
TECHNISCHE UNIVERSITÄT MÜNCHEN

Lehrstuhl für Informatik XIX

Decision Support for Application Landscape Diversity

Management

Alexander W. Schneider

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Martin Bichler

Prüfer der Dissertation:
1. Univ.-Prof. Dr. Florian Matthes

2. Univ.-Prof. Dr. Helmut Krcmar

Die Dissertation wurde am 29.10.2015 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 08.03.2016 angenommen.

II

Zusammenfassung

Viele Unternehmen verlassen sich zunehmend auf Informationstechnologien (IT) zur Ab-
wicklung ihres Tagesgeschäfts. Heutzutage kann die Anwendungslandschaft größerer Unter-
nehmen aus mehreren tausend Geschäftsanwendungen und mehreren zehntausend Schnitt-
stellen bestehen. Unternehmensarchitekten, die für die Gestaltung und Weiterentwicklung
solcher Anwendungslandschaften zuständig sind, sehen sich daher mit einer steigenden
IT-induzierten Komplexität konfrontiert. Dennoch müssen sie täglich Gestaltungsentschei-
dungen treffen. Um Bauchentscheidungen zu verhindern, müssen die umfangreichen Archi-
tekturdaten aufbereitet und die Entscheidungsträger besser über den aktuellen Zustand
sowie die Auswirkungen ihrer Entscheidungen informiert werden.

Diversität innerhalb einer Anwendungslandschaft ist einer der Haupttreiber für deren Kom-
plexität. Deshalb besteht das Hauptforschungsziel dieser Arbeit darin, zu identifizieren,
welche Art von Entscheidungsunterstützung Unternehmensarchitekten benötigen, um eine
Anwendungslandschaft hinsichtlich ihrer Diversität zu gestalten. In der Literatur werden
verschiedene quantitative Indikatoren zur Messung der Diversität von Anwendungsland-
schaften beschrieben. Diese basieren jedoch auf einem begrenzten konzeptionellen Ver-
ständnis von Diversität und bieten entsprechend kein ganzheitliches Bild für den Unter-
nehmensarchitekten.

In dieser Arbeit wird ein konzeptuelles Rahmenwerk eingeführt, das auf Ideen und Erkennt-
nissen aus der Systemtheorie sowie der Ökologie fußt und ein ganzheitliches Verständnis
von Diversität im Kontext einer Anwendungslandschaft ermöglicht. Basierend auf diesem
Verständnis werden zwei neuartige Metriken vorgestellt, die die bislang unberücksichtigten
Diversitätsaspekte messbar machen und somit die Entscheidungsunterstützung verbessern.
Diese quantitative Entscheidungsunterstützung wird ergänzt durch ein System Dynamics
Modell, das das typische Verhalten von Organisationen erklärt. In Verbindung mit einer
Umfrage unter Praktikern zeigt dieses Modell Ansatzpunkte zur Einflussnahme für den
Unternehmensarchitekten. Eine Reihe von vier Fallstudien beschreibt, wie die entwickelten
Metriken zusammen mit ihrer Implementierung im Rahmen einer prototypischen Softwa-
relösung eingesetzt werden können, um Entscheidungen bezüglich der Gestaltung von An-
wendungslandschaften in verschiedenen Unternehmen praktisch zu unterstützen. Durch die
Verwendung der vorgestellten, neuartigen Indikatoren und des System Dynamics Modells
können praktizierende Unternehmensarchitekten besser fundierte Entscheidungen bezüg-
lich ihrer Anwendungslandschaft treffen. Außerdem können Forscher die Diversität von
Anwendungslandschaften quantifizieren, um deren Auswirkung auf das Unternehmen zu
untersuchen.

III

IV

Abstract

Many organizations rely more and more on the usage of information technology (IT) to
run their daily business. Today, the application landscapes of larger organizations typically
consist of thousands of business applications and tens of thousands of interfaces. Enterprise
architects responsible for designing and evolving such an application landscape are thus
facing an increasing IT induced complexity. However, design decisions have to be made on
a daily basis. To avoid gut decisions, the extensive architecture data needs to be processed
to inform decision makers about the current state as well as impacts of their decisions.

Diversity within application landscapes is a major driver for their complexity. Therefore,
the key research goal of this thesis is to identify what kind of decision support enter-
prise architects require to design an application landscape with regard to its diversity.
In literature, several quantitative indicators measuring application landscape diversity are
described, but all of them assume a limited conceptual understanding of diversity and thus
do not provide a holistic picture to the enterprise architect.

This thesis introduces a conceptual framework, resting upon ideas and insights from system
science and ecology, to describe the concept of application landscape diversity holistically.
Based on this understanding, two novel indicators capable of quantifying diversity aspects
are presented to aggregate architectural information. This quantitative decision support
is complemented by a System Dynamics model explaining typical organizational behavior.
Supplemented by a practitioner survey, this model provides suitable leverage points for
exercising influence. A series of four case studies describes how these indicators as well as
their implementation realized in a prototypical software solution, can be used to support
application landscape design decisions at different companies in practice. By using the
novel indicators and System Dynamics model presented in this thesis, practicing enterprise
architects can make better informed design decisions regarding their application landscape.
In addition, researchers are able to quantify diversity comprehensively to further assess its
impact on the organization.

V

VI

Acknowledgment

I would like to express my special appreciation and thanks to my supervisor Prof. Dr. Florian
Matthes who gave me the freedom I needed and demanded results when required. I would like
to thank him for encouraging my research and for allowing me to grow as a research scientist. I
further want to express my sincere gratitude to Prof. Dr. Helmut Krcmar for being my second
referee and for open an informal talks beyond research topics.

