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Abstract

S ynthetic aperture radar (SAR) interferometry is the technique of using SAR as interfer-
ometer, to measure the phase difference caused by topography or object displacement.

Multipass SAR interferometry (InSAR) is so far the only method for assessing long-term
millimetre-level deformation over large areas from space on an imaging basis. Very high res-
olution multipass InSAR techniques have made substantial development in the last decade
in monitoring individual building using persistent scatterer interferometry (PSI) and SAR
tomography (TomoSAR), in monitoring nonurban area using small baseline subset (SBAS)
and SqueeSAR, and so on.

To prepare for future SAR missions which will have higher resolution, larger coverage, and
greater data volume, this thesis addresses the following four aspects of multipass InSAR
techniques: computational efficiency, information fusion, contextual awareness, and statis-
tical robustness.

TomoSAR is the most competent InSAR method for urban area monitoring. But it is much
more computationally intensive than any other multipass InSAR methods. To this end, an
computationally efficient multi-dimensional TomoSAR algorithm for urban area was devel-
oped, by integrating tomographic SAR inversion and the well-known PSI. The results of
PSI were used for a pre-classification of single and double scatterers, and also used as prior
in the tomographic inversion. Real data experiments show the proposed approach obtains
results comparable to the one obtained by the most computationally expensive tomographic
SAR algorithms (e.g. SL1MMER), and saves computational time by a factor of fifty.

Multi-aspect InSAR point clouds fusion is required for a complete monitoring of entire
city, due to the SAR side-looking geometry. In this thesis, a robust algorithm, namely ”L-
shape detection & matching”, is proposed, especially for fusing two point clouds from cross-
heading orbits, i.e. ascending and descending. The main idea of this algorithm is finding and
matching the theoretically exact point correspondence which is the end positions of façades
where the two point clouds close. Practical experiment shows the proposed method achieves
sub-meter consistency with the state-of-the-art, and is much more computationally efficient.

The development of a semantic urban infrastructure monitoring algorithm by fusing In-
SAR and optical images was followed after the point cloud fusion. The attributes derived
from optical images, e.g. colour, classification label, are transferred to the InSAR point cloud
for a semantic level analysis of the deformation signal. The key lies on a strict 3-D geomet-
ric co-registration of SAR and optical images by reconstructing and matching the 3-D point
clouds derived from the two types of images. Examples on bridges and railway monitoring
are demonstrated.

Robust InSAR optimization is crucial for future SAR data, because of the unprecedented
high resolution brings different observation statistics and much more dynamic interfero-
metric phase. The proposed robust InSAR optimization (RIO) framework answers two open
questions in multipass InSAR: (1) How to optimally treat images with a large phase er-
ror, e.g., due to unmodeled motion phase, uncompensated atmospheric phase, etc.? And (2)
How to estimate the covariance matrix of a non-Gaussian complex InSAR multivariate, par-
ticularly those with nonstationary phase signals? For the former question, RIO employs a
robust M-estimator to effectively down-weight these images, and for the latter question, a
new method — the rank M-Estimator — is proposed. Simulated and real data experiments
demonstrated that substantial improvement can be achieved in terms of the variance of
estimates, comparing to the state-of-the-art estimators for both persistent and distributed
scatterers. The proposed framework can be easily extended to other multipass InSAR tech-
niques.
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The abovementioned algorithms were tested using TerraSAR-X data of various test sites,
especially for the efficient TomoSAR algorithm and the RIO framework.

Keywords

Synthetic aperture radar interferometry, robust estimation, covariance matrix, distributed
scatterer, persistent scatterer, SAR tomography, deformation monitoring, semantic interpre-
tation, InSAR point cloud, data fusion
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Zusammenfassung

S ynthetik Apertur Radar-Interferometrie ist eine Technologie um die Phase die durch
die Topographie oder die Verschiebung von Objekten entsteht zu messen. Multipass-

SAR-Interferometrie ist bis heute das einzige bildgebende Verfahren um über weite Ge-
biete langfristig millimetergenau Deformation mit Satelliten zu messen. Multipass SAR-
Techniken für sehr hohe Auflösungen haben in der letzten Dekade eine signifikante En-
twicklung erfahren, sei es bei der Beobachtung von einzelnen Gebäuden mit Persistenter
Streuer Interferometrie (PSI) und SAR-Tomographie (TomoSAR), bei nichturbanen Gebieten
mittels Small Baseline Subset (SBAS) und SqueeSAR, und so weiter.

Um für zukünftige SAR Missionen bereit zu sein, welche eine höhere Auflösung, größere
Abdeckung und ein größeres Datenvolumen besitzen, behandelt diese Dissertation die fol-
genden vier Aspekte von Multipass-InSAR-Techniken: Recheneffizienz, Fusion von Informa-
tion, Berücksichtigung von Zusammenhängen und robuste Schätzverfahren.

TomoSAR ist die leistungsfähigste InSAR-Methode für die Beobachtung von urbanen
Gebieten. Allerdings ist es weitaus rechenintensiver als alle anderen Multipass-InSAR-
Methoden. Daher wurde ein effizienter Ansatz für mehrdimensionale tomographische SAR-
Inversion für urbane Gebiete entwickelt, indem die tomographischer SAR-Inversion in
die bekannte PSI integriert wurde. Die Ergebnisse der PSI wurden für eine Vorklassi-
fizierung in Einzel- und Doppelstreuer benutzt und fungierten als a priori-Wissen für die
TomoSAR-Rekonstruktion. Versuchsläufe mit Realdaten zeigen, dass der vorgeschlagene
Ansatz Ergebnisse liefert die vergleichbar sind mit denen der rechenintensivsten tomo-
graphischen SAR-Algorithmen (z.B. SL1MMER) und die Rechenzeit um den Faktor fünfzig
verkürzt.

Die Fusion von Multi-aspect InSAR-Punktwolken ist aufgrund der seitlich schauenden
Geometrie notwendig um eine ganze Stadt vollständig zu beobachten. In dieser Disserta-
tion wird ein robuster Algorithmus — L-Form Detektion und Zuordnung — zur Fusion
von Punktwolken, vor allem von cross-heading Orbits, das heißt ascending und descend-
ing, vorgeschlagen. Die Grundidee dieses Algorithmus ist das Finden und die Zuordnung
der theoretisch exakten Punktkorrespondenzen, welche die Endpunkte von Fassaden sind
an denen zwei Punktwolken zusammenlaufen. Praktische Experimente zeigen, dass die
vorgeschlagene Methode Übereinstimmungen von unter einem Meter mit Methoden auf
dem Stand der Technik erreicht, bei gleichzeitig weitaus effizienterer Nutzung der Rechen-
zeit.

Die Entwicklung eines Algorithmus für die semantische Beobachtung von urbaner Infras-
truktur mittels Fusion von InSAR und optischen Bildern folgte nach der Punktwolken-
Fusion. Anschließend werden die vom optischen Bild erhaltenen Attribute — Farbe, Klas-
sifizierung, usw. — in die InSAR Punktwolke für eine Semantikanalyse des Deforma-
tionsignals übertragen. Entscheidend ist die strenge 3-D geometrische Koregistrierung von
SAR-Bildern und optischen Bildern durch die Rekonstruktion und die Zuordnung der 3-D
Punktwolken welche von den zwei Typen von Bildern erzeugt wurden. Der vorgeschlagene
Ansatz wird anhand von Beispieldaten mit Brücken und Eisenbahnschienen gezeigt.

Robuste InSAROptimierung ist entscheidend für zukünftige SAR-Daten, da die bisher noch
nie dagewesene hohe Auflösung neue Beobachtungsstastistiken und eine weitaus dynamis-
chere Phase mit sich bringt. Das vorgeschlagene robuste InSAR-Optimierungsframework
(RIO) beantwortet zwei offene Fragen für Multipass-InSAR: (1) Wie sollen Bilder mit großen
Phasenfehlern optimal behandelt werden, z.B. aufgrund nicht im Modell berücksichtigter
durch Bewegung verursachte Phasenänderung, nicht kompensierter atmosphärischer
Phase, usw.? (2) Wie kann die Kovarianzmatrix für nicht-Gaussche, komplexe, mehrdi-
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mensionale InSAR Zufallsvariable geschätzt werden, insbesondere die mit nicht stationären
Phasensignalen? Um die erste Frage zu adressieren setzt RIO einen robusten M-Schätzer ein,
welcher Bildern mit großen Phasenfehlern ein geringeres Gewicht gibt, für die zweite Frage
wird eine neue Methode — der Rang M-Schätzer — vorgeschlagen, der kein phase flatten-
ing benötigt. Versuche zeigen, dass erhebliche Verbesserungen bezüglich der Varianz der
Schätzung erreicht werden können, im Vergleich zu Schätzern auf dem Stand der Technik
für persistente und verteilte Streuer. Das vorgeschlagene Framework kann leicht für andere
InSAR Techniken erweitert werden.

Die oben erwähnten Algorithmen wurden mit TerraSAR-X für mehrere Testgebiete getestet,
insbesondere gilt dies für den effizienten TomoSAR-Algorithmus und das RIO Framework.
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2-D two-dimensional

3-D three-dimensional

AD Anderson-Darling

ADI amplitude dispersion index

AIC Akaike information criterion
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BoW bag of words

CCG complex circular Gaussian

CDF cumulative distribution function

CRLB Cramér-Rao lower bound

CS compressive sensing

D-InSAR differential SAR interferometry

DoF degree of freedom

DS distributed scatterer

D-TomoSAR differential SAR tomography

DEM digital elevation model

GPSR gradient projection for sparse reconstruc-
tion

HPR hidden point removal

ICP iterative closest point

i.i.d. independent and identical distribution

InSAR SAR interferometry

KS Kolmogrov-Smmirnov

LAMBDA least square ambiguity decorrelation
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LOS line-of-sight

MAP maximum a posteriori

MLE maximum likelihood estimator

MUSIC multiple signal classification

NLS nonlinear least squares

PDF probability density function

PCA principle component analysis
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PSI persistent scatterer interferometry

RANSAC random sample consensus

RIO robust InSAR optimization

RME rank M-estimator

RSS residual sum of squares

SAR synthetic aperture radar

SBAS small baseline subset

SCM sign covariance matrix

SfM structure from motion

SL1MMER scale-down by L1 norm minimization,
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SLC single look complex

SNR signal to noise ratio

SVD singular value decomposition

SVM support vector machine

TerraSAR-X TS-X

TomoSAR SAR tomography

UTM universal transverse Mercator
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g single SAR pixel value

I intensity

A amplitude

φ unambiguous (absolute) phase

ϕ wrapped phase

R range distance

Rs nominal range distance

λ wavelength

θ incidence angle

B⊥ perpendicular baseline

h height

v linear deformation rate

s elevation

∆s elevation extent

γ coherence

γ (s) reflectivity profile along elevation direc-
tion

γ discrete reflectivity profile

L number of elements in γ

Ls number of elements in γ required for
sparse reconstruction

K number of scatterers

K0 (·) modified Bessel function of the second
kind

Li2 dilogarithm

N number of images

M number of samples

g multipass / multibaseline SAR pixel values

gn nth element of g

gm mth neighbouring sample of g

r̂ estimated complex rank of g
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Symbol Description

θ phase history parameters

a integer 2π phase ambiguities

C complex covariance matrix

Ĉk covariance estimate in the kth iteration

Cγγ prior covariance matrix of γ

R SAR discrete imaging model matrix

Φ (θ) diagonal matrix of the modelled phase

W diagonal weighting matrix

σ standard deviation

F distribution function

x generic variable

ε residual vector

εi ith element of ε

α regularization parameter

ν degree of freedom

ηRE relative efficiency

H0 null hypothesis (no scatterer)

H1,2 alternative hypothesis (single or double
scatterer)

P0 prior probability of the null hypothesis

P1,2 prior probability of the alternative hypoth-
esis

ρ (·) loss function

ψ (·) influence function

w (·) weighting function

p (·|·) likelihood function

O (·) computational complexity

Γ (·) Gamma function

Rn [·] nth order rank operator

Re[·] real part

Im[·] imaginary part
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1 Introduction 1

1 Introduction

1.1 Motivations and Objectives

S ynthetic aperture radar (SAR) is an important remote sensing means that emits elec-
tromagnetic wave to the imaged object and receives the backscattered echoes. SAR in-

terferometry (InSAR) is the techniques of using SAR as interferometer for 3-D reconstruc-
tion, and especially for monitoring the deformation of subwavelength level. InSAR plays
an irreplaceable role in earth observation, because it has been generally appreciated that
spaceborne InSAR is so far the only method to assess millimeter-precision long-term ground
deformation on a global scale.

The real beauty of spaceborne InSAR is the repeated long-term monitoring of small defor-
mation over large areas. The corresponding techniques are known as multipass / multi-
baseline / multitemporal InSAR techniques. They make use of a stack of co-registered SAR
images to reconstruct the deformation history, as well as the 3-D position of the scatterer.

The main focus of this thesis is on the algorithm development of multipass InSAR tech-
niques for future SAR systems.

The last several years are the era of meter-resolution spaceborne SAR sensors, such as
TerraSAR-X (TS-X), TanDEM-X and COSMO-SkyMed. That opened a whole new perspective
of analysing spaceborne SAR data. Substantial development in multipass InSAR techniques
has been made, e.g. in monitoring individual buildings, modelling higher order motion,
reconstruction of 3-D objects from SAR image stacks, and so on.

In the coming several years, SAR remote sensing will still be one of the most important
means of spaceborne earth observation. In particular, more and more high resolution wide
swath missions are under development. For example, the L-band SAR mission Tandem-L
will provide one meter spatial resolution with a swath of 50km in its high resolution mode;
the ALOS-2 provides both meter-resolution images with swath of 25km and 50km; and the
TS-X Next Generation that will have decimetre-level spatial resolution. For the medium
resolution mission, we can also foresee a data rush of the SAR satellite Sentinel-1, because
of the free data access policy.

It is obvious that the future earth observation will, on one hand, have huge demand on large
area processing, and on the other hand face data with unprecedentedly high resolution.
The ever increasing resolution brought challenges, e.g. exponential growth of data volume,
redundancy of data, different observation statistics, and much more dynamic motion. The
challenges posed to my research under the context of multipass InSAR algorithms can be
summarized as 1) How to efficiently perform tomographic SAR inversion for large data, be-
cause it is the most competent means of 3-D or even 4-D SAR imaging, but also the most
computationally expensive one. 2) How to fuse meter-resolution SAR tomographic point
clouds of urban areas from multiple viewing angles? One must consider the much higher
point density compared to other InSAR methods, e.g. from persistent scatterer interferom-
etry (PSI). 3) how to make use of the complementary information in high resolution optical
image to help the interpretation of InSAR point clouds of urban areas, since an unstructured
InSAR point cloud only gives 3-D position, deformation parameters, and the reflectivity of
the scatterers, and lastly 4) how to handle unexpected statistical properties for the SAR
images of unprecedentedly high resolution, e.g. the covariance matrix estimation of non-
Gaussian scatterers.

Therefore, four important objectives of the thesis have been identified:
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� Computational efficiency of SAR tomographic inversion: develop computationally effi-
cient tomographic SAR inversion algorithms for very high resolution urban monitoring.
The algorithm should be able to deliver tomographic reconstruction of an entire city using
meter-resolution data in an affordable time.

� Information fusion: fuse TomoSAR point clouds from multiple viewing angles, in order
to have a complete point cloud of the city under monitoring. The algorithm should be
able to extract important feature points from the dense TomoSAR point cloud, in order to
reduce computational cost and to be robust against large amount of outliers contained in
the data, e.g. caused by the complex scattering scenario (Auer et al., 2011).

� Contextual awareness: fuse optical images and InSAR point cloud/SAR images for a bet-
ter interpretation of SAR images and the deformation signal. The algorithm should par-
ticularly address the problem of 3-D geometric registration of optical and SAR images,
because of the complex 3-D urban topography.

� Statistical robustness: develop statistically robust InSAR algorithms for non-urban area
monitoring, taking into account different SAR statistics that may bias the covariance esti-
mation and the much more dynamic deformation signal which can lead to model under-
fitting.

1.2 Thesis Outline

This is a cumulative dissertation comprising of five full paper peer-reviewed journal papers,
which are presented in the appendix of the thesis. Chapter 2 covers the necessary basics for
the understanding of the thesis. The contribution of the thesis and the state-of-the-art are
summarized in Chapter 3. Chapter 4 and Chapter 5 cover the summary of the five journal
papers and the conclusion, respectively. Therefore, advanced readers can directly start from
Chapter 4.

The variables in this thesis were written with the following rule: italic: scalar; bold regular:
vector, and CAPITAL BOLD REGULAR: matrix. The list of symbols can be found in List of
Symbols.
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2 Basics

T argeting at the readers who are already in the research field of InSAR, the necessary
basics are included in this chapter. The discussions in this chapter are based on co-

registered complex-valued SAR image stacks. For the basics of SAR imaging geometry, ac-
quisition, focusing, etc., the readers are kindly directed to (Bamler and Hartl, 1998; Rosen
et al., 2000) for an extensive review of these fundamentals.

2.1 Single-look SAR Signal

”Single-look” SAR signal refers to the reflected echoes integrated into one range-azimuth
resolution cell, i.e. a range-azimuth SAR pixel. It is also known as single look complex (SLC).
And in the rest of this thesis, they will be used interchangeably, unless explicitly stated.
For the mathematical convenience, the classical SAR and InSAR theory has restricted the
discussion to two extreme cases of scattering object: distributed scatterer and point scatterer.

2.1.1 Point Scatterer
Point scatterer refers to the situation when the signal reflected from a single object is ab-
solutely dominating in the resolution cell. The complex radar return g is modelled as a
deterministic signal which is (Bamler and Hartl, 1998)

g = Aexp
(
−j 4π

λ
R+ jϕscatter

)
(2.1)

where A is the signal amplitude, −4πR/λ and ϕscatter are the phase contribution from the
distance R to the sensor and an intrinsic scattering phase, respectively. If the reflectance
from the point scatterer is coherent throughout the whole stack of SAR images, it is then
known as persistent/permanent scatterer (PS). Therefore, the scattering phase ϕscatter of a
PS is usually assumed to be identical throughout the stack.

2.1.2 Distributed Scatterer
Distributed scatterer (DS) or Gaussian scatterer is the superposition of sufficiently many
random sub-scatterers within a resolution cell. By assuming none of the sub-scatterer dom-
inates another, the complex backscattering of the resolution cell degenerates into a zero-
mean complex circular Gaussian (CCG) random variable according to so-called central limit
theorem, i.e.:

g = x+ jy x,y ∼N
(
0,σ2

)
(2.2)

where the real and imaginary part x and y both follow a zero-mean Gaussian distribution
with variance σ2. This assumption is fulfilled for natural objects in medium resolution (∼
10 m) SAR system, however can be violated in urban areas or for high resolution systems.

As both the real and imaginary parts are identically Gaussian distributed, one can derive
that the intensity of a DS pixel I = |g |2 follows a χ2 distribution with two degrees of freedom
(DoF). The joint probability density function (PDF) of its intensity and phase is again a χ2

distribution but only scaled with a factor of 1/2π (Bamler and Hartl, 1998):

f (I,ϕ) =
1

2πĪ
exp

(
−I
Ī

)
(2.3)
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where Ī = σ2 is the expected intensity. As one can see, the PDF does not depend on the
phase, because the scattering phase ϕscatter of single-look DS has a uniform distribution. As
a consequence, the phase seemingly carries no information.

2.1.3 Layover of Scatterers
Layover of scatterers happens when multiple scatterers appear at different elevation in the
same resolution cell. The complex single look signal is then the integration of all the contri-
butions along the third SAR coordinate elevation which is orthogonal to range and azimuth.
Recall the plane wave approximation of the SAR imaging model of a single-look SAR pixel
(after focusing) (Bamler and Hartl, 1998; Zhu, 2008):

g =
∫
∆s

γ (s)exp
(
−j 4π

λ
R (s)

)
ds (2.4)

where γ (s) is the complex reflectivity profile along the elevation direction s, ∆s is the extend
of the elevation direction, and R (s) is the range change along elevation direction. As one can
see, an SLC SAR image is only a single tomographic projection of the imaged object/area.
It requires multiple acquisitions from slightly different positions in order to reconstruct the
full reflectivity profile γ (s). This is known as SAR tomography (TomoSAR).

In urban areas, we mostly consider the layover of PSs in a resolution cell. Therefore, γ (s)
can be parametrically modelled as multiple delta functions:

γ(s)P S =
∑
i

Aiδ (s − si) (2.5)

where Ai and si are the unknown complex amplitude and the elevation position of the ith
scatterer, respectively.

2.2 Multipass InSAR

Briefly speaking, InSAR is the technique of using SAR as interferometer. Figure 1 shows the
plane wave approximation of the interference of two SAR images. The red and blue lines are
the iso-range lines with interval of half wavelength of the two images respectively. Because
of the perpendicular baseline B⊥, the iso-range lines intersect each other, creating an inter-
ference pattern. The background fringe shows the interferometric phase of the pattern. The
topography is mapped into interferometric phase depending on the height of the point.

Since the perpendicular baseline is much smaller than the range of the satellite to the im-
aged object, every iso-range line defined by R = constant in the two SAR images should cover
the same range resolution cell. This is a prerequisite of the coherent nature of SAR imaging,
i.e. the two images should observe the same object in their corresponding pixels.

The interferometric phase changes as the baseline B⊥ changes. The unambiguous interfer-
ometric phase φ is shown to be linearly proportional to the topography height h with the
equation:

φ = −4π
λ

B⊥
RS sinθ

h+φdef o (2.6)

where λ is the wavelength, RS is the nominal range which is the range of the SAR sensor to
a zero-elevation point, and θ is the incidence angle. The deformation phase φdef o must be
taken into account if the two images are acquired at different time. The deformation causes
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absolute phase change which is not dependent on the baseline. If the pixel is a DS, then (2.6)
is the expected interferometric phase.

Fig. 2.1. Plane wave approximation of the interference of two SAR images. The red and blue lines are the iso-range lines
with interval of half wavelength of the two images respectively. The iso-range lines intersect each other, creating an inter-
ference pattern. The background shows the interferometric phase of the pattern. The topography is mapped into interfer-
ometric phase depends on the height of the point.

Multipass InSAR is an extension of the single-baseline InSAR. It exploits the phase dif-
ference of more than two complex-valued SAR images. It is often employed for long-term
deformation monitoring, which is also known as differential InSAR from which dynamic
geophysical quantities such as deformations rate (volcanoes, urban underground water, oil
reservoir, etc.) can be derived.

As long as only the phase is concerned, the unambiguous interferometric phases Φ of the
multiple acquisitions with their perpendicular baselines B⊥ are:

Φ = −4π
λ

B
RS sinθ

h+Φdef o. (2.7)

The deformation phase vector Φdef o is often modelled as a function d (tn) (e.g. linear or
periodic) of the acquisition time tn. The details of popular multipass InSAR techniques are
covered in Chapter 3.

2.2.1 Single-look InSAR Statistics

It has been mentioned before that equations (2.6) and (2.7) only apply to PS. Under the
assumption of distributed scatterers, they represent the expected interferometric phase(s).
The phase variance caused by the decorrelation between the two co-registered SAR pixels
g1 and g2 is fully characterized by their complex covariance. Normalizing the covariance
with the expected intensities of the pixels, we obtain a more commonly used quantity - the
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complex coherence γ :

γ =
E
[
g1g
∗
2

]√
E
[
|g1|2

]
E
[
|g2|2

] . (2.8)

The PDF of the interferometric sample v = g1g
∗
2, represented by the joint PDF of its ampli-

tude and the interferometric phase can be shown as follows (Lee et al., 1994; Tough et al.,
1995; Bamler and Hartl, 1998)

f|v|,φ (|v| ,φ) =
2 |v|

πĪ2
(
1−

∣∣∣γ ∣∣∣2) exp

2
∣∣∣γ ∣∣∣ |v|cos

(
φ− φ̄

)
Ī
(
1−

∣∣∣γ ∣∣∣2)
K0

 2 |v|

Ī
(
1−

∣∣∣γ ∣∣∣2)
 (2.9)

where Ī =
√
E
[
|g1|2

]
E
[
|g2|2

]
, φ̄ is the expected interferometric phase, and K0 is the modified

Bessel function of the second kind. Generalizing to multibaseline SAR pixels, the joint PDF
of the complex vector g is a multivariate CCG random variable. The joint PDF can be written
as the following compact equation:

fg (g) =
1

πN det(C)
exp

(
−gHC−1g

)
(2.10)

where N is the number of images, and C is the complex covariance matrix whose analytical
expression is as follows.

C =


Ī1 γ1,2

√
Ī1Ī2 · · · γ1,N

√
Ī1ĪN

γ∗1,2
√
Ī1Ī2 Ī2
...

. . .
...

γ∗1,N
√
Ī1ĪN · · · ĪN


(2.11)

As one can see in the CCG case, the multivariate g is fully characterized by the complex
covariance matrix C. Therefore the estimation of the covariance matrix becomes an impor-
tant step in many multipass InSAR techniques. Under the assumption CCG distribution, the
maximum likelihood estimator (MLE) of the covariance matrix can be easily derived given
a set of M spatially stationary samples G = [g1,g2, ...,gM]:

ĈMLE =
1
M

M∑
m=1

gmgHm =
1
M

GGH (2.12)

2.3 The Relativeness of Multipass InSAR Estimates

The InSAR estimates, i.e. the topography and deformation estimates, are relative with re-
spect to a reference point in the image that was selected during the processing. The un-
known topography of the reference point shift the estimates of the whole image along the
elevation direction of the native radar coordinate system. When the InSAR estimates are
transformed to geographical coordinate systems, it will eventually cause the position to shift
in all the three dimensions, in addition with a scaling effect due to the different incidence
angle at different range.
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The following figure explains the aforementioned systematic shift in the Universal Trans-
verse Mercator (UTM) coordinate system. The two black dots indicate the true positions of
two scatterers which are on the same height w.r.t. a reference surface. The two scatterers
are located at the near range and far range of the SAR image. Their incidence angles θnear
and θf ar are different, e.g. as many as one degree for TS-X spotlight image. Of course, the
difference is exaggerated in the plot for a better visualization. Due to the height ∆h of the
reference point, the scatterers are shifted to the red points along their elevation directions,
respectively. As one can see that the scatterers are equally shifted in height, but scaled in the
ground range direction due to their different elevation directions. The difference between
the scaled ground range and the true value is

∆R =
∆h

tanθnear
− ∆h

tan(θnear +∆θ)
≈ ∆h∆θ if θnear � ∆θ

(2.13)

where θf ar = θnear + ∆θ. Such difference is approximately linearly proportional to the un-
known height of the reference point and the diversity of the incidence angle. As the heading
angle of the satellite is not parallel to north-south direction, this scaling will also transferred
to both north-south and east-west directions.

Fig. 2.2. Illustration of systematic shift of the multipass InSAR position estimates in UTM coordinate. The two black dots
indicate the true positions of two scatterers which are on the same height w.r.t. a reference surface. The two scatterers are
located at the near range and far range of the SAR image, respectively. Their incidence angles θnear and θf ar are different,
e.g. as many as one degree for TS-X spotlight images. Due to the unknown height of the reference point, the scatterers
are shifted to the red points along their elevation directions, respectively. The scatterers are equally shifted in height, but
scaled in the ground range direction due to their different elevation directions. This ground range scaling will translates
into both north and east direction in the UTM coordinate. Therefore, any relative InSAR position estimate is shifted in
three directions, with additional horizontal 2-D scaling.

Figure 2.3 also plots the ground range difference per meter of the height of the reference
point as a function of the near range incidence angle and the angle diversity. As one can
see, the approximation in (2.13) is only applicable for large incidence angles. For a typical
image stack of 40◦ of incidence angle and 1◦ diversity, the scaling is 3.5 cm/m/◦. However,
the scaling will become 15 cm/m/◦ if the incidence angle becomes 20◦, which will cause
1.5m of scaling if the unknown height of the reference point is 10 m.

The shift can be mitigated by choosing a reference point close to the reference digital ele-
vation model (DEM), i.e. h ≈ 0m. For medium resolution SAR data of non-urban area, such
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shift is not easily noticeable, because of the relatively smooth topography and large pixel
size. However, they must be taken into account for meter resolution SAR data of urban area.
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Fig. 2.3. Maximum ground range scaling (per meter of the height of reference point) as a function of the near range
incidence angle and the incidence angle diversity between near range and far range. For a typical image stack of 40◦
incidence angle and 1◦ diversity, the scaling is 3.5 cm/m/◦. However, the scaling will become 15 cm/m/◦ if the incidence
angle becomes 20◦, which will cause 1.5 m of scaling if the unknown height of the reference point is 10 m.

An more accurate method to mitigate this shift is to find the absolute 3-D position of the
reference point. This concept is the so-called geodetic InSAR in which: by means of ”SAR
imaging geodesy” (Eineder et al., 2011; Cong et al., 2012; Balss et al., 2014) the absolute
2-D (range and azimuth) positions of the targets such as corner reflectors and PSs can be
estimated to a centimeter-level accuracy after compensating for the most prominent geo-
dynamic and atmospheric error sources; utilizing the stereo configuration available from
multiple viewing angles, the absolute 3-D positions of the selected points can be retrieved
using StereoSAR (Gisinger et al., 2015); finally, the InSAR estimates are reconstructed with
respect to these points whose absolute positions are known. In this manner, the obtained
geodetic InSAR estimates are absolute (Zhu et al., 2015c). However, this strategy relies on
the successful identification of exactly identical scattering object in SAR images acquired
from different view angles which is very challenging (Gisinger et al., 2015; Zhu et al., 2015c).

2.4 Robust Estimation

The estimator of a parameter is derived based on certain assumptions of the measurements.
Given the PDF of the measurement noise, MLE is the best unbiased estimator if no prior
knowledge of the parameter is given. In practice, we should also consider the robustness of
the estimator. A robust estimator should degrade gracefully with respect to the violation of
the assumption. For multipass InSAR techniques, we are interested in the performance of
the estimator with respect to different SAR signal and phase statistics.

The performance of an estimator is reflected in the variance and bias of its estimate. An
estimator which is unbiased and attains the Cramér-Rao lower bound (CRLB) is said to be
efficient (Kay, 2001). Therefore, the term efficiency in the context of estimator often refers the
ratio of the estimator’s variance with respect to the CRLB.
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In the following, the basics of MLE will be recapped in order to introduce the M-estimator
which brings a unified view of weighted averaging.

2.4.1 Maximum Likelihood Estimator (MLE)
An MLE maximizes the goodness-of-fit (likelihood) of the measurements to the parameters
to be estimated. It is always with respect to a certain distribution of the measurement statis-
tics. Consider a simple location estimation problem, where the likelihood function of the
univariate observation of the location g ∈ R is fg (g |µ) in which µ is the expected location to
be estimated. Let fg (g |µ) equal a known PDF fx (x), where x = g −µ. Without losing general-
ity, let us assume that x is scaled to unit variance. Given multiple independent observations
of g, the MLE of µ maximizes the product of the likelihood:

µ̂MLE = argmax
µ

∏
i

fx (xi) =argmin
µ

∑
i

− lnfx (xi) (2.14)

where xi is gi − µ. The above equation is usually done in the logarithmic domain, because
fx (x) is often in certain exponential form, e.g. Gaussian distribution under which (2.14) is
simplified to

µ̂MLE = argmin
µ

∑
i

(gi −µ)
2

= average(gi) (2.15)

2.4.2 M-estimator
M-estimators are a class of well-known robust estimators that take the form of a minimiza-
tion problem: min

∑
i ρ (xi). The M-estimator permits a minimization of a customized loss

function ρ (x) of the residuals instead of only the quadratic form, to resist outliers. The M-
estimator of µ is as follows:

µ̂M-est = argmin
µ

∑
i

ρ (xi) (2.16)

Therefore, choosing ρ (x) = − lnfx (x) is equivalent to the MLE. For example, the MLE of a
parameter with Gaussian distributed observations is an M-estimator with ρ (x) = x2.

Equation (2.16) can be solved by finding the zeros of its derivative, i.e.∑
i

ρ′ (xi)
xi

xi = 0 (2.17)

where ρ′ (x) is the derivative of ρ (x). ρ′ (x)/x is commonly referred to as the weighting func-
tion w (x), because substituting xi = gi − µ into the previous equation yields an M-estimator
that is actually a weighted average of the observations:

µ̂M-est =

∑
i
w (gi − µ̂)gi∑
i
w (gi − µ̂)

(2.18)

Equation (2.18) can be solved iteratively with an initial estimate µ̂ being given and the
weights being updated at each iteration. Therefore, an M-estimator is actually an iteratively
re-weighted averaging, and the weighting function can be directly derived from the PDF
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fx (x) (if exist) of the observations with the following relation

w (x) =
−∂ lnfx (x)

x∂x
(2.19)

Typically, the weighting function is designed to have high efficiency for normal distribution.
Therefore, a more common form of the weights is w = ρ′ (x/σ )/(x/σ ) where σ is the stan-
dard deviation of x. Should the PDF be unknown, one may use empirical robust weighting
function, such as the Tukey biweight functions, such as the Tukey biweight function (Tukey,
1977). The convergence of (2.18) is only guaranteed for convex ρ functions (Venables and
Ripley, 2002). The initial estimate must be carefully estimated should ρ be nonconvex.

To summarize, M-estimator is a trade-off between robustness and efficiency. Nevertheless,
it can still maintain satisfactory efficiency under the nominal model by properly choosing
the loss function.

2.4.3 Influence Function
The influence function qualitatively measures the robustness of the estimator. It describes
the influence of infinitesimal outlier at an arbitrary point on the estimator. Given the nom-
inal distribution F of the observation, the fraction of contamination ε, and the estimate ĝ,
the influence function is defined as follows:

IF (x|ĝ ,F) = lim
ε→0+

ĝ (G)− ĝ (F)
ε

(2.20)

where G = ε∆x + (1− ε)F is the contaminated distribution with ∆x being the point-mass
probability.

The influence function of a qualitatively robust estimator should be bounded and continu-
ous, which means a small fraction of outliers can have only limited effect on the estimates,
and gradual changes in the data also lead to gradual changes in the estimate (Zoubir et al.,
2012).

For M-estimators, the influence function with nominal distribution being Gaussian is pro-
portional to the derivative of the loss function, i.e. IF ∝ ψ (x) = ρ′ (x). This allows us to
conveniently study the performance of different robust loss functions. Table 1 shows some
typical loss functions, and the corresponding influence and weighting functions. And their
plots are also shown in Table 2.

The L2 loss function corresponds to Gaussian distributed noise. Its influence function is not
bounded. One large outlier will heavily bias the estimates. If we generalize to Lp norm mini-
mization, e.g. L1, its influence function is bounded, meaning the influence of large outliers is
limited. Another popular robust loss function is the Huber function named after P.J. Huber
— the pioneer in robust estimation (Huber, 1981). Tukey biweight function (Tukey, 1977)
is one of the re-descending functions, since its influence function is bounded and descends
to zeros as the position of the outlier increases to a certain value. The parameter c ∈ R

+

in Huber and Tukey functions is to tune the performance of the estimator. The lower the
value of c, the more robust but less efficient is the estimator for Gaussian distributed noise,
and vice versa. Therefore, c is usually chosen to give a relative efficiency of 95% at normal
distribution. This number is 1.345 and 4.586 for Huber and Tukey functions, respectively
(Venables and Ripley, 2002).
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Table 1. Some typical loss functions, and their corresponding influence and weighting functions.

Function Loss function ρ (x) Influence function ψ (x) Weighting function w (x)

L2 x2/2 x 1

Lp |x|p/p x|x|p−2 |x|p−2

Huber

 |x| < c|x| ≥ c

 x2/2

c |x| − c2/2

 x

cx/ |x|

 1

c/ |x|

Tukey

 |x| < c|x| ≥ c

c
2/6 −

(
c2 − x2

)3
/6c4

c2/6

x
(
c2 − x2

)2
/c4

0


(
c2 − x2

)2
/c4

0

Table 2. Plots of the loss functions, and their corresponding influence and weighting functions.

Function Loss function ρ (x) Influence function ψ (x) Weighting function w (x)

L2

Lp (p=1)

Huber
(c=1.345)

Tukey
(c=4.685)
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3 State-of-the-art of Multipass SAR Interferome-
try

T his chapter focuses on the estimation aspect of the state-of-the-art multipass InSAR
techniques including persistent scatterer interferometry (PSI), small baseline subset

(SBAS), SqueeSAR, and TomoSAR.

The discussion is restricted to the two extreme cases of scattering objects: PS and DS. DSs
are the most natural scatterers in a SAR image. Because of their scattering mechanism, they
experience temporal and geometric decorrelation. To reduce the effect of decorrelation, one
can either use interferograms of small spatial and temporal baselines, i.e. SBAS, or average
pixels of a same scattering statistics, i.e. SqueeSAR.

