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Short Abstract
Spin-orbit interaction effects in planar InP/InGaAs heterostructures
are investigated experimentally via beating patterns in the quantum
oscillations of magnetization, chemical potential and magnetoresistance
in high magnetic fields and at low temperatures. A detailed theoretical
analysis allows to extract the relevant Rashba and Dresselhaus parame-
ters as well as the anisotropic g∗-tensor. The measured magnetization
of etched quantum dots reflects screening of the lateral confinement
potential and edge depletion.

Spin-Bahn Kopplungseffekte in planaren InP/InGaAs Heterostrukturen
werden experimentell untersucht. Quantenoszillationen der Magnetisie-
rung, des chemischen Potentials und des Magnetwiderstandes bei hohen
Magnetfeldern und niedrigen Temperaturen zeigen dafür charakteristi-
sche Schwebungsmuster. Anhand detaillierter theoretischer Analysen
werden die relevanten Rashba- und Dresselhausparameter sowie der
anisotrope g∗-Tensor bestimmt. Magnetisierungsmessungen an geätz-
ten Quantenpunkten zeigen indirekt eine Abschirmung des lateralen
Einschlusspotentials sowie Randverarmungseffekte.
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Abstract
Semiconductor spintronics aims to explore new functionalities exploiting
the electron spin degree of freedom. Anticipated device concepts for
digital information processing are predicted to be faster, less power-
consuming and could be combined with established semiconductor
technology. Here, spin-orbit-interaction (SOI) effects are key to address
the spin electronically. In particular, the Dresselhaus (D)- as well as
the gate-tunable Rashba (R)-SOI effect were reported to be suitable
for spin manipulation and spin filtering in semiconductor hetero- and
nanostructures.
In this work, R- and D-SOI effects in asymmetric InP/InGaAs het-

erostructures featuring a two-dimensional electron system (2DES) are
investigated via beating patterns in the quantum magneto-oscillations
of magnetization M , chemical potential µ and magnetoresistance ρxx.
These quantities are addressed experimentally by cantilever magnetom-
etry and magnetotransport measurements as a function of an external
magnetic field B at low temperatures. Furthermore, confinement effects
in laterally etched InP/InGaAs quantum dot ensembles are studied in
the quantum oscillatory M(B). All experimental data are compared
with theoretical models describing relevant single-particle energies, fa-
cilitating the prediction of relevant beat node positions and enabling a
direct simulation of the thermodynamic quantities M(B) and µ(B). In
the following, the individual results are briefly summarized:

The thermodynamic quantitiesM(B) and µ(B) of gated InP/InGaAs
2DES samples are measured simultaneously during the same cool-down
process via a combined static operation and resonant excitation of
micromechanical cantilevers. Both quantities exhibit beating patterns
in the 1/B-periodic magneto-oscillations, which are attributed to SOI.
Here, a sensitivity enhancement due to resonant excitation enables
to resolve two beat nodes in µ(B), while only a single beat node is
detected in M(B). By fitting the experimental beat node positions
with theoretical predictions, absolute values of both R- and D-SOI
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constants, αR and βD, are extracted from the data. The analysis yields
αR = 4.44 × 10−11 eVm and βD ≈ 0.1αR. A direct simulation of the
curvesM(B) and µ(B) using one-and-the-same parameter set accurately
reproduces the experiment. Moreover, the relation ∆M/N = ∆µ/B as
predicted theoretically for the oscillation amplitudes is experimentally
confirmed for the investigated samples.

Magnetotransport measurements are performed on InP/InGaAs Hall
bar samples in tilted external magnetic fields with tunable out-of-plane
angle θ and in-plane angle ϕ. Beating patterns in the Shubnikov-de-
Haas oscillations reveal a ϕ-anisotropy of the first beat node position.
Moreover, the angle of half a coincidence exhibits an anisotropy in ϕ.
These observations are attributed to the presence of both R- and D-SOI
terms in combination with an anisotropic g∗-tensor. Fitting the theoret-
ical predictions to the experiment allows to unambiguously determine
the strengths as well as the relative sign of the R and D constants.
Extracted values of αR = 4.61× 10−11 eVm and βD = 0.47× 10−11 eVm
(αR/βD > 0) are close to the ones determined previously from µ(B).
Moreover, the fit revealed the full anisotropy of g∗ with g‖ = −4.71,
g⊥ = −2.9 and gxy = 0.1. The method described here thus enables to
simultaneously address both SOI terms and g∗-tensor components in
2DESs with high accuracy, thereby providing a more comprehensive
picture of spin physics in semiconductor heterostructures.
Finally, the magnetization of laterally etched InP/InGaAs quantum

dot ensembles with 460nm diameter is studied by cantilever magne-
tometry. The measurements show 1/B-periodic de Haas-van Alphen
oscillations that fade out at B < 2 T and are substantially reduced in
amplitude as compared to reference 2DESs. Theoretical model calcula-
tions including ensemble broadening effects reveal that a hard-walled
lateral confinement potential is suited best to describe the data. This
is attributed to screening effects. Moreover, the modeling clarifies that
ensemble broadening is small and the amplitude decrease is dominantly
explained by an edge-depletion of ≈ 100 nm at the lateral borders of the
dots. The presented technique thus provides a powerful tool to study
the electronic structure of quantum dots containing many electrons.
Signatures of spin splitting or SOI were not observed, however, the
analysis suggests that an enlargement of the diameter should facilitate
the detection of SOI-related beating patterns in M(B) of quantum dots.
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1 Introduction
Digital information processing has revolutionized nearly every part of
our daily and professional lives. This was accompanied by an astonishing
progress in the development of microelectronics during the last decades.
In traditional semiconductor devices, the underlying chips employ the
charge of electrons to store, transmit and process information. However,
due to the ongoing miniaturization of semiconductor building blocks,
conventional charge-based electronics will eventually hit limits. In
order to keep up with the demand for faster, smaller, and more energy-
efficient devices, physicists started to search for novel functionalities
going beyond established device concepts.

A promising approach is to exploit the second fundamental property
of an electron apart from its charge, i.e., the electron spin. As experi-
mentally demonstrated by Stern and Gerlach [GS22] and theoretically
explained by Dirac [Dir28] in the 1920s, electrons can be understood
as little magnets with a magnetic moment collinear with their spin.
The electron spin itself is a quantum mechanical observable with two
distinct states, namely “spin up” and “spin down”. This property makes
the spin an ideal candidate for information storage via quantum bits
(Qubits) or for logical operations.

Attempts to combine spin information with conventional electronics
gave rise to the emerging research field of “spintronics” [Wol+01; Gru02].
A cornerstone of the recent spintronics research was the discovery of
the giant magnetoresistance (GMR) effect in layered magnetic materials
by Fert and Grünberg in 1988/89 [Bai+88; Bin+89]. While enabling a
tremendous increase of storage density in today’s magnetic hard disks,
spintronics applications based on GMR have already reached industrial
production level and founded a billion dollar market. For their discovery
of GMR, Fert and Grünberg received the Nobel prize in 2007.
Stimulated by the success of spintronics applications in magnetic

materials, intensive research is going on to implement spin-related func-
tionality also in semiconductors [AF07]. This would enable combining
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1 Introduction

logical and storage capabilities of spin with conventional semiconductor
electronics in a single multifunctional device. Such devices are predicted
to be faster and less energy-consuming and would allow a cost-effective
fabrication using established semiconductor process technology. How-
ever, precise control of spin as a magnetic property in non-magnetic
semiconductors is not straightforward. Moreover, technological chal-
lenges such as efficient spin injection and control of relevant spin lifetimes
in envisaged devices are subject of intensive research activities.
The key mechanism to address spin electrically is the so-called spin-

orbit interaction (SOI). As an electron moves through a semiconductor
material (orbital movement) and is exposed to an electric field, special
relativity transforms this field into an effective magnetic field in the
electron’s reference frame. The electron spin then interacts with this
magnetic field in form of a precession movement. A prerequisite for
SOI to occur in a crystal is a lifting of space inversion symmetry
[Win03]. In semiconductors with a zinc-blende lattice, the inherent bulk
inversion asymmetry gives rise to the so-called Dresselhaus (D) SOI effect
[Dre55]. If the electrons are further confined within a heterostructure to
form a two-dimensional electron system (2DES), an artificially tailored
structural inversion asymmetry leads to a supplemental SOI contribution
known as the Rashba (R) effect [BR84a]. The key aspect here is that
the strength of the R effect can be tuned via an external electric field,
opening the possibility to manipulate and control the electron spin
electronically.
Both D and R mechanisms are subject of intensive research. The

R effect was proven to be suitable for spin generation [Koh+12], spin
manipulation [DD90; Nit+97; Eng+97; Gru02], and spin detection
[Bru+10] in semiconductors. Furthermore, the interplay of both R and
D effects can be used for effective spin filtering [SEL03]. Unfortunately,
both mechanisms are also responsible for very short spin lifetimes in
combination with electron scattering [DP72], which is one of the main
problems on the way to semiconductor spintronics devices. Nonetheless,
in a recent work it was shown that an elaborate combination of both R
and D effects enabled to control and substantially increase spin lifetime
[Bal+11].
Device miniaturization via nanopatterning of semiconductor struc-

tures leads to an additional confinement of the electron systems to one
or even zero dimensions, and also influences the underlying physics
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related to SOI effects. Very promising results were published for one-
dimensional wires, where the fixed direction of electron movement fixes
the direction of the effective magnetic field [Sas+14] and allows for a
more precise manipulation of spin via SOI. Moreover, the spin lifetime
was reported to be substantially enhanced in etched wire structures
[Sch+06; Hol+06; Hol11]. Large spin lifetimes were also predicted for
electrons in zero-dimensional confined structures [KN00]. Spin states in
such “quantum dots” are considered promising candidates for Qubits
in future quantum information processing devices. Still, SOI effects in
quantum dots require detailed experimental investigations.

From the above considerations it is clear that a profound understand-
ing of SOI mechanisms in confined electron systems is essential on the
way to prospective spintronics applications. One of the main problems
remains the accurate determination of the strength of R and D effects,
which is crucial for the design of envisaged devices that rely on the
interplay of both mechanisms. Therefore, the goal of the present thesis
is to investigate SOI effects in InP/InGaAs semiconductor hetero- and
nanostructures both experimentally and theoretically.
The thesis is organized as follows: First, a theoretical treatment

will be presented in chapter 2 which allows to model the respective
magneto-oscillations of a 2DES as a function of an external magnetic
field. By calculating field-dependent energy spectra, it will be shown
that characteristic beating patterns in these oscillations arise from SOI-
induced spin splittings of formerly degenerate Landau levels. Employing
a comprehensive theoretical model considering tilted fields and including
both R and D terms, the evolution of beat node positions as a function
of R and D parameters and tilt angles will be calculated and discussed.
Moreover, a treatment of the energy spectra of circularly confined 2DESs
in quantum dots will be given.
In chapter 3, proper sample structures and experimental setups of

cantilever magnetometry and magnetotransport will be presented. Ad-
vancements of the cantilever magnetometer setup that were developed
in the course of this thesis will be discussed in chapter 4. In partic-
ular, an improvement of the interferometric readout procedure and a
novel technique to measure the chemical potential of gated 2DESs via a
resonant excitation of micromechanical cantilevers will be introduced.
Simultaneous measurements of beating patterns in the quantum

oscillatory magnetization and chemical potential, as facilitated by the
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1 Introduction

new technique, will be presented in chapter 5. Both quantities are
thermodynamic functions of state that provide insights into the system’s
ground state and directly monitor changes in the Landau level structure
as evoked by SOI. By comparing with model calculations it will be shown
that both R- and D-SOI contributions are relevant to accurately describe
the data. This will go beyond previous investigations of SOI-related
beating patterns, where only the R contribution has been considered
in the analysis. From the present simulations, it is possible to extract
absolute strengths of both R and D terms.

Chapter 6 is dedicated to a new approach enabling the measurement
of absolute values and relative sign of the R and D constants from
magnetotransport experiments. In particular, it will be shown that
the beat node positions perform shifts as a function of the in-plane
angle of the external magnetic field, which allows for an unambiguous
determination of R and D strengths. In addition, anisotropies in the
effective electron g

∗-tensor of the present samples will be extracted
quantitatively.

Magnetization experiments on nanopatterned InP/InGaAs quantum
dot ensembles will be presented in chapter 7. From measured magneto-
oscillations and theoretical modeling, the shape of the lateral con-
finement potential and the amount of edge depletion will be clarified.
Signatures of SOI are not observed for the dot ensembles, however, the
relevance of SOI in the experiment will be discussed and conclusions
will be drawn on future approaches to address SOI in the magnetization
of dots. Finally, a summary of the results and a short outlook will be
given in chapter 8.
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2 Theoretical concepts
This work is dedicated to the electronic properties of unpatterned and
nanopatterned two-dimensional electron systems that are formed in
InP/InGaAs semiconductor heterostructures. The conduction electrons
in these systems are subject to spin-orbit interaction (SOI) effects,
which we address experimentally in the magneto-oscillations of, both,
thermodynamic quantities and magnetotransport. In this chapter,
we provide a fundamental theoretical treatment of the field-dependent
energy spectra inherent to 2DES exhibiting SOI. We show how to extract
relevant SOI-parameters from the magneto-oscillations and how to model
these oscillations in respective thermodynamic quantities. Furthermore,
we discuss how the energy spectra and quantum oscillations are altered,
if the 2DES is laterally confined in quantum dots. The theoretical
treatments presented in this chapter are the basis for analyzing and
modeling the experimental data obtained via torque magnetometry and
magnetotransport.

2.1 Crystallographic conventions
In order to treat the electronic structure of the relevant 2DESs in detail,
we first introduce basic conventions on crystallographic directions. InP
and InGaAs condense in the zinc blende structure. The zinc blende
lattice consists of two fcc sub-lattices of type-III atoms (Ga, In) and
type-V atoms (P, As), respectively, which are shifted by 1/4 of the cubic
space diagonal. We define our coordinate system such that one of the
type-III atoms is located at the origin and x̂ ‖ [100], ŷ ‖ [010], ẑ ‖ [001].
Thus, the lattice of the type-V atoms is shifted by (1/4, 1/4, 1/4) with
respect to the origin. A sketch of the so-defined conventional cubic unit
cell is depicted in Fig. 2.1 (a). We note that the introduction of the
shifted type-V sub-lattice breaks the inversion asymmetry of the crystal.
This leads to the inequivalence of certain directions, e.g. [111] and [1̄1̄1̄]
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x ‖ [100]

y

z ‖ [001]

type III
type V

(a)

[100]

[001]

B

·

θ

ϕ

(b)

Figure 2.1: (a) Conventional cubic unit cell of the zinc-blende lattice. The
fcc-lattice formed by the type-III atoms contains the origin (0, 0, 0) of the
defined coordinate system, while lattice of the the type-V atoms is shifted
by (1/4, 1/4, 1/4) with respect to the origin. (b) Schematic orientation of an
external B-field with respect to a (001)-oriented 2D heterostructure as treated
in this work. The polar or tilt angle θ is defined as the angle of B with
the z-axis, while the azimuthal or in-plane angle ϕ is measured between the
projection of B into the (x, y)-plane and the x-axis.

or [110] and [11̄0]. Care should be taken if type-III and type-V lattices
in Fig. 2.1 (a) are swapped, since in that case relevant crystallographic
directions will change sign. This affects the definitions of SOI-related
effective fields as introduced in 2.3.2.

The InGaAs/InP heterostructures investigated in this work are grown
along the [001]- or ẑ-direction, i.e. the 2DES is located in the (x, y)-plane
of the coordinate system [Fig. 2.1 (b)]. To address quantum oscillations
of the 2DES, we apply a magnetic field B with its orientation defined in
polar coordinates. Here, the polar or tilt angle θ is measured between
B and the z-axis, while the azimuthal or in-plane angle ϕ is defined
between the x-axis (or [001]-direction) and the projection of B to the
(x, y)-plane.
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2.2 The two-dimensional electron system

2.2 The two-dimensional electron system
In this section, we discuss the quantum mechanical properties of two-
dimensional electron systems formed in semiconductor heterostructures.
After introducing the formalism of quasi-2DESs, we derive the energy
spectrum of an ideal 2DES subjected to an external magnetic field
B and outline the origin of quantum oscillations. Furthermore, we
discuss effects of level broadening and finite temperature that allow for
a realistic description of relevant thermodynamic quantities such as the
magnetization M and the chemical potential µ.

We start with the dispersion relation of quasi-free conduction electrons
in bulk semiconductors:

E = Ec + ~2k2

2m∗ (2.1)

Here, Ec is the energy of the conduction band minimum and m∗ is the
effective mass that arises due to the interaction of conduction electrons
with the lattice-periodic potential of ionic cores [AM76]. In a 2D
heterostructure, band discontinuities result in a potential V (z) along the
growth direction, enabling the effective confinement of electrons within,
e.g., a quantum well (QW). The respective Hamiltonian decomposes
into

H = H⊥ +H‖

=
(
~2p2

z

2m∗ + V (z)
)

+
~2(p2

x + p2
y)

2m∗ , (2.2)

where H⊥ describes the movement of the electrons perpendicular to the
plane andH‖ addresses the parallel motion. Therefore, the wave function
can be separated into Ψ(x, y, z) = ψ(x, y)w(z), and the respective eigen-
energies are obtained via

H⊥|w(z)〉 = E⊥,m|w(z)〉 (2.3)
H‖|ψ(x, y)〉 = E‖|ψ(x, y)〉 . (2.4)

The energy spectrum hence decomposes into subbands with index m
where w(z) is the subband wave function. The total energy can now be
written as E = Ec +E⊥,m +E‖. If the number of confined electrons is
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2 Theoretical concepts

sufficiently low, only the lowest subband (m = 0) is occupied. Omitting
the constant Ec + E⊥,0, the energy spectrum of the system is solely
given by Eq. (2.4), describing a two-dimensional electron system (2DES)
in the (x, y)-plane. In the following, we will discuss the spectrum of H‖
only, keeping in mind that the electron system has a finite thickness in
z-direction, given by the subband wave function w(z). This is referred
to as a “quasi-2DES” in the literature.

2.2.1 Ideal 2DES in a magnetic field

We now consider the case of an ideal 2DES subject to an external mag-
netic field B = (0, 0, B⊥) perpendicular to the 2DES plane (i.e. θ = 0)
at temperature T = 0 K. Initially, we will neglect spin-related effects.
The problem was first addressed by Landau in 1930 [Lan30]. Because of
its fundamental importance to the phenomena discussed in this work, we
will recapitulate the derivation of the respective eigenenergies En and
eigenfunctions |n〉 in the following. Here, we will employ the algebraic
method based on the formalism of ladder operators, which can be found,
e.g., in Ref. [Rös09]. Later on, we will show that this formalism is
especially suited to address further contributions including SOI. The
problem without spin can be formulated via the Hamiltonian

H0 =
π2
x + π2

y

2m∗ (2.5)

with the kinetic momentum for electrons π = −i~∇+ eA, the vector
potential A defined by B = ∇×A and the effective electron mass m∗.
The elementary charge e is defined as a positive constant. We now
determine the energy eigenvalues En of H0. Therefore, we define the
annihilation and creation operators

a = lB√
2~

(iπx + πy) and a† = lB√
2~

(−iπx + πy) , (2.6)

10



2.2 The two-dimensional electron system

where a and a† fulfill the commutation relation [a, a†] = 1. Here, we
introduced the magnetic length lB =

√
~/(eB⊥). Using these operators,

we can rewrite H0 in the form

H0 = ~ωc
(
a†a+ 1

2

)
, (2.7)

with the cyclotron frequency ωc = (eB⊥)/m∗. The Hamiltonian H0
takes the form of a quantum mechanical harmonic oscillator with the
eigenvalues

En = ~ωc
(
n+ 1

2

)
, n = 0, 1, 2, . . . , (2.8)

which are also known as Landau levels (LLs) after their theoretical
prediction by Landau in 1930 [Lan30]. The corresponding wave functions
|ψn(x, y)〉 can be found by solving

a|ψ0(x, y)〉 = 0 (2.9)

and obtaining |ψn(x, y)〉 by applying the creation operator n-times on
ψ0(x, y), i.e.

|ψn(x, y)〉 = (a†)n√
n!
|ψ0(x, y)〉 (2.10)

However, Eqs. (2.9) and (2.10) still depend on x and y, implying that the
LLs are highly degenerate. By using the Landau gauge A = (0, xB⊥, 0)
and applying the separation ansatz ψ0(x, y) = exp(−ikyy)u0(x), we can
rewrite Eq. (2.9) in real space coordinates(

∂x + x− x0

l2B

)
u0(x) = 0 (2.11)

with the guiding center coordinate x0 = kyl
2
B . The solution of Eq. (2.11)

takes the form u0(x) = π−1/4l
−1/2
B exp (x− x0)2/(2l2B). The degeneracy

of ψ0(x, y) can be obtained by restricting the geometry of the 2DES to
the area Am = LxLy. In this case, the distance between two neighboring
guiding centers is given by ∆x0 = ∆kyl2B = (2πl2B)/Ly. Hence, the
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2 Theoretical concepts

number of allowed ky is finite and given by N = Lx/∆x0 = AmeB⊥/h.
The degeneracy of a LL per unit area of the 2DES is thus

NL = eB⊥
h
· gs . (2.12)

Here, gs = 2 for a spin-degenerate system. Note that this degeneracy
is the same for all LLs n, since those are obtained independently from
the NL ground states |ψ0〉 via Eq. (2.10). Since NL is proportional to
B⊥ and a constant electron density n2D is assumed, the number of LLs
which are filled with electrons reduces in a discrete manner if the field
is increased. In particular, the Fermi energy EF jumps from one level
to the next lower level at integer values of the filling factor

ν = n2D
NL

= h

eB⊥
· n2D , (2.13)

as depicted in Fig. 2.2. These jumps in EF give rise to quantum
oscillations in the magnetization M , the chemical potential µ, the
resistivity ρxx and further quantities which depend on the filling of
the LLs. All of those types of oscillations have in common that their
frequency in the inverse perpendicular field 1/B⊥ is equal to

f1/B⊥ = 1
gs

h

e
· n2D . (2.14)

We note that this relation is based on the fact that the LL degeneracy
changes with B⊥ and is independent on the energy spectrum En itself.
Therefore, Eq. (2.14) holds true for any 2DES, even if the En are altered
due to perturbations of H0, e.g., spin-orbit interaction or electron-
electron interaction effects. It represents a powerful tool to determine
the density of a 2DES.

Note that we neglected contributions introduced by in-plane com-
ponents of the magnetic field B‖ = (Bx, By) up to now. Still, tilted
fields play an important role in this work. An in-plane field can modify
the movement of the electrons perpendicular to the 2DES plane (i.e.
the z-direction in our notation). It was shown that in real quantum
wells, where the 2DES exhibits a finite thickness, an in-plane field barely
affects the oscillatory parts of the quantum oscillations in M and µ, as
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2.2 The two-dimensional electron system

Figure 2.2: Fermi energy of an ideal 2DES as a function of B⊥ for a constant
density n2D. The dashed lines represent Landau levels with En = (n+1/2)~ωc.

long as the Landau energy ~ωc,‖ is smaller than the energy separation
of 2D subbands [Wil+09]. This is the case for the 2DESs and values
of B‖ used in this work. We therefore conclude that the omission of
B‖ in the orbital terms of the Hamiltonian is justified. However, the
B‖-components cannot be neglected in the Zeeman term, which will be
discussed in detail in section 2.3.1.

2.2.2 Real 2DES: thermodynamic properties

In the following, we briefly outline how to derive fundamental thermo-
dynamic quantities such as the free energy F , the chemical potential µ
and the magnetization M from the energy spectrum En(B⊥). Here, we
include effects of level broadening and a finite temperature to remodel
experimental data. A detailed treatment can be found, e.g., in Refs.
[UE09] and [Wil+08].

Following [Wil+08], we derive relevant thermodynamic quantities and
relations by starting with the differential of the total free energy F of a
2DES

dF = −SdT −MdB + µdN . (2.15)

13



2 Theoretical concepts

Here, S is the entropy, T is the temperature, µ is the chemical potential
and N is the total number of electrons. Using Eq. (2.15), the relations
for M and µ read:

M = −
(
∂F

∂B

)
T,N

µ =
(
∂F

∂N

)
T,B

(2.16)

If we are interested in the magnetization caused by the in-plane orbital
motion of the electrons only and neglect contributions related to electron
movement in z-direction, we find that M is always perpendicular to
the 2DES plane. Therefore, we can replace the vectors M and B in Eq.
(2.16) by the scalars M and B⊥, respectively. A further differentiation
of Eq. (2.16) yields the Maxwell-relation

−
(
∂M

∂N

)
T

=
(
∂µ

∂B⊥

)
T

, (2.17)

which links both M and µ. Numerical access to the free energy F is
gained via the density of states (DOS) of the electrons. For an ideal
2DES with level energies En(B⊥), the DOS per unit area is expressed
as

D(E,B⊥) = eB⊥
h

∑
n

δ(E − En(B⊥)) , (2.18)

where the Dirac distribution δ(E) characterizes the DOS of a single level.
However, in a real heterostructure, residual impurities and phonons
provoke scattering, thereby leading to a broadening of the levels. Sev-
eral approaches exist to address this aspect phenomenologically in the
calculations [Wil+08; Pot+96]. We note that the exact level shape and
the evolution of the broadening with B⊥ is debated. Ando and Uemura,
who treated this aspect theoretically, derived an analytical expression
featuring Gaussian-broadened levels, with a width Γ that is proportional
to
√
B⊥ [AU74]. This ansatz was shown to describe the level broadening

in the present InGaAs/InP-based 2DES quite well [Rup+13; Wil+14],
and will thus be used in this work. Assuming Gaussian-broadened levels,
the DOS can be written as

D(E,B⊥) = eB⊥
h

∑
n

1√
2πΓ

exp
[

(E − En(B⊥))2

2Γ2

]
. (2.19)

14



2.2 The two-dimensional electron system

Now, for a given electron density n2D and assuming T = 0, the levels
are filled with electrons up to the Fermi energy EF. In case of a finite
temperature, EF is replaced by the chemical potential µ. Applying
Fermi-Dirac statistics, we find

n2D =
∫ ∞
−∞

D(E,B⊥) 1
1 + exp E−µ

kBT

dE (2.20)

where kB is the Boltzmann constant and n2D = N/Am (Am is the total
2DES area). The chemical potential is obtained numerically by solving
Eq. (2.20) for µ. Finally, µ is used to derive the free energy F of the
2DES via [UE09]

F (B⊥) = µN − kBTAm

∫ ∞
−∞

D(E,B⊥) ln
[
1 + exp µ(B⊥)− E

kBT

]
dE .

(2.21)
Using (2.21), the magnetization is calculated via M = −∂F/∂B⊥ [c.f.
Eq. (2.16)].

In Fig. 2.3, we show plots of µ(B⊥) and M(B⊥) of a spin-degenerate
2DES subjected to a level broadening Γ = 0.8 meV/

√
T at different

temperatures T (the case of T = 0 and Γ = 0 is also shown for
comparison). Both µ and M exhibit sawtooth-like oscillations with
the steep flanks corresponding to even integer filling factors ν, which
smear out for increasing Γ and T . The smearing with temperature is
more pronounced at smaller B⊥, because the Landau gap ~ωc decreases
relatively to the thermal energy kBT as B⊥ decreases. This explains
the need for very low temperatures to address oscillations at large filling
factors, i.e., small B⊥. The oscillations in M are also referred to as
de Haas-van Alphen (dHvA)-oscillations after their discovery by de
Haas and van Alphen in bulk bismuth in 1930 [HA30]. The quasi-
discontinuous jumps ∆µ and ∆M (Fig. 2.3) are directly related via
the Maxwell relation (∂M/∂µ)B,T = (∂N/∂B)M,T . In a single particle
picture and given that disorder and temperature related broadening
effects are small, it was predicted that these jumps obey the relation
[Wie+97]

∆M
N

= ∆µ
B⊥

. (2.22)
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Figure 2.3: (a) Chemical potential µ(B⊥) of a 2DES subject to a level broad-
ening of Γ = 0.8 meV/

√
T at different temperatures T . In the background,

the DOS of the broadened Landau levels is illustrated as a grayscale plot.
The dashed curve in gray represents µ of an ideal 2DES at T = 0 K. (b)
Corresponding magnetization M(B⊥) in units of the effective Bohr magneton
µ∗B = (e~)(2m∗) using the same parameters as in (a). The steep flanks corre-
sponding to ν = {4, 6, 8} are indicated by arrows. The amplitudes ∆µ and
∆M corresponding to ν = 4 are indicated in both curves. For the calculations
we used n2D = 8.5× 1011 cm−2 and m∗ = 0.037m0.
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2.3 Spin splitting in a 2DES

The temperature-dependence of ∆M is approximately given by the
Lifshitz-Kosevich (LK) formalism [Sho84], which yields

∆M = ∆M0
X

sinhX with X = 2π2kBT

~ωc
, (2.23)

where ∆M0 denotes the dHvA amplitude at zero temperature. Equation
(2.23) was derived for 3D electron systems in the limit of large quantum
numbers and assuming µ = const., i.e., in a regime where the dHvA-
oscillations are nearly sinusoidal. However, it was demonstrated that
(2.23) provides a good approximation also for sawtooth-shaped dHvA-
oscillations of 2DESs [Wil+08], thereby providing a tool to measure the
energy gap ~ωc and thus the effective mass m∗ of the 2DES independent
of the effect of disorder broadening.