I would especially like to thank Prof. James Lapalme for offering me the opportunity to visit
him and his research group and for substantially challenging my ideas. The time I spent with
him was crucial for the development of this thesis. Likewise, I would like to thank Dr. Thomas
Widjaja and Alexander Schütz for sharing their ideas on complexity. I also want to thank all
participants of the CALM3 workshop series as well as all case study partners for sharing their
experience and worldview and supporting the whole research process. Without their help, it
would have been difficult to focus on the relevant aspects of my research.

The sebis chair has provided an excellent environment for my research. Many ideas matured dur-
ing hours of discussions with my colleagues and resulted often in co-authored papers. Therefore,
special thanks go to Dr. Sabine Buckl, Dr. Christian Schweda, Dr. Ivan Monahov, Dr. Christo-
pher Schulz, Dr. Christian Neubert, Dr. Alexander Steinhoff, Dr. Holger Wittges, Matheus
Hauder, Marin Zec, Klym Shumaiev, Thomas Reschenhofer and Bernhard Waltl.

I would also like to thank the students who in one way or the other contributed to my research
with their theses, guided research or as students working at sebis. Special thanks go to Anna
Gschwendtner for her constant engagement in my research during her studies.

Last, but most of all, thanks to my family for their continuous support. I am most grateful to
my parents for their support and encouragement during my whole life and my significant other
Katharina Rau who gave me advice throughout my entire research endeavor and made sure that
other important aspects in my life did not come off badly.

Garching b. München, 29.10.2015

Alexander Schneider

VII

VIII

Table of Contents

1 Motivation 1
1.1 Problem statement and research questions . 2
1.2 Contributions of this thesis . 5
1.3 Epistemological position and research design . 7
1.4 Outline of this thesis . 10

2 Foundations and related work 15
2.1 Complex adaptive systems . 15

2.1.1 General systems theory . 16
2.1.2 Complex systems theory . 17

2.2 Enterprise architecture management . 21
2.2.1 Enterprise architecture . 21
2.2.2 Enterprise architecture management and business-IT alignment 23
2.2.3 IT standardization and diversification . 26

2.3 Resource-based view of the firm . 27
2.3.1 Competitive advantage based on superior resources 28
2.3.2 Organizational agility and digital options 29

2.4 Complexity-based approaches to EAM . 32
2.4.1 A framework based on identified complexity notions 33
2.4.2 An overview about EA complexity literature 39

3 Application landscape complexity and diversity perceptions in practice 45
3.1 Application landscape complexity perception in practice 45

3.1.1 Focus group interview approach . 46
3.1.2 Drivers and consequences of application landscape complexity 46

3.2 Application landscape diversity perceptions in practice 49
3.2.1 Theoretical foundation and propositions 50
3.2.2 Survey design . 53

IX

Table of Contents

3.2.3 Data analysis . 55
3.3 The role of diversity for application landscape complexity 58

3.3.1 Theoretical insights for systems in general 58
3.3.2 Empirical insights for application landscapes 59

4 A conceptual framework for application landscape diversity 63
4.1 Description logics and enterprise architecture meta-models 63

4.1.1 Introduction to description logics . 64
4.1.2 Examples of EA meta-models . 66
4.1.3 Diversity considerations based on different EA meta-model elements . . . 70

4.2 Variation: Differences between individuals . 72
4.2.1 Derivation and definition . 72
4.2.2 Exemplary application . 73

4.3 Variety: Different concepts to describe a set of individuals 75
4.3.1 Derivation and definition . 75
4.3.2 Exemplary application . 76

4.4 Balance: Distribution of individuals among concepts 78
4.4.1 Derivation and definition . 78
4.4.2 Exemplary application . 79

4.5 Disparity: Degree of difference among concepts 81
4.5.1 Derivation and definition . 81
4.5.2 Exemplary application . 82

4.6 A unified view on application landscape diversity 83
4.6.1 Conceptual framework . 83
4.6.2 Applications to enterprise architectures 86

5 Measuring structural complexity and diversity of application landscapes 89
5.1 Complexity and diversity indicators used in practice 90

5.1.1 Data collection process . 91
5.1.2 Observed metric patterns . 91
5.1.3 Integrated information model . 94

5.2 Complexity and diversity indicators presented in literature 95
5.2.1 Data collection process . 95
5.2.2 Identified quantification approaches . 96

5.3 Benefits and drawbacks of existing indicators . 99
5.3.1 Assessment framework . 100
5.3.2 Evaluation data description . 101
5.3.3 Indicator assessment results . 101

5.4 Metric selection and development . 111
5.4.1 The Goal-Question-Metric approach . 111
5.4.2 Reusing metrics for variety and balance quantification 113
5.4.3 A novel metric for balance quantification 114
5.4.4 A novel metric for disparity quantification 120

5.5 Integrated software support for diversity metric calculations 129
5.5.1 Problem identification and motivation . 129

X

Table of Contents

5.5.2 Objectives of the solution . 130
5.5.3 Design and development . 131
5.5.4 Prototype demonstration . 135
5.5.5 Technical evaluation and conclusion . 139

6 Using system dynamics to support application landscape design decisions 145
6.1 System dynamics foundations . 146

6.1.1 Learning in and about complex dynamic systems 146
6.1.2 Causal Loop Diagrams . 148
6.1.3 Stock-and-Flow Diagrams . 149

6.2 System dynamics in enterprise architecture management 150
6.2.1 Literature review approach . 150
6.2.2 Literature review results . 150

6.3 A causal loop diagram modeling application landscape diversity 151
6.3.1 System dynamics modeling design guidelines 152
6.3.2 Modeling approach . 153
6.3.3 Dynamic hypotheses . 154
6.3.4 Integrated CLD model . 158