PS overcomes the limitation of DS by identifying single scatterers whose phase is stable
throughout the SAR image stack. Theoretically, PSs do not suffer from geometrical decor-
relation, permitting the use of interferograms with large spatial baseline even beyond the
critical one.

TomoSAR is a generalization of the single phase center PS or DS model, by considering the
full reflectivity profile along the radar third dimension elevation. It solves the layover of
scatterers in a range-azimuth resolution cell.

3.1 State-of-the-art

3.1.1 Persistent Scatterer Interferometry
General Remark

PSI was developed for long-term ground deformation monitoring (Ferretti et al., 2001). Due
to the long temporal baseline, low resolution, and large spatial baseline of some SAR image
stacks, the individual DS pixel often lose their coherence, rendering them not directly useful
for long-term deformation monitoring. PSI was invented to exploit the PSs whose scattering
phases are stable throughout the whole SAR image stack. Not only are the phases of PSs
stable, but also is the dimension of a PS often much smaller than a resolution cell, permitting
the use of image with large spatial baseline even beyond the critical one.

There exist several implementations of PSI (Ferretti et al., 2001; Adam et al., 2003; Hooper
et al., 2004; Kampes and Adam, 2006) etc., as well as improvements using different motion
models (Colesanti et al., 2003; Gernhardt and Bamler, 2012), improvements using dense
differential PS pairs (Wang et al., 2014; Costantini et al., 2014), and some variants of PSI
that exploit partially coherent PSs (Wegmüller et al., 2010; Perissin and Wang, 2012) which
follow the same spirit of SBAS that will be covered in the next section. Generally, PSI es-
timates the atmospheric phase, the topography, and the motion parameters of each PS. A
generally recognized workflow is as follows (Ferretti et al., 2001):

(1) N interferograms are formed from N+1 co-registered SAR images. A master scene is
carefully selected to maximize the overall coherence. A reference DEM is subtracted
from all the interferograms to flatten the topographic phase.

(2) An initial set of PS candidates is selected, which should represent the set of most stable
PSs in the scene. A few methods have been proposed to fulfil this task:
� using amplitude dispersion analysis for high signal-to-noise-ratio (SNR) PSs (Ferretti

et al., 2001). This is mostly applicable to urban areas.
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� using phase analysis for low SNR PSs (Hooper et al., 2004), which was demonstrated
to outperform the previous method in non-urban area.

� and alternatively using signal-to-clutter-ratio to approximate the phase variance
(Adam et al., 2004).

(3) The PS candidates are connected to form a reference network. The differential PS pairs,
also known as arcs, are limited to be within the spatial correlation length of typical at-
mospheric phase signal, so that the atmospheric phase can be greatly mitigated through
differentiation. This length was found to be 2-3 km in (Hanssen, 2006). After that, the
differential phase history parameters θ, i.e. the differential topography height and dif-
ferential motion parameters, of the arcs are estimated.

The differential height estimates are integrated with respect to a reference point,
so that their absolute phase contribution can be removed from the interferometric
phase, leaving the phase with contributions only from the deformation, atmosphere,
and noise. The atmospheric phase is then extracted by low-pass filtering in the spa-
tial domain followed by high-pass in the temporal domain, assuming the atmospheric
phase is highly correlated in the spatial domain and temporally nearly uncorrelated for
typical temporal baselines of tens of days.

The atmospheric phase is interpolated over the whole scene, so that it can be sub-
tracted from the interferograms.

(4) More PSs are detected after the mitigation of the atmospheric phase. They are linked
to the nearest point in the reference network, and their phase history parameters are
estimated.

(5) The positions of PSs are geocoded to geographical coordinate system for further analy-
sis.

Maximum Likelihood Estimator

On the estimation point of view, a PS pixel value is modelled as a deterministic complex
value with additive CCG noise. For a time series of co-registered PSs, g , its noise is assumed
to follow an independent and identical distribution (i.i.d.). Under such assumption, the MLE
of the phase history parameters θ is (Rife and Boorstyn, 1974; Wang and Zhu, 2015b)

θ̂MLE = argmax
θ

{(
2πσ2

)−N
exp

(
− 1

2σ2 ‖g− ḡ (θ)‖22
)}

(3.1)

where θ is the vector of phase history parameters comprised of topography height h, lin-
ear deformation rate v, etc., ḡ (θ) is the modelled PS signal, and σ2 is the variance of the
complex noise. Simplifying the above equation leads to the well-known formulation of pe-
riodogram or the so called ”temporal coherence” (Rife and Boorstyn, 1974; Colesanti et al.,
2003; De Maio et al., 2009):

θ̂MLE = argmax
θ


∣∣∣∣∣∣∣ 1
N

N∑
n=1

gn exp(−jϕn (θ))

∣∣∣∣∣∣∣
 ≈ argmax

θ


∣∣∣∣∣∣∣ 1
N

N∑
n=1

gn
|gn|

exp(−jϕn (θ))

∣∣∣∣∣∣∣
 (3.2)

where ϕn (θ) is the modelled phase of the PS in the nth image. Often, the amplitude of g
is dropped in the estimation (Ferretti et al., 2001), since it barely changes the estimates for
high SNR PSs.

Equation (3.2) can also be understood as the parameter estimation of a complex signal with
single frequency in each dimension of θ, since the modelled phase ϕn (θ) is linearly propor-
tional to θ. It finds the best fit of ϕn (θ) with given N wrapped phases of g.

Least Squares Ambiguity Decorrelation (LAMBDA) Estimator
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Equation (3.2) can also be treated as a phase unwrapping problem with parametric phase
model. (Kampes and Hanssen, 2004) solved it using the LAMBDA method which is origi-
nally developed for the ambiguity resolution of GPS signal.

The LAMBDA method for PS parameter estimation is formulated as ϕ = Aa + Bθ+ ε, i.e.


ϕ1

ϕ1
...

ϕN


=



0 0 · · · 0

−2π

−2π
. . .

...

0 · · · −2π




a2
...

aN

+


ξ1 ζ1 · · ·
ξ2 ζ2
...

...

ξN ζN · · ·




h

v
...

+ ε (3.3)

where ϕ ∈ RN is the wrapped phase of g, A is a diagonal matrix of −2π but discarding the
first column (since the ambiguities are relative), a ∈ ZN−1 is the integer ambiguity, matrix
B is the model matrix of the phase containing the parameter-to-phase conversion factors (ξ,
ζ, etc.), and ε is the phase noise.

The LAMBDA estimator is an integer least square problem:

θ̂LAMBDA = argmin
a,θ
‖ϕ−Aa−Bθ‖22 s.t. a ∈ZN−1 (3.4)

Equation (3.4) assumes a Gaussian phase noise which is not true for PS with CCG noise, but
can be valid for PS of high SNR.

Considering the integer constraint of a, solving (3.4) is a three-step procedure in (Kampes
and Hanssen, 2004).

(1) The unconstrained estimates â and θ̂, also known as float solution, are computed by
unconstrained least square. Important to note that the linear system of equation (3.3)
is underdetermined, i.e. more unknowns than observations. Regularization, such as
augmenting the system with pseudo-observations, must be introduced in order to solve
the linear equation system.

(2) Given the float solution â, its integer-constrained solution is equation (3.5).

ǎ = argmin
a
‖â− a‖2Cââ

s.t. a ∈ZN−1 (3.5)

If each element of â is uncorrelated, i.e. the covariance matrix Cââ is diagonal, (3.5) is
a simple rounding. Otherwise, the correlation among the elements of â should be miti-
gated by multiplying it with an integer matrix Z that decorrelates it the most. In another
word, given the covariance matrix Cââ of â, the covariance matrix of ẑ = ZT â which is
Cẑẑ = ZTCââZ should be as diagonal as possible. In practice, Z matrix is found by the
LDL decomposition (Golub and Loan, 1996) of Cââ. To this end, (3.5) is transformed to

ž = argmin
z
‖ẑ− z‖22 s.t. z ∈ZN−1 (3.6)

And the solution search space has been greatly reduced. The diagonalness of Cẑẑ is not
always guaranteed. Therefore, a series of bounds for z is computed, in order to further
restrict the search space.

(3) The final integer-constrained solution θ̌ is computed using least square after subtract-
ing the 2π ambiguities.
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Summary

To conclude, the estimation of the phase history parameters of a PS is rather straightforward,
a benefit brought by the simple point scatterer model. The estimation techniques include the
MLE (periodogram) and LAMBDA.

The accuracy of the estimates primarily depends on the number of images N and the SNR of
the PS. Typically, for PSs with relatively high SNR, e.g. 10dB, it requires around 30 images
to achieve a millimeter precision on the yearly linear deformation rate (Ferretti et al., 2001).

Comparing MLE and LAMBDA, they produce nearly identical results as demonstrated in
(Gernhardt et al., 2007). Nevertheless, LAMBDA explicitly solves the ambiguity problem,
whereas the periodogram does not. But periodogram will outperform LAMBDA for low SNR
PSs, since the assumption of Gaussian phase noise in LAMBDA is no longer valid for low
SNR PSs. However, LAMBDA is more computationally efficient than MLE (periodogram)
because the ambiguity solution space in LAMBDA is greatly reduced, and the phase param-
eters are solved analytically by least square. Still, PSI is the most computationally efficient
one among all state-of-the-art multipass InSAR methods (even periodogram is used). There-
fore, it is widely used, and has become the workhorse for deformation monitoring.

3.1.2 Small Baseline Subset
General Remark

SBAS exploits DS instead of PS. As we know, DSs may suffer from temporal decorrelation.
The innovation of SBAS (Berardino et al., 2002) is to form interferograms of only small
baselines, so that the geometric and temporal decorrelation of DSs can be controlled. The
following figure shows an example of the baseline plots of a single master InSAR stack
(e.g. PSI) and SBAS. The scattered dots are the perpendicular baseline versus the temporal
baseline of each image. PSI links every image to a single master, while SBAS only forms
interferograms with small spatial and temporal baselines, resulting in multiple masters.

(a) (b)

Fig. 3.1. Spatial-temporal baseline plot of (a) single master InSAR stack, e.g. PSI, and (b) SBAS InSAR stack.

SBAS was firstly proposed in (Berardino et al., 2002). Several similar techniques exist, in-
cluding (Mora et al., 2003; Blanco-Sánchez et al., 2008), an update from the original group
(Lanari et al., 2004), as well as (Goel and Adam, 2012a) which make use of adaptive multi-
looking to further reduce the decorrelation of DSs — an improvement following the inno-
vation of SqueeSAR. Nevertheless, the spirit of SBAS is to use small baseline, which does



16

not only limit to DS. This has been shown in applying to partially coherent PSs (Wegmüller
et al., 2010; Perissin and Wang, 2012).

A generally recognized procedure of SBAS is as follows (Berardino et al., 2002).

(1) Given a stack of N+1 co-registered images, multiple interferograms of small spatial and
temporal baselines with individual masters are formed, instead of N interferogram with
a single master. The atmospheric phase is assumed to be already removed. Otherwise,
the procedure is similar to that explained in PSI.

(2) Coherent pixels are selected by thresholding on the coherence. Note its difference to
the PS selection. The coherence explicitly defines the variance of interferometric phase
noise by the analytical expression (Tough et al., 1995; Bamler and Hartl, 1998):

σ2
ϕ

(∣∣∣γ ∣∣∣) = π2/3 −πarcsin
(∣∣∣γ ∣∣∣)+ arcsin2

(∣∣∣γ ∣∣∣)−Li2

(∣∣∣γ ∣∣∣2)/2 (3.7)

where Li2 is the dilogarithm.
(3) The interferograms are unwrapped in 2-D. The small baselines reduce the topographic

phase contribution, and eases the unwrapping step.
(4) The topography height and the low frequency deformation signal (usually a linear de-

formation model) are estimated. This step is similar to the least square estimation in
LAMBDA after the 2π ambiguity been fixed. The phase contribution from topography
is subtracted from the unwrapped phase. Considering a possible phase unwrapping
error in step 3, the residual phase is usually unwrapped once again.

(5) The remaining interferometric phase has contributions from non-linear motion signal
and noise. They are with respect to multiple master images. In order to reconstruct the
N absolute phase with respect to a single master, one needs to solve an linear equation
system ∆ϕ = Aϕ+ ε, i.e.: 

ϕ2−1

ϕ3−2
...


=



−1 1 · · ·
... −1 1

−1 1
. . .

−1 1




ϕ1

ϕ1
...

ϕN


+ ε (3.8)

where ∆ϕ ∈ R
M is the unwrapped phase of the small baseline interferograms after

removing the topographic phase, A of dimension M × N is the design matrix of the
small baseline interferograms , ϕ ∈ R

N the absolute phase with respect to a single
master, and ε the phase noise.

Equation (3.8) is often overdetermined but ill-posed, due to the fact that not all the
interferogram are connected to a single subset, rendering the rank of A to be less than
N. Therefore, regularization is required. Singular value decomposition (SVD) has been
used for this task (Liebhart et al., 2010).

Summary

The parameter estimation in SBAS is all based on linear least squares. Hence similar to
LAMBDA estimator, it also assumes a Gaussian phase noise, which is not true under the
strict DS model. Regularization is required if the interferograms do not connect into a sin-
gle subset. Computational-wise, SBAS requires the unwrapping of a substantial number of
interferograms, which is usually much larger than N. Therefore, the phase unwrapping is
the most time consuming and risky step in SBAS.
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3.1.3 SqueeSAR (Adaptive Multilooking)
General Remark

Same as SBAS, SqueeSAR also exploits the DSs. Instead of restricting the DS decorrelation
using interferograms of small baselines, SqueeSAR tackles it by averaging the DS pixels. As
we know, the MLE of the interferometric phase given M ergodic DS samples is

ϕ̂MLE = arg

 M∑
m=1

v [m]

 (3.9)

This idea is also known as multilooking, e.g. the ”box car” filter. However, the samples se-
lected in a rectangle window are often not ergodicity, and hence, produce unsatisfactory
results. Therefore, the core innovation of SqueeSAR (Ferretti et al., 2011) and its variants
(Wang et al., 2012; Goel and Adam, 2012a; Jiang et al., 2015) is adaptive multilooking.

A generally recognized SqueeSAR workflow is as follows (Ferretti et al., 2011):

(1) N interferograms are formed with respect to a single master. This step is the same as
PSI.

(2) The neighbourhood (similar pixels) of each pixel is found by comparing their intensity
series using a statistical test. The neighbourhood pixels are averaged to produce the
filtered interferogram. The statistical test can be either parametric or non-parametric.
� Non-parametric test

Kolmogrov-Smirnov (KS) test
It measures the maximum distance between the empirical cumulative distribution

functions (CDFs) of two data sets (Ferretti et al., 2011), i.e.

DKS = max
x
|Fa (x)−Fb (x)| (3.10)

where Fa (x) and Fb (x) are the empirical CDFs of the two target pixels’ intensities,
respectively. By setting a threshold on the distance, the null hypothesis that the two
pixels belong to the same distribution is accepted or rejected. However, the maxi-
mum distance of two CDFs usually happens in the midway of the CDF curve for any
distribution. Therefore, the KS test is not sensitive to unknown distributions with
variations on the head or tail.

Anderson-Darling (AD) test
Likewise, AD test also measures the distance between two CDFs, but it includes

weighting according to the shape of the distribution (Parizzi and Brcic, 2011; Wang
et al., 2012; Goel and Adam, 2012a), i.e.

A2 =
N
2

∑ (Fa (x)−Fb (x))2

Fa,b (x)
(
1−Fa,b (x)

) (3.11)

where Fa,b (x) is the CDF of the combined pixels’ intensities. It places more weight on
the head and tails of the distributions. AD test is actually a weighted L2-norm of the
difference of two CDFs.

� Parametric test
Parametric test compares the intensity series of two pixels through generalized like-

lihood ratio test conditioned on the null and alternative hypotheses, with a given
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parametric model of the intensity distribution. It gives the best performance if the
data follows the assumed intensity distribution.

The marginal distribution of a DS intensity series, if not considering the correlation
between images, is χ2 distribution with two DoF (equation (2.3)). Since the expecta-
tion value fully characterizes this distribution, the null and alternative hypotheses
are H0: Ī = Īa = Īb and H1: Īa , Īb where Īa, Īb, and Ī are the expected intensity of the
target pixels a, b, and combined. The test statistic is then (Parizzi and Brcic, 2011):

T = 2N ln
( ˆ̄I

)
−N ln

( ˆ̄Ia
)
−N ln

( ˆ̄Ib
)H1
> 0 (3.12)

where ˆ̄Ia, ˆ̄Ib, and ˆ̄I are the MLE of Īa, Īb, and Ī , respectively.
An advance of the parametric similarity test is demonstrated in the non-local InSAR

framework (Deledalle et al., 2015), where the similarity is compared patch-wisely
taken into account the interferometric phase.

(3) The multilooked interferometric phase is not conservative, i.e. ϕ̄1−2 + ϕ̄2−3 + ϕ̄3−1 , 0.
They are ”triangulated” by solving a linear equation system similar to the SBAS equa-
tion (3.8).

(4) The phase history parameters of the filtered DS are estimated as a PS using peri-
odogram or LAMBDA.

DS MLE

On the estimation point of view, the MLE of the phase of CCG distributed DS can be for-
mulated as follows (De Zan and Rocca, 2005; De Zan, 2008; Guarnieri and Tebaldini, 2008;
Ferretti et al., 2011; Wang et al., 2012):

θ̂ = argmin
θ

{
gHΦ (θ)abs

(
Ĉ
)−1

Φ(θ)Hg
}

(3.13)

where Φ (θ) ∈CN×N is the diagonal matrix containing the modelled phase of g, and abs(·) is
the element-wise absolute value of a matrix. Given a stationary neighbourhood of the target
DS, the MLE maximize the joint likelihood:

θ̂ = argmin
θ

M∑
m=1

gHmΦ (θ)abs
(
Ĉ
)−1

Φ(θ)Hgm (3.14)

where m is the index of the neighbouring sample. In (3.14), the same phase parameters θ is
assumed for all the observations, i.e. gi for m = 1, ..., M.

Summary

SqueeSAR is a powerful method to make use of partially decorrelated DSs. The core of
SqueeSAR is adaptive averaging. SqueeSAR represents the state-of-the-art in DS processing,
since it takes both advantage of interferograms of small baselines, as well as the adaptive
multilooking.

The performance of standard SqueeSAR greatly depends on the similarity test. The perfor-
mance of similarity tests degrades as the number of images decreases (Parizzi and Brcic,
2011). Computational-wise, SqueeSAR is tens of times more expensive than PSI. However,
the overall computation is still moderate compared to TomoSAR.

3.1.4 SAR Tomography and Differential SAR Tomography
General Remark
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As mentioned in section 2.1.3, TomoSAR solves the layover problem where the full reflec-
tivity profile γ (s) along the third dimension elevation s is retrieved. The following equation
is obtained by subtracting the phase at zero elevation from equation (2.4) (ignore the sec-
ond order elevation term in the phase) (Reigber and Moreira, 2000; Lombardini et al., 2003;
Fornaro et al., 2003; Zhu, 2008):

gn =
∫
∆s

γ (s)exp
(
−j 4πbn

λR
s

)
ds (3.15)

where gn and bn are the pixel value and the perpendicular baseline of the nth image. In
the case of differential TomoSAR (D-TomoSAR), equation (3.15) is extended into higher di-
mensions (Zhu and Bamler, 2010b, 2011). Write (3.15) in a more compact matrix form, it
is

g = Rγ (3.16)

where R is basically a discrete Fourier matrix whose frequencies are linearly proportional
to the baselines. A generally recognized TomoSAR workflow is as follows (Zhu and Bamler,
2010b):

(1) Interferograms are formed like PSI. The atmospheric phase screen is mitigated.
(2) The reflectivity profile is reconstructed using spectral estimation techniques.
(3) The scatterers’ positions and motion parameters are determined by detecting maxima

on the reflectivity profile.

Since the first step is the same as a standard PS processing, the following discussion will
focus on the estimation of the reflectivity profile.

MLE and Maximum A Posteriori (MAP) Estimator

Given a deterministic g with i.i.d. complex Gaussian noise, the MLE of γ is

γ̂MLE = min
γ
‖g−Rγ‖22 (3.17)

For stochastic g, the MLE should consider the covariance matrix of the signal (Wax, 1991;
Sauer et al., 2009; Tebaldini, 2010). Since the dimension of γ is often much larger than g,
the equation g = Rγ is an underdetermined system. There are a few methods to regularize
the equation system, i.e. MAP estimators:

� Nonlinear least square (Stoica and Moses, 2005): Assuming the resolution cell consists of
K scatterers with their elevation s = [s1, s2, · · · , sK ], this system can be reduced to where the
support of the signals are. For small number of K which is usually the case, it becomes an
overdetermined system. The minimization is reduced to the following form.

γ̂(ŝ)NLS = min
γ(s)
‖g−R (s)γ (s)‖22 (3.18)

The dimension of R (s) and γ (s) are much smaller than R and γ, respectively. However,
they depend on the location of s which needs to be estimated simultaneously. Application
in layover separation has been demonstrated in (Ferretti et al., 2005; Zhu, 2008).

� Tikhonov regularization: apart from the undermined equation system, the matrix R can
be rank deficient due to the irregularity and small span of the baseline. That is to say,
(3.16) can be ill-posed and underdetermined. The Tikhonov regularized MAP is as fol-
lows:

γ̂T ikho = min
γ
‖g−Rγ‖22 +αT ik ‖γ‖22 (3.19)
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which restricts the energy of γ by performing L2-norm regularization. (Zhu and Bam-
ler, 2010b) implemented the MAP using SVD with Wiener weighing on the eigenvalues.
Alternatively, (Fornaro et al., 2003) truncated small eigenvalues.

� Compressive sensing (CS)-based estimators exploits the sparsity prior of the reflectivity
profile, i.e. assuming only small number of scatterers on the reflectivity profile. Instead
of the L2-norm regularization in equation (3.19), sparse reconstruction of γ penalize on
its L1-norm:

γ̂CS = min
γ
‖g−Rγ‖22 +αCS‖γ‖1 (3.20)

The L2- plus L1-norm minimization is a sparse reconstruction problem. Its first application
in TomoSAR was presented in (Zhu and Bamler, 2009) using real data. The same authors
also developed the promising SL1MMER algorithm, which delivered the first CS-based To-
moSAR reconstruction of single building (Zhu and Bamler, 2010a). The SL1MMER algo-
rithm was also recently extended to the M-SL1MMER (Zhu et al., 2015b) which exploits the
group sparsity in the urban environment. M-SL1MMER achieves comparable result with
far less images than SL1MMER and other existing algorithms. Other CS-based TomoSAR
with COSMO-Skymed data (Budillon et al., 2011) and airborne millimetre-wave SAR data
(Schmitt and Stilla, 2013) were also presented. The CS-based TomoSAR algorithms are much
more computationally expensive than the Tikhonov regularization.

Summary

TomoSAR is so far the most competent InSAR method for urban and forest area monitoring.
The high computational cost limits it for an extensive use like PSI, especially for the CS-
based TomoSAR algorithms.

Since the forward model R is a discrete Fourier transform, TomoSAR is basically a spec-
tral estimation problem. Many classical algorithms can be applied to TomoSAR, such as
beamforming (Pasquali et al., 1995; Lombardini et al., 2003; Fornaro et al., 2009), CAPON
(Lombardini et al., 2001), MUSIC (Gini and Lombardini, 2002; Guillaso and Reigber, 2005;
Huang et al., 2012; Nannini et al., 2012), etc. Please refer to (Stoica and Moses, 2005; Zhu,
2011) for an extensive review of these classical methods.

3.1.5 InSAR Point Cloud Fusion
General Remark

The abovementioned InSAR techniques deliver 3-D point clouds together with the motion
parameters. Since the point clouds are relative to their reference points, they need to be co-
registered when considering the results from multiple stacks. Although the general point
cloud fusion is a classical topic in the computer vision field, there is actually only a hand-
ful of studies on InSAR point cloud fusion, especially for point clouds from image stacks
of cross-heading orbits (i.e. ascending and descending), because there is theoretically no
corresponding point from such two point clouds.

The first attempt of fusing cross-heading InSAR point clouds in urban area was presented in
(Gernhardt and Bamler, 2012). This algorithm is essentially a 3-D surfaces matching. After
removing the façade points where the point correspondence is most unlikely to appear,
the point correspondences are found by searching closely spaced point pairs on surface.
Therefore, this algorithm does not address the exact point correspondence.

The fusion of along-heading (both ascending or both descending) point clouds or point
clouds of smooth terrain is less challenging. Classical point cloud co-registration methods
such as iterative closest point (ICP) can be directly applied. (Gernhardt et al., 2012) has
demonstrated the direct application of ICP on multiple InSAR point clouds of a volcano.
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Summary

The major difficulty in cross-heading InSAR point clouds fusion is the lack of exact corre-
sponding point pairs, due to the SAR side-looking imaging geometry. The current methods
are all based on inexact match, except a recent advance (Zhu et al., 2014, 2015c) where
the authors manually locate dozens of point pairs of street lampposts which are supposed
to be the closest match to exact point pair, and performed careful calculation of the abso-
lute position of the lamppost using the concept of StereoSAR (Gisinger et al., 2015), with
additionally taking into account the diameter of the lamppost.

3.1.6 Optical and SAR Images Fusion
General Remark

There have been many works regarding the fusion of optical and SAR images. As (Soergel,
2010) mentioned: ”SAR inevitably requires an oblique scene illumination resulting in un-
desired occlusion and layover especially in urban areas”, optical images can complement
such disadvantage of SAR images. The relevant works follows basically three categories: 1)
geometric co-registration, 2) joint height reconstruction, and 3) joint classification.

Geometric co-registration

Geometric co-registration is the basis of most of the higher level fusion algorithms. The cur-
rent techniques are mostly based on matching of 2-D spatial features, e.g. contours, edges,
templates, etc. (Li et al., 1995; Ali et al., 2002; Cheng et al., 2004; Hong and Schowengerdt,
2005; Fan et al., 2013; Palubinskas and Reinartz, 2015). They are good for large scale analy-
sis, but not applicable for the analysis of individual buildings, especially for high resolution
data.

A precise 3-D model is crucial in co-registration of SAR and optical images, for example
(Auer et al., 2015) used carefully reconstructed 3-D models from photogrammetric mea-
surements; (Tao et al., 2014) used a precise airborne LiDAR point cloud; and (Schack et al.,
2015) employed a PS point cloud retrieved from tens of high resolution TS-X spotlight im-
ages. Without a precise 3-D model, one needs to assume a strict prior (Brunner et al., 2010),
such as rectangle footprint etc. Considering the complex 3-D geometry of urban area, there
has not been an effective algorithm of matching SAR and optical image yet.

Building height reconstruction

Several literatures also explored the potential of 3-D reconstruction using a few SAR and
optical images. The joint 3-D reconstruction can be said to be contextually or geometrically.
Contextually, (Tupin and Roux, 2005) used the optical image as an a priori term in order to
regularize the height reconstructed from radargrammetry. Geometrically, (Sportouche et al.,
2011) projected the building footprint extracted from the optical image into the SAR image,
and solved building height geometrically. Alternatively, (Wegner et al., 2014) retrieved the
height of buildings from SAR and optical images independently, and fused them together
using least square adjustment. Apart from these, there are also works on building recon-
struction from multi-aspect SAR images (Xu and Jin, 2007; Thiele et al., 2007).

Joint classification

Many studies have been dedicated to the joint classification of SAR and optical images. Most
of the applications are on urban mapping and classification (Gamba and Houshmand, 2002;
Pacifici et al., 2008; Wegner et al., 2009; Amarsaikhan et al., 2010; Poulain et al., 2011), since
the optical and SAR image provide complimentary information in urban area. As the focus
of the thesis is not on the classification method, the relevant literatures are only briefly listed
for the readers’ interest.



22

Summary

Geometric fusion of optical and SAR image is an important step, because many higher level
fusion is based on a very precise geometric fusion. So far, there has not been a precise fusion
of meter-resolution SAR and optical image in urban area yet.

3.2 Contribution of this Thesis

3.2.1 Computationally Efficient TomoSAR Inversion
The much higher computational cost of TomoSAR is the major factor of preventing it from
replacing PSI as the workhorse of InSAR monitoring. Therefore, the first contribution of
this thesis is an efficient TomoSAR inversion approach. The proposed method combines PSI
and TomoSAR by performing a pre-classification of single and double scatterers instead
of the state-of-the-art approaches that always perform full model order selection meaning
inevitable full TomoSAR inversion for all the pixels. The computational time is reduced by
a factor of more than fifty.

3.2.2 TomoSAR Point Cloud Fusion
The current cross-heading InSAR point cloud fusion methods are based on inexact point
match. They are essentially 3-D surfaces matching that relay on removing the façade points
where the point correspondence is most unlikely to appear. Therefore, an InSAR point cloud
fusion method was proposed making use of the rich façade information in TomoSAR point
clouds in order to derive the theoretically exact point correspondence. The proposed method
is much more computationally efficient than the state-of-the-art, while achieving consistent
results.

3.2.3 InSAR Optical Fusion
InSAR estimates and optical images can complement each other. However, the fusion of
the two in urban areas is still a topic under research, because a precise geometric fusion of
optical and SAR images of urban areas is still a challenge. Therefore, an effective algorithm
of geometrically and semantically fusing InSAR estimates and optical images are developed.
The algorithm performs 3-D geometric co-registration, image classification, and eventually
semantic level analysis in InSAR estimate.

3.2.4 Robust Estimators
Robustness w.r.t. Large Phase Error

A systematic solution to optimally weigh the InSAR observation with large phase errors
in the multipass InSAR algorithms was developed, which has not been addressed so far.
Experiments showed that the proposed algorithm increases the efficiency of the estimator
by a factor of 7 to 35 compared to state-of-the-art estimators, when 40% of the images are
contaminated with large phase errors.

Robustness w.r.t. Non-Gaussian Scatterers

The covariance estimation of non-Gaussian and nonstationary InSAR samples has not been
addressed so far. Therefore, a covariance estimator that is robust against non-Gaussian sam-
ples and invariant with respect to non-stationary phase was developed. The proposed robust
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covariance estimator requires no flattening of the interferometric phase, and performs well
even on extremely heavily tailed distributions.
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4 Summary of the Work

T he objectives of the thesis are addressed in five full paper peer-reviewed journal arti-
cles. This chapter gives a brief summary of the articles including the following main

contributions.

� First demonstration of the integration of PSI and TomoSAR for operational processing,
which delivered a TomoSAR reconstruction of an entire city using meter-resolution SAR
data.

� Computationally efficient fusion of two cross-heading TomoSAR point clouds.
� First demonstration of semantic fusion of optical image and TomoSAR of an urban area.
� First systematic proposal of robust estimators for multipass InSAR techniques, which in-

cludes a robust estimator that can handle large phase offsets in the observations, as well
as a robust covariance estimator that is invariant to the non-stationary phase.

4.1 Computationally Efficient Tomographic SAR Inversion

Appendix A explains the detailed procedure of combining PSI and TomoSAR for computa-
tionally efficient tomographic SAR inversion. It delivers the tomographic reconstruction of
an entire city using meter-resolution spaceborne SAR data. The reduction of computational
cost credits to the following three points:

(1) Pre-classification of single and double scatterers using non-parametric methods with-
out any full TomoSAR inversion.

(2) Use PS periodogram to solve the detected single scatterers, and pass only the detected
double scatterers to TomoSAR algorithms, e.g. SVD-Wiener and SL1MMER.

(3) Use estimates from PSI as the prior for the follow on TomoSAR inversion.

The right subfigure of Figure 4.1 shows the flowchart of the method in Appendix A. The
most important is the layer right after the PSI processing, where pixels are pre-classified
to no- (H0), single-(H1), or double-scatterer (H2). The left figure shows the algorithm of
pre-classification of the scatterers. Firstly, the pixels without scatterer are separated using
penalized likelihood ratio test (Wang et al., 2014):

f (g|H0)
f (g|H1)exp(−AIC)

P0

P1,2

H0
> 1 (4.1)

where H0 and H1 likelihood of each pixel are compared, taking into account the Akaike in-
formation criterion (AIC) penalty (Zhu and Bamler, 2010b), and P0, P1,2 are the prior proba-
bilities of pixels with no scatterer and with single or double scatterer(s), respectively. At this
stage, H1 likelihood is used for pixels with single and double scatterers. But the detection
of single and double scatterer(s) is almost 100% correct with 0% false alarm rate, because
the H1 likelihood of the pixels with double scatterers are still much higher than their H0
likelihood.

4.1.1 Pre-classification of Single and Double Scatterers
The pre-classification of pixels with single or double scatterer(s) is carried out using a few
easily accessible quantities associated with each pixel. They are the amplitude dispersion
index (ADI), the likelihood to single scatterer model (H1), and the pixel mean intensity with
the following three reasons:
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Fig. 4.1. left: Algorithm of pre-classification of non-, single-, and double-scatterers. Non-scatterers are detected by penal-
ized likelihood ratio test. Single and double scatterers are classified using fast non-parametric methods without TomoSAR
inversion, e.g. classification using mean intensity, amplitude dispersion index, etc. And right: the flowchart of the efficient
TomoSAR inversion algorithm. The most important is the layer right after the PSI processing, where pixels are pre-classi-
fied, and PSI estimates are passed to TomoSAR processing as prior knowledge.

(1) pixels with single scatterer experience lower ADI, since the amplitudes of pixels with
only a single dominant scatterer do not show pronounced fluctuations as a function of
baseline;

(2) the H1 likelihood tends to be lower if multiple scatterers are present in one resolution
cell;

(3) the abovementioned two aspects are based on a reasonable SNR range. Therefore, only
relatively bright pixels should be selected as candidates of pixels with double scatterers.

As an example, Figure 4.2 shows the joint distribution of mean intensity and the H1 log-
likelihood of single and double scatterers, respectively. Here, we must note that the real
ground truth of single and double scatterers classification is not obtainable. The single and
double scatterers in the following plots refer to those detectable ones from the estimation
point of view. In Figure 4.2, they are detected by the CS-based SL1MMER algorithm (Zhu
and Bamler, 2010a, 2012), which is one of the state-of-the-art algorithms. Based on these,
it can be observed that the H1 log-likelihood (represented by normalized residual sum of
squares (RSS)) of the single scatterers shows more linear relationship with the pixel in-
tensity, whereas they are more independent for double scatterers. Double scatterers are in
general 20dB brighter than single scatterers. Different behaviour can also be observed in the
joint distributions of the other quantities among the three.

Figure 4.3(a) shows the pre-classification result of single and double scatterers using the
three quantities, with red representing pixels with double scatterers, green for single scat-
terers, and blue for no scatterer. A linear support vector machine (SVM) was employed as
the classifier. For comparison, Figure 4.3(b) shows the classification result from the CS-
based method SL1MMER (Zhu and Bamler, 2010a, 2012) as a reference, which is one of the
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Fig. 4.2. The joint distribution densities of mean intensity and the log-likelihood to the single scatterer model for pixels
with left: single scatterer, and right: double scatterer. The log-likelihood is represented by the residual sum of squares
normalized to [0 1].

best single and double scatterer discriminations one can achieve so far. Figure 4.3(c) is the
final classification after the higher order spectral estimation.

In Figure 4.3(a), 47% of the pixels are discarded as no-scatterers, 36% are detected as single
scatterers, and the rest 17% are detected as double scatterers. Taking the SL1MMER result
as the reference, the classification of pixel with no scatterer is almost 100% correct, and the
detection rate of pixels with double scatterers is 72.4%, with a false alarm rate of 25.7%
which is why much more pixels are detected as double scatterers. However, higher detec-
tion rate (consequently higher false alarm rate) is still favoured in the processing, because
the falsely detected double scatterers can still be corrected in the higher order spectral esti-
mation, but not for the undetected ones. Depending on the processing power, the threshold
can be shifted towards higher detection rate, affording higher false alarm rate, and therefore
more processing effort by more frequently applying the SVD-Wiener and the SL1MMER.

(a) (b) (c)

Fig. 4.3. (a) the result of the pre-classification method, (b) the result from the SL1MMER algorithm as a reference, and (c)
the final classification after the higher order spectral estimation. The red pixels are detected double scatterers, the green
are the single scatterers, and the blue are no scatterer.
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Table 3. Overall computational cost of the proposed TomoSAR inversion method (using the test area shown in Figure 4.3
as the example), compared to using SL1MMER or SVD-Wiener only.

