the numerical solutions as the exact flow of
the modified Hamiltonian system given by h̃. Let us hence assume that Ψτ is a
symmetric, symplectic method of order γ ∈ N. Then

Ψτ (y) = Φτ (y) +O(τγ+2)

and h and h̃ are related by

h̃(z) = h(z) + τγhγ+1(z) +O(τγ+2). (9.3)

9.2 Error estimate for the time discretisation

We are now prepared for the proof of Theorem 9.1. Let Φ̃t, S̃ and ũ be calculated
from the numerical solutions to (7.10) by a symmetric, symplectic method of order
γ ∈ N and let the corresponding Herman–Kluk propagator Ĩεt be defined by 9.1. In
addition to the error of the symplectic method we need information about the sys-
tematic error that is made in the construction of asymptotic approximations which
is provided by Lemmata 6.3 and 6.4. The following proof uses the complex notation

z := q + ip, ∂z := ∂q − i∂p, and Zt := Xt + i∂pΞ
t (9.4)

introduced in Chapter 6.2.
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9 Time Discretisation

Proof The action of the Hamiltonian on the Herman–Kluk propagator is provided
by Lemma 6.3, i.e.

Hε
(
Iε(Φ̃t; ũ)

)
= Iε(Φ̃t; w̃0 + εw̃1) + Iε(Φ̃t; w̃ε2) (9.5)

where

w̃0 = ũ
(
h ◦ Φ̃t

)
,

w̃1 = −∂z ·
(
ũ
(
∂zZ̃

t
)−1 (

∂zh ◦ Φ̃t
))

+ 1
2 ũ tr

((
∂zZ̃

t
)−1

∂z

(
∂zh ◦ Φ̃t

))
.

Lemma 6.4 provides the formula

i ε ddt
(
Iε(Φt;u)

)
= Iε(Φt; v0 + εv1) (9.6)

for the application of a time derivative on the propagator where

ṽ0 = ũ
(
− d
dt S̃ +

(
d
dtX̃

t
)
· Ξ̃t
)
,

ṽ1 = i ddt ũ− i ∂z ·
((

ũ ∂zZ̃
t
)−1 (

d
dt Z̃

t
))

.

Combining (9.5) and (9.6) we get(
i ε ddt −Hε

)
Iε(Φ̃t; ũ) = Iε(Φ̃t; (ṽ0 − w̃0) + ε(ṽ1 − w̃1)) +Rε ε2.

This means that we have to examine the expressions ṽ0 − w̃0 and ṽ1 − w̃1. By
definition of S̃ we have

h̃ ◦ Φ̃t = − d
dt S̃ +

(
d
dtX̃

t
)
· Ξ̃t

and therefore

ṽ0 − w̃0 = ũ
(
h̃ ◦ Φ̃t − h ◦ Φ̃t

)
.

The expression for equation for ṽ1 − w̃1 is given by

ṽ1 − w̃1 = i ddt ũ− i ∂z ·
((

ũ ∂zZ̃
t
)−1 (

d
dt Z̃

t
))

+ ∂z ·
(
ũ
(
∂zZ̃

t
)−1 (

∂zh ◦ Φ̃t
))

− 1
2 ũ tr

((
∂zZ̃

t
)−1

∂z

(
∂zh ◦ Φ̃t

))
.
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9.2 Error estimate for the time discretisation

By definition, ũ fulfils

d
dt ũ = 1

2 ũ tr

((
∂zZ̃

t
)−1

d
dt

(
∂zZ̃

t
))

and we get

ṽ1 − w̃1 = 1
2 ũ tr

((
∂zZ̃

t
)−1 (

i ddt

(
∂zZ̃

t
)
− ∂z

(
∂zh ◦ Φ̃t

)))
+ ∂z ·

(
ũ
(
∂zZ̃

t
)−1 ((

∂zh ◦ Φ̃t
)
− i ddt Z̃

t
))

.

Let us now represent the Hamiltonian equations of motion in the terminology of
(9.4), i.e.

i ddt Z̃ = i ddtX̃
t − d

dtΞ
t = i ∂ph̃ ◦ Φ̃t + ∂qh̃ ◦ Φ̃t = ∂zh̃ ◦ Φ̃t.

Together with the definition of Φ̃t as the exact flow of h̃ this gives us

ṽ1 − w̃1 = 1
2 ũ tr

((
∂zZ̃

t
)−1

∂z

(
∂zh̃ ◦ Φ̃t − ∂zh ◦ Φ̃t

))
+ ∂z ·

(
ũ
(
∂zZ̃

t
)−1 (

∂zh ◦ Φ̃t − ∂zh̃ ◦ Φ̃t
))

.

Finally, we can use the backward error analysis which was introduced in the previ-
ous chapter. Equation 9.3 gives us(

h̃− h
)
◦ Φ̃t = τγ

(
hγ+1 ◦ Φ̃t

)
+O(τγ+2).

Introducing

ũ0 := ũ
(
hγ+1 ◦ Φ̃t

)
and

ũ1 := 1
2 ũ tr

((
∂zZ̃

t
)−1

∂z

(
∂zhγ+1 ◦ Φ̃t

))
+ ∂z ·

(
ũ
(
∂zZ̃

t
)−1 (

∂zhγ+1 ◦ Φ̃t
))

(
1

2
ũ tr

(
Z̃−1∂z

(
∂zhγ+1 ◦ Φ̃t

))
+ divz

((
∂zhγ+1 ◦ Φ̃t

)∗
Z̃−1ũ

))
we obtain

ṽ0 − w̃0 = ũ0 τ
γ +O(τγ+2),

ṽ1 − w̃1 = ũ0 τ
γ +O(τγ+2)

and(
iε ddt −Hε

)
Iε(Φ̃t; ũ) = τγIε(Φ̃t; ũ0) + τγεIε(Φ̃t; ũ1) + Iε(Φt;wε2) ε2 +O(τγ+2).
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9 Time Discretisation

Theorem 6.2 guarantees that Iε(Φ̃t; ũ0), Iε(Φ̃t; ũ1) and Iε(Φt;wε2) are bounded
operators. This allows us to apply Lemma 6.5 and we finally arrive at∥∥∥Ĩεt −Uε

t

∥∥∥ ≤ τγ

ε
c0 + τγ c1 + c2 ε+O(τγ+2)

where

c0 =

t∫
0

‖Iε(Φ̃τ ; ũ0)‖ dτ, c1 =

t∫
0

‖Iε(Φ̃τ ; ũ1)‖ dτ, and c2 =

t∫
0

‖Iε(Φt;wε2)‖. �

Remark 9.4 A proof of Theorem 5.4 is included in the proof I just gave for Theo-
rem 9.1 by considering the case Φ̃t = Φt.

Numerical validation

Now I want to illustrate Theorem 9.1 by means of two examples. The first one is the
quantum mechanical harmonic oscillator which is one of the few systems for which
an analytic solution is known explicitly. The second one is a system with a torsional
potential in two dimensions.

Example 9.5 (The harmonic oscillator) As a proof of concept let us restrict our-
selves to one spacial dimension where a grid based approach is still feasible. This
allows us to demonstrate the robustness of my algorithm even for large times, in
this case t ∈ [0, 100]. Let us consider the harmonic oscillator potential V (x) = x2/2

and a Gaussian wave packet

ψ0(x) = gε(q0,p0) = (πε)−1/4 exp

(
− 1

2ε
(x− q0)2 +

i

ε
p0(x− q0)

)
.

as initial wave function. Let q(t), p(t) and S(t) be the position, momentum and
action of the classical harmonic oscillator respectively, i.e.

q(t) = q0 cos(t) + p0 sin(t)

p(t) = −q0 sin(t) + p0 cos(t)

S(t) = 1
2 sin(t)

((
p2

0 − q2
0

)
cos(t)− 2p0q0 sin(t)

)
.