6.4 Model evaluation and additional guidelines . 158
6.4.1 Evaluation setting . 159
6.4.2 Interview results . 160
6.4.3 EAM-specific modeling guidelines . 161

7 Artifact evaluation 163
7.1 Evaluation approach . 163
7.2 Case 1: Supporting single application design at a large financial service provider . 165
7.3 Case 2: Supporting standardization at a mid-sized manufacturing company . . . 167
7.4 Case 3: Supporting technology governance at a large insurance company 173
7.5 Case 4: Supporting technology diversification at a large automotive company . . 175

8 Conclusion 179
8.1 Summary of results . 179
8.2 Critical reflection . 181
8.3 Outlook . 183

Bibliography 185

Abbreviations 207

A Appendix 209

XI

XII

List of Figures

1.1 Information systems research framework (Hevner et al., 2004) 8
1.2 Overall research approach based on Peffers et al. (2007) 9
1.3 Outline of the thesis . 12

2.1 Constituents of systems based on Bossel (2004a, p. 36) 16
2.2 The viable system model according to Beer (1967) 20
2.3 Layered approach to EA documentation according to Buckl (2011) 23
2.4 The EAM function acting as a glue according to Buckl et al. (2009) 25
2.5 Categorized EAM benefits according to Niemi (2008) 26
2.6 Desired characteristics of the firm’s resources and capabilities according to Amit

and Schoemaker (2012) . 29
2.7 Key concepts of the resource-based view of the firm 30
2.8 Capability-building and entrepreneurial action based on on digital options accord-

ing to Sambamurthy et al. (2003) . 32
2.9 Cellular automaton with rule 110 and 250 iterations 34
2.10 Double-loop learning in complex systems according to Sterman (1994) 35
2.11 Small-world networks according to Watts and Strogatz (1998) 36
2.12 The Complexity Cube: A framework unifying different notions of complexity

based on Schneider et al. (2014) . 38
2.13 Literature review process for EAM complexity publications 40
2.14 Timeline showing literature review results . 41

3.1 Drivers and consequences of application landscape complexity as presented by
Schneider and Matthes (2014b) . 49

3.2 Industry sectors of participants . 54
3.3 Company sizes . 54
3.4 Standardization leverage points . 56
3.5 Influence of enterprise architects . 56
3.6 Drivers and consequences of application landscape diversity 61

XIII

List of Figures

4.1 General components of description logics . 65
4.2 TOGAF content metamodel with extensions according to The Open Group (2011) 68
4.3 Core concepts of the ArchiMate meta-model according to Lankhorst (2009, p. 91) 69
4.4 Figurative illustration of variation . 73
4.5 Exemplary illustration of variation . 73
4.6 Figurative illustration of variety . 75
4.7 Exemplary illustration of variety . 75
4.8 Figurative illustration of balance . 78
4.9 Exemplary illustration of balance . 78
4.10 Figurative illustration of disparity . 81
4.11 Exemplary illustration of disparity . 81
4.12 Unified diversity framework for application landscapes following Stirling (2010) . 84
4.13 Exemplifying the need for an integrated view of three diversity dimensions 85
4.14 Demarcation of inter- from intra-layer induced diversity 87

5.1 Conceptual model of the EAM pattern language (Ernst, 2008) 91
5.2 An information model representing the data needed to calculate observed diversity

metric patterns (Schneider et al., 2015c) . 95
5.3 Instantiated taxonomy of literature reviews according to Cooper (1988) 96
5.4 Framework for complexity and diversity indicator utility assessment 100
5.5 Observed industry indicator assessment results 104
5.6 Heterogeneity indicator assessment results . 107
5.7 Topology-based indicator assessment results . 108
5.8 The Goal-Question-Metric approach according to Basili and Weiss (1984) 112
5.9 Fictitious distribution of operating system instances with respect to their versions

(Schneider et al., 2016) . 119
5.10 Extreme right skewed distribution . 119
5.11 Extreme left skewed distribution . 119
5.12 Exemplary visualization of an adolescence value of -0.4 (Schneider et al., 2016) . 120
5.13 Graphical representation of varying diversity discriminated only by disparity . . . 123
5.14 Conceptual model for data collection . 124
5.15 The research approach to develop an integrated software solution for diversity

metric calculations . 129
5.16 Two scenarios for the structure and control flow of the intended software solution 133

6.1 Single loop learning according to Sterman (2000) 147
6.2 Double loop learning according to Sterman (2000) 147
6.3 Causal loop diagram notation according to Sterman (2000) 148
6.4 Stock-and-Flow Diagram notation according to Sterman (2000) 149
6.5 CLD modeling network effect . 155
6.6 CLD modeling technological progress . 155
6.7 CLD modeling shadow IT . 156
6.8 CLD modeling IT cost cutting . 157
6.9 CLD modeling maintenance of decision scope . 158
6.10 Integrated CLD for application landscape diversity 159

XIV

List of Figures

7.1 Instantiation of the evaluation framework proposed by (Cleven et al., 2009) . . . 164
7.2 Matrix to describe technical platforms (excerpt) 166
7.3 Version distribution of OS9 . 170
7.4 Version distribution of OS12 . 170
7.5 Integrated visualization of DBMS adolescence values 175
7.6 Dendrogram for application server candidate products 177

XV

XVI

List of Tables

1.1 Contributions and applied research methods . 11

2.1 Rule 110 for Wolfram’s cellular automata . 33
2.2 Analysis of complexity notions in literature . 37
2.3 Overview of EA complexity publications classified by complexity notions based

on Schneider et al. (2014) . 44

3.1 Selected propositions on application landscape diversity and costs 50
3.2 Selected propositions on application landscape diversity and interoperability . . . 51
3.3 Selected propositions on application landscape diversity and innovation 52
3.4 Selected propositions on application landscape diversity and agility 53
3.5 Selected propositions on application landscape diversity and manageability 53
3.6 Currently implemented means for decreasing application landscape diversity . . . 55
3.7 Currently implemented means for increasing application landscape diversity . . . 56
3.8 Complexity drivers and their influence on diversity 60
3.9 Complexity consequences influenced by diversity 60