Processing Schemes
Percentage of pixels processed by each algorithm

Periodogram SVD-
Wiener

SL1MMER (full ele-
vation search range)

SL1MMER (60m ele-
vation search range)

100% SL1MMER
(w/o prior)

— — 100% —

100% SVD-Wiener
(w/o prior)

— 100% — —

Proposed method 100% 17% — 9% (w/o prior)

4.1.2 Computational Cost Analysis
Compare the PS periodogram and SVD-based TomoSAR MAP, the periodogram consists of
multiplication of the measurement vector with the modelled phase, and repeats at differ-
ent elevation positions. Therefore, the computational complexity is O (NL), where N is the
number of images (usually 20 - 50) and L is the discretization level in the elevation direc-
tion (usually 50 - 200 for TS-X). In the higher order spectral estimation, the SVD-Wiener
needs at least O

(
N 2 +NL

)
according to the equation (11) in (Zhu and Bamler, 2010b). The

CS-based TomoSAR algorithm requires an L1-L2 norm optimization which is extremely com-
putationally costly, e.g. the well-known Basic Gradient Projection for Sparse Reconstruction
(GPSR-Basic) solver (Figueiredo et al., 2007) requires at leastO

(
KML2

s

)
, where K is the num-

ber of iterations (approximately 20), M is the number of multiplication of a specific matrix
in each iteration (modest, usually several), and Ls is the elevation discretization level re-
quired for sparse reconstruction, which is usually much higher than L. Our experience is
the SL1MMER algorithm is several hundred times slower than SVD-Wiener.

When prior knowledge of the elevation span is available, the L can be restricted to a specific
elevation range, and hence reduce the computational cost. For instance, assuming a uniform
distribution of building heights prior over the processing area, the total processing cost can
be reduced to half for SVD-Wiener when L�N , and to one third for SL1MMER. Therefore,
it is always more economic to obtain the prior through some low-cost methods before the
higher order spectral estimation.

The overall computational cost also depends on the percentage of pixels allocated to each
algorithm. As an example, for the test area discussed, 100% of the pixels are first processed
by periodogram, 17% are then passed to SVD-Wiener, and only 9% are finally processed
by SL1MMER. This small percentage together with the restriction of the search space leads
to an overall speed-up of about 50 times compared to SL1MMER-only processing. Table
3 compares the overall computational cost of the integrated inversion approach and the
conventional TomoSAR-only inversion.

4.1.3 Tomographic Reconstruction of Entire City
The abovementioned approach is applied on several stacks of TS-X high resolution spotlight
images over Berlin. The following figure is the elevation estimates and a close-up view of
one of the stacks which comprises 94 images. The proposed processing chain is able to catch
most of the structure.
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(a)

(b)

Fig. 4.4. (a) Elevation estimates of Berlin using the proposed approach, and (b) a close-up over the Berlin central station.
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Fig. 4.5. Fusion geometry of the proposed L-shape method. The two building façades are coloured in dark grey representing
the InSAR point clouds from cross-heading orbits whose line of sight directions are indicated by the two arrows. The light
grey planes denote the corresponding ground level of the two point clouds. The two pairs of red and purple dots are the
façade end point position to be estimated. Due to various facts, e.g. material, decorrelation, imaging geometry, etc., these
end points may not be exactly from the scatterers located on the true end position of the façades, but they are still the
closest match to the exact point correspondence in two cross-heading TomoSAR point clouds.

4.2 Automatic Feature-based TomoSAR Point Cloud Fusion

The previous section provides a solution to retrieve the 3-D TomoSAR point cloud of an
entire city. A natural follow-up step is to combine several 3-D point clouds of the same area,
especially for two cross-heading TomoSAR point clouds, i.e. derived from image stacks of
ascending and descending orbits, as a minimum of two TomoSAR point clouds from cross-
heading orbits are required to achieve a complete monitoring over the whole area due to the
SAR side-looking imaging geometry.

InSAR point clouds are relative measurements whose reference points are usually unknown.
The fusion task is to estimate the unknown 3-D shift. However, challenge arises at no ex-
act point correspondence can be directly found among the natural scatterers in two cross-
heading InSAR point clouds.

The contribution of Appendix B is finding and matching the point correspondences in two
cross-heading TomoSAR point clouds. It is not difficult to realize that the end positions of
façades where the two point clouds converge are the closest match to the exact point corre-
spondences. The proposed point cloud matching algorithm is named as ”L-shape detection
and matching”, because building façades often appear as L-shapes in InSAR point cloud.
This concept is shown in Figure 4.5. The end points of the L-shapes are indicated by the two
pairs of red and purple dots. The two building façades coloured in dark grey represent the
point clouds from ascending and descending orbits whose line of sight (LOS) directions are
indicated by the two arrows, respectively. And the light grey planes denote the correspond-
ing ground levels of the two point clouds.

Figure 4.6 shows the flowchart of the algorithm. Emphasis is put on the two most important
procedures: point density estimation and L-shape detection which are marked as red in the
figure.

4.2.1 Point Density Estimation
Because of the SAR side-looking geometry, TomoSAR retrieves dense façade points. The es-
timation of the point density is for detecting the façade points based on which the locations
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Fig. 4.6. Flowchart of the proposed algorithm. The black ellipses represent input/output data. The blue rectangles are
procedures/processes.

of the façade end points are estimated. Therefore, the point density estimation is the most
crucial step in the whole algorithm.

We used a directional window for the density estimation, considering that façades are usu-
ally vertical and linear. This idea is illustrated in Figure 4.7. It shows the 2-D top view of
a point cloud, with the color indicating the point density, and the red dot being the tar-
get point whose point density is to be estimated. The estimation follows three steps: firstly,
points within a larger area (the red dashed rectangle) centered at the target point are se-
lected; then a straight line segment (the green dashed line) passing through the target point
is fitted using a robust algorithm, e.g. random sample consensus (RANSAC), robust princi-
ple component analysis (PCA), etc.; and lastly, only the inliers (within the solid red rectan-
gle) of the line segment are counted for the point density, instead of counting all the points
in the black rectangle.

The benefit of using adaptive directional window for point density estimation can be clearly
seen in Figure 4.8 where subfigures (a) and (b) are the density estimates using directional
and rectangular windows, respectively. It is obvious that the directional window emphasizes
the façade points, while keeping the point density of non-façade points unchanged. And
hence, it improves the detection rate of the façade points. The final façade points are selected
by thresholding on the point density.

4.2.2 L-shape End Point Estimation
Based on the detected façade points, a dominant L-shape is found for each building block
by a weighted Hough transform (Wang and Zhu, 2015a). Since Hough transform only gives
discretized estimates of the L-shape end points, their precise positions must be re-estimated.

The position of L-shape end point includes its horizontal 2-D coordinates and its height. The
height is defined as the position where the façade intersects the ground plane, as depicted
already in Figure 4.5.

The horizontal coordinates are estimated using a model-based approach. The procedures of
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Fig. 4.7. Schematic drawing of point density estimation using directional window. The coloured points are the projection of
the 3-D point cloud in horizontal plane, with the colour indicating the point density (blue: low density, red: high density).
The green dashed line segment is a robust fit to the 2-D projection in the selected area within the red dashed rectangle.
Points within the region bounded by the red solid rectangle are considered in the directional point density estimation,
while those within the black rectangle are considered in the box-car density estimation.

(a) (b) (c)

Fig. 4.8. Comparison of point density estimated using (a) directional window, and (b) rectangle window. The colour bar
applies for both (a) and (b) with the unit

[
m−2

]
. For reference, (c) is the optical image of the same area from Google.

The size of directional and rectangle windows, in terms of area, are identical in this comparison. The directional window
emphasizes the façade point, meanwhile keeps the point density of non-façade points unchanged compared to rectangle
window. It improves the detection rate of façade points.

the algorithm are briefly described as follows:

(1) The two line segments of the L-shape are separated and rotated according to the façade
direction. For example, one line segment of the L-shape with inlier points should
look like Figure 4.9(a) where the black line is the estimated façade direction from the
weighted Hough transform. Figure 4.9(b) is the rotated coordinates of the points in
Figure 4.9(a). The middle section with much higher density belongs to the façade part.

(2) An estimate of the façade point density is obtained by convolving it with a rectangular
window along the façade direction. For example, the blue curve in Figure 4.9(c) shows
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the point density estimate of the points shown in Figure 4.9(b).
(3) The point density is modelled as a rectangle function plus a constant offset. Hence,

the estimated point density is the convolution of two rectangle windows, which is a
trapezoid. Therefore, the goal is to robustly deconvolve the trapezoidal façade density
curve, which is equivalent to estimate the location of the two slopes of the trapezoid.

(4) A moving line fitting method is developed to estimate the slopes’ positions. A straight
line is fitted to the points within a moving window with the same width as the rect-
angular window for density estimation. For any trapezoidal shape, high slopes should
be detected at the position of the two slopes. By detecting the position of the two high
slopes, one can determine the position of the two sides.

For robustness, the product of the absolute value of the slope and the number of
inliers to the fitted line is considered in the detection of the two slopes, because the
maximum number of inliers should be reached when the window centered at the left
or the right slopes.

For example, Figure 4.9(d) shows the product of the absolute value of the slope and
the number of inliers for the point density curve in Figure 4.9(c). Two prominent peaks
can be detected. The positions of the peaks are the direct estimates of the center posi-
tions of the left and right position of the façade.

After obtaining the 2-D horizontal coordinates of the L-shape end point, we look for its
neighbouring points on the ground level. The mean value of these points is an estimate of
the height of the end point. A plane should be fitted to these points, if the local topography
is not removed.

-40 -20 0 20 40 60
75

80

85

90

North →  [m]

E
a
s
t 
→

 [
m

]

-80 -60 -40 -20 0 20 40 60 80
80

82

84

86

88

90

Facade direction [m]

N
o
rm

a
l 
d
ir

e
c
ti
o
n

 [
m

]

-80 -60 -40 -20 0 20 40 60 80
0

5

10

15

Facade direction [m]

P
o
in

t 
d
e
n
s
it
y
 [
m

-2
]

-80 -60 -40 -20 0 20 40 60 80
0

10

20

30

40

Facade direction [m]

S
lo

p
e
 *

 N
o
. 
o
f 
in

lie
rs

(a)

-40 -20 0 20 40 60
75

80

85

90

North →  [m]

E
a
s
t 
→

 [
m

]

-80 -60 -40 -20 0 20 40 60 80
80

82

84

86

88

90

Facade direction [m]

N
o
rm

a
l 
d
ir

e
c
ti
o
n

 [
m

]

-80 -60 -40 -20 0 20 40 60 80
0

5

10

15

Facade direction [m]

P
o
in

t 
d
e
n
s
it
y
 [
m

-2
]

-80 -60 -40 -20 0 20 40 60 80
0

10

20

30

40

Facade direction [m]

S
lo

p
e
 *

 N
o
. 
o
f 
in

lie
rs

(b)
-40 -20 0 20 40 60

75

80

85

90

North →  [m]

E
a
s
t 
→

 [
m

]

-80 -60 -40 -20 0 20 40 60 80
80

82

84

86

88

90

Facade direction [m]

N
o
rm

a
l 
d
ir

e
c
ti
o
n

 [
m

]

-80 -60 -40 -20 0 20 40 60 80
0

5

10

15

Facade direction [m]

P
o
in

t 
d
e
n
s
it
y
 [
m

-2
]

-80 -60 -40 -20 0 20 40 60 80
0

10

20

30

40

Facade direction [m]

S
lo

p
e
 *

 N
o
. 
o
f 
in

lie
rs

(c)

-40 -20 0 20 40 60
75

80

85

90

North →  [m]

E
a
s
t 
→

 [
m

]

-80 -60 -40 -20 0 20 40 60 80
80

82

84

86

88

90

Facade direction [m]

N
o
rm

a
l 
d
ir

e
c
ti
o
n

 [
m

]

-80 -60 -40 -20 0 20 40 60 80
0

5

10

15

Facade direction [m]

P
o
in

t 
d
e
n
s
it
y
 [
m

-2
]

-80 -60 -40 -20 0 20 40 60 80
0

10

20

30

40

Facade direction [m]

S
lo

p
e
 *

 N
o
. 
o
f 
in

lie
rs

(d)

Fig. 4.9. (a) The inlier points of one line segment of an L-shape, with the black line being the façade direction obtained
from the weighted Hough transform, (b) the coordinates of the inlier points projected to the façade direction, (c) the blue
curve is the estimate of (b)’s point density using a rectangular window of 5m, and the red dashed rectangle and lines
demonstrate the moving line fitting method, and (d) the product of the slope and the number of inliers of the fitted line
using the points in the moving rectangle window along the point density estimate shown in (c). The two red crosses are
the automatically detected façade start and end position at -41.38m and 37.22m, respectively.
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4.2.3 Fusion Result

The proposed method was applied on two TomoSAR point clouds of Berlin contains about
20 million points each. Around 500 L-shapes are detected from each point cloud, corre-
sponding to 1000 end points pairs. Figures 4.10(a) and (b) show the detected L-shapes and
end points of the two point clouds, overlaying on their grey scale point density images,
respectively. The matched L-shapes end points are shown in Figure 4.10(c). Closed quadri-
lateral implies both pairs of end points in an L-shape are matched. A single L-shape implies
only one pair of end points in the L-shape is matched. In total, 150 pairs of end points are
matched, which is sufficient to robustly estimate the 3-D shift and the scaling.

This result is compared to the one computed using the method explained in (Gernhardt and
Bamler, 2012). A difference of 0.51m in east direction; 0.09m in north direction and almost
no difference in height is found. A 3-D view of the first fused TomoSAR point clouds of an
entire city is shown in Figure 4.11. The height of the points is color-coded.

(a) (b) (c)

Fig. 4.10. (a) and (b): The detected L-shapes and their end points of the two input point clouds over Berlin, and (c) the
matched L-shapes and end points. The L-shapes are plotted in green, and the end points are marked as red. They are
overlaid on the grey scale point density image.

Fig. 4.11. The first fused TomoSAR point cloud of an entire city. The result combines an ascending and a descending point
cloud of Berlin. The color indicates height on WGS84 reference surface. The unit of the colobar is meter.
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4.3 Semantic Interpretation of InSAR Estimates Using Op-
tical Images

Having reconstructed the 3-D InSAR point cloud of an urban area, the scientific question
of the origin of the scatterers in the real world arises. By fusing InSAR point clouds and
optical images, we can trace the scatterers in the optical images. The interpretability of op-
tical images also complements the InSAR deformation monitoring, permitting a systematic
monitoring of urban areas by the semantics of infrastructures, e.g. monitoring of bridges,
roads and railways. The contribution of Appendix C is a method of semantic interpretation
of InSAR point cloud using optical images.

The basic idea is by geometrically 3-D co-registering optical images to an InSAR point cloud,
we can transfer the semantics derived from the optical image to the InSAR point cloud for
further analysis. The flowchart of the algorithm is as follows.

Fig. 4.12. Flowchart of the semantic InSAR point cloud interpretation method. The semantic classification of the InSAR
point cloud is achieved by geometric co-registering the InSAR point cloud and the optical image to a reference model.

4.3.1 Geometric Co-registration of Optical Images and InSAR Point
Cloud

The first contribution of the proposed algorithm is a strict 3-D geometric fusion of InSAR
point cloud and optical images in urban area. SAR and optical images are different 2-D
projections of a 3-D scene. Due to the complex urban topography, the co-registration must
be done with a precise 3-D model. Figure 4.13 is a comparison of optical and SAR image of
an urban area. A lot of details which are visible in the optical image are completely hidden
underneath the strong reflection of the façade scatterers in the SAR image.

The proposed co-registration algorithm is as follows

(1) Reconstruct 3-D point cloud from two or more optical images using stereo matching
with structure from motion (SfM) if necessary

(2) Reconstruct 3-D point cloud from SAR images using TomoSAR
(3) 3-D co-registration of the optical and InSAR point clouds
(4) Project optical image into the SAR geometry, a step also known as rendering

Since the first two steps are well explained in other literatures, the following text will focus
on the co-registraion of optical and InSAR point cloud.

The aerial optical images are usually nadir-looking, in contrast to the side-looking geometry
of SAR. In another word, façade points barely appear in optical point cloud while they are
prominent in the TomoSAR point cloud. The point cloud derived from aerial optical images
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Fig. 4.13. Comparison of Google optical image (left) and TS-X high resolution spotlight image (right) of a same area. A lot
of details visible in the optical image are completely hidden underneath the strong reflection of the façade scatterers in
the SAR image. Images are from (Zhu and Bamler, 2012).

also in general has better relative positioning accuracy than the spaceborne TomoSAR point
cloud. This difference is exemplified in Figure 4.14, where the left and right subfigures
correspond to the TomoSAR and optical point clouds of the same area, respectively. These
unique modalities have driven our algorithm to be developed in the following way:

(1) Edge extraction
(a) The optical point cloud is rasterized into a 2-D height image.
(b) The point density of TomoSAR point cloud is estimated on the rasterized 2-D grid.
(c) The edges in the optical height image and the TomoSAR point density image are

detected, respectively.
(2) Initial alignment

(a) Horizontally by cross-correlating the two edge images.
(b) Vertically by cross-correlating the height histogram of the two point clouds.

(3) Refined solution
(a) The façade points in both point clouds are removed.
(b) The final solution is obtained using anisotropic iterative closest point (ICP) with

robustly estimated covariance matrix.

(a) (b)

Fig. 4.14. (a) the TomoSAR point cloud of high-rise buildings, and (b) the optical point cloud of the same area. Building
façades are almost invisible in the optical point cloud, while they are prominent in the TomoSAR point cloud.

More detail of the co-registration algorithm can be found in Appendix C. The final co-
registration result is demonstrated in Figure 4.15. The top subfigure shows the recon-
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structed optical point cloud with colour representing the height, and the middle subfigure
is the co-registered point cloud combining the optical one and two TomoSAR point clouds
from ascending and descending viewing angles. Successful co-registration can be confirmed
by the correct location of the façade points in the bottom of Figure 4.15 which is the top view
of the fused point cloud with different colours representing different point clouds.
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Fig. 4.15. Top: optical point cloud reconstructed using standard structure from motion algorithm with colour representing
the height, middle: the fused point cloud combining the optical one and two TomoSAR point clouds from ascending and
descending viewing angle, and bottom: a close up view of co-registered point cloud in Berlin Potsdamer Platz, where
green, red, blue represent the points from optical, ascending and descending TomoSAR point cloud, respectively. The
ground points were removed for a better visualization.
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4.3.2 TomoSAR Point Cloud Rendering
Once the 3-D point clouds are co-registered, the relative positions of the optical images
with respect to the SAR image are then known. The optical images can be projected into
the SAR geometry. This is also known as rendering: given a viewpoint, solve the occlusion
problem. However, points do not occlude each other except degenerated points, because
they are dimensionless. Typically, the rendering of a point cloud requires reconstructing the
3-D surface and testing the depth of each point. But reconstructing a reliable 3-D surface
from a spaceborne TomoSAR point cloud is still a challenge task, although there are some
pioneer works on reconstructing façades and roofs from spaceborne TomoSAR points (Zhu
and Shahzad, 2014; Shahzad and Zhu, 2015). Therefore, the rendering technique should
avoid an explicit surface reconstruction.

This challenge has been addressed in Appendix D by an improved hidden point removal
operator (a point-based rendering technique). The hidden point removal operator (HPR)
(Katz et al., 2007) inverts the original point cloud using certain function, so that the visible
points will lie on the convex hull of the inverted point cloud. The most common inverting
function is the spherical flipping. Given a point x of any dimension, the spherical flipping
function is defined as follows:

x̂ = f (x) = x + 2(r − ‖x‖)
x
‖x‖

(4.2)

where r is radius of a multi-dimensional sphere. The following figure illustrates the trans-
formation function and HPR in 2-D. The blue dots are the original point cloud. And the red
dots are the inverted one given a viewpoint O. The convex hull of the inverted point cloud
is computed and the points lying on the convex hull are marked as visible.

Fig. 4.16. Hidden point removal operator. The blue dots are the original point cloud. And the red dots are the inverted one
given a viewpoint O.

Considering the much larger and anisotropic noise in spaceborne TomoSAR point clouds
than in typical computer graphics problems, the HPR is not directly applicable to TomoSAR
point clouds. Inspired by (Mehra et al., 2010), we introduced a visibility probability which
is a Gaussian function of the point-to-convex hull distance d:

p (x̂) = exp
(
− d

2

2σ2
x̂

)
(4.3)

where σx̂ is the norm of the total noise standard deviations (all three directions) in the in-
verted point cloud. σx̂ can be directly computed from the noise of the original point cloud.
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Apart from this, we also include an image source consistency check by weighted majority
voting to achieve consistent texturing among neighbouring points in the TomoSAR point
cloud.

As a result, Figure 4.17(a) shows the first spaceborne meter-resolution 3-D TomoSAR point
cloud of an urban area textured with colour from the optical images. Where no TomoSAR
point is available, the black background is filled. The subfigure (b) is the same TomoSAR
point cloud, but colour-coded by its height. The dashed ellipses in subfigure (a) mark the
Berlin central station and the main building of Universitätsmedizin Berlin. The former con-
sists of some railway segments on the ground level and the station building of about 5 stories
tall, and the latter is a high-rise building of about 20 stories tall. The close up views of these
areas are shown in subfigures (c) and (d). The boundary of the railway and the building
edges are clearly projected. For the more challenging task of texturing high-rise objects, the
proposed algorithm also successfully captures the regular window raster on the façade of
Universitätsmedizin Berlin. This implies a good estimation of the cameras parameters, the
relative positions between the cameras and the SAR sensor, as well as a good estimation of
the points visibilities to the different cameras.

Of course, each point in the point cloud also contains its deformation parameters. By asso-
ciating the deformation parameters with its optical appearance, we have an intuitive way of
analysing the scattering mechanism of different objects. This will be exemplified in the next
section.
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(a)

(b)
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(c)

(d)

Fig. 4.17. (a) The first spaceborne meter-resolution 3-D TomoSAR point cloud of urban area textured with colour from
optical image, (b) the corresponding TomoSAR point cloud colour-coded by height, (c) and (d) zoom in to the Berlin
central station and UniversitÃ¤tsmedizin Berlin marked in dashed red ellipses in (a), respectively.

4.3.3 Practical Demonstration

InSAR railway monitoring
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If classification is also performed on the optical image, the semantic labels can be transferred
to the InSAR point cloud for further analysis. The details of the image classification are not
presented here, as this is not the focus of this thesis. One can use any classification method.
For this study, the Bag of Word (BoW) classification method (Csurka et al., 2004) was em-
ployed for classifying the railway and river class of an area near Berlin central station for
the purpose of railway and bridge monitoring. The following figure shows the classification
map where the railway class and river class are labelled in green and red, respectively.

Fig. 4.18. River (red) and railway (green) classified using the BoW method.

Using the semantic label, the corresponding TomoSAR points can be extracted. Figure
4.19(a) shows the extracted continuous railway points overlaid on the optical image. The
colour shows the amplitude of seasonal motion caused by thermal dilation. It can be easily
observed that the railway deformation experiences certain discontinuity. We suspect it is be-
cause of the mechanical clearance between different railway segments. Therefore, we would
like to detect and monitor these gaps.

However, the raw TomoSAR estimates are relatively noisy due to the relative low SNR of
some scatterers. To filter out the inaccurate estimates, a special prior was employed, i.e. the
thermal dilation of a steel beam is linearly proportional to its length at a first approximation
(Kerr, 1978). That is to say, the railway deformation estimates are piecewise linear, and the
scatterers on the same cross-section of the railway undergo similar deformation. Therefore,
the deformation estimates can be filtered by minimizing its total generalized variation (with
second order derivative which favours piecewise linear prior):

f̂ = argmin
f

{1
2
‖f− y‖22 +λ‖∆f‖1

}
(4.4)

where y is the deformation estimates along the 1-D railway direction (i.e. stretch the railway
to a straight line), f is the noise-free version of y, and ∆f is the second order derivative of
f. As shown in literatures of total generalized variation (Bredies et al., 2010; Knoll et al.,
2011), the L1 norm of second order derivative is convex and lower semi-continuous, one can
solve it using convex optimization solvers.

The filtered deformation estimates are shown in Figure 4.19(b), in parallel with the unfil-
tered estimates. The piecewise linear deformation signal is well revealed. To have a quan-
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titative comparison, the upper subfigure of Figure 4.20 plots the original (in blue) and the
denoised (in red) deformation estimates as a function of the 1-D railway direction. The orig-
inal estimates have a standard deviation about 1 - 2 mm which concealed some edges where
the magnitude of deformation is low. The filtering successfully reconstructed these edges.

(a) (b)

Fig. 4.19. (a) Railway points extracted from the original TomoSAR point cloud, and (b) the railway points filtered using
total generalized variation. The colour shows the amplitude of seasonal motion due to the thermal expansion of the railway.
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Fig. 4.20. Upper: the original and the filtered estimates of amplitude of seasonal deformation in blue and red, respectively,
and lower: peaks detected in the derivative of the denoised deformation function along the railway direction.

By detecting the peaks in the derivative of the deformation function, the discontinuities
in the deformation signal can be detected. Constraint was put on the minimum distance
between two peaks. The detected peaks in the deformation’s derivative can be seen in the
lower subfigure of Figure 4.20. The positions of the peaks on the railway are shown as the
green dots in Figure 4.21. Each green dot represents the midpoint of the cross-section. In the
lower subfigure of 4.21, we provide the close up view of the two joints in the optical image.
After carefully inspecting the optical images, we found that the several green dots close to
the central station are indeed physical railway joints, while no physical mechanical joint is
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observed for the others green dots. Hence, the real cause of the deformation discontinuity
still needs to be investigated.

Fig. 4.21. Upper: the midpoint of the detected railway joint cross-section marked in green, and lower: close up view of the
railway joint. The background optical image has a ground spacing of 20cm.

4.4 Robust Estimators for Multipass SAR Interferometry

Robust estimation has not been systematically addressed for multipass InSAR techniques.
Appendix D and E address the robust estimation of two fundamental problems in the mul-
tipass InSAR algorithms. They are:

� covariance matrix estimation for non-Gaussian and nonstationary samples
� phase history parameters estimation for observations with large unmodelled phase errors.

The integrated new framework is named robust InSAR optimization (RIO). Table 4 summa-
rizes the comparison of the state-of-the-art and RIO.

4.4.1 Robust Covariance Matrix Estimators
Non-Gaussian samples

The MLE for stationary CCG samples is the sample covariance matrix (2.12). RIO robustifies
it using the M-estimator of the covariance which is basically an iterative reweighted sample
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Table 4. Comparison of RIO framework with the state-of-the-art

State-of-the-art RIO

Covariance estimation

Stationary DS
Sample covariance matrix: ĈMLE

M-estimator: ĈM−est

Nonstationary DS Rank M-estimator: ĈRME

Phase history parameters estimation

PS Periodogram: θ̂MLE M-estimator: θ̂M−est

Stationary DS Periodogram on samples mean: θ̂MLE M-estimator on samples mean:
θ̂M−est

(
ĈM−est

)
Nonstationary DS — M-estimator pixel-wise inversion:

θ̂M−est
(
ĈRME

)
covariance matrix (Ollila and Koivunen, 2003a; Zoubir et al., 2012):

Ĉk+1 =
1
M

M∑
m=1

w
(
gHmĈ−1

k gm
)

gmgHm (4.5)

where m and k are the sample index and the iteration index, respectively, and w (x) is a
weighting function of the whitened squared residual gHmĈ−1

k gm. The weighting function
down-weights highly deviated samples whose whitened residual is large in magnitude.

To derive a meaningful weighting function for some heavily tailed distributions, RIO models
the non-Gaussian SAR pixel as a complex t-distribution (Tan, 1973; Kotz and Nadarajah,
2004):

fg (g) =
Γ (ν +N )

(πν)NΓ (ν)det(C)N

(
1 +

1
ν

gHC−1g
)−(ν+N )

(4.6)

where Γ (·) is the Gamma function, and ν ∈ R+ is the DoF. The complex t-distribution is a
realistic model for multipass SAR observations, as the DoF allows a quantitative definition of
its deviation from CCG. This distribution approaches CCG as the DoF approaches +∞, and
becomes more heavily tailed as it decreases toward zero. In practical terms, this provides
flexibility for handling different levels of outliers. The corresponding weighting function is
derived according to equation (2.19):

w (x) =
2N + ν
ν + 2x

(4.7)

For a good safeguard against outliers, a small value of ν (<5) is preferred (Ollila and
Koivunen, 2003b). For the best safeguard against outliers, one can choose ν = 1. This par-
ticular complex t-distribution with ν = 1 is also known as the complex Cauchy distribution,
which has been thoroughly investigated in many studies (Feller, 1971). Besides, (Schmitt
and Stilla, 2014) chose ν = 2.5 − 5 for centimeter resolution millimeter-wave SAR data of
urban areas. This implies that the DoF is dependent on the object as well as the sensor. The
simulation of different DoF is presented later in ”quantitative comparison”.

Equation (4.5) is solved iteratively. An approximation to drop the iteration is the sign co-
variance matrix (SCM) (Visuri et al., 2000; Croux et al., 2002). Extend it to complex number,
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Fig. 4.22. Left: input noisy interferogram (upper), and the final estimated fringe (lower), and right: the input noisy inter-
ferogram (upper row) and estimated fringes (lower row) at each resolution level. The estimated fringes at each resolution
level are subtracted from the noisy interferogram. The residual phase is taken as the input for the next resolution level
with smaller window size.

it is

ĈSCM =
N Ī
M

M∑
m=1

‖gm‖−2gmgHm (4.8)

Non-Gaussian and nonstationary samples

To complete the theory, we must consider the situation where samples are neither complex
Gaussian nor stationary. The nonstationarity we consider is the uncompensated determin-
istic part of the interferometric phase, e.g. topography, motion etc. In this case, a joint esti-
mation of the expected interferometric phase and the covariance (De Zan and Rocca, 2005)
is required, i.e.,

ĈMLE =
1
M

M∑
m=1

Φ̂H
mgmgHmΦ̂m (4.9)

where Φ̂m is the complex diagonal matrix containing the estimated phase values of gm.
Usually, the estimation of the interferometric phase is performed by spatial filtering. Its
performance greatly depends on the filter itself, which can be very challenging in urban
areas.

In Appendix E, a multi-resolution defringe algorithm was developed to tackle this chal-
lenge. Figure 4.22 is a demonstration of the defringe algorithm. The left two figures are
the simulated interferogram with the coherence of 30% of the pixels equal 0.3 and the rest
equal to 0 (up), and the final estimated interferometric phase (bottom), respectively. The
right eight subfigures show the input and estimated interferometric phase at each resolu-
tion level. Starting from the largest patch size, the fringe frequency is estimated using only
the coherent DSs in a patch. The interferogram is then demodulated, and passed to the next
resolution level. In the test, four resolution levels were set: 100×100, 50×50, 25×25, and
10×10 pixels.

Nevertheless, the phase estimation requires additional effort, and poor estimates signifi-
cantly affect the covariance matrix estimation. Therefore, a new covariance estimator —
Rank M-estimator (RME) — for complex multivariate is proposed, which is invariant to the
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multiplicative phase signals. The RME is derived by replacing the multivariate g with its
rank r in equation (4.5):

ĈRME,k+1 =
1
M

M∑
m=1

w
(
xm

(
ĈRME,k

))
r̂mr̂Hm (4.10)

The complex rank vector r, being analogous to its real number version (Croux et al., 2002),
is defined as follows:

r̂m =
1
J

J∑
j=1

gm � g∗j∥∥∥∥gm � g∗j
∥∥∥∥ (4.11)

where gj is the direct neighbourhood of gm, and � denotes the element-wise multiplication.
The subtraction of neighbouring samples in the original definition is replaced by multi-
plication of the complex conjugate. The deterministic phase of gm is reduced through this
operation. The RME is a fourth-order descriptor of the sample statistics. It can be proven
that the element-wise square root of

∣∣∣ĈRME

∣∣∣ approaches
∣∣∣ĈMLE

∣∣∣ asymptotically under CCG
distribution when calculating the rank using one neighbourhood sample. Due to the mul-
tiplication operation, the variance of the square-root

∣∣∣ĈRME

∣∣∣ estimate is doubled under a
CCG distribution compared to

∣∣∣ĈMLE

∣∣∣. Therefore, the number of samples should be doubled
when using RME in order to keep a comparable variance as MLE. For an effective phase can-
cellation in equation (4.11), the neighbourhood should be kept small. We usually restrict gj
to be the only four adjacent pixels of gm. Hereafter, we assume that the element-wise square
root on

∣∣∣ĈRME

∣∣∣ has been performed.

Qualitative comparison

We compared the original MLE, the M-Estimator with complex t-distribution weighting, and
the RME under three different scenarios: (1) multivariate CCG, (2) multivariate complex t-
distribution with one DoF, and (3) nonstationary multivariate complex t-distribution with
one DoF. The data are simulated to have ten acquisitions, with a neighbourhood of 1000
samples. Each ten-variate sample vector is simulated by de-whitening a ten-variate vector
of zero-mean i.i.d. CCG distribution (for scenario 1) or complex t-distribution (for scenarios
2 and 3) with a predefined coherence matrix. In the last scenario, linear fringes with ten
different fringe frequencies randomly picked within [0 π/10] were added to the phases of
the ten acquisitions.

In addition, two different coherence matrices were predefined; one exponentially decaying
and the other with a constant 0.5 coherence between acquisitions. The results are shown
in Figure 4.23 where the left subfigure corresponds to the exponential coherence matrix,
and the right corresponds to the constant matrix. Each row represents one of the aforemen-
tioned three scenarios, and each column represents one of the three covariance estimators.
The top left subplots in both subfigures are regarded as their reference coherence matrices,
respectively, because the MLE is the optimal estimator under CCG and is asymptotically
unbiased.

All three estimators can preserve the correct shape of the covariance matrix under CCG. The
MLE fails in the second scenario, where the samples are contaminated by outliers. The coher-
ence is usually overestimated because of the large amplitude of the outliers. Nevertheless,
the M-estimator and RME remain as correct estimations. In particular, this M-estimator is
the MLE for the simulated data. Finally, the M-estimator is not capable of dealing with non-
stationary samples. Heavy underestimation occurs because of the summation of the complex
numbers with nonstationary phases. The degree of underestimation depends on the local
fringe frequency and the spatial extend of the samples. The larger the fringe frequency and
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MLE M-Est RME

(a)

MLE M-Est RME

(b)

0 0.2 0.4 0.6 0.8 1

Fig. 4.23. Comparison of three covariance matrix estimators under three different observation cases; 1st row: complex
circular Gaussian, 2nd row: complex t-distribution with one degree of freedom, and 3rd row: nonstationary complex t-dis-
tribution with one degree of freedom. (a) and (b) show the results of the exponential and constant coherence matrices,
respectively. In both (a) and (b), 1st column: MLE (under Gaussian), 2nd column: M-estimator with t-distribution weight-
ing, and 3rd column: rank M-estimator with t-distribution weighting.

the spatial extend of samples, the severer the underestimation. The RME is mean invariant,
and maintains good performance in all conditions.∣∣∣ĈRME

∣∣∣ shows higher bias at low coherence (as observed in Figure 4.23(a)), and also expe-
riences higher variance (as observed in Figure 4.23(b)), due to the multiplication of two
samples. This can be solved by using more samples in the estimation. The efficiencies of
the M-estimator and RME are always lower than 100% under CCG distribution. This is a
trade-off between robustness and efficiency.

Quantitative comparison

The abovementioned example demonstrates the effectiveness of the robust estimator at the
worst case, i.e. complex Cauchy distribution whose variance is infinite. For a systematic
analysis of the robust covariance estimator at different levels of outlier percentage, the DoF
of the complex t-distribution was varied from 2 to 5. As it was mentioned before, complex
t-distribution approaches complex Gaussian as the DoF increases. Therefore, the advantage
of the robust estimator diminishes as the DoF increases. Figure 4.24 shows the variance
(upper) and bias (lower) of coherence estimates. The left side is for data with complex t-
distribution of DoF=2.5, and the right side is DoF=5. The advantage of robust estimator is
much less at DoF=5 than DoF=2.5, because the distribution of the former is more Gaussian.
In this experiment, the robust estimator always outperforms the Gaussian MLE, because the
robust weighting function is t-distribution weight. Should some empirical robust function
be employed, the Gaussian MLE will outperform the robust estimator at certain point as the
DoF increases. Since we are particularly interested in scatterers of low coherence, the vari-
ance and bias as a function of the DoF for true coherence = 0.2 were also plotted in Figure
4.25. As we can see, the performance of the robust estimator is very stable for different level
of outliers.
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Fig. 4.24. (a) and (b): standard deviation of the coherence estimates of Gaussian MLE and the proposed robust estimator for
complex t-distributed data with degree of freedom of 2.5 and 5, respectively, (c) and (d): bias of the coherence estimates.
100 looks is used in the coherence estimation.

4.4.2 Generalized Rank Covariance Estimator
The abovementioned covariance RME is a robust estimator based on the first order phase
derivative. It can be generalized to any order, so that the estimator will be invariant to any
spatially continuous interferometric phase signal.