2.3 Spin splitting in a 2DES
Spin degeneracy is a result of both space- and time inversion symmetry
[Win03]. Inversion in space changes the wave vector k to -k but leaves
the direction of the spin σ untouched, which gives

E(k)+ = E(−k)+. (2.24)

Time reversal changes the direction of k and flips the spin and we find

E(k)+ = E(−k)− , (2.25)

which is also called Kramers degeneracy. If we combine both equations,
we obtain a twofold degeneracy of the energies

E(k)+ = E(k)− . (2.26)

If one or both of these symmetries are broken, the degeneracy is lifted.
In this case, we define the spin splitting ∆s = E(k)+ − E(k)−. This
splitting can be caused by an external magnetic field B, which breaks
time inversion symmetry, and is referred to as Zeeman splitting. Con-
sequently, the LLs introduced in section 2.2.1 are spin-split because of
the presence of the external magnetic field, but the Zeeman splitting
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2 Theoretical concepts

is sometimes neglected in the literature when it is small compared to
~ωc. Furthermore, spin splitting is also obtained at zero magnetic field
if the space inversion symmetry is broken. This is the case in crystal
structures where the periodic potential lacks a center of inversion (e.g.
the zinc-blende lattice), which is known as bulk inversion asymmetry
(BIA). Furthermore, the QW containing the 2DES can be asymmetric
in the growth direction due to asymmetric modulation doping, differing
band discontinuities at the QW edges or externally applied gate voltages.
This “artificial” type of asymmetry is referred to as structural inversion
asymmetry (SIA). In the general case, spin splitting can be understood
as the interaction of the electron spin with an effective magnetic field
Beff, which is a superposition of all contributions of the different spin
splitting mechanisms. The Hamiltonian is extended by the term

Hs = 1
2g
∗µB σ ·Beff , (2.27)

where σ = (σx, σy, σz) is the vector of the spin Pauli matrices which
we define in the crystal basis (x, y, z), g∗ is the effective electron Landé
factor and µB is the Bohr magneton. Note that in absence of an external
magnetic field, Beff = B(k) is a result of the interaction of electron
spin with the orbital movement of the electron (spin-orbit interaction)
and depends on the wave vector k. In the following, we will discuss
different contributions to spin splitting which occur in the 2DES within
the InP/InGaAs heterostructures investigated in this work.

2.3.1 Zeeman splitting
Isotropic Zeeman splitting

The splitting due to the external applied field B is called Zeeman
splitting and the respective Hamiltonian reads

HZ = 1
2g
∗µBσ ·B . (2.28)

As a result, every LL with energy En splits up into two distinct sub-levels
(Fig. 2.4)

En,± = En ±
1
2g
∗µBB (2.29)
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2.3 Spin splitting in a 2DES

with a degeneracy per unit area of NL = eB⊥/h [c.f. Eq. (2.12)].
We note that the Zeeman splitting ∆s,Z = g∗µBB depends on the
total amplitude of the magnetic field B whereas the LL separation
~ωc = ~eB⊥/m∗ depends on the perpendicular component B⊥ = B cos θ
only. Consequently, the ratio of ∆s,Z/(~ωc) can be tuned by adjusting
the tilt angle θ. Special values of this ratio of (1/2, 1, 3/2, . . .) define the
so-called coincidence angles

cos θic = 1
i
· g
∗µBm

∗

e~
with i = 1/2, 1, 3/2, ... . (2.30)

If i ∈ {1/2, 3/2, 5/2, . . .}, subsequent levels in the energy spectrum are
equally spaced [half coincidence, Fig. 2.4 (b)] whereas integer numbers
of i denote the case where a degeneracy of the levels occurs, and the
gap at every second filling factor vanishes [full coincidence, Fig. 2.4
(c)]. Hence, the measurement of coincidence angles provides a tool to
determine the effective g∗ factor of the 2DES.

~ωc

∆s

∆s

(a)

∆s � ~ωc

~ωc

∆s

∆s

(b)

∆s = 1
2~ωc

~ωc

∆s

∆s

(c)

∆s = ~ωc

Figure 2.4: Schematic energy diagram of LLs for different splitting energies
∆s. (a) Case of small spin splitting. (b) Half coincidence: all energy levels
are equally spaced. (c) Full coincidence: neighboring LLs with opposite spin
orientations are degenerate.

Anisotropic Zeeman splitting

In the previous section, the Zeeman splitting with an isotropic effective
g∗-factor was discussed, which resulted in a spin splitting ∆s,Z = g∗µBB
independent of the direction of B. Corrections to the g∗-factor of free
electrons in semiconductors originate from the coupling of the electron
spin with the angular momentum of the lattice-periodic parts of the
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2 Theoretical concepts

orbital Bloch wave functions (similar to the derivation of the Landé
g-factor in atoms) [RLZ59]. If the symmetry with respect to the 3D
bulk material is reduced, the effective g∗-factor is no longer isotropic
and needs to be replaced by an effective g∗-tensor. In the general case,
the Zeeman term in the Hamiltonian is

HZ = 1
2µB

∑
i,j

gijσiBj , (2.31)

where gij are the components of g∗ and are obtained within the frame-
work of k · p theory [Win03]. In quasi-2D systems, the reduction of
symmetry gives rise to an out-of-plane anisotropy of g∗ into components
g⊥ for perpendicular and g‖ for in-plane field direction [IK92; PZ06].
This is due to the k · p coupling to different subbands for g⊥ and g‖,
respectively. The correct way of addressing this anisotropy theoretically
is debated [PZ06]. Furthermore, k · p-theory also predicts an in-plane
anisotropy of g∗ in inversion-asymmetric systems if the QW is asym-
metric in the growth direction, e.g., via a built-in electric field E as
first discussed by Kalevich and Korenev [KK93]. In zinc-blende struc-
tures grown along the [001]-direction, this gives rise to an additional
component gxy, which is proportional to the Dresselhaus parameter
γ (see 2.3.2) and depends on the exact form of the electron subband
wave function. A quantitative derivation of the components of g∗ from
theory is challenging, because exact microscopic details of a particular
heterostructure are usually unknown. It is thus useful to determine
these components experimentally. The g∗-tensor for a [001]-oriented
QW now takes the form

g
∗ =

 g‖ gxy 0
gxy g‖ 0
0 0 g⊥

 . (2.32)

Note that g∗ is diagonal in a basis with x ‖ [110] and y ‖ [11̄0], which
reflects the symmetry of the zinc-blende crystal. Furthermore, the
sign of gxy depends on the direction of E for symmetry reasons. A
diagonalization of (2.31) reveals that the energy spectrum En,± can be
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2.3 Spin splitting in a 2DES

expressed with a scalar g∗ as in (2.28), where g∗ depends on the polar
and azimuthal angles θ and ϕ (see Appendix B.3):

g∗(θ, ϕ) =
√
g2
⊥ cos2 θ + (g2

‖ + g2
xy) sin2 θ + 2g‖gxy sin2 θ sin 2ϕ .

(2.33)
Neglecting the in-plane anisotropy gxy, the out-of-plane anisotropy of

g∗ reads
g∗(θ) =

√
g2
⊥ cos2 θ + g2

‖ sin2 θ . (2.34)

On the other hand, if we address in-plane components of g∗ with a
field B parallel to the 2DES plane (θ = 90◦) and assume gxy � g‖, Eq.
(2.33) simplifies to

g∗(ϕ) = g‖ + gxy sin 2ϕ . (2.35)

The components of g∗ can therefore be addressed independently by
varying the angles θ and ϕ, respectively. As an additional remark, we
state that the straightforward diagonalization (2.33) to obtain a scalar
g∗(θ, ϕ) is not possible if the total Hamiltonian H contains additional
terms that depend on the spin operator σ, as will be discussed in detail
in section 2.4.

2.3.2 Zero-field spin splitting

The lack of a center of inversion in bulk zinc-blende crystals lifts the
space inversion symmetry. It was first shown by Dresselhaus [Dre55] that
this so-called bulk inversion asymmetry (BIA) yields Beff for conduction
electrons of the form

1
2g
∗µBBeff(k)BIA,3D = γ

kx(k2
y − k2

z)
ky(k2

z − k2
x)

kz(k2
x − k2

y)

 (2.36)

with the bulk Dresselhaus parameter γ that can be obtained by k · p-
theory and depends mainly on the fundamental energy gaps between
the conduction band and neighboring bands at k = 0 [Win03]. However,
in quasi 2D systems confined in a QW in z-direction, we can replace
the wave vectors for a given subband kz and k2

z by their (constant)
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expectation values 〈kz〉 = 0 and 〈k2
z〉 ≈ (π/Lz)2. Here, Lz is the width

of the QW . We obtain

1
2g
∗µBBeff(k)BIA,2D = γ〈k2

z〉

−kxky
0

+ γ

 kxk
2
y

−kyk2
x

0

 , (2.37)

where the first term is linear in the wave vector k‖ = (kx, ky) and the
second term is cubic in k‖. The cubic term is often neglected in narrow
QWs, where 〈k2

z〉 is typically much larger than the in-plane Fermi wave
vector k‖,F . We define the coefficient βD := −γ〈k2

z〉, which describes
the strength of the k-linear Dresselhaus (D) term in a quasi-2DES. Note
that βD not only depends on bulk material parameters, but is also
sensitive to the geometry of the heterostructure itself. It is thus difficult
to obtain βD by theoretical considerations because the exact band edge
profile in growth direction is usually unknown. For this reason, βD has
to be determined experimentally.

Furthermore, structural inversion asymmetry (SIA) due to a built-in
effective electric field E perpendicular to the QW plane leads to an
additional contribution to spin splitting. Bychkov and Rashba first
considered this effect which gives rise to the term [BR84b; BR84a]

1
2g
∗µBBeff(k)SIA = αR

 ky

−kx
0

. (2.38)

In a QW, the Rashba (R) parameter αR = 〈r6c6c
41 E〉 is obtained as the

expectation value of a parameter r6c6c
41 times the effective electric field

E for a given subband wave function, where r6c6c
41 is again obtained

using k · p-theory [Win03]. We note that αR can be tuned by external
gate voltages [Nit+97; Eng+97; Gru00], enabling the manipulation of
spin by electric means. Like the Dresselhaus parameter βD, the Rashba
parameter αR depends on microscopic details of the heterostructure as
well as on material properties and needs to be determined experimentally.
The measurement of βD and αR is one of the key aspects of this thesis.

In the following treatment, we will restrict ourselves to the the k-linear
terms in the Hamiltonian. The influence of the k-cubic Dresselhaus
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E(a)

k x

k y

k x

k y

k x

E

k F
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Figure 2.5: Dispersion relation (a) E±(k‖) and (b) E±(kx) at B = 0
and including Rashba-SOI. The zero-field spin splitting at the Fermi level
∆0 = 2αRkF is indicated in (b). (c) and (d) show cross-sections of E±(k‖) at
EF in case of pure Rashba and Dresselhaus SOI, respectively. The respective
spin orientations (arrows) are marked for different directions of k‖.

term is discussed in 2.4.4. Combining Eqs. (2.27), (2.37) and (2.38),
the linear R- and D-contributions are

HD = βD
~

(σxπx − σyπy)

HR = αR
~

(σxπy − σyπx) .
(2.39)

Here, we replaced the wave vector by the in-plane kinetic momentum
operator π = ~k. We now consider the case at zero magnetic field
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if only one of the two contributions is present. A diagonalization of
the problem yields the dispersion relation in presence of Rashba-SOI
[BR84a]

E±(k) =
~2k2
‖

2m∗ ± αR|k‖| . (2.40)

If plotted in k‖-space, (2.40) consists of two branches as depicted in
Fig. 2.5 (a). The spin splitting ∆s is not constant, but increases linearly
with wave vector k. The zero field spin splitting ∆0 = 2αRkF is defined
as the splitting present at the Fermi wave vector kF, and depends on the
electron density via kF =

√
2πn2D [Fig. 2.5 (b)]. If only D-SOI is taken

into account, αR in Eq. (2.40) is replaced by βD, and the qualitative
shape of E±(k‖) remains the same. However, the spin orientations with
respect to k‖ are different for both cases, which can be seen from Eqs.
(2.37) and (2.38), due to different Beff, which defines the relevant spin
quantization axes. The relevant spin orientations considering R- and
D-SOI are depicted in Fig. 2.5 (c) and (d), respectively.

k x
k y

k z(a)

k x k x

k y

(b) (c)

[110 ][1 1̄0]

αR /βD>0 αR /βD<0

k y

Figure 2.6: Dispersion relation E±(k‖) including both R and D terms. (b)
and (c) show cross-sections at the Fermi level for different relative sign of the
SOI parameters αR and βD.

As a consequence of the different symmetries of HR and HD, the
dispersion relation is altered if both R- and D-interactions are considered,
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2.4 Spin splitting of Landau levels including spin-orbit interaction

because the spins couple differently to the respective terms in the
Hamiltonian. The dispersion relation reads [And92]

E±(k‖) =
~2k2
‖

2m∗ ± k‖
√
α2
R + β2

D + 2αRβD sin 2ϕ . (2.41)

The splitting is now anisotropic in the (kx, ky)-plane with principal
axes along the [110] and [11̄0] directions [Fig. 2.6 (a)]. The definition
of a constant zero field spin splitting ∆0 at the Fermi wave vector
is no longer valid, because ∆0 now depends on the in-plane angle ϕ.
The orientation of the branches with respect to the principal axes is
inverted if the relative sign of αR and βD is changed [Fig. 2.6 (b) and
(c)]. An experimental determination of αR and βD and their relative
ratio and sign is hence possible if one probes the in-plane anisotropy of
the spin splitting. In the next section, we will show that signatures of
this anisotropy can be addressed in the quantum oscillations introduced
in 2.2.1 if tilted magnetic fields are applied and the in-plane angle ϕ is
varied.

2.4 Spin splitting of Landau levels including
spin-orbit interaction

In this section we will show how the energies of the Landau levels defined
in section 2.2.1 are altered if SOI and Zeeman splitting are present,
and how this will affect the magneto-oscillations which we will use as
an experimental probe in this work. The Hamiltonian H including
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tilted magnetic fields as well as an anisotropic g∗ tensor is formulated
as follows:

H = H0 +Hs = H0 +HZ +HR +HD

H0 = π2

2m∗

HZ = 1
2µB

[
g⊥σzB⊥ + g‖(σxBx + σyBy) + gxy(σxBy + σyBx)

]
HR = αR

~
(σxπy − σyπx)

HD = βD
~

(σxπx − σyπy)

The Hamiltonian for free electrons in a magnetic field H0 is extended
by the spin splitting term Hs, which consists of the Zeeman term HZ
as well as the Rashba- and Dresselhaus terms HR and HD, respec-
tively. Following Ref. [DDR90], we calculate the matrix elements
Hmsz,ns′z

= 〈m, sz|H|n, s′z〉 in terms of the eigenstates |n, sz〉 of H0
(n = 0, 1, 2, .., sz = ±). The only non-vanishing matrix elements (plus
their Hermitian conjugates) are given by

〈n,±|H|n,±〉 =
(
n+ 1

2~ωc
)
± 1

2µBg⊥B⊥

〈n,−|H|n,+〉 = 1
2µB

[
Bx(g‖ + igxy) +By(gxy + ig‖)

]
〈n,+|H|n+ 1,−〉 = αR

√
2e
~
√

(n+ 1)B⊥

〈n,−|H|n+ 1,+〉 = −iβD
√

2e
~
√

(n+ 1)B⊥

(2.42)

For the benefit of the reader, the derivation of these matrix elements
is carried out in detail in appendix B.1. It is instructive to display H
in matrix form, as it is done in Fig. 2.7. The diagonal elements of H
represent the energies of the unperturbed LLs including Zeeman splitting
due to a perpendicular field. Tilted fields lead to off-diagonal Zeeman
terms Z‖ which couple states with the same LL index n but different
spin orientation. This leads to an enhancement of Zeeman splitting if
the tilt angle θ is increased. Both Landau and Zeeman elements depend
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2.4 Spin splitting of Landau levels including spin-orbit interaction

linearly on the magnetic field B. The R and D terms cause off-diagonal
matrix elements which couple states with neighboring n and different
spin orientations. If we are interested only in the energy levels close
to the Fermi level EF (which dominate the magneto-oscillations that
we observe in the experiment), we can simplify the R-elements using
the approximation EF ≈ n~ωc and n + 1 ≈ n if n is sufficiently large
[DDR90]:

αR

√
2eB⊥(n+ 1)

~
≈ αR

√
2m∗EF

~2 = αRkF (2.43)

Equivalently, we obtain ∓iβDkF for the D-elements. In this approxi-
mation, the SOI-related off-diagonal terms appear as constants in the
matrix form of H and thus become more important if the magnetic field
B becomes small. An analytic diagonalization of H is only possible if
H decomposes into a block-diagonal form, i.e., if only one of the three
off-diagonal elements is present. In order to obtain the eigenvalues
En′(B) in the general case, we follow Ref. [DDR90] and diagonalize H
numerically by truncating H up to a finite nmax. Therefore, we choose
nmax high enough such that the Fermi level EF is always several levels
below nmax within the field range of interest.

In the following, we will discuss the impact of the different off-diagonal
terms on the energy spectrum En′(B⊥) and show how this influences the
magnetic quantum oscillations. For particular examples and illustrations,
we will use the basic parameters m∗ = 0.037, g∗ = −4.63 (isotropic) and
n2D = 8.5× 1011cm−2, which are already close to those experimentally
observed in the 2DESs in InP/InGaAs QWs.

2.4.1 Rashba splitting in a perpendicular field

Let us first consider the simple case of perpendicular field orientation
and isotropic g∗-factor if only R-interaction is present. The Hamiltonian
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Figure 2.8: Energy spectra En′(B⊥) of LLs in a perpendicular field including
(a) a small Zeeman term and (b) both Zeeman and Rashba terms (schematic).
The Fermi level EF is depicted in red in both plots. Envelopes of the jumps
at even (dashed green curve) and odd (dotted blue curve) filling factors are
illustrated in (b). A beat node position is indicated by an arrow.
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H now takes a block-diagonal form, allowing for an exact diagonalization
[BR84a]. The energy spectrum yields

En′ =En,±
=~ωc(n+ 1/2± 1/2)

∓
√

(~ωc − g∗µBB⊥)2 + 8α2
R
eB⊥
~

(n+ 1/2± 1/2) (2.44)

Figure 2.8 (a) and (b) displays the spectra En′(B⊥) for pure Zeeman
splitting and for Zeeman plus Rashba splitting, respectively. While in
the former case the ratio of Landau and spin splitting gap (∆s)/(~ωc)
remains constant, the presence of the R-term causes a field-dependent
enhancement of (∆s)/(~ωc), which becomes more important as the
field B⊥ is decreased. Hence, the En′(B⊥) cross at field values where
(∆s)/(~ωc) becomes an integer number, which can be understood as
SOI-induced level coincidences [c.f. Fig. 2.4 (c)]. Depending on the
parity of this number, i.e., even or odd, the energy gap of even or odd
filling factors ν vanishes while the opposite gap becomes a maximum.
As a consequence, the discrete jumps in the Fermi energy EF at even
and odd integer filling factors perform diametrically opposed beatings
as a function of B⊥. This behavior is illustrated by the envelopes of the
jumps at even and odd ν in Fig. 2.8 (b). We note that such beatings
are present in all kinds of magneto-oscillations, whether they appear
in M , µ or ρxx. We now define a beat node position as a field value
where subsequent levels in the vicinity of EF are equally spaced, as
marked by an arrow in Fig. 2.8 (b). At these points, the amplitudes of
the magneto-oscillations are minimum and eventually go to zero due to
level broadening or finite temperature effects. These node positions are
key to quantitatively determine the parameter αR (and also βD, as we
will see later) from the measurements.

Let us now examine the splitting ∆s in Eq. (2.44) in more detail. In
the limit of large magnetic fields, the R-term in the square root of Eq.
(2.44) can be neglected and the pure Zeeman splitting ∆s,Z = g∗µBB⊥ is
recovered. On the other hand, if B⊥ → 0 and using the approximation
(2eB⊥n)/~ ≈ k2

F [c.f. Eq. (2.43)], we reproduce the zero field spin
splitting of ∆0 = 2αRkF. We now numerically calculate the splitting
∆s as a function of B⊥. Therefore, we start at large B⊥ with two
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Figure 2.9: (a) Spin splitting ∆s as a function of B⊥ (solid blue line). Only
Rashba SOI (αR = 4.5× 10−12 eVm) as well as an isotropic g∗ was taken into
account. At B⊥ = 0, ∆s is equal to the zero field spin splitting ∆0, while at
large fields the splitting approaches the Zeeman term g∗µBB (dashed blue
line). Crossing points with energies (j − 1/2) ~ωc, (j = 1, 2, ..) indicate beat
node positions where the energy levels in the spectrum are equally spaced.
(b) Corresponding magnetization curve M(B⊥) for the parameters used in
(a), Γ = 0.3 meV/

√
T and T = 0.
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neighboring states |n,±〉, and track the splitting between these states
down to low B⊥. This is done by diagonalizing H and finding the pair
of eigenvectors with maximum projections on the initial eigenvectors
of |n,±〉, respectively. ∆s(B⊥) is plotted in Fig. 2.9 (a). Starting
from the zero field spin splitting ∆0 = 2αRkF, ∆s first decreases with
increasing B⊥ and finally approaches the Zeeman splitting g∗µBB⊥
[dashed line in Fig. 2.9 (a)]. The crossing points with energies 1/2~ωc,
3/2~ωc, ... indicate node positions as defined previously. In Fig. 2.9
(b), a corresponding magnetization M(B⊥) is displayed, using the same
parameters as in (a) as well as Γ = 0.3 meV/

√
T and T = 0. The

node positions found in (a) can be clearly identified in the quantum
oscillations of M . While at the first node the amplitudes ∆M of even
and odd filling factors are still finite, level broadening and a finite
temperature reduce ∆M to zero at all subsequent node positions for
this particular example.

2.4.2 Rashba splitting in tilted magnetic fields

We now allow the external field B to be tilted with respect to the 2DES
plane by the polar angle θ. This manifests itself in the appearance of the
off-diagonal Zeeman term in H, which depends linearly on the in-plane
field B‖ = (Bx, By). For the moment we still assume an isotropic g∗
and neglect a Dresselhaus contribution. Hence, the energy spectrum
remains independent of the azimuthal angle ϕ. If θ is increased, this
will enlarge the Zeeman gap with respect to ~ωc, as discussed in section
2.3.1. This enlargement also enhances ∆s(B⊥) as displayed for different
angles of θ in Fig. 2.10 (a). Most important is the fact that the node
positions are shifted to higher field values as θ is increased. This shift
is most pronounced for the first beat node. The evolution of the first
node position as a function of θ is depicted in Fig. 2.10 (b). If the
angle of half a coincidence θ1/2

c is reached, the Zeeman gap becomes
identical to 1/2~ωc. Hence, the crossing point of ∆s with 1/2~ωc, i.e.,
the first beat node, is shifted to infinite B⊥ and will disappear once
θ > θ

1/2
c . A further increase of θ will move the second node until it

disappears at θ3/2
c etc.. This behavior has been addressed experimentally

in magnetotransport measurements in Refs. [Luo+88; Das+89; Luo+90]
and theoretically in Ref. [DDR90].
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2.4 Spin splitting of Landau levels including spin-orbit interaction

In addition to the shifts of node positions, a break-up of the degeneracy
at level crossings for θ > 0 is asserted because the off-diagonal Zeeman
term leads to a coupling of previously degenerate states and opens an
anticrossing gap. Therefore, the tracking of levels to calculate ∆s fails
at these field positions and ∆s(B⊥) is not continuous any more. This
effect will reduce the oscillation amplitudes near the maxima of the beat
envelopes.

0 . 0 0 . 5 1 . 0 1 . 5

0 . 5
1 . 0
1 . 5
2 . 0

0 . 0 5 0 6 0 7 0 8 0
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4

3 / 2  � � c

7 9 . 5 °
7 6 °
7 0 °

E (
me

V)

B ⊥ ( T )

1 / 2  � � c
0 °

( a ) ( b )

B ⊥ (T
)

θ  ( ° )
Figure 2.10: (a) Spin splitting ∆s as a function of B⊥ for four different tilt
angles θ. The crossing points with E = 1/2~ωc indicate the position of the first
beat node. Interruptions of the curves at B⊥ ≈ 0.4 T at θ 6= 0 are due to an
anticrossing of levels. (b) Evolution of the first node position as a function of
θ. The beat node vanishes once the coincidence angle θ1/2

c is reached (dashed
line). This graph revisits the work by Das, Datta and Reifenberger [DDR90].

2.4.3 Landau levels including both Rashba and
Dresselhaus terms

Let us now consider the case if both Rashba and Dresselhaus terms are
included in H. First, we restrict the discussion to perpendicular field
orientation as well as an isotropic g∗-factor. As already pointed out
in section 2.4, the definition of a zero-field spin splitting at the Fermi
level ∆0 becomes ambiguous in presence of R- and D-terms, because ∆0
depends on the in-plane orientation of kF [c.f. Fig. 2.6]. Nonetheless, it
is instructive to calculate ∆s(B⊥) as described in section 2.4.1 to gain
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Figure 2.11: (a) Spin splitting ∆s(B⊥) for θ = 0◦, constant
αR = 4.5 × 10−12 eVm and increasing βD (solid curves). Field positions
of the first and second beat node (indicated by circles) are the crossing points
with 1/2~ωc and 3/2~ωc (dashed lines), respectively. (b) Corresponding energy
spectra En′(B⊥). An anticrossing gap opens if βD 6= 0 (colored curves) at
previous crossing points present for βD = 0 (black curve).

information about the node positions in B⊥. We will start with a pure
Rashba term (αR = 4.5× 10−12 eVm) and illustrate what happens to
the first and second node position if a Dresselhaus term 0 < βD < αR
is included. This is shown in Fig. 2.11 (a) for four different values
of βD = (0, 1.0, 1.5, 2.0) × 10−12 eVm. Similar to the presence of an
off-diagonal Zeeman term, the Dresselhaus term opens an anticrossing
gap at previous level crossing points [as illustrated in Fig. 2.11 (b)],
but leaves the high-field asymptote ∆s(B⊥) → g∗µBB⊥ unchanged.
Consequently, the first beat node moves in the opposite field direction,
i.e. towards smaller fields. This means that first and second node move
one toward another until they meet at a certain ratio of βD/αR and
vanish afterwards, as it is the case for the blue curve in Fig. 2.11 (a).
This is because the anticrossing gap has grown larger than ~ωc. For
greater βD (but still smaller than αR), the beating in the amplitudes
of the magneto-oscillations remains present, but the gap at odd ν will
never exceed the one at even ν due to the absence of nodes. It has been
pointed out by Tarasenko and Averkiev, that the beating in the magneto-
oscillations in perpendicular fields vanishes completely once αR = βD
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2.4 Spin splitting of Landau levels including spin-orbit interaction

and neglecting Zeeman splitting [TA02]. This is because the zero-field
dispersion relation then consists of two horizontally shifted paraboloids
in k-space with identical Fermi surfaces. These result in a two-fold
degeneracy of the LLs similar to the case of an ideal spin-degenerate
2DES. 1

As long as the first two beat nodes are still present, they can be
used to derive αR and βD from the experimental magneto-oscillations
under the assumption that m∗, g∗ and n2D are known for the given
2DES. However, there are two restrictions to that method. First, the
energy spectrum En′(B⊥) is independent on the signs of αR and βD
and depends only on their absolute values [Zha06]. For a qualitative
understanding of this fact, we consider the zero-field DOS D(E) of
|αR|, |βD| > 0, but for different relative signs, as illustrated in Fig. 2.6
(b) and (c). It is easy to see that D(E) must be the same for both
cases, because the respective dispersion relations in k-space are identical
except for a 90◦-rotation. A perpendicular magnetic field does not allow
to distinguish between the two cases because it does not address any
particular in-plane direction. Consequently, the B⊥-dependent DOS
D(E,B⊥), which effectively maps En′(B⊥), remains independent on
sgn(αr/βD). As a second restriction, we find that there are always two
sets of (αR, βD), which yield the same set of node positions (e.g. a
strong Rashba and a weak Dresselhaus contribution or vice versa). It is
thus indispensable to use additional information in order to extract the
correct parameter set from experimental magneto-oscillations.