5.1 Companies involved in metric pattern collection 92
5.2 Representative results of the diversity metric identification literature review . . . 97
5.3 Indicator evaluation data (Schneider et al., 2015c) 102
5.4 Industry metric calculation results (Schneider et al., 2015c) 103
5.5 Selected heterogeneity-based indicators (Schneider et al., 2015c) 105
5.6 Coupled domain heterogeneity indicator results (Schneider et al., 2015c) 106
5.7 Topology-based indicator results (Schneider et al., 2015c) 108
5.8 Industry indicator correlations and their significance (Schneider et al., 2015c) . . 109
5.9 Observed heterogeneity-focused indicator correlations (Schneider et al., 2015c) . . 110
5.10 GQM template according to Caldiera et al. (1994) 112
5.11 Common skewness measures found in literature 118
5.12 EA models where varying diversity is not discriminated by conventional indicators 123

XVII

List of Tables

5.13 Hypothetical vectors to describe DBMS disparity 123
5.14 Description of disparity evaluation data . 125
5.15 Empirical DBMS diversity measurement results 126
5.16 Extract of the diversity measurement results for Case 1 127
5.17 Overview about interviewed experts from industry for disparity metric evaluation 127

6.1 Overview about interviewed experts from industry (Schneider et al., 2015a) . . . 160

7.1 Overview about case studies and evaluated artifacts 165
7.2 Complexity and diversity indicators selected for implementation in case study two 168
7.3 Distribution of operating system instances among versions 169
7.4 Distribution of database management system instances among versions 171
7.5 Distribution of operating system instances among versions 174
7.6 Distribution of database management system instances among versions 174
7.7 Application server candidate assessment for disparity 176

XVIII

List of Examples

2.1 Simple systems . 17
2.2 Disorganized complex system . 17
2.3 Organized complex system . 18
2.4 Qualitative complexity and the El Farol Problem . 19
2.5 Application of the ACN notation . 39
4.1 Variation within application landscapes: Databases 73
4.2 Variation within application landscapes: Application 74
4.3 Variety within application landscapes: Databases . 76
4.4 Variety within application landscapes: Application 77
4.5 High balance within application landscapes . 79
4.6 Low balance within application landscapes . 80
4.7 High disparity within application landscapes . 82
4.8 Low disparity within application landscapes . 83
4.9 Inter-layer induced diversity . 86
4.10 Intra-layer induced diversity . 87
5.1 Coupled domain heterogeneity . 104

XIX

XX

CHAPTER 1

Motivation

“People are very open-minded about new

things—as long as they’re exactly like the old

ones.”

Charles Kettering

Today, many organizations are faced with changing environments and increasing uncertainty due
to, e.g., rapid development of new technologies, increasing globalization of markets and the rise
of innovative new forms of organization (Sanchez, 1997; Jones, 2010). Agility, i.e., the ability to
detect and respond to opportunities and threats with ease, speed and dexterity, has emerged as
a key business imperative (Tallon and Pinsonneault, 2011). To enhance their agility and trans-
form their business, organizations rely more and more on Information Technology (IT) (Samba-
murthy et al., 2003; Venkatraman, 1994). Thereby, organizations face the challenge of allocating
resources for two different kinds of competing activities (March, 1991): exploratory activities
and exploitative activities. Exploratory activities target long-term success by conducting re-
search and experiments whereas exploitative activities target short-term success by establishing
and refining routines (Levinthal and March, 1993). In other words, “exploitative innovations
involve improvements in existing components and build on the existing technological trajectory,
whereas exploratory innovation involves a shift to a different technological trajectory” (Benner
and Tushman, 2002).

Consequently, conducting experiments to develop new, i.e., different, business models, business
processes or products which are supported by IT requires continuous change of the organization’s
IT systems. For many years, companies focused their IT resources on delivering individual
applications to address a specified business need and hosted each application on the best available
technology platform (Ross et al., 2006). Although the resulting diversity among the IT systems

1

1. Motivation

might provide benefits like less exposure to a single risk and shorter time-to-market of new
business requirements, IT executives have been forced to focus on IT efficiency by continuously
shrinking IT budgets. In 2014, a large study among companies headquartered in Germany,
Austria or Switzerland revealed that 56% of these companies still have unchanged or even reduced
IT budgets (Capgemini, 2014). In addition, several researchers argued that by eliminating
diversity of IT systems, i.e., standardization, IT costs can be reduced significantly (Boh and
Yellin, 2007). Therefore, many companies try to reduce the high diversity of IT-systems which
resulted from uncontrolled IT evolution over many years.

One popular means to design and implement such standardization activities is to establish an
Enterprise Architecture Management (EAM) function within the organization (Niemann, 2005,
p. 135; Keller, 2012, p. 53; Hanschke, 2013, p. 98). The enterprise architects are commissioned
to document the Enterprise Architecture (EA) which is defined as ”the fundamental organiza-
tion of a system [enterprise] embodied in its components, their relationships to each other and
to the environment and the principles guiding its design and evolution“ (International Organi-
zation for Standardization, 2007). Based on such architectural description which includes the
various IT systems and their technical components, potentials for standardization can be identi-
fied. Supported by appropriate governance structures enterprise architects can heavily influence
the degree of diversity among the organization’s IT-systems. According to Ross et al. (2006) a
standardized IT is the second level of EAM maturity after having business silos as a result of a
period of uncontrolled growth.