Consider a SLC observation gj with image index j, its first order basic rank operator R1 [·] is
defined as the multiplication of itself with the complex conjugate of its neighbour pixel:

rj = R1
[
gj
]

= gjg
∗
j+1 (4.12)

Assuming gj being a Gaussian scatterer, and gj being independent from gj−1, the PDF of r is
the product of two identical and independent CCG distribution. It is equivalent to the PDF
of interferometric pixel with zero coherence, which was derived to be:

f (|r | ,φ) =
2 |r |
πĪ2

K0

(
2 |r |
Ī

)
(4.13)

which does not depends on the phase φ of r. Given a coherence of γ between two single look
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Fig. 4.25. Bias (left) and standard deviation (right) of the coherence estimates of Gaussian MLE and the proposed robust
estimator as functions of degree of freedom of the complex t-distribution, for true coherence = 0.2. 100 looks is used in the
coherence estimation.

observations, the second order moment of their first order basic rank, let’s call it first order
rank coherence, can be proofed to be γ2 by substituting equation (4.12) into the coherence
equation (2.8).

Now the n-th order rank can be defined as the product of two (n-1)-th order rank pixel:

Rn
[
gj
]

= Rn−1
[
gj
]
Rn−1

[
gj+2n−1

]∗
n ∈N (4.14)

Please note that the multiplication is not performed with the pixel j + 1, but j + 2n−1. This
makes sure that an nth order rank pixel is the product of 2n independent SLC pixels. There-
fore, the corresponding nth order rank coherence is

γn = γ2n (4.15)

The variance of γn also increases accordingly, presumably by a factor of 2n. Therefore, the
number of samples used in the estimation should also be increased by the same factor.
The following figure compares the performance of the coherence estimation using differ-
ent orders of rank. An interferogram is simulated with a constant coherence of 0.5 and the
phase from the famous optical image of ”Lena”. The first subfigure shows the interferomet-
ric phase. The results from rank 0 to 2 are plotted in order. Particularly, rank 0 refers to the
results using the original SLC pixels. It is obvious that heavy underestimation occurs if the
original SLC is used. The degree of underestimation depends on the local fringe frequency.
Rank 1 greatly reduced the underestimation. Rank 2 is able to eliminate all the underesti-
mation. But the variance of the coherence estimates also increases as the rank increases.

To conclude, the generalized rank covariance estimator can be invariant to any differentiable
spatial phase signal, if higher orders of rank are employed. However, more samples must be
used for higher orders of rank, due to the fact that high variance is introduced by the rank
operator. Rank 1 is a good balance between phase invariance and estimates variance.
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Fig. 4.26. Comparison of the coherence estimates using different orders of rank. The left subfigure shows the simulated
interferometric phase with a constant coherence of 0.5. The other subfigures are the coherence estimates using rank 0 to
2. Rank 0 refers to using the original single look complex pixels. The colour bar indicates the coherence. Rank 0 heavily
underestimate the coherence. Rank 1 greatly reduced the underestimation. Rank 2 is able to eliminate all the underesti-
mation, but the variance of the coherence estimates also increases as the rank increases.

4.4.3 Robust Phase History Parameters Estimators
This section describes how to robustly estimate the phase history parameters, i.e. eleva-
tion, and motion parameters, given a multipass InSAR observation g ∈CN with unmodelled
phase, e.g. uncompensated atmospheric phase, unmodelled motion phase. The proposed
methods were demonstrated using robust PS and DS phase history parameters estimators.
This method can also be applied to other InSAR techniques, such as TomoSAR.

Robust PS Estimator

Recall equation (3.1) of PS MLE, which can be simplified as

θ̂MLE = argmin
θ
‖g− ḡ (θ)‖22 (4.16)

where ḡ (θ) is the modelled PS signal. Similar to the robust covariance estimator, it can be
robustified by an M-estimator:

θ̂M−est = argmin
θ

N∑
i=1

ρ (Re[εi (θ)]/σR ) + ρ (Im[εi (θ)]/σI ) (4.17)

where the residual εi (θ) = gi − ḡi (θ), and Re[·], Im[·] are the real and imaginary parts of a
complex number, and σR and σI are the standard deviations of real and imaginary parts,
respectively.

The ρ (x) function can be derived from the PDF of the contaminated distribution of g, if it is
known or can be modelled. However, it is usually unknown in practice. We shall use stable
empirical functions instead, e.g. the Tukey biweight function introduced in section 2.4.3.

Equation (4.17) is solved iteratively, with σR and σI being updated at each iteration. Their
initial values are obtained from the initial estimate θ̂0. This is not critical for convex ρ (x).
However, a robust initial estimation is strongly recommended for nonconvex ρ (x). The ini-
tial estimation need not to be efficient. To give one example, the least trimmed square that
minimizes the sum of q smallest squared residuals (Rousseeuw, 1984) is as follows:

θ̂0 = argmin
θ

q∑
i=1

|εi (θ)|2 (4.18)

The initial estimates of standard deviation, as well as those at each iteration, can be obtained
using a robust estimator such as the median absolute deviation:

σ̂ = 1.483 ·median(|ε−median(ε)|) (4.19)
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The factor 1.483 is a normalization constant, which gives an expectation of unity for a nor-
mal distribution. With this combination, convergence is achieved in just a few iterations;
therefore, the computational cost is only approximately three to four times more than that
for the standard estimator. The same procedures can be easily extended to the LAMBDA
estimator (Kampes and Hanssen, 2004) for PS phase parameter estimations.

Robust DS Estimator

If stationarity is assumed for a DS and its neighbourhood, one can treat the DSs as a single PS
by averaging them, as proposed in SqueeSAR. Then, the robustified DS estimator is identical
to equation (4.17).

However, stationarity is not assumed in our considerations. The objective is a full inver-
sion of individual single-look DS observation (DS pixel without averaging). The robustified
estimator for DS phase history parameters is derived to be:

θ̂ = argmin
θ

{
εH (θ)W (ε̄)ε (θ)

}
(4.20)

The residuals ε (θ) are whitened by a robust covariance matrix estimate, e.g. ĈRME :

ε (θ) =
∣∣∣ĈRME

∣∣∣−0.5
Φ(θ)Hg (4.21)

W ∈ RN×N is the diagonal weighting matrix computed from each element of the expected
residual ε̄.

One should be aware that the marginal distribution of the phase of the residual is uniform,
as it is in its whitened version ε (θ). The unexpected large phase error, presumably also uni-
formly distributed over time, applies no change to the DS observations statistically. In other
words, the robust loss function is blind to phase contamination in single-look DS observa-
tions. Therefore, the correct weighting should be determined by the expected residuals ε̄ of
the neighbourhood ensemble. The expected residuals should be calculated using a robust
estimator:

ε̄ =
M∑
m=1

wmεm/
M∑
m=1

wm (4.22)

where the superscript m denotes the sample number in the neighbourhood, and wm is a
robust weight.

To summarize, equation (4.20) is a joint estimation of the phase parameters of individual
single-look DS observations in a neighbourhood. It is solved iteratively. Its computation
should begin with initial estimates of each sample in the neighbourhood (assumed to be
the same), which jointly determine the initial weighting matrix. The same weighting matrix
is used to retrieve the parameters of each single-look DS in the neighbourhood, and is up-
dated on the basis of all the estimates upon finishing one iteration. The pseudocode of the
proposed DS estimator is as stated in the following table.

Efficiencies of the Robust Estimators

The efficiencies of the proposed robust PS and DS estimators and their original MLEs are
quantitatively assessed using Monte Carlo simulations. The sensor related parameters in the
simulation were set to be similar to those of TS-X data, where the wavelength is 0.031 m,
the range distance R = 700 km, the acquisitions number N = 20, the spatial baselines b⊥
were uniformly distributed between -100 m and +100 m, and the temporal baselines t were
evenly spaced from -1 year to +1 year with uniform distribution.
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Table 5. Algorithm of the robust estimator for single-look DS observations

Get initial estimate θ̂0, which can be the same for all DS samples in the same neighbourhood

Calculate initial weighting matrix W0

for iteration k = 1 until convergence

for DS sample m = 1 to M

Estimate θ̂
m

by solving equation (4.20) using Wk

end

Compute the expected residuals ε̄ by a weighted average of εm following equation (4.22).

Compute Wk+1 based on ε̄

end

The contamination-free PS and DS observations were simulated firstly. Then contamination
is introduced in two ways: (1) random phase is added to eight (40%) of the 20 acquisitions.
The phase was uniformly distributed between [−π,π] for both PS and DS. For DS, sufficient
spatial samples were also simulated. The same phase is added to the samples of the same
acquisition to simulate the temporally random but spatially stationary atmospheric phase,
and (2) a complex t-distribution with one DoF, instead of CCG, was used in the DS simula-
tion to simulate outliers in the DS samples. More details of the simulation can be found in
Appendix E.

The proposed robust estimators and their original MLEs were applied to both the
contamination-free and contaminated observations. The integral of Tukey’s biweight func-
tion was chosen as the loss function for both robust PS and DS estimators. The parameter c
was set to 4.586, and the Monte Carlo simulation was repeated 1000 times.

Figure 4.27 shows the standard deviation of the estimates of linear deformation rate with
respect to different SNRs. The left and right subfigures correspond to the robust PS and DS
estimators, respectively. The SNR of the DS refers to the correlated signal w.r.t. the decor-

related part, and can be directly related to the coherence by the formula γ =
(
1 + SNR−1

)−1

(Zebker and Villasenor, 1992; Bamler and Hartl, 1998). In each subfigure, the green curves
are the results of the proposed robust estimators, and the blue curves are the original MLEs;
the dashed curves are the estimators performing on observations with CCG distribution
noise, and the solid curves are results for contaminated data. The blue dashed curves in all
the subfigures are the MLEs under CCG; hence, they are the optimal estimates.

Figure 4.27 conveys two important messages:

(1) The results suggest that the robust estimators significantly outperform the original
MLEs when large amount of the observations are contaminated. The robust estimators
improve the efficiency by a factor of 7 to 35 (the squared ratio of the solid curves).

(2) Still, the efficiency of the robust estimator under the nominal distribution (i.e. CCG) is
close to that of the original MLE. The relative efficiency of the robust estimator and the
MLE under a nominal distribution, defined as

ηRE =
σ2
MLE

σ2
Robust

(4.23)

is approximately 70% for the proposed robust PS estimator and 80% for the DS esti-
mator. Therefore, the robust estimators are also capable of handling uncontaminated
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observations without too much loss of efficiency.
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Fig. 4.27. Comparison of the standard deviation of the linear deformation rates estimated by the robust estimators and
the ordinary MLEs. The left and right subfigures correspond to the PS and DS estimators, respectively. In both subfigure,
the green curves are the results of the proposed robust estimators, and the blue curves are those of the original MLEs;
the dashed curves are the estimators performing on contamination-free observations, and the solid curves are the results
for contaminated data. The blue dashed curves in all the subfigures are the MLEs under a complex circular Gaussian dis-
tribution; hence, they are the optimal estimates. The robust estimators improve the efficiency by a factor of 7 to 35 for
contaminated data (the squared ratio of the solid curves) while still keep a relative efficiency of 70% - 80% for contamina-
tion-free data (the squared ratio of the dashed curves).

4.4.4 Practical Demonstration of the Robust InSAR Optimization
Against unmodelled phase

To demonstrate the robustness against large phase errors, an area in Las Vegas with signifi-
cant non-linear motion was selected, in a stack of 30 TS-X high resolution spotlight images.
The test area is marked by the red rectangle in Figure 4.28(a). The reference point marked
by the red cross is a few hundred meters to the area. The correct deformation phase history
of a sample pixel (marked by yellow cross) considering both linear and non-linear motion
models is shown in Figure 4.28(b). As we can see, not only the motion is complex but also
the magnitude of motion is very large. If only a linear motion model is considered, the un-
modeled motion phase is equivalent to a large phase error. Non-robust estimators will give
biased estimates.

Figure 4.29(a) compares the result of the proposed robust estimator and the ordinary MLE
when only the linear model is considered. The robust estimates correctly reconstruct the
subsiding bowl, whereas the MLE estimates are heavily biased by the unmodeled motion of
the building roof. The advantage of the robust estimator is clearer in Figure 4.29(b) which
is the bias of the estimates with respect to the correct linear deformation rate.

Against non-Gaussian scatterer

Figure 4.30 shows the difference between the linear deformation rate of the DSs estimated
using the classical sample covariance matrix ĈMLE (left column) and that using the proposed
ĈRME (right column). Identical samples were used for estimating these two covariance ma-
trices. They were adaptively selected with the KS test using ten amplitude images, which
were expected to introduce a non-negligible number of outliers in the selected samples be-
cause of the low detection rate from the low number of images. The same ordinary DS MLE
was employed to estimate the linear deformation rate in both cases. Therefore, any improve-
ment was solely credited to the use of a more robust covariance matrix estimate.
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Fig. 4.28. (a) the test area with significant non-linear motion is marked by the red rectangle. The red cross is the reference
point. (b) the deformation phase history of the pixel marked by yellow cross in (a), where the black dots are the wrapped
deformation phases and its duplicates by adding and subtracting 2π, the black curve is a non-linear fit to the phase history,
and the red and blue lines are linear fittings using RIO and MLE, respectively.

The improvement is clearly demonstrated. The test area is mainly vegetation, except a road
in the center which usually appears as a DS in the X-band images. Homogeneous defor-
mation rates are expected, as the spans of both areas were roughly one hundred meters.
However, many estimates appear in subfigure (a) as salt-and-pepper noise. We believe this
is due to the low detection rate of the KS test, and the nonstationarity of the samples. In
contrast, homogenous deformation rate of the road is shown in subfigure (b).

For further comparison, the histograms of the linear deformation rates of the road in Figure
4.30(a) and (b) were plotted in Figure 4.30(c) and (d) respectively. When using ĈMLE , many
local peaks appear in the histogram which should not correspond to the deformation signal.
With ĈRME , results are considerably more homogenous, and thus more reasonable.

Big Area Demonstration

The RIO framework was applied on a stack of 33 TS-X high resolution spotlight images of
the super volcano Campi Flegrei. Figure 4.31 shows the results of the linear deformation rate
using the RIO framework, in which Tukey’s biweight loss function is used for both robust PS
and DS estimator. We specifically chose the SCM for the robust covariance estimate because
of the absence of significant fringes in the interferogram.

RIO retrieved 15 times more scatterers than that using only PS. This number should also
be valid for standard PS+DS methods, e.g. SqueeSAR. However, RIO greatly improves the
overall robustness of the current multipass InSAR estimators. This can be seen in the small
area comparison (Figure 4.32) of the two random areas marked by red rectangles in Figure
4.31, where RIO greatly reduced the salt and pepper noise which is probably caused by
unmodeled phase and bad covariance estimation.
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Fig. 4.29. (a) linear deformation rate estimates by robust estimator and ordinary MLE, and (b) the bias of the robust and
non-robust estimates to the ”ground truth” (linear deformation rate estimated considering the non-linear motion model).
Units: [mm/year].
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Fig. 4.30. (a) and (b) comparison of the linear deformation rate of the two test sites estimated using the proposed ĈRME
and the ordinary ĈMLE , respectively. Identical samples were used for estimating both covariance matrices. They were
adaptively selected (KS test) using ten images. This is expected to introduce a non-negligible number of outliers in the
selected samples because of the low detection rate from the low number of images. Results (overlaid on the SAR intensity
images) are specific to a local reference point. A homogenous deformation rate is expected because of the small size of
the test area. The same ordinary DS MLE was employed for the linear deformation rate estimations in both cases. And (c)
and (d) the corresponding histograms of the linear deformation rates in (a) and (b), respectively. In (d), many local peaks
appear almost uniformly in the search range, most of which should not correspond to the deformation signals.
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Fig. 4.32. Zoom in of the two areas marked by red rectangles in 4.31.
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5 Conclusion and Outlook

5.1 Conclusion

T his dissertation is to develop advanced multipass InSAR algorithms, with the aim of
computational efficiency, information fusion, contextual awareness, and statistical ro-

bustness. The objectives are fulfilled with the work presented in this thesis. The following
contributions can be drawn.

� The high computational cost of tomographic SAR inversion compared to PSI requires
an efficient approach for operational processing. The computational cost can be greatly
reduced by
· Pre-classifying single and double scatterers without performing TomoSAR inversion on

every pixel. The classification should use simple quantities. We used pixel mean inten-
sity, amplitude dispersion index, and the likelihood to single scatterer model for the
pre-classification. The current implementation can achieve 70% double scatterer detec-
tion rate with 25% false alarm rate. The falsely detected double scatterer can be dis-
criminated in the full tomographic SAR inversion afterwards.
· using the estimates from PSI as a prior in the TomoSAR inversion of double scatterers.
· and pass only the necessary pixels to the most expensive superresolution algorithms,

e.g. SL1MMER. In our approach, only the single scatterers detected from the non-
superresolution algorithm (e.g. SVD-Wiener) whose elevation estimates are less than
1.5 times of the Rayleigh resolution were passed.

The computational cost of a large area can be reduced by a factor of 50.
� The interferometric phase often contains unmodeled contributions, e.g. unmodeled de-

formation and uncompensated atmospheric phase. And this is particularly true for very
high resolution data of urban area, due to its complex motion and atmospheric phase
with possibly high spatial frequency. Robust estimation is recommended for such case.
The proposed robust estimator can improve the variance of the deformation estimates by
a factor of 7 to 35, while still maintain a relative efficiency of 70% to 80% w.r.t. the MLE
for uncontaminated data.

� The expected interferometric phase must be removed in prior of the covariance estima-
tion. It is commonly called defringe, and commonly realized by spatial filtering. The fil-
tering can be replaced by a simple subtraction of the phase of neighbouring pixel, i.e.
multiply the complex conjugate of the neighbouring pixel. The augmented observation is
called rank observation. The rank covariance estimator is invariant w.r.t. very large fringe
frequency. The rank covariance can be generalized to any order, and be theoretically in-
variant to any fringe frequency.

� The performance of adaptive sample selection in SAR image stack decreases as the num-
ber of images decreases. Robust estimation of the covariance is necessary. The M-estimator
of covariance provides a general framework. Among them, the non-iterative sign covari-
ance matrix is shown to be a promising method for fast covariance estimation of low
coherent signals.

� SAR images as well as InSAR estimate are difficult to interpret, especially for high resolu-
tion data of urban area. By geometrically fusing the optical image to the 3-D InSAR point
cloud, we can intuitively understand the properties of the scatterers in visible spectrum.
In this thesis, the first meter-resolution TomoSAR point cloud textured with optical colour
was demonstrated.

� The current multipass InSAR techniques are very much pixel-based inversion and phase
history analysis. By transferring the semantic classification label of the optical image to
the InSAR point cloud, one can perform a systematic analysis of the InSAR point cloud
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based on semantics, e.g. automatic railway monitoring.

5.2 Outlook

The future SAR and InSAR algorithms will become more intelligent and user friendly, which
can be seen in the following aspects.

Optical and SAR Image Joint Reconstruction

Some pioneer studies on joint pixel processing are emerging. For example, joint iso-height
pixels TomoSAR (Zhu et al., 2015a,b; Ge et al., 2015), contextual phase unwrapping
(Baselice et al., 2014), etc. Still, there is much information not fully exploited in SAR im-
ages. One obvious way is to use the rich spatial information in optical images to help the
InSAR inversion. The following research directions are foreseen:

� Efficient and precise co-registration algorithm for very high resolution optical and SAR
images in urban area, instead of full 3-D reconstruction from SAR and optical image
introduced in this thesis.

� How to use the features in the optical image, e.g. the colour, classification labels, etc.,
to help the InSAR reconstruction. One way is to set different prior for different classes.
Recall the TomoSAR MAP estimator in equation (3.19), better results can be achieved by
introducing different prior covariance matrix Cγγ for the prior of every class:

γ̂MAP = min
γ
‖g−Rγ‖22 +λ‖γ‖2Cγγ

(5.1)

Another direction is to find similar pixels in optical image, and perform joint reconstruc-
tion of the similar pixels with InSAR.

� Fusion of social media images with InSAR.

3-D Reconstruction from Images of Diverse Angles

Multipass InSAR is based on the concept of coherent imaging, i.e. small angle diversity be-
tween images. As the evolution of spaceborne SAR technology, abundant data are available
from different viewing angles. How can we break through the limitation of coherent imag-
ing, and perform 3-D/4-D reconstruction using images from very different angle? Two paths
in this research are foreseen:

� Real SAR tomography, i.e. by back projection. This probably requires precise pixel-based
matching.

� Radargrammetry with multiple images dense matching, i.e. SAR ”structure from motion”.
For urban area, there have been researches on matching of images with orthogonal inci-
dence angles (Soergel et al., 2009), and point scatterer matching (Goel and Adam, 2012b).
Focus can be put on better features for dense matching. For non-urban area, there have
been study on SIFT descriptor for SAR (Dellinger et al., 2015), dense matching of two im-
ages (Rodriguez Gonzalez et al., 2015), and three images matching (Raggam et al., 2010).
Research is still requires on multiple images matching.

Efficient Big Data Processing

We expect an unprecedented demand of InSAR processing in the future. Therefore, there is
a necessity of developing intelligent InSAR algorithm that can select/prioritize the process-
ing tasks. Most of the pixels in a SAR image do not undergo any significant deformation.
Intelligent algorithms which can determine the hotspot of deformation in an image stack
prior to the InSAR processing is very useful. The algorithms should use any easily obtain-
able quantities and other prior knowledge of the deformation to infer the probability of
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possible large deformation in the image. One can also exploit the sparsity in spatial and
temporal deformational signal, in order to reduce the number of pixels in the processing.

Advanced Deformation Analysis

The current InSAR deformation estimates are still subjected to the following few points:
1) millimeter-precision of linear deformation rate over a large area requires a fairly large
stack and good SNR of the scatterers; and 2) InSAR estimates are relative, although there are
pioneer studies of absolute positioning and deformation, e.g. SAR imaging geodesy (Eineder
et al., 2011; Cong et al., 2012; Balss et al., 2014), using active transponders (Mahapatra et al.,
2014), and geodetic TomoSAR (Zhu et al., 2015c). Future research can be focused on:

� Geodetic InSAR combining absolute geodetic measurement and SAR interferometric esti-
mates.

� Combining subsurface measurements such as seismic data with InSAR, for modelling the
geophysical behaviour of volcanic region from inside and outside.

� Retrieval higher level information from the phase history, e.g. classification of different
motion behaviour, and predict risk level by combining the prior knowledge of the scatter-
ing object from optical image.
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2.1 Plane wave approximation of the interference of two SAR images. The red
and blue lines are the iso-range lines with interval of half wavelength of the
two images respectively. The iso-range lines intersect each other, creating an
interference pattern. The background shows the interferometric phase of the
pattern. The topography is mapped into interferometric phase depends on
the height of the point. 5

2.2 Illustration of systematic shift of the multipass InSAR position estimates
in UTM coordinate. The two black dots indicate the true positions of two
scatterers which are on the same height w.r.t. a reference surface. The two
scatterers are located at the near range and far range of the SAR image,
respectively. Their incidence angles θnear and θf ar are different, e.g. as many
as one degree for TS-X spotlight images. Due to the unknown height of
the reference point, the scatterers are shifted to the red points along their
elevation directions, respectively. The scatterers are equally shifted in height,
but scaled in the ground range direction due to their different elevation
directions. This ground range scaling will translates into both north and
east direction in the UTM coordinate. Therefore, any relative InSAR position
estimate is shifted in three directions, with additional horizontal 2-D scaling. 7

2.3 Maximum ground range scaling (per meter of the height of reference point)
as a function of the near range incidence angle and the incidence angle
diversity between near range and far range. For a typical image stack of 40◦

incidence angle and 1◦ diversity, the scaling is 3.5 cm/m/◦. However, the
scaling will become 15 cm/m/◦ if the incidence angle becomes 20◦, which
will cause 1.5 m of scaling if the unknown height of the reference point is 10
m. 8

3.1 Spatial-temporal baseline plot of (a) single master InSAR stack, e.g. PSI, and
(b) SBAS InSAR stack. 15

4.1 left: Algorithm of pre-classification of non-, single-, and double-scatterers.
Non-scatterers are detected by penalized likelihood ratio test. Single and
double scatterers are classified using fast non-parametric methods without
TomoSAR inversion, e.g. classification using mean intensity, amplitude
dispersion index, etc. And right: the flowchart of the efficient TomoSAR
inversion algorithm. The most important is the layer right after the PSI
processing, where pixels are pre-classified, and PSI estimates are passed to
TomoSAR processing as prior knowledge. 25

4.2 The joint distribution densities of mean intensity and the log-likelihood to
the single scatterer model for pixels with left: single scatterer, and right:
double scatterer. The log-likelihood is represented by the residual sum of
squares normalized to [0 1]. 26

4.3 (a) the result of the pre-classification method, (b) the result from the
SL1MMER algorithm as a reference, and (c) the final classification after
the higher order spectral estimation. The red pixels are detected double
scatterers, the green are the single scatterers, and the blue are no scatterer. 26

4.4 (a) Elevation estimates of Berlin using the proposed approach, and (b) a
close-up over the Berlin central station. 28
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4.5 Fusion geometry of the proposed L-shape method. The two building
façades are coloured in dark grey representing the InSAR point clouds
from cross-heading orbits whose line of sight directions are indicated by
the two arrows. The light grey planes denote the corresponding ground
level of the two point clouds. The two pairs of red and purple dots are the
façade end point position to be estimated. Due to various facts, e.g. material,
decorrelation, imaging geometry, etc., these end points may not be exactly
from the scatterers located on the true end position of the façades, but
they are still the closest match to the exact point correspondence in two
cross-heading TomoSAR point clouds. 29

4.6 Flowchart of the proposed algorithm. The black ellipses represent
input/output data. The blue rectangles are procedures/processes. 30

4.7 Schematic drawing of point density estimation using directional window.
The coloured points are the projection of the 3-D point cloud in horizontal
plane, with the colour indicating the point density (blue: low density, red:
high density). The green dashed line segment is a robust fit to the 2-D
projection in the selected area within the red dashed rectangle. Points
within the region bounded by the red solid rectangle are considered in the
directional point density estimation, while those within the black rectangle
are considered in the box-car density estimation. 31

4.8 Comparison of point density estimated using (a) directional window, and
(b) rectangle window. The colour bar applies for both (a) and (b) with the
unit

[
m−2

]
. For reference, (c) is the optical image of the same area from

Google. The size of directional and rectangle windows, in terms of area, are
identical in this comparison. The directional window emphasizes the façade
point, meanwhile keeps the point density of non-façade points unchanged
compared to rectangle window. It improves the detection rate of façade
points. 31

4.9 (a) The inlier points of one line segment of an L-shape, with the black line
being the façade direction obtained from the weighted Hough transform,
(b) the coordinates of the inlier points projected to the façade direction,
(c) the blue curve is the estimate of (b)’s point density using a rectangular
window of 5m, and the red dashed rectangle and lines demonstrate the
moving line fitting method, and (d) the product of the slope and the number
of inliers of the fitted line using the points in the moving rectangle window
along the point density estimate shown in (c). The two red crosses are the
automatically detected façade start and end position at -41.38m and 37.22m,
respectively. 32

4.10 (a) and (b): The detected L-shapes and their end points of the two input
point clouds over Berlin, and (c) the matched L-shapes and end points. The
L-shapes are plotted in green, and the end points are marked as red. They are
overlaid on the grey scale point density image. 33

4.11 The first fused TomoSAR point cloud of an entire city. The result combines
an ascending and a descending point cloud of Berlin. The color indicates
height on WGS84 reference surface. The unit of the colobar is meter. 33

4.12 Flowchart of the semantic InSAR point cloud interpretation method. The
semantic classification of the InSAR point cloud is achieved by geometric
co-registering the InSAR point cloud and the optical image to a reference
model. 34
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4.13 Comparison of Google optical image (left) and TS-X high resolution spotlight
image (right) of a same area. A lot of details visible in the optical image are
completely hidden underneath the strong reflection of the façade scatterers
in the SAR image. Images are from (Zhu and Bamler, 2012). 35

4.14 (a) the TomoSAR point cloud of high-rise buildings, and (b) the optical point
cloud of the same area. Building façades are almost invisible in the optical
point cloud, while they are prominent in the TomoSAR point cloud. 35

4.15 Top: optical point cloud reconstructed using standard structure from motion
algorithm with colour representing the height, middle: the fused point cloud
combining the optical one and two TomoSAR point clouds from ascending
and descending viewing angle, and bottom: a close up view of co-registered
point cloud in Berlin Potsdamer Platz, where green, red, blue represent
the points from optical, ascending and descending TomoSAR point cloud,
respectively. The ground points were removed for a better visualization. 37

4.16 Hidden point removal operator. The blue dots are the original point cloud.
And the red dots are the inverted one given a viewpoint O. 38

4.17 (a) The first spaceborne meter-resolution 3-D TomoSAR point cloud of
urban area textured with colour from optical image, (b) the corresponding
TomoSAR point cloud colour-coded by height, (c) and (d) zoom in to the
Berlin central station and UniversitÃ¤tsmedizin Berlin marked in dashed red
ellipses in (a), respectively. 41

4.18 River (red) and railway (green) classified using the BoW method. 42

4.19 (a) Railway points extracted from the original TomoSAR point cloud, and
(b) the railway points filtered using total generalized variation. The colour
shows the amplitude of seasonal motion due to the thermal expansion of the
railway. 43

4.20 Upper: the original and the filtered estimates of amplitude of seasonal
deformation in blue and red, respectively, and lower: peaks detected in the
derivative of the denoised deformation function along the railway direction. 43

4.21 Upper: the midpoint of the detected railway joint cross-section marked in
green, and lower: close up view of the railway joint. The background optical
image has a ground spacing of 20cm. 44

4.22 Left: input noisy interferogram (upper), and the final estimated fringe
(lower), and right: the input noisy interferogram (upper row) and estimated
fringes (lower row) at each resolution level. The estimated fringes at each
resolution level are subtracted from the noisy interferogram. The residual
phase is taken as the input for the next resolution level with smaller window
size. 46

4.23 Comparison of three covariance matrix estimators under three different
observation cases; 1st row: complex circular Gaussian, 2nd row: complex
t-distribution with one degree of freedom, and 3rd row: nonstationary
complex t-distribution with one degree of freedom. (a) and (b) show the
results of the exponential and constant coherence matrices, respectively.
In both (a) and (b), 1st column: MLE (under Gaussian), 2nd column: M-
estimator with t-distribution weighting, and 3rd column: rank M-estimator
with t-distribution weighting. 48
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4.24 (a) and (b): standard deviation of the coherence estimates of Gaussian MLE
and the proposed robust estimator for complex t-distributed data with
degree of freedom of 2.5 and 5, respectively, (c) and (d): bias of the coherence
estimates. 100 looks is used in the coherence estimation. 49

4.25 Bias (left) and standard deviation (right) of the coherence estimates of
Gaussian MLE and the proposed robust estimator as functions of degree of
freedom of the complex t-distribution, for true coherence = 0.2. 100 looks is
used in the coherence estimation. 50

4.26 Comparison of the coherence estimates using different orders of rank. The
left subfigure shows the simulated interferometric phase with a constant
coherence of 0.5. The other subfigures are the coherence estimates using
rank 0 to 2. Rank 0 refers to using the original single look complex pixels.
The colour bar indicates the coherence. Rank 0 heavily underestimate the
coherence. Rank 1 greatly reduced the underestimation. Rank 2 is able
to eliminate all the underestimation, but the variance of the coherence
estimates also increases as the rank increases. 51

4.27 Comparison of the standard deviation of the linear deformation rates
estimated by the robust estimators and the ordinary MLEs. The left and right
subfigures correspond to the PS and DS estimators, respectively. In both
subfigure, the green curves are the results of the proposed robust estimators,
and the blue curves are those of the original MLEs; the dashed curves are
the estimators performing on contamination-free observations, and the solid
curves are the results for contaminated data. The blue dashed curves in all
the subfigures are the MLEs under a complex circular Gaussian distribution;
hence, they are the optimal estimates. The robust estimators improve the
efficiency by a factor of 7 to 35 for contaminated data (the squared ratio
of the solid curves) while still keep a relative efficiency of 70% - 80% for
contamination-free data (the squared ratio of the dashed curves). 54

4.28 (a) the test area with significant non-linear motion is marked by the red
rectangle. The red cross is the reference point. (b) the deformation phase
history of the pixel marked by yellow cross in (a), where the black dots
are the wrapped deformation phases and its duplicates by adding and
subtracting 2π, the black curve is a non-linear fit to the phase history, and
the red and blue lines are linear fittings using RIO and MLE, respectively. 55

4.29 (a) linear deformation rate estimates by robust estimator and ordinary MLE,
and (b) the bias of the robust and non-robust estimates to the ”ground
truth” (linear deformation rate estimated considering the non-linear motion
model). Units: [mm/year]. 56
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4.30 (a) and (b) comparison of the linear deformation rate of the two test sites
estimated using the proposed ĈRME and the ordinary ĈMLE , respectively.
Identical samples were used for estimating both covariance matrices. They
were adaptively selected (KS test) using ten images. This is expected to
introduce a non-negligible number of outliers in the selected samples
because of the low detection rate from the low number of images. Results
(overlaid on the SAR intensity images) are specific to a local reference point.
A homogenous deformation rate is expected because of the small size of
the test area. The same ordinary DS MLE was employed for the linear
deformation rate estimations in both cases. And (c) and (d) the corresponding
histograms of the linear deformation rates in (a) and (b), respectively. In
(d), many local peaks appear almost uniformly in the search range, most of
which should not correspond to the deformation signals. 57
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using the proposed robust InSAR optimization framework that combines
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An Efficient Tomographic Inversion Approach for
Urban Mapping Using Meter Resolution

SAR Image Stacks
Yuanyuan Wang, Xiao Xiang Zhu, and Richard Bamler

Abstract—This letter describes an efficient approach of multi-
dimensional synthetic aperture radar (SAR) imaging for urban
mapping. The proposed approach is an integration of tomographic
SAR inversion and the well-known persistent scatterer interfer-
ometry (PSI). It consists of three steps: first, a global estimation of
the topography and motion parameters using efficient algorithms
such as PSI; second, a single and double scatterer discrimination
step based on the results of the first step; finally, a tomographic
SAR inversion, which is performed on the preclassified double
scatterers, using the prior knowledge obtained in the first step,
retrieving the topography and motion parameters of both scat-
terers. The proposed approach has been tested on a dozen of
TerraSAR-X high-resolution spotlight image stacks. In this letter,
examples from Las Vegas and Berlin are presented. The results are
comparable with the one obtained by the most computationally
expensive tomographic SAR algorithms (e.g., SL1MMER) only
and saves computational time by a factor of 50.

Index Terms—SAR tomography (TomoSAR), SL1MMER,
synthetic aperture radar (SAR), TerraSAR-X, urban mapping.

I. INTRODUCTION

A. TomoSAR and PSI

TOMOGRAPHIC synthetic aperture radar (SAR) inversion
includes SAR tomography (TomoSAR) [1] and differen-

tial TomoSAR (D-TomoSAR) [2]–[4]. Because of their lay-
over resolving capability, they are often used for urban 3-D
topographic reconstruction, forest structure imaging, and
ground or building deformation monitoring. As an extension of
TomoSAR, D-TomoSAR introduces an additional motion term
in the TomoSAR system model, allowing the retrieval of the
motion parameters of each scatterer in a resolution cell. The
D-TomoSAR system model can be expressed as follows:

gn =

∫

Δs

γ(s) exp

(
−j2π

(
ξns +

2d(s, tn)

λ

))
ds (1)
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where gn is the complex pixel value in the nth single-look
complex SAR image, s represents the elevation direction,
d(s, tn) is the displacement as a function of the elevation and
the acquisition time tn, λ is the wavelength of the SAR system,
ξn = −2bn/(λr), which is the so-called “spatial frequency”
and is proportional to the baseline bn and range r, and γ(s) is
the complex reflectivity profile along the elevation direction of
that pixel. Solving the reflectivity γ(s) is essentially a spectral
estimation problem. In case of solving it parametrically, the
solution is, in addition, subject to a multidimensional search
in the elevation and motion parameters solution space.

Persistent scatterer interferometry (PSI) [5] assumes a max-
imum single dominant scatterer in a pixel. Under such as-
sumption, γ(s) in (1) is modeled as a delta function with
a constant amplitude. Assuming linear and seasonal motion
models (common in urban area), the PSI system model can be
simplified as

gn = A exp (−j2π(ξns + ηnv + ωna)) (2)

where A is the amplitude of the point scatterer, which is
usually dropped in the estimation, ηn = 2tn/λ is the temporal
frequency modeling linear movement, and ωn = 2 sin(2π(tn −
t0))/λ is the temporal frequency modeling seasonal motion. v
and a are the velocity of linear motion and the amplitude of
periodic motion, respectively. Solving the unknown elevation
and the motion parameters is to match the phase on both
sides of (2), which can be efficiently solved by maximizing
the ensemble coherence (periodogram) [6]. Because of the
simplification in the system model, PSI is an efficient method
for deformation monitoring of large areas.