In-plane anisotropy of node positions

In the following, we will show that both restrictions can be overcome
by performing experiments in doubly tilted magnetic fields. Figure 2.12
(a) depicts ∆s(B⊥) at a tilt angle θ = 79◦ for two different in-plane
orientations B‖ ‖ [110] and B‖ ‖ [11̄0], corresponding to ϕ = 45◦ and
ϕ = 135◦, respectively. These are identical with the directions in k-space,
where the zero-field spin splitting ∆0(ϕ) exhibited extrema due to the
presence of both R- and D-terms. One can see that the node positions
vary for both orientations, most prominently for the first node. This is

1In presence of a Zeeman term, the LLs are generally not degenerate and the
jumps in EF will still perform weak beatings. However, the splitting ∆s is always
on the order of g∗µBB⊥ and does not lead to level crossings or beat nodes.
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because we chose θ very close to the coincidence angle θ1/2
c = 80.14◦

such that the crossing point of ∆s(B⊥) with 1/2~ωc is very sensitive to
the influence of off-diagonal terms in H. However, also for the second
node, a shift in the opposite field direction is asserted. In Fig. 2.12 (b),
the evolution of both node positions is plotted as a function of ϕ for
different ratios βD/αR, while we kept αR = 4.5× 10−12 eVm fixed. A
significant anisotropy of both node positions is found once |βD| > 0, with
principal axes along the [110]- and [11̄0]- directions. This anisotropy is
getting larger as |βD| is increased towards αR. At a particular ratio of
βD/αR, the first and second node meet at ϕ = 135◦ and vanish upon a
further increase of βD/αR, similar to the disappearance of the nodes
in the perpendicular field case. However, the nodes are still visible
within a certain ϕ-range around ϕ = 45◦, which is getting smaller as
|βD/αR| approaches one. In the case of |αR| = |βD|, the nodes vanish
completely and the condition of equally spaced levels is achieved only
at the coincidence angle θ1/2

c across the whole field range, similar to the
case of pure Zeeman splitting.
Figure 2.12 (c) and (d) show polar plots of the two node positions

for |βD/αR| = 0.33 and different relative sign of αR and βD. We
observe a 90◦-rotation of the respective anisotropy-patterns for a sign
reversal, which proves that tilted field experiments are sensitive to
the relative sign as opposed to measurements with perpendicular field
orientation. In addition, the combined ϕ-evolution of both nodes is
unique for a particular set (αR, βD), i.e., there is no second set which
leads to the same curves. Solely the absolute signs of αR and βD remain
ambiguous, meaning that the cases (αR, βD) and (−αR,−βD) are not
distinguishable.
Considering again the in-plane node evolutions shown in Fig. 2.12

(b), we conclude that the proposed method to extract αR and βD is
suited especially for small ratios βD/αR, where both nodes are visible
within the whole ϕ-range. A fitting of the model to experimentally
observed node positions allows to determine the SOI parameters with
high accuracy. The accuracy can even be enhanced by performing
experiments at different tilt angles θ and considering additional nodes if
they are visible in the experiment. If βD/αR ≈ 1, the absence of nodes
within a rather large range of ϕ complicates the analysis of experimental
data. In this case, different approaches have been proposed to address
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Figure 2.12: (a) Spin splitting ∆s(B⊥) and node positions for
αR = 4.5× 10−12 eVm and βD = −1.0× 10−12 eVm at a tilt angle θ = 79◦ for
two different in-plane orientations B‖ ‖ [110] (ϕ = 45◦, red) and B‖ ‖ [11̄0]
(ϕ = 135◦, blue). (b) Field positions of first and second node as a function of
ϕ for different ratios βD/αR = (−0.22,−0.33,−0.44,−0.56) (from black to
blue). αR was fixed as in (a). Note that for larger βD/αR, both nodes meet
at a particular ϕ and are absent within a certain range of ϕ. The dashed lines
represent the (isotropic) case of βD = 0. Polar plots of the node positions
for different relative sign of αR and βD are depicted in panels (c) and (d),
respectively.
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αR and βD, e.g. to measure the anticrossing gap that occurs at a full
coincidence as a function of the in-plane angle ϕ of the applied magnetic
field B [WG13].
Finally, we want to discuss the case of an anisotropic g∗-tensor,

as introduced in section 2.3.1. As opposed to an isotropic g∗, three
independent parameters g⊥, g‖ and gxy enter the Hamiltonian H [Eq.
(2.42], while g⊥ enters the diagonal terms and g‖ and gxy are present
in the off-diagonal Zeeman term. It is generally not possible to simply
replace the scalar g∗ by the angle-dependent, but scalar g∗(θ, ϕ) [c.f.
Eq. (2.33)] if off-diagonal SOI matrix elements are present. Quite the
contrary, it is inevitable to know all of these parameters for a correct
description of the system. Especially the in-plane anisotropy of g∗,
provoked by the parameter gxy, will affect the in-plane evolution of the
node positions as discussed previously. This is because the asymptote
g∗µBB will vary as a function of in-plane orientation and significantly
shift the curve ∆s(B⊥). Hence, the position of the first beat node, i.e.,
the crossing point of ∆s with 1/2~ωc, will shift with the in-plane angle
ϕ. The in-plane anisotropy of g∗ thus causes an additional contribution
to the in-plane evolution of node positions as introduced in Fig. 2.12
(b), which is not separable from the node-shift due to R- and D-terms.
Consequently, the parameters of the g∗-tensor, especially gxy, have to
be determined in independent experiments.

2.4.4 Contribution of k-cubic terms
In this section we briefly outline the impact of k-cubic terms stemming
from the BIA contribution and discuss their relevance on the energy
spectrum for the specific InP/InGaAs heterostructure observed in this
work. Starting from Eq. (2.37), we re-write the full BIA Hamiltonian
HD as

HD = −γ〈k2
z〉(σxkx − σyky) + γ(σxkykxky − σykxkykx) . (2.45)

The first summand is the (kx, ky)-linear term which we already included
in the modeling, while the second summand represents the previously
neglected (kx, ky)-cubic contribution. Note that in Eq. (2.45), the ki are
operators defined as ~ki := πi. At nonzero B, the ki do not commute.
For this reason, the symmetric order of the ki in the (kx, ky)-cubic
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2.4 Spin splitting of Landau levels including spin-orbit interaction

summand is essential for HD to be Hermitian [GFR85]. If we calculate
the non-zero matrix elements of HD and use the approximation (2.43),
we find [DDR90]

〈n,−|HD|n+ 1,+〉 = iγ

(
〈k2
z〉 −

1
4k

2
F

)
kF = −iβ′DkF (2.46)

〈n,+|HD|n+ 3,−〉 = − iγ4 k
3
F . (2.47)

A detailed derivation of these terms is given in appendix B.2. First, we
find that the original matrix element 〈n,−|HD|n+ 1,+〉 = iγ〈k2

z〉kF is
replaced by the term (2.46). This does not change the energy spectrum
qualitatively, but necessitates the replacement of the Dresselhaus param-
eter βD = −γ〈k2

z〉 by a corrected β′D = −γ(〈k2
z〉 − 1/4k2

F). Consequently,
we always measure β′D instead of βD in the experiment. Nevertheless,
we will use the notation βD for the D-parameter in the discussion
of experiments because we cannot distinguish between the two. The
second matrix element [Eq. (2.47)] arises as an additional term and
thus influences En′(B⊥) qualitatively. We now want to estimate the
quantitative impact of Eq. (2.47) on the spectrum using realistic system
parameters. An approximate value for 〈k2

z〉 is given by (π/w)2, where
w is the width of the QW [DDR90]. The Fermi wave vector kF is
given by the electron density via kF =

√
2πn2D. For our InP/InGaAs

heterostructure, w ≈ 10 nm and n2D ≈ 8.5× 1015 m−2, and we obtain

|〈n,−|HD|n+ 1,+〉| ≈ γ × (0.02 nm−3) (2.48)
|〈n,+|HD|n+ 3,−〉| ≈ γ × (0.003 nm−3) . (2.49)

Obviously, the additional matrix element 〈n,+|HD|n + 3,−〉 is by a
factor of ≈ 7 smaller than 〈n,−|HD|n + 1,−〉. Furthermore, with
second order perturbation theory we can estimate the correction in-
duced by an off-diagonal matrix element on a specific energy En via
∆En ≈ |〈n|HD|m〉|2/(En − Em). Since Eq. (2.46) couples states with
orbital quantum number n and n+ 1, the energy difference yields ~ωc.
The additional matrix element [Eq. (2.47)] couples n and n+3, implying
En+3 −En = 3~ωc. Following this evaluation, we find that the correc-
tion of En due to Eq. (2.47) is by more than two orders of magnitude
smaller. We therefore conclude that the negligence of (2.47) is justified
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in the modeling of En′ for the specific heterostructure treated in this
work. The main impact of the cubic terms is included in the effective
Dresselhaus parameter β′D.

2.5 Energy levels of quantum dots

In chapter 7 we will present experimental magnetization data on nanopat-
terned InP/InGaAs heterostructures forming arrays of quantum dots.
The nanopatterning leads to an additional lateral confinement of the
2DES in the (x, y)-plane. Due to the circular symmetry of the dots,
a confinement potential of the form V (x, y) = V (r) is assumed. In
this section, we will recapitulate the single-particle energy spectra of
quantum dots considering different shapes of V (r). Furthermore, we
calculate corresponding magnetization curves and show how the dHvA-
oscillations are altered in the presence of different V (r). We restrict
ourselves to the widely used cases of a parabolic confinement potential
[Ker+90; KS05] and a flat potential with hard walls (HW potential)
[LFS88; KLS90]. In anticipation of the experimental results, we state
that signatures of spin splitting were not observed in the data. Therefore
we neglect these terms in the following treatment. The Hamiltonian of
the problem reads

H = π2

2m∗ + V (r) . (2.50)

We assume a magnetic field B = (0, 0, B) perpendicular to the 2DES
plane and neglect effects of an in-plane field on the energy spectrum.
This is justified for ~ωc much smaller than the 2DES subband confine-
ment, which holds true for the observed structures. Furthermore, we
neglect effects of finite T , since in the experiment kBT � ~ωc within
the relevant field range.

To derive magnetization curves from the calculated spectra, we first
calculate the free energy F (B) by successively filling up single particle
levels with electrons up to a fixed electron number N . Secondly, we
derive the magnetization via M = −∂F/∂B.
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2.5 Energy levels of quantum dots

2.5.1 Parabolic confinement

A parabolic confinement potential is defined as

V (r) = 1
2m
∗ω2

0r
2 , (2.51)

where ~ω0 is referred to as the confinement energy. The given eigenvalue
problem was first addressed by Fock and Darwin in the late 1920s [Foc28;
Dar31]. They found an analytic solution, yielding the so-called Fock-
Darwin (FD) energies

Enl =
(
n+ |l|2 + 1

2

)
~ω + l

2~ωc . (2.52)

Here, ωc = eB/m∗ is the cyclotron frequency, ω =
√
ω2
c + 4ω2

0 and
n = {0, 1, 2, ...} , l ∈ Z are two independent quantum numbers. We can
express the energy spectrum (2.52) in dimensionless units by substituting
xFD0 = ωc/ω0 and εnl = Enl/(~ω0) and obtain

εnl =
(
n+ |l|2 + 1

2

)√(
xFD0

)2 + 4 + l

2x
FD
0 . (2.53)

Using this transformation, also the magnetization can be expressed
in dimensionless units after calculating the dimensionless free energy
f for a fixed number of electrons N and evaluating m = −∂f/∂xFD0 .
The actual magnetization M(B) is then obtained via M = m(e~)/m∗,
while B = ((m∗ω0)/e) · xFD0 . From this transformation one can see that
the shape of the magnetization curve M(B) depends on the number of
electrons N only and does not depend on the input parameters ω0 and
m∗. We calculated m(xFD0 ) for 1 ≤ N ≤ 2000 and derived M(B) for
specific ω0, m∗ and N by simply rescaling the m and xFD0 -axes. This
approach enabled an enormous speed-up of the computation of large
sets ofM(B) for different ω0, m∗ and N . In particular, this is facilitated
the calculations including inhomogeneous broadening (see 7.3), which
required the superposition of thousands of curves with distributed input
parameters.

In Fig. 2.13 Enl(B) andM(B) are plotted in units of ~ω0 and (e~)/m∗,
respectively. The Fermi energy EF for N = 100 is indicated by a thick
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Figure 2.13: Energy spectrum E(B) in units of ~ω0 for a parabolic con-
finement potential V (r) = 1/2m∗ω2

0r
2 (top panel). A vertical cross-section

(dashed line in the spectrum) was employed to calculate the (broadened) den-
sity of states D(E) at a particular field B (right panel). The Fermi energy for
N = 100 is emphasized with a thick line in the spectrum. The corresponding
magnetization curve M(B) is plotted in the bottom panel. Effective filling
factors ν∗ = 2 and ν∗ = 4 as attributed to the downward flanks of M are
indicated by arrows.

line in the spectrum. We observe that the discrete eigenstates of a 2D
harmonic oscillator at B = 0 perform level crossings if B is increased
and group together into sets at large B, similar to the grouping of
free electron levels into highly degenerate Landau levels in a 2DES.
However, a degeneracy of levels at high magnetic fields is not asserted.
We illustrate this by calculating the density of states

D(E) =
∑
n,l

δa(E − Enl) (2.54)
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2.5 Energy levels of quantum dots

for a specific field B (dashed line in the spectrum in Fig. 2.13) with a
Gaussian kernel function δa(E). The width of δa(E) was chosen such
that the DOS is smeared out over neighboring single particle levels while
preserving features on the scale defined by the level sets. It is clear from
the plot that D(E) increases in a stepwise manner as E increases from
one level set to the next and does not exhibit a condensation of levels
at certain energies, as it is the case for 2DES Landau levels.

Similar to the Fermi energy EF, the magnetizationM(B) exhibits two
types of oscillations: a fast oscillation due to crossings of single particle
levels and a much slower oscillation, which is governed by the transition
of the Fermi energy from one level set to the next. The former is known
to be quasi-periodic in B and therefore referred to as Aharonov-Bohm
(AB)-type [SI88]. The latter is dHvA-type and quasi-periodic in 1/B.
The period of the AB-type oscillation in the magnetic field B is on the
order of one magnetic flux quantum Φ0 = h/e per dot area [SI88]. In
an ensemble, the amplitude of the AB-type oscillations is expected to
decrease with the square root of the total number of dots compared
to the dHvA-type oscillations due to the statistical spread of input
parameters such as N and ω0 [SI88]. The rapid oscillations are thus
likely to be suppressed in a large ensemble as treated in this work, and
we therefore neglect them in the following.

The dHvA-type oscillations exhibit a cusp-like shape as opposed to
sawtooth-shaped dHvA-oscillations of a 2DES. This is a consequence of
the modified DOS. Due to the lack of condensed level sets, the Fermi
energy does not exhibit discrete jumps, but performs a continuous
transition from one level set to the next. This is also reflected in the
magnetization signal. It is instructive to define effective filling factors ν∗,
which we attribute to the downward flanks of the dHvA-type oscillations
in M(B), or to the upward flanks in M(1/B). The ν∗ are chosen to
be consistent with the definition of ν = n2D/(eB/h) of a 2DES with
similar dHvA frequency.

Estimation of the dHvA frequency

The dHvA-type oscillations in M produced by the FD model show
slight deviations from a strict 1/B- periodicity. In the following, we
derive an approximate value of the oscillation frequency f1/B in terms
of input parameters m∗, ω0 and N . The estimation of f1/B from the full
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quantum mechanical treatment as presented above is difficult, because
a definition of field values with equivalent phase is not straightforward.
We therefore employ a simplified approach to model these oscillations
that has been put forward by Fogler et. al. [FLS94]. In their model
they assumed that at a certain position r, the energy spectrum still
consists of Landau levels with a degeneracy per unit area NL = 2eB/h.
However, the energy of the LLs varies in space according to the shape of
the lateral confinement potential V (r) as depicted in Fig. 2.14 (a). The
Fermi energy is assumed to be constant, which results in a filling of the
LLs that varies in space. This approach is able to model the dHvA-type
oscillations, but does not account for the quick AB-type oscillations,
because single particle levels are not reproduced. A comparison of the
magnetization derived by both models with identical input parameters
is depicted in Fig. 2.14 (b). Considering the dHvA-type oscillations,
both curves agree quite well at high magnetic fields. Only in the low
field limit the FD model predicts phase-shifts towards lower field values.
Fogler’s approach is thus well suited to extract an approximation for
f1/B .

In the following, we use the peak positions of the cusp-like dHvA-type
oscillations to address their periodicity in 1/B and to estimate f1/B.
To do that, it is not necessary to perform the complete derivation of EF,
F and M using Fogler’s model. However, we identify that the peaks
occur at field values, where EF touches the next LL in the center of the
dot as sketched in Fig. 2.14 (a). If we denote the number of filled LLs
below EF at the center of the dot by nf , we obtain for the total number
of electrons

N =
nf−1∑
n=0

(πr2
n)NL (2.55)

with the LL index n and the LL degeneracy NL = 2eB/h. Here, the LL
with index n is filled with electrons within a disk of radius rn. In the
special case where EF just touches the LL with index nf , rn is given by

r2
n = 2

m∗ω2
0

(nf − n)~ωc . (2.56)

Notice that rn decreases with increasing level index n and becomes zero
if n = nf , i.e., the level with index nf is empty and just about to get
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Figure 2.14: (a) Sketch of Fogler’s ansatz [FLS94] to model parabolic
confinement. The degenerate LLs (n + 1/2)~ωc, shown for n = 0, 1, 2, 3 are
bent in space according to V (r) = 1/2m∗ω2

0r
2. Levels that lie partly below

EF are filled within a particular disk of radius rn, as indicated by thick lines
for n = 0 and n = 1. (b) Comparison of calculated magnetization curves
using FD (black) and Fogler’s model (red). Simulation parameters were
~ω0 = 1.5 meV, N = 1000 and m∗ = 0.037.

filled. In that sense, nf = 2ν∗ can be understood as twice the effective
filling factor as defined previously, while the factor of two stems from
spin degeneracy. Using Eq. (2.56), the summation in Eq. (2.55) yields

N = ω2
c

ω2
0
nf (nf + 1) ≈ ω2

c

ω2
0
n2
f . (2.57)

Here, we made the approximation nf � 1, which implies that the
estimation of f1/B in this model is valid only for large nf . Now we can
reconvert Eq. (2.57) to reveal 1/B positions of the sharp dHvA-type
peaks as a function of nf :(

1
B

)
nf

= e

ω0m∗
√
N

nf (2.58)
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We notice that (1/B)nf
increases linearly with nf , and the frequency

f1/B is given by the inverse of the respective prefactor:

f1/B = ω0
√
N
m∗

e
(2.59)

From the analysis it is clear that f1/B is only an estimate of the dHvA-
frequency. Without the above approximations, the dHvA-type oscil-
lations predicted by the the FD model deviate from the strict 1/B-
periodicity. A more detailed analysis of periodicity and phase of the
dHvA-type oscillations inM produced by the FD model will be discussed
in 7.3.

2.5.2 Hard-wall confinement

We now review the energy spectrum of a flat confinement potential with
hard walls at the edges, defined as

V (r) =
{

0, r ≤ R0

∞, r > R0
, (2.60)

where R0 is the confinement radius. For the exact derivation of the
eigenvalues Enl(B) we refer the reader to the paper of Geerinckx et. al.
[GPD90]. Following their analysis, Enl(B) can be expressed as

Enl = ~ωc
(
αnl + l + |l|

2 + 1
2

)
, (2.61)

where αnl is calculated numerically via

1F1(−αnl, |l|+ 1, xHW0 ) = 0 , (2.62)

with the confluent hypergeometric function 1F1 and xHW0 = R2
0/(2l2B).

In analogy to the FD states, we find a dimensionless representation of
(2.61):

εnl =
(
αnl + l + |l|

2 + 1
2

)
xHW0 , (2.63)
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where B = (2~)/(eR2
0)xHW0 and Enl = (2~2)/(m∗R2

0)εnl. Similar to
the FD model, the shape of εnl does not depend on R0 or m∗ and
the magnetization M(B) is obtained for a specific N via rescaling the
relevant axes. The attained speed-up in computation is even more
effective for the HW model, because the numerical calculation of the
αnl is computationally more expensive.

We plotted the spectrum Enl(B) together with EF(B) and M(B) for
a dot with N = 100 in Fig. 2.15. As in the FD model, single particle
levels group into level sets as B is increased. However, the levels of the
HW model approach E = (n+ 1/2)~ωc and the case of an unconfined
2DES is recovered for R0 →∞ (i.e. N →∞). This also manifests itself
in the respective DOS, where pronounced peaks are present near LL
positions (n+ 1/2)~ωc. A close look reveals that the peaks in the DOS
are asymmetric. This is because the single particle levels approach the
LL positions from the high-energy side only, thereby increasing the DOS
on that side. Between the peaks a small background DOS background
is present which linearly increases with n. The dHvA-type oscillations
predicted by the HW model resemble a sawtooth waveform, but the
slope of the downward flanks in M(B) is finite due to the residual DOS
between the LL-related peaks. This effect becomes more pronounced
for larger ν∗ where the asymmetry of the oscillation even gets reversed,
i.e., the upward flanks are getting steeper than the downward flanks.
However, these effects become less prominent if more and more electrons
are added to the dot and the spectrum approaches the 2DES limit.
The frequency of the dHvA-type oscillations predicted by the HW

model can be estimated by calculating the respective 2D density within
one dot as ndot2D = N/(2πR2

0) and by using Eq. (2.14). We obtain

f1/B⊥ = N

πR2
0

h

e
. (2.64)

2.5.3 Comparison of 2DES, HW and FD models

We now briefly compare the magnetization curves predicted by FD and
HW model. For this, we assumed N = 1600 for both models and chose
~ω0 = 1.557 meV and R0 = 230 nm to obtain similar dHvA-frequencies
(the effective mass was set to m∗ = 0.037m0).
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Figure 2.15: Energy spectrum E(B) (top panel), density of states D(E)
(right panel) and magnetizationM(B) as calculated for hard-wall confinement.
For the Fermi energy EF(B) (thick line in the spectrum) and the magnetization
M(B), N = 100 was assumed. Effective filling factors ν∗ = 2 and ν∗ = 4 as
attributed to the downward flanks of M are indicated by arrows.

Calculated magnetization curves are plotted in Fig. 2.16 as a function
of 1/B in units of the effective Bohr magneton µ∗B = (e~)/(2m∗). M(B)
of an ideal 2DES is also plotted for comparison. First, we note that the
dHvA-type oscillations predicted by both FD and HW model fade out
towards small B, because the energy spectrum is governed more and
more by confinement effects rather than Landau quantization as B is
decreased. Second, we observe a notable overall reduction of the dHvA
amplitude of the FD model with respect to the HW model and the ideal
2DES. This can be explained by the strong modification of the DOS due
to the absence of LL-like condensation of levels and discontinuous jumps
of EF, thereby leading to a smoothing of the oscillations. Using Fogler’s
model, the signal in M can be understood as the superposition of
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many different sawtooth-shaped signals with individual dHvA frequency,
stemming from the variation of the local density n2D(r) generated by
the parabolic V (r). Such a distribution of frequencies naturally reduces
the amplitude of the sum signal.
For the HW model, the asymmetry of the oscillations in M changes

from from 2DES-like (steep upward flanks) to the opposite (steep down-
ward flanks) as B decreases, while no significant asymmetry is asserted
for the FD model. Both curves show deviations from the strict 1/B
periodicity that is present for an ideal 2DES. These deviations are more
pronounced for the FD model. We will discuss these deviations in detail
in section 7.3, where we compare the models to experimental data.
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Figure 2.16: Comparison of the magnetization M(1/B) of an ideal 2DES
(black curve), and quantum dots with hard wall confinement (red curve)
and parabolic confinement (blue curve). Parameters were N = 1600 and
m∗ = 0.037 (all models) as well as ~ω0 = 1.557 meV and R0 = 230 nm for FD
and HW model, respectively. The parameters were chosen to obtain similar
f1/B for all curves.
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3 Samples and experimental
setup

In this chapter, we present sample details and describe the different
experimental techniques that were employed in this thesis. The chapter
is organized as follows. First, we outline the investigated sample struc-
tures and preparation methods. Second, we introduce the technique of
torque cantilever magnetometry and discuss different readout schemes.
Finally, we sketch our setup used for magnetotransport measurements.

3.1 Sample details and preparation
All samples investigated in this thesis were prepared from InP/In-
GaAs heterostructures provided by H. Hardtdegen and Th. Schäpers
from Jülich research center. These structures were grown on (001)-
oriented InP substrates by metal organic vapor phase epitaxy (MOVPE)
[Har+93], with a layer sequence as sketched in Fig. 3.1 (a). A strained
modulation-doped 10 nm-wide In0.77Ga0.23As quantum well (QW) was
sandwiched between InP and lattice-matched In0.53Ga0.47As barrier
layers. These structures had been carefully engineered in order to op-
timize the electron mobility in the QW, which allowed to investigate
quantum oscillations down to very low magnetic fields. The choice of
InP substrates enabled defect-free epitaxial growth of InGaAs layers
with high In content featuring small effective electron masses.

Furthermore, the large atomic mass of In gave rise to strong spin-orbit
interaction (SOI) for conduction electrons. The present structure was
optimized to exhibit dominant Rashba-SOI due to the asymmetry of the
QW barrier heights as well as a built-in electric field induced by single-
sided modulation doping. A plot of the calculated conduction band
edge of the layer cross section [Fig. 3.1 (b)] illustrates this asymmetry.
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The investigation of SOI effects in these structures was one of the main
purposes of this thesis.
In the following, we briefly outline the design and preparation of

2DES flip-chip samples, Hall-bars and quantum dot mesa structures
that were prepared from this type of InP/InGaAs heterostructures.

InP (001) substrate

10 nm InP:Si

20 nm InP

10 nm In0.77Ga0.23As QW

150 nm In0.77Ga0.23As

(a) (b)

Figure 3.1: (a) Epitaxial layer sequence of the investigated InP/InGaAs het-
erostructure with the growth direction ẑ ‖ [001]. Numbers denote thicknesses.
(b) Calculated energy diagram of the conduction band edge as a function of z
[Kno04].

3.1.1 2DES flip-chip samples
Magnetometry experiments were performed on contacted and gated
flip-chip samples which were subsequently placed on dedicated mi-
cromechanical cantilever magnetometers as explained further down in
3.2.3. A schematic cross-sectional view of these samples is depicted in
Fig. 3.2 (a). Detailed information on the preparation process can be
found in Ref. [Ibr13]. The structure consisted of a rectangular mesa
of (1.23× 0.78) mm2 in size as defined by optical lithography and wet
chemical etching. Four AuGe ohmic contacts at the corners were created
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by evaporation and thermal annealing. The Au top gate was separated
from the mesa surface by a 60 nm-thick Al2O3 insulating layer grown
by atomic layer deposition (ALD). In a final step, the actual flip-chip
samples were micro-machined from the bulk InP wafer. They were
thinned down to ≈ 10µm to reduce their weight and properly sized
(1.1× 1.9 mm2) to fit on the paddle of the cantilever. A photograph of
such a flip-chip sample including mesa, contacts and gate is shown in
Fig. 3.2 (b).

InGaAs QW

AuGe contact

60 nm Al2O3
Au top gate

(a) (b)

Figure 3.2: (a) Schematic cross-sectional view of the flip-chip sample includ-
ing evaporated AuGe contacts, 60 nm Al2O3 gate insulating layer and Au top
gate. (b) Optical microscope image of a prepared flip chip sample (top view).

3.1.2 Hall bar samples
Samples structured into Hall bars were provided by the group of
Th. Schäpers at Jülich research center. These samples were used
for magnetotransport measurements. The Hall bar mesa structures were
(700× 200)µm2 in size and featured two contacts for current injection
and six contacts serving as voltage probes. A photograph of such a Hall
bar sample is shown in Fig. 3.3 (a).

For the magnetotransport experiments presented in chapter 6, it was
crucial to know the in-plane crystallographic orientation of the samples.
For this, we performed a surface etch test following the experiment. The
sample Hall bars were etched for 2 min in a HCl:H3PO4 (1:5) solution.
A microscope image of the etched surface is depicted in Fig. 3.3 (b).
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(a)

1

2 3 4

5

678

(b)

[110]

[1 1̄0 ]

Figure 3.3: (a) Optical microscope image of a Hall bar mesa structure
featuring two contacts for current injection (indexed 1 and 5) and six contacts
that served as voltage probes (2-4, 6-8). (b) Microscope image of the same
Hall bar after bonding and etching for 2 min in HCl:H3PO4 (1:5) solution.
Oval-shaped surface pits revealed the in-plane orientation with respect to the
crystal axes (indicated by arrows).

On the (001)-InP-facet that surrounds the mesa, oval-shaped surface
pits with orientation parallel to the Hall bar were asserted. Following
Refs. [Eli+99; Eli+04], these pits are oriented along the [01̄1] direction.
Hence, we assigned the in-plane orientation with [01̄1] parallel to the
Hall bar mesa, as indicated in Fig. 3.3 (b).

3.1.3 Quantum dot mesa structures
In order to study the quantum oscillatory magnetization of confined
electron systems, we prepared etched ensembles of quantum dots. The
preparation process is outlined in Fig. 3.4 (a)-(c). Via electron beam
lithography, we defined 2D hexagonal arrays of circular dots with a
lattice constant of 750 nm and a dot diameter of 460 nm. Each individual
sample contained 4 × 8 = 32 write fields of (200 × 200)µm2 in size,
totaling a number of ≈ 2.5 × 106 dots. After developing, a 30 nm-
thick layer of Ti was evaporated. For the e-beam process, we used a
double layer polymethyl methacrylate (PMMA) resist (50k / 950k) to
facilitate the lift-off process. The Ti hard mask was used to obtain a
better selectivity towards reactive ion etching (RIE) of the mesa. The
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RIE etching was done by Sebastian Heedt at Forschungszentrum Jülich
using a H2/CH4-process, which allowed for steep etch profiles. The
etch depth of 320 nm was chosen to be below the InP:Si doping layer.
Next, the Ti mask was removed by short HF wet chemical etching. A
scanning electron microscopy (SEM) image of the prepared dot ensemble
is depicted in Fig. 3.4 (d).

(a)

QW

50k
resist

950k
resist

e-beam exposure
(b)

Ti

(c)
RIE RIE

32
0n

m

460 nm

(d)

1 µm

Figure 3.4: (a)-(c) Preparation process of quantum dot mesa structures.
The dots were defined by e-beam lithography using a double-layer PMMA
resist. A Ti hard mask was defined via subsequent evaporation and lift-off.
The mesa dots were then etched by a RIE H2/CH4-process. (d) SEM image
(bird’s eye view) of the quantum dot ensemble after preparation.

In a final step, the samples were thinned and sized to fit on the
paddle of capacitive micromechanical cantilevers. This was done by
micro-machining the bulk InP wafers, similar to the fabrication of the
flip-chip samples.
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3.2 Micromechanical cantilever magnetometer
The measurement of the quantum oscillatory magnetization M(B), i.e.,
the de Haas-van Alphen effect, is experimentally challenging for single-
layered 2DES due to the very small signal strength of order 10−13 J/T per
mm2 of sample area. Therefore, dedicated magnetometers featuring a
high sensitivity are needed for these kind of experiments. Reviews which
summarize the available methods can be found e.g. in Refs. [UE09]
and [WGH10]. Most commonly, the detection of M(B) of 2DESs
was carried out with superconducting quantum interference devices
(SQUIDs) [Stö+83; Mei+01] as well as torsional [HA30; Eis85; Tem88;
Wie+97] or cantilever magnetometers [CCN92; Har+99; Sch+00].