Then the analytic solution to the quantum mechanical problem is then given by

ψa(t, x) = (πε)−1/4 exp

(
i

ε
S(t)− i

2
t− 1

2ε
(x− q(t))2 +

i

ε
p(t)(x− q(t))

)
.
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9.2 Error estimate for the time discretisation

For the numerical calculations I use an equidistant grid in classical phase space
R2 with grid size δq = δp = 0.1 and another equidistant grid in the wave function’s
position space with grid size δx = 2−8π on the interval [−π, π]. The time is discre-
tised in equal steps of size τ = 0.05 from t = 0 to the final time t = 100. The initial
position and momentum are q0 = 1 and p0 = 0. Figure 9.1 shows the error between
the Herman–Kluk and the analytic solution in the L2-norm for different values of
the semiclassical parameter ε ∈ {10−1, 10−2, 10−3}. It underlines that the Herman–
Kluk propagator is exact for quadratic potentials and that my algorithm preserves
this feature over long times. Furthermore, the overall error is proportional to τγ/ε

as predicted by Theorem 9.1.
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Figure 9.1: Evolution of the deviation between the Herman-Kluk and the analytic
solution for the harmonic oscillator potential and different values of ε.
The error stays close to the initial sampling error even over long times.

Example 9.6 (The torsional potential in two dimensions)
Intramolecular rotations are often modelled by a torsional potential of the form

V (x) =
d∑

k=1

(1− cos(xk)).

In two dimensions the Herman–Kluk wave function can still be evaluated on an
equidistant grid and thus be compared to a reference solution calculated by means
of a split-step Fourier method. Again, I take a Gaussian wave packet

ψ0(x) = (πε)−1/2 exp

(
− 1

2ε
|x− q0|2 +

i

ε
p0 · (x− q0)

)
(9.7)
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9 Time Discretisation

as initial wave function with q0 = (1, 0)T and p0 = (0, 0)T . Figure 9.2 shows the
behaviour of the error

‖ψ(T )− ψref(T )‖L2

between the Herman–Kluk solution and the reference solution at the final time T =

20 with respect to the length of one time step. The number of quasi-Monte Carlo
points in phase space remains fixed. This is done for two different values of the
semiclassical parameter, namely ε = 10−1 and ε = 10−2 to show that the overall
error is dominated by ε if the length of a time step becomes sufficiently small. The
calculations are performed by the original Størmer-Verlet scheme as time integrator,
i.e. γ = 2, as well as a composition method of order γ = 4. The error behaves
exactly as predicted by Theorem 9.1.
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Figure 9.2: Dependence of the error between the Herman-Kluk and the reference
solution on the length of one time step.
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Chapter

10
Parallel programming

Parallel programming and the design of efficient parallel programs is a well estab-
lished concept in scientific computing. Nevertheless, it used to be a niche within
the entire field until in recent years, the hardware development advanced toward
multicore architectures. The reasons for this is of fundamental nature. Placing an
ever larger number of transistors on a single chip leads to thermal problems as well
as restrictions on the clock speed. And thus, even desktop computers nowadays
are small parallel systems of their own. Software developers need to restructure
existing non-parallel code in order to take advantage of the new computing capa-
bilities. In particular, one cannot expect to automatically improve the efficiency of
software products by just increasing the number of computing cores.

The most important step in parallel programming is the design of a parallel algo-
rithm for a given problem. First, the problem is composed into several tasks which
can be computed simultaneously. Those tasks are then assigned to processes or
threads which are delegated to physical computation units for execution.

Here, we can see one of the main advantages of the algorithm presented in Chap-
ter 7. Let us recall the basic structure. The calculation of the Herman–Kluk prop-
agator requires a large number of sample points and, for each point, a system of
ordinary differential equations has to be solved numerically. The points and the so-
lutions to the equations are completely independent of each other. There is no need
to devise elaborate parallelisation strategies, the algorithm is inherently parallel.
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10 Parallel programming

Chapter 11 covers the details of the implementation and gives a performance anal-
ysis. The present chapter serves as an introduction to the concepts of parallel
computing. It is based on the book by Rauber and Rünger [RR10] which I want to
recommend as an introductory text on the topic of parallel programming.

10.1 OpenMP

OpenMP is a common standard for parallel programming. It was designed in 1997
and is maintained by the OpenMP Architecture Review Board1. Its mission is
‘to standardise directive-based multi-language high-level parallelism that is perfor-
mant, productive and portable’. The current version 4.0 was published in 2013
[Ope13]. OpenMP is not an independent programming language. Rather, it pro-
vides a collection of compiler directives, library routines, and environmental vari-
ables. The compiler directives are used to extend C and C++ as well as other lan-
guages with single program, multiple data constructs. This gives the programmer
a simple and flexible interface for the development of parallel applications on plat-
forms ranging from embedded systems and accelerator devices to multicore and
shared-memory systems. In OpenMP, parallelism is controlled by compiler direc-
tives. For C and C++, OpenMP directives are specified with the #pragma directive of
the C and C++ standards. In the implementation that I presented in the next chap-
ter, only a single directive is required in front of the main loop over all the sampling
points.

#pragma omp p a r a l l e l for
for (T m = 0; m < M; m++)
{
( . . . )
}

Note that the parallel and the sequential code only differ in a single line. More-
over, the sequential code is still accessible by setting the value of the environment
variable OMP_NUM_THREADS. This is done by means of the command

export OMP_NUM_THREADS = n

where n is the number of threads one wants to use. For n = 1, for example,
the program is executed sequentially. In order to translate the source code into

1http://openmp.org/
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10.2 Message-Passing Interface

multithreaded code, a single additional compiles option -fopenmp is set to compile
the program. I present a numerical experiment that reflects the performance of the
parallel Herman–Kluk method with respect to the number of OpenMP threads in
Chapter 11.3.

10.2 Message-Passing Interface

Let us consider an abstract model of a parallel computer with no global memory
access, data exchange between the different processors must be performed ex-
plicitly by passing messages. To guarantee portability of programs, no assump-
tions on the topology of the interconnection network is made. Instead, it is as-
sumed that each processor can send a message to any other processor. In order
to make program design easier, it is usually assumed that each of the processor
executes the same program (single program, multiple data). The processor execut-
ing a message-passing program can exchange local data by calling communica-
tion functions. These are provided by a communication library, the most popular is
called Message-Passing Interface (MPI). The MPI standard defines the syntax and
semantics of library routines for standard communication patterns. It is defined and
maintained by the MPI Forum2. The current standard, MPI-3.1, was approved by
the MPI Forum in 2015 [MPI15].

In the case of my algorithm only a few MPI commands are required since the pro-
cesses do not need to share any data except for the initial setup of the phase space
points, Code Listing 10.1 displays some examples.