B. Integration of TomoSAR and PSI

As the resolution of SAR images goes higher, it provides
us enormous details on one hand, and on the other hand, it
increases the computational burden. This is particularly true for
monitoring an entire urban area using D-TomoSAR because it is
a spectral estimation problem whose computational efficiency
is mainly restricted by the following: 1) dimension of the
spectral estimation problem for each pixel. Usually, 3-D is
applied (elevation, linear motion, and periodic motion) [7];
2) extent of the parameter solution range, i.e., the search range
in each dimension of the solution space; and 3) the spectral
estimation algorithms being applied, such as periodogram (eco-
nomic), SVD-Wiener [4] (a little bit more expensive) and
SL1MMER [8] (much more expensive).

To reduce the computation, we propose to integrate PSI into
the D-TomoSAR inversion, with these considerations. 1) PSI

1545-598X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Processing flowchart. Black ellipses represent input/output data. Blue
rectangles represent processes/algorithms. The red diamond represents deci-
sion. The green rectangles in the black ellipses represent accepted results,
whereas those red ones represent results that need to be passed to the next step.

needs to provide a reasonable atmospheric phase screen (APS)
estimation; 2) PSI should provide the prior knowledge about
the dimension of the problem (i.e., the motion model) and the
search range in each dimension of the solution space; 3) More
expensive methods such as SVD-Wiener and SL1MMER shall
only be applied to the pixels that probably contain more than
one scatterer; and 4) Algorithms with superresolving capability
such as SL1MMER shall only be applied when superresolution
is required.

C. Summary

The proposed TomoSAR inversion approach is an integration
of PSI and D-TomoSAR. The processing flowchart is shown
in Fig. 1. It follows three steps: first-order spectral estimation,
single and double scatterer(s) discrimination, and higher order
spectral estimation. A near-operational processor is imple-
mented by combining the PSI, SVD-Wiener, and SL1MMER
developed in the Remote Sensing Technology Institute of the
German Aerospace Center (DLR).

The rest of the letter will describe each step in this approach.
The details of PSI, SVD-Wiener, and SL1MMER will not be
addressed and can be found in [4], [5], and [8]. Focus will
be put on the integration of PSI and D-TomoSAR, particularly
the discrimination of pixels with single or double scatterer(s).
Results using TerraSAR-X high-resolution spotlight data are
presented in Section III.

II. TOMOSAR PROCESSING CHAIN

The proposed approach is summarized in Fig. 1. First, APS
is removed from the coregistered image stack in the PSI-type
preprocessing; then, first-order spectral estimation (i.e., single-
scatterer model) is applied on all the pixels, obtaining the
estimates of the model parameters. Based on these estimates,
amplitude dispersion index (ADI), and pixel brightness, a pre-
discrimination of the number of scatterers in each pixel is then
obtained. As we limit the maximum number of scatterers to
two, all the pixels shall fall into one of the three classes: no,

single, or double scatterer(s). The prediscrimination follows
two steps: The Bayesian decision rule is first applied to discard
pixels with no scatterer and followed by a support vector ma-
chine (SVM) to separate pixels with single scatterer and double
scatterers. The pixels detected with double scatterers (upper red
box in Fig. 1) are passed to higher order spectral estimation.
They are first processed with SVD-Wiener. Some of them are
confirmed as pixels containing double scatterers, and the rest
are rejected as having either single or no scatterer. Because
SVD-Wiener has almost no superresolution capability, among
those pixels rejected as single scatterers (lower red box in
Fig. 1), some actually contain double scatterers. Therefore, after
a decision (red diamond in Fig. 1) on the elevation distance,
some of them are passed to the SL1MMER algorithm with
superresolution capability. The following text in this section
will explain each step in detail.

A. Preprocessing

The purpose of preprocessing is to estimate and further
remove the APS from a coregistered complex SAR image stack.
The image stacking is done by DLR’s PSI-GENESIS system
[9]. The APS is removed using a similar approach as that in
standard PSI processing and the “spatial difference” method
mentioned in [10]. Since the APS is spatially smooth varying,
preprocessing is performed on the downsampled image stacks
to reduce computational cost. Note that the pixel selection and
parameter estimates in the preprocessing do not affect/replace
any procedures in the following D-TomoSAR inversion steps.
The basic preprocessing procedures are listed as follows.

1) Downsample images in azimuth and range direction.
2) Build redundant network from spatially differential mea-

surement in the downsampled image stacks.
3) Estimate model parameters of the differential measure-

ments in the network, assuming a single-scatterer model
with linear and seasonal motion.

4) Integrate differential topography estimates and remove
the corresponding phase contribution from the original
interferometric phase.

5) Unwrap the remaining residual phase in azimuth and
range direction.

6) Apply a temporal high-pass filter and a spatial low-pass
filter to the unwrapped phase stack. This results to the
APS in the downsampled image size.

7) Upsample the APS to the original image size and remove
from the original phase.

B. First-Order Spectral Estimation

The first-order spectral estimation refers to a special case of
the D-TomoSAR problem considering only a single scatterer in
each range–azimuth pixel. In the proposed processing chain, it
is solved by maximizing the periodogram [11] of the amplitude-
normalized measurements [5], i.e.,

{ŝ, v̂, â}=arg max

{∣∣∣∣∣
1

N

N∑

n=1

e−j2π(ξns+ηnv+ωna) g∗
n

|gn|

∣∣∣∣∣

}
(3)

where N is the total number of interferograms, and ∗ stands for
the complex conjugate operator.
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After applying the estimation on every pixel, we obtain the
estimates of the elevation and motion parameters related to a
reference point that we assume stable. Median and maximum
filters are applied on the range–azimuth image of the estimates
to obtain the prior for higher order spectral estimation. In
addition, the following quantities are also recorded: 1) pixel
brightness; 2) ADI; and 3) likelihoods of the single- and no-
scatterer models w.r.t. the measurements gn.

Under a circular Gaussian assumption of the measurements
with covariance ε, the log likelihood of the single-scatterer
model, i.e., H1, is simply the sum of squared residuals [4], i.e.,

ln p(g|H1) = ln

(
1

πN |ε|2N

)

− 1

|ε|2
N∑

i=1

∣∣∣gn − Â exp (−j2π(ξnŝ + ηnv̂ + ωnâ))
∣∣∣
2

(4)

and for the no-scatterer model, i.e., H0, it is the sum of squared
measurements, i.e.,

ln p(g|H0) = ln

(
1

πN |ε|2N

)
− 1

|ε|2
N∑

i=1

|gn|2. (5)

C. Number of Scatterers Discrimination

Discriminating pixels with different numbers of scatterers
is a classification problem. One of the optimum detection
strategies is the likelihood ratio test, if the assumption of the
underlying models is correct. However, such detection strategy
requires the likelihood to the double-scatterer model, i.e., H2,
and hence is not feasible before the TomoSAR inversion. There-
fore, in order to prediscriminate the pixels before a TomoSAR
inversion, our method is a two-step approach, comprising both
theoretical and empirical parts.

First, pixels without scatterer are discriminated following the
Bayesian decision rule with penalized likelihood criterion, i.e.,

p(g|H0)

p(g|H1) exp(−AIC)

P0

P1,2

H0

> 1. (6)

The H0 and H1 likelihoods of each pixel are compared,
taking into account the Akaike information criterion (AIC) [4].
P0 and P1,2 are the prior probabilities of pixels with no scatterer
and with single or double scatterer(s), respectively. Close to
100% detection rate and 0% false alarm rate can be achieved in
this stage because the H1 likelihoods of the pixels with double
scatterers are much higher than their H0 likelihoods. This is
proven in the real data experiment presented in Section III-A.

The remaining pixels need to be further classified into single
and double scatterer(s). Since the H2 likelihood is not available
at this stage, a few other easily accessible features associated
with each pixel are used for the classification. They are ADI, H1

likelihood, and pixel mean intensity, with these three reasons.

1) Pixels with single scatterer experience lower ADI since
the amplitudes of pixels subjected to only a single dom-
inant scatterer do not show pronounced fluctuations as a
function of baseline.

2) The H1 likelihood tends to be lower if multiple scatterers
are present.

3) The aforementioned two aspects are based on a reason-
able signal-to-noise ratio range. Therefore, only relatively

bright pixels should be selected as candidates of pixels
with double scatterers.

Without the analytical model of the joint probability density
function of the aforementioned three quantities, we employ the
SVM to find a separation of these two classes. Considering our
situation of missing classification ground truth, the usage of the
SVM basically follows these points.
— The training data of the SVM classifier are the classification

results obtained by SL1MMER (theoretically, the closest to
ground truth) [12] on a small and representative test area.
The SVM classifier takes into account three features: ADI,
H1 likelihood, and pixel mean intensity.

— A nonlinear SVM classifier is applied. A Gaussian kernel is
used, which is suggested in [13] as a good first try.

— The optimum parameter setting is determined by the
following.

1) Train the classifier using 50% of the pixels in the
small test area.

2) Classify all the pixels in the test area using the trained
classifier.

3) Repeat this with a geometric sequence of the param-
eters and find the parameters that give the highest
detection rate at a constant false alarm rate.

— The trained SVM classifier is then used to classify all the
pixels in the whole scene, based on the three features of
each pixel.

D. Higher Order Spectral Estimation
(SVD-Wiener, SL1MMER)

All pixels classified as double scatterers are processed using
SVD-Wiener first, taking into account the prior knowledge of
the estimates obtained in the first-order spectral estimation. In
the SVD-Wiener processing, these pixels are tested through
model order selection and are classified as no, single, or double
scatterer(s) again. Two layers of elevation and motion param-
eter estimates are retrieved from the pixels confirmed with
double scatterers. The lower layer of elevation estimates is in-
terpolated in range–azimuth dimension to get a ground surface
height s0 for each pixel (the index of the pixel is ignored in s0).

Since SVD-Wiener has almost no superresolution capabil-
ity, double scatterers with elevation distance shorter than the
Rayleigh resolution ρs = λr/2Δb [1] (r: slant range; Δb:
elevation aperture size) will be misclassified as single scatterer.
Therefore, among the detected pixels with single scatterer,
those whose elevation estimates with respect to its correspond-
ing ground surface height are smaller than ρs (in practice, we
allow some buffer and set it to be 1.5ρs) are potential pixels
that would require superresolution. In this case, SL1MMER
is applied. This decision is marked as the red diamond in the
processing flowchart in Fig. 1. In the SL1MMER processing,
the search range is restricted to [s0 s0 + 1.5ρs].

III. VALIDATION WITH REAL DATA

A. Experiments on Number of Scatterers Discrimination

This section will evaluate the performance of the scatterer
discriminator over a test area in downtown Las Vegas shown
in Fig. 2. This stack contains 25 TerraSAR-X high-resolution
spotlight images. Since the missing of ground truth, the
SL1MMER result is taken as reference for comparison.
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Fig. 2. (a) Amplitude image of the test area in downtown Las Vegas.
(b) Optical image from Google Earth of the same area.

Fig. 3. (a) Preclassification result of the proposed method (likelihood ratio test
+ SVM). (b) Result from the SL1MMER algorithm. (c) Final classification
after the higher order spectral estimation. Red represents pixels with double
scatterers, green represents pixels with single scatterer, and blue represents
pixels without coherent scatterer.

First, the pixels without scatterer are determined according to
(6). The prior probabilities P0 and P1,2 are set to be both 50%
in the experiment. Then, the remaining pixels are separated
using an SVM into containing either single or double scat-
terer(s). Fig. 3(a) and (b) shows a comparison of the SVM and
SL1MMER classification results, with red representing pixels
with double scatterers, green representing pixels with single
scatterer, and blue representing pixels with no scatterer.

In Fig. 3(a), 47% of the pixels are detected as no scatterers,
36% are detected as single scatterers, and the remaining 17%
are detected as double scatterers. The classification of pixels
with no scatterer is almost 100% correct compared with the
SL1MMER result. In the rest of the pixels, the detection rate
of pixels with double scatterers is 72.4%, with a false alarm
rate of 25.7%, which is why much more pixels are detected
as double scatterers. However, higher detection rate (conse-
quently, higher false alarm rate) is still favored in the processing
because the falsely detected pixels with double scatterers can
still be corrected in the higher order spectral estimation, but not
for the misdetected pixels with double scatterers. In order to
fully characterize the proposed single and double scatterer(s)
detector, its receiver operating characteristic (ROC) curve is
plotted in Fig. 4. The blue dots are the experimental results, and
the green curve is an analytical fit. Depending on the processing
power, the threshold can be shifted toward higher detection
rate, affording higher false alarm rate, and, therefore, more
processing effort by more frequently applying SVD-Winer and
SL1MMER.

Next, SVD-Wiener is applied on the red pixels shown in
Fig. 3(a). Most of them are confirmed as double scatterers,
and others are rejected as no or single scatterer. Among those
rejected as single scatterers, those having small elevation es-
timates (60 m in our case = 1.5 times of ρs) w.r.t the ground
surface height are handed over to SL1MMER for reprocessing.

Fig. 4. ROC curve of the proposed SVM double scatterers detector. The blue
dots are the best detection rates achieved in the experiments at a specific false
alarm rate. The green curve is an analytical fit to the blue dots.

They account for 9% of the total pixel number in the test area.
Then, the final corrected classification map of the test area can
be obtained, which is shown in Fig. 3(c).

For a quantitative measure of the final classification, 98%
of the pixels are correctly classified (the SL1MMER results
in Fig. 3(b) as reference). The major classification error comes
from the misdetection of pixels with double scatterers. This can
be improved by allowing higher detection rates in the double
scatterer detection. However, computation effort will also in-
crease correspondingly since more pixels will be processed by
higher order spectral estimation.

B. Analysis of the Computational Complexity

This section will discuss the computational complexity of the
proposed approach. We define O(1) to be the computation time
for one multiplication. The discussion will be focused on the
simple case without any motion model. To extend to a single- or
a multicomponent motion model, the computational complexity
exponentially increases with the number of dimensions in the
system model of the problem.

In the first-order spectral estimation, the periodogram con-
sists of multiplication of the measurement vector with the
modeled phase and repeats at different elevation positions.
Therefore, the computational complexity is O(NL), where
N is the number of images (usually 20–50), and L is the
discretization level in the elevation direction (usually 50–200
for TerraSAR-X). In the higher order spectral estimation, SVD-
Wiener needs at least O(N2 + NL) according to [4, eq. (11)].
The SL1MMER algorithm requires a L1−L2 norm optimiza-
tion, which is extremely computationally costly, e.g., the well-
known Basic Gradient Projection for Sparse Reconstruction
solver [14] requires at least O(KML2

s), where K is the number
of iterations (approximately 20), M is the number of multipli-
cation of a specific matrix in each iteration (modest, usually
several), and Ls is the elevation discretization level required
for sparse reconstruction, which is about ten times greater than
L. Our experience is that the SL1MMER algorithm is several
hundred times slower than SVD-Wiener.

When prior knowledge of the elevation span is available, L
can be restricted to a specific elevation range and hence reduce
the computational cost. For instance, assuming a uniform dis-
tribution of building heights prior over the processing area, the
total processing cost can be reduced to half for SVD-Wiener



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: TOMOGRAPHIC INVERSION APPROACH FOR URBAN MAPPING USING SAR IMAGE STACKS 5

Fig. 5. (a) Elevation estimates of Berlin using the proposed approach.
(b) Close-up view over the Berlin central station.

when L � N and to one third for SL1MMER. Therefore, it is
always more economic to obtain the prior through some low-
cost methods before the higher order spectral estimation.

The overall computational cost also depends on the percent-
age of pixels allocated to each algorithm. As an example, for
the test area discussed in Section III-A, 100% of the pixels are
first processed by a periodogram, 17% are then passed to SVD-
Wiener, and only 9% are finally processed by SL1MMER. This
small percentage together with the restriction of the search
space leads to an overall speedup of about 50 compared with
SL1MMER-only processing. The computational cost of the
pixel preclassification using the SVM is negligible compared
with the PSI plus TomoSAR processing and, hence, ignored
in this analysis. Quicker processing can be achieved if no
superresolution is required.

C. Large-Area Processing: Berlin

The proposed processing chain is applied on several stacks
of TerraSAR-X high-resolution spotlight images over Berlin.
Fig. 5 shows the elevation estimates and a close-up view of one
of the stacks, which is composed of 94 images. In the close-
up view of the Berlin central station, the proposed processing
chain is able to catch most of the structure.

IV. CONCLUSION AND OUTLOOK

This letter has proposed an efficient TomoSAR inversion
approach for meter resolution SAR image stacks of urban areas.
It is the integration of three spectral estimation algorithms:
periodogram, SVD-Wiener, and SL1MMER. It has been tested

on a number of image stacks of urban areas. Reliable results
are obtained, and a speedup factor of over 50 is confirmed.
The computational cost is saved in two aspects: prior knowl-
edge of the solution search range is obtained through low-
cost periodogram, and only pixels with more than one strong
scatterer are processed using SVD-Wiener, and SL1MMER is
only applied to pixels that require superresolution. The resulting
very high resolution (VHR) spaceborne TomoSAR point clouds
can be used for multiple applications. For example, individual
building monitoring over the whole city, fusion of point cloud
from different angles [15], and city 3-D model reconstruction
from the point clouds [16].
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Abstract—Interferometric synthetic aperture radar (InSAR)
techniques, such as persistent scatterer interferometry (PSI) or
SAR tomography (TomoSAR), deliver three-dimensional (3-D)
point clouds of the scatterers’ positions together with their motion
information relative to a reference point. Due to the SAR side-
looking geometry, minimum of two point clouds from cross-
heading orbits, i.e., ascending and descending, are required to
achieve a complete monitoring over an urban area. However, these
two point clouds are usually not coregistered due to their dif-
ferent reference points with unknown 3-D positions. In general,
no exact identical points from the same physical object can be
found in such two point clouds. This article describes a robust
algorithm for fusing such two point clouds of urban areas. The
contribution of this paper is finding the theoretically exact point
correspondence, which is the end positions of façades, where the
two point clouds close. We explicitly define this algorithm as “L-
shape detection and matching,” in this paper, because the façades
commonly appear as L-shapes in InSAR point cloud. This algo-
rithm introduces a few important features for a reliable result,
including point density estimation using adaptive directional win-
dow for better façade points detection and L-shape extraction
using weighed Hough transform. The algorithm is fully automatic.
Its accuracy is evaluated using simulated data. Furthermore,
the proposed method is applied on two TomoSAR point clouds
over Berlin with ascending and descending geometry. The result
is compared with the first PSI point cloud fusion method (S.
Gernhardt and R. Bamler, “Deformation monitoring of single
buildings using meter-resolution SAR data in PSI,” ISPRS J.
Photogramm. Remote Sens., vol. 73, pp. 68–79, 2012.) for urban
area. Submeter consistency is achieved.

Index Terms—Point cloud fusion, SAR tomography
(TomoSAR), synthetic aperture radar (SAR), TerraSAR-X.
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I. INTRODUCTION

A. TomoSAR

T OMOGRAPHIC SAR inversion (TomoSAR) [2]–[6]
is an interferometric synthetic aperture radar (InSAR)

technique that tracks down the long-term or partially coher-
ent pixels in a stack of coregistered SAR images, which is
similar to other InSAR techniques such as persistent scatterer
interferometry (PSI) [7]–[10], small baseline subset (SBAS)
[11]–[13], SqueeSAR [14], [15], and CEASAR [16]. They all
aim at retrieving the three-dimensional (3-D) position and the
parameters of the undergoing motion of point and/or volumetric
scatterers.

However, fundamentally different, TomoSAR exploits
possible multiple scatterers in the third dimension elevation of
a rang-azimuth pixel—a phenomenon called layover in radar
jargon that happens when two or more scatterers are at the
same range (distance) to the sensor. For example, the closely
packed vertical structures in urban areas cause severe layover.
TomoSAR retrieves the elevations and motion parameters
of multiple scatterers by means of spectral estimation. This
is not possible with the above-mentioned single scatterer
model-based methods, e.g., PSI. Therefore, TomoSAR is so
far the most competent InSAR method for long-term urban
monitoring [17].

Therefore, the 3-D TomoSAR point clouds derived from
meter-resolution SAR image stacks are the basis of the work
of this paper. The point clouds we used are obtained by
Tomo-GENESIS [18]—a TomoSAR software of the German
Aerospace Center (DLR) for large urban areas monitoring. It
is developed based on the work of [5], [6], [17], [19]–[21].
It delivers, for the first time, a 5-D point cloud—3-D posi-
tion plus linear deformation rate and amplitude of seasonal
motion—from a stack of SAR images. The point density is
up to 106/km2, when using TerraSAR-X high-resolution spot-
light data. Such density is comparable with some light detection
and ranging (LiDAR) product and enables the retrieval of the
features of individual building.

B. Fusion Geometry of Cross-Heading InSAR Point Clouds

Cross-heading orbits refer to satellite’s ascending and
descending flying trajectories. Due to the side-looking geom-
etry of SAR, minimum of two TomoSAR point clouds from
cross-heading orbits are required to achieve a complete mon-
itoring over the whole area. As demonstrated in Fig. 1, point
cloud derived from SAR image stacks of ascending or descend-
ing orbits provides either the front or the rear side of the same
building. Such two point clouds have basically no exact point

1939-1404 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. TomoSAR point cloud derived from (a) an ascending image stack in Las Vegas and (b) a descending image stack of the same area. Color represents the
height. (c) and (d) are the corresponding footprint of (a) and (b) on Google Map satellite images.

correspondence, which is referred to as the identical geoloca-
tion of the sources of two corresponding points (in the two
point clouds, respectively). Examples are man-made objects
like cylindrical reflector or 3-D corner reflector that could
reflect radar signal in all directions. Not difficult to imagine,
fusion of such point clouds is as tricky as coregistering two
optical images of front and rear side of an opaque object.

These two point clouds are always relative to two different
reference points with unknown heights. The uncompensated
height of the reference point causes the point cloud to shift
along the elevation direction. Therefore, the fusion task is
to find the unknown heights of the two reference points. A
schematic drawing of fusion in Universal Transverse Mercator
(UTM) coordinate is illustrated in Fig. 2 (modified from [1]),
where the left and right satellites indicate the ascending and
descending master orbits at a fixed east-up plane, respectively.
Perpendicular toward the reader’s screen/paper is the north
direction. The flying direction of the two satellites is indicated
by the cross (fly away from reader) and dot (coming toward
reader) on the satellites. They are not parallel to the north
direction. The angle between the flying direction and the merid-
ian (north) is the so-called heading angle. Ra and Rb are the
range distances of the two orbits. The two black dots are the
corresponding scatterers assumed to have identical position,
but geocoded into different positions Pa

xyz and Pb
xyz due to

their different and unknown reference height Δza and Δzb.
This also causes horizontal shifts Δxya and Δxyb, which are
functions of the incidence angles θa and θb, i.e., the horizon-
tal shift is not constant throughout the whole point cloud. To
achieve a fusion, the two scatterers have to be shifted along
their elevation directions by ΔSa = Δza/sin θ

a and ΔSb =

Δzb
/

sin θ
b
, respectively. The fusion model in UTM coordinate

system is then [1]

Pa
xyz +

Δza

sin θa
sa = Pb

xyz +
Δzb

sin θb
sb (1)

Fig. 2. Schematic representation (modified figure from [1]) of the InSAR point
cloud shift in UTM coordinate due to different reference points. The reader’s
screen/paper is the east-up plane, and perpendicular to it away from the reader
is the north direction. The two satellites indicate the ascending and descending
master orbits positions. Their flying directions are indicated by the cross (fly
away from reader) and dot (coming toward reader) on the satellites. They are
not parallel to the north direction. The angle between the flying direction and
the meridian (north) is the so-called heading angle. The two black dots are the
two scatterers assumed to be identical in UTM coordinate system, but shifted in
the two point clouds due to the heights Δza and Δzb of their reference points.

where bold letters indicate vectors, and sa and sb are the
unit vectors of the elevation directions of the two scatterers,
which depends on the incidence angle θ, and heading
angle t

s =

⎡
⎣

cos t cos θ
− sin t cos θ

sin θ

⎤
⎦ . (2)

In another words, three equations can be written for each pair
of corresponding points

(
Pa

xyz,P
b
xyz

)

xa − xb + Δza cos ta cot θa − Δzb cos tb cot θb = 0

ya − yb − Δza sin ta cot θa + Δzb sin tb cot θb = 0

za − zb + Δza − Δzb = 0 (3)
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Fig. 3. Comparison of (a) LiDAR point cloud [22] and (b) TomoSAR point cloud of the same area in downtown Berlin. The color represents the height. LiDAR
point cloud has, in general, better quality in terms of 3-D positioning accuracy.

where Δza and Δzb are the only unknowns. However, the
incidence and heading angles θ and t are direct functions of
the point current position. As described in [1], this problem is
the so-called Gauß-Helmert model. It needs to be solved iter-
atively, where P

{a,b}
xyz , θ{a,b}, and t{a,b} are updated at each

iteration. The estimation is robust with many pairs of points
available.

C. Related Work and Motivation

In computer vision, the 3-D rigid point cloud coregistration
methods are very well studied. For a successful coregistration,
overlapping of the two point clouds is required, so that one can
find common points or features that describe a common loca-
tion in the point clouds. The basic approach of such task follows
the procedures of feature detection, description, and matching,
where so do the researches focus. The feature detection and
description are usually combined. The most well-known ones
are:

1) gradient-based features, e.g., scale invariant feature trans-
form (SIFT) [23] and speeded up robust features (SURF)
[24];

2) histogram-based features, e.g., histogram of gradients
(HoG) [25] and point feature histogram (PFH) [26]; and

3) surface normal-based features, e.g., spin-image [27] and
normal-aligned radial feature (NARF) [28].

Here, we just name a few. Many of their variants are also
highly used. The matching algorithms, according to the opti-
mization methods used, can be classified as either global or
local. As pointed out in [26], the most famous algorithms of the
first type are generic and evolutionary algorithms [29], [30].
Not surprisingly, most of the study is the second type, due to
the computational complexity of the first type. The most well-
known one is the iterative closest point (ICP) [31], [32]. Other
highly cited works are mostly variants or improvements in the
original ICP. For instance, to find better point correspondence
using feature descriptors [26], [33], [34], to find better initial

transformation [34], [35], and to use nonlinear optimization
methods in ICP [36], [37].

In the remote sensing community, these techniques are
employed for coregistration of LiDAR or optical image derived
point clouds [38]–[42]. However, no attempt has been made for
fusion of PSI or TomoSAR-derived point clouds of urban areas.
This is especially true for two point clouds generated from data
stacks of cross-heading orbits, due to the lack of exact point
correspondence. Another reason prevents the above-mentioned
methods from being directly applicable is the relatively worse
accuracy of InSAR point clouds compared with LiDAR or opti-
cal image-derived ones. An example is made in Fig. 3, which
is the comparison of LiDAR and TomoSAR point cloud of the
same area in Berlin.

The first attempt of such task is described in [1] using PSI
point clouds. It is essentially a 3-D surfaces matching that relays
on removing the façade points, where the point correspondence
is most unlikely to appear. The point correspondences are found
by searching closely space point pairs on surface. Its accuracy is
limited, since the exact point correspondence is not addressed.
The computational efficiency is compromised when applying to
TomoSAR point clouds [43]. Practically, only 10% of the non-
façade points are used, since a TomoSAR point cloud is usually
much denser then PSIs’.

Therefore, the initiative of the proposed method is to make
use of the rich façade information in TomoSAR point clouds
in order to derive the theoretically exact point correspondence
and to develop a computationally efficient algorithm that can
handle large point clouds. Finally, we can obtain a 3-D point
cloud associated with the movement information covering an
entire city.

As no exact point correspondence can be found among the
points of the two point clouds, we will have to look for higher
level features. Studies such as [44]–[46] have already sug-
gested that quadrilateral buildings appear as “L-shapes” in SAR
images. As a result, the end points of the L-shape, i.e., the build-
ing edges where the two point clouds close, can be used as the
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Fig. 4. Fusion geometry of the proposed L-shape method. The two building
façades are colored in dark gray representing the geocoded point clouds from
cross-heading orbits whose LOS directions are indicated by the two arrows.
The light gray planes denote the corresponding ground level of the two point
clouds. The two pairs red and purple dots are the façade end point position to
be estimated.

exact point correspondence. Described in Fig. 4, the L-shape
end points are indicated by the two pairs of red and purple
dots. The two building façades colored in dark gray represent
the point clouds from ascending and descending orbits whose
line of sight (LOS) directions are indicated by the two arrows,
respectively. The light gray planes denote the corresponding
ground levels of the two point clouds.

The coregistration is then broken down to the task of detect-
ing the L-shapes’ end points, estimating their 3-D positions
as the descriptor, and finally matching the two reduced point
clouds. To achieve this, some robust procedures are designed to
extract façade points, estimate the positions of the façade edges,
and then find correspondence in the two point clouds.

II. FEATURE-BASED INSAR POINT CLOUD FUSION

The flowchart of the algorithm is plotted in Fig. 5. Starting
from the raw TomoSAR point clouds, the outliers are filtered
out using neighborhood analysis. The façade points are then
extracted using point density estimation. Subsequently, each
point cloud can be split into the façade part and the non-façade
part. By cross-correlating their non-façade parts, the two point
clouds can be coarsely coregistered within an accuracy of sev-
eral meters, which gives an initial guess of the final shifting vec-
tor. The façade parts of the two point clouds are segmented into
building blocks assisted by a two-dimensional (2-D) building
shape layer from online map provider such as OpenStreetMap.
After obtaining the segmented point clouds, L-shape is searched
for each segment, and the positions of the end points of the
L-shape are estimated. Therefore, the fusion of two complete
point clouds are reduced to the fusion of two much sparser point
clouds comprised of the virtual façade end points. Thus, the
same random sample consensus (RANSAC) point correspon-
dence matching procedures introduced in [1] can be applied.
The final shifting vectors are estimated using (3).

A. Point Cloud Filtering

As mentioned in Section I-C, the overall geolocalization
quality of a raw TomoSAR point cloud is subject to the high

Fig. 5. Flowchart of the proposed algorithm. The black ellipses represent
input/output data. The blue rectangles are procedures/processes.

dynamic range of the SAR image pixels’ SNR. The criteria
in model order selection for rejecting noncoherent pixels are
usually set to be very soft [5], in order to preserve as much
information as possible from the expensive data stacks. This
leads to some amount of outliers in the resulting raw TomoSAR
point clouds. Fig. 6(a) is an example of a raw TomoSAR point
cloud of Berlin central station. Outliers appear as single point
or small clusters elevated from the main cluster nearby. They
usually have less neighboring points and experiencing larger
distances to their nearest neighbor.

Therefore, the outlier filtering can be done based on the
neighborhood analysis of each point in the raw point cloud. We
use the mean distance to k-nearest neighbors as the single cri-
teria, i.e., for each point, we look for k points that are closest to
it, and calculate the mean distance. Points with mean distance
larger than a certain threshold are discarded. For instance, in
Fig. 7(a), the mean distances of the points in Fig. 6(a) to their 20
nearest neighbors are plotted as a top view. The mean distance
is color coded according to the color bar. Closely clustered
points have small distances showing in blue, while outliers
show larger distances and are usually displayed in red. Fig. 7(b)
is the histogram of the log10 of this mean distance. The his-
togram shows two major distributions: 1) the left one refers to
the main structures, and 2) the right one corresponds to points
away from the main structures. The outliers can be removed
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Fig. 6. (a) Raw point cloud of Berlin central station and (b) filtered point cloud. Color represents the height.

Fig. 7. (a) Mean distances of the points in Fig. 6(a) to their 20 nearest neighbors
and (b) the histogram of the log 10 of this mean distance. The red dashed line
indicates the cutoff distance which is 10 m.

by thresholding (indicated by the red dashed line) on the mean
distance. As shown in the filtered point cloud in Fig. 6(b), most
of the outliers are effectively removed. We found a threshold at
10 m and using 20 nearest neighbors are effective for TomoSAR
point cloud derived from TerraSAR-X high-resolution spotlight
image stacks.

Fig. 8. Schematic drawing of point density estimation using directional win-
dow. The colored points are the projection of the 3-D point cloud in east–north
plane, with the color indicating the point density. Blue indicates low density and
red indicates high density. The color bar is not explicitly given for simplicity.
The green-dashed line segment is a robust fit to the 2-D projection in a selected
area. Points within the region bounded by the solid green lines are considered
in the directional point density estimation, while those within the black box are
considered in the box-car density estimation.

B. Point Density Estimation Using Directional Window

The point density per square meter is employed for façade
point detection. Because of the vertical accumulation of the
points on the façade, their point density is usually much higher
over other areas. In order to better distinguish the façade points
from other, we introduce a point density estimation method
using an adaptive directional window, instead a moving box.

The approach is illustrated in Fig. 8. It shows the projection
of a point cloud in the horizontal plane, with the color indi-
cating the point density, and the red dot being the target point
whose point density is going to be estimated. The estimation
follows three steps: 1) points within an area (the green-dashed
rectangle) centered at the target point is selected; 2) a straight
line segment (the green-dashed line) passing through the tar-
get point is fitted using robust algorithm, e.g., RANSAC [47],
robust principle component analysis [48], etc.; and 3) only
the inliers (within the solid green parallelogram) of the line
segment are counted for the point density, instead of counting
all the points in the black rectangle.

For comparison, Fig. 9(a) and (b) shows the point density
result using directional and rectangle window, respectively, for
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Fig. 9. Comparison of point density estimated using (a) directional window and (b) rectangle window. The color bar applies for both (a) and (b). For reference,
(c) is the optical image of the same area from Google. The area of directional and rectangle windows are identical.

Fig. 10. (a) Binary image of the 2-D footprint of ascending point cloud of Berlin and (b) the 2-D cross correlation coefficient of the footprints of ascending and
descending point clouds. The position of the peak value is the estimated coarse shift between the point cloud and the map layer.

a test area near Berlin central station. Since the same color bar
is applied to the two figures, it is easy to tell that the directional
window emphasizes the façade point, meanwhile keeps the
point density of non-façade points unchanged compared with
rectangle window. Since the urban buildings mostly consist
of linear facades, our method works quite well in empha-
sizing façade points. The final façade points are selected by
thresholding on the point density.

C. Coarse Coregistration

The point clouds needs to be coarsely coregistered to obtain
an initial solution. This is a common practice in point cloud
coregistration, which limits the search space in the refine
coregistration step.

The coarse 3-D coregistration is done separately in horizontal
and vertical directions. Horizontally, we cross-correlate the 2-D
footprints of the non-façade parts of the two point clouds; and
vertically, by simply aligning the mean height of the two point
clouds. The 2-D footprints are rasterized binary images with a
sampling spacing of a few meters. For example, Fig. 10(a) is

the binary image of the ascending point cloud of Berlin. The
descending one will look similar. Their 2-D cross-correlation
coefficient is in Fig. 10(b), with brighter pixel being higher
correlation. The position of the peak value is the coarse shift
amount.

D. Point Cloud Segmentation

Since L-shape is a local feature of each building, the two
point clouds are segmented to building blocks. Since the seg-
mentation only needs to distinguish different building blocks,
and it is also not the main focus of the algorithm, we make
use of the building shape layer [49] from OpenStreetMap for
assistance.

The building shape layer is a binary mask of the buildings
[see Fig. 11(a)]. It is naturally not aligned with the point clouds
footprints due to the shifted position of the point clouds, and
sometimes the incorrect geolocation of the map itself. The
alignment of the building shape layer with the point clouds 2-D
footprint is done automatically using the same 2-D cross cor-
relating technique explained in the previous section. After the
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Fig. 11. (a) Building shape layer extracted from OpenStreetMap, (b) labeled individual buildings, and (c) segmentation mask derived from (b). The color assigned
to each segment is random.

alignment, each building in the mask is labeled by checking
their connectivity, yielding Fig. 11(b), where a random color
is assigned to each building for better visualization. The unla-
beled areas, i.e., the white region in Fig. 11(b), are assigned
to their nearest building, giving the final segmentation mask in
Fig. 11(c).

E. L-Shape Detection Using Weighted Hough Transform

For each point cloud segment, the façade part is selected,
and one or zero L-shape is detected from its projection in the
east–north plane. The detection is achieved by catching two
interconnected line segments using weighted Hough transform.
The proposed weighted Hough transform sums up the den-
sity of the points inside a Hough bin Δθ and Δr, instead of
only counting the number of points, i.e., H =

∑N
i=1 di, with H

being the Hough transform value, N the number of points in
the Hough bin, and di the point density of each point. This con-
cept is also illustrated in Fig. 12, where the green lines bound
the Hough bin, and the size of the points inside the Hough
bin denotes their point density. Both Δθ and Δr are exagger-
ated for visualization purpose. Standard Hough transform gives
the same value for the two bins, but the proposed weighted
Hough transform favors the right bin, since its point density
is generally higher.