In this thesis, a cantilever magnetometer based on the design devel-
oped by Schwarz et. al. [Sch+00] was used. In the following, we briefly
explain the principle of operation and discuss capacitive and optical
readout schemes as well as absolute calibration procedures. Further-
more, we report on an improvement of the optical readout technique
that allowed to effectively decrease the sample temperature.

3.2.1 Principle of operation

sample

τ

M

B

·

θ
(a)

M
B

θ
τ

(b)

Figure 3.5: (a) Schematic drawing of the micromechanical cantilever mag-
netometer (MCM) with a sample placed on the cantilever paddle. If the
magnetization of the sample M and the external magnetic field B form an
angle θ, a torque τ acts on the sample and deflects the paddle from its zero
field position. (b) Side-view of the MCM.

A sketch of the micromechanical cantilever magnetometer (MCM)
used in this work is depicted in Fig. 3.5 (a). The device was micro-
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machined from bulk GaAs wafers with functional AlGaAs layers grown
by MBE using the toolbox of micro-electromechanical system (MEMS)
fabrication. A detailed description of the preparation process can be
found, e.g., in Ref. [Cha12]. The MCM consisted of a flexible beam
and a paddle of size (2.0 × 1.2) mm2 to attach the sample on top.
The thickness of the beam was as small as ≈ 4µm, accounting for
small spring constants, enabling high mechanical sensitivity towards an
external force or torque.
The magnetization caused by the orbital motion of the electrons in

an ideal 2DES is perpendicular to the sample surface. If a magnetic
field B is applied at an angle θ with respect to the surface normal of
the sample, a torque

τ = M×B (3.1)

will act on the cantilever and deflect the paddle from its zero-field
position. This deflection can be detected via capacitive or optical
methods and calibrated against a known force or torque as discussed
below. In the present setup, the in-plane direction of B was chosen
to be parallel to the cantilever beam to avoid a torsional twist of the
paddle and to address the longitudinal bending component only. With
this particular configuration, Eq. (3.1) can be expressed in terms of
absolute values of the respective vectors as τ = MB sin θ. By knowing
the torque τ , the magnetization M is thus obtained via

M = τ

B sin θ . (3.2)

Equation (3.2) implies that for a constant sensitivity of the device
in terms of the torque ∆τ , the sensitivity in the magnetization ∆M
increases linearly with increasing magnetic field B. Furthermore, and
recapitulating that the dHvA-effect in 2DES is mainly governed by
the perpendicular field component B⊥, we find that ∆M for a certain
B⊥ = B cos θ increases with sin θ/ cos θ = tan θ.

3.2.2 Capacitive readout
A straightforward way to address cantilever deflection is via a capacitive
readout scheme as used in Refs. [CCN92; Sch+00]. For the MCMs used
in this work, this technique allowed for a sensitivity in M on the order
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C = C0 + ∆C

d

l

Figure 3.6: Capacitive readout scheme of the MCM. The metalized backside
of the cantilever and a fixed counter electrode with area AC form a capacitor
with C = ε0AC/d. The capacitance change due to a deflection ∆d of the
cantilever paddle is measured with a capacitance bridge.

of ∆M ≈ 5× 10−15 J/T at B = 10 T and θ = 15◦ [Sch+02a], limited by
electrical and mechanical noise. Cantilevers used for capacitive readout
featured a metalized backside and were glued onto a sapphire substrate
with a fixed counter electrode, as depicted in Fig. 3.6. The capacitance
C = ε0AC/d between the paddle and the counter electrode depends on
the distance d between the two plates (AC is the effective area of the
capacitor). We measured C by means of a capacitance bridge1. For
small changes ∆d, we can approximate the change in capacitance ∆C
via the linear relation

∆C ≈ C0

d
∆d, (3.3)

where C0 is the capacitance at zero torque. Furthermore, Hooke’s law
holds true in the regime of small ∆d, which results a linear dependence
between τ and ∆d. Taken together, we obtain

τ = KC∆C , (3.4)

where KC is the calibration constant for capacitive readout. Following
Ref. [Wil04], calibration of the setup was performed by applying an
additional DC voltage between the two capacitor plates, which results in
a well-defined force that pulls the paddle towards the counter electrode.

1Andeen Hagerling 2500 A / 2700 A
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3.2 Micromechanical cantilever magnetometer

We recorded ∆C(UC) and fitted the resulting curve via ∆C = κUU
2
C .

The calibration constant KC was then obtained via

KC = βC2
0 l

2ε0ACκU
. (3.5)

Here, β = 0.73 is a correction factor that accounts for differences in
the deflection due to a force or a torque [Wil04] and l = 1.6 mm is the
distance between the suspension point of the beam and the center of
the paddle.

3.2.3 Interferometric readout
The capacitive readout scheme is straightforward but has some limita-
tions. First, the readout via the capacitance bridge is relatively slow,
and fast motions of the cantilever are difficult to monitor with this
technique. Second, the investigation of electrically contacted samples
featuring gate electrodes is hindered by crosstalk effects. Therefore,
Springborn et. al. introduced an alternative readout technique based
on a fiber optic interferometer integrated into 3He-systems used for
experiments in this work [Spr+06]. This method guaranteed a fast
monitoring of the cantilever deflection and enabled an enhancement of
resolution in M by a factor of ≈ 10 as opposed to the capacitive readout
scheme. Furthermore, gate-controlled magnetization and magnetotrans-
port experiments could be performed simultaneously during the same
cool-down process [Ruh+06].
For this purpose, the design of the MCM was slightly altered, as

sketched in Fig. 3.7 (a). Dedicated cantilevers featured a reflective Au
pad forming one mirror of the interferometer. Furthermore, evaporated
Au leads were integrated to address sample contacts and gate as well
as a thin film single turn coil used for calibration and active damping.
Flip-chip samples (c.f. section 3.1.1) were mounted upside-down on
the paddle using a conductive epoxy bonding technique. An optical
microscope image of the setup showing cantilever and optical fiber is
depicted in Fig. 3.7 (b).

In the following, we briefly explain the interferometric readout process.
For a more detailed description we refer to Ref. [Spr07]. A sketch of
the readout scheme is presented in Fig. 3.8. Laser light (λ = 1310 nm)
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flip-chip
sample

fiber
(a) (b)

Figure 3.7: (a) Sketch of MCM design for interferometric readout. The
cleaved edge of an optical fiber and an Au reflective pad on top of the
cantilever paddle formed a Fabry-Perot interferometer. The readout procedure
is illustrated in detail in Fig. 3.8. The MCM featured Au leads to address
electrical contacts of dedicated flip chip samples as well as a thin film coil.
(b) Optical microscope image of the setup with attached flip-chip sample and
optical fiber.

was coupled into a single-mode optical fiber. Via a beam splitter, 10 %
of the light was guided to the cantilever that was mounted inside a 3He
cryostat. An acusto-optical modulator (AOM) was used to adjust the
laser power. The Au reflective pad on the cantilever paddle and the
cleaved edge of the fiber formed a Fabry-Perot interferometer (blow-up
in Fig. 3.8). The reflected light was detected with a photo diode. The
photo voltage exhibited a characteristic interference pattern UPD(d),
as depicted in the inset in Fig. 3.8. We measured the deflection of the
cantilever by adjusting the vertical fiber position with a piezoceramic
tube in order to keep the distance d constant. This was achieved via a
closed feedback loop with the point of operation chosen to be one of
the inflection points of the interference pattern [marked with a dot in
the inset of Fig. 3.8 (b)]. Low-pass filtering (LPF) was used to average
over fast vibrations of the cantilever.

The voltage Upiezo at the piezo-electric tube was proportional to the
quasi-static cantilever deflection and provided the raw measurement
signal. A second feedback loop was used for active damping of fast oscil-
lations of the cantilever via the thin-film coil. The damping mechanism
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Figure 3.8: Schematic of the interferometric readout process. The cleaved
edge of the optical fiber and the mirror plate on top of the cantilever formed
a Fabry-Perot interferometer (see blow-up). The interference pattern (see
inset) was detected with a photo diode. By means of a piezoceramic tube, the
distance between fiber and cantilever was held constant via a closed feedback
loop using a PID controller. The piezo voltage Upiezo was used to measure
the deflection. In a second feedback loop, fast motions of the paddle were
damped via the integrated thin film coil.

is explained in detail in section 4.2.2. With this setup, deflections of
the cantilever < 1Å could be detected, which allowed for a resolution of
order ∆M ≈ 5× 10−16 J/T at B = 10 T and θ = 15◦.

The torque τ is expressed as

τ = KIUpiezo , (3.6)

where KI is the calibration constant for interferometric readout. Ab-
solute calibration was performed by passing a DC current I through
the thin film coil, thereby evoking a well-defined magnetic moment
M = I Acoil (Acoil is the area surrounded by the coil). We measured
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3 Samples and experimental setup

Upiezo as a function of I and extracted the slope κI = dI/dUpiezo.
Following [Spr07], KI was then obtained via

KI = κIAcoilB sin θ . (3.7)

We notice that KI was independent on the applied laser power as well
as the configuration parameters of the feedback loop, because Upiezo
directly translated into a deflection ∆d′ = 1.7 nm/V · Upiezo.

3.3 Magnetotransport measurements

Transport experiments are most commonly used to study quantum
oscillatory behavior of 2DESs in high magnetic fields and cryogenic
temperatures because they are straightforward to implement and do
not require involved experimental techniques as needed to measure
thermodynamic quantities. The transport of charge in response to an
electric field depends, among others, on the number of free states in
the vicinity of the Fermi level EF and thus on the density of states.
As explained in 2.2, EF passes through Landau levels with enhanced
DOS as the magnetic field B increases, which modifies the longitudinal
resistivity ρxx. ρxx performs 1/B⊥-periodic oscillations, which are also
known as Shubnikov-de Haas (SdH) oscillations [SH30]. Qualitatively,
these oscillations also reveal SOI effects in form of beating patterns and
exhibit the same node positions as M or µ.

In a diffusion picture by Ando and Uemura, the conductivity σxx of
a 2DES at applied field B⊥ and T = 0 is predicted to be proportional
to the DOS at the Fermi energy [AU74]

σxx = e2D(EF)D∗ (3.8)

with a diffusion constant D∗ ∼ (2n+ 1)l2B/τ ′ (τ ′ is the electron lifetime
and n is the LL index at the Fermi level). Equation (3.8) is valid if
the LLs do not overlap (i.e. the level broadening Γ is much smaller
than ~ωc). In this case, D(EF) ∝ exp

[
−(EF − En)2/Γ2]. If Γ & ~ωc, a
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3.3 Magnetotransport measurements

summation over n has to be performed. Moreover, if spin splitting is
included, σxx can be modeled via [Eng+82]

σxx ∝
∑
n,±

(
n+ 1

2

)
exp− (EF − En,±)2

Γ2 . (3.9)

Here, En,± are energies of the spin-split LLs. If the magnetic field is
sufficiently large, we can use

ρxx = σxx
(σ2
xx + σ2

xy) ≈ σxx
(
B⊥
e n2D

)2
, (3.10)

i.e., oscillations in σxx are directly reflected in the longitudinal resistance
ρxx. The above models predict that minima of ρxx(B⊥) occur at
B⊥ where EF resides in between two neighboring levels of the energy
spectrum En′ and thus can be identified with integer values of the filling
factor ν.

Neglecting quantization effects, the transverse resistance ρxy of a
2DES yields [YC13]

ρxy = − B⊥
e n2D

. (3.11)

This is the famous classical Hall effect [Hal79] which allows to extract
the sheet electron density n2D from the slope of ρxy measured as a
function of B⊥ = B cos θ. Consequently, the classical Hall measurement
is suitable to accurately determine the tilt angle θ of the sample once
n2D is known. At high magnetic fields, also ρxy of a 2DES can exhibit
signatures of Landau quantization in form of quantum Hall plateaus
[KDP80]. However, these effects were not addressed in the current work.

Using the Hall bar samples introduced in 3.1.2, ρxx and ρxy were
determined by injecting a current I of order 10 - 100 nA between contacts
1 and 5 and simultaneously measuring the voltage drop Uxx between
contacts 2 and 4 as well as Uxy between contacts 3 and 7 (c.f. Fig. 3.9).
These measurements were performed using standard low-frequency lock-
in technique. Here, we modulated the current with f = 17.3 Hz and
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Figure 3.9: Connection scheme for simultaneous Rxx and Rxy measurements
on Hall bar samples. An AC current was injected by applying an AC excitation
voltage with amplitude Uex over a resistance of 1.0 MΩ, while Uxx and Uxy
were detected with two coupled lock-in amplifiers.

detected Uxx and Uxy using two coupled lock-in amplifiers. From the
Hall bar geometry, we obtain

ρxx = Ex
jx

= Uxxd

Il
= Rxx

d

l
(3.12)

and
ρxy = Ey

jx
= Uxy

I
= Rxy (3.13)

with the current density jx = I/d. When presenting experimental
results, we will report on the measured resistances Rxx and Rxy instead
of the resistivities ρxx and ρxy.

The flip-chip samples with four contacts at the corners in the so-called
Van-der-Pauw configuration enabled to measure only one of the two
quantities at the same time. Here, Rxx was determined by injecting a
current between contacts 1 and 2 and measuring Uxx between 3 and
4 [see Fig. 3.10 (a)]. Despite from the rectangular geometry, Rxx was
proportional to ρxx because no net current passed between contacts 3
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Figure 3.10: Connection scheme for magnetotransport on rectangular flip-
chip samples. Here, (a) Rxx and (b) Rxy had to be measured in separate
configurations.

and 4, and thus no Hall signal caused by ρxy was superimposed to Rxx
[Pau58]. For determining Rxy, we injected I between contacts 1 and
3 and measured the voltage drop Uxy between 2 and 4 [see Fig. 3.10
(b)]. This signal, however, was a superposition between longitudinal and
Hall voltages [Pau58]. In order to extract the Hall resistance only, we
performed measurements at positive and negative B⊥ and subtracted
the two signals:

Rxy = 1
2
Uxy(B⊥)− Uxy(−B⊥)

I
(3.14)

This removed the longitudinal contribution which was independent on
the sign of B⊥ while keeping the transverse contribution with odd parity
in B⊥.
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4 Advancements of the
cantilever magnetometer
setup

In this chapter, we report on new developments of the cantilever magne-
tometer setup with interferometric readout (c.f. section 3.2) that were
elaborated in the course of this thesis. These advancements substantially
increased the performance of the device and led to a better understand-
ing of the device characteristics. First, we were able to measure the
electron temperature T of the flip chip sample directly as a function of
the applied laser power, clarifying that T was significantly increased
compared to the temperature of the sample stage. We improved the
readout procedure using lock-in technique, allowing for a substantial
reduction of the required laser power and enabling sample temperatures
in the mK range. Second, we report on a new method to simultaneously
measure the magnetization M and the chemical potential µ of a 2DES
via a combined static operation and resonant excitation of the MCM.
While the feasibility of this technique was already demonstrated by
Ruhe and Stracke [Ruh08; Str08], we combined the technique with the
improved interferometric readout procedure and found that the resonant
excitation significantly increased the sensitivity of the MCM by about
one order of magnitude. Finally, we analyzed mechanical resonance
curves of the MCM, demonstrating that the Q-factor and hence the
mechanical response of the MCM to a resonant excitation can be tuned
by modifying the parameters of the active damping loop.
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4 Advancements of the cantilever magnetometer setup

4.1 Power-modulated interferometric readout
scheme

The fiber-optics interferometer described in 3.2.3 was usually operated
at a laser power of P ≈ 10µW leaving the fiber edge above the cantilever
paddle. At cryogenic temperatures in the mK range, however, such
a power was sufficient to increase the electron temperature T of the
sample. For the present InGaAs/InP flip chip samples, we could measure
T (P ) via the amplitudes of Shubnikov-de Haas (SdH) oscillations as
determined from magnetotransport, i.e., the sample itself served as a
temperature sensor.

Figure 4.1: (a) Magnetotransport data Rxx(1/B⊥) of sample #4069-5B mea-
sured at different temperatures T with the laser switched off. The amplitudes
of the SdH-oscillations were used to calibrate the sample temperature. (b)
Sample temperature as a function of laser power P based on the calibration
shown in (a). Here, the temperature of the sample stage was Tstage = 280 mK.
The red data points mark the measurement conditions before (P = 20µW)
and after improvement of the setup (P = 20 nW).

To determine T (P ), we first switched off the laser and calibrated the
SdH amplitudes against a temperature sensor mounted on the sample
stage next to the cantilever. The recorded Rxx oscillations as a function
of 1/B⊥ for different T are shown in Fig. 4.1 (a). Next, we returned
to base temperature and recorded Rxx(1/B⊥) again for different laser
powers P , and extracted the respective sample temperatures from the
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4.1 Power-modulated interferometric readout scheme

previous calibration. The resulting T (P ) is plotted in Fig. 4.1 (b). With
a laser power of P ≈ 10µW, we found a sample temperature of ≈ 2.5 K
as compared to Tstage = 280 mK at the sample stage. We attributed
this behavior to the small heat conductivity of the thin cantilever beam,
which hindered the effective dissipation of heat away from the paddle.

beam
splitter

laserAOM30db
-30db

APD demodulator

REF

200 kHz modulation

input:
UAPD

output:
UAPD,dem

(∝ interference signal)

lock-in
amplifier

Figure 4.2: Schematic of the technique to measure the interference pattern
with lock-in technique. Via the acusto-optical modulator (AOM), the laser
power was modulated with a frequency of 200 kHz. The optical response
of the interferometer was detected with a low-noise avalanche photo diode
(APD) and demodulated in a phase-locked loop using a lock-in amplifier. The
output signal UAPD,dem was proportional to the interference pattern.

It is clear from the data in Fig. 4.1 (b) that only a substantial
reduction of P enabled temperatures in the mK range, which, however,
were crucial for the detection of SOI-related beating patterns in the
dHvA oscillations. Since such a decrease of P was not possible using
the original setup, we developed an improved version of the readout
scheme optimized for small laser powers. A schematic of the modified
parts of the setup is depicted in Fig. 4.2. For an effective filtering of
broadband noise, we modulated the laser power with 200 kHz via the
AOM, and demodulated the response signal using a lock-in amplifier.
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4 Advancements of the cantilever magnetometer setup

We replaced the original photo diode by an avalanche photo diode (APD)
with increased sensitivity for small light intensities. The demodulated
signal was finally converted to an output voltage UAPD,dem. Integration
with a time constant of 100µs still allowed to detect vibrations of the
cantilever paddle on the order of 100 Hz. In that sense, UAPD,dem(d)
exhibited the same interference pattern as measured directly by the
photo voltage UPD(d) in the previous setup with constant laser power.

With this modification of the setup, a reduction of P by more than a
factor of 1000 still allowed to detect the deflection of the cantilever with
high sensitivity, while simultaneously facilitating sample temperatures
in the mK range. Figure 4.3 shows recorded magnetization curves of
an InGaAs flip-chip sample for different P , ranging from 2.5 nW up
to 60 nW. While no significant loss in sensitivity was asserted above
20 nW, the signal-to-noise ratio in M started to degrade as soon as
P < 20 nW. For the measurements performed on InGaAs/InP flip-chip
samples we used P = 20 nW in order to account for maximum sensitivity
at a sample temperature of T = 600 mK.

4.2 Dynamic magnetization and chemical
potential

In this section, we present an advancement of the MCM setup that
allowed us to measure both the magnetization M and the chemical
potential µ of a 2DES, which was based on a combined static operation
and resonant excitation of the cantilever paddle. There are previous
works which used resonant driven MCMs to determineM with enhanced
sensitivity [Har+99; BSH08; Jan+11; JBM11]. The authors used a piezo-
driven stage to mechanically excite the cantilevers, and measured the
changes in resonance frequency or phase induced by the magnetization
of the sample.
Here, we present a different approach which was first employed by

Ruhe and Stracke [Ruh08; Str08] and further improved within the
course of this thesis. Complementary to the techniques used in the
works cited above, we excited the cantilever by a modulation of the
sample magnetization M itself via an oscillating gate voltage. This
allowed us to measure the derivative of M with respect to the number
of electrons ∂M/∂N as a function of B. Via the Maxwell relation
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Figure 4.3: Magnetization M(B⊥) measured for an InGaAs/InP flip-chip
sample (#4069-5C) using the improved interferometric setup with 200 kHz
power modulation. Four curves were measured with different average laser
power P to illustrate the power-dependent signal-to-noise ratio in M .

(∂M/∂N)T,B⊥ = (∂µ/∂B⊥)T,N , direct access to the chemical potential
µ was obtained by evaluating

µ = −
∫ (

∂M

∂N

)
T,B⊥

dB⊥. (4.1)

In the following, we describe the dynamic measurement technique
in detail and outline the modifications to the calibration procedure
needed to determine ∂M/∂N . Subsequently, we discuss the impact of
the active damping loop on the mechanical properties of the cantilever
and implications for the dynamic calibration process.

4.2.1 Experimental setup
We modulated the gate voltage of the flip-chip sample Ug = δUg sinωt
with amplitude δUg and frequency f = ω/(2π). This caused an in-
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Figure 4.4: (a) Illustration of M(B) for different n2D. If n2D is modulated
with amplitude δn2D at constant B, this results in a modulation of M with
amplitude proportional to ∂M/∂N and hence to a vibration of the cantilever
paddle. (b) For small vibration amplitudes δd, the dynamic response δUPD
in the interference is linear. Here, the quasi-static feedback loop accounted
for operation at the inflection point of the interference pattern.

stantaneous modulation of the electron density at the same frequency
and with amplitude δn2D = (∂n2D/∂Ug)δUg. Here, the transfer func-
tion ∂n2D/∂Ug was determined in a separate experiment. Further,
the modulation of n2D directly resulted in a modulation of the 2DES
magnetization M with amplitude

δM = ∂M

∂N
δN = ∂M

∂N
Amδn2D (4.2)

with the total number of electrons N = n2DAm and the 2DES mesa area
Am. This is illustrated schematically in Fig. 4.4 (a). The change of n2D
altered the curve M(B). At a fixed value of B, small changes of N thus
provoked changes in M proportional to ∂M/∂N . The modulation of M
led to a modulation of the torque with amplitude δτ = δM/(B sin θ),
which in turn caused a mechanical vibration of the cantilever paddle with
amplitude δd. The modulation frequency f was chosen slightly smaller
than the cantilever resonance frequency f0 on the order of ≈ 100 Hz
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4.2 Dynamic magnetization and chemical potential

to account for an increased mechanical response. Larger values of f
led to instabilities in the readout process. Low-pass filtering was used
to decouple the quasi-static feedback loop from the fast vibration of
the paddle and enabled the simultaneous detection of M . Thereby,
the (quasi-static) operation point of the interferometer was held at
the inflection point of the interference pattern. Consequently, small
deviations in the cantilever deflection δd resulted in a linear response
of the interference signal, as sketched in Fig. 4.4 (b). Using standard
lock-in technique, we measured δd via the amplitude of the oscillating
photo voltage δUPD.
In order to account for small laser powers and low sample tempera-

tures, we combined power modulation with 200 kHz and gate modulation
with ≈ 100 Hz via a tandem demodulation of the APD signal using
one-and-the-same lock-in amplifier. This was possible due to the dif-
ferent time scales defined by the two reference signals. Here, internal
digital signal processing improved the signal-to-noise ratio as opposed
to a measurement with two separate lock-in amplifiers. Therefore, in
the dynamic readout, we effectively measured the amplitude of the
demodulated APD signal, δUAPD,dem.
Calibration of the dynamic setup was quite similar to quasi-static

calibration. The linearity of the dynamic response connects the ampli-
tudes

δτ = Kdyn(B)δUAPD,dem . (4.3)

Here, the dynamic calibration constant Kdyn(B) had to be determined
as a function of B, because field-dependent forces provoked by active
and passive damping or the sample’s magnetization itself influenced
the mechanical resonance curve of the cantilever. Knowing Kdyn(B),
∂M/∂N was obtained by evaluating

∂M

∂N
≈ δM

δn2DAm
= Kdyn(B)
B sin θ Am (∂n2D/∂Ug) ·

δUAPD,dem

δUg
. (4.4)

For absolute calibration an AC current I = δI sinωt was passed
through the thin-film coil, thereby recording δUAPD,dem(B). Kdyn was
then obtained as

Kdyn(B) = δτ

δUAPD,dem
= δIcoilAcoilB sin θ

δUAPD,dem
. (4.5)
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4 Advancements of the cantilever magnetometer setup

We stress that the calibration was carried out under exactly the same
conditions as the actual measurement, i.e., at equal parameters of static
feedback and active damping loop, tilt angle θ and distance fiber -
cantilever. Different from static calibration, Kdyn sensitively depended
on each of those parameters. Figure 4.5 (a) and (b) exemplarily show
UAPD,dem(B⊥) and Kdyn(B⊥), respectively, measured for sample #4069-
5B at θ = 15◦ and using δIcoil = 4 nA. We observed that Kdyn(B) was
not a constant, but depended on the magnetic field B. Interestingly,
the dHvA-oscillations of the sample at larger fields were reflected in
Kdyn(B). We attributed this to a change in the mechanical resonance
frequency f0 evoked by the sample magnetization M .

1 2 3 4- 0 . 3

- 0 . 2

- 0 . 1

0 . 0
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 Nm
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Figure 4.5: (a) Raw calibration data δUAPD,dem(B⊥) of sensor #1236-1 with
sample #4069-5B. Parameters were δI = 4 nA and θ = 15◦. (b) Calculated
calibration constant Kdyn(B⊥).

4.2.2 Resonance curves and active damping
In this section, we discuss mechanical resonance curves of the cantilever.
First, we review the model of a driven harmonic oscillator and show
how active damping via a closed feedback loop can be integrated into
the modeling, thereby virtually modifying the mechanical properties
of the cantilever. Second, we present experimental resonance curves,
demonstrate the validity of our modeling, discuss the impact on Kdyn
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and extract quantitatively the enhanced mechanical response for the
dynamic measurement.

In the regime of small deflections where Hooke’s law holds true,
the cantilever can be described as a damped harmonic oscillator with
resonance frequency ω0 and damping parameter γ. Let us define by u a
dimensionless measure of the cantilever deflection. If the oscillator is
driven by an external force at frequency f = ω/(2π), the equation of
motion is

ü+ γu̇+ ω2
0u = δC sinωt . (4.6)

Here, δC is proportional to the amplitude of external excitation, and
δC/2ω0 denotes the quasi-static deflection (at ω = 0). The oscillation
amplitude δu as a function of ω is derived as [GM03]

δu = δC√
(ω2

0 − ω2) + (γω)2
. (4.7)

Active damping of the cantilever was performed by taking the deflec-
tion signal of the interferometer (∝ u), passing it through an amplifier
with adjustable gain p and a low-pass filter. Finally, the signal was fed
into the thin-film coil, thereby provoking an additional torque acting on
the cantilever. Here, the characteristics of the filter produced a phase
shift −δφ of the input signal, i.e., the response signal of the damping
loop was delayed with respect to the original deflection. This is illus-
trated in Fig. 4.6 (a). We note that δφ could be tuned by tuning the
cut-off frequency of the filter. The response signal can be decomposed
into a contribution proportional to the deflection u itself (∝ sinωt) and
a contribution ∝ cosωt, i.e., effectively proportional to u̇ [see Fig. 4.7
(b)]. These contributions enter the equation of motion

ü+ γu̇+ ω2
0u = δC sinωt︸ ︷︷ ︸

excitation

+ (Dp cos ∆φ) · u− (Dp sin ∆φ) · u̇︸ ︷︷ ︸
active damping

.

(4.8)

Here, D is a combined proportionality constant that contains the B- and
θ-dependence of the torque induced by the thin film coil and the overall
gain of the feedback loop. It is easy to see that the two introduced
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Figure 4.6: (a) Deflection u(t) of excited cantilever at frequency ω (solid
line, ∝ sinωt). The response of the active damping loop (dashed line) was
delayed by a phase difference ∆φ (∝ sin(ωt−∆φ)). (b) Decomposition of the
damping loop response into two signals ∝ sinωt (in phase, red) and ∝ cosωt
(phase-shifted by π/2, blue). While the former is proportional to u, the latter
is effectively proportional to u̇.

terms lead to a virtual modification of the mechanical parameters ω0
and γ of the form

ω′0 →
√
ω2

0 −Dp cos ∆φ

γ′ → γ +Dp sin ∆φ .
(4.9)

We stress that both p and ∆φ can be tuned, which enables a tuning of
f0 and γ and thus also an adjustment of the Q-factor of the cantilever.
Experimentally recorded resonance curves δu(f) for three different

values of p are plotted in Fig. 4.7. Here, we excited the cantilever
with an AC current at frequency f through the coil and measured
δUAPD,dem as a function of f . The active damping loop was operated
simultaneously. The resonance curves were measured at constant B
and θ. We observed a shift of f0 to lower f and an increase of γ as
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Figure 4.7: Experimental resonance curves δu(f) measured for cantilever
#1236-1 for different values of the proportional gain p of the active damping
loop (colored curves). The data were recorded at B = 4 T and θ = 15◦.
The black curves show respective fits by the model of a driven and damped
harmonic oscillator δu = δC/

√
(ω2

0 − ω2) + (γω)2. Extracted fit parameters
f0 = 2πω0, γ and δC are summarized in Tab. 4.1.

p increased, which is in accordance with Eq. (4.9). Furthermore, we
fitted the curves by Eq. (4.6) with free parameters f0, γ and δC, which
are summarized in Tab. 4.1. We found that the experimental curves
were represented quantitatively by the modeling, which underlines
that the system can indeed be described as a harmonic oscillator, also
with activated damping loop. As a consequence, the linear relation
δτ = KdynδUAPD,dem still holds and calibration of the setup based on
this relation is justified. Furthermore, the extracted fit parameters f0
and γ approximately follow the theoretical relations of Eq. (4.9) as a
function of p. Similar dependencies were asserted as a function of B or θ
(not shown). This demonstrates the validity of the above modeling and
proves that the resonance curve, and thus the calibration constant Kdyn,
sensitively depended on these parameters. For absolute calibration, it
was therefore indispensable to record Kdyn(B) under exactly the same
conditions as the actual measurement.
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4 Advancements of the cantilever magnetometer setup

Independent on the parameters f0 and γ, we extracted a static deflec-
tion δustat = δC/ω2

0 ≈ 0.1. If we compare this value to the amplitudes
at resonance condition, we find that an enhancement of the mechanical
response by more than a factor of 40 is possible with the used can-
tilevers. For measurements presented in this thesis, we used p = 0.1 and
f = 92 Hz, giving an increase by a factor of ≈ 15, which was already
large enough for a substantial sensitivity enhancement of the dynamic
measurement.