Given the fact that IT standardization is associated with positive as well as negative effects (Ross
et al., 2006; Boh and Yellin, 2007) taking place in a complex adaptive socio-technical sys-
tem (Schneider and Somers, 2006; Sterman, 2000) a holistic understanding of IT diversity is
required to efficiently and effectively design IT system landscapes. Especially in times of digi-
tal transformation (Andal-Ancion et al., 2003)—when IT systems are used to transform entire
businesses or industries—balancing exploration and exploitation and respectively managing IT
landscape diversity becomes essential. Up to now, the available theoretical and practical means
supporting such decisions are limited in both, their conceptual understanding of diversity and
their applicability. The following section further discusses the identified need for holistic IT
system diversity understanding, details the problem statement and poses the research questions
addressed by this thesis.

1.1. Problem statement and research questions

Given the need for organizational agility and therefore exploration activities which require di-
versity among IT systems as well as decreasing IT budgets and therefore exploitative activities
resulting in standardized IT systems the task of appropriately designing an application land-
scape is not primarily a task of IT management alone. Instead, aligning business and IT is a
goal best approached from both perspectives—business and IT (Orlikowski and Barley, 2001).
The previously mentioned management function called EAM considers both, business- and IT-
related concepts, but most preferably also accounts for cross-cutting aspects, such as strategies
and projects. The latter is essential because managed evolution of the organization inevitably
connects to the strategies as drivers of organizational change and projects as its vehicles (Murer

2

1. Motivation

et al., 2008). Such holistic approach to the structured design of innovative and fundamental
change is required to systematically support organizational transformation (Aier et al., 2009).
Unfortunately, most traditional approaches to EAM focus only on the structure of an enter-
prise, i.e., its EA. Being negligent of dynamic aspects and involved human beings, current EAM
approaches are often limited in their ability to support decisions regarding the diversity of an
application landscape. According to that understanding, a preliminary definition of application
landscape is provided to support an intuitive understanding of the term, which will be further
discussed and refined in Chapter 2.2.

Preliminary definition: Application landscape
The application landscape of an enterprise covers the typical elements of an IT ar-
chitecture including, for example, business applications, information flows, technology
components and platforms which are used, developed, operated or managed by people.

The above definition emphasizes that an application landscape is part of a socio-technical com-
plex adaptive system in which behavior is equally important as structure. Thereby, existing
theories about how to manage an EA can be interrelated with complexity theory. As we know
from socio-technical systems research (e.g. Emery (1959); De Greene (1973)) people and their
used technologies should not be regarded separately which holds also true for enterprise archi-
tecting (Lapalme and de Guerre, 2013). Recent research on the complexity of systems found out
that diversity within a system is one major driver for its complex patterns of behavior (Page,
2011). Therefore, the diversity within an application landscape should be of interest to each
application landscape designer, because it affects the behavior of people and processes within
an enterprise. According to Page (2011, p. 2), “even if on balance diversity’s a good thing, we
can have too much of it”. Due to the fact that diversity can be regarded to be beneficial, the
goal of an enterprise architect should be to maximize diversity within the application landscape.
Nevertheless, there seems to be an upper limit of useful diversity. Thus, the enterprise architect
can only introduce diversity to a given amount. Because it seems to be difficult to calculate such
upper limit ex ante, the budget allocated for IT investments will be considered to form a natu-
ral boundary. Regarding this inherent challenge of finding the appropriate amount of diversity
within a system, the main research question to be addressed in this thesis can be formulated as
follows:

What kind of decision support do enterprise architects require to design an application
landscape with regard to its diversity?

Regarding the existing literature on complexity and diversity one can find many different under-
standings and interpretations of both terms (Johnson, 2007; Page, 2011). If enterprise architects
should be enabled to manage application landscape diversity and make informed decisions, a
clear understanding of diversity needs to be available. Up to now, the topic of IT standardiza-
tion, i.e., the reduction of diversity, has drawn attention of many researches. However, most
publications regarding this topic apply a limited view on diversity in the context of application
landscapes although general considerations are much more elaborate. Accordingly, there is a gap
between knowledge already generated by complexity scientists and knowledge currently used to
examine application landscape diversity. By taking this mismatch into account, the first research
question to be addressed in this thesis can be derived.

3

1. Motivation

Research question 1: Which aspects need to be considered during investigation
of application landscape diversity?

Up to now, the essential role of diversity within complex systems has been identified, but to
benefit from that insight, a more nuanced understanding of diversity in complex systems is
required (Page, 2011). Because the concrete consequences of an increase or decrease of diversity
within a system are very specific, a deeper understanding of impacts of standardization or
diversification activities within an application landscape needs to be developed. This includes
positive as well as negative effects and also reasons why companies today try to standardize or
diversify their application landscape. Accordingly, the second research question of this thesis
can be derived.

Research question 2: How do changes of diversity within an application landscape
affect its enterprise in general and the application landscape in particular?

For many business executives measuring is a prerequisite to management. For example, accord-
ing to Harrington (1999) “Measurement is the first step that leads to control and eventually to
improvement. If you can’t measure something, you can’t understand it. If you can’t understand
it, you can’t control it. If you can’t control it, you can’t improve it”. Despite some doubts
about the benefit of business measurements in general, for example the adjustment of behav-
ior towards metric improvement not firm improvement (Spitzer, 2007), using metrics facilitates
learning and might prevent one from making the same mistakes again, especially in the software
engineering domain (DeMarco, 1982). Based on this assumption, the third research question
can be derived.

Research question 3: Which indicators are suitable to quantify diversity aspects
within application landscapes?