After the weighted Hough transform, the brightest pixel in
the Hough matrix is first extracted. Its corresponding line is the
most prominent one in the point cloud segment. It is taken as the
first line of the L-shape. The neighborhood value of this pixel is
suppressed in order to keep a constraint on the minimum angle
of the L-shape. Among the rest, a few pixels with the high-
est amplitude are selected as the candidates of the second line.
The second line shall be the one that connects the first one and
forms the longest continuous contour. To determine the length
of the two line segments, their intersection points are calcu-
lated using their equations, and the two end points are selected
by locating the last point (with threshold density) passing by
the lines, respectively. Nevertheless, such end points position
estimation only gives a preliminary estimation of the length of
the line segments. Therefore, it needs to be refined for better

Fig. 12. Illustration of weighted Hough transform. The green arcs bounds the
region of a Hough bin with spacing of Δθ and Δr, which is exaggerated for
visualization. The dots inside the Hough bins are the point cloud projection in
the horizontal plane. The size of the dot represents its point density, with larger
the size higher the density. Both Hough bins have nine points, which gives the
same value in Hough transform. However, the right bin has higher value in
weighted Hough transform.

accuracy, which is explained in the Section III. The L-shape
detection is applied on each segment of the two point clouds.

Global constraints are also put on
1) the minimum line segment length lmin, according to the

knowledge of minimum façade length;
2) the minimum Hough value Hmin, which can be calculated

as Hmin = Δr lmin d2
min, where dmin is the minimum

point density of an identifiable façade in the point cloud;
and

3) the opening direction of the L-shape depending on the
orbit.

As an example, Fig. 13 shows the detected line segments and
the final L-shape of the same point cloud used in Fig. 9. The
detected lines are overlaid on the point density. In Fig. 13(a),
the longest line segment is fixed as the first line of the L-shape,
with the rest being the candidates of the second line segment.
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Fig. 13. Example of (a) detected line segments and (b) the final L-shape, using
the same point cloud as in Fig. 9. The black lines are detected line segment.
The line segments are overlaid on the point density. The roughly estimated end
points are marked as red crosses. The estimation of their precise positions is
explained in the next section.

Among them, the proposed algorithm automatically determines
the second line by checking the connectivity with the first line
and the total length of the L-shape. In the final detected L-shape,
the intersection point is marked as yellow cross and the end
points are marked as green.

F. Precise L-Shape End Points Position Estimation

The position of L-shape end point includes its horizontal 2-D
coordinates and its height. The height is defined as the posi-
tion where the façade intersects the ground plane, as depicted
already in Fig. 4.

The horizontal coordinates are estimated using a model-
based approach. Based on the detected L-shapes, the inlier
points of the L-shape are projected to their corresponding
line segments, i.e., façade direction. That is to say, we select
only the points within a certain perpendicular distance to the
L-shape and separate the two arms of the L-shape. One arm
of the L-shape with inlier point should look like Fig. 14(a),
where the black line is the estimated façade direction from
the weighted Hough transform. For each arm of the L-shape,
a projection should be obtained. The projection is basically the
one-dimensional (1-D) coordinate of the façade points together
with the non-façade points in the façade direction. Fig. 14(b) is
the projected coordinates of the inlier points in Fig. 14(a). The
middle section with much higher density belongs to the façade
part. Therefore, its point density can be modeled as a rectangle
function plus a constant offset for most of the urban façade.

An estimate of its point density can be obtained by convolv-
ing it with a rectangle window. For example, Fig. 14(c) shows
the point density estimate of the points shown in Fig. 14(b). Its
system model can be written as

f (x) =

∫ (
A rect

(
τ − a

2b

)
+ c

)
rect

(
x − τ

2W

)
dτ (4)

where f (x) is the estimated point density as a function of the
position x in the façade direction; A, a, b, and c are the unknown
parameter of the exact point density model, where A models the
façade point density, a is the façade center position, b is the half
façade length, and c is the point density of the non-façade part.
Finally, W is the known half-width of the rectangle filter. Since
the convolution of two rectangle functions is a trapezoid, (4)
can be written as

f(x) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2cW x ≤ a − b − W

A(x − a + b + W ) + 2cW a − b − W < x ≤ a − b + W

2(A + c)W a − b + W < x ≤ a + b − W

−A(x − a − b − W ) + 2cW a + b − W < x ≤ a + b + W

2cW x > a + b + W.

(5)

Equation (5) shows that the left and right sides of the trape-
zoid can fully characterize the unknown parameters A, a, and
b. Therefore, a moving fitting method is introduced to robustly
fix the equation of the two sides. We use a moving window
with the same width as the rectangle filter. A straight line is fit-
ted to the points within the window. For any trapezoidal shape,
high slopes should be detected at the position of the left and
right sides. By detecting the position of the two high slopes,
one can determine the position of the two sides. For robustness,
the product of the absolute value of the slope and the number of
inliers is considered in the detection of the two sides, because
the maximum number of inliers should be reached when the
window centered at the left or the right side. Fig. 14(d) shows
the product of the absolute value of the slope and the number
of inliers for the point density curve in Fig. 14(c). Two promi-
nent peaks can be detected. The positions of the peaks are the
direct estimates of the center positions of the left and right sides
that are equal to a − b and a + b. Hence, they are also the esti-
mates of the start and end position of the rectangle function that
models the façade.

To ensure reliable estimation, two regularizations are per-
formed: 1) the coarse façade length obtained from the weighted
Hough transform is used as a prior to regulate the estimation;
and 2) the difference in the absolute value of the two slopes is
restricted, because they must be both close to A according to
the model.

After obtaining the 2-D horizontal coordinates of the L-shape
end point, we look for the neighboring points of the 2-D posi-
tion in the ground level. The mean value of these points is
an estimate of the intersection of the 2-D coordinates with the
ground plane. It is taken as the height of the L-shape end point.
A plane should be fitted to these points, if the local topography
is not removed.

G. End Points Matching and Final Shift Estimation

At this step, a number of L-shape end points are found for
both point clouds. Therefore, the fusion of two complete point
clouds are reduced to the fusion of two much sparser 3-D point
clouds comprised of only the façade end points. For robust-
ness, RANSAC is employed to find the maximum number of
matched point pairs, which is also used in [1]. More details
can be found in [50]. Briefly speaking, at each iteration of
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Fig. 14. (a) The inlier points of one arm of an L-shape, with the black line being the façade direction obtained from the weighted Hough transform, (b) the
coordinates of the inlier points projected to the façade direction, (c) the estimate of (b)’s point density using a rectangle window, and (d) the product of the slope
and the number of inliers of the fitted line using the points in the moving rectangle window along the point density estimate shown in (c). The two red crosses are
the automatically detected façade start and end position at −41.38 and 37.22 m, respectively.

RANSAC, a pair of façade end points are selected from the
two sparse point clouds, least square adjustment following (3)
are performed, obtaining the solution of two height offsets Δza

and Δzb. The two sparse point clouds are then shifted along
their elevation directions. The number of matched pairs, i.e.,
pairs of points at close range, is then counted. The final shift is
given by the one with the maximum number of matched pairs.

III. DISCUSSION

A. Fusion Accuracy

The final fusion accuracy directly depends on the num-
ber of matched pairs Npairs of façade end points, and the
accuracy σpoint of these end point estimates, i.e., σfinal =√

2σpoint

/√
Npairs, where

√
2σpoint is the accuracy of one

pair of façade end points, according to the fusion model.
Npairs depends on the quality of the façade end point position

estimates which are jointly affected by the accuracy of input
TomoSAR point clouds, the segmentation performance, the
L-shape extraction accuracy, and the number of quadrilateral
buildings in the scene. According to our experience using
high-resolution TerraSAR-X data, the number of quadrilateral
buildings in the scene plays the most crucial role. Their typical
range is a few hundreds for European cities like Berlin. We will
exemplify this using real data in Section IV-B.

To analyze accuracy σpoint of the façade end points esti-
mation algorithm explained in Section II-F, we test it using
simulated data. It is generated by distributing points long the
façade direction, with a constant point density on the façade
part, and also a constant, but much lower point density on the
non-façade part. The simulated data should look like Fig. 14(b).
Important to note that the elevation accuracy σs (projected on
façade direction) of the TomoSAR point cloud will affect the
spatial distribution of the points. In the extreme case, when
the TomoSAR point cloud is noise free, the distribution of the
points should be evenly spaced in the façade and non-façade
part, respectively.

We set total data length to be 40 m, façade length to be 20 m
spanning from 12.00 to 32.00 m. The façade points are sim-
ulated five times, with the density being 5, 10, 15, 20, and
25/m2, respectively. The point density of non-façade area is
always kept at 1/m2, and the rectangle filter size to be 5 m.
Gaussian noise are then added to these point to simulate the
inherent elevation accuracy σs from the TomoSAR processing,
with σs being 1 and 5 m, respectively. Therefore, total 10 Monte
Carlo simulations of 10 000 realizations each were performed.
The simulation result is shown in Fig. 15, which shows the end
point accuracy improves with respect to increasing point den-
sity. The end point location accuracy σpoint is below 30 cm
in the façade direction for a typical five-story high building,
i.e., with façade point density being about 15/m2 in the case



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Fig. 15. Standard deviation of the end point estimates versus the façade point
density. The non-façade point density is kept at 1/m2. The black-dashed line
corresponds to a point cloud accuracy of 5 m in the façade direction, and the
blue solid line corresponds to the accuracy of 1 m.

of meter resolution SAR data. The estimation accuracy also
improves as the façade point density increases. For a typical
urban area, the façade point density ranges from 5 to 25/m2,
which corresponds to an accuracy of 50–20 cm. The final fusion
accuracy will be typically varying from 5 to 30 cm, if we set
Npairs to be 100.

One should be aware of that the 3-D coordinates of a
real TomoSAR point cloud are always discretized, due to the
range, azimuth, and elevation sampling of 3-D SAR imag-
ing. Therefore, the discretization in the façade direction also
depends on the same facts, but in addition is subject to the
heading angle of the satellite and the direction of the façade
which is random. Consequently, the discretization along the
façade direction is different for each façade. A simulation
is performed for a discretization level of 0.5 m using the
same aforementioned setting. No significant degradation of
estimation accuracy is found.

B. Parameters Settings

The proposed algorithm involves several parameters setting,
including the point cloud filtering, and the weighted Hough
transform for L-shape detection. Although these parameters
seems to be data dependent, they are actually very much accord-
ing to the inherent scale of the urban structures, e.g., the street
width, number of building floors, minimum building size, etc.
They can be reasonably derived with some prior knowledge of
the urban structure. In the following, we give the parameter
setting for TomoSAR point clouds derived from TerraSAR-X
high-resolution spotlight data.

1) Point cloud filtering: we found using 20–50 nearest
points, and a threshold at 10–20 m are suitable.

2) 2-D cross correlation: the sampling distance of raster
image should be less than half of the typical street width.
We use 3 m in our algorithm.

3) Point density estimation: linear filter length is 10 m, which
is a reasonable value for a shortest façade length, and
width is set to be close to data resolution, i.e., 1 m.

4) L-shape detection: lmin is set to 10 m, which is the
shortest façade length, and dmin is set to 2/m2, which

Fig. 16. (a) Google optical image of the test area and (b) the incoherent average
SAR amplitude of the test area.

corresponds to the point density of a one to two-story
high building in our TomoSAR point cloud. This leads
to Hmin = 40 (Δr = 1m).

5) Façade end points position estimation: the rectangle fil-
ter size to be 5 m that corresponds to half of the shortest
façade length.

IV. APPLICATION ON REAL DATA

A. Dataset

The proposed algorithm was tested on two TomoSAR
point clouds generated from an ascending and a descending
stack of high resolution TerraSAR-X spotlight data of Berlin.
The ascending stack comprised of 79 interferograms and the
descending stack has 94. The InSAR stacking and TomoSAR
processing were done by the PSI-GENESIS [8], [51] and Tomo-
GENESIS [18] systems, the PSI and TomoSAR processing sys-
tem of Remote Sensing Technology Institute of DLR. Fig. 16 is
the optical image from Google Earth, and an incoherent average
of SAR amplitude of the ascending stack.

B. Fusion Result

Each point cloud contains about 20 million points.
Around 500 L-shapes are detected from each point cloud,
corresponding to 1000 end points. Fig. 17(a) and (b) shows the
detected L-shapes and end points of the two point clouds, over-
laying on their gray-scale point density images, respectively.
The matched L-shapes end points are shown in Fig. 17(c).
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Fig. 17. (a) and (b) shows the detected L-shapes and their end points of the two input point clouds over Berlin and (c) the matched L-shapes and end points. The
L-shapes are plotted in green, and the end points are marked as red. They are overlaid on the gray scale point density image.

Fig. 18. Fusion result of ascending and descending point cloud of Berlin. The color indicates height on WGS84 reference surface. The unit of the color bar is
meter.

Closed quadrilateral implies both pairs of end points are iden-
tified, a single L-shape implies only one pair of end points
is identified. In total, 150 pairs of end points are matched,
which is sufficient to robustly estimate the two unknowns Δza

and Δzb.
This result is compared with the result computed using the

method explained in [1]. A difference of 0.51 m in east direc-
tion; 0.09 m in north direction, and almost no difference in
height is found. A 3-D view of the complete fusion result is
shown in Fig. 18. The height of the points is color-coded.
The fused point cloud provides a Google-Street-View like
visual sensation of the study area with very high level of
detail. Such shadow-free TomoSAR point clouds are very use-
ful for dynamic city model reconstruction [52] and scientific
visualization [53], [54].

V. CONCLUSION AND OUTLOOK

This paper introduced a robust method to fuse two TomoSAR
point clouds derived from meter-resolution SAR data stacks of
cross-heading orbits, i.e., ascending and descending orbits. The
fusion is done by finding the L-shaped buildings from the two
point cloud, and matching the end points of the two L-shapes
belong to the same building.

The proposed algorithm was successfully tested on
TomoSAR point clouds obtained from two stacks of high-
resolution TerraSAR-X spotlight data. It is also compared with
the fusion result using the only existing method [1] for fusing
PSI point clouds derived from meter-resolution SAR data stacks
of urban areas. Submeter consistency is achieved. Compared
with [1], the computational speed has been greatly improved,
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due to the reduced point cloud in the final RANSAC match-
ing step. The fusion accuracy is theoretically better, since the
matched pairs of points are theoretically the exact correspon-
dence. The simulation shows the estimation accuracy of façade
end point ranges from 20 cm to a few meters, depends on the
façade point density (i.e., building height) and the quality of the
TomoSAR point cloud itself.

The proposed method can be applied to point cloud with
point density up to 10 times lower than the TerraSAR-X high
resolution data, e.g., stripmap data. In order to extract suffi-
cient number of buildings, instead of setting a threshold on
point density only, a soft threshold should be set first, and then
use surface normal information of the points to further clas-
sify them. This method is explained and successfully applied
in [55].

The proposed algorithm requires a point cloud segmentation
step, which requires either a sophisticated method or external
data source, so the authors employ GIS data for assistance.
The final fusion accuracy also depends on the abundance of
quadrilateral buildings in the scene. Therefore, to improve the
proposed method, the following work is already undergoing:
1) automatic point cloud segmentation and 2) modeling build-
ing façades using piecewise line segment instead of using
L-shape only.
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ABSTRACT: 

 

Using synthetic aperture radar (SAR) interferometry to monitor long-term millimeter-level 

deformation of urban infrastructures, such as individual buildings and bridges, is an emerging and 

important field in remote sensing. In the state-of-the-art, deformation parameters are retrieved and 

monitored on a pixel-basis solely in the SAR image domain. But the inevitable side-looking 

imaging geometry of SAR results in undesired occlusion and layover in urban area, rendering the 

current method less competent for a semantic-level monitoring of different urban infrastructures.  

This paper presents a framework of a semantic-level deformation monitoring by linking the precise 

deformation estimates of SAR interferometry and the semantic classification labels of optical 

images via a 3-D geometric fusion and semantic texturing. The proposed approach provides the first 

“SARptical” point cloud of an urban area, which is the TomoSAR point cloud textured with 
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attributes from optical images. This opens a new perspective of InSAR deformation monitoring. 

Interesting examples on bridge and railway monitoring are demonstrated.  

 

1. INTRODUCTION 

Monitoring long-term millimeter-level deformation of urban infrastructures is an important field in 

remote sensing. Synthetic aperture radar (SAR) interferometry is so far the only imaging-based 

method to assess the deformation in such accuracy. Credited to the launch of meter-resolution 

spaceborne SAR sensors [1], as well as the development of multipass interferometric SAR (InSAR) 

techniques such as persistent scatterer interferometry (PSI) and SAR tomography (TomoSAR), it is 

now also feasible to monitor individual buildings over a large area in high detail. 

The state-of-the-art of multipass InSAR mainly leans towards the optimal parameters retrieval on a 

pixel-basis, i.e. the estimation of the 3-D position and the deformation parameters of scatterers. 

Moreover, the inevitable SAR side-looking imaging geometry results in undesired occlusion and 

layover especially in urban areas [2], rendering the SAR images difficult to interpret. For example, 

Figure 1 shows a comparison of the optical and SAR images of a same area (Potsdamer Platz, 

Berlin). The rich details in the optical image are buried underneath the strong reflection of the 

façade in the SAR image, i.e. superposition of the reflections from multiple sources in one pixel. 

This renders the current approach of pixel-based deformation analysis and manual identification of 

the region of interest less competent for understanding the semantics of the object being analyzed. 

Only until recently, the first investigation of semantic-level urban deformation analysis in InSAR 

has been presented in [3], [4]. 
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2. METHDOLOGY OVERVIEW 

The general framework of the proposed approach is shown in Figure 2. The framework applies to a 

stack of SAR images and a pair of (or more) optical images. The focus of this paper is put on 

linking the attributes from optical image to the SAR image by 3-D matching and projection. The 

basic idea is to match the 3-D models derived from SAR and optical images respectively. As a 

result, the 2-D SAR and optical images will also be matched. Only then, the following semantic 

label texturing and joint deformation analysis can be conducted. The detailed procedures of the 

proposed framework are as follows. 

1. 3-D reconstructions 

a. Retrieve the 3-D positions and deformation parameters of the scatterers from the SAR 

image stacks. Since urban area is of our main interest, tomographic SAR inversion 

(TomoSAR), including SAR tomography and differential SAR tomography, is employed 

in order to resolve a substantial amount of layovered scatterers.  

TomoSAR is the most computationally expensive step in the framework. In addition, 

TomoSAR and other multipass InSAR algorithms typically requires a fairly large SAR 

image stack (>20 images). The computational and image resource are the main 

limitation for this step. 

b. Retrieve the 3-D positions of points from the optical images using stereo matching with 

structure from motion (SfM) if necessary. For covering large urban area, aerial or 

spaceborne images are preferred. This step also calibrates the camera parameters. 

Stereo matching and SfM are well studied topics. Many matured algorithms and 

software are readily available.  

2. 3-D matching: Co-register the TomoSAR point cloud and the optical point cloud.  

The main challenges present in this step are the different modalities of optical and TomoSAR 



 

point clouds, i.e. nadir-looking and side-looking, as well as the relatively large anisotropic noise 

in the TomoSAR point cloud. However, considering the large amount of points compared to the 

few co-registration parameters to be estimated, the co-registration accuracy is expected to be 

high enough for the following steps. 

If only a single optical image is available, which means no optical point cloud can be 

reconstructed, one can try to match higher level features of the 2-D optical image with the 3-D 

InSAR point cloud, e.g. matching 2-D and 3-D lines [5]. However, this has not been 

implemented in the proposed framework. 

3. Optical image classification: applying semantic classification to the optical images. 

This part is not the focus of this paper. Depending on the application, different classification 

algorithms can be applied. 

4. Semantic texturing: Texture the InSAR point cloud with the attributes derived from optical 

images, e.g. RGB color, semantic classification label, etc.  

The main challenge of this step is to project the optical image to TomoSAR point cloud without 

explicit 3-D surface reconstruction in the TomoSAR point cloud. Therefore, we choose point-

based rendering technique. 

The main limitation of this step is the relatively poor positioning accuracy (1 to 10m) of 

spaceborne TomoSAR point cloud. This error will directly translate to the projection accuracy 

of the TomoSAR points in optical image. 

5. Deformation analysis: Perform further analysis on semantic-level in the InSAR point cloud 

based on their semantic class. 

The main bottleneck of this step remains at the positioning accuracy of TomoSAR points, which 

limits the joint deformation analysis to be at an object level instead of at a point level. 
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  g Rγ ε   (2) 

where Ng   is the observation vector, N LR   is the so-called steering matrix which is a 

discrete Fourier transform according to n  and the discretization level L in the elevation direction, 

and Nε   is the noise assumed to be complex circular Gaussian distributed. The discretization 

level L is usually much larger than the number of images N. Therefore, equation (2) is often 

underdetermined, and can be even ill-posed due to the irregularity and small span of the baseline. 

Hence, regularization is required. The Tikhonov regularization of the estimator is equivalent to the 

maximum a posteriori (MAP) estimator with white noise and white prior, which is usually realized 

using singular value decomposition-based methods [8], [10]. 

From the reconstructed reflectivity profile, multiple scatterers can be separated, and hence the full 

3-D (range, azimuth, and elevation) reflectivity distribution is obtained. The motion of scatterers 

can also be modelled and estimated by introducing new dimensions into the TomoSAR system 

model attributing to the motion of the scatterers [6]. For a motion model with M parameters, the 

extended TomoSAR system model is a M+1 dimensional discrete Fourier transform [12]: 
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 

   
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   
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 
  (3) 

where 1, , Mp p  are the M motion dimensions, and    1 , MP s P s  are the motion dimensions as 

functions of the elevation s. 1, ,, ,n M n   are the M motion models, e.g. 2n nt   for linear 

motion model and   02sin 2n nt t     for seasonal motion model, with nt  being the 

acquisition time in unit of year of the nth image w.r.t. the master image, and 0t  the initial offset also 

in unit of year. 



 

3.2 Multi-view 3-D Reconstruction from Optical Images 

Dense 3-D reconstruction from optical images is a classical topic in photogrammetry that is usually 

carried out by stereo matching. On the other hand, many algorithms were developed over the last 

decade to exploit the available unstructured image data. At the core of all algorithms are local 

image features which are matched to each other among the set of captured images. These relations 

allow recovering both, the camera motion (camera parameters) and the scene structure (3-D 

geometry), which is why these algorithms are referred to as Structure-from-Motion (SfM) [13]–[17]. 

Tremendous progress has been made and led to impressive results, even modelling whole cities 

from optical images only [13]–[15]. In the state-of-the-art, SfM is typically followed by a dense 

reconstructions step, e.g. semi-global matching [18], for 3-D reconstruction of urban area. 

The principle of SfM is shown in Figure 4. If all the red dots in the image are known to correspond 

to the same 3-D point, given its 3-D position and the cameras parameters, one can predict its 

positions in the images. Consequently, one can estimate its 3-D position and the cameras parameters 

by adjusting their values so that the difference between the predicted positions of the 3-D points in 

the images w.r.t. the observed ones is minimized. For example, Camera C has a large reprojection 

error; hence, the 3-D point estimates and the camera parameters should be adjusted accordingly.  
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Sometimes, the camera radial and tangential distortions should also be taken into account, and 

should be estimated [16], [19]. 

3.3 Optical and SAR Images Co-registration 

Geometric co-registration is the basis of many higher level fusion algorithms. The current 

techniques are mostly based on matching of 2-D spatial features, e.g. contours, edges, templates, 

etc. [20]–[25]. They are good for large scale analysis, but not applicable for the analysis of 

individual building, especially for high resolution data. 

Therefore, for the co-registration of optical and SAR images of urban area including many studies 

of their joint analysis, a precise 3-D model is crucial. For example, [26] used 3-D model 

reconstructed from photogrammetric measurements; [27] used precise airborne light detection and 

ranging (LiDAR) point cloud; and [28] used PS point cloud retrieved from tens of high resolution 

TerraSAR-X spotlight images. Without a precise 3-D model, one needs to assume a strict prior [29], 

such as rectangle footprint etc. 

Considering the complex 3-D topography of urban area, there has not been an effective algorithm of 

matching SAR and optical image yet. The method presented in this paper transform the 2-D images 

matching to 3-D point clouds co-registration. Handful of papers have explained the co-registration 

of very high resolution InSAR point clouds [30], [31]. In a broader context of 3-D point clouds co-

registration, one of the most successfully methods is the iterative closest point (ICP) [32]. As its 

name implies, ICP solves the following equation at each iteration: 

   2

2,

ˆ ˆ, arg min i i
i

  
R t

R t x Rp t   (6) 

where R  and t  are the rotation matrix and the translation vector, and ix  and ip  are the respective 

corresponding points in the reference (optical) and target point clouds (TomoSAR). Considering the 



 

anisotropic noises in the point clouds, [33], [34] take into account the covariance matrix 
i iε εC  of the 

residual i i i  ε x Rp t : 

      1

,

ˆ ˆ, arg min
i i

T

i i i i
i

     ε ε
R t

R t x Rp t C x Rp t   (7) 

4. CO-REGISTRATION OF TOMOSAR AND OPTICAL POINT CLOUDS 

The 2-D SAR and optical image matching is transferred to 3-D point clouds matching. Any InSAR 

methods, including TomoSAR, deliver relative estimates with respect to a reference point whose 

height is usually unknown. Such differential measurement is always performed in multipass InSAR 

processing in order to mitigate some common error in each image, e.g. atmospheric effect or orbit 

errors. As a consequence, while being geo-coded into Universal Transverse Mercator (UTM) 

coordinate, the TomoSAR point cloud is shifted from its true position by an unknown amount due 

to the unknown height of the reference point. The co-registration is then the estimation of the 

translation between two rigid point clouds, subject to a certain tolerance on rotation and scaling. A 

good matching is the key to find the camera position w.r.t. the SAR image. 

Considering the different image characteristics of side-looking SAR and nadir-looking aerial 

images used in our experiment, such co-registration problem can be generalized to the matching of 

side-looking and nadir-looking point clouds. The following issues must be taken into account: 

 Due to the nadir-looking geometry of the optical images, façade points barely appear in the 

optical point cloud while they are prominent in the TomoSAR point cloud. This difference is 

exemplified in Figure 5, where the left and the right subfigures correspond to the TomoSAR and 

the optical point clouds of a same area in Berlin, respectively. 

 The noise of the TomoSAR point cloud is extremely anisotropic. The Cramér–Rao lower bound 

(CRLB) of the elevation estimate for pixels of high signal-to-noise-ratio is [1], [8] 



 

where 

signal-t

a 10dB

and az

range 

magnit

mostly 

roughly

Figure 5. 

the same a

optical po

UTM. 

4.1 Co-reg

Typical po

initial alig

algorithm t

b  is the st

to-noise-rat

B pixel is ab

zimuth posit

of the SNR

tude worse 

transferred

y on a polar

(a) TomoS

area. Point

int cloud, w

gistration a

oint cloud co

gnment. The

to be develo

tandard dev

tio in linear

bout 1m wh

tions can b

R in the sc

than those o

d to the ea

r orbit. 

(a)            

SAR point 

ts are color

while they 

algorithm 

o-registratio

e unique m

oped in the 

ŝ 

viation of th

r scale. For 

hich represe

be as accura

cene, the e

of range an

ast and up 

                  

cloud of hi

r-coded by

are promin

on problem 

modalities of

following w

 

4 2b

R

N




he baseline, 

a typical sta

ents almost 

ate as 1 cm

elevation es

nd azimuth.

directions 

 

                  

igh-rise bu

y height. Bu

nent in the

employs IC

f optical an

way: 

2SNR
 

N  is the n

ack of 50 T

the best sit

m [35]–[37]

stimates ar

In UTM co

for TerraSA

                  

uildings, an

uilding faç

e TomoSAR

CP algorithm

nd TomoSA

number of im

TerraSAR-X

tuation. In t

]. Consider

e at least o

oordinate, th

AR-X data,

            (b) 

nd (b) the o

ades are al

R point clou

m. Howeve

AR point cl

mages, and 

X images, th

the contrary

ring the hig

one to two

he error in 

, since the 

optical poin

lmost invis

ud. The co

er, ICP requ

louds have 

(8)

SNR is the

he CRLB of

y, the range

gh dynamic

o orders of

elevation is

satellite is

nt cloud of

sible in the

ordinate is

uires a good

driven our

) 

e 

f 

e 

c 

f 

s 

s 

 

f 

e 

s 

d 

r 



 

1 Edge extraction 

a. The optical point cloud is rasterized into a 2-D height image. 

b. The point density of TomoSAR point cloud is estimated on the rasterized 2-D grid. 

c. The edges in the optical height image and in the TomoSAR point density image are 

detected. These edges both correspond to the façade locations in the point clouds. 

2 Initial alignment 

a. Horizontally by cross-correlating the two edge images. 

b. Vertically by cross-correlating the height histogram of the two point clouds. 

3 Refined solution 

a. The façade points in the TomoSAR point clouds are removed, because the optical point 

cloud contains nearly no façade point. 

b. To refine the co-registration of the two point clouds, an anisotropic ICP (AICP) with 

robustly estimated covariance matrices was applied. The covariance is estimated using a 

robust M-estimator. 

2-D Edge Extraction 

The rasterized optical height image and TomoSAR point density image are produced by computing 

the mean height and counting the number of points, inside each grid cell, respectively. The edges 

can be extracted from these two images using an edge detector, such as Sobel filter [38]. The 

thresholds in the edge detector are decided adaptively, so that the numbers of edge pixels in the two 

edge images are on the same order. Figure 6 is a comparison of the binary edge images of 

TomoSAR and optical point clouds. These edges correspond to the position of façades. 
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Robust Anisotropic ICP 

The final solution is obtained using an anisotropic ICP algorithm based on the coarse alignment. 

The key of the anisotropic ICP lies on the covariance matrix 
i iε εC  of each point pair ix  (optical) and 

ip  (TomoSAR). Assuming the noise of optical point cloud is not correlated with that of the 

TomoSAR point cloud, 
i iε εC  can be computed by [33] 

 
i i i i i i

T ε ε p p x xC RC R C   (9) 

where 
i ip pC  and 

i ix xC  are the covariance matrix of the TomoSAR and the optical points, 

respectively. 

As mentioned before, the dynamic range of the SNR of TomoSAR points is very high. In particular, 

closely space pixels may have dramatic SNR difference. This renders their positioning error 

distribution non-ergodic when selected for covariance estimation. To this end, a robust estimation 

of the covariance matrix — a topic has not been addressed in any previous ICP algorithms — is 

necessary. 

To this end, we introduce an M-estimator [39] to robustly estimate the covariance matrix. Given a 

set of M samples  1 2, ... X x x  , M-estimator is an iteratively re-weighted sample covariance 

matrix [40]–[42], 

  1
1

1

1ˆ ˆ
M

T T
k i k i i i

i

w
M






 C ε C ε ε ε   (10) 

where k is the iteration index, ˆ
i i ε x x  with x̂ being the estimated sample mean, and  w x  is a 

robust weighting function. The weighting function downweights heavily deviated samples whose 

whitened residual 1ˆT
i k i

ε C ε  is large. We choose the t-distribution weighting function which can 

handle heavily tailed distributions [41]: 



 

   3
w x

x








  (11) 

where    is the degree of freedom (DoF) of the t-distribution. The lower the  , the more robust 

but less efficient (under Gaussian distributed noise) of the estimator, and vice versa.   is typically 

set to 2~5. 

5. TOMOSAR POINT CLOUD TEXTURING 

Texturing the TomoSAR point cloud is the step to link the semantics from the optical images to the 

deformation parameters of the TomoSAR point cloud, which can only be done upon obtaining the 

position and the orientation of the cameras w.r.t. the TomoSAR point cloud. This is equivalent to 

solving the visibility/occlusion problem given a camera viewpoint. Figure 9 illustrates the occlusion 

of TomoSAR points where certain points are only visible to certain images. 

For solving the occlusion in a spaceborne TomoSAR point cloud, the following two issues should 

be taken into consideration. 

 Typically, solving the occlusion of a point cloud requires reconstructing the 3-D surface and 

testing the depth of each point. This is known as the z-buffer algorithm. But reconstructing a 

reliable 3-D surface from TomoSAR point cloud still remains a challenging task, although there 

are some pioneer works on reconstructing façades and roofs [43]–[45]. Therefore, the employed 

technique should avoid surface reconstruction. 

 Secondly, one point can be visible from multiple images. Strategy should be developed to 

choose the appropriate textures from multiple optical images. The textured point cloud should 

be visually consistent. 
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where ˆx  is the norm of the total noise standard deviations (all three directions) in the inverted 

point cloud. ˆx  is related to original point cloud. Consider the very anisotropic noise of TomoSAR 

point cloud, we define the standard deviation in the native SAR coordinate range, azimuth, and 

elevation being  k   , where 1k  . As mentioned in Chapter 4, this factor is about 10 to 

100. Hence, the noise in range and azimuth can be neglected. Transforming to UTM coordinate, the 

standard deviation for east (x), north (y), and up (z) is approximately 2 2k k   
   

(assuming a near polar orbit, and 45° of incidence angle). The maximum ˆx  is derived to be: 

 ˆ

min

4rk
k

k

 


 
x x

  (14) 

where 
min

x  is the minimum distance of the original point cloud to the viewpoint. 

5.2 Consistency Check  

Many points are visible to multiple images. Selecting the most appropriate image for texturing 

should consider the visual consistency of the textured point cloud, as well as the optical quality  of 

the texture, since pixels located far away from the center of an image often have oblique angle with 

poor resolution.  

We use the information of the neighbouring points to check the consistency of the texturing, so that 

closely spaced points will select texture from a same optical image. Firstly, for each point, a score 

similar to [5] is obtained w.r.t. each image as follows: 

 j j jc p d   (15) 

where j is the image index, jp  is the visibility potential (equation (13)), and jd  is the inverse of the 

distance to the viewpoint of camera j. jd  can be regarded as the resolution of the image at the point. 



 

Equation (15) basically favors image with greater visibility and shorter distance. The image with the 

largest score is selected as the initial texture source image. 

Secondly, to decide the final texture source image for each point, we search the k nearest neighbors 

of each point, and perform a weighted multi-class majority voting. The weight is a Gaussian kernel 

as a function of the distance of the neighbor points to the center point. Largest weight is assigned to 

the point itself, and lower weights are assigned to the points further away. The image with the 

highest votes is selected as the final texture source. 

6. PRACTICAL DEMONSTRATION 

This section demonstrates the proposed framework by examples of railway and bridge monitoring, 

which are important ground infrastructures that require systematic monitoring. Monitoring large 

façades is also a potential application, given oblique aerial images which are unfortunately not 

available in this study. 

6.1 Datasets  

SAR 

The SAR datasets consist of two stacks of TerraSAR-X high resolution spotlight images of Berlin 

with spatial resolution of about 1m. The two image stacks were acquired from Feb. 2008 to Mar. 

2013 with about 100 images each. They were acquired at ascending and descending orbits 

respectively, which provide a full coverage of the whole city. More information of the two SAR 

image stacks can be found in Table 1. 

Table 1. Information of the SAR image stacks 

Beam Orbit Incidence angle No. of images Temporal span Baseline span 

42 Descending 36° 109 5.3 year 363m 

57 Ascending 42° 102 5.3 year 840m 



 

Optical 

The optical images are 9 UltraCam aerial images of Berlin acquired in March 2014 at an altitude of 

about 4000 m. The ground spacing is approximately 20cm per pixel. The camera positions and 

orientations are measured by onboard GPS and inertial measurement unit. After SfM adjustment, 

their standard deviations are about 5cm and 5×10-4 degree, respectively.  

6.2 3-D Reconstructions 

TomoSAR 

The InSAR stacking was performed by the German Aerospace Center (DLR)’s IWAP processor—

the integrated wide area processor [48] based on its predecessor PSI-GENESIS [49]. The 

atmospheric phase correction and the following D-TomoSAR processing was performed by Tomo-

GENESIS [50], [51] ‒ a TomoSAR software of the DLR for large urban areas monitoring. It is 

developed based on the work of [8], [9], [12], [51]–[53]. It delivers a 5-D point cloud – 3-D position 

plus linear deformation rate and amplitude of seasonal motion - from a stack of SAR images of 

urban area. 

Figure 11 is the TomoSAR point clouds from the two image stacks reconstructed by the SVD-

Wiener [8] (Fourier-based) algorithm in the Tomo-GENESIS. The two point clouds are co-

registered using a feature-based matching algorithm which estimates and matches common building 

edges in the two point clouds [31]. The combined TomoSAR point cloud has about 40 million 

points. The point density is about 106/km2 which is even comparable to some LiDAR product. It 

enables the retrieval of the features of individual building. Behind each of these points, the linear 

deformation rate and the amplitude of seasonal deformation were also estimated. 
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Figure 15. Comparison of the translation error of original ICP, anisotropic ICP, and 

anisotropic ICP with robust covariance matrix estimate (M-estimate) at each iteration of the 

algorithms. The scale is log10 [m]. The right subfigure is a close up view of iteration 60 to 65.  