The MPI function MPI_Init() is called before any other MPI function to initialise the
MPI runtime system. The second and third call return the rank of the calling process
in the variable rank and the total number of processes in variable size respectively.
Other functions the algorithm requires are MPI_Send() in order to distribute the
sampling points and MPI_Reduce() to accumulate the final sum over all sampling
points. By using #ifdef directives whenever inserting an MPI function, the identical
source code is used for MPI as well as OpenMP and sequential execution. Similar
to OpenMP, one activates MPI by means of a compiler flag, in this case -D_MPI_.
This combines the simplicity of not having to maintain multiple versions of the code
with the capability of using various parallel programming techniques.

2http://www.mpi-forum.org/
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10 Parallel programming

# i f d e f _MPI_
#include <mpi . h>
#define omp_get_wtime MPI_Wtime
#endif

( . . . )

# i f d e f _MPI_
i n t rank , s ize ;
MPI_ In i t (& argc , &argv ) ;
MPI_Comm_rank (MPI_COMM_WORLD, &rank ) ;
MPI_Comm_size (MPI_COMM_WORLD, &s ize ) ;
#endif

( . . . )

Code Listing 10.1: Some basic MPI commands are included in C++ code.

10.3 Graphics processing units

Another trend in parallel computing is the use of graphics processing units (GPUs).
The GPU architecture provides hundreds of specialised processing cores that can
perform computations in parallel. It employs a single instruction, multiple thread
model as a parallelisation paradigm. The vectorisation is performed by the com-
piler, using essentially the sequential code with a few GPU specific extensions. In
order for this model to work efficiently, the data layout of the simulation code needs
adaptation. Often, this is the most important aspect of optimising code for graphics
processors. Apart from that, the computational kernels for the GPU accelerated
simulation code are compiled from the same source code as the CPU version. The
main modification necessary for the GPU kernel is the replacement of the outer
for loop, that iterates over the sample points, with the computation of a unique
thread id, cf. Code Listing 10.2. The GPU implementation of the algorithm uses
CUDA3 which is a parallel computing platform provided by NVIDIA. It provides ‘a
comprehensive development environment for C and C++ developers building GPU-
accelerated applications’. Note that, again, the use of CUDA is managed by an
#ifdef directive in order to eliminate the necessity of maintaining multiple versions
of the same code.

3https://developer.nvidia.com/cuda-toolkit
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# i f d e f CUDA
T m = thread Idx . x + b lock Idx . x ∗ blockDim . x ;

#else
#pragma omp p a r a l l e l for

for (T m = 0; m < M; m++)
#endif

{
( . . . )
}

Code Listing 10.2: The for loop, that iterates over the sample points, is replaced
by a unique thread id for the GPU kernel.

10.4 Vectorisation

Modern CPUs include vector extensions, such as Streaming SIMD Extensions
(SSE) and Advanced Vector Extensions (AVX and AVX-512). They extend the in-
struction set of the processors to increase parallelism and throughput in floating
point calculations. Basically, the processor simultaneously performs the same op-
eration on a vector of multiple (up to 8) floating point numbers instead of single one.
Although these vector operations offer high theoretical speed-up, it is tedious task
to maintain separate versions of the simulation code for each extension.

One of the results from my cooperation with Manfred Liebmann [LS15] is the de-
velopment of an explicit vectorisation library in C++. It hides the underlying com-
plexities and makes the vector processing capabilities more easily accessible. One
of our goals is to keep the syntax for the instantiation of the vector data types as
simple as possible and close to the built-in double data type. As a consequence we
avoid a heavy template approach in contrast to e.g. Kretz and Lindenstruth [KL12].
Our vectorisation library defines classes for the vector data types double2, double4,
and double8. Some of the member functions that encapsulate the vector extension
intrinsics in the C++ class for the double2 data type are given in Code Listing 10.3
as an example. These two functions define how to convert the intrinsic __m128d
and double datatypes to double2 respectively.

79



10 Parallel programming

class double2
{

__m128d v ;
double2 ( )
{
}
double2 (__m128d &rhs )
{

v = rhs ;
}
double2 ( double rhs )
{

v = _mm_set1_pd ( rhs ) ;
}
( . . . )

} ;

Code Listing 10.3: Some member functions that encapsulate the vector extension
intrinsics for the double2 data type.

Beyond that, our library also provides all elementary arithmetic operators +,−, ∗, /
by overloading the standard built-in operators as well as common functions, such
as pow, exp, sqrt, sin, cos. The summation and multiplication of double2 as well
as the square root are just redefinitions of the intrinsic vector functions, cf. Code
Listings 10.4 and 10.5. Functions such as the inverse tangent in Code Listing 10.6
are vectorised explicitly.

double2& operator +=(const double2& rhs )
{

v = _mm_add_pd( v , rhs . v ) ;
return ∗ th is ;

}
double2& operator ∗=( const double2& rhs )
{

v = _mm_mul_pd( v , rhs . v ) ;
return ∗ th is ;

}

Code Listing 10.4: The summation and multiplication for data of type double2.
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double2& s q r t ( )
{

v = _mm_sqrt_pd ( v ) ;
return ∗ th is ;

}

Code Listing 10.5: The square root function for data of type double2.

double2& atan2 ( const double2& rhs )
{

double ∗a = ( double∗)&v ;
double ∗b = ( double∗)& rhs ;
double a0 = std : : atan2 ( a [ 0 ] , b [ 0 ] ) ;
double a1 = std : : atan2 ( a [ 1 ] , b [ 1 ] ) ;
v = _mm_set_pd ( a0 , a1 ) ;
return ∗ th is ;

}

Code Listing 10.6: The inverse tangent function for data of type double2

i n l i n e double2 operator +( double2 lhs , const double2& rhs )
{

l hs += rhs ;
return l hs ;

}
i n l i n e double2 operator ∗ ( double2 lhs , const double2& rhs )
{

l hs ∗= rhs ;
return l hs ;

}
i n l i n e double2 s q r t ( double2 lhs )
{

l hs . s q r t ( ) ;
return l hs ;

}

Code Listing 10.7: Operators and functions for v = sqrt(x) * y + 2.0 * z to be-
come valid code for the double2 data type.

Up to this point, the arithmetic operators and functions are overloaded to act di-
rectly on the instances of the vector data types as member functions, for example
v.sqrt() or v *= 2.0. In order to allow a ‘more natural’ way to write code, we de-
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10 Parallel programming

fine global operators. The strategy is to implement the same syntax for arithmetic
operations for vector data types as well as built-in data types. This makes it possible
to use identical code independent of the data type. The expression v = sqrt(x) *
y + 2.0 * z, for example, is valid code for all vector data types. Code Listing 10.7
shows the operators and functions in C++ which are necessary in order to achieve
that goal.