Assuming that suitable indicators for application landscape diversity quantification can be iden-
tified, actually calculating such indicators can be time-consuming. EAs typically consist of many
elements impeding manual indicator calculations. Therefore, the need for a tool supporting di-
versity indicator calculations arises. Beside providing performant calculations, such tool needs
to be able to handle organization-specific EA models and is ideally integrated with an existing
EAM tool. This leads to the fourth research question of this thesis.

Research question 4: How could a software architecture and respective imple-
mentation of a tool supporting application landscape diversity indicator calculations
look like?

Although enterprises form complex systems in which emergent phenomena can be observed (see
Schneider and Somers, 2006), they are also designed systems in the sense that, for example,
the Chief Executive Officer (CEO) in general has the mandate to reconfigure all elements of an
enterprise. If enterprise architects should be enabled to manage application landscape diversity
they need to be aware of available tools or mechanisms they can use to influence it. The urge
for knowledge about possible control mechanisms leads to the fifth research question.

Research question 5: By which means can enterprise architects influence the
diversity of application landscapes?

4

1. Motivation

As one can see, the five research questions derived above can be distinguished by pursuing
either an epistemic goal or a design goal (see Becker, 1995, p. 133). Epistemic goals pursue
understanding of reality. Therefore, research questions 1, 2 and 5 fall into this category. Together
they pursue the goal of developing a deeper understanding of the concept diversity in the context
of application landscapes. By contrast, design goals are goals targeting a transformation of
reality. This holds true for research questions 3 and 4. Together, they pursue the goal of designing
tool-based metric support for decisions regarding the diversity of application landscapes.

By achieving these design and epistemic goals, this thesis equally addresses academics and prac-
titioners facing the challenge of designing or analyzing the diversity of application landscapes.
For practitioners the benefits include:

∙ The provision of concrete indicators capable of quantifying diversity within application
landscapes including respective software support which can be used to support application
landscape design decisions.

∙ The provision of a list of typical consequences of application landscape diversity which can
be used to assess the adequacy of current application landscapes.

For academics concerned with diversity analysis of application landscapes this thesis provides
the following results:

∙ A discussion and positioning of various approaches to understand and measure application
landscape diversity.

∙ A better assessment of theoretical artifacts through the provision of several case studies.

1.2. Contributions of this thesis

The objective of this thesis is to contribute to the knowledge base regarding the design of appli-
cation landscapes with respect to their diversity. Therefore, decision support will be provided
in the form of a conceptual application landscape diversity framework operationalized through
concrete metrics and tool-support. The contributions of this thesis include:

C1: A conceptual complexity framework to distinguish different notions of complexity

C2: An overview about the different consequences of diversity within application landscapes

C3: A conceptual diversity framework to distinguish between different aspects contributing
to diversity

C4: A set of indicators for application landscape diversity quantification

C5: A prototypical implementation of an integrated software solution for application land-
scape diversity calculations

C6: An overview about possible mechanisms to control or influence application land-
scape diversity based on the complex system paradigm

The conceptual complexity framework consists of four different dimensions organizing eight

5

1. Motivation

different notions of complexity which can be frequently found in literature. Thereby, a classi-
fication of the existing literature especially within the EAM discipline is possible and reveals
pervasive and underrepresented complexity notions. The framework is complemented by a simple
notation to clearly explicate applied notions of complexity which can be used to avoid misun-
derstandings. Both, the framework and its notation, might help to structure discussions and
finally establish a shared understanding of complexity within the EAM domain. It serves as a
basis for forthcoming diversity considerations (see Chapter 2.4.1).

The overview about different consequences of diversity within application landscapes pro-
vides a better understanding of application landscape diversity, thus setting the stage for all
upcoming considerations. Thereby, positive as well as negative effects will be regarded equally.
Furthermore, it will be shown how application landscape diversity contributes to the perceived
complexity of application landscapes. Based on the identified consequences organization-specific
diversity goals and strategies can be derived (see Chapter 3).

The conceptual diversity framework is required to explicate the term diversity within the
context of application landscapes. It unifies previous research on diversity from a complex sys-
tems as well as ecological point of view. The framework provides a deeper understanding of
application landscape diversity by clearly distinguishing between diversity within a type and
diversity between types. Thereby, it relies on Description Logics (DLs) and organization-specific
EA meta-models. Examples from industry will demonstrate how the conceptual diversity frame-
work can be mapped to EA meta-models currently used in practice (see Chapter 4).

Based on the diversity framework, a set of indicators quantifying application landscape di-
versity is developed. Therefore, existing indicators found in practice or in EAM literature are
analyzed and complemented, for example, by an adapted indicator typically used within the
ecology discipline to assess species diversity. By applying all identified indicators to four real-
world use cases the expressiveness of these indicators is demonstrated. Finally, their utility in
terms of benefits and drawbacks is assessed by interviewing industry experts (see Chapter 5).

The prototypical software solution presented in this thesis provides an implementation of the
identified application landscape diversity indicators. The prototype consists of a calculation
component developed within a state-of-the-art open source computing environment. Metric
implementations are provided as a library which can be used by scientists as well as practitioners.
To demonstrate its integrability with existing EAM tools the calculation component is integrated
seamlessly with the HybridWiki implementation Tricia (see Matthes et al., 2011). The resulting
software solution satisfies many common EAM tool requirements (see Chapter 5.5).

To support enterprise architects in practice and to provide a foundation for future research an
overview of currently known mechanisms to control or influence application landscape
diversity is presented. Such mechanisms are primarily identified via a practitioners survey.
Based on the concept of complex dynamic systems (see Sterman, 2000) a System Dynamics (SD)
model is developed to show typically existing feedback loops within the application landscape
system influencing its diversity. By taking several perspectives of different application landscape
design stakeholders into account, such SD model seems to be able to foster shared understanding
among application landscape designers thus enhancing design decisions (see Chapter 6).