Table 4.1: Parameters f0 = ω0/(2π), γ and δC/ω2
0 extracted from fits of Eq.

(4.7) to experimental resonance curves plotted in Fig. 4.7 for different values
of the proportional gain p of the active damping loop.

p (arb. units) f0 (Hz) γ (1/s) δC/ω2
0 (arb. units)

0.1 93.79 3.96 0.11
0.3 90.58 9.64 0.12
0.5 87.18 16.24 0.12
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5 Magnetization and chemical
potential of a 2DES with
spin-orbit interaction

In this chapter we present measurements of the magnetization M and
the chemical potential µ on gated InGaAs/InP 2DESs that are subject
to spin-orbit interaction. As explained in detail in chapter 2, these
thermodynamic functions of state provide access to the electronic ground
state. In particular, the presence of SOI provokes a modification of
the Landau level structure which is directly reflected in the magneto-
oscillations of M and µ via beating patterns. The experimental traces
of these quantities as a function of field can be directly simulated from
theoretical energy spectra without further microscopic assumptions.
Hence, M and µ are powerful to verify the validity of theoretical models
describing the electronic structure of 2DESs.

Extensive investigations on magnetization M and chemical potential
µ in the presence of SOI in a 2DES and related quantum structures
can not be found in the literature. This is because investigations of
SOI-related beating patterns in M are challenging due to the inherently
small sensitivity of torque magnetometry at small B (c.f. section 3.2).
Recent works include measurements on AlGaAs-based heterostructures,
where it was possible to detect a single beat node only at high tilt
angles θ [Wil+09]. Using the same InGaAs/InP heterostructure as
investigated in the present work, Rupprecht et. al. observed a beat
node in the quantum oscillatory M at low tilt angles [Rup+13], which
was attributed to a dominant Rashba SOI. Furthermore, they found
anomalies in frequency and shape of the dHvA-oscillations, which are
still unexplained to date.

Although magneto-oscillations in the chemical potential µ have been
reported in separate experiments, signatures of SOI have, to the best
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of our knowledge, not been addressed so far. Most recent studies
focused on the steep jumps in µ that occur in a quantum Hall state of
2DESs. These investigations reported on Wigner crystal formation in
bilayered 2DES [Zha+14] and quantum Hall ferromagnetism in bilayer
graphene [Kim+12; Lee+14]. However, the detection of µ required
rather involved techniques, including nanostructured single electron
transistors [Wei+97], magnetocapacitance measurements [Dol+97] or
electrometry on dedicated heterostructures, where complicated field-
dependent re-tuning of gate voltages was needed [EPW94; Ho+10].
Here, we show that M and µ can be measured simultaneously via

the novel micromechanical approach introduced in chapter 4. Using
dedicated micromechanical cantilevers, access toM and µ was gained via
a decoupled quasi-static operation and resonant excitation in response
to a modulation of a gate voltage. Thus, the presented technique is
straightforward to address the thermodynamic ground state in the sense
that any gateable 2D system can be investigated. For the present InGaAs
2DES, we observed only a single beat node in the quantum oscillations
ofM , while an enhancement of resolution in µ enabled the detection of a
second beat node. In a subsequent modeling of the curves, we show that,
in addition to a dominant Rashba contribution, a small Dresselhaus
term is required to describe the experimental data convincingly. This
analysis goes beyond previous experimental investigations of SOI-related
beatings [Luo+88; Das+89; Nit+97; Eng+97; Rup+13; Wil+14], where
only the Rashba SOI mechanism was considered.

5.1 Experimental methods
Two flip-chip samples with four contacts and a gate electrode, denoted
with #4069-5B and #4069-5C, were prepared from the same wafer
as described in detail in 3.1.1. They were mounted and contacted
upside-down on the paddle of dedicated GaAs cantilevers featuring Au
leads to match the respective sample contacts. The cantilevers were
placed on a fixed stage of a 3He-cryostat with an integrated optical
fiber, allowing for a base temperature of T = 280 mK at zero laser
power. To address static and dynamic deflection of the cantilever
paddle, we used the improved optical readout technique as introduced
in 4.1, where we modulated the laser power with 200 kHz. The average
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power that left the optical fiber was 20 nW, thereby slightly increasing
the sample temperature to T = 0.6 K. Besides the small heating effect,
the laser did not influence the basic properties of the 2DES, as verified
by magnetotransport measurements. Furthermore, illumination with
a blue or an infrared LED did not have any effect on the electron
density, as it was usually observed for un-gated samples (see [Rup+13]
and chapter 6). The magnetic field was applied using a 2-axis vector
magnet system with radial field strength of 4.5 T, with the field plane
oriented parallel to the cantilever beam (see Fig. 5.1). The field was
tilted towards the [11̄0] direction of the sample, corresponding to a fixed
in-plane angle of ϕ = 135◦.

B

90◦− θ

Figure 5.1: Sketch of the micromechanical cantilever magnetometer with
the flip-chip sample placed on the cantilever paddle. The magnetic field B
was applied with a 2-axis vector magnet system with the field plane parallel
to the cantilever beam and the surface normal of the sample. The tilt angle θ
was adjusted electronically.

The presented setup opens up the possibility to perform a variety of
different experiments. These include measurements of magnetotransport,
magnetization, magnetocapacitance and chemical potential, which can
be recorded as a function of magnetic field, tilt angle and also electron
density via the application of static gate voltages. In the following, we
briefly summarize the experimental observations. First, we observed
that in Rxx-measurements the SdH oscillations were superimposed by
a strong background, i.e., in a quantum Hall state, the Rxx plateaus
did not go to zero. Second, in simultaneous measurements of Rxx and
M , we observed phase shifts of Rxx minima with respect to the steep
dHvA flanks, which became more important for large filling factors and
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5 Magnetization and chemical potential of a 2DES with SOI

increasing tilt angle. Nonetheless, we note that the B⊥-positions of the
dHvA flanks remained constant as a function of θ, while it was the Rxx
minima that seemed to shift. The origin of this anomaly could not be
clarified. We emphasize that the observed behavior differed from the
findings of Rupprecht et. al., where a slight jump of the frequency of
the magnetization was asserted at the first beat node [Rup+13]. Third,
experiments at high tilt angles revealed additional anomalies in the
envelopes of both SdH and dHvA oscillations. Finally, we found that the
application of static gate voltages produced drifts of the electron density
on a relatively long timescale, therefore preventing measurements for
different static gate voltages.

Considering these experimental findings, we will omit the discussion
of the recorded Rxx-data and concentrate on measurements of M and
µ which we performed at moderate tilt angles and at zero static gate
voltage in the following. These were carried out with all four transport
contacts connected to ground level, while the gate voltage was modulated
with ∆Ug = 5.6 mV at f = 92 Hz. The static and dynamic deflection
of the cantilever were read out simultaneously as described in section
4.2. The experiments were performed with an activated damping loop
to stabilize the cantilever motion in order to avoid a feedback loop
lock-out. For each tilt angle θ, we averaged the data over four sweeps
of B to effectively decrease statistical noise. Both samples #4069-5B
and #4069-5C revealed consistent results. In the following, we present
data of sample #4069-5B and report on extracted fitting parameters
for both samples.

5.2 Experimental results
We divide the analysis of experimental data into four parts. First, we
discuss the characteristics of the top gate and derive the transfer function
∂n2D/∂Ug needed to calibrate the dynamic magnetization measurement.
Second, we show and compare simultaneous measurements of M and
∂M/∂N . Next, we derive the experimental chemical potential from
the ∂M/∂N measurement and extract the SOI constants αR and βD
from the experimental beat node positions. Finally, we calculate model
curves for M and µ to fit the experimental data. For the theoretical
analysis and simulation we use the model introduced in 2.4.
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5.2.1 Gate characterization and transfer function
As explained in 4.2.1, the dynamic measurement of ∂M/∂N via a
modulation of the top gate voltage Ug requires the knowledge of the
transfer function ∂n2D/∂Ug for absolute calibration. Using the transport
contacts of the sample, we determined n2D via a Hall measurement by
evaluating n2D = B⊥/(eRxy) as a function of Ug. Here, we applied a
relatively small B⊥ = 100 mT where Rxy(B⊥) did not exhibit plateaus.
Figure 5.2 (a) shows n2D(Ug) for static gate voltages Ug. With the
laser switched off, the electron system could successively be depleted
by applying a negative Ug [black squares in Fig. 5.2 (a)]. A linear
fit revealed ∂n2D/∂Ug = 1.94 × 1011 cm−2/V. In contrast, when the
laser was switched on, n2D started to drift to larger values. This drift,
however, appeared on a relatively long time scale of several 10 minutes
until a saturation of n2D was asserted. The red circles in Fig. 5.2 (a)
show saturated n2D(Ug) under these conditions. Apparently, the static
n2D could not be changed significantly with Ug under laser operation,
which prevented measurements of M and µ as a function of n2D.
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Figure 5.2: (a) (Saturated) electron density n2D as a function of a static
gate voltage Ug with the laser switched off (black squares) and with a laser
power of 20 nW (red circles). The dashed line represents a linear fit of the data
without laser operation, yielding a slope of ∂n2D/∂Ug = 1.94× 1011 cm−2/V.
(b) Amplitude δn2D measured for a (fast) modulation of Ug with amplitude
δUg and frequency f = 17.3 Hz. A linear fit yielded the transfer function
∂n2D/∂Ug = 2.60× 1011 cm−2/V.
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Nonetheless, a modulation of n2D on the order of several Hz was not
affected by this drift. For a measurement of ∂n2D/∂Ug under these
conditions, we applied Ug(t) = δUg sin(ωt) and detected the dynamic
modulation δRxy with lock-in technique.1 For small changes in n2D,
the modulation amplitude δn2D is derived via

δn2D ≈ n2D
δRxy
Rxy

, (5.1)

where n2D is the static density and Rxy is the static Hall resistance.
We found a linear increase of δn2D(δUg) as depicted in Fig. 5.2 (b). A
linear fit yielded ∂n2D/∂Ug = 2.60× 1011 cm−2/V, which is comparable
to the value found for static gate voltages without laser operation.
Measurements at different excitation frequencies f = ω/(2π) ranging
from 10 Hz to 100 Hz yielded identical values of ∂n2D/∂Ug, which
substantiates the fact that the previously discovered drifts of n2D do
not play a role at this time scale. Following this analysis, we concluded
that the value of the transfer function ∂n2D/∂Ug as determined from
the dynamic Hall measurement is suited best for calibration of ∂M/∂N .

5.2.2 Static and dynamic magnetization
Figure 5.3 (a) and (b) shows experimental curves of the static magneti-
zationM at low and intermediate fields B⊥, respectively. The data were
recorded at θ = 39.0◦. A background of interconnected splines, which
varied slowly on the scale of the oscillation period, was subtracted from
the raw M signal to extract its oscillatory part. We observed dHvA
oscillations in M with strict 1/B⊥-periodicity. From the oscillation pe-
riod in 1/B⊥, we extracted the electron density n2D = 8.57×1011 cm−2.
In the intermediate field regime 1 T < B⊥ < 2 T, asymmetric dHvA-
oscillations were asserted, with the steep downward flanks corresponding
to even integer filling factors. For small fields B⊥ < 0.8 T, the asym-
metry smeared out and the oscillations approached a more sinusoidal
shape. A beat node was identified at B⊥ = 0.63 T. We verified that the
downward flanks of the dHvA oscillations at field values below the beat
node position corresponded to odd integer filling factors. The maximum

1This measurement was performed with constant excitation current I and mag-
netic field B⊥. The static Rxy was measured simultaneously.
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visible filling factor was ν = 109. For smaller field values B⊥ < 0.33 T,
the magnetic signal of the 2DES was below the noise level.
Experimental curves of the dynamic magnetization ∂M/∂N , which

were recorded simultaneously, are shown in Fig. 5.3 (c) and (d). We
observed 1/B⊥-periodic magneto-oscillations that were phase-shifted by
a quarter of a period with respect to the dHvA oscillations in M . In the
intermediate field regime, pronounced peaks were asserted in ∂M/∂N
at field positions where the dHvA oscillations exhibited steep flanks.
This behavior is expected because at even integer ν, changes in both B⊥
and N will result in a strong variation of M , which explains the steep
flanks in M(B⊥) and the sharp peaks in ∂M/∂N at these positions.
The oscillatory signal in ∂M/∂N was detectable down to B⊥ = 0.21 T,
corresponding to ν = 168. This allowed us to identify a second beat
node at B⊥ = 0.3 T, as illustrated in the inset of Fig. 5.3 (c). The
observed improvement of resolution of the dynamic measurement can be
explained by the enhanced mechanical response of the cantilever near
its resonance frequency. Since this response is proportional to the gate
modulation δUg, the resolution in ∂M/∂N could be further increased by
increasing δUg. However, a modulation of Ug, and hence n2D, changes
the filling factor ν via

δν = δn2D
h

eB⊥
. (5.2)

Therefore, if δν is too large, the modulation of n2D would smear over
neighboring ν, thereby reducing the amplitude of the observed magneto-
oscillations. In the present experiment, we chose δUg = 5.6 mV, cor-
responding to δn2D = 0.015× 1011 cm−2. With this configuration, we
found that δν < 0.5 at B⊥ > 0.21 T, i.e. the modulation of M via n2D
never exceeded a quarter of an oscillation period.2 In addition to these
considerations, we experimentally checked that an increase of δUg from
5.6 mV to 14 mV did not account for a reduction of amplitude of the
observed magneto-oscillations, which confirms that the chosen δUg was
small enough and did not smear the signal in ∂M/∂N .

2Magneto-oscillations occurred only at every second integer ν in the respective
field regime. Therefore, δν = 0.5 corresponded to a change of a quarter of an
oscillation period in M .
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Figure 5.3: Simultaneously measured static magnetization M and dynamic
magnetization ∂M/∂N as a function of B⊥ at different field regimes. The
presented data were recorded for sample #4069-5B at θ = 39.0◦. In (a)
and (b) M(B⊥) is plotted for small and intermediate fields, respectively.
Panels (c) and (d) show the corresponding curves of ∂M/∂N(B⊥). In the
low-field graphs (a) and (c), observed beat node positions are indicated by
arrows. The inset in (c) shows a blow-up of the data in the vicinity of the
second node. For the dynamic measurement, a modulation of the gate voltage
with δUg = 5.6 mV was applied at f = 92 Hz. The sample temperature was
T = 0.6 K.
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5.2.3 Extraction of SOI constants
In the following, we deduce the experimental chemical potential µ and
extract the SOI constants αR and βD from the node positions in µ. We
calculated the oscillatory part of µ(B⊥) from the dynamic measurement
of ∂M/∂N using the Maxwell-relation [Eq. (2.17)] and applying

µ(B⊥) = −
∫ (

∂M

∂N

)
T

· dB⊥ . (5.3)

From the resulting traces µ(B⊥), we extracted the two beat node
positions by fitting the envelopes of the magneto-oscillations in the
vicinity of the nodes with low-order polynomials and finding their
crossing points as illustrated in Fig. 5.4 (a) and (b) for the first and
second node, respectively. The field positions of the nodes could thus
be determined with high accuracy and exhibited error bars of 4 mT for
the first and 3 mT for the second node. 3

In the model calculations, we searched for beat node positions B⊥ in
the energy spectra En′(B⊥) at which subsequent energy gaps were equal
in size, as introduced in section 2.4.1. This allowed us to theoretically
predict the first and second beat node as a function of the SOI constants
αR and βD. Using this routine, we adjusted αR and βD in order to
match the node positions of theory and experiment by means of a least-
squares fit. Fixed parameters within this routine were m∗ = 0.037m0,
n2D = 8.57× 1011 cm−2 and g∗ = −4.45. Since such a fit does not yield
unique results for αR and βD, we only considered sets of (αR, βD) with
a dominant Rashba parameter, as previously reported for the given
InP/InGaAs heterostructure [Rup+13].

Experimental beat node positions as well as extracted SOI constants
for different tilt angles θ are summarized in Tab. 5.1 for both samples,
#4069-5B and #4069-5C. For the present range of θ < 40◦, no signif-
icant shifts in B⊥ for both node positions were asserted. Besides the
dominant R-parameter αR, the analysis yielded a small, but significant
D-contribution βD of order 0.1αR, which was neglected in previous
investigations of the same heterostructure. The given error bars for the

3To rule out possible systematic errors by comparing experiment and simulation,
we performed a computer experiment of simulated µ(B) with different broadening
parameters T and Γ. We verified that this method accurately revealed the theoretical
node positions as predicted from the energy spectra (c.f. section 2.4.1).
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Figure 5.4: Illustration of the procedure to determine beat node positions
from the experimental µ(B⊥) for (a) first and (b) second node as measured
for sample #4069-5B. The envelopes of the observed magneto-oscillations
were fitted with low-order polynomials (dashed lines). The node positions
were extracted from the crossing points of these fits.

extracted αR and βD reflect the uncertainties in the experimental node
positions, implying that the R-parameter could be determined with very
high accuracy of ∆αR/αR < 1 %, while the uncertainty of βD was on
the order of 20 %. The data presented in Tab. 5.1 demonstrate that
the obtained results were consistent for both samples #4069-5B and
#4069-5C.

5.2.4 Fitting of theoretical model curves to the
experiment

Employing the formalism introduced in chapter 2, we directly mod-
eled the curves M(B⊥) and µ(B⊥) using the parameters g∗ = −4.45,
n2D = 8.57× 1011 cm−2, αR and βD as in Tab. 5.1 and T = 0.6 K. The
only free parameter left was the level broadening Γ, which we adjusted
to match the amplitudes of the magneto-oscillations. In order to check
for possible deviations of the experimental M and µ from the single
particle model, we simulated both M and µ using one and the same
parameter set. Simulated and experimental curves of M and µ are
presented in Fig. 5.5 (a) and (b) for the intermediate field regime. In
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Table 5.1: Field positions of the first two beat nodes at different tilt angles θ
measured for both samples #4069-5B, #4069-5C and extracted SOI-constants
αR, βD. Uncertainties in the node positions are reflected in the error bars
given for αR, βD. For the calculation, we used g∗ = −4.45, m∗ = 0.037m0
and n2D = 8.57× 1011 cm−2

sample θ node 1 node 2 αR βD

(◦) (T) (×10−12 eVm)

14.0 0.629 0.296 4.42± 0.02 0.48± 0.10
#4069-5B 29.0 0.629 0.297 4.44± 0.02 0.43± 0.10

39.0 0.629 0.297 4.44± 0.02 0.46± 0.10
18.8 0.625 0.297 4.44± 0.02 0.49± 0.10

#4069-5C 28.8 0.625 0.298 4.45± 0.02 0.54± 0.10
38.8 0.631 0.295 4.44± 0.02 0.38± 0.10

the background of Fig. 5.5 (b), the calculated DOS is illustrated via
a gray-scale plot together with the discrete En′(B⊥) (dashed lines).
Here, the experimental µ was offset by the theoretical zero-field Fermi
energy EF = (π~2n2D)/m∗. For both quantities M and µ, we found
that experiment and simulation were in very good agreement and no
significant deviation of the experimental oscillation amplitudes ∆M and
∆µ with respect to the the model curves was asserted. Therefore, our
experiment confirms the relation ∆M/N = ∆µ/B⊥ [Wie+97] for the
investigated 2DES.

We found Γ = 0.83 meV/
√

T for sample #4069-5B, which was larger
than Γ = 0.6 meV/

√
T extracted for sample #4069-5C. We attribute

this behavior to residual inhomogeneities across the wafer. Previously,
a value of Γ = 0.5 meV/

√
T was reported for samples prepared from

the same wafer [Rup+13]. From the gray-scale plot of the DOS it is
clear that odd integer filling factors due to spin splitting could not be
resolved within the present field regime, because the level broadening
was too large.

The same comparison of experimental and simulated M and µ for
the low-field regime is depicted in Fig. 5.6. The model parameters
were identical to the results presented in Fig. 5.5. Also for this field
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Figure 5.5: Comparison of experiment (sample #4069-5B, red curves) and
simulation (dotted curves) of (a) magnetization M(B⊥) and (b) chemical
potential µ(B⊥) at intermediate fields. The experimental µ was vertically
shifted by the zero-field Fermi energy EF = (π~2n2D)/m∗. In the bottom
panel, the calculated density of states is illustrated as a gray-scale plot
together with the discrete En′(B⊥) (thin dashed lines). The model curves
in (a) and (b) were calculated using one and the same parameter set, being
m∗ = 0.037m0, g∗ = −4.45, n2D = 8.57× 1011 cm−2, αR = 4.42× 10−12 eVm,
βD = 0.48× 10−12 eVm T = 0.6 K and Γ = 0.8 meV/

√
T.

regime, we found excellent agreement between experiment and simula-
tion, including the predicted positions of the beat nodes. We observe a
remaining discrepancy in that the experimental amplitude ∆µ at small
fields was larger than the theoretical prediction. This enhancement of
the experimental ∆µ with respect to the prediction by the model, how-
ever, was not observed for sample #4069-5C. The modeling of M(B⊥)
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demonstrates that the second beat node could not be resolved experi-
mentally, because the noise level was much larger than the predicted
dHvA amplitudes at small fields.

Figure 5.6: Comparison of experiment (sample #4069-5B, red curves) and
modeling (black curves) for (a) M(B⊥) and (b) µ(B⊥) at small magnetic
fields. Beat node positions are marked by arrows. The insets show zooms of
the second beat node. Simulation parameters were identical to those reported
in Fig. 5.5.
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5.3 Discussion
With the present experiment, we showed that the magnetization M as
well as the chemical potential µ could be addressed in a simultaneous
measurement. For the InP/InGaAs-based 2DES investigated here,
both quantities exhibited 1/B⊥-periodic magneto-oscillations at low
temperatures. The measurement of µ featured an enhanced sensitivity as
compared to M in the sense that quantum oscillations were detectable
down to much smaller fields. In quantitative terms, we state that
the signal-to-noise ratio of the dynamic measurement was increased
by a factor of ≈ 10 as opposed to the quasi-static operation. This
significant enhancement in sensitivity was attributed to the increased
mechanical response of the cantilever for the dynamic measurement with
a modulation frequency close to the mechanical resonance frequency.
Both M and µ showed characteristic beating patterns which we at-

tributed to SOI effects. To date, this is the first experimental observation
of SOI-related beatings in the quantum oscillatory µ of a 2DES. The
enhanced sensitivity of the dynamic measurement allowed to identify
a second beat node in µ which was beyond experimental reach for
the quasi-static measurement of M . By using the theoretical model
introduced in section 2.4.3, we extracted both Rashba and Dresselhaus
parameters αR and βD from the two experimental beat node positions
in µ. Here, the improved procedure to extract these positions via fits
of the oscillation envelopes allowed for a very precise measurement of
αR and βD. As a result, we could show that, in addition to a dominant
Rashba parameter, a small Dresselhaus contribution βD on the order of
0.1αR was required to accurately model the data. To substantiate this
fact we note that model curves µ(B⊥) deviated from the experimental
data if only R-SOI was taken into account (not shown). To the best of
our knowledge, this is the first experimental demonstration that both
Rashba and Dresselhaus contributions are relevant to describe SOI-
related beating patterns in 2DES-based magneto oscillations. Following
the considerations in section 2.4.3, we note that for perpendicular field
orientation, the beatings do not depend on the sign of αR/βD. This
holds also true for increasing tilt angle θ as long as the beat nodes do
not shift to higher field values, as it is the case for the experimental node
positions reported in Tab. 5.1. Following this, we report absolute values
of αR and βD and also state that the exact in-plane angle ϕ is irrelevant

92



5.3 Discussion

in the modeling of the present data. The determination of the relative
sign of αR/βD requires high tilt angles, where the in-plane anisotropies
in the beating pattern become relevant, as we will demonstrate via
magnetotransport measurements in chapter 6.

In the following, we discuss further implications which underline the
great potential of the presented measurement technique to investigate
the electronic structure of 2DESs. We stress that the combined de-
tection of M and µ provides complementary insights into the 2DES
ground state properties. Here, the ability to measure both quantities on
one-and-the-same 2DES during the same cool-down process is essential
for a direct comparison of M and µ, because separate measurements
might suffer from drifts of the 2DES density n2D upon thermal cycling.
While the magnetization M = −∂F/∂B⊥ probes changes in the total
free energy, the chemical potential µ = ∂F/∂N monitors the highest
occupied states, and is not sensitive to changes in the low-lying oc-
cupied states. Theory predicts that in a single particle picture the
amplitudes of the magneto oscillations ∆M and ∆µ are related via
∆M/N = ∆µ/B⊥ [Wie+97]. We confirmed this relation experimentally
by showing that both M and µ were reproduced quantitatively using
a single particle model with identical input parameters. However, a
simultaneous measurement of M and µ would be of particular interest
to investigate 2DESs that exhibit electron-electron interaction effects.
Although the relation ∆M/N = ∆µ/B⊥ was shown to hold true also
for interacting electrons in the Hartree-Fock approximation [MOL86],
a modeling that includes dynamic screening effects predicts a strong
enhancement of ∆M over ∆µ [Mei+01]. The presented technique allows
to explore this discrepancy experimentally. With the ability to tune
the static 2DES density n2D via the integrated gate electrode, possible
interaction effects may even be tuned to significant strength in situ via
reducing n2D to very small values. Furthermore, the gate electrode is
relevant if the interplay of the gate-tunable R-SOI and D-SOI is to be
studied in the quantum oscillations of M and µ, which was not possible
for the present samples due to long-term drifts of n2D. In addition,
the combined access to M and µ is suitable to study quantum Hall
ferromagnetism of 2DESs. While signatures of this effect were addressed
previously in µ(B) [Lee+14], a direct measurement of the expected mag-
netic hysteresis in M(B) has not yet been reported. Finally, we state
that the presented technique is also of great potential to investigate the
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electronic properties and electron-electron interaction effects of novel
2D materials [MAH14].
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6 Investigation of spin-orbit
interaction by anisotropic
magnetotransport

Access to the absolute values and relative sign of the SOI parameters αR
and βD in 2DESs can be obtained in experiments which probe the in-
plane anisotropy of measured quantities. As for the magneto-oscillations,
we showed theoretically in chapter 2 that the SOI-related node positions
will shift as a function of the in-plane angle ϕ in tilted field experiments,
enabling to extract αR and βD. However, if an external magnetic field
is applied, in general the anisotropy of the Landé g∗-tensor has to be
considered in the modeling. While the out-of-plane anisotropy of g∗

is independent of SOI effects, the existence of an in-plane off-diagonal
component gxy is directly connected to the presence of both SIA and BIA
[KK93]. The respective correlations are summarized in the following
relations:

gxy = 2γe
~µB

(
〈k2
z〉〈z〉 − 〈k2

zz〉
)

c.f. Ref. [KK93]

βD = γ

(
〈k2
z〉 −

1
4k

2
F

)
αR = 〈r6c6c

41 E〉 .

(6.1)

For the parameter definitions see section 2.3. Like the Dresselhaus
parameter βD, gxy is proportional to the bulk Dresselhaus parameter γ.
Additionally the wave function needs to be asymmetric in the z-direction
perpendicular to the QW to obtain a non-zero gxy. A z-asymmetry of
the wave function is also required to obtain a non-zero Rashba parameter
αR, because expectation values of z and pz also enter r6c6c

41 [Win03].
However, details on the electron wave function w(z) for the investigated
heterostructure are not known and a numerical treatment to estimate
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6 Investigation of SOI by anisotropic magnetotransport

w(z) is beyond the scope of this work. In that sense, αR, βD and the
components of g∗ are to be treated as independent parameters and have
to be determined experimentally.
So far, SOI-induced in-plane anisotropies were addressed, e.g., by

Ganichev et. al., who measured the anisotropy of ϕ-dependent spin-
photocurrents on InAs/AlGaSb single quantum wells [Gan+04]. They
were able to extract the ratio αR/βD from their measurements indepen-
dent of g∗, but absolute values could not be obtained with the method.
In a subsequent work, Meier et. al. [Mei+07] addressed the spin preces-
sion of electrons as a function of their ϕ-dependent in-plane momentum.
Via time-resolved Faraday rotation they extracted spin-orbit magnetic
fields BBIA and BSIA and were able to report both absolute values and
relative sign of αR and βD. However, anisotropies in the g∗-tensor,
although necessary in the analysis of the data, were not considered in
their work. Larionov and Golub demonstrated the tunability of αR/βD
via a gate voltage in angle-dependent, time-resolved Kerr rotation ex-
periments on AlGaAs heterostructures [LG08]. Most recently, Saskai
et. al. investigated the anisotropy of spin scattering rates in etched
GaAs/AlGaAs nanowires as a function of an in-plane magnetic field via
weak-localization dips in magnetoconductance measurements [Sas+14].
From their analysis, the ratio αR/βD could be determined directly with
high accuracy and without fitting routines. Furthermore, they observed
the persistent spin helix symmetry, i.e., αR = βD, via a gate-controlled
tuning of αR. Absolute values of αR and βD were also reported, but
were subject to sizable uncertainties.