Let me stress once more that the use of this vectorisation library allows the use of
the same source code for all vector data types. This is implemented by using the
C++ template mechanism as explained in Chapter 11.1. We thus have no addi-
tional effort for the vectorised calculations with respect to the implementation with
standard floating point calculations but gain a substantial increase in performance.
Chapter 11.4 includes a performance comparison between the double data type
and the vectorised versions with double2 as well as double4. The speed-up is
close to optimal.
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Chapter

11
Implementation and performance

This chapter presents a toolbox of highly efficient methods which I implemented
using the concepts of parallel computing that we have seen in the previous chap-
ter. Let me stress that the toolbox is designed in such a way that it is no longer
necessary to maintain multiple versions of the code for the different parallelisation
and vectorisation strategies. In order to switch between either sequential execu-
tion or parallel is simply controlled by compiler flags as described above. Let me
now present the layout of the toolbox which implements the algorithm I introduce in
Chapter 7. Remember that the core task of the time stepping algorithm is to solve
a system of ordinary differential equations (7.10),

Żt(z) = F
(
Zt(z)

)
,

which comprises the equations for the classical flow (2.3), the corresponding vari-
ational equation (5.6), and the classical action (7.8). Written out in full detail the
system looks as follows.

d
dtX

t(z)
d
dtΞ

t(z)
d
dt ~vec

(
∂qX

t(z)
)

d
dt ~vec

(
∂pX

t(z)
)

d
dt ~vec

(
∂qΞ

t(z)
)

d
dt ~vec

(
∂pΞ

t(z)
)

d
dtSq(t, z)
d
dtSp(t, z)


=



∂pT (Ξt(z))

−∂qV (Xt(z))

~vec
(
∂2
ph(Φt(z)) · ∂qΞt(z)

)
~vec
(
∂2
ph(Φt(z)) · ∂pΞt(z)

)
~vec
(
−∂2

qh(Φt(z)) · ∂qXt(z)
)

~vec
(
−∂2

qh(Φt(z)) · ∂pXt(z)
)

T (Ξt(z))

−V (Xt(z))


(11.1)
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It is a system with d degrees of freedom requires the solution of 4d2+2d+2 ordinary
differential equations and has to be solved for a huge number of different initial
values {z1, . . . , zM} ⊂ R2d where M is the number of quadrature points in the
phase space integral. The initial values are given by

X0(z)

Ξ0(z)

~vec
(
∂qX

0(z)
)

~vec
(
∂pX

0(z)
)

~vec
(
∂qΞ

0(z)
)

~vec
(
∂pΞ

0(z)
)

Sq(0, z)

Sp(0, z)


=



q

p

~vec (I)

0

0

~vec (I)

0

0


. (11.2)

Before explaining the layout, implementation, and performance of the algorithm in
detail, let me introduce the following example.

Example 11.1 (Henon–Heiles potential)
The d-dimensional Henon–Heiles potential is defined by

V (x) =
1

2

d∑
k=1

x2
k + σ

d−1∑
k=1

(
xkx

2
k+1 −

1

3
x3
k

)
+ β

d−1∑
k=1

(
x2
k + x2

k+1

)2 (11.3)

where σ > 0 and β > 0 are two positive constants that control the strength of
interaction and confinement respectively.

This particular model has become a standard example for testing semiclassical sim-
ulations in mathematics and chemistry, see e.g. [LR10], [FGL09], and [NM02], as
well as many others. I therefore use this example in order to compare my methods
to the ones in the literature.

11.1 Layout of the algorithm

Templates are a feature of the C++ programming language that allows functions
and classes to work with many different data types without being rewritten for each
one. Templates are of great utility, in particular when combined with the vectorisa-
tion library presented in Chapter 10.4. Everything starts with a main class called
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11.1 Layout of the algorithm

herman_kluk that depends on two template parameters T and V, cf. Code List-
ing 11.1. The first one is the data type that is used for loops and is usually chosen
to be the integer data type int while the latter data type is the one in which all
floating point operations are performed and is thus either chosen to be double or
one of the vectorised types double2 and double4.

template <class T , class V> class herman_kluk
{
( . . . )
public :

herman_kluk ( const T num_points , const T composi t ion_order ,
const V semic lass ica l_parameter , const T dimension )
{
Z = (V∗ ) _mm_malloc ( ( 6 ∗ D ∗ D + 2 ∗ D + 7) ∗ M ∗ sizeof (V) , 4096) ;
V ∗pZ = Z ;
( . . . )
}

( . . . )
}

Code Listing 11.1: Definition of the main class herman_kluk that depends on two
template parameters.

In order to create an instance of the class herman_kluk one needs to specify the
number of quadrature points, the composition order γ of the ode solver, the semi-
classical parameter ε as well as the dimension d of the problem. Basically, the only
task that the main class actually performs is to allocate enough memory to store
the solution to (7.10) for each initial individual sampling point. The actual comput-
ing kernels are defined in subclasses which all inherit the template parameters T
and V. The first step is to arrange the problems in terms of the dimension their de-
grees of freedom, cf. Figure 11.1. Each class herman_kluk_∗d only contains two
important functions, one to set the parameters for the initial wave function and the
second to evaluate the Herman–Kluk wave function at given point. All the actual
computation kernels are included in yet another set of subclasses. Figure 11.2
shows this second partition into subclasses according to the type of potential that
is considered. This is the basic layout for what I call the SemiClassical Toolbox.
Code Listing 11.2, shows how an object named hk of class henon_6d is created.
By means of its member functions we can then evolve hk in time or calculate the
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herman_kluk

main class

herman_kluk_1d

for 1d problems
herman_kluk_2d

for 2d problems
herman_kluk_3d

for 3d problems

Figure 11.1: The main class, herman_kluk, is divided into different subclasses,
herman_kluk_∗d, one for each dimension.

herman_kluk_∗d
for d dimen-

sional problems

harmonic_∗d
harmonic oscillator

henon_∗d
Henon–Heiles potential

torsion_∗d
torsional potential

functions
set_initial_condition()
evaluate_wave_function()

functions
calculate_time_step
_harmonic_∗d()
calculate_energy
_harmonic_∗d()
. . .

functions
calculate_time_step
_henon_∗d()
calculate_energy
_henon_∗d()
. . .

functions
calculate_time_step
_torsion_∗d()
calculate_energy
_torsion_∗d()
. . .

Figure 11.2: The dimension specific class herman_kluk_∗d is divided into different
subclasses according to the underlying problem that is considered.
herman_kluk_∗d as well as all of its subclasses have their own member
functions for specific tasks.

energy expectation values of the system or evaluate its wave function. As you can
see, the whole layout of the toolbox is in principle readily expandable to arbitrary
systems in arbitrary dimensions. In practise, however, it requires a lot of effort to
actually implement the classes and their respective member functions, in particular
in high dimensions. The following chapter provides a solution to this predicament.
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11.2 Automated code generation

i n t main ( i n t argc , char ∗ argv [ ] )
{

i n t M = 128 ∗ 1024; / / number o f sampling po in t s
const i n t gamma = 8; / / composi t ion_order
double eps i l on = 0 .01 ; / / sem ic l ass i ca l parameter

henon_6d< int , double> hk (M, gamma, eps i l on ) ;

}

Code Listing 11.2: Example for the creation of an object of class henon_6d which
is capable of simulation the Herman–Kluk wave function for a
Henon–Heiles potential in six dimensions.

11.2 Automated code generation

Let me redirect your attention to the system (11.1) of ordinary differential equations.
For problems with many degrees of freedom and complicated potentials, it is a
already a tedious task to calculate the gradient and the Hessian of the potential.
Implementing the right hand side of (11.1) is even worse since we additionally have
to perform four matrix-matrix multiplications. On the one hand we definitely want
to avoid two nested for-loops in order to do so is. On the other hand, writing every
single line of code by hand is almost not feasible. For d = 12, for example, we have
4d2 +2d+2 = 602 and even a simple Størmer–Verlet scheme would already require
almost 2000 lines of code. And that is just the effort for one specific problem in one
specific dimension. Not to mention the rate of typing errors for such an enterprise.