While the conceptual frameworks and overviews about diversity consequences and control mech-

6

1. Motivation

anisms provide mainly theoretical contributions, the novel indicators and prototypical tool sup-
port follow the design paradigm. To illustrate their usage and demonstrate their applicability
four comprehensive case studies are conducted within different industry sectors and companies
of varying size (see Chapter 7).

1.3. Epistemological position and research design

The research object of this thesis, i.e., decision support regarding application landscape di-
versity design, qualifies for the domain of Information Systems Research (ISR) which is fo-
cusing on Information System (IS) in organizations. According to Frank (2006), four major
schools of thought exist within the philosophy of science which are relevant for ISR: logical
positivism (see Carnap, 2003), critical rationalism (see Popper and Kiesewetter, 2003), critical
theory (see Habermas, 1981) and the Erlangen constructivism (see Lorenzen, 1974). As Frank
(2006) points out none of these schools satisfies all requirements of ISR. Nevertheless, within ISR
a plethora of research methods is accepted (Wilde and Hess, 2007) allowing for both behavioral
and design science research (Vessey et al., 2002). For this research endeavor the research goals
are motivated from practice and will therefore be approached together with industry representa-
tives if appropriate. The goal of this thesis is to develop artifacts like models, methods or metrics
which implies the application of the design science paradigm (March and Smith, 1995; Hevner
et al., 2004). According to Frank (2006), design science research builds upon two important
assumptions. First, the design of artifacts can be a sophisticated task that contributes to the
development of new knowledge on a scientific level. Second, the scientific design of artifacts is
supposed to require a specific research method. Hence, the goal of the design science paradigm is
utility (Hevner et al., 2004) which is achieved by developing innovative artifacts to solve relevant
problems by applying rigorous research methods. Therefore, it can be differentiated from the
behavioral science paradigm whose goal is truth (Hevner et al., 2004), achieved by developing
and validating theories (see Figure 1.1).

The ISR research framework depicted in Figure 1.1 integrates the complementing research
paradigms and consists of the following additional elements (Hevner et al., 2004):

∙ Environment. The environment defines the problem space in which reside the phenomena
of interest. For ISR, it is composed of people, organizations, and their technologies.

∙ Business Needs. The business needs are defined by the goals, tasks, problems, and op-
portunities as they are perceived by people within the organization. They form the basis
of ISR initiatives and can be assessed and evaluated within the context of organizational
strategies, structure, culture, and existing business processes.

∙ IS Research. ISR is conducted in two complementary phases. Behavioral science develops
and justifies theories that explain or predict phenomena related to the identified business
need. Design science builds and evaluates artifacts designed to meet the identified business
need.

∙ Knowledge Base. The knowledge base provides the raw materials from and through which

7

1. Motivation

Rigor Relevance

People

Organization

Technology

Foundations

Methodology

Environment IS Research Knowledge Base

Business
Needs

Applicable
Knowledge

Design
Science

Behavioral
Science

Artifact
development

Artifact
evaluation

Theory
development

Theory
validation

Application in the
Appropriate Environment

Additions to the
Knowledge Base

Figure 1.1.: Information systems research framework (Hevner et al., 2004)

ISR is accomplished. It is composed of foundations and methodologies, e.g. theories,
methods and models.

∙ Applicable Knowledge. During a concrete research endeavor the knowledge base is available
as applicable knowledge to the scientist.

The relevance of the problem addressed in this thesis is achieved by its motivation from practice
and a strict alignment to actual business needs. Likewise, rigor is achieved by consequently
taking the available knowledge base into account and following accepted research methods during
artifact building. In general, this thesis will follow the research approach proposed by Peffers
et al. (2007) which provides a nominal process model for doing design science research and
serves as a mental model for presenting and evaluating design science research activities within
the IS domain. The applied process follows a problem-centered initiation and is instantiated as
visualized in Figure 1.2.

As a first step within the research process visualized in Figure 1.2, the actual problem is de-
fined. As already outlined in Chapter 1.1, the problem addressed by this thesis is that there
is no satisfying decision support available for enterprise architects regarding decisions affecting
the diversity within an application landscape. Nevertheless, there is a strong need for such
decision support because the effects of high or low diversity have impact on the overall firm
performance. Furthermore, application landscape diversity seems to be crucial for innovations
but also increases IT costs. To substantiate this motivation, practitioners are surveyed to iden-
tify the need and value of decision support regarding application landscape diversity design (see
Chapter 3). Without appropriate decision support enterprise architects have to rely on their gut
feeling which might result in suboptimal solutions.

Within the next step, the objectives of a solution are defined. Therefore, a detailed review of
existing aspects contributing to diversity forms the basis for the development of the conceptual

8

1. Motivation

Communication

Several AIS

and IEEE

outlets

Evaluation

Expert

interviews

Several case

studies

Demonstration

Real-world

data

assessment and

prototypical

implementation

Design &

Development

Disparity

metric and

behavior

explaining

model

Define

Objectives of a

Solution

Develop

metrics, tool

support and

dynamic

implications

Identify

Problem &

Motivate

Decision

support for AL

diversity

Problem-

Centered

Initiation

Objective-

Centered

Solution

Design and

Development

centered

initiation

Client/

Context

Initiated

Figure 1.2.: Overall research approach based on Peffers et al. (2007)

diversity framework (see Chapter 4). This framework is used to derive the requirements for
indicators quantifying diversity within the context of application landscapes. Furthermore, by
considering the application landscape as a complex adaptive system additional requirements are
derived which ask also for a behavior explaining model (see Chapter 6).