One of the first attempts to address SOI-induced spin-splitting in
semiconductor heterostructures was via magnetotransport measure-
ments. Already in the late 1980s, the zero field spin splitting due to
R-SOI was extracted from beating patterns in the Shubnikov-de Haas
(SdH)-oscillations and the θ-dependence of the beating pattern was
investigated [Luo+88; Das+89; Luo+90; DDR90]. Later experimental
studies of SdH beating patterns also focused on samples with a dom-
inant R parameter and neglected a possible D-contribution [Eng+97;
Nit+97; Gru00; Fan+11]. Up to now, in-plane anisotropies of SOI-
related beat node positions probed by tilted field experiments lack a
detailed investigation.
The out-of-plane anisotropy of g∗ has been intensively studied in

AlGaAs-based samples [Le +97; MH00; PZ06], where no substantial
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deviation between g⊥ and g‖ was asserted. Only little experimental data
on g⊥, g‖ was published for InGaAs/InP-based heterostructures. Kowal-
ski et. al. measured g⊥ and g‖ on InxGa1−xAs QWs for 0.4 < x < 0.6
via optically detected magnetic resonance and reported a significant
out-of-plane anisotropy with a constant g⊥/g‖ ≈ 0.6 independent of the
In-content x. They also found that the anisotropy increased for smaller
QW width.

Measurements of the in-plane anisotropy of g∗ were first demonstrated
by Oestreich et. al. on symmetric AlGaAs-based QWs subjected to
a perpendicular electric field, using spin quantum beat spectroscopy
[OHR96]. This technique was also applied in a recent work, where
gxy and the spin-relaxation rate were measured simultaneously, which
allowed to extract absolute values of αR and βD [Eld+11]. The authors
showed that, despite a significant in-plane anisotropy of g∗, the R-SOI
parameter can be small in isomorphous QW structures, i.e. where
the asymmetry is achieved via a variation of alloy concentration. So
far, the in-plane anisotropy of g∗ in asymmetric InGaAs/InP-based
heterostructures is unexplored.

In this chapter, we present magnetotransport experiments in external
magnetic fields, where we varied both tilt angles θ and ϕ. We show
that SdH-oscillations exhibit beat nodes, with the first node exhibiting
a substantial in-plane anisotropy. From the measured node positions
we extract both absolute values and relative sign of αR and βD via a fit
of the theoretical model to the data. Furthermore, we report all three
components of the g∗-tensor and discuss the relevance of anisotropies
in g∗ for a correct modeling of the experimental data. Therefore, the
in-plane anisotropy of gxy is measured directly via the coincidence
technique, while the out-of-plane anisotropy is taken as a fit parameter
in the model. We note here that torque cantilever magnetometry
experiments are inappropriate for these measurements, because the
beam of the cantilever defines a specific in-plane direction for B and
experiments are limited in situ to a fixed ϕ. However, beat nodes in
Rxx can be extracted from the evolution of amplitudes ∆Rxx at even
and odd filling factors. A direct simulation of Rxx(B⊥) which would
require to include additional effects in the simulations such as scattering
mechanisms is not necessary.
The chapter is organized as follows. In section 6.1, we present the

coincidence measurements to address the in-plane anisotropy of g∗.
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6 Investigation of SOI by anisotropic magnetotransport

Experimental Rxx-data in doubly tilted fields addressing the evolution
of node positions are shown in section 6.2. We introduce the fitting
procedure to extract the SOI and g∗ parameters in section 6.3.1. We
discuss our findings in section 6.4.

6.1 Measurement of the in-plane g∗-tensor
anisotropy

In this section we experimentally address the in-plane anisotropy of
g
∗ for the investigated heterostructure using the coincidence technique.

Here, we will extract the components gxy and g80. The latter describes a
superposition of g⊥ and g‖ at the measured coincidence angle of θ ≈ 80◦.

6.1.1 Experimental methods
The main idea to extract parameters of g∗ from magnetotransport
measurements is to analyze the spin splitting ∆s at large B⊥, where
the Zeeman interaction dominates and the contribution of SOI-terms is
almost negligible. In this special case, ∆s can be expressed via a scalar,
but angle dependent g∗-factor g∗(θ, ϕ) as in Eq. (2.33). We now use the
coincidence method to determine g∗(θ, ϕ) at particular values of θ and
ϕ. In order to achieve large field values needed for this experiment, a
single-axis 15 T-magnet was used. A 3He cryostat featuring a rotatable
stage allowed for continuous variation of the polar angle θ. The Hall-
bar sample was mounted in two different in-plane orientations, namely
ϕ = 45◦ (‖ [110]) and ϕ = 135◦ (‖ [11̄0]) as depicted in Fig. 6.1 (a) and
(b), respectively. These in-plane orientations matched the expected
extremal values of g∗(θ, ϕ) predicted by our theoretical model. The
measurements for the two in-plane directions were accomplished in
different cool-down cycles, because the in-plane rotation of the sample
stage had to be performed ex situ. Magnetotransport data was recorded
via the application of an AC current I = 100 nA (rms) at f = 17.3 Hz
between contacts 1 and 5 and simultaneously measuring Rxx = V2−4/I
and Rxy = V3−7/I with two separate lock-in amplifiers (c.f. Fig. 3.9).
To determine g∗(θ, ϕ), we chose the angle of half coincidence θ1/2

c .
From previous experiments [Rup+13] we expected θ1/2

c on the order of
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Figure 6.1: Sketch of experimental setup to determine the in-plane g∗-
tensor anisotropy. The Hall-bar sample was mounted on a rotatable stage
in two different in-plane configurations with (a) ϕ = 45◦ and (b) ϕ = 135◦,
corresponding to B‖ ‖ [110] and B‖ ‖ [11̄0], respectively. The polar angle θ
could be varied in situ.

≈ 80.5◦. This allowed for a maximum perpendicular field component
of B⊥ ≈ 2.5 T. Larger coincidence angles were not considered in the
experiments, since they led to smaller B⊥ and thus to a greater influence
of SOI-terms.

Now, for each of both in-plane orientations ϕ, we recorded Rxx(B)
and Rxy(B) simultaneously for different values of θ in the vicinity of
the expected θ

1/2
c . In order to improve the accuracy, we determined

the exact values of θ and B⊥ by matching the respective Rxy slopes
with Rxy recorded at θ = 0◦. The condition of half coincidence implied
that all energy levels En′ were equally spaced, i.e., even and odd filling
factors were expected to contribute equally to the oscillations in Rxx.
Therefore, we compared the amplitudes of the Rxx-peaks of neighboring
filling factors to determine θ1/2

c . Comparing the distances ∆(1/B⊥)ν
between two subsequent maxima for neighboring filling factors (c.f.
[Sav+96; Gui+00; Des+04]) led to larger uncertainties in θ1/2

c .
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6.1.2 Experimental results
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Figure 6.2: Rxx data as a function of 1/B⊥ for different tilt angles θ with
(a) ϕ = 45◦ and (b) ϕ = 135◦. The curves were offset for clarity. Rxx-minima
for ν = 16 and ν = 17 are indicated by arrows. The sample temperature
was (a) T ≈ 0.8 K and (b) T ≈ 0.3 K. Amplitudes of the maxima denoted as
∆R15−16, ∆R16−17 and ∆R17−18 are illustrated for the bottom curve in (b).

We now present results of the coincidence measurements for sample
#4069-7. Rxx data as a function of 1/B⊥ for different values of θ and for
in-plane directions ϕ = 45◦ and ϕ = 135◦ are plotted in Fig. 6.2 (a) and
(b), respectively. After illumination with a blue LED, electron densities
were n2D = 8.43× 1011 cm−2 for ϕ = 45◦ and n2D = 8.49× 1011 cm−2

for ϕ = 135◦. For the measurements at ϕ = 45◦, the temperature
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was T = 0.8 K, possibly because of a thermal link to the 4He-reservoir.
The Rxx-oscillations did not show broad minima as opposed to the
measurements at ϕ = 135◦, where a base temperature of T = 0.3 K was
achieved.
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Figure 6.3: Rxx peak amplitudes ∆16−17 (red triangles) and
1/2(∆15−16 + ∆17−18) (black circles) as a function of the tilt angle θ for
(a) ϕ = 45◦ and (b) ϕ = 135◦. Each pair of amplitudes was normalized such
that their sum was equal to one. Linear fits of the data are indicated by
dotted lines. The vertical dashed lines mark the extracted coincidence angle
θ

1/2
c as the crossing point of the fits.

We used the amplitudes of the Rxx-peaks next to filling factors
ν = 16 and ν = 17 to determine the coincidence angle θ1/2

c . Those
were labeled with, e.g., ∆16−17, highlighting that the respective peak
was located between filling factors 16 and 17. In order to compensate
the effect of an overall amplitude decrease towards smaller B⊥, we
calculated the average 1/2(∆15−16 + ∆17−18) and compared it with
∆16−17. Furthermore, the amplitudes were normalized such that the
sum of each pair equaled one. This was done to compensate for possible
temperature variations between different Rxx sweeps. The extracted
amplitudes are summarized in Fig. 6.3. To interpolate between the
measured data, we performed linear fits of the different datasets and
determined θ1/2

c via their crossing points. The extracted θ1/2
c , as well as

calculated scalar g∗ are summarized in Tab. 6.1. Note that the effective
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Table 6.1: Extracted coincidence angles θ1/2
c and calculated g∗ for sample

#4069-7.

ϕ (◦) θ
1/2
c (◦) g∗

45 80.33± 0.1 −4.54± 0.05
135 79.74± 0.1 −4.81± 0.05

g∗-factors are negative, which is commonly accepted for InP/InGaAs
QWs [Kow+94].

We assert a significant difference of g∗ for the two in-plane directions,
which we attribute to the in-plane anisotropy of g∗. However, the
deviations from an isotropic g∗ are obviously small, which implies
gxy � (g‖, g⊥). Thus, we can simplify Eq. (2.33) to

g∗(θ, ϕ) ≈ g‖
√
q2 cos2 θ + sin2 θ + sin2 θ√

q2 cos2 θ + sin2 θ
sin 2ϕ gxy .

(6.2)
Here, we substituted g⊥ = q g‖, because we cannot determine the out-
of-plane anisotropy of g∗ with the experimental data at hand. For the
polar angle θ ≈ 80◦, we find that the θ-dependent factor of the second
summand is ≈ 1 even for relatively large variations of the parameter
q. If we further substitute g80 = g‖

√
q2 cos2 80◦ + sin2 80◦, we arrive at

the simple form
g∗(θ, ϕ) ≈ g80 + gxy sin 2ϕ . (6.3)

Using this equation, we extracted the values for g80 and gxy from the
Rxx-amplitude analysis as follows:

g80 = −4.68± 0.04
gxy = 0.14± 0.04 .

(6.4)
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6.2 Measurement of the in-plane anisotropy
of node positions

In this section, we present experiments addressing the in-plane aniso-
tropy of SOI-induced node positions in strongly tilted fields. First, we
describe in detail the procedure of recording magnetotransport data in
doubly tilted fields using a 2D vector magnet. Next, we demonstrate
how to extract node positions from the Rxx quantum oscillations and
show that a significant anisotroy is present in the data.

6.2.1 Experimental methods

In order to experimentally investigate the theoretically predicted in-
plane anisotropy of beat nodes introduced in 2.4, it is necessary to
perform radial field sweeps at a constant polar angle θ for different
values of the in-plane angle ϕ. For this, both angles must be adjustable
in situ with high accuracy. This is in particular challenging since the
anisotropy can only be addressed if θ is close to the coincidence angle
θ

1/2
c , where the node positions depend strongly on θ itself. Consequently,
uncertainties in θ could obscure the in-plane anisotropy.

[100]

B

·

90◦− θ

ϕ

Figure 6.4: Sketch of the experimental setup used for magnetotransport
experiments in doubly tilted fields. The Hall-bar sample was mounted on a
horizontal stage and could be rotated mechanically in the 2DES plane. The
magnetic field B was applied using a 2D vector magnet system, allowing for
electronic adjustment of the tilt angle θ.
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To account for these specific challenges, we mounted the sample
on a horizontal stage inside a 3He-system, which could be rotated
mechanically about its vertical axis (Fig. 6.4), corresponding to the
adjustment of the in-plane angle ϕ. The magnetic field was applied
using a 2-axis vector magnet with radial field strength of 4.5 T and
with its field plane perpendicular to the sample surface. The advantage
of this setup lies in the fact that the polar angle θ could be adjusted
electronically with a resolution of 0.01◦.

Experimental magnetotransport data were recorded for two different
Hall bars prepared from the same wafer, named #4069-6 and #4069-7.
Both samples led to consistent results. After cool-down, the samples were
briefly illuminated with a blue LED to increase n2D via the persistent
photoeffect. Rxx and Rxy were measured simultaneously using an
excitation current of I = 100 nA (rms) at f = 17.3 Hz and phase-
sensitive voltage detection, similar to the measurements presented in
6.1. The sample temperature was T = 0.3 K. The experiments were
now carried out as follows. After setting a particular in-plane angle ϕ,
we first determined the residual offset angle θ0 stemming from a possible
misalignment of the sample stage normal. This was done by performing
a tangential sweep of the magnetic field in the vicinity of θ = 90◦,
while recording the Hall-resistance Rxy of the sample. We obtained
the offset angle θ0 by the zero-crossing of Rxy(θ), including subtraction
of an offset in Rxy present at B = 0. Next, we performed radial field
sweeps for three different values θ = {77◦, 78◦, 79◦}. To account for
possible systematic errors, the values of θ were then re-determined from
the Rxy-slopes by comparing to a measurement at θ = 0◦. We found
that these measured values of θ showed a systematic offset of −0.5◦
compared to the preset values of the vector magnet system. However,
the relative spread for a preset θ at different values of ϕ was as small
as ∆θ ≈ 0.07◦, accurate enough for the analysis of node positions as
discussed later.

6.2.2 Experimental results
Figure 6.5 presents Rxx-data of sample #4069-7 at θ = 77.5◦ for three
different in-plane orientations ϕ = {45◦, 90◦, 135◦}. At the position of
the first beat node, both even and odd ν were resolved in the SdH-
oscillations. The node position was therefore located at fields where
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Figure 6.5: Rxx-data as a function of B⊥ of sample #4069-7 for θ = 77.5◦
and in-plane orientations ϕ of 45◦, 90◦ and 135◦. The position of the first node
is indicated by an arrow for each curve. Sample temperature was T = 0.3 K.

both oscillation types featured equal amplitudes. The position of the
first node significantly shifted with ϕ (indicated by arrows), while the
second node at ≈ 0.31 T node hardly moved for different values of ϕ.
In order to extract the node positions systematically with high ac-

curacy, we performed the following analysis. For the first node, we
determined the Rxx-amplitude at each filling factor, ∆Rν , as the av-
erage of the peak heights right and left to the respective ν-minimum,
∆Rν,+ and ∆Rν,−, as illustrated in Fig. 6.6 (a). Next, we fitted the am-
plitudes ∆Rν for even and odd ν by a second order polynomial in 1/B⊥
in the vicinity of the node. The extracted node position was the crossing
point of the two fits [see Fig. 6.6 (b)]. In the vicinity of the second node,
only one type of oscillations, i.e., even or odd ν, were present. Here,
we used the envelopes of the oscillation extrema to determine the node
position. We estimated the uncertainty in 1/B⊥ of the node positions
to ≈ 0.02 T−1. The uncertainty of the positions due to variations of the
tilt angle θ can be estimated by the experimental θ-dependence of the
node positions. In anticipation of results presented further down, we
state that the first node moved with ≈ 0.05 T−1/θ(◦) in the range of
76.5◦− 78.5◦. With ∆θ ≈ 0.07◦, this yields an uncertainty of 0.004 T−1,
which is negligible.
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Figure 6.6: Illustration of the method to extract the first node position
from experimental Rxx-data. (a) Rxx-trace of sample #4069-7 as a function
of 1/B⊥ at θ = 77.5◦ and ϕ = 90◦. Even and odd filling factor positions
are indicated by red and blue vertical dashed lines, respectively. Relevant
amplitudes ∆Rν,+ and ∆Rν,− are indicated exemplarily for ν = 49. (b)
Extracted amplitudes 1/2(∆Rν,+ + ∆Rν,−) for even (red triangles) and odd
filling factors (blue squares) from the curve shown in (a). Dashed lines
represent second-order polynomial fits of the data. The node position is given
by the crossing point of the fits.
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Figure 6.7: Experimental field positions of (a) first and (b) second node as
a function of the in-plane angle ϕ for different tilt angles θ. The dashed lines
represent fits of the theoretical model to the data. Fixed model parameters
were n2D = 8.51× 1011 cm−2, g⊥ = g‖ = −4.68 and gxy = 0.

Extracted node positions of sample #4069-7 for the three different
addressed tilt angles θ for the first and second node are summarized in
ϕ-polar plots in Fig. 6.7 (a) and (b), respectively. We found a significant
in-plane anisotropy with in-plane axes along [110] and [11̄0] for the
position of the first node. The maximum variation in the node position
versus ϕ was on the order of 0.15 T−1 and thus much larger than the
estimated uncertainty. As θ was increased, the node moved to higher
field values (i.e. smaller values of 1/B⊥) and the degree of anisotropy
increased. Furthermore, the positions of the second node also exhibited
a small anisotropic behavior, which was rotated with respect to the one
observed for the first node.
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6.3 Fitting of the data with theoretical model
We used the experimental node positions to determine the SOI parame-
ters αR and βD with the help of the theoretical model introduced in 2.4.
In a first approach, we assumed an isotropic g∗-factor in the modeling.
A treatment including the full anisotropic g∗-tensor will be addressed
further down.

6.3.1 Fitting with isotropic g∗-factor
For each position set recorded at a specific value of θ, we performed
a least-squares fitting routine with variable parameters αR and βD,
such that the theoretically predicted node positions fitted best with the
experimental ones. Fixed parameters were n2D = 8.51× 1011 cm−2 as
determined from the periodicity of the SdH-oscillations, m∗ = 0.037m0
as reported in [Rup+13] and g∗ = g80 obtained from coincidence mea-
surements presented in 6.1.
Resulting fit curves for both nodes and different θ are plotted as

dashed lines in Fig. 6.7. We find that experiment and model are in
very good agreement for both nodes. In particular, both anisotropies
and θ- dependencies found experimentally are accurately modeled by
the simulation. The corresponding fit parameters αR and βD are sum-
marized in Tab. 6.2. Following these results, we are able to confirm a
strong R-SOI and a non-zero, but small D-SOI parameter. Secondly,
from the in-plane orientation of the anisotropy pattern, we find that the
relative sign of αR with respect to βD is positive. These conclusions are
possible because the present fit routine reveals a unique set (αR, βD)
(except for the absolute sign), i.e., there is no second set that fits the
data comparably well. We find that both values of αR and βD in Tab.
6.2 vary only slightly for the fits at different θ, which supports the
validity of the model. Only a slight increase of βD with θ is asserted.
Absolute values of αR and βD are very close to the ones found in the
measurements of the chemical potential µ (section 5), with βD on the
order of 0.1 αR. Average values measured for sample #4069-6 were
αR = 4.32× 10−12 eVm and βD = 0.72× 10−12 eVm.
Furthermore, in order to compare to the coincidence experiments

made in 6.1, we calculated the expected coincidence angles θ1/2
c at

B⊥ = 2.5 T for ϕ = 45◦ and ϕ = 135◦ (last two columns in Tab. 6.2).
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6.3 Fitting of the data with theoretical model

Table 6.2: Extracted SOI parameters αR and βD of sample #4069-7 after
fitting the theoretical model to the experimental node positions for the three
addressed polar angles θ. Fixed simulation parameters were g∗ = −4.68,
n2D = 8.51× 1011 cm−2 and m∗ = 0.037m0. Furthermore, θ45 and θ135 are
predicted coincidence angles θ1/2

c at B⊥ = 2.5 T for the calculated parameter
set and for ϕ = 45◦ and ϕ = 135◦, respectively.

θ αR βD θ45 θ135

(◦) (×10−12 eVm) (◦)

76.5 4.50 0.67 80.20 80.00
77.5 4.50 0.72 80.21 80.00
78.5 4.48 0.78 80.23 80.00

These can be directly compared to experimental values listed in Tab. 6.1.
Even without assuming any anisotropy of g∗, the calculation predicts an
in-plane anisotropic behavior of θ1/2

c with ∆θ1/2
c ≈ 0.2◦ stemming from

the presence of both SOI terms. However, the calculated anisotropy
is smaller than the experimental value of ∆θ1/2

c ≈ 0.6◦. We therefore
conclude that a more realistic model to describe the data should include
anisotropies of the g∗-tensor.

6.3.2 Fitting procedure including g
∗-tensor anisotropy

The g∗-tensor of a (001)-oriented QW has three independent components
g⊥, g‖ and gxy (c.f. section 2.3.1), and all three of them influence the
calculated beat node positions as a function of θ and φ.

The coincidence measurements presented in section 6.1 provided the
two parameters g80 and gxy, which allowed to address the in-plane
anisotropy only. Here, the previous analysis assuming gxy = 0 revealed
a significant contribution of the SOI terms to the anisotropy of θ1/2

c

at B⊥ = 2.5 T. This contribution had the same sense of direction as
a positive gxy, i.e., θ45 > θ135. Therefore, the value of gxy = 0.14 as
determined in section 6.1 can be understood as an upper limit, because
the residual influence of the SOI contributions was neglected. The true
gxy should lie in between 0 and 0.14. A possible out-of-plane anisotropy
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6 Investigation of SOI by anisotropic magnetotransport

of g∗ is embedded in the parameter q = g⊥/g‖, which is not known from
the experiment. The out-of-plane components of g∗ as a function of q
and g80 are derived via

g‖ = g80√
q2 cos2 80◦ + sin2 80◦

and

g⊥ = qg‖ .

(6.5)

In order to get access to this out-of-plane anisotropy, we included q
into our fitting procedure as a third fitting parameter. Furthermore, we
extended the experimental dataset that entered the fitting to contain all
node positions measured at different ϕ and different θ. By this means,
the fitting also accounted for the experimental θ-evolution, which should
reflect possible effects of the out-of-plane anisotropy of g∗. As fixed
parameters, we used m∗ = 0.037m0, n2D = 8.51 × 1011 cm−2 and
g80 = −4.68 as measured in section 6.1. We performed the fit for
different gxy ∈ {0, ..., 0.14} to iteratively find the value of gxy predicting
the correct anisotropy of θ1/2

c .

Table 6.3: Extracted fit parameters q = g⊥/g‖, αR and βD for the modified
fitting routine including experimental node positions at different θ and ϕ.
Fixed parameters were m∗ = 0.037m0, n2D = 8.51× 1011 cm−2, g80 = −4.68
and gxy as specified in the first column. θ45 and θ135 are predicted coincidence
angles at B⊥ = 2.5 T and ∆θ1/2

c = θ45 − θ135. The dataset with gxy = 0.11
(marked in gray color) fitted best with the experiment in terms of ∆θ1/2

c .

gxy q
αR βD θ45 θ135 ∆θ1/2

c

(×10−12 eVm) (◦)

0 0.80 4.56 0.61 80.23 80.05 0.18
0.05 0.71 4.59 0.54 80.34 79.97 0.37
0.08 0.66 4.60 0.50 80.40 79.92 0.48
0.10 0.63 4.61 0.47 80.45 79.89 0.56
0.11 0.62 4.62 0.46 80.47 79.88 0.59
0.12 0.60 4.62 0.44 80.48 79.86 0.62
0.14 0.58 4.63 0.41 80.52 79.83 0.69
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6.3 Fitting of the data with theoretical model

Table 6.3 presents the extracted parameters q, αR and βD as results of
the modified fitting procedure for different values of gxy. The fits reveal
a significant out-of-plane anisotropy with q = g⊥/g‖ < 1. Regarding
the absolute values of the fit parameters, we find that q systematically
decreases as gxy increases. Furthermore, the extracted βD is getting
smaller at an increase of gxy and a decrease of q. Apart from that, we
find that αR is relatively unaffected by the invoked anisotropy of g∗ with
an overall variation of only 2 %. At this point, we note that in absence
of D-SOI, i.e. βD = 0, the in-plane anisotropy of g∗ alone cannot explain
the experimental data. Although the presence of gxy itself provokes a
ϕ-anisotropy of the first node even if βD = 0, the latter is predicted to
be too small if we assume the largest gxy = 0.14 consistent with the
previous coincidence experiment (not shown). This confirms the result
of a finite, but small βD.

By comparing predicted anisotropy of the coincidence angle ∆θ1/2
c

to the measurements made in section 6.1, we find that the value of
gxy = 0.11 predicts ∆θ1/2

c = 0.59◦, consistent with the experiment. We
therefore conclude that the respective parameter set fits the experimental
data best. Because of the relatively strong variation of βD as a function
of the input parameters and the choice of the fitting routine, we estimate
its uncertainty to ≈ 20 %. Likewise, the uncertainty in q is on the same
order of magnitude. The best fit values of the extracted SOI-constants
and g∗-components including their errors are summarized as follows:

αR = (4.62± 0.09)× 10−12 eVm
βD = (0.46± 0.14)× 10−12 eVm
g⊥ = −2.91± 0.60
g‖ = −4.72± 0.05
gxy = 0.11± 0.02 .

(6.6)

Resulting fit curves for the first node are plotted in Fig. 6.8 together
with the experimental data. Again, the predicted node positions agree
well with the experiment. Only the experimental values measured at
θ = 78.5◦ are located at slightly smaller field values as in the modeling.
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Figure 6.8: Experimental data (symbols) and respective fit curves (solid
lines) of the first node position as a function of ϕ using the modified fit-
ting procedure including the full g∗ anisotropy. Fixed parameters were
n2D = 8.51 × 1011 cm−2, m∗ = 0.037m0, g80 = −4.68 and gxy = 0.11. Ex-
tracted fit parameters were αR = 4.62× 10−12 eVm, βD = 0.46× 10−12 eVm
and q = g⊥/g‖ = 0.62.

6.4 Discussion
With the present experiment, it was possible to address SOI-induced
in-plane anisotropies in magneto-oscillations for the first time. Via the
systematic analysis of node positions and coincidence angles at different
θ and ϕ, we could extract the relevant SOI-parameters αR and βD and
the full g∗-anisotropy. To the best of our knowledge, this is the first
experiment that reports all of these parameters at the same time and
thus provides a more comprehensive picture of spin-related phenomena
in semiconductor heterostructures. In particular, the combined detection
of αR, βD and g∗ should enable to validate theoretical predictions on
their interplay based on k · p-theory [Kow+94; Win03; PZ06].
For the investigated samples, the outcome of a dominant αR is con-

sistent with published results on the same kind of samples [Sch+98;
Rup+13], which, however, neglected a possible D-contribution βD. Our
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6.4 Discussion

experiment showed that the samples were subject also to a finite, but
small βD on the order of 0.1αR, which confirms the results of chapter
5. In addition, we extracted the relative sign of αR/βD to be positive,
which was ambiguous in the previous analysis of µ(B) at moderate
tilt angles. Furthermore, a strong R-SOI had to be assumed a priori
in those measurements, while it came out as a definitive result in the
present analysis. In a comparison with previous in-plane experiments
to address αR and βD [Gan+04; Mei+07; Eld+11], we emphasize that
the method presented here is especially suited to study 2DESs where
one of the two components is small. If one of the terms is zero, the
node positions are isotropic in ϕ. The breaking of this symmetry is very
sensitive to a small contribution of the term that was formerly absent.
On the other hand, the case αR/βD ≈ 1 is difficult to address with the
present technique, because the nodes vanish for most in-plane angles ϕ
[c.f. Fig. 2.12 (b)].

The analysis of the data revealed that the ϕ-evolution of node positions
as measured at tilt angles close to the coincidence angle θ

1/2
c was

very sensitive to the effective g∗-factor. In particular, a complete and
consistent description was only possible if an anisotropic g∗-tensor
was assumed and if all three components of g∗ were considered in the
modeling. However, independent measurements of g⊥, g‖ and gxy from
magneto-oscillations are complicated because of the interplay between
SOI and Zeeman interaction.