I resolve these issues by a rather elementary idea: In essence, the task of creat-
ing the code for the right hand side of (11.1) is a long series of string operations
that has to be performed without creative thinking but with highest precision. That
sounds like a task better suited for a computer than for a human being. In this spirit
I developed an automated code generator in the computer algebra system Math-
ematica. It creates code of very high complexity by only a couple of well-placed
commands. In addition, the generator is implemented in such a way that the cre-
ation of the code can be done by the same commands for arbitrary dimensions and
potentials. With a sequence of further string operations, the Mathematica program
is capable of generating the complete header files for the C++ classes ready for
compilation.
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Let me illustrate the modus operandi of the generator by creating the C++ source
code for the time stepping scheme for the Henon–Heiles potential in three dimen-
sions. It is given by

V (x) =
1

2

3∑
k=1

x2
k + σ

2∑
k=1

(
xkx

2
k+1 −

1

3
x3
k

)
+ β

2∑
k=1

(
x2
k + x2

k+1

)2
where σ > 0 and β > 0, cf. Example 11.1. This specific example is already com-
plex enough to understand the efficiency of the automatic code generation while
it is still manageable enough as not to fill page upon page with code. As a first
step we choose the dimension d = 3 and initialise the variables we need. The
2 d components of the vector z = (q, p) ∈ R2d and the 4 d2 entries of the matrices
∂qX

t, ∂pX
t, ∂qΞ, ∂pΞ

t ∈ Rd×d are initialised as depicted in Code Listing 11.3. As a

d = 3;

q = Symbol [ " q " <> ToString [ # ] ] & /@ Range [ d ] ;
p = Symbol [ " p " <> ToString [ # ] ] & /@ Range [ d ] ;

Xq = Array [ Symbol [ "Xq"<>ToString [#1] < > " x "<>ToString [ # 2 ] ] & , { d , d } ] ;
Xp = Array [ Symbol [ "Xp"<>ToString [#1] < > " x "<>ToString [ # 2 ] ] & , { d , d } ] ;
Xiq = Array [ Symbol [ " Xiq "<>ToString [#1] < > " x "<>ToString [ # 2 ] ] & , { d , d } ] ;
Xip = Array [ Symbol [ " Xip "<>ToString [#1] < > " x "<>ToString [ # 2 ] ] & , { d , d } ] ;

Code Listing 11.3: Initialisation of the variables that are required for automatic code
generation.

second step let us specify the potential, symbolically calculate its gradient and Hes-
sian, and simplify the resulting expressions, cf. Code Listing 11.4. Furthermore, the
matrix-matrix multiplication of the Hessian and W are also computed symbolically
and the results are simplified. Let us again take a closer look at the system of
equations (11.1) for which we want to implement one step of the Størmer–Verlet
time stepping scheme. Code Listing 11.5 contains the Mathematica commands for
the variables p, ∂qΞ, and Sp, the code for the rest of the variables is produced in
the same way. The resulting C++ code is printed in Code Listing 11.6. As I have
already mentioned above, the Mathematica commands are accompanied by a se-
ries of string operations in order to generate the complete header files for the C++
classes ready for compilation. This includes all the member functions, e.g. for a time
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V = Sum[ 0 . 5 q [ [ k ] ] ^ 2 , { k , 1 , d } ] +
a Sum[ q [ [ k ] ] q [ [ k + 1 ] ] ^ 2 − q [ [ k ] ] ^ 3 / 3 , { k , 1 , d − 1 } ] +
b Sum [ ( q [ [ k ] ] ^ 2 + q [ [ k + 1 ] ] ^ 2 ) ^ 2 , { k , 1 , d − 1 } ] / / Ful lSimpl i fy ;

GradV = D [V , { q } ] / / Ful lSimpl i fy ;
HessV = D [V , { q , 2 } ] / / Ful lSimpl i fy ;

HessVXq = HessV . Xq / / Ful lSimpl i fy ;
HessVXp = HessV . Xp / / Ful lSimpl i fy ;

Code Listing 11.4: Calculate of the gradient and the Hessian of the potential and
the simplification thereof for automatic code generation.

ToString [
Array [ ToString [ p [ [ # 1 ] ] ] < > "+="<>
ToString [CForm [ t NGradV [ [ # 1 ] ]
/ / . { Power [ x_ ,2]−>HoldForm [ x∗x ] , Power [ x_ ,3]−>HoldForm [ x∗x∗x ] } ] ]
<>" ; " & ,{d , 1 } ]
]<>
ToString [
Array [ ToString [ Xiq [ [ #1 ,#2 ] ] ] < > "+="<>
ToString [CForm [ t NHessVXq [ [ # 1 , # 2 ] ] ]
/ / . { Power [ x_ ,2]−>HoldForm [ x∗x ] } ] < > " ; \ t " & ,{d , d } ]
]<>
"Sp += "<>
ToString [
CForm [ t NV]
/ / . { Power [ x_ ,2]−>HoldForm [ x∗x ] , Power [ x_ ,3]−>HoldForm [ x∗x∗x ] }
] ;

Code Listing 11.5: Commands to produce the code for one step of the Størmer–
Verlet time stepping scheme in the variables p, ∂qΞ, and Sp.

step or for the calculation of expectation values, cf. Figure 11.2. Code Listing 11.7
shows a condensed version of the final code which is ready for compilation.
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p1 += 4. ∗ t ∗ (−0.25 ∗ s ∗ ( q1 ∗ q1 ) + b ∗ ( q1 ∗ q1 ∗ q1 )
+ 0.25 ∗ s ∗ ( q2 ∗ q2 ) + q1 ∗ (0 .25 + b ∗ ( q2 ∗ q2 ) ) ) ;

p2 += t ∗ (−s ∗ ( q2 ∗ q2 ) + 8 . ∗ b ∗ ( q2 ∗ q2 ∗ q2 )
+ s ∗ ( q3 ∗ q3 ) + q2 ∗ ( 1 . + 2 . ∗ s ∗ q1
+ 4. ∗ b ∗ ( q1 ∗ q1 ) + 4 . ∗ b ∗ ( q3 ∗ q3 ) ) ) ;

p3 += q3 ∗ t ∗ ( 1 . + 2 . ∗ s ∗ q2 + 4. ∗ b ∗ ( q2 ∗ q2 + q3 ∗ q3 ) ) ;
Xiq1x1 += t ∗ ( 2 . ∗ ( s + 4 . ∗ b ∗ q1 ) ∗ q2 ∗ Xq2x1

+ Xq1x1 ∗ ( 1 . − 2. ∗ s ∗ q1 + 12. ∗ b ∗ ( q1 ∗ q1 )
+ 4 . ∗ b ∗ ( q2 ∗ q2 ) ) ) ;

Xiq1x2 += t ∗ ( 2 . ∗ ( s + 4 . ∗ b ∗ q1 ) ∗ q2 ∗ Xq2x2
+ Xq1x2 ∗ ( 1 . − 2. ∗ s ∗ q1 + 12. ∗ b ∗ ( q1 ∗ q1 )
+ 4 . ∗ b ∗ ( q2 ∗ q2 ) ) ) ;

Xiq1x3 += t ∗ ( 2 . ∗ ( s + 4 . ∗ b ∗ q1 ) ∗ q2 ∗ Xq2x3
+ Xq1x3 ∗ ( 1 . − 2. ∗ s ∗ q1 + 12. ∗ b ∗ ( q1 ∗ q1 )
+ 4 . ∗ b ∗ ( q2 ∗ q2 ) ) ) ;