6.5 TomoSAR Point Cloud Texturing 

By applying the texturing algorithm, Figure 16 shows the first meter-resolution spaceborne 

TomoSAR point cloud of an urban area textured with optical color. The subfigure (b) and (c) are 

zoom in to the Berlin central station and the high-rise building of Universitätsmedizin Berlin which 

are indicated by the red arrows in subfigure (a). The black parts are where no TomoSAR point was 

reconstructed. The proposed framework successfully projects optical images to urban TomoSAR 

point cloud, including points on large façades, as well as points on ground objects. 

On the other hand, it is also possible to project the 2-D optical image to the 2-D SAR image 

geometry. Figure 17 shows the SAR amplitude image and the optical image projected in SAR 

range-azimuth geometry. This is also the first high resolution urban optical image projected in SAR 

geometry. The Berlin central station and the hospital are also indicated by the red arrows in Figure 

17.  
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6.7 Railway Monitoring 

Based on the classification, the corresponding points in the TomoSAR point cloud can be extracted 

by projecting the classification label to the point cloud. A smooth spline function was fitted to the 

east-north coordinates of the railway points to connect separated segments. For example, the 

railway label is disconnected due to the presence of the Berlin central station. Figure 19(a) shows 

the extracted continuous railway points overlaid on the optical image. The color shows the 

amplitude of seasonal motion.  

This motion is mostly caused by the thermal dilation of the steel railway because of the seasonal 

temperature change. It can be observed that the railway deformation experiences certain periodic 

discontinuity. It is suspected to be caused by the mechanical joints between different railway 

segments.  

For monitoring these discontinuities, the raw TomoSAR estimates are relatively noisy due to the 

relative low SNR of some scatterers. To filter out the noise, a special prior was employed, i.e. the 

thermal dilation of a steel beam is linearly proportional to its length at its first approximation [60]. 

That is to say, the railway deformation parameters is piecewise linear, and the scatterers on the 

same cross-section of the railway undergo similar deformation. Therefore, the deformation 

estimates can be filtered by minimizing its total generalized variation along the railway direction 

(with second order derivative which favors piecewise linear structure): 

 
2

2 1

1ˆ arg min
2

     
 f

f f a f   (16) 

where a  is the deformation estimates along the 1-D railway direction (i.e. unfold the railway to a 

straight line), f  is the filtered version of a , and f  is the second order derivative of f . As shown 
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(b) 

Figure 20. (a) the original and the filtered estimates of amplitude of seasonal deformation in 

blue and red, respectively, and (b) peaks detected in the derivative of the filtered deformation 

along the railway direction. 

By detecting the peaks in the derivative of the deformation function, the location of the 

discontinuities can be detected. Constraint was put on the minimum distance between two peaks 

representing the minimum length of a railway segment. The detected peaks in the deformation's 

derivative can be seen in Figure 20(b). The positions of the peaks on the railway are shown as the 

green dots in Figure 21. Each green dot represents the midpoint of its railway cross-section. In the 

middle subfigures of Figure 21, the close up view of the two joints in the optical image is provided. 

As the optical image has limited resolution, we also provide a higher resolution one (7cm ground 

spacing) in Figure 22. It can be clearly observed that the railway joint shown up as dark lines in the 

optical image.  

However, further investigation shows that such large mechanical joints only appear close to railway 

stations. Visual inspection of the high resolution image of other parts of the railway does not find 

obvious mechanical joints. Therefore, a more general cause of the discontinuities in the deformation 

still requires further investigation. 
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This work also opens some new perspectives in high resolution urban remote sensing. For example, 

systematic monitoring of large façades, which requires high resolution oblique optical images and 

the development of façade classification algorithm; and joint classification of high resolution 

optical image and InSAR point cloud/SAR image, which can utilize InSAR attributes such as 3-D 

position and deformation parameters as additional features in the classification. For all these 

methods, the main challenge remains at the positioning accuracy of spaceborne InSAR point cloud, 

which is in the order of 1 to 10 m for TerraSAR-X with its three imaging modes. Future work on 

improving the positioning accuracy of TomoSAR, e.g. by exploiting joint sparsity [63] or object 

based TomoSAR inversion [64], is the key in the joint analysis of high resolution urban optical and 

SAR images. 
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a b s t r a c t

In a recent contribution Ferretti and co-workers (Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F.,
Rucci, A., 2011. A new algorithm for processing interferometric data-stacks: SqueeSAR IEEE Transactions
on Geoscience and Remote Sensing 49(9), pp. 3460–3470) have proposed the SqueeSAR method, a way to
exploit temporally coherent distributed scatterers in coherent SAR data stacks. Elevation and deformation
or subsidence estimates are obtained with accuracy similar as in the well known persistent scatterer
interferometry (PSI).

In this paper we propose an alternative approach and provide a first demonstration of the optimal esti-
mation of distributed scatterers’ phase histories in urban areas. Different to SqueeSAR, we derive phase
histories for each distributed scatterer pixel rather than for groups of pixels. We use the Anderson–
Darling statistical test to identify neighboring samples of the same distribution. Prior to covariance
matrix estimation required for maximum likelihood estimation we apply a multi-resolution defringe
technique. By using TerraSAR-X high resolution spotlight data, it is demonstrated that we are able to
retrieve reliable phase histories and motion parameter estimates from distributed scatterers with sig-
nal-to-noise-ratio far below the common range.
� 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.

1. Introduction

Persistent scatterer interferometry (PSI) (Ferretti et al., 2001;
Kampes, 2006) exploits the phase history of strong and long term
stable scatterers, i.e. the so-called persistent scatterers (PSs), over
the entire period of monitoring. Commonly, PSs are selected
according to their amplitude dispersion index or their signal-to-
clutter ratio (SCR). They are usually seen as bright pixels in syn-
thetic aperture radar (SAR) images. However these criteria are only
indications but not necessarily measurements of the decorrelation.
Common PSs in real world are stable objects such as window sills
on building façades, building corners, and exposed rocks. By proper
modeling the phase histories of PSs, the elevation and the time ser-
ies of the deformation of each PS can be estimated. PSI can provide
both large-scale and long-term deformation monitoring with an
accuracy of up to mm/year. This is particularly true for urban areas
where the PS density is high. As a price for its efficiency, first, PSI
considers only a single dominant target within a SAR resolution
cell for each PS which forbids layover separation; and second, only
permanently reliable scatterers are exploited. This makes PSI an

opportunistic approach and functionally limits the density of the
useful scatterers.

The following development of SAR interferometry (InSAR) tech-
niques basically targets at understanding the interaction of the SAR
signal within a resolution cell, and at optimally exploring coherent
objects other than detected PSs, such as layovered scatterers and
distributed scatterers (DSs).

In the first aspect, the authors of (Ferretti et al., 2001) extended
PSI by considering phase models for multiple scatterers within a
pixel (Ferretti et al., 2005). Or to be more general, differential
SAR tomography (D-TomoSAR) (Lombardini, 2005; Fornaro et al.,
2009; Zhu and Bamler, 2010, 2011) provides a general solution
for such case and avoids the pre-selection of coherent scatterers.
D-TomoSAR can separate multiple scatterers at different elevation
with possible motion inside a pixel by means of spectral estima-
tion. D-TomoSAR is able to retrieve topography, deformation
parameters, or even the entire phase history of multiple scatterers
within a resolution cell. Yet compared to PSI, D-TomoSAR is rela-
tively computationally expensive. In the second aspect, the small
baseline subset (SBAS) technique (Casu et al., 2005) overcomes
the second disadvantage of PSI by further exploiting ‘‘temporary’’
PSs. That is to say, instead of looking for permanently coherent
scatterers with respect to a single master acquisition, SBAS takes

0924-2716/$ - see front matter � 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
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advantage of high coherence in pairs of acquisitions with small
baselines (both temporal and spatial). In a popular notion, SBAS
builds up interferograms between ‘‘good’’ pairs of acquisitions.
Then the processing of each set of interferograms with a common
master follows standard PSI procedures. Based on these differential
results from numbers of interferograms, an inversion of an over-
determined linear equation system gives a complete time series
of the phase history of a scatterer. SBAS theoretically increases
the density of useful scatterers, and decreases the number of
images required (Casu et al., 2005).

However, in non-urban environment where surface or volume
scattering dominates, PSs density can be very low and DSs are
the majority. Even in urban areas, asphalt roads and concrete sur-
faces seen as DS in X-band also make up a significant percentage.
The question then comes to optimally harvest the information
from a DS, i.e. how to retrieve its phase history, and model param-
eters such as elevation and deformation velocity. The challenges
are the following. DSs tend to decorrelate temporally, i.e. interfer-
ometric DS pixels have usually much higher phase noise than PSs.
Also decorrelation may be different for each of the interferograms
in the stack.

The SqueeSAR technique (Ferretti et al., 2011a, 2011b) provides
a possible solution for these problems. It uses the fact that a DS
pixel is usually surrounded by many pixels from the same distribu-
tion, also called ‘‘brother pixels’’ in (Ferretti et al., 2011a). Squee-
SAR detects these brotherhood segments, uses them for
estimation of the covariance matrix and obtains the maximum
likelihood estimation (MLE) of the phase history of the segment
(De Zan and Rocca, 2005; Seymour and Cumming, 1994). Since
SqueeSAR treats each brotherhood segment as a single object, spa-
tial resolution of the estimated phase history is compromised.

This article presents the first demonstration of exploiting DS for
urban monitoring using very high resolution SAR image stacks. We
estimate elevation and motion history of each DS pixel in an opti-
mum way. Following the basic concept of SqueeSAR, we introduce
several new aspects:

– Instead of the brotherhood segments as single objects we
retrieve the phase history for each DS pixel.

– For identifying the brotherhood pixels we use a more robust
statistical test, i.e. the Anderson–Darlington (AD) test.

– For covariance matrix estimation we introduce a multi-resolu-
tion interferometric phase flattening (defringe) algorithm to
determine the underlying topographic and motion-induced
phase components.

The remainder of this article starts with the explanation of our
covariance matrix estimation procedures, followed by phase his-
tory retrieval and its model parameters estimation by MLE. Results
using TerraSAR-X (TS-X) high resolution spotlight data are present
as last.

2. Covariance matrix estimation

The covariance between two single-look complex (SLC) mea-
surements in and ik in image n and k is defined as the expectation
of the product of one with the complex conjugate of the other:

cn;k ¼ Eðini�kÞ ð1Þ

Normalizing the covariance by its standard deviation yields the
complex correlation coefficients, usually referred to as coherence
(Bamler and Hartl, 1998):

cn;k ¼
Eðini�kÞ

EðjinjÞEðjikjÞ
ð2Þ

The MLE of the covariance is obtained by assuming ergodicity
and replacing the expectation with averaging M independent
samples:

ĉn;k ¼
1
M

X
m

inðmÞi�kðmÞ ð3Þ

and for coherence:

ĉn;k ¼
P

minðmÞi�kðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
mjinðmÞj2

P
mjikðmÞj2

q ð4Þ

The covariance matrix C containing all the covariances is then

C ¼ ZZH ð5Þ

where

Z ¼

i1ð1Þ i1ð2Þ � � � i1ðMÞ
i2ð1Þ i2ð2Þ � � � i2ðMÞ

..

. . .
. ..

.

iNð1Þ iNð2Þ � � � iNðMÞ

2
66664

3
77775 ð6Þ

However, this estimator is biased at low magnitudes of coher-
ence for small M (Touzi et al., 1999; Bamler and Hartl, 1998)
According to the Reed-Mallett-Brennan (RMB) detection loss the-
ory (Reed et al., 1974), to maintain a loss of likelihood (see Eq.
(7)) of the estimates of less than 3 dB, M should be larger than
2N, where N is the number of measurements:

loss ¼ �10log10½ðM þ 2� NÞ=ðM þ 1Þ� ð7Þ

In our experiment, we try to ensure M = 3N as much as possible.
For low coherence bias correction, we adopt a method explained in
(Zebker and Chen, 2005) which makes use of an empirical function
of estimated coherence with respect to the theoretical one.

(a) (b) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c) (d) 

Fig. 1. (a) and (b): Samples selected by adaptive and rectangle sample selection
strategy, respectively. The red dot is the target pixel, while those in blue are the
selected pixels, i.e. The neighboring pixels sharing the same statistical distribution
as the target pixel. (c) and (d): Corresponding coherence matrices.
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Other than this systematic drawback of the covariance estima-
tor, it still faces two major practical issues. Especially in high reso-
lution SAR images of urban areas, the ergodicity of the selected
samples is hardly ensured. This jeopardizes the covariance estima-
tion in two ways. First, carelessly selecting these samples, such as
using a simple rectangular estimation window (commonly known
as box-car method) brings the risk of averaging pixels of different

distributions, and hence different objects, yielding a wrong esti-
mate of the covariance matrix. And second, the spatially varying
phase within the estimation window caused by topography or
motion diminishes the summation in Eqs. (3) and (4), leading to
an underestimation of the covariance or coherence. Therefore, this
phase needs to be removed before the covariance estimation. The
covariance estimator in Eqn. (3) then becomes:

ĉn;k ¼
1
M

X
m

inðmÞi�kðmÞ expð�jð�/nðmÞ þ �/kðmÞÞÞ ð8Þ

where �/n and �/k are the expected phases of in and ik.
In Eq. (3), the phase of cn,k is the expected phase difference of in

and ik. On one hand, we must remove the deterministic part of the
phase of in and ik for better covariance estimation, and on the other
hand we are exploring this interferometric phase from cn,k for mod-
el parameters estimation.

To summarize, the covariance estimation procedure is a two-
step approach: (1) adaptive sample selection by AD test on the
amplitudes of the samples, and (2) multi-resolution defringe to re-
move the underlying expectation of the phases. These two steps
will be discussed in detail in the following two sections.

2.1. Adaptive sample selection

The complex response of a DS in a SAR image is commonly mod-
eled as circular Gaussian variate that widely holds for medium or
lower resolution SAR data. However, due to limited number of nat-
ural scatterers in a resolution cell in high resolution SAR systems,
not fully developed speckle results an imperfect circular Gaussian
distribution. Yet we still favor the Gaussian model, as the best
asymptotical one, for conveniences in the estimation (i.e. only
the covariance is needed).

The MLE of each DS pixel value in the stack is found via inver-
sion of its covariance matrix. As mentioned before, estimation of
the covariance matrix elements requires an ensemble of samples
of the same distribution. Selecting samples using a rectangular
window is justified sometimes, if the rectangle size is small enough
and loss of resolution is affordable. However, this is never the case
for high resolution images of urban areas, e.g. any PS in the estima-
tion window will dominate the covariance or the coherence esti-
mate of the surrounding pixels. Not only will the high resolution

Fig. 2. (a) Simulated noise-free interferogram, (b) simulated noisy interferogram.
30% Of the pixels are DS with coherence = 0.3 corresponding to a SNR of �3.7 dB in
the two SLC images, and the rest 70% are noisy pixels with coherence close to 0, (c)
fringes estimated by adaptive multi-resolution method, and (d) fringes estimated
using single fixed patch size (10 � 10 pixels).

Fig. 3. Input noisy interferogram (first row) and estimated fringes (second row) at each resolution level. The estimated fringes are then subtracted from the noisy
interferogram. The residual phase is taken as the input for the next resolution level with smaller window size.
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Fig. 5. (a) Optical image with 3D building model from Google Earth™, (b) mean SAR amplitude of the test site. The red and yellow crosses mark the analyzed pixels in Fig. 8.
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Fig. 4. Histograms of coherence estimates of total 107,133 DSs in the simulated interferogram (a) with defringe performed which stick close to the preset value 0.3, and (b)
without defringe performed which severely underestimates the coherence.
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be compromised, but the covariance or coherence of a DS close to a
PS will also be severely overestimated.

In (Ferretti et al., 2011a) this problem is tackled by introducing
the DespecKS method, which detects the samples adaptively by
performing the Kolmogorov–Smirnov (KS) test. The KS test com-
pares the maximum distance between the empirical distribution
functions (EDFs) of two data sets which, in our case, are the inten-
sities of one pixel throughout the whole stack with another pixel.
By setting a threshold on the distance, the hypothesis that the
two pixels belong to the same distribution is accepted or rejected.
However, the maximum distance of two EDFs usually happens in
the midway of the curve, regardless of the shape of the distribu-
tion. Therefore, the KS test is not sensitive to unknown distribu-
tions with variations on the tails.

We adopt this idea of amplitude based test. Further considering
the fact mentioned in the beginning of this section that fully devel-
oped speckle can be compromised in high resolution image and
Rayleigh distribution is therefore often not satisfied (Jakeman
and Pusey, 1976; Jao, 1984), more sophisticated non-parametric

tests are more appropriate for our purpose. In (Parizzi and Brcic,
2010), different tests are evaluated. Among them, the AD test offers
the best detection rate at a constant false alarm rate. Therefore, we
replace the KS test by the AD test.

The AD test belongs to the class of quadratic EDF statistics. To
compare the probability distributions of pixels a and b, we first
compute the EDFs Fa(x) and Fb(x) of the amplitude values of the
pixels through the stack. Then the AD test is a weighted L2-norm
of the difference between the two EDFs:

A2 ¼ N
2

X ½FaðxÞ � FbðxÞ�2

Fa[bðxÞ½1� Fa[bðxÞ�
ð9Þ

where Fa[bðxÞ is the EDF of the combined pixel values. N again rep-
resents the number of images in our stack. The denominator
Fa[bðxÞ½1� Fa[bðxÞ� places more weight on the head and tails of the
distributions.

The test is performed for every pixel to identify neighboring
pixels of the same distribution, i.e. the brother pixels. These form

Fig. 6. (a) Number of brother pixels detected within a 20 � 20 pixel box for each pixel of the area shown in Fig. 5. The number is color coded. Red indicates a large number of
samples and blue indicates a small number, (b) pixel classification map. The blue pixels indicate the PSs, the yellow the DSs, and the black the NS.
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the estimation window. The window size and shape can vary from
one pixel to another. This is unlike segmentation where each pixel
belongs to a unique class. In our algorithm one pixel is included in
different brotherhoods.

Fig. 1a is an example of adaptive sample selection using the AD
test on a stack of high resolution TS-X images of downtown Las Ve-
gas. The test area is near the red cross marked in Fig. 5b. The red
dots in Fig. 1a and b are our target DS pixel located on the asphalt
road between two structures, and the blue ones are the detected
brother pixels. As a comparison, samples selected by a rectangular
window are marked in Fig. 1b. The adaptive window follows the
structure boundary well, while using a rectangle includes all the
pixels from both the structures and the road, regardless of their
varying amplitudes. The corresponding coherence matrices esti-
mated using the selected samples are shown in the second row
of Fig. 1. Since the target pixel is on an asphalt surface having a
very low SNR, its coherence is expected to be low. Yet, using the
rectangular window, the coherence is heavily overestimated
(>0.7), as shown in Fig. 1d. Obviously, we are more confident with
the results using the adaptive selection window.

2.2. Adaptive multi-resolution defringe

Defringe, also known as phase flattening, is to remove an esti-
mate of the expectation, i.e. a low-pass version, of the interfero-
metric phase before covariance estimation (Eq. (8)). In most of
the cases a constant local fringe frequency in range and azimuth
directions is assumed. The fringe frequency is found by simply
searching the maximum coefficient in the Fourier transform of lo-
cal patches (Bamler and Hartl, 1998; Zebker and Chen, 2005).

Yet the assumption of a constant frequency is not always valid,
especially in urban areas with fast varying topography. And the
local fringe frequency cannot be correctly estimated at areas where
decorrelation noise dominants. We make use an adaptive multi-res-
olution defringe algorithm, firstly introduced for phase unwrapping
(Davidson and Bamler, 1999). It overcomes the aforementioned two
problems by on one hand demodulating the interferogram multiple
times by estimating local fringes in patches of difference sizes, and
on the other hand taking into account only the pixels with suffi-
ciently high coherence.

We test this algorithm on a simulated interferogram of
600 � 600 pixels. The simulated interferometric phase is shown
in Fig. 2b. The pixels in the interferogram are either DS with coher-
ence equal to 0.3, i.e. SNR = �3.7 dB in both SLC images, or noise
(NS) with coherence close to 0. We uniformly distribute 30% of
the pixels as DS, and the rest 70% to be NS. This setting simulates
the worst real case scenario where no high coherence scatterer is
available, but only low coherence targets are sparsely scattered
in the scene. The noise-free and noisy interferogram are collocated
in Fig. 2a and b. The fringe pattern is hardly distinguishable in the
noisy interferogram.

We apply the multi-resolution algorithm to the noisy interfero-
gram. Fig. 3 shows the input and estimated fringes at each resolu-
tion level. Starting from the largest patch size, the fringe frequency
is estimated using only the DSs in a patch. The interferogram is
then demodulated, and passed to the next resolution level. In our
test, we set four resolution levels: 100 � 100, 50 � 50, 25 � 25,
and 10 � 10 pixels. The summation of the phase contributions at
all the resolution levels gives the final result in Fig. 2c. For compar-
ison, Fig. 2d shows the result for the usual fixed window size and
without employing the pre-selection of coherent pixels. This meth-
od completely fails to reconstruct the original interferometric
phase, while the multi-resolution algorithm reduces the estima-
tion error tremendously and retains higher correlation with the
noise-free interferogram.

After defringing, the coherences of all the DSs in the interfero-
gram are evaluated. The results show consistent and accurate solu-
tions with respect to the preset coherence of 0.3. 99% of the results
lie in the interval of 0.3 ± 0.05. This result is compared to the coher-
ence estimated without defringe. Fig. 4 plots the histogram of the
estimated coherence, with defringe and without defringe, of total
107,133 DSs. It is obvious that the coherence is severely underes-
timated if defringe is not performed.
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Fig. 7. Histogram of the number of brother pixels of PSs selected by thresholding
the amplitude dispersion index. 95% of the PSs have less than 6 brother pixels. The
red line indicates is the cut-off of 95% of all the PSs.
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Fig. 8. (a) Phase history of one DS located on the ground, indicated by the red cross
in Fig. 5 (b). Its coherence equals 0.16. This pixel experiences no significant
deformation, (b) phase history of another DS located on the roof of a building, which
undergoes a seasonal motion with 4.5 mm in amplitude. Its coherence is 0.29. This
pixel is indicated as the yellow cross in Fig. 5 (b).

94 Y. Wang et al. / ISPRS Journal of Photogrammetry and Remote Sensing 73 (2012) 89–99



3. Parameters estimation

3.1. Maximum likelihood estimator

We use MLE for parameter estimation for each DS pixel. We
make use of the objective function developed in (De Zan and Rocca,
2005):

fĥ; âg ¼ arg max
expð�iHUðh; aÞC�1

0 Uðh; aÞHiÞ
detjC0jpN

( )
ð10Þ

where i is the complex measurements vector; U is diagonal matrix
containing the modeled phase; C0 is absolute value of the covari-
ance matrix; h, a is height above reference surface, line-of-sight
(LOS) motion parameter such as linear deformation velocity and
seasonal displacement amplitude and N is the number of images

In the likelihood function, the covariance matrix C is decom-
posed to Uðh; aÞC�1

0 Uðh; aÞH. The diagonal matrix U contains the
phase of the model. The denominator detjC0jpN can be ignored: it
is a constant for each pixel.

4. Experiments

4.1. Test site 1 – Paris Las Vegas hotel

We apply the proposed algorithm to a test site about
500 � 500 m centered at Paris Las Vegas hotel in downtown Las Ve-
gas cropped from a stack of co-registered 50 TS-X high resolution
spotlight images. Fig. 5a and b are the optical image from Google

Earth™ and the mean amplitude image of the test area, respec-
tively. In this test case, the area consists of different types of scatter-
ing objects, i.e. partly building façades (probable PS candidates),
partly asphalt roads and rough surface (probable DS candidates),
and a large fraction of totally decorrelated scatterers (e.g. the foun-
tain on the top of the scene, and vegetated areas).

The pre-processing, including amplitude calibration and atmo-
spheric phase screen (APS) correction, is performed using the
PSI-GENESIS system from the German Aerospace Center (DLR)
(Kampes, 2006; Adam et al., 2003). We firstly classify all the pixels
to PS, DS, or NS, by jointly considering the coherence and the num-
ber of brother pixels. Based on the classification, we process PSs
using the standard PSI technique, and DSs using the proposed
algorithm.

4.2. Pixel classification

To classify PS, DS and NS, we firstly identify the PSs by making
use of the property explained in (Ferretti et al., 2011a) that most of
the PSs possess very few brother pixels. Showing in Fig. 6, the num-
ber of the brother pixel map, most of the building structures show
up in blue which indicates a small number of brother pixels, in
contrast to the orange color for the rest of the image. Statistics tell
that 95% of the PSs (selected by thresholding on amplitude disper-
sion index) have less than 6 samples (see Fig. 7). Secondly, the DSs
are distinguished from the rest of the pixels by thresholding on the
coherence. The threshold is set at the unbiased lower limit of the
coherence estimator in Eq. (4) using 200 looks. The final classifica-

Fig. 9. Estimated elevation at (a) only PSs, and (b) both PSs and DSs.
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tion is shown in Fig. 6b, where PS, DS, and NS are marked as differ-
ent colors. In this test site, the number of DSs is about 20% of PSs.

4.3. Retrieved phase history

According to the classification map, we estimate the covariance
matrix for each DS after sorting all the interferograms along the
temporal baseline. The phases of the covariance matrix’s first col-
umn represent the expected interferometric phases referring to
the first image. Since defringe was applied prior to the covariance
estimation, the pre-removed phase was added back to get the final
phase history of each pixel. Fig. 8 plots the phase histories of two
DSs (indicated as red and yellow crosses in Fig. 5b). Seen from that,
the first one is located on the asphalt road at ground level, with
presumably no significant deformation. The reflectivity of such
material is generally very low, as we can see the surrounding pixels
are consistently dark. For this pixel, the coherence is 0.16, equiva-
lent to an average SNR of �7.1 dB. Its phase history shows almost
no deformation throughout the two years’ time span. The second
one is on the roof of a building, possibly subject to thermal expan-
sion. It has a better coherence of 0.29, corresponding to an average
SNR of �4 dB. It undergoes a seasonal deformation of 4.5 mm in
amplitude. The red curves in the figures are the fitting of the sinu-
soidal deformation model.

4.4. Estimated parameters

Following the retrieved phase history, we estimate the eleva-
tion and seasonal motion amplitude for each DS. The result is com-
bined with the estimates from PSs using the standard PSI

procedures. All the estimates are referred to a single reference
point. Figs. 9a and 10a give the estimates from PSs only, and Figs.
9b and 10b are PSs and DSs combined. We see a linear gradient
from the base of the buildings to the top in Fig. 9, with blue indi-
cating low elevation, and red for high. A similar gradient can also
be observed in the seasonal motion amplitude estimate in
Fig. 10. The seasonal motion amplitude becomes more positive as
the elevation gets higher representing displacement towards the
sensor. This is mostly caused by the natural expansion and contrac-
tion of the building itself, but also subject to the effect of height
dependent APS to a maximum of about 1.5 mm per 100 m in ver-
tical height (Cong and Eineder, 2012).

The PSs already provide very good coverage over most parts of
the building façades, except for the upper half of the tower due to
its very complex motion. The DSs give extra information over the
rest of the image. The contributions of DSs are scattered over the
whole area, including areas on the upper left corner and area close
to the center of the image. Most of the DSs are on the ground level,
indicated by the blue color. Their deformation amplitudes are gen-
erally small (green). It is worthy to point out that seemingly reli-
able estimates also found in the shadow area. They are ‘‘ghost
scatterers’’ caused by mirror reflections of the façade at the ground
(Auer et al., 2011). The variances of these DS estimates are compa-
rable with those of PS estimates, although the coherences of these
DSs are much lower. Nevertheless, the MLE of the phase history of
DS is obtained by covariance matrix estimation based on many
samples. The residual of the phase history to the sinusoidal model
is about 1–2 mm, thus providing a reliable estimation of the model
parameters.

Fig. 10. Estimated seasonal deformation amplitude at (a) only PSs, and (b) both PSs and DSs.
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Fig. 11. Pixel classification map. The blue pixels indicate the PSs, the yellow the DSs, and the black the NS.

Fig. 12. Estimated elevation of both PSs and DSs of the second test site. The unit is in meter.
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4.5. Test site 2 – Las Vegas convention center

A larger area about 1 � 2 km around the Las Vegas convention
center is chosen as the second test site due to a known subsidence
discovered in (Zhu and Bamler, 2011). The same processing proce-
dures are applied. The pixel classification is shown in Fig. 11. Blue
color (PS) fills up most of the building structures, while yellow (DS)
appears mostly on the road. The park located on the lower half of
the image is almost black due to temporal decorrelation of vegeta-
tion. In Figs. 12 and 13, the estimation results of PSs and DSs com-
bined are demonstrated. The elevation estimates look consistent
and reliable for both PS and DS, except part of the building façades
due to the layover problem. The linear deformation rate estimates
show a subsidence pattern centered at Las Vegas convention center
with a maximum of about 15 mm/year.

5. Conclusion and outlook

This article presents optimal DS phase history and model
parameters retrieval in urban areas using very high resolution
TS-X spotlight data. To preserve the high spatial resolution, partic-
ular focus is put on the phase history retrieval for each DS pixel.
We emphasize the critical problem of accurate covariance matrix
estimation. A solution is provided by using adaptive sample selec-
tion and a multi-resolution defringe method. The adaptive sample
selection method is proven to be an essential procedure in the
covariance matrix estimation. The AD test performs well in distin-
guishing targets of different scattering characteristics. The adap-
tive multi-resolution defringe algorithm outperforms the method
with a fixed window size in terms of fringe estimation accuracy
and robustness to noise. The effectiveness of the proposed method
is tested using simulated and real TS-X data. Periodic seasonal mo-
tion histories of sample DS have been derived. The residuals to the
sinusoidal model were in the order of 1–2 mm.

In the future, as a more general solution, we will improve the DS
covariance matrix estimation using a ‘‘fuzzy brotherhood’’ concept,
i.e. using surrounding pixels with weightings derived from a statis-
tical test instead of using a fixed threshold. The improved algo-
rithm will be applied to non-urban area, and possible mixed
single- and repeat-pass data stacks.
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Robust Estimators for Multipass SAR Interferometry
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Abstract—This paper introduces a framework for robust pa-
rameter estimation in multipass interferometric synthetic aper-
ture radar (InSAR), such as persistent scatterer interferometry,
SAR tomography, small baseline subset, and SqueeSAR. These
techniques involve estimation of phase history parameters with
or without covariance matrix estimation. Typically, their optimal
estimators are derived on the assumption of stationary complex
Gaussian-distributed observations. However, their statistical ro-
bustness has not been addressed with respect to observations with
nonergodic and non-Gaussian multivariate distributions. The pro-
posed robust InSAR optimization (RIO) framework answers two
fundamental questions in multipass InSAR: 1) how to optimally
treat images with a large phase error, e.g., due to unmolded motion
phase, uncompensated atmospheric phase, etc.; and 2) how to
estimate the covariance matrix of a non-Gaussian complex InSAR
multivariate, particularly those with nonstationary phase signals.
For the former question, RIO employs a robust M-estimator to
effectively downweight these images; and for the latter, we propose
a new method, i.e., the rank M -estimator, which is robust against
non-Gaussian distribution. Furthermore, it can work without the
assumption of sample stationarity, which is a topic that has not
previously been addressed. We demonstrate the advantages of
the proposed framework for data with large phase error and
heavily tailed distribution, by comparing it with state-of-the-art
estimators for persistent and distributed scatterers. Substantial
improvement can be achieved in terms of the variance of estimates.
The proposed framework can be easily extended to other mul-
tipass InSAR techniques, particularly to those where covariance
matrix estimation is vital.

Index Terms—Differential interferometric synthetic aperture
radar (D-InSAR), SAR interferometry (InSAR), M -estimator,
rank covariance matrix, robust InSAR optimization (RIO), robust
estimation.

I. INTRODUCTION

A. State-of-the-Art Multipass InSAR Techniques

MULTIPASS interferometric synthetic aperture radar
(InSAR) techniques exploit a time series signal of scat-

terers. For spaceborne SAR data, they are commonly known
as differential InSAR (D-InSAR) as multiple acquisitions are
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usually acquired by repeat passes. Well-known techniques in-
clude persistent scatterer interferometry (PSI) [1]–[3], differ-
ential SAR tomography [4]–[6], small baseline subset [7], [8],
SqueeSAR [9], [10], CAESAR [11], and so on. They aim at
retrieving the parameters of interest, such as the scatterer’s 3-D
position and deformation rate, by utilizing persistent scatter-
ers (PSs) and/or distributed scatterers (DSs). They are widely
employed for ground deformation monitoring, as well as indi-
vidual building and urban 3-D infrastructure reconstruction. In
general, millimeter accuracy of the yearly linear deformation
rate and meter accuracy of the scatterer’s 3-D position can be
achieved with respect to a reference point [1], [12], [13].

However, these accuracy levels refer to the optimal estimators
derived based on the assumption of Gaussian-distributed data.
PS is modeled as a deterministic signal with additive zero-mean
white complex circular Gaussian (CCG) noise [1], whereas
DS is modeled as correlated zero-mean CCG [9], [14], [15].
Deviation from the assumption will greatly compromise the
performance of the estimator. It boils down to two fundamental
problems in the parameter estimation of multipass InSAR.

• Unmodeled phase such as residual atmospheric/orbit
phase errors, unmodeled motion phase, etc: Such phase
errors impose non-Gaussian noise on PS and DS.

• Non-Gaussian scatterers that bias the covariance matrix
estimation of DS: Their spatial stationarity cannot be
guaranteed because of the spatially varying phase.

For the first type, there has not been a systematic method
to optimally weight images with large phase error. The perfor-
mance of current techniques depends on the modeling of the
interferometric phase, which includes the deformation model,
the preprocessing step of atmospheric/orbit error phase mitiga-
tion, and so on. This is true for any multipass InSAR processor
that targets large area processing. The common deformation
models are usually linear and periodic models. The atmospheric
phase mitigation methods are mainly based on PS and its
variants [1], [16]–[18]. Their accuracy depends on the density
of the network, the number of images, and the validity of
the assumed deformation model. For meter-resolution data,
particularly in the urban areas, the atmospheric phase can be
usually well mitigated. Other methods are available based on
weather data [19]–[21], which can overcome some disadvan-
tages of the PS-based method, e.g., the topography-correlated
atmospheric phase. In [20] and [22], it was concluded that
centimeter accuracy can be achieved for controlled locations
on the ground. However, achieving centimeter accuracy for a
network of dense points on a city scale for InSAR deformation
monitoring purposes is not yet feasible at present. Only until
recently that such concept and preliminary result have been
presented as the Geodetic TomoSAR [23].

For the second type, the prevailing approach is to make
amplitude-based adaptive sample selections using statistical

0196-2892 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



WANG AND ZHU: ROBUST ESTIMATORS FOR MULTIPASS SAR INTERFEROMETRY 969

tests such as Kolmogorov–Smirnov (KS) or Anderson–Darling
tests [8]–[10], [24]. However, estimation results with these
methods degrade as the number of images decrease. According
to [25], assuming a Rayleigh-distributed amplitude time series
of ten observations, the detection rate is only 20% (at a constant
5% false alarm rate) for distinguishing two DSs with an
expected intensity ratio of 3 dB using the KS test. As detection
rate decreases, pixels of different distributions, including those
non-Gaussian, are included in the covariance matrix estimation.
This in turn affects the final parameter estimation.

B. RIO Framework

The aim of this paper is to introduce robust estimation for
multipass InSAR techniques when the underlying statistical
model of the observations is not fulfilled, which was briefly
mentioned in [26] and [27]. Let fg(g|θ, F (Ĉ)) be a generic
likelihood function of the observation time series g, the param-
eter vector θ to be retrieved, and the system model F (·) (with
the estimated covariance matrix Ĉ, if used). The maximum-
likelihood estimator (MLE) is θ̂ = argmax

θ
fg(g|θ, F (Ĉ)).

Assuming a CCG-distributed g, the MLE can be simplified to
the minimization of the sum of the squared residuals, i.e.,

θ̂ = arg max
θ

ln fg

(
g|θ, F (Ĉ)

)
= arg min

θ
‖ε‖2

2 (1)

where ε is the residual vector, and ‖ · ‖2 denotes the Euclidean
norm.

The proposed robust method introduces the following aspects
into the current techniques.

• It replaces the MLE with an M -estimator [28], which
minimizes the sum of a customized function ρ(x) of the
residuals, i.e.,

θ̂ = arg min
θ

∑

i

ρ(εi). (2)

• Should DS be used, the covariance matrix estimator is
also replaced with its robustified version. Depending on
the stationarity of the samples’ phases, different estima-
tors are proposed for:

• Stationary samples: M -estimator of covariance that is
an amplitude-based weighting of the sample covariance
matrix;

• Nonstationary samples: rank M -estimator (RME) that is an
M -estimator using the rankof the complex observationsg.