The determination of gxy via ϕ-dependent coincidence measurements
led to systematic deviations of gxy, because at the applied B⊥ of only
2.5 T, SOI still influenced the respective coincidence angles. Nonetheless,
the size of this effect was clarified in the modeling of the node positions,
while simultaneously accounting for the correct degree of anisotropy in
θ

1/2
c . In our particular case, only ≈ 70 % of the measured anisotropy in
θ

1/2
c could be attributed to the presence of gxy. Addressing the pure
components of g∗ in a coincidence measurement requires larger values
of B⊥. Our modeling predicts that at B⊥ ≈ 10 T, the SOI contribution
on θ

1/2
c should be negligible. However, at θ ≈ 80◦, this amounts to

B ≈ 58 T, which can only be reached in pulsed magnets at large scale
facilities.
The out-of-plane anisotropy of g∗, represented by the tensor com-

ponents g⊥ and g‖, was not addressed directly in the experiment, but
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6 Investigation of SOI by anisotropic magnetotransport

was extracted in terms of a third fit parameter q = g⊥/g‖ from the
θ-evolution of the nodes. The obtained g⊥ = −2.98 and g‖ = −4.72
suggest a remarkable out-of plane anisotropy of g∗ and are consistent
with measurements of g⊥ and g‖ by Kowalski et. al. [Kow+94]. A
substantial out-of-plane anisotropy of g∗ in InGaAs is also predicted by
k ·p-theory, but in an opposite way as was reported experimentally, i.e.,
|g⊥| > |g‖| [Win03]. However, the correct model to derive g⊥ and g‖
is debated [PZ06], and further experimental investigations on different
heterostructures should help to gain a more detailed understanding
of the g∗-anisotropy. Considering the present results, we found that
the value of q = g⊥/g‖ obtained by our fit routine was subject to a
relatively large uncertainty, which we also identified as the main source
of error for the extracted SOI parameters αR and βD. Consequently, an
accurate measurement of all components of g∗ could further increase the
accuracy of αR and βD as determined via the presented technique. Using
magnetotransport, such measurements could be realized by analyzing
the T -dependent Rxx-amplitudes of odd ν at large B⊥, which allows
to extract the respective Zeeman gaps [Kri+15]. However, as demon-
strated in Ref. [Kri+15], even in InGaAs/InP-based 2DES the measured
components of g∗ are subject to an exchange enhancement at large B⊥,
while the values relevant for the node positions at moderate B⊥ are
not influenced by electron-electron interactions and, correspondingly,
smaller.
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7 Magnetization of
nanopatterned InP/InGaAs
quantum dots

Experiments presented in chapters 5 and 6 were dedicated to SOI effects
in 2DESs, which we addressed by beating patterns in the magneto-
oscillations. Anticipated applications of SOI, e.g. in high-speed logi-
cal spintronics devices, will require a miniaturization of the relevant
structures. A straightforward way to investigate effects of such minia-
turization is to fabricate nanopatterned 2DES mesas. In particular, as
these structures become small, the interplay between lateral confinement
and SOI may alter the underlying physics significantly. Therefore, a
more profound understanding of SOI mechanisms in laterally confined
electron systems is indispensable for future device applications.
Up to now, SOI effects in confined geometries have only rarely been

studied experimentally. In Ref. [SKG04], the authors observed beating
patters in the magnetotransport of etched quantum wires, which were
processed from the same type of heterostructure as studied in this work.
They found that the beat nodes were shifted to higher fields for narrow
wires, which was attributed to the confinement. In a subsequent theo-
retical treatment [KS05], the authors modeled the beat node positions
as a function of wire width. Their model predicted a shift of the nodes
to smaller fields for narrow wires, which was inconsistent with their
experiment. However, they invoked that also the Rashba parameter
itself could be modified because of a change of the built-in electric field
or a change in penetration of the wave function into the barriers upon
confinement.
A further reduction of dimensionality is achieved in quantum dots.

SOI effects in the energy spectra of dots were addressed theoretically in
numerous works [TLG04; CP05; PC06; CAC07]. However, these studies
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7 Magnetization of nanopatterned InP/InGaAs quantum dots

focused on dots with only a few electrons. So far, SOI contributions on
the energy spectra of dots containing several hundreds of electrons are
unexplored, both in theory and experiment.

Even without considering possible SOI effects, the electron systems
in etched dots provide intriguing physics as demonstrated in various
experimental studies based on optical and electrical techniques [Cha92].
Theoretical works suggest that magnetization measurements should
address the relevant energy spectra in a complementary way [SI88;
KLS90; FLS94]. As already introduced in 2.5, theory predicts that
the magneto-oscillations of a 2DES are significantly altered if lateral
confinement is present. Torque magnetometry is especially suited to
study these oscillations in quantum dots because magnetotransport
experiments are, in contrast to quantum wires, difficult to perform on
0D structures. Furthermore, magnetometry is a non-invasive technique,
i.e., the sample is measured in its equilibrium state and there is no need
for applying electrical currents or for optical excitation.

Experimental data on quantum dot magnetization is scarce. In 2002,
Schwarz et. al. observed dHvA-oscillations of an ensemble of quantum
dots prepared from AlGaAs-based heterostructures [Sch+02b]. However,
the data could not be modeled with a single-particle ansatz using a
parabolic confinement potential. Furthermore, a significant temperature
dependence of the oscillation amplitudes with respect to those of a
reference 2DES was reported. The authors attributed this behavior
to electron-electron interactions, which was further corroborated in a
subsequent theoretical treatment [DLS04].

In comparison to the AlGaAs dots of Schwarz et. al., the InGaAs/InP
material system used in this work provides particular advantages to
study quantum dot magnetization. Due to its small effective mass
of 0.037m0, the dHvA-amplitudes are expected to be larger. Second,
interaction effects should play a less prominent role, as suggested by
the smaller interaction parameter

rS = 1
a∗B
√
πn2D

, (7.1)

which yields rS ≈ 0.3 for the InGaAs/InP system as opposed to rS ≈ 1.2
for GaAs [a∗B = (4πε0εr~2)/(e2m∗) is the effective Bohr radius]. This
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supports the use of a single particle ansatz to describe the electron
system inside InGaAs/InP dots.

The correct shape of the lateral confinement potential in nanopat-
terned 2DESs depends on various sample parameters. It is known that
AlGaAs-based structures are subject to surface charges, which pin the
Fermi level several 100 meV below the conduction band [CTA87]. The
confinement near the center of these structures can be well approximated
by a parabolic potential [Rie+97]. However, if populated by many elec-
trons, screening effects lead to a flattening of the effective potential near
the center [LFS88; KLS90]. The resulting potential is hard-wall like,
but a significant edge depletion is present [CTA87] due to the surface
charges in nanopatterned AlGaAs structures. A profound treatment
of similar confinement effects in InGaAs/InP-based nanostructures is
lacking. It is known that the Fermi level of InGaAs is pinned near the
conduction band edge [KMS73], suggesting a flat confinement potential
with hard walls at the physical border of the dots. Furthermore, effective
screening evoked by the small rS parameter supports the hypothesis of
HW confinement. Still, previous works modeled these structures with a
parabolic confinement ansatz [Ker+90; KS05].

In this chapter, we present magnetization experiments on ensembles of
quantum dots which were nanopatterned from InGaAs/InP heterostruc-
tures. We measured 1/B⊥-periodic dHvA-type oscillations down to
field values as small as B⊥ = 2.0 T. From the amplitude, shape and
periodicity of the oscillations we analyze the lateral shape of the con-
finement potential. Via a quantitative analysis of the experimental data
and a fitting of model curves to the experiment we extracted relevant
sample parameters such as electron number N and depletion width
wD. Furthermore, we include the effect of ensemble broadening into the
modeling and show that the prepared QD array features a high degree
of homogeneity. Signatures of SOI-related beat nodes were not observed.
Still, with the experimental data at hand, we draw conclusions on the
relevance of SOI in the observed dot structures and outline what future
experiments would allow one to address SOI in the magnetization of
quantum dots.
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7 Magnetization of nanopatterned InP/InGaAs quantum dots

7.1 Experimental methods
Two samples denoted with #4069-1A and #3556-1 were prepared from
two different wafers #4069 and #3556, respectively. The preparation
process is described in detail in 3.1.3. The dot mesa on each sample
consisted of 8 × 4 = 32 write fields of the electron beam lithography
system of (200× 200)µm2 in size, giving a total number of 2.5× 106

dots. From SEM images, we determined the physical diameter of the
dots to d = 460± 10 nm, giving a statistical spread ∆d/d = 2 % across
the ensemble.

M B

θ

C = C0 + ∆C

5µm

500µm

(a) (b)

Figure 7.1: (a) Optical microscope image of sample #4069-1A placed on
the paddle of a micromechanical cantilever. The sample featured a mesa
structure consisting of (8× 4) write fields containing etched nanoscopic dots.
The inset shows a magnification of the dot mesa. (b) Schematic side-view of
the cantilever illustrating the direction of the applied magnetic field B and
the capacitive readout scheme.

Samples were placed on micromechanical GaAs cantilevers featuring
metallized electrodes for capacitive readout [c.f. section 3.2.2]. A
microscope image of sample #4069-1A on the cantilever paddle is
depicted in Fig. 7.1 (a). Experimental calibration constants yielded
3.14× 10−8 Nm

pF (sample #4069-1A) and 1.78× 10−8 Nm
pF (sample #3556-

1). Measurements were carried out in a 3He insert with a fixed stage,
allowing for a base temperature of T = 0.28 K. The sample temperature
was measured via a calibrated Cernox thermometer mounted next to
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7.2 Experimental results

the sample. The tilt angle θ was set to 52◦ prior to cool down. Magnetic
field sweeps were performed using the 9 T / 4.5 T vector magnet system
for sample #4069-1A and a single axis 15 T magnet for sample #3556-
1. Experimental traces M(B) were obtained as follows. First, we
recorded the capacitance change ∆C(B) and averaged the data over
four sweeps (2×up and 2×down) to effectively reduce the amount of
statistical noise. A mixing of the sweep directions in the averaging was
possible because no significant hysteresis between up- and down-sweep
was present within the field range of interest. Second, a polynomial
background was subtracted from the raw capacitance data. Finally,
we evaluated M = (KC∆C)/(B sin θ). For the investigated 2DES, it
is known that illumination after cool down increases n2D in the QW
via the persistent photoeffect. We recorded magnetization data before
illumination as well as after illumination for 10 s with a blue light
emitting diode. We compare the magnetization of the dot mesa with
measurements on reference 2DESs prepared from the same wafers, which
were carried out under similar conditions. In comparison with the 2DES
reference data, we found M(B) to be consistent for both wafers, though
absolute values varied as discussed later.

7.2 Experimental results
Experimental M as a function of 1/B⊥ of wafer #4069 is plotted in
Fig. 7.2. Figure 7.2 (a) shows M of the reference 2DES, while the mag-
netization of the dot ensemble before and after illumination is plotted in
Fig. 7.2 (b) and (c), respectively. For a direct comparison of the signal
amplitudes, we normalized M to the total physical mesa area, first by
neglecting possible depletion effects. The 2DES reference measurement
exhibited sawtooth-shaped 1/B⊥-periodic dHvA oscillations with steep
upward flanks. Also for the dot mesa, dHvA-type oscillations with
1/B⊥-periodicity were identified. However, they had a smoother shape,
faded out towards smaller B⊥ and vanished for B⊥ < 2 T. The upward
flanks corresponding to effective filling factor ν∗ = 8 are marked for
all curves in Fig. 7.2. We note that only even ν∗ were observed and
signatures of spin splitting were absent in the data. Using the vector
magnet system, we also performed field sweeps at different tilt angles
θ for sample #4069-1A (not shown). We found a slight decrease of
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Figure 7.2: Magnetization M as a function of 1/B⊥ (wafer #4069) of (a)
reference 2DES, (b) dot ensemble before and (c) after illumination. All data
were normalized to the total physical mesa area neglecting edge depletion.
The sample temperature was T = 0.28 K. Upward flanks corresponding to
ν∗ = 8 are marked by arrows. The amplitude ∆M of ν = 10 is indicated in (a).
The inset in (b) illustrates relevant field positions of minimum, zero-crossing
and maximum used for data analysis.
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the dHvA amplitudes of order ≈ 10 % for increasing tilt angles, while
maintaining the positions of the oscillations in 1/B⊥.

For a quantitative analysis of oscillation shape and periodicity of the
dHvA-oscillations, we extracted characteristic field positions 1/B⊥ of
minima, zero crossings and maxima for each visible ν∗ as depicted in the
inset of Fig. 7.2 (b). First, we considered the peak-to-peak amplitudes

∆M = (Mmax −Mmin)ν∗ (7.2)

which are summarized for 2DES and dot mesa of both wafers in Tab.
7.1. Remarkably, the normalized dHvA amplitude of the dot ensemble
was reduced by at least one order of magnitude as compared to the
2DES reference. Illumination increased ∆M of the dots by a factor
of ≈ 2 and more filling factors were identified in the data. A direct
comparison of ∆M for both wafers showed that the dHvA amplitudes
of wafer #3556 were smaller by a factor of ≈ 2 as compared to those of
wafer #4069.

Second, we analyzed the asymmetry of the oscillations quantitatively.
For this, we defined the ratio ∆up/∆down of the relative 1/B⊥-positions
of subsequent maxima and minima, as illustrated in Fig. 7.2 (c). Prior
to illumination, the dHvA oscillations of the dots were nearly symmetric
with ∆up/∆down ≈ 1 for all visible ν∗. After illumination, the oscilla-
tions at small ν∗ were slightly asymmetric with ∆up/∆down ≈ 0.8, and
became symmetric for higher ν∗. The 2DES mesa exhibited sawtooth-
like dHvA oscillations with ∆up/∆down of order 0.2 . . . 0.5.

Finally, we examined the periodicity of the oscillations in detail. We
extracted the period

pν∗ = (1/B⊥)max,ν∗+1 − (1/B⊥)max,ν∗+1 (7.3)

for each ν∗ and found all measured curves to be periodic in 1/B⊥ within
∆p/p < 5 %. The dHvA frequency measured for the dot ensemble
f1/B⊥ = 1/p increased by ≈ 8 − 12 % upon illumination, which was
consistent with the relative increase of f1/B⊥ after illumination observed
for the 2DES reference samples (not shown). However, we found that
f1/B⊥ of the dots was generally by ≈ 10−20 % larger than f1/B⊥ of the
reference 2DES. Furthermore, we plotted the assigned ν∗ as a function
of the previously defined characteristic field positions in fan charts, as
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7 Magnetization of nanopatterned InP/InGaAs quantum dots

Table 7.1: Comparison of the extracted amplitudes ∆M of reference 2DES
and dot mesa structures for wafers #3556 and #4069. Abbreviations: (d):
dark and (i): after illumination.

wafer ν(∗) ∆M
[
10−6J/(T m2)

]
2DES (i) dots (d) dots (i)

#3556

6 1.70 0.12 0.24
8 1.45 0.08 0.15
10 1.21 0.04 0.10
12 1.12 0.02 0.07
14 0.89 - 0.05
16 - - -

#4069

6 3.55 - -
8 3.38 0.26 -
10 3.17 0.15 0.29
12 2.99 0.11 0.27
14 2.81 0.08 0.20
16 2.64 0.06 0.16

done in Fig. 7.3 for sample #3556-1. We performed linear fits to each
dataset, following the equation

ν∗ = f1/B⊥ × (1/B⊥) + ∆ν∗ . (7.4)

These regressions allow to extract the frequency f1/B⊥ and the offset
∆ν∗ of each position set. Here, ∆ν∗ can be understood as a phase shift
of the characteristic positions (e.g. the maxima) with respect to the
filling factor positions assigned with the steep dHvA flanks of an ideal
2DES with the same dHvA frequency f1/B⊥ . If the measured curves
were a result of symmetric broadening of the ideal dHvA oscillations, the
zero-crossings of the upward flanks should exhibit ∆ν∗ = 0. However,
for the oscillations measured before illumination, we found ∆ν∗ > 0, and
therefore a significant shift of the oscillations to higher magnetic fields.
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Figure 7.3: Fan charts of minima, zero-crossings and maxima positions of the
observed oscillations for sample #3556-1. The plots show data taken before
(a) and after illumination (b). A linear regression was applied to each dataset.
Insets in both plots show a blow-up of the 1/B⊥ axis around (1/B⊥) = 0
in order to illustrate the positive phase shift ∆ν∗ of the oscillations before
illumination.

In particular, the maxima coincided with the respective ν positions
of an ideal 2DES rather than the zero crossings [see inset in Fig. 7.3
(a)]. Once the sample had been illuminated, the observed phase shift
vanished. We found these results to be consistent for both samples
#4069-1A and #3556-1, as summarized in Tab. 7.2.
In a further series of measurements, we addressed the temperature

dependence of the dHvA oscillations for both samples. This was done by
recording magnetization traces for different temperatures, ranging from
T = 0.28 K to T = 15 K, as depicted for sample #3556-1 in Fig. 7.4 (a).
These measurements were only performed after illuminating the dot
ensemble. In order to fit the Lifshitz-Kosevich model [c.f. Eq. (2.23)]
to the data, we extracted the amplitudes ∆M for each visible ν∗ and
each value of T . From the curves shown in Fig. 7.4 (a), we found that
the M(B) were nearly identical for T = 0.28 K and T = 1.5 K. It is
therefore safe to identify ∆M(0.28 K) ≈ ∆M0, i.e., the amplitudes at
base temperature were basically identical to the amplitudes ∆M0 which
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7 Magnetization of nanopatterned InP/InGaAs quantum dots

Table 7.2: Offset ∆ν∗ extracted from linear fits of (1/B) maxima- and
zero-crossing positions for the two investigated samples.

wafer ∆ν∗zero ∆ν∗max

#3556 dark 0.34± 0.06 −0.06± 0.07
illuminated 0.06± 0.06 −0.13± 0.04

#4069 dark 0.27± 0.10 −0.16± 0.05
illuminated 0.05± 0.03 −0.29± 0.04

would be observed at zero temperature. Following this, we plotted
all extracted ∆M/∆M0 as a function of x = (2π2m0kBT )/(~eB⊥) in
Fig. 7.4 (b) and performed a least squares fit of the data by

∆M
∆M0

= sinh(xmeff)
xmeff

. (7.5)

Here, the reduced effective mass meff = m∗/m0 was used as a fit param-
eter. For sample #3556-1, we obtained a value of meff = 0.037± 0.002,
which agrees perfectly with the value found for the reference 2DES. The
identical analysis on sample #4069-1A revealed an increase of meff to
0.049± 0.003. However, the measured temperature dependencies are
still comparable to the 2DES case; a significant change of ∆M(T ) as
reported for GaAs dots [Sch+02b] was not observed for the present
InGaAs/InP dot mesa.

7.3 Comparison of simulation with experiment
In the following, we compare the experimental outcomes with predictions
of the theoretical models introduced in 2.5. Here, we stress again that
the simulations were made using a single particle picture, although our
dots are populated by hundreds of electrons. Many-particle effects are
phenomenologically included via a screening of the lateral confinement
potential of an empty dot, thereby defining the shape of the effective
potential that a single electron feels in the mean field of the remaining
electrons. In the following, we use the term “confinement potential” to
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Figure 7.4: (a) Temperature dependence of M(1/B⊥) measured after illu-
mination for sample #3556-1. (b) Normalized amplitudes of all visible filling
factors as a function of x = (2π2m0kBT )/(~eB⊥). The dashed line represents
a fit of the Lifshitz-Kosevich model to the data. The extracted effective mass
yielded m∗ = 0.037m0.

address this effective confinement potential. Moreover, for a realistic
description of the experimental data, we discuss the effect of ensemble
related broadening effects and include these into the modeling. From a
detailed analysis of shape and periodicity of the dHvA-type oscillations
predicted by the modeling, we argue that a hard wall confinement
potential describes the data best and that the assumption of pure
parabolic confinement is unrealistic for our dots with many electrons.
Following these considerations, we use the HW model to fit the data
quantitatively, thereby extracting relevant model parameters.

7.3.1 Ensemble broadening
The recorded magnetization traces can be understood as the sum signal
of the magnetization produced by each individual dot. However, the
dots are not completely identical. Across the ensemble, variations in the
processing of the dots caused a systematic spread of the dot diameter
of order ∆d/d ≈ 2%, as confirmed by the analysis of SEM images.
Furthermore a statistical donor distribution may induce changes of the
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Figure 7.5: Simulated magnetization curves in case of (a) HW and (b)
parabolic confinement. For each model, four curves were modeled with differ-
ent broadening parameter ∆f/f of 0 %, 4 % 7 % and 10 %. The magnetization
was normalized to the physical dot area of πR2

0. A polynomial background
was subtracted from the curves shown in (b). Simulation parameters were
N = 1350, R0 = 230 nm and ~ω0 = 1.52 meV. The upward flanks correspond-
ing to ν∗ = 8 are marked by arrows. Note the different magnetization scales
in (a) and (b).

electron number N from dot to dot. These effects provoke a broadening
of measured dHvA oscillations. Here, diameter variations translate
directly into a variation of the parameters defining the respective model
potential, i.e., ω0 for parabolic and R0 for HW confinement. Following
the discussion in section 2.5, changes in R0, ω0 and N effectively change
the frequency of the dHvA-type oscillations. Contributions that alter
the shape of the potential such as randomly distributed impurities or
donors that are unique for each dot were not included into our the
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7.3 Comparison of simulation with experiment

modeling. Following Eqs. (2.59) and (2.64) and assuming small changes
∆R0, ∆ω0, ∆N , we derive

∆f
f
≈ 2∆R0

R0
≈ ∆N

N
(HW) and

∆f
f
≈ ∆ω0

ω0
≈ 1

2
∆N
N

(FD).
(7.6)

Therefore, we included the combined effect of the statistical spread in
(R0, ω0) and N into our modeling via a Gaussian distribution of dHvA
frequencies f with standard deviation ∆f around the average frequency
f̄ :

Φ(f, f̄ ,∆f) = 1√
2π∆f

exp
[
− (f − f̄)2

2∆f2

]
(7.7)

where Φ(f, f̄ ,∆f) denotes the relative amount of dots with frequency
f .
In the following, we will compare simulated magnetization curves of

HW and FD model for different values of the broadening parameter
∆f/f . Simulations including the effect of ensemble broadening were
performed by averaging over 1000 curves with Gaussian distributed
parameters (R0, ω0) to reproduce the respective ∆f/f , while keeping
the number of electrons N fix. In a first approach, we neglected possible
effects of edge depletion and estimated N = n2DπR

2
0 ≈ 1350. Here,

we used the physical dot radius R0 = 230 nm and the electron density
n2D = 8.12 × 1011 cm−2 as measured for the reference 2DES. The
confinement energy in the FD model was set to ~ωc = 1.52 meV in order
to reproduce a similar dHvA frequency as obtained for the HW model.
Figure 7.5 depicts ideal and broadened magnetization curves for

(a) HW and (b) FD model. The curves were normalized to the total
physical mesa area as it was done for the experimental traces in Fig. 7.2.
The dHvA-type oscillations of the broadened curves are smoothed and
reduced in amplitude. Furthermore, fast AB-type oscillations present
at ∆f/f = 0 are completely smeared out once broadening is included.
This confirms the predictions of Sivan and Imry, who argued that the
AB-type oscillations are randomly shifted and likely to be suppressed
in large ensembles of dots [SI88]. We observe that the amplitudes ∆M
of the dHvA-type oscillations fade out towards small fields. Moreover,
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7 Magnetization of nanopatterned InP/InGaAs quantum dots

we identify that high filling factors are suppressed significantly upon
increasing ∆f/f . This behavior is expected because the envelope of
the broadened curves is approximately given by the Fourier transform
of the distribution Φ(f, 0,∆f), which is also a Gaussian function that
gets narrower as ∆f/f increases. For our particular case, we find that
for ∆f/f = 7 %, oscillations for ν∗ > 10 are completely suppressed.
However, in the experiment, we observe filling factors up to ν∗ ≈ 22,
which implies that the actual broadening in the experiment is small.
As a consequence, the overall reduction of signal amplitude in the
experiment cannot be explained broadening effects alone. Therefore, we
conclude that the observed amplitude reduction is mainly due to the
lateral confinement.

7.3.2 Analysis of FD and HW model curves
For a detailed analysis of amplitude, shape and periodicity of the
dHvA-type oscillations predicted by HW and FD model, we extracted
maxima, zero-crossing and minima positions for the relevant effective
filling factors ν∗, as it was done for the experimental data. Therefore,
we concentrated on the curves in Fig. 7.5 including a broadening of
∆f/f = 4 %. The fading of the oscillation envelopes towards small B⊥
for this particular broadening parameter agrees reasonably well with
the experimental behavior and is consistent with the experimentally
determined variation of the dot diameter.
We first consider the oscillation amplitudes ∆M . We find that the

amplitudes predicted by the HW model are much larger than in the
experiment. Quite in contrast, the dHvA amplitudes are highly sup-
pressed for the FD model, which suits the experimental observation
much better. However, if compared to the experimental curves after
illumination, the predicted amplitudes by the FD model are too small.
Second, we investigated the asymmetry and oscillation period in detail.
Table 7.3 reports the asymmetry parameter ∆up/∆down as well as the
period pν∗ of the maxima positions for both models as a function of the
effective filling factor ν∗. Evidently, the HW model predicts a significant
asymmetry for small ν∗, approaching symmetric oscillations for larger
ν∗, similar to the experimental observations after illumination. The FD
model does not reveal any signatures of asymmetry, and ∆up/∆down ≈ 1
for all visible oscillations. Considering the oscillation period, we find
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7.3 Comparison of simulation with experiment

that the HW model predicts a constant pν∗ for all ν∗, while a significant
increase of pν∗ on the order of ≈ 15 % is asserted for increasing ν∗ for
the FD model. This variation contradicts the experiment, where no
deviation in pν∗ was observed.

Table 7.3: Asymmetry parameter ∆up/∆down and period pν∗ of the max-
ima positions extracted from the simulated HW and FD curves with 4 %
broadening presented in Fig. 7.5.

ν∗
∆up/∆down pν∗ (1/T)

HW FD HW FD
4 0.57 1.11 - -
6 0.81 1.03 0.060 0.058
8 0.90 0.97 0.058 0.058
10 1.00 1.00 0.059 0.060
12 0.97 1.00 0.058 0.061
14 0.97 1.07 0.059 0.063
16 0.97 1.09 0.059 0.065

In order to account for possible phase shifts, we performed a fan
chart analysis of minima, zero-crossing and maxima positions of the
oscillations predicted by the HW model. This was done for the un-
broadened curve [Fig. 7.6 (a)] as well as the broadened curve with
∆f/f = 4 % [Fig. 7.6 (b)]. For the ideal HW model, the fitting reveals
slightly different frequencies for the three position sets. This is because
the shape of the oscillations changes from nearly sawtooth-like to a
more symmetric shape for decreasing B⊥. Regarding the phase offset
∆ν∗, we notice that both zero-crossing positions and maxima exhibit
∆ν∗ close to zero. Broadening produces a negative phase shift for the
maxima [c.f. inset of Fig. 7.6 (b)]. The ∆ν∗ predicted by the broadened
curve are in very good agreement with the experimental observations
after illumination. A positive phase-shift for the zero-crossings and a
negligible phase-shift for the maxima as observed experimentally before
illumination, however, is not reproduced by the model.
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Figure 7.6: Fan charts of minima, zero-crossings and maxima field positions
extracted from the HW model curves shown in Fig. 7.5 (a) without broadening
(a) and with a broadening of 4 % (b). The insets show a blow-up of the
diagrams around the origin to illustrate the phase-shifts ∆ν∗.

Performing the same fan-chart analysis for the FD model is not
reasonable, because the field-dependent change in periodicity does not
allow for a linear fit. Due to this fact, attempts to adjust the FD
model parameters such that the model curve agreed quantitatively with
the experimental data failed, because the positions of the oscillations
never matched for all visible ν∗ (not shown). Using Fogler’s ansatz
of LL bending (see 2.5.1), we investigated this further by calculating
M(B) assuming a potential with a concave or a convex parabola at
the center and hard walls at the borders of the dot. None of these
attempts could reproduce the phase shifts observed in the experiment
before illumination. Hence, we state that any kind of curvature added
to V (r) does not account for the measured ∆ν∗ if treated in a single
particle picture.

In summary at this point, we find that a HW model describes the
experimental data convincingly in terms of asymmetry, periodicity and
phase shifts of the dHvA-type oscillations. The FD model is not suited
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to describe the experiment. In the following, we thus use the HW model
to refine the simulations.

7.3.3 Fitting of HW model with experiment
Following the above analysis, the predicted oscillation amplitude of the
HW model neglecting any depletion effect is far too large to match the
experimental observations. A quantitative modeling of the data is only
possible by assuming a reduced effective dot radius R0. This strategy
should preserve the basic shape of the oscillations while ∆M should
decrease due to the reduced number of electrons per dot. For this, we
adjusted the parameters R0, N and ∆f/f such that the modeled curves
agreed quantitatively with the experimental data. In detail, we paid
attention that the model curves matched the measured amplitudes ∆M ,
their field dependence and the oscillation period. We performed the
modeling for all experimental curves [i.e., M(1/B⊥) before and after
illumination for both samples]. The resulting curves are shown in Fig. 7.7.
We find that the shape and the amplitude of the simulated oscillations
fit quite well to the experiment, especially for the illuminated curves.
In general, the oscillations of the simulation fade out more quickly
than the experimental ones. Slight deviations in the maxima positions
stemming from the phase shift ∆ν∗ were most clearly observed for
sample #3556-1 before illumination. Extracted fitting parameters are
summarized in Tab. 7.4. The evaluated dot radius is on the order of
≈ 100 nm. Considering the physical radius of the etched dots of 230 nm,
a depletion length of ≈ 130 nm is extracted. After illumination, R0 and
N are found to increase and the broadening ∆f/f to be decreased.

7.4 Discussion
The presented analysis of experiment and simulation reveals that a
parabolic potential is not suited to describe the data. Although this
ansatz seems to explain the observed amplitude decrease of the dHvA-
type oscillations in the first place, a closer look shows that the predicted
amplitudes are too small. This is further underlined by the fact that
the number of electrons N = 1350 used in the initial modeling can
be understood as an upper limit, which assumes that all the donors

131



7 Magnetization of nanopatterned InP/InGaAs quantum dots

- 0 . 2
0 . 0
0 . 2
0 . 4

- 0 . 4

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6

- 0 . 2
0 . 0
0 . 2
0 . 4

- 0 . 4 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6

 e x p e r i m e n t
 m o d e l

M 
(10

-6  J/
(Tm

2 ))

( a )

# 4 0 6 9 - 1 A  d a r k # 3 5 5 6 - 1  d a r k

( b )

# 4 0 6 9 - 1 A  i l l u m .

( c )

1 / B ⊥ ( 1 / T )

# 3 5 5 6 - 1  i l l u m .

( d )

Figure 7.7: Simulated magnetization curves using the HW model (red)
compared to the experimental M(1/B⊥) (blue) for both samples in both dark
and illuminated states. The fit parameters R0, N and ∆f/f are summarized
in Tab. 7.4.