Xiq2x1 += t ∗ ( 2 . ∗ ( s + 4 . ∗ b ∗ q1 ) ∗ q2 ∗ Xq1x1
+ 2. ∗ ( s + 4 . ∗ b ∗ q2 ) ∗ q3 ∗ Xq3x1
+ Xq2x1 ∗ ( 1 . + 2 . ∗ s ∗ q1 − 2. ∗ s ∗ q2
+ 4. ∗ b ∗ ( q1 ∗ q1 )
+ 24. ∗ b ∗ ( q2 ∗ q2 ) + 4 . ∗ b ∗ ( q3 ∗ q3 ) ) ) ;

Xiq2x2 += t ∗ ( 2 . ∗ ( s + 4 . ∗ b ∗ q1 ) ∗ q2 ∗ Xq1x2
+ 2. ∗ ( s + 4 . ∗ b ∗ q2 ) ∗ q3 ∗ Xq3x2
+ Xq2x2 ∗ ( 1 . + 2 . ∗ s ∗ q1 − 2. ∗ s ∗ q2
+ 4. ∗ b ∗ ( q1 ∗ q1 ) + 24. ∗ b ∗ ( q2 ∗ q2 )
+ 4 . ∗ b ∗ ( q3 ∗ q3 ) ) ) ;

Xiq2x3 += t ∗ ( 2 . ∗ ( s + 4 . ∗ b ∗ q1 ) ∗ q2 ∗ Xq1x3
+ 2. ∗ ( s + 4 . ∗ b ∗ q2 ) ∗ q3 ∗ Xq3x3
+ Xq2x3 ∗ ( 1 . + 2 . ∗ s ∗ q1 − 2. ∗ s ∗ q2
+ 4. ∗ b ∗ ( q1 ∗ q1 )
+ 24. ∗ b ∗ ( q2 ∗ q2 ) + 4 . ∗ b ∗ ( q3 ∗ q3 ) ) ) ;

Xiq3x1 += t ∗ ( 2 . ∗ ( s + 4 . ∗ b ∗ q2 ) ∗ q3 ∗ Xq2x1
+ Xq3x1 ∗ ( 1 . + 2 . ∗ s ∗ q2
+ 4. ∗ b ∗ ( q2 ∗ q2 + 3. ∗ ( q3 ∗ q3 ) ) ) ) ;

Xiq3x2 += t ∗ ( 2 . ∗ ( s + 4 . ∗ b ∗ q2 ) ∗ q3 ∗ Xq2x2
+ Xq3x2 ∗ ( 1 . + 2 . ∗ s ∗ q2
+ 4. ∗ b ∗ ( q2 ∗ q2 + 3. ∗ ( q3 ∗ q3 ) ) ) ) ;

Xiq3x3 += t ∗ ( 2 . ∗ ( s + 4 . ∗ b ∗ q2 ) ∗ q3 ∗ Xq2x3
+ Xq3x3 ∗ ( 1 . + 2 . ∗ s ∗ q2
+ 4. ∗ b ∗ ( q2 ∗ q2 + 3. ∗ ( q3 ∗ q3 ) ) ) ) ;

Sp += t ∗ ( 0 .5 ∗ ( q1 ∗ q1 ) + 0.5 ∗ ( q2 ∗ q2 ) + 0.5 ∗ ( q3 ∗ q3 )
− 0.3333333333333333 ∗ s ∗ ( q1 ∗ q1 ∗ q1 − 3. ∗ q1 ∗ ( q2 ∗ q2 )
+ q2 ∗ q2 ∗ q2 − 3. ∗ q2 ∗ ( q3 ∗ q3 ) )
+ b ∗ ( ( q1 ∗ q1 + q2 ∗ q2 ) ∗ ( q1 ∗ q1 + q2 ∗ q2 )
+ ( q2 ∗ q2 + q3 ∗ q3 ) ∗ ( q2 ∗ q2 + q3 ∗ q3 ) ) ) ;

Code Listing 11.6: C++ code for one time step of the Størmer–Verlet time stepping
scheme in the variables p, ∂qΞ, and Sp that was created auto-
matically by the commands in Code Listing 11.5.
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11.2 Automated code generation

template <c lass T , c lass V>c lass henon_confined_3d :
p u b l i c herman_kluk_3d<T ,V>
{
p r i v a t e :

const V sigma ;
const V beta ;

p u b l i c :
henon_confined_3d ( const T num_points , const T composi t ion_order ,
const V epsi lon , const V coupl ing_constant ,
const V conf inement_st rength )
: herman_kluk_3d<T ,V>( num_points , composi t ion_order , eps i l on ) ,
sigma ( coup l ing_constant ) ,
beta ( conf inement_st rength )
{
}
v i r t u a l ~henon_confined_3d ( )
{
}

void opera tor ( ) ( const V dt , const T N)
{ ( . . . ) }

v i r t u a l void ca lcu la te_energy ( ( . . . ) )
{ ( . . . ) }

v i r t u a l void c a l c u l a t e _ i n i t i a l _ e n e r g y ( ( . . . ) )
{ ( . . . ) }

} ;

Code Listing 11.7: Final header file for the definition of the class henon_confined_-
3d that was entirely created by a series of Mathematica com-
mands.
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11.3 Parallel Herman–Kluk method

Allow me to illustrate the performance of the parallel Herman–Kluk method on an
example. Let us again consider the Henon–Heiles potential (11.3) in six dimensions
with parameters σ = 1√

80
and β = σ2

16 ,
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)2
. (11.4)

In order to compare my results to those of Lasser and Röblitz [LR10] as well as
Faou, Gradinaru, and Lubich [FGL09], I choose the semiclassical parameter ε =

0.01 and the initial wave function to be a Gaussian wave packet with qk = 2 and pk =

0 for all k ∈ {1, . . . , d}. The numerical experiments concerning high performance
were performed on the Mephisto compute cluster1.

OpenMP

In the first experiment we observe how the methods scales with the number of
OpenMP threads. As explained in Chapter 10.1 this number is controlled by setting
the value of the environment variable OMP_NUM_THREADS. Table 11.3 catalogues the
execution times for the time-evolution of the parallel Herman–Kluk method for 200

time steps of size 0.01. I use a composition Stømer–Verlet method of order 8 for

Intel Xeon CPU E3-1235 @ 3.20GHz Intel Xeon CPU E5-2650 @ 2.00GHz

threads execution time speed-up threads execution time speed-up

1 170.968 s 1 286.697 s

2 88.515 s 1.932 2 143.569 s 1.997

4 48.225 s 3.545 4 72.406 s 3.960

8 38.790 s 4.408 8 36.217 s 7.916

16 39.398 s 4.340 16 18.362 s 15.614

Table 11.3: Dependence on the number of OpenMP threads on two different CPUs

1 cf. https://hpc-wiki.uni-graz.at/Wiki-Seiten/Mephisto.aspx for more information about the cluster as
well as its hardware configuration.
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11.3 Parallel Herman–Kluk method

the solution of the underlying system (11.1). This system is solved for 219 distinct
initial values in parallel which means that altogether over 80 million ordinary differ-
ential equations are solved. I conducted this experiment on two separate hardware
configurations. The first one is an ordinary desktop computer holding a 1 x Intel
Xeon CPU E3-1235 @ 3.20GHz with 4 cores and 16 GB of memory, the second
one is a single compute node of the aforementioned Mephisto cluster containing a
2 x Intel Xeon Eight-Core CPU E5-2650 @ 2.00GHz with 16 cores and 256GB of
memory. The methods scales perfectly with the number of threads no matter on
which hardware configuration. I illustrat this fact in Figure 11.4.
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102
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e
[s