Table I summarizes a comparison of the current state-of-the-
art approaches with the improvements proposed by the RIO
framework.

C. Readers’ Guide

In this paper, Section II covers the necessary basics of the
M -estimator and the multivariate rank. Sections III and IV
introduce and provide detailed information about the robust
estimators used in InSAR techniques, followed by experiments
using simulated and real data in Section V.

Notations of some frequently used variables and their dimen-
sions are listed in the following. Italic small letters denote scalar

TABLE I
COMPARISON OF RIO FRAMEWORK WITH THE CURRENT APPROACH

value, bold small letters are vectors, and bold capital letters
denote a matrix.

N ∈ N number of observations;
M ∈ N number of samples;
g ∈ CN complex InSAR observations;
r ∈ CN rank of the observations;
θ ∈ RL L parameters of the phase model;
C ∈ CN×N complex covariance matrix;
Φ ∈ CN×N diagonal matrix of the modeled phase;
W ∈ RN×N diagonal weighting matrix;
ε ∈ CN residuals;
ρ(x) loss function;
| · | on scalar: absolute value; on vector and matrix:

element-wise absolute value
‖ · ‖ vector norm;
det(·) matrix determinant.

II. BACKGROUND INFORMATION

A. M-Estimator Basics

M -estimators are a class of well-known robust estimators
that take the form of a minimization problem: min

∑
i ρ(xi).

The M -estimator permits a minimization of a customized loss
function ρ(x) of the residuals to resist outliers without prepro-
cessing the data, e.g., by outlier trimming.

The derivation of the M -estimator can be described as fol-
lows. Consider a simple location estimation problem, where
the likelihood function of the univariate observation of the
location g ∈ R is fg(g|μ) in which μ is the expected location
to be estimated. fg(g|μ) equals a probability density function
(pdf) fx(x), where x = g − μ. Without losing generality, let us
assume that x is scaled to unit variance. Maximizing the sum of
log-likelihood is the MLE of μ, given multiple observations of
g, i.e.,

μ̂MLE = argmin
∑

i

− ln f(xi). (3)
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The M -estimator of μ is as follows:

μ̂M−est = arg min
∑

i

ρ(xi). (4)

Therefore, choosing ρ(x) = −ln fx(x) yields the ordinary
MLE. For example, the MLE, when assuming a normal dis-
tribution, corresponds to an M -estimator with ρ(x) = x2.

Solving (4) is equivalent to finding the zero position of its
derivative, which can be written as

∑

i

ρ′(xi)

xi
xi = 0 (5)

where ρ′(x) is the derivative of ρ(x). ρ′(x)/x is commonly
referred to as the weighting function w(x) because substituting
xi = gi − μ into the previous equation yields an M -estimator
that is actually a weighted average, i.e.,

μ̂M−est =

∑
i

w(gi − μ̂)gi

∑
i

w(gi − μ̂)
. (6)

The weighting function of a given pdf fx(x) can be derived
with the following relationship:

w(x) =
−∂ ln fx(x)

x∂x
. (7)

Equation (6) is solved iteratively with an initial μ estimate
being given and the weights being updated at each iteration.
Typically, the weighting function is designed to have high
efficiency at normal distribution. Therefore, if x is not scaled to
unit variance, the weights are w = ρ′(x/σ)/(x/σ), where σ is
the standard deviation of x. Convergence is only guaranteed for
convex ρ functions [29]. The initial estimate must be carefully
estimated should ρ be nonconvex.

The M -estimator is a tradeoff between robustness and effi-
ciency, where the efficiency of an estimator refers to the close-
ness of the variance of its estimates to the possible lower bound,
e.g., the Cramér–Rao lower bound for an unbiased estimator
[30]. Nevertheless, it can still maintain high efficiency under
the nominal distribution by properly choosing the loss function.

B. Multivariate Rank

Another important tool in robust estimation is the rank of
random variables. Using the ranks of the samples instead of the
samples themselves reveals their robustness when assessing the
statistical dependence between two random variables, and more
importantly, it is invariance to the nonlinear relation between
the two random variables. For example, the Spearman’s rank
correlation coefficient is the ordinary correlation coefficient
of the samples’ ranks. It is robust against nonstationary sam-
ples, i.e., the nonlinear transformation between two random
variables [31].

In univariate real random variables, the rank simply refers
to the integer ranking of each realization of this variable
according to its value. In [32], the centered rank of the sample
xi in the univariate data set {xi, x2, . . . , xM} is defined as

r̂i = (1/M)
∑M

j=1 sign(xi − xj), where sign(x) = −1, 0, 1
for x < 0, x = 0, and x > 0, respectively. This is simply a
ranking algorithm that can be easily extended to real multi-
variate case, i.e.,

r̂i =
1

M

M∑

j=1

sign(xi − xj) =
1

M

M∑

j=1

xi − xj

‖xi − xj‖
(8)

for the sample set {x1,x2, . . . ,xM}, where xi ∈ RN is a
vector of observations, such as a time series of pixels in multi-
pass InSAR techniques, despite the fact that it is not a complex
number in this case.

III. ROBUST COVARIANCE ESTIMATION

The covariance estimate of a target pixel requires a selected
neighborhood of samples. The widely used sample covariance
matrix is only suitable for samples following a stationary CCG
distribution. Otherwise, a robust estimator is necessary. In the
following, we demonstrate the robust covariance estimators for
both stationary and nonstationary samples.

A. Sample Covariance Matrix

If a complex SAR pixel value g obeys the classic model of
a zero-mean CCG distribution [14], then multiple acquisitions
g ∈ CN at the location of the same pixel lead to a multivariate
CCG distribution, i.e.,

fg(g) =
1

πN det(C)
exp(−gHC−1g) (9)

which is fully characterized by its covariance matrix C, where
N is the number of acquisitions. Given a set of M spatially
stationary samples G = [g1,g2, . . . ,gM ], the MLE of C is one
that maximizes the likelihood, i.e.,

ĈMLE = arg min
C

M∑

m=1

gH
mC−1gm. (10)

This yields the well-known equation for the sample covariance
matrix:

ĈMLE =
1

M

M∑

m=1

gmgH
m. (11)

ĈMLE is not robust against any type of outlier. A single
outlier in the samples will considerably bias the estimates.
Hereafter, we designate the MLE as the MLE for CCG, unless
explicitly stated otherwise.

B. Robust Estimation for Stationary Non-Gaussian Samples

If the selected samples are non-Gaussian, caused by either
a non-Gaussian scattering mechanism or a poor sample se-
lection, the covariance estimation can be robustified using an
M -estimator. Here, we assume the samples’ stationarity.

The M -estimator of a covariance matrix is expressed analo-
gously with (4) by its extension to multivariate variables, i.e.,

ĈM−est = argmin
C

M∑

m=1

ρ (xm(C)) (12)
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where the squared residual x2
m(C) ∈ R of the multivariate gm

is gH
mC−1gm. It can be solved using an iteratively reweighted

approach [33], [34], i.e.,

Ĉk+1 =
1

M

M∑

m=1

w
(
xm(Ĉk)

)
gmgH

m. (13)

The real-valued weighting function w(x) is ρ′(x)/x, and k de-
notes the iteration index. The weighting function downweights
highly deviating samples whose whitened version xm(Ĉk) =

‖Ĉ−1/2
k gm‖ is large in magnitude, which greatly depends on

the intensities of gm.
To derive a meaningful weighting function for some heavily

tailed distributions, we model the non-Gaussian SAR pixel
distribution as a complex t-distribution [35], [36], i.e.,

fg(g)=
Γ(ν + N)

(πν)NΓ(ν) det(C)N

(
1+

1

ν
gHC−1g

)−(ν+N)

(14)

where Γ(·) is the gamma function, and ν ∈ R+ is the degree
of freedom (DoF). The complex t-distribution is a realistic
model for SAR observations as the DoF allows a quantitative
definition of its deviation from CCG. This distribution ap-
proaches CCG as the DoF approaches +∞ and becomes more
heavily tailed as it decreases toward zero. In practical terms,
this provides flexibility for handling different levels of outliers.

The weighting function can be derived according to (7). How-
ever, (14) must be transformed into its equivalent real-valued
version [33] to perform the derivation. Therefore, we form
a new multivariate g̃ = [Re(g); Im(g)] (Re[·] and Im[·] are
the real and imaginary parts of a complex number; semicolon
denotes vertical concatenation), which follows a 2N -variate
real-valued t-distribution [33]. The corresponding weighting
function can be derived thereafter as follows (see also
Appendix A):

w(x) =
2N + ν

ν + 2x2
. (15)

For good overall robustness, a small ν(< 5) is preferred [37].
For example, in [38] ν is chosen from 2.5 to 3.9 for centimeter-
resolution millimeter-wave SAR data of urban areas. The par-
ticular complex t-distribution considering ν = 1 is also known
as the complex Cauchy distribution, which has been thoroughly
investigated in many studies.

To best safeguard against unknown heavily tailed distribu-
tions, ν can be set to zero. This leads to a weighting function of
w(x) = N/(gH

mC−1gm). Further, by assuming C equals Ī I,
where Ī is the expected intensity, and I is the identity matrix,
the iterative process can be dropped. This leads to the inter-
esting weighting function w = Ī‖gm‖−2. The corresponding
covariance matrix estimate

ĈSCM =
NI

M

M∑

m=1

‖gm‖−2gmgH
m (16)

is also known as the sign covariance matrix (SCM) [32],
[39], where only the direction of each multivariate sample is
considered. The real covariance is lost as a result. Should the

exact covariance be retrieved, one could always estimate it from
the eigenvectors of the SCM and the samples. SCM does not
require iteration and is robust against outliers.

SCM is an engineering solution for fast processing under the
general M -estimator’s framework. There also exist other meth-
ods such as amplitude clipping and dropping, etc. The choice
among the methods depends on the data and application. For
DSs with low coherence, simulation shows SCM outperforms
amplitude clipping and dropping both in terms of variance
and bias.

C. Robust Estimation for Nonstationary
Non-Gaussian Samples

To complete the theory, we must consider the situation in
which samples are neither stationary nor complex Gaussian.
The most common nonstationarity found in an SAR interfer-
ogram is the uncompensated rapidly varying interferometric
phase among the spatial samples. For nonstationary samples,
a joint estimation of the expected interferometric phase and the
covariance [15] is required, i.e.,

ĈMLE =
1

M

M∑

m=1

Φ̂
H

mgmgH
mΦ̂m (17)

where Φ̂m is the complex diagonal matrix containing the
estimated phase values of gm.

Usually, the estimation of interferometric phase and the
covariance matrix is separated. The former is usually achieved
by common band filtering by either spatial averaging or spectral
trimming. Its performance greatly depends on the filter itself;
additionally, estimations can be challenging in urban areas.
In [10], a multiresolution defringe algorithm to manage this
challenge is used. In any case, the phase estimation requires
additional effort, and poor estimates significantly degrade the
covariance matrix estimation.

This calls for an estimator that is invariant for multiplicative
phase signals. As demonstrated in [32] and [39], the rank
covariance matrix for real multivariate is invariant with regard
to the additive deterministic signal. Inspired by this fact, we
introduce a new estimator, i.e., RME, for complex multivariate
with a multiplicative phase signal. By replacing the multivariate
g with its rank r in (13), we obtain the following:

ĈRME,k+1 =
1

M

M∑

m=1

w
(
xm(ĈRME,k)

)
r̂mr̂H

m. (18)

We define the complex rank vector, being analogous to (8), as
follows:

r̂m =
1

J

J∑

j=1

gm · g∗
j∥∥gm · g∗
j

∥∥ (19)

where gj is the direct neighborhood of gm, and · denotes the
element-wise multiplication. Note its difference from the origi-
nal definition, where subtraction is replaced by multiplication
of the complex conjugate. The deterministic phase has been
reduced through this operation, and it approaches zero through
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averaging. To maintain effective phase cancelation, the direct
neighborhood should be kept small. We usually restrict it to
only four adjacent pixels. The RME is a fourth-order descriptor
of the sample statistics. It can be proven (Appendix B) that
the elementwise square root of |ĈRME| approaches |ĈMLE|
asymptotically under a CCG distribution when using a one-
neighborhood sample. The variance of the square root |ĈRME|
is also higher than that of |ĈMLE| because of the multiplication
of two uncorrelated complex-valued random variables. There-
fore, the number of samples should be doubled when using
RME. Hereafter, we assume that the elementwise square root
on |ĈRME| has been performed.

IV. RETRIEVAL OF ROBUST PHASE HISTORY PARAMETERS

A. PS Phase History Parameters

One of the commonly used estimators for PS phase history
parameters θ is the periodogram [40] (often with amplitude-
dropped measurements [1], [3]), i.e.,

θ̂ = argmax
θ

{∣∣∣∣∣
1

N

N∑

n=1

gn exp (−jϕn(θ))

∣∣∣∣∣

}
(20)

where gn and ϕn are the complex pixel value and the modeled
phase of the nth image, respectively. Usually, the amplitude
of gn is dropped in the estimation, as it barely changes esti-
mates at high SNR. Equation (20) is the MLE when assuming
additive independent and identically distributed (i.i.d.) CCG
noise [41], i.e.,

θ̂ = arg max
θ

{
(2πσ2)

−N

exp

(
− 1

2σ2
(g − g(θ))H (g − g(θ))

) }
(21)

where σ and ḡ(θ) are the standard deviation of the CCG
distribution and the modeled PS pixel values, respectively.

Based on the aforementioned MLE, we propose the fol-
lowing robust estimator of PS phase history parameters to
deal with possible large phase errors, particularly the residual
atmospheric phase and unmodeled motion phase, i.e.,

θ̂ = argmin
θ

N∑

i=1

ρ

(
Re [εi(θ)]

σR

)
+ ρ

(
Im [εi(θ)]

σI

)
(22)

where the residual εi(θ) is gi − ḡi(θ); and σR and σI are the
standard deviations of real and imaginary parts, respectively.
The most appropriate ρ(x) function should be chosen according
to the pdf of the PS noise, which depends on the performance of
the atmospheric phase correction, the choice of motion model,
etc. If such information is not available, a good alternative is
Tukey’s biweight loss function, i.e.,

ρ(x) =

{
− (c2−x2)3

6c4 + c2

6 |x| < c
c2

6 elsewhere
(23)

where c ∈ R+ is a tuning parameter beyond which the loss is
constant. The lower the value of c, the more robust but less

efficient is the estimator, and vice versa. c is usually chosen
to be 4.586, which is said to give an efficiency of 95% at
normal distribution [29]. For an overview of different robust
loss functions, readers are referred to [29] and [42].

Equation (22) should be solved iteratively, where σR and σI

are updated at each iteration. Their initial values are obtained
from the initial estimate θ̂0; this is not critical for convex ρ(x).
However, a robust initial estimation is strongly recommended
for nonconvex ρ(x), such as the Tukey’s loss function. Fortu-
nately, the initial estimation need not be efficient. To give one
example, the least trimmed square that minimizes the sum of q
smallest squared residuals [43] is as follows:

θ̂0 = arg min
θ

q∑

i=1

|εi(θ)|2 . (24)

The initial estimates of standard deviation, as well as those at
each iteration, can be obtained using a robust estimator such as
the median absolute deviation, i.e.,

σ̂ = 1.483 · median (|ε − median(ε)|) . (25)

The factor 1.483 is a normalization constant, which gives an
expectation of unity for a normal distribution. With this com-
bination, convergence can be achieved in just a few iterations;
therefore, the computational cost is approximately three to four
times more than that for the standard estimator. The same pro-
cedures can be easily extended to the LAMBDA estimator [44]
for PS phase parameter estimations, which has a substantial
number of users.

B. DS Phase History Parameters

Because of the same artifacts caused by the phase calibration
mentioned earlier, the estimator of DS phase history parameters
must also be robustified. If stationarity is assumed for a DS and
its neighborhood, one can treat DSs as a single PS by averag-
ing them, as proposed in SqueeSAR, and then the robustified
estimator is identical to (22).

However, we do not assume stationarity in our considera-
tions. Our objective is a full inversion of individual single-look
DS observation (DS pixels without averaging). The DS MLE
introduced in [15] is recalled here as follows:

θ̂ = argmin
θ

{
gHΦ(θ)|Ĉ|−1Φ(θ)Hg

}
(26)

where Φ(θ) ∈ CN×N is the diagonal matrix containing the
modeled phase of g. Seemingly, the robustified estimator for
DS phase history parameters takes an expression similar to (22),
but with the residuals ε(θ) whitened by a robust covariance
matrix estimate, e.g., ĈRME, i.e.,

ε(θ) = |ĈRME|−0.5Φ(θ)Hg. (27)

The robustified DS estimator can be written into an iteratively
reweighted expression with k being the iteration index, i.e.,

θ̂k+1 = arg min
θ

{
εH(θ)Wkε(θ)

}
(28)



WANG AND ZHU: ROBUST ESTIMATORS FOR MULTIPASS SAR INTERFEROMETRY 973

TABLE II
PSEUDOCODE OF THE ROBUST ESTIMATOR FOR SINGLE-PIXEL DS

OBSERVATIONS

where W ∈ RN×N is the diagonal weighting matrix whose
element is calculated using each element of ε(θ) based on
wi = ρ′(εi)/εi.

However, we should be aware that the marginal distribution of
the phase of zero-mean CCG multivariate is uniform as it is in
its whitened version. The atmospheric phase, presumably also
uniformly distributed over time, applies no change to the DS
observations statistically. In other words, the robust loss func-
tion is blind to phase contamination from single-look multi-
variate DS observations. Therefore, correct weighting of the
contaminated observations must be introduced to the estimator.
It should be determined by the expected residuals ε̄ of the neigh-
borhood ensemble. The expected residuals can be calculated by
simple averaging. However, because of possible outliers in the
neighborhood, it should be estimated robustly as follows:

ε =

M∑

m=1

wmεm(θ̂
m

)

/
M∑

m=1

wm (29)

where the superscript m denotes the sample number in the
neighborhood, and wm is a robust weight.

To summarize, (28) is a joint estimation of the phase param-
eters of individual single-look DS observations in a neighbor-
hood. Its computation should begin with initial estimates of
each sample in the neighborhood (assumed to be the same),
which jointly determine the initial weighting matrix. This ma-
trix is used to retrieve the parameters of each single-look DS ob-
servation time series in the neighborhood and is updated based
on all the estimates upon finishing one iteration. The pseu-
docode of the proposed DS estimator is as stated in Table II.

One practical issue when dealing with real data is the pos-
itiveness of the covariance matrix. The inverse square root
operation requires that the matrix be positive definite, i.e., for
any nonzero vector y ∈ RN that yT |Ĉ|y > 0. This criterion
is not fulfilled when the rank of the selected samples is less
than N , i.e., when they are spatially correlated, which results
in some eigenvalues of |Ĉ| being numerically close to zero. On
rare occasions, the covariance matrix must be regularized. In
our implementation, this is performed by adaptively adding an

TABLE III
PSEUDOCODE OF THE COVARIANCE MATRIX REGULARIZATION

appropriately small quantity to its diagonal. The pseudocode is
as stated in Table III.

V. ROBUSTNESS ANALYSIS

A. Comparison of Robust Covariance Estimators

We compared the original MLE, the M -estimator with
t-distribution weighting, and the RME under three different
scenarios: 1) multivariate CCG; 2) multivariate complex
t-distribution with one DoF; and 3) nonstationary multivariate
t-distribution with one DoF. The data are simulated to have
ten acquisitions, with a neighborhood of 1000 samples. Each
sample vector is simulated by dewhitening a ten-variate vector
of zero-mean i.i.d. CCG distribution (for scenario 1) or complex
t-distribution (for scenarios 2 and 3) with a predefined co-
herence matrix. In the last scenario, we added linear fringes
with ten different fringe frequencies randomly picked within
[0 π/10] to the phases of the ten acquisitions.

We also predefined two different coherence matrices: one
exponentially decaying and the other with a constant 0.5 co-
herence between acquisitions. The results are shown in Fig. 1,
where the left subfigure corresponds to the exponential coher-
ence matrix, and the right corresponds to the constant matrix.
Each row represents one of the aforementioned three scenarios,
and each column represents one of the three covariance estima-
tors. The subplots (1, 1) in the two subfigures are regarded as the
reference coherence matrices because the MLE is the optimal
estimator under CCG and is asymptotically unbiased.

All three estimators can preserve the correct shape of the
covariance matrix under CCG. The MLE fails in the second sce-
nario, where the samples are contaminated by outliers. The co-
herence is usually overestimated because of the large amplitude
of the outliers. The M -estimator and RME remain as correct
estimations. In particular, this M -estimator is the MLE for the
simulated data in the second scenario. Finally, the M -estimator
is not capable of dealing with nonstationary samples. Heavy
underestimation occurs because of the summation of the com-
plex numbers with nonstationary phases. The RME is mean
invariant and maintains good performance in all conditions.
However, ĈRME experiences higher bias at low coherence [as
observed in (a)] and higher variance [as observed in (b)], due
to the doubling of the phase variance of the rank observation.
Doubling the number of looks should be used in the estimation
of ĈRME. This has been mentioned in Section III-C. The
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Fig. 1. Comparison of three covariance matrix estimators under three different observation cases. First row: CCG. Second row: Complex t-distribution with one
DoF. Third row: Nonstationary complex t-distribution with one DoF. (a) and (b) show the results of the exponential and constant coherence matrices, respectively.
In both (a) and (b), first column: MLE (under Gaussian); second column: M -estimator with t-distribution weighting; and third column: RME with t-distribution
weighting.

Fig. 2. (a) Bias and (b) standard deviation of the coherence estimates of MLE
and the proposed robust estimator for true coherence = 0.2. One hundred looks
are used in the coherence estimation.

efficiency of the M -estimator and that of RME are always lower
than 100% at CCG distribution. This illustrates the tradeoff
between robustness and efficiency.

To quantitatively analyze the performance of the robust esti-
mator at different outlier levels, we have performed experiments
using less tailed distribution by changing the DoF in the complex
t-distribution. The complex t-distribution approaches complex
Gaussian as the DoF increases. Fig. 2 plots the variance and
bias of the robust estimator and MLE as a function of the
DoF for true coherence = 0.2. As one can see, the robust
estimator outperforms the Gaussian MLE. However, as we
expected, the advantage of robust estimator becomes less as the
DoF increases because the distribution becomes more Gaussian.

In practice, the number of samples should be sufficiently
large to prevent any significant bias in the covariance estimates
and to reduce the variance of the estimates. We found that
200 samples are more than sufficient for a stack of 30 images

based on the Reed–Mallett–Brennan detection rule [45], which
measures the loss of the signal’s log-likelihood. When using
RME, the number of samples should be doubled to achieve a
comparable variance with that of the MLE.

B. Efficiencies of Robust PS and DS Estimators

Next, we used a Monte Carlo simulation to quantitatively
compare the efficiencies of the proposed PS and DS estimators
with their original MLEs. We set the common parameters
for the simulation to be similar to those of the TerraSAR-X
data, where the wavelength λ = 0.031 m, the range distance
R = 700 km, the acquisitions number N = 20, and the spatial
baselines b⊥ were randomly sampled from −100 m to +100 m
with uniform distribution, and the temporal baselines t were
evenly spaced from −1 year to +1 year.

The PS observation vector is simulated by adding zero-
mean i.i.d. CCG noise with a certain SNR to the deterministic
PS signal g = A exp(−j4π/λ(sb⊥/R + vt)), where A is a
complex amplitude. The same SNR was maintained for each ac-
quisition. A DS vector was simulated using the same procedure
described earlier, i.e., by dewhitening a multivariate zero-mean
i.i.d. CCG using a predefined coherence matrix. The coherence
was maintained constant between any two acquisitions. To
complete the DS simulation, we added the interferometric
phase −j4π/λ(sb⊥/R + vt) to the phases of the DS vector.
We generated 1000 samples of this DS vector for the covariance
matrix estimation. These represent the contamination-free PS
and DS observations.

We then introduced contamination in two ways. First, we
added a random phase to eight (40%) of the 20 acquisitions.
The phase was uniformly distributed between [−π, π] for both
PS and DS. For DS, we added the same phase to the samples
of the same acquisition to simulate the temporally random but
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Fig. 3. Comparison of estimates of the standard deviation of elevation and linear deformation rate by the robust estimators and the ordinary MLEs.
(a) and (b) refer to the results of the PS estimators, and (c) and (d) refer to the DS estimators. In each subfigure, the green curves are the results of the proposed
robust estimators, and the blue curves are those of the original MLE; the dashed curves are the estimators performing on observations with a CCG distribution,
and the solid curves are the results for contaminated data, which we generated by adding a uniformly distributed random phase to eight of the 20 acquisitions.
The blue dashed curves in all the subfigures are the MLEs under a CCG distribution; hence, they are the optimal estimates.

spatially stationary atmospheric phase. Second, we used an
i.i.d. complex t-distribution with one DoF in the DS simulation
to simulate outliers in the DS samples.

Both contamination-free and contaminated observations
were used in the proposed robust estimators and their original
counterparts. We used the Tukey’s loss function as the robust
kernel for both robust estimators of PS and DS. Parameter c was
set to 4.586, and we repeated the Monte Carlo simulation 1000
times. Fig. 3 shows the standard deviation of the estimates of
elevation and linear deformation rate with respect to different
SNRs. Fig. 3(a) and (b) correspond to the PS estimators, and
Fig. 3(c) and (d) correspond to the DS estimators. The SNR of
the DS refers to the correlated signal w.r.t. the decorrelated part
and can be directly related to the coherence using the formula
γ = (1 + SNR−1)−1 [14], [46]. In each subfigure, the green
curves are the results of the proposed robust estimators, and the
blue curves are the original MLEs; the dashed curves are the
estimators performing on observations with CCG distribution
noise, and the solid curves are contaminated data results. The
blue dashed curves in all the subfigures are the MLEs under
CCG; hence, they are the optimal estimates. All the simulation
results suggest that the robust estimators significantly outper-
form the original MLEs when up to 40% of the observations
are contaminated. The robust estimators improve the efficiency
by a factor of 7–35 for contaminated data (the squared ratio
of the solid curves). Still, the efficiency of the robust estimator
at the nominal distribution is close to that of the original MLE.
The relative efficiency of the robust estimator and the MLE,
defined as

ηRE =
σ2

MLE

σ2
Robust

(30)

at the nominal distribution of the MLE, is approximately 70%
for the robust PS estimator and 80% for the DS estimator
(the squared ratio of the dashed curves). Therefore, the robust

estimators are also capable of handling uncontaminated obser-
vations without too much loss of efficiency.

C. Real Data Performance

We selected two test sites from a stack of 33 TS-X high-
resolution spotlight interferograms of the super volcano Campi
Flegrei, Italy. The acquisition time spans from 2009 to 2012.
The coregistration and atmospheric phase correction were per-
formed by the German Aerospace Center (DLR)’s IWAP pro-
cessor, i.e., the integrated wide-area processor [47] based on its
predecessor PSI-GENESIS [2]. Independent experiments were
conducted by comparing the linear deformation estimates for
evaluating the performance of the robust covariance estimator,
the performance of the robust loss function against the un-
compensated phase error, and the overall performance over a
large area.

1) Robustness of the RME of Covariance: Fig. 4 shows the
difference between the linear deformation rate of the DSs esti-
mated using the classical sample covariance matrix ĈMLE (left
column) and that using the proposed ĈRME (right column).
Identical samples were used for estimating these two covari-
ance matrices. They were adaptively selected with the KS test
using ten amplitude images, which we expected to introduce
a nonnegligible number of outliers in the selected samples
because of the low detection rate from the low number of
images. We employed the same classical DS MLE to estimate
the deformation rate in both cases. Therefore, any improvement
was solely due to the use of a more robust covariance matrix
estimate.

The test area is mainly vegetation, except in the center where
there is a road that usually appears as a DS in the X-band
images. We had expected homogeneous deformation rates as
the spans of the test area was roughly 100 m. However, many
estimates appear in the left-hand figures as salt-and-pepper
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Fig. 4. Comparison of the linear deformation rate of the two test sites
estimated using ĈMLE and ĈRME. Results (overlaid on the SAR intensity
images) are specific to a local reference point. A homogeneous deformation
rate is expected because of the small size of the area. (a) Results using
the classical ĈMLE. (b) Results using the proposed ĈRME. The samples
were identical for both covariance matrix estimations. They were adaptively
selected (KS test) using ten images, which was expected to introduce a
nonnegligible number of outliers in the selected samples because of the low
detection rate from the low number of images. The same classical DS MLE
was employed for the deformation rate estimations in both cases. (c) and (d)
plot the corresponding histograms of the linear deformation rates enclosed in
the two dashed red rectangles. In (c), many local peaks appear in the search
range, most of which should not correspond to the deformation signals.

noise. We believe this is due to the low detection rate of the KS
test and the nonstationarity of the samples. The improvement
was clearly demonstrated. ĈRME significantly outperforms the
widely used sample covariance matrix.

For further comparison, we plotted the histograms of the
deformation rates enclosed in the two dashed red rectangles of
Fig. 4(a) and (b). When using ĈMLE, many local peaks in the de-
formation rate appear in the search range. These peaks should
not correspond to the deformation signal. With ĈRME, results
are considerably more homogeneous, and thus more reasonable.

2) Robustness Against Unmodeled Phase: To evaluate the
improvements by the robust loss function, we reintroduced the
atmospheric phase of ten images randomly selected out of 33
back to the corrected phase to simulate realistic atmospheric
phase error in 30% of the images. The results estimated by clas-
sical PS and DS phase parameter estimators are compared with
those using their robust versions. The loss function of the robust
estimators was chosen to be the Tukey’s loss function with the c
parameter set to 4.586. We also compare the difference of using

sample covariance matrix ĈMLE and rank covariance matrix
ĈRME in the robust DS estimator.

Fig. 5(a) and (b) compare the linear deformation rates of
the combined PSs and DSs in a different test area, which are
estimated using the standard and robust estimators, respec-
tively. The same sample covariance matrix ĈMLE was used in
the estimation. The robust estimators outperform the classical
estimators in regard of the variance of the estimates because,
in this small area, we expect a homogeneous deformation
rate. The improvement is solely due to the use of the robust
loss function. In Fig. 5(c), we replaced the ĈMLE used in
Fig. 5(b) with the proposed ĈRME. More improvement can be
observed. It demonstrates that both phase error and poor sample
selection can significantly degrade the performance of classical
PS and DS MLEs. However, the results can be significantly
improved by introducing a robust loss function and using a
better covariance matrix estimate.

For reference, Fig. 5(d) shows the results using standard
PS+DS estimators with the atmospheric phase of all image
compensated. Under 30% of phase contamination, the robust
estimators are able to achieve comparable result to the standard
estimators with no phase contamination.

3) Large Area Processing: To assess overall performance,
we applied our robust estimators over the entire image area of
super volcano Campi Flegrei. Fig. 6(a) shows the combined
results of the linear deformation rate using the proposed RIO
framework, in which Tukey’s loss function is used for both
robust PS and DS estimator. We specifically chose the SCM
for the robust covariance estimate because of the absence of
significant fringes in the interferogram. With this combina-
tion, the proposed method retrieved 15 times more scatterers
than that using only PS. This number should also be valid
for standard PS+DS methods, e.g., SqueeSAR. However, RIO
improves the overall robustness. This can be seen in the small
area comparison [see Fig. 6(b)] of the two areas marked by
red rectangles in Fig. 6(a), where RIO greatly reduced the salt-
and-pepper noise probably caused by unmodeled phase and bad
covariance estimation.

VI. CONCLUSION AND OUTLOOK

The proposed RIO framework answers two open questions
with respect to current multipass InSAR techniques: 1) how
to downweight images with large phase error, such as the
uncompensated atmospheric phase; and 2) how to correctly
estimate the covariance matrix from nonstationary samples. We
have provided corresponding solutions by introducing a robust
loss function in the estimation of the phase history parameters
and by using the rank of the complex multivariate together with
robust weights (RME) in the covariance matrix estimation.

We demonstrate the benefits of the proposed framework
by applying it to state-of-the-art estimators of PS and DS
phase history parameters. Based on a simulation with 40% of
its images being random-phase contaminated, the robust loss
function increases the efficiency of the estimator by a factor
of 7–35 compared with standard version estimators. The rank
covariance M -estimator also tackles nonstationary samples to
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Fig. 5. Comparison of the linear deformation rate estimated using (a) standard PS and DS estimators with the sample covariance matrix ĈMLE used in the DS
estimator, (b) the proposed robust PS and DS phase parameter estimators using ĈMLE, and (c) the proposed robust PS and DS phase parameter estimators using
the rank of covariance matrix ĈRME. The atmospheric phases of ten images out of 33 are not compensated, in order to simulate certain phase error. The loss
functions of both the robust PS and DS estimators were chosen to be the Tukey’s loss function with the c parameter set to 4.586. (d) shows the results using
standard PS and DS estimators with all the atmospheric phase compensated. Under 30% of phase contamination, the proposed RIO method are able to achieve
comparable result to the standard estimators with no phase contamination.

achieve results well beyond those of existing methods. For sta-
tionary samples, we propose alternative covariance estimators,
i.e., an iterative M -estimator of covariance and a noniterative
version for fast processing: sign covariance matrix.

The proposed framework can be easily extended to other
multipass InSAR techniques without requiring excessive mod-
ification to the current programming. The computational effort
will be approximately 3 to 4 times more than that required by
standard processing, largely due to using the iterative method
for solving the robust loss function, which usually converges
within several iterations.

APPENDIX

A. Expectation for Rank Covariance of the SAR Acquisitions

Let us assume g1 and g2 are two stationary CCG random
variables with covariance γ, and g3 and g4 are their direct
neighborhood samples that have the same covariance γ, respec-
tively. For simplicity, we suppose that all the random variables
are normalized, i.e., σ2 = 1, so that γ ∈ [0, 1], which is the
coherence commonly used in SAR.

Then, g1 and g2 can be decomposed into three mutually
uncorrelated stationary circular white Gaussian processes a, b,
and c, of equal variance, i.e.,

g1 =
√

1 − γa +
√

γc

g2 =
√

1 − γb +
√

γc. (31)

The same holds for g3 and g4, i.e.,

g3 =
√

1 − γd +
√

γf

g4 =
√

1 − γe +
√

γf. (32)

The rank covariance/coherenceof g1 and g2, as defined in this
paper (using one neighborhood sample), is then given as follows:

E {(g1g
∗
3) (g2g

∗
4)

∗} = E {(γcf ∗)(γfc∗)} = γ2. (33)

B. Weighting Function of Complex Multivariate
t-Distribution

In general, the weighting function can be obtained by fol-
lowing (7). However, this method requires the transformation
of the complex t-distribution into the real domain so that the
derivation can be performed. Therefore, we formed a new real
multivariate g̃ using the real and imaginary parts of the complex
multivariate, i.e.,

g̃ =

[
Re(g)
Im(g)

]
∈ R2N

Cg̃g̃ =
1

2

[
Re(Cgg) −Im(Cgg)
Im(Cgg) Re(Cgg)

]
∈ R2N×2N (34)

g̃ follows a 2N -variate real t-distribution with the covariance
matrix being Cg̃g̃, i.e.,

fg̃(g̃)=
Γ

(
ν+2N

2

)

(πν)NΓ
(

ν
2

)
det(Cg̃g̃)

1
2

(
1+

1

ν
g̃TC−1

g̃g̃g̃

)ν+2N
2

(35)

which, according to [33], is equivalent to the complex
t-distribution.

Let the squared residual x̃2 = g̃T C−1
g̃g̃g̃. As x̃ is whitened, it

follows a univariate t-distribution, i.e.,

fx̃(x̃) = C(1 + ν−1x̃2)
−(ν+2N)/2

(36)

where C is the lengthy constant in the beginning of (34).
C will disappear after considering the derivative. Now, the
weighting function can be derived following (7), which is
(2N + ν)/(ν + x̃2). Transforming it back to the complex do-
main, we introduce a factor of 2, as g̃T C−1

g̃g̃g̃ = 2gHC−1
ggg ⇒

x̃2 = 2x2. Hence, the corresponding weighting function for
complex t-distribution is (2N + ν)/(ν + 2x2).
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Fig. 6. (a) Linear deformation rate of the super volcano Campi Flegrei, as retrieved using the proposed RIO framework that combines both PS and DS in a stack
of 33 TS-X high-resolution spotlight images. Tukey’s biweight function is set to be the robust loss function, and the sign covariance matrix is employed as the
robust covariance matrix estimate. It retrieves 15 times more scatterers than those using only PS only. This number should also be valid for standard PS+DS
methods, e.g., SqueeSAR. However, RIO greatly reduced the salt-and-pepper noise probably caused by unmodeled phase and bad covariance estimation. This can
be seen in the small area comparison in (b), which plots the results for the two areas marked by red rectangles in (a).
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