Table 7.4: Simulation parameters used to fit the HW model to the experimen-
tal data of both samples #3556-1 and #4069-1A before and after illumination.
Parameters are N : number of electrons per dot, R0: mean dot radius, ∆f/f :
ensemble broadening.

sample N R0 (nm) ∆f/f (%)

#3556-1 dark 180 90 4.4
illuminated 250 100 3.6

#4069-1A dark 330 110 2.8
illuminated 430 120 1.6
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within the physical borders of the dot are ionized. This assumption
certainly overestimates N if the confinement potential is parabolic,
because donors near the borders are likely to remain in a non-ionized
state. A smaller N , however, would further reduce the dHvA amplitudes
predicted by the parabolic model. Second, the asymmetry and strict
periodicity of the observed oscillations is not in accordance with the
parabolic model.

On the contrary, the asymmetry of the oscillations indicates that the
effective confinement potential must be flat at least within a certain
radius from the center of the dot. We argue that this is a result of
effective screening of the initial confinement potential present for an
empty dot. This is further substantiated by the observation of increasing
asymmetry upon illuminating the sample. Screening becomes even more
effective due to the increased N , thereby enhancing the flatness of the
potential. These findings agree with earlier magnetization measurements
in AlGaAs/GaAs etched quantum wires, where it was shown that the
slopes of the negative flanks of dHvA oscillations, and consequently their
asymmetry, reflected the amount of screening [Wil+04]. Self-consistent
Schrödinger-Poisson calculations of 1D and 0D laterally confined 2DESs
in AlGaAs/GaAs heterostructures revealed, that the potential flattened
out at the center of the structures if populated by many electrons [LFS88;
KLS90]. These findings suggest that a HW potential is a realistic ansatz
to describe the underlying structure for dots if populated by many
electrons and small interaction parameter rS. The positive phase shift
of the oscillations as observed before illumination is not reproduced
in the modeling based on a single particle picture, independent on
the flatness of the model potential. Due to the reduced N prior to
illumination, electron-electron interaction effects might play a more
important role. They would require an involved theoretical treatment
which is beyond the scope of this work.

The effect of inhomogeneous broadening across the ensemble was
included into the modeling via a Gaussian distribution of the dot radius
R0 (and thus the dHvA frequency f1/B⊥). The extracted broadening
parameter ∆f/f decreases after illumination. This can be explained by
a reduced statistical spread of N from dot to dot, thereby leading to
a more homogeneous distribution of the effective radius R0 across the
ensemble. Still, the modeling of ensemble effects via a distribution of f is
subject to some limitations. Each individual dot is treated as providing
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an ideal HW magnetization signal. However, the reference 2DESs did
not show ideal sawtooth-shaped dHvA oscillations but were also subject
to lifetime broadening, as discussed in detail in 2.2.2. We attribute
the different overall amplitude ∆M of wafers #4069 and #3556 to
such effects. Since this difference in amplitude was also observed for
the dots, we conclude that there are mechanisms accounting for an
amplitude decrease for each individual dot which are not considered in
the modeling. Such effects could include a variation of the potential
shape from dot to dot, while having less influence on the dHvA frequency
itself. Following this reasoning, the extracted ∆f/f are over-estimated,
which in turn would explain that the fading of the dHvA oscillations
towards small B⊥ in the experiment is less pronounced than in the
modeling. The smallest extracted broadening parameter amounts to
∆f/f = 1.6 %. Following the previous discussion, this evidences that
large arrays of dots were fabricated with high homogeneity in the course
of this work.
From the analysis of the data, we concluded that the dots were

subject to a substantial edge depletion of order ≈ 130 nm. The key
aspect for this finding was the overall decrease in dHvA amplitude ∆M
per mesa area by a factor of ≈ 10 with respect to the 2DES reference.
In particular, we argued that inhomogeneous broadening effects as
discussed above could not explain this strong reduction alone, and a
smaller effective radius of the confinement potential R0 was crucial
to describe the data convincingly. Although we found differences in
the dHvA amplitudes for the two observed wafers, we stress that the
relative change in ∆M from 2DES to dot ensemble was quite the same.
Moreover, we found comparable effective R0 for both dot samples, even
though we used the absolute amplitudes in the analysis and did not
account for these relative differences. These considerations support our
conclusion that the reduction in ∆M is explained with edge depletion
effects. Furthermore, and given that ensemble broadening effects are
small, the finding of a maximum R0 is substantiated by the observed
fading of the oscillations towards small B⊥. To explain this, we compare
R0 with the semiclassical cyclotron radius rc at the Fermi level. For a
given B⊥, rc is derived as [AM76]

rc = ~kF
eB⊥

= ~
√

2πn2D
eB⊥

. (7.8)
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The observed dHvA oscillations vanished at B⊥ ≈ 2 T. At this particular
field, one obtains rc ≈ 80 nm (with n2D = 8.5 × 1011 cm−2). This
agrees well with the simulated R0 ≈ 100 nm. In a semiclassical picture,
dHvA oscillations at smaller B⊥ are not expected because rc > R0 and
electrons do not perform full cyclotron orbits. We fortify the hypothesis
of edge depletion by further measurements that were performed on
mesoscopic dot ensembles with dot diameters of ≈ 3µm prepared from
wafer #4069 (not shown). From the decrease in ∆M , we extracted an
edge depletion width on the order of 200 nm for these samples.

The existence of a rather large edge depletion is in contrast to previous
works, which claimed that for InGaAs-based lateral nanostructures, ef-
fective and geometrical widths were almost the same [Ker+90; Tem+87].
Kajiyama et. al. investigated the Schottky barrier height of InxGa1−xAs
as a function of the In content x. They reported that for pure InAs, the
barrier height was negative and the Fermi level was pinned inside the
conduction band at a free surface [KMS73]. For the QW in our dots, the
In content was x = 0.77, which still gives a positive barrier height on the
order of 20 meV. However, since the Fermi level in our structures was
of order 50 meV and the confinement potential was, as discussed above,
effectively screened, the small theoretical barrier height cannot explain
the relatively large edge depletion which we observed. Possible reasons
for a depletion at the edges could be based on the fabrication processes
via electron beam lithography and reactive ion etching. High-energetic
electrons or ions may generate defects at the edges, which pin the Fermi
level below the conduction band and counteract the formation of a
surface accumulation layer. Moreover, the QW barrier layers are subject
to an increased Schottky barrier height as compared to the QW itself.
Notably, this applies to the InP spacer layer below the QW, exhibiting
a barrier height on the order of 400 meV [WMR82]. Positive net charges
at the lateral InP borders might push electrons away from the edges,
thereby depleting the borders of the dots.
Finally, we discuss possible signatures of spin orbit coupling in the

magnetization of the dot ensemble. As evident from measurements
presented in chapter 5, the dHvA oscillations of the reference 2DES
exhibited characteristic beating patterns due to a dominant Rashba term.
These beatings were also reported in magnetotransport measurements on
etched wire structures prepared from the same type of heterostructures.
However, signatures of a beating or spin-splitting were not observed
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in the dHvA oscillations of the present dot ensembles. Assuming that
large dots with a HW potential would exhibit similar beating patterns,
we discuss their observability in the following. First, we stress that
the dHvA oscillations of the dot samples were suppressed for ν∗ < 20,
whereas the beat node is expected near ν = 58 for tilt angles θ in the
range of 0◦ to 60◦. Tilting the magnetic field towards the angle of half
coincidence θ1/2

c will shift the first beat node to higher magnetic fields
(see 2.4.2). Nonetheless, a notable shift of the node beyond ν = 20
requires θ to be very close to the θ1/2

c . Under these conditions, the
envelopes of even and odd ν are almost constant as a function of 1/B⊥,
which makes it practically impossible to identify an exact node position
in the data.
We conclude that addressing possible beating patterns in M(B) of

quantum dots requires that the oscillations remain visible towards
smaller B⊥. Following the previous discussion, the fading of the oscil-
lations is governed mainly by the effective dot radius R0. Therefore,
an enlargement of the dots might facilitate the detection of beat nodes
in M(B). Still, with increasing R0, the effect of confinement might be
weaker. Alternatively, the strength of SOI could be measured at high
magnetic fields and very small filling factors due to avoided crossings of
Landau- and Zeeman gaps at the full coincidence tilt angle θ1

c [WG13].
SOI in the energy spectra and the magnetization of small quantum dots
with only few electrons have been discussed in numerous theoretical
treatments [TLG04; CP05; PC06; CAC07; APC12]. Here, observation of
magnetization steps related to single particle level crossings are crucial
to reveal information about these energy spectra and the influence of
SOI. Until now, no direct magnetization data of such dots with few
electrons was published due to experimental challenges, originating from
the small signal strength of a single quantum dot.1

1Direct access to energy states at the Fermi level can be gained via single
electron tunneling. Oosterkamp et al. showed that the magnetization can be
deduced indirectly from such tunneling data in few electron dots [Oos+98].

136
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In this thesis, spin-orbit interaction (SOI) effects in InP/InGaAs-based
two-dimensional electron systems (2DES) were investigated via beating
patterns in the magneto-oscillations of magnetization M , chemical
potential µ and magnetoresistance ρxx. Furthermore, magnetization
measurements were employed to study confinement effects in laterally
etched quantum dot ensembles prepared from the same InP/InGaAs
heterostructures.

Experiments were performed at cryogenic temperatures and high
magnetic fields B with adjustable tilt angles. Here, the thermody-
namic quantities M and µ were experimentally addressed by means of
torque cantilever magnetometry using both capacitive and interferomet-
ric readout schemes. The interferometric setup could be improved to
substantially reduce the required laser power and sample temperature.
Moreover, a novel technique was developed to address the chemical
potential µ of gated 2DESs via a resonant excitation of the cantilevers,
thereby featuring an enhanced resolution as opposed to the quasi-static
measurement of M . For a detailed interpretation of the experimental
results, all the recorded data were compared to theoretical simulations
performed within the framework of this thesis. A modeling of 2DES
energy spectra including both Rashba (R) and Dresselhaus (D) SOI
mechanisms allowed to predict SOI-related beat node positions and
enabled to extract relevant SOI parameters from the experiments. Fur-
thermore, simulations of magnetization traces of quantum dots enabled
to draw conclusions on confinement effects in the investigated samples.

In the following, the results obtained on gated 2DES flip-chip samples,
2DES Hall bar samples and quantum dot mesa are summarized an short
outlook suggesting future investigations is given.
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Magnetization and chemical potential of a 2DES with spin-orbit
interaction

Simultaneous measurements of M(B) and µ(B) were performed on
contacted and gated 2DES flip-chip samples by means of cantilever mag-
netometry via a combined quasi-static operation and resonant excitation.
Both M and µ exhibited beating patterns in 1/B-periodic quantum
oscillations which were attributed to SOI. While a single beat node
was detected in M(B), the enhancement of resolution in µ(B) due to
resonant excitation enabled the detection of a second beat node. Model
calculations of M(B) and µ(B) showed that an accurate representation
of the data was only possible by considering both R- and D-SOI. A
fitting routine allowed to extract absolute values of the SOI constants
αR and βD from the two beat node positions in µ(B). In addition to a
dominant R-term, a small D-contribution βD ≈ 0.1αR was asserted.

This analysis exceeded previous investigations of SOI-related beating
patterns in similar samples, where only the R-contribution was con-
sidered in the modeling [Eng+97; Rup+13]. While the application of
static gate voltages was not possible due to time drifts of the electron
density n2D, future experiments should aim to study the gate-controlled
interplay between R and D effects in both M and µ. In combination
with the persistent photo effect, the variation of the effective electric
field E in the quantum well at constant n2D should be feasible, enabling
to investigate changes in αR and possibly also βD as a function of E .

Furthermore, the simultaneous detection of M and µ allowed us to
confirm the relation ∆M/N = ∆µ/B of the oscillation amplitudes for
the present samples, as predicted for non-interacting electrons [Wie+97].
On the other hand, a field-dependent enhancement of ∆M over ∆µ is
expected in 2DESs with strong electron-electron interactions [Mei+01],
but a direct experimental confirmation is lacking. The combined detec-
tion of M and µ as developed here is key to address these anomalies
directly, enabling to study novel interaction and correlation effects in
future experiments. Going beyond that, the technique enables the
investigation of thermodynamic ground state properties of any 2DES
that is gateable and is thus of potential to explore new phenomena in
2D materials, such as Dirac fermions in graphene.
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Investigation of spin-orbit interaction by anisotropic
magnetotransport

Magnetotransport measurements were performed on InP/InGaAs sam-
ple Hall bars as a function of an external magnetic field, where both
polar and azimuthal tilt angles, θ and ϕ, were tuned separately. From
Shubnikov-de Haas (SdH) oscillations at constant θ, anisotropies in
the SOI-related beat node positions as a function of ϕ were asserted,
which were attributed to the presence of both R and D-SOI mechanisms.
Furthermore, experiments at large magnetic fields revealed an in-plane
anisotropy in the coincidence tilt angle θ1/2

c , which was associated with
an in-plane anisotropy of the effective g∗-tensor. With the help of model
calculations including both SOI and g

∗-tensor anisotropy in doubly
tilted fields, an elaborate fitting procedure was performed to match
experimental beat node positions as well as coincidence angles with
theoretical predictions. This allowed to unambiguously extract both
absolute values and the relative sign of SOI-constants αR and βD as well
as the full in- and out-of-plane anisotropy of g∗ from the experimental
data.

The method is straightforward in the sense that only well established
magnetotransport measurements on standard Hall bars are employed in
order to determine the SOI-constants. Complementary methods that
are able to determine both SOI constants simultaneously mostly relied
on rather involved pump-probe experiments [Mei+07], required nanopat-
terning [Sas+14] or provided only the ratio [Gan+04] or absolute values
[Mil+03] of αR and βD. Furthermore, asymmetries in the effective g∗-
tensor were often neglected, although they are relevant in experiments
where external magnetic fields are involved to probe SOI effects. The
analysis presented in this work revealed αR, βD and all components of
g
∗, therefore providing a more comprehensive picture of spin-related

physics in semiconductors. Starting from these results, band structure
calculations providing the subband wave function of the 2DES should
enable to investigate the predicted interplay of R and D-SOI with the
in-plane anisotropy of g∗ [KK93]. Moreover, a tuning of the out-of-
plane electric field E via a gate electrode should not only change αR (as
demonstrated in Refs. [Eng+97; Nit+97; Gru00]), but also influence
the components of g∗. Performing anisotropic magnetotransport exper-
iments at different gate voltages should confirm this assumption and
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8 Summary and outlook

allow to validate the respective predictions of k·p-theory [KK93; Win03].

Magnetization of nanopatterned InGaAs/InP quantum dots

Torque magnetometry was performed on nanopatterned InP/InGaAs
quantum dot ensembles with lateral diameter of ≈ 460 nm. The ex-
periments yielded 1/B-periodic magneto-oscillations, which were sub-
stantially reduced in amplitude and faded out quickly towards small
magnetic fields. The oscillations were modeled theoretically by a single-
particle ansatz assuming lateral confinement potentials of parabolic as
well as hard-wall (HW) shape and including ensemble broadening effects.
A careful analysis of amplitude, periodicity, and shape of the oscilla-
tions revealed that a hard-wall confinement potential was suited best
to describe the experimental data. The flatness of this potential at the
center of the dots was explained with effective screening. Furthermore,
it was found that ensemble broadening effects played a minor role in
explaining the fading of the oscillations. The main effect was attributed
to lateral confinement. Different from complementary investigations
on InP/InGaAs-based nanotructures [Tem+87; Ker+90], our model-
ing revealed that the present dots were subject to a substantial edge
depletion of ≈ 100 nm. This finding was attributed to the processing
of the dots. A detailed analysis of surface charges and self-consistent
modeling could further clarify this aspect, thereby providing a more
realistic shape of the confinement potential. The method presented
here is thus suitable to study the electronic structure of quantum dots
with many electrons in their equilibrium state and paves the way to
investigate lateral confinement and electron-electron interaction effects
such as screening.

Signatures of spin splitting were not observed in the experiments and
it was argued that large magnetic fields and high tilt angles would be
required to address these effects. However, SOI-related beating patterns
would hardly be observable for the present dots, because the oscillations
faded out too quickly. Future experiments aiming to address SOI should
be performed on dots with enlarged diameter. To analyze the results
of these experiments, numerical calculations including SOI should be
performed for such large dots with many electrons. Intriguing physics
is also expected from measurements of M on single dots with only few
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electrons, where numerous theoretical predictions on the impact SOI of
exist. Here, transitions between single particle states should be observ-
able in M(B), enabling direct access the underlying energy spectra and
their modifications by SOI. However, addressing relevant magnetization
signals on the order of 10−22 J/T still remains an experimental challenge.

In conclusion, spin-orbit interaction and confinement effects in semi-
conductor hetero- and nanostructures are subject of intensive research
due to the rich physics and potential spintronics applications. In this
thesis it was shown experimentally that beating patterns in magneto-
oscillations of magnetization, chemical potential and magnetotransport
of 2DESs, if performed in tilted fields, provide simultaneous access to
Rashba and also Dresselhaus SOI-constants and the full anisotropy of
the effective g∗-tensor. This technique provides a more comprehensive
picture of the interplay of these mechanisms, which is key to design
future spintronics devices. Furthermore, magnetization measurements
on quantum dots that were prepared from the above heterostructures
showed that the lateral confinement potential is effectively screened and
allowed to quantify the amount of edge depletion. This enabled a more
profound understanding of the electronic properties of quantum dots
containing many electrons.
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A Abbreviations & Symbols

Abbreviations
AB Aharonov-Bohm
AlGaAs aluminum gallium arsenide
AOM acusto-optical modulator
APD avalanche photo diode
BIA bulk inversion asymmetry
2DES two-dimensional electron system
dHvA de Haas-van Alphen
D Dresselhaus
DOS density of states
FD Fock-Darwin
GaAs gallium arsenide
HW hard-wall
InGaAs indium gallium arsenide
InP indium phosphide
LK Lifshitz-Kosevich
LL Landau level
LPF low pass filter
MCM micromechanical cantilever magnetometer
QW quantum well
R Rashba
SdH Shubnikov-de Haas
SEM scanning electron microscopy
SIA structural inversion asymmetry
SOI spin-orbit interaction
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Symbols
a, a† annihilation and creation operators
A vector potential
Am 2DES mesa area
B external magnetic field
Beff effective magnetic field
C capacitance
D(E) density of states
e positive elementary charge
E electric field
E energy
EF Fermi energy
En energy of the n-th Landau level
En′ energy of SOI spin-split Landau levels
Enl single particle energies of a quantum dot
f frequency
F free energy
g∗ effective electron Landé factor (scalar)
g
∗ effective electron Landé tensor (including angular

anisotropies)
~ = h/(2π), reduced Planck constant
I current
k electron wave vector
kB Boltzmann constant
kF Fermi wave vector
KC , KI ,
Kdyn

calibration constants of the cantilever magnetome-
ter for capacitive, optical and dynamic readout
schemes

lB magnetic length
m0 free electron mass
m∗ effective electron mass
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M magnetization
∆M peak-to-peak de Haas-van Alphen amplitude
n2D 2D electron density
N total number of electrons
NL degeneracy per unit area of spin-split Landau levels
pν∗ period of dHvA oscillations at filling factor ν∗

P laser power
r in-plane radial coordinate
rS interaction parameter
R resistance
R0 effective dot radius
T temperature
U voltage
V confinement potential
w(z) subband wave function
αR Rashba parameter
βD k‖-linear Dresselhaus parameter
γ bulk Dresselhaus parameter
Γ level broadening
∆0 zero field spin splitting
∆s spin splitting
∆s,Z Zeeman splitting
∆up/∆down asymmetry parameter of de Haas-van Alphen oscil-

lations
ε0 dielectric constant
θ polar angle of the external magnetic field
θic i-th coincidence angle
µ chemical potential
∆µ peak-to-peak amplitude of the quantum oscillations

of µ
µ

(∗)
B (effective) Bohr magneton
ν(∗) (effective) filling factor
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A Abbreviations & Symbols

π kinetic momentum operator
ρ resistivity
σ spin operator
τ torque
ϕ in-plane angle of the external magnetic field
Φ0 magnetic flux quantum
ωc cyclotron frequency
ω0 eigenfrequency
�‖, �⊥ parallel or perpendicular components (with respect

to the 2DES plane)
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B Matrix elements and
angle-dependent g∗-factor

In this appendix, a derivation of the matrix elements of the Hamilto-
nian H of a 2DES including Landau quantization, anisotropic Zeeman
splitting as well as Rashba- and Dresselhaus-SOI contributions in tilted
fields is given. First, we include the k‖-linear SOI terms only. Supple-
mental contributions due to k‖-cubic Dresselhaus term are discussed
later on. Finally, we derive the angle-dependent scalar g∗-factor in the
case where only the anisotropic Zeeman splitting is considered and SOI
contributions are neglected.

B.1 Matrix elements including Zeeman
splitting and k-linear SOI-terms

The problem is formulated as follows (c.f. chapter 2):

H = H0 +Hs = H0 +HZ +HR +HD

H0 = π2

2m∗

HZ = 1
2µB

[
g⊥σzB⊥+g‖(σxBx+σyBy)+gxy(σxBy+σyBx)

]
HR = αR

~
(σxπy − σyπx)

HD = βD
~

(σxπx − σyπy)

(B.1)

Here, H0 is the orbital Hamiltonian of an ideal 2DES and HZ, HR, HD
are the Zeeman, Rashba and Dresselhaus contributions to H, respec-
tively. We now search for non-zero matrix elements of H in terms of the
eigenstates |n, sz〉 of H0, i.e., we derive 〈m, sz|H|n, s′z〉 (n = 0, 1, 2, ...,
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B Matrix elements and angle-dependent g∗-factor

sz = ±). Two quantum mechanical operators are present. The spin
operator σ = (σx, σy, σz) acts on the two-componental spinor states
|±〉 in the following way [Sch02]:

σx|+〉 = |−〉 σy|+〉 = i|−〉 σz|+〉 = |+〉
σx|−〉 = |+〉 σy|−〉 = −i|+〉 σz|−〉 = −|−〉 .

(B.2)

On the other hand, the kinetic momentum operator π = (πx, πy) acts
on the orbital states |n〉. In order to determine the effect of π on these
states, it is instructive to rewrite πx and πy in terms of annihilation
and creation operators a and a† (defined in 2.2.1)

πx = i ~√
2lB

(a† − a) and πy = ~√
2lB

(a† + a) , (B.3)

where lB =
√

~/(eB⊥) is the magnetic length. This enables to use the
following relations

a|n〉 =
√
n|n− 1〉 and a†|n〉 =

√
n+ 1|n+ 1〉 . (B.4)

With Eqs. (B.2), (B.3) and (B.4), we now have all ingredients at hand
to calculate the respective matrix elements.

We start with the Zeeman contribution HZ. This Hamiltonian con-
tains only the components of the spin operator and does not act on
orbital states. Therefore, only states with identical orbital quantum
number n are coupled (〈m|n〉 = δmn). Furthermore, it is clear from Eq.
(B.2) that σz couples spinor states with sz = s′z while σx, σz couple
states with anti-parallel spin orientation (sz = −s′z). We find that the
only non-zero matrix elements due to HZ are:

〈n,±|HZ|n,±〉 = ±1
2µBg⊥B⊥

〈n,−|HZ|n,+〉 = 1
2µB

[
Bx(g‖ + igxy) +By(gxy + ig‖)

] (B.5)

Here, we did not list the third element 〈n,+|HZ|n,−〉 which is simply
given by the Hermitian conjugate of 〈n,−|HZ|n,+〉.
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Using Eq. (B.3), the Rashba contribution HR is rewritten as

HR = αR√
2lB

[
σx(a† + a)− iσy(a† − a)

]
. (B.6)

Likewise, the Dresselhaus term HD is expressed as:

HD = βD√
2lB

[
iσx(a† − a)− σy(a† + a)

]
. (B.7)

We notice that both terms contain products of a or a† with one of the
in-plane spin operators σx or σy. Consequently, these Hamiltonians
couple only states with neighboring orbital quantum numbers m = n±1
and with anti-parallel spin orientation sz = −s′z. Using Eqs. (B.2)
and (B.4), we find that the only non-zero matrix elements (plus their
Hermitian conjugates) yield

〈n,+|HR|n+ 1,−〉 =
√

2αR
lB

√
(n+ 1)

= αR

√
2eB⊥(n+ 1)

~
(B.8)

〈n,−|HD|n+ 1,+〉 = −i
√

2βD
lB

√
(n+ 1)

= −iβD

√
2eB⊥(n+ 1)

~
. (B.9)

If we are interested only in the energy states near the Fermi level EF, we
can use the approximation EF ≈ n~ωc and n+ 1 ≈ n if n is sufficiently
large [DDR90]. This allows us to simplify√

2eB⊥(n+ 1)
~

≈
√

2m∗EF

~2 = kF (B.10)

with the Fermi wave vector kF. Therefore, the matrix elements (B.8)
and (B.9) yield αRkF and −iβDkF, respectively.
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B Matrix elements and angle-dependent g∗-factor

B.2 Matrix elements due to k-cubic
Dresselhaus terms

From Eq. (2.37) it is clear that in a 2DES the Dresselhaus-SOI actually
contributes two distinct terms to HD, namely

HD = HD,1 +HD,2

HD,1 = − γ

~3 〈π
2
z〉(σxπx − σyπy)

HD,2 = γ

~3 (σxπyπxπy − σyπxπyπx) .

(B.11)

Here, γ is the bulk Dresselhaus parameter and 〈π2
z〉 is the expectation

value of the z-component of π as determined by the (fixed) subband
wave function w(z). Different from Eq. (2.45), we already replaced
the components of the wave vector operator by those of the kinetic
momentum operator ki = πi~. The k‖-linear contribution HD,1 was
included in (B.1) (using βD = −γ〈k2

z〉), while HD,2, which is cubic in k‖,
was omitted previously. In order to derive the matrix elements due to
HD,2, we again replace πx, πy by their notations in terms of a and a†:

HD,2 = γ

(
√

2 lB)3

[
iσx(a† + a)(a† − a)(a† + a)

+σy(a† − a)(a† + a)(a† − a)
] (B.12)

Using the commutator relation [a, a†] = 1, Eq. (B.12) can be rewritten:

HD,2 = γ

(
√

2 lB)3

[
iσx
(

(a†)3 + a†(1 + N̂) + a(1− N̂∗)− a3
)

+σy
(

(a†)3 − a†(1 + N̂) + a(1− N̂∗) + a3
)] (B.13)

Here, we introduced the number operators N̂ = a†a and N̂∗ = aa†,
which do not change the orbital states |n〉 and return the angular
quantum numbers as N̂ |n〉 = n|n〉 and N̂∗|n〉 = (n+ 1)|n〉. Apparently,
HD,2 contains products of σx or σy with either a, a† or a3, (a†)3. Hence,
only states with anti-parallel spin orientation and with orbital quantum
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numbers m = n+ 1 or m = n+ 3 are coupled. Using Eqs. (B.2) and
(B.4), we find that the non-vanishing matrix elements due to HD,2 are

〈n,−|HD,2|n+ 1,+〉 = −i γ√
2l3B

(n+ 1)3/2

≈ −iγ4 k
3
F

〈n,+|HD,2|n+ 3,−〉 = −i γ√
2l3B

√
(n+ 1)(n+ 2)(n+ 3)

≈ −iγ4 k
3
F

(B.14)

plus their Hermitian conjugates. Here, the final approximations are
based on (B.10). In summary, the matrix elements due to HD including
both k‖-linear and k‖-cubic terms read

〈n,−|HD|n+ 1,+〉 ≈ iγ〈k2
z〉kF − iγ4 k

3
F := −iβ′DkF

〈n,+|HD|n+ 3,−〉 ≈ −iγ4 k
3
F ,

(B.15)

where a corrected linear Dresselhaus constant was defined as
β′D := −γ

(
〈k2
z〉 − 1/4k2

F
)
.

B.3 Diagonalization of H with anisotropic
Zeeman splitting

We consider the Hamiltonian H [Eq. (B.1)] without SOI terms and
including only the anisotropic Zeeman terms. The aim is to derive
the angle-dependent scalar g∗-factor by determining the spin-splitting
from the respective energy eigenvalues. Neglecting SOI contributions,
H decomposes into a 2 × 2 block-diagonal form, which allows for a
straightforward diagonalization:

H2×2 =
[
En − Z⊥ Z‖

Z∗‖ En + Z⊥

]
. (B.16)
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B Matrix elements and angle-dependent g∗-factor

Here, En = (n + 1/2)~ωc, Z‖ = 1/2µB
[
Bx(g‖ + igxy) +By(gxy + ig‖)

]
and Z⊥ = 1

2µBg⊥B⊥ were replaced for the sake of readability. Due to
the Zeeman terms Z⊥ and Z‖, the formerly spin-degenerate Landau level
with energy En splits up into two levels En,±, given by the eigenvalues
of H2×2:

En,± = En ±
√
Z2
⊥ + |Z‖|2

= En ±
1
2µB

√
g2
⊥B

2
⊥ + (B2

x +B2
y)(g2

‖ + g2
xy) + 4BxByg‖gxy

(B.17)
Using polar coordinates to represent the external magnetic field B

Bx = B sin θ cosϕ
By = B sin θ sinϕ
Bz = B cos θ ,

(B.18)

the En,± can be written in terms of θ and ϕ:

En,± = En ±
1
2µBB

√
g2
⊥cos2θ+(g2

‖+g2
xy)sin2θ+2g‖gxy sin2θsin2ϕ

(B.19)

En,± = En ±
1
2µBB g

∗(θ, ϕ) . (B.20)

Therefore, the Zeeman splitting ∆s,Z = En,+ − En,− at constant B
depends on the direction of B and a scalar, but angle-dependent g∗(θ, φ)
can be introduced.
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