]

Intel Xeon CPU E3-1235 @ 3.20GHz
Intel Xeon CPU E5-2650 @ 2.00GHz

Figure 11.4: Visualisation of the dependence on the number of OpenMP threads
on two different CPUs

The dashed lines describe a linear speed-up of the execution time with respect
to the number of threads. As you can see, the measured times suggest that my
method scales perfectly. However, it does not make sense to increase the number
of threads above the number of physical compute cores of the processor. At 1,
2, and 4 threads the Intel Xeon CPU E3-1235 is faster than the Intel Xeon CPU
E5-2650, simply because of the higher clock rate. But then the larger number of
cores becomes the more important factor. This is a striking demonstration of the
advantages of parallel computing.
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Vectorisation Library

In order to test the performance of the vectorisation library introduced in Chap-
ter 10.4, I conducted the same experiment as above for several different setups
where the number of MPI threads varies from 1 to 16 and different vector data
types are used. Table 11.5 shows the resulting execution times and Figure 11.6 vi-
sualises them. Note that each time the speed-up scales perfectly with the number
of threads. The data type double2 gives an almost optimal speed-up of a factor two
and double4 is about three times faster than the non-vectorised code.

no. of MPI threads data type double (64 bit) speed-up

1 881.14 s

2 441.31 s 2.00

4 221.23 s 3.98

8 111.65 s 7.89

16 54.78 s 16.09

no. of MPI threads data type double2 (128 bit) speed-up

1 449.78 s 1.96

2 226.34 s 3.89

4 113.61 s 7.76

8 57.38 s 15.36

16 28.05 s 31.41

no. of MPI threads data type double4 (256 bit) speed-up

1 289.34 s 3.05

2 145.16 s 6.07

4 72.58 s 12.14

8 36.25 s 24.31

16 18.00 s 48.95

Table 11.5: Execution times with respect to the number of MPI threads as well as
the specific vector data type.
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Figure 11.6: Visualisation of the almost perfect speed-up achieved by vectorisation.

11.4 Parallel Egorov method

Chapter 4.4 presents a way to calculate an approximation to the time evolution of
the expectation value

Eqm[A](t) = 〈ψ(t),Aψ(t)〉

of a Weyl quantised operator A = opε(a). The basic idea is to define a quasi-
classical expectation value by

Ecl[a](t) =

∫
R2d

(a ◦ Φt)(z)W (ψ0)(z) dz.

by means of the Wigner transform Wψ0 of the initial wave function ψ0. Theorem
4.7 then guarantees us that the error between Eqm and Eqcl is of order O(ε2). To
formulate this more rigorously, for any T > 0 there exists c > 0 such that

sup
t∈[0,T ]

|Eqm[A](t)− Eqcl[a](t)| ≤ c ε2.

The constant c depends on the observable A and derivatives of the classical flow
Φt, but is uniformly bounded for all normalised initial data with ‖ψ0‖ = 1. I use
the algorithm proposed by Lasser and Röblitz [LR10] as a starting point to create
a highly parallelised method capable of efficiently computing expectation values
for systems with literally hundreds of degrees of freedom. The key idea in [LR10]
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is to use the fact that the Wigner function Wψ0 is a quasi-probability distribution
as described by Proposition 4.4. If the initial datum is a Gaussian wave packet
ψ0 = gε we already know that Wψ0 is the density function of a multivariate normal
distribution, see Example 4.5. In this case we just draw M independent samples
{z1, . . . , zM} from this initial distribution and use Monte Carlo or quasi-Monte Carlo
techniques to approximate the time evolution of the expectation values by∫

R2d

(a ◦ Φt)(z)W (ψ0)(z) dz ≈ 1

M

M∑
m=1

(a ◦ Φt)(zm).

This is almost the same approach as the one I use to discretise the phase space
integral of the Herman–Kluk propagator in Chapter 8. The discretisation is done in
two steps, the first is the interpretation of the method as a weighted integral over
phase space and the sampling of the initial distribution. The second is the classical
transport of the involved quantities. In this case, all that is required is the classical
flow Φt and therefore we only need to solve(

d
dtX

t(z)
d
dtΞ

t(z)

)
=

(
∂pT (Ξt(z))

−∂qV (Xt(z))

)
,

(
X0(z)

Ξ0(z)

)
=

(
q

p

)
(11.5)

for all z = (q, p)T ∈ {z1 . . . zM} instead of the full system (11.1). This allows
me to use almost the same basic programming design for the implementation of
the Herman–Kluk and the Egorov method. The previous chapter demonstrates
how well the parallel Herman–Kluk method performs with respect to the number
of threads and to vectorisation techniques. Here, I want to present how well the
parallel Egorov method performs when implemented on a graphics processing unit.
For reasons of reproducibility I chose the same confined Henon–Heiles potential
as Keller and Lasser [KL14]. It is again of the general form (11.3) with constants
σ = 1.8436 and β = 0.4, i.e.

V (x) =
1

2

d∑
k=1

x2
k + 1.8436

d−1∑
k=1

(
xkx

2
k+1 −

1

3
x3
k

)
+ 0.4

d−1∑
k=1

(
x2
k + x2

k+1

)2
.

The semiclassical parameter has a value of ε = 0.0037 and the initial wave function
is a Gaussian wave packet

ψ0(x) = (πε)−d/4 exp

(
− 1

2ε
|x− q|2 +

i

ε
p · (x− q)

)
(11.6)

centred at position qk = 0.1215 and momentum pk = 0 for all k ∈ {1, . . . , d}. The
parallel Egorov method is employed to simulate the system for an increasing num-
ber of degrees of freedom. For this simulation, 218 Monte Carlo points and a com-
position Stømer–Verlet method of order 8 with a time step of 1 femtosecond are
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used in order to transport them up to a final time of 100 fs for each individual calcu-
lation. Figure 11.7 shows the time-evolution of the potential energy for 16 up to 512

dimensions. Keller and Lasser [KL14] perform a similar experiment starting from
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Figure 11.7: Evolution of the expectation values of the potential energy for various
dimensions.

2 and going to 32 degrees of freedom. They use 212 sampling points and report
an execution time of 19.8s for d = 32. Table 11.8 lists the respective execution
times of my algorithm. For the 32 dimensional problem the GPU code on a Nvidia
Tesla K20 is over 140 times faster compared to a single CPU core and about 9

times faster compared to a dual socket eight core Intel Xeon E5-2650 @ 2.00GHz
compute node. For higher dimensional systems the GPU performance advantage
drops to a factor 3 compared to the dual socket compute node. The reason for
the performance drop is the exhaustion of the 255 registers per thread. Another
interesting aspect is reflected in the compilation time needed for the Henon–Heiles
simulation which increases dramatically with the number of degrees of freedom of
the underlying simulation. This is a byproduct of the fact that the code was automat-
ically generated. The automatic code generator which I introduce in Chapter 11.2
produces very explicit instructions as illustrated by Code Listing 11.6. This is very
efficient for actual computations since it does not involve any complicated construct
but it requires an enormous effort from the compiler in order to translate it. For CPU
and GPU code I used the GNU compiler g++ (version 4.8.2) and the Nvidia’s nvcc
compiler (version 7.0) respectively. The times are listed in Table 11.9.
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dim 2 × Intel Xeon E5-2650 1 × Nvidia Tesla K20 speed-up

16 4.260 s 0.641 s 6.646

32 10.386 s 1.180 s 8.802

64 24.793 s 4.412 s 5.619

128 109.393 s 29.266 s 3.738

256 219.183 s 71.980 s 3.045

512 454.614 s 155.915 s 2.916

Table 11.8: Execution times for the Egorov method for the Henon–Heiles potential.

dim nvcc g++

16 9.037 s 2.113 s

32 9.916 s 3.181 s

64 11.527 s 5.887 s

128 20.539 s 20.193 s

256 35.137 s 71.920 s

512 133.548 s 352.200 s

Table 11.9: Compilation times for Nvidia nvcc 7.0 and GNU g++ 4.8.2
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Chapter

12
Conclusion

Let me conclude this dissertation with some short remarks. It achieves the de-
velopment of a scheme for the numerical calculation of the Herman–Kluk propa-
gator. I prove that this scheme behaves as desired under phase space and time
discretisation. In order to do so I require techniques from various mathematical
fields, most prominently from functional analysis and operator theory. Moreover, in
order to solve the underlying classical equations of motion, a system of ordinary
differential equations, I introduce the concept of symplectic manifolds and vector
spaces and examine schemes that preserve these structures. This includes the
notion of backward error analysis, a well-established concept from numerical anal-
ysis. Since complex-valued functions occur in the calculation I even have to include
techniques from complex analysis. Additionally, Some number theory is needed for
the construction of quasi-Monte Carlo points. Combining all these ideas with state-
of-the-art parallel programming strategies I finally create highly efficient, stable tools
to calculate approximate solutions to the semiclassical Schrödinger equation for a
large number of degrees of freedom.

I am certain that these tools are entitled to a prominent spot in a quantum me-
chanic’s toolbox.
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Suggestions for further research

The next two logical steps would be the derivation of higher order corrections to
these methods as well as the extension to explicitly time dependent Hamiltonians.
Swart and Rousse [SR09] and Kay [Kay06] show that it is in principle possible to
achieve both goals.

This would also allow the treatment of optimal control problems with objective func-
tionals such as

J(ψ, α) =
1

2
〈ψ(T, ·),Aψ(T, ·)〉+

γ

2
〈α, α〉 , (12.1)

where A is a bounded linear operator on L2, which is assumed to be essentially
self-adjoint and hence a physical observable. Several different cost terms are dis-
cussed in mathematical and chemical literature. The optimality conditions for the
objective functional (12.1) together with the time dependent Schrödinger equation

iε∂tψ = −ε
2

2
∆ψ + V (x)ψ − α(t)µ(x)ψ, x ∈ Rd, t ∈ R (12.2)

are given as follows.

i ε ∂tψ = Hψ − αµψ, ψ(0, ·) = ψ0

i ε ∂tχ = Hχ− αµχ, χ(T, ·) = −iAψ(T, ·)

α = −1

γ
〈χ, µ ψ〉

λ = −iχ(0, ·)

A direct solution by means of the Herman–Kluk propagator proves to be problematic
since the wave function has to be evaluated at the final time T . It remains unclear
on how to do this while still obeying Assumption 7.1. A different ansatz would be
to approximate (12.1) with the help of Egorov’s Theorem and then start an inves-
tigation on this approximated objective functional by means of optimal control for
ordinary differential equations. I believe that this is an idea worth considering.
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Appendix

A
Expectation values for Gaussian wave

packages

In Chapter 7.2 I describe a way to calculate an approximation to the expectation
value of a multiplication operator. The process involves evaluating integrals of the
form ∫

Rd

gε
z(1)

(x)V (x)gε
z(2)

(x) dx

where z(1) = (q(1), p(1)) ∈ R2d and z(2) = (q(2), p(2)) ∈ R2d are elements of phase
space, cf. Equation (7.2). As mentioned above, there are several cases in which
this integral may be computed analytically. Let us give some examples.
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A Expectation values for Gaussian wave packages

Example A.1 Let us first consider the case A1 = I. This means that we have to
compute the scalar product of two Gaussian wave packages with the same width
parameter but possibly different centres, z(1) = (q(1), p(1)), z(2) = (q(2), p(2)) ∈ R2d.

〈
gε
z(1)

, gε
z(2)

〉
=

∫
Rd

gε
z(1)

(x) gε
z(2)

(x) dx

= (πε)−
d
2

∫
Rd

exp

(
− 1

2ε

(∣∣∣x− q(1)
∣∣∣2 +

∣∣∣x− q(2)
∣∣∣2)) . . .

exp

(
− i

ε
p(1) ·

(
x− q(1)

)
+

i

ε
p(2) ·

(
x− q(2)

))
dx

= (πε)−
d
2

∫
Rd

exp

(
−1

ε

∣∣∣∣x− 1

2
q(1) +

1

2
q(2) +

i

2

(
p(1) − p(2)

)∣∣∣∣2
)
dx . . .

exp

(
1

4ε

∣∣∣q(1) + q(2) + i
(
p(1) − p(2)

)∣∣∣2 − 1

2ε

(∣∣∣q(1)
∣∣∣2 +

∣∣∣q(2)
∣∣∣2)) . . .

exp

(
i

ε

(
p(1) · q(1) − p(2) · q(2)

))

= exp

(
− 1

4ε

∣∣∣z(1) − z(2)
∣∣∣2 − i

2ε

(
p(1) + p(2)

)
·
(
q(1) − q(2)

))
.

Example A.2 (harmonic oscillator) Consider A2 = |x|2 / 2 to be the potential en-
ergy of the harmonic oscillator. By partial integration one obtains

〈
gε
z(1)

,A2 g
ε
z(2)

〉
=

∫
Rd

gε
z(1)

(x)

d∑
k=1

x2
k

2
gε
z(2)

(x) dx

=
d∑

k=1

1

8

(
2ε−

(
(p

(1)
k − p

(2)
k ) + i (q

(1)
k + q

(2)
k )
)2
)〈

gε
z(1)

, gε
z(2)

〉
.

Example A.3 (kinetic energy) Using an ε-scaled version of the Fourier transform
allows us to calculate the above integral for the kinetic energy operator A3 = − ε2

2 ∆.
The result is〈

gε
z(1)

,A3 g
ε
z(2)

〉
=

∫
Rd

gε
z(1)

(x)

(
−ε

2

2
∆

)
gε
z(2)

(x) dx

=

d∑
k=1

1

8

(
2ε−

(
(p

(1)
k + p

(2)
k ) + i (q

(1)
k − q

(2)
k )
)2
)〈

gε
z(1)

, gε
z(2)

〉
.
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Remark A.4 Note that, by repeated application of the techniques used in Exam-
ples A.2 and A.3, analytic expressions may be found for any observable that is a
poynomial of position and momentum operator. This includes the Henon-Heiles
potential.

We need not restrict ourselves to polynomial observables. The above integral may
also be calculated analytically for trigonometric potentials.

Example A.5 (torsional potential) Consider A4 to be the torsional potential. In a
similar manner as in the previous examples one obtains the expression

〈
gε
z(1)

,A4 g
ε
z(2)

〉
=

∫
Rd

gε
z(1)

(x)
d∑

k=1

(1− cos(xk)) g
ε
z(2)

(x) dx

=

d∑
k=1

(
1− e−

ε
4 cosh

(
(p

(1)
k − p

(2)
k )

2
+

i(q
(1)
k + q

(2)
k )

2

))〈
gε
z(1)

, gε
z(2)

〉
.
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