Subsequently, the actual design of concrete diversity indicators is performed based on avail-
able indicators within the EAM field and by adopting appropriate indicators from other fields
like ecology (see Chapter 5.4.4). To enable enterprise architects to calculate these indicators
for organization-specific application landscapes they are responsible for, a tool capable to do
these calculations is developed. Thereby, the architecture of an existing EAM tool, i.e., Hybrid-
Wikis (Matthes et al., 2011), is extended to allow performant calculations. In parallel, a system
dynamics model is developed based on dynamic hypotheses derived from literature.

The demonstration of the developed indicator and tool support artifacts is accomplished by
applying both to four real-world application landscape descriptions. Thereby not only their ap-
plicability is demonstrated but also their superior features compared to previously used solutions
are shown. By conducting interviews with respective enterprise architects cases in which the
novel indicators seem to be useful are identified.

To evaluate the artifacts described in this thesis several expert interviews are conducted. By
this means, the novel indicator approach to quantify diversity as well as the developed system
dynamics model are evaluated. In addition, the application of the indicator artifacts in four
case studies is observed and analyzed. These case studies take place in companies from different
industry sectors and cover mid-sized as well as large and globally operating companies (see
Chapter 7).

Finally, this thesis communicates the research results to scientists and practitioners. In addition,
several intermediate results have already been published in academic journals or presented at
academic as well as practitioners conferences. The main publications relevant for this thesis
include:

9

1. Motivation

∙ The Pattern-based Design Research method which is used to identify complexity and
diversity metric patterns in practice has been presented at the 8𝑡ℎ Design Science Research
in Information Systems and Technologies Conference (DESRIST) in 2013

∙ An initial version of the idea how the specific enterprise environment impacts application
landscape design also with respect to diversity has been presented at the 5𝑡ℎ Complex
Systems Design and Management Conference (CSD&M) in 2014

∙ The complexity framework has been presented at the 20𝑡ℎ Americas Conference on
Information Systems (AMCIS) in 2014

∙ Drivers and consequences of application landscape complexity have been pub-
lished in the Zeitschrift für Conrolling Vol. 26 No. 12 in 2014

∙ An overview about complexity and diversity metrics has been presented at the 48𝑡ℎ

Hawaii International Conference on System Science (HICSS) in 2015

∙ The system dynamics model has been presented at the 12𝑡ℎ International Conference
on Wirtschaftsinformatik (WI) in 2015

∙ The disparity indicator has been presented at a dedicated workshop at the 8𝑡ℎ Enterprise
Architecture Management Congress (EAMKON) in 2015

∙ The adolescence indicator has been submitted to the 9𝑡ℎ Multi-Conference
Wirtschaftsinformatik (MKWI) in 2016

By following the research process proposed by Peffers et al. (2007) the more general guidelines
for conducting design science research proposed by Hevner et al. (2004) are also respected. To
provide a more detailed overview about used research methods in this thesis Table 1.1 lists the
used research methods for each contribution and links them to the previously stated research
questions.

1.4. Outline of this thesis

This thesis is structured in eight chapters. The main part of the thesis is organized in three
parts, including diversity perceptions, diversity quantification and diversity dynamics.
These parts are illustrated in Figure 1.3 and organize the single chapters of this thesis. Thereby,
the first chapter provides an introduction to the topic, motivates the problem addressed in this
thesis from both a practical and a theoretical point of view, explains the research approach, lists
all contributions to the knowledge base and outlines the structure of this thesis.

In Chapter 2 (foundations and related work), the theoretical foundation for the research
presented in this thesis is established. This includes a presentation of the body of knowledge
regarding complex adaptive systems, the resource-based view of the firm and its application
to IT resources and Enterprise Architecture Management (EAM). Furthermore, related work
regarding IT standardization and complexity and diversity of enterprise architectures is identified
by conducting a structured literature review according to the guidelines of Webster and Watson
(2002). To categorize the results, a conceptual complexity framework is first developed and then

10

1. Motivation

Contribution Applied research methods
Research
question

C1: Conceptual differentia-
tion of existing notions of
complexity

Argumentative-deductive reasoning
(see Wilde and Hess, 2007)

RQ 1

C2: Overview about differ-
ent consequences of applica-
tion landscape diversity

Quantitative cross sector analysis
(see Wilde and Hess, 2007)
Focus group interviews (see Calder, 1977)

RQ 2

C3: Conceptual framework
for application landscape di-
versity

Literature analysis (see Webster and Wat-
son, 2002; vom Brocke et al., 2009)

RQ 1

C4: Indicators for appli-
cation landscape diversity
quantification

Goal-Question-Metric
(see Basili and Weiss, 1984)
Qualitative cross sector analysis
(see Wilde and Hess, 2007)
Expert interviews (see Bogner et al., 2009)

RQ 3

C5: Prototypical implemen-
tation of application land-
scape diversity indicators

Design science research
(see Hevner et al., 2004; Peffers et al., 2007)

RQ 4

C6: Overview of mecha-
nisms to influence applica-
tion landscape diversity

Quantitative cross sector analysis
(see Wilde and Hess, 2007)
Design science research
(see Hevner et al., 2004; Peffers et al., 2007)

RQ 5

Table 1.1.: Contributions and applied research methods

applied. Thereby, currently underrepresented notions of complexity are identified within the
EAM domain to substantiate the motivation of this thesis. In addition, it provides a common
language for research activities described in upcoming chapters.

In Chapter 3 (diversity perceptions), the link between two prevalent concepts—complexity
and diversity—is established. Therefore, the drivers and consequences of application landscape
complexity are identified by interviewing experts from industry. Then, in addition to the theoret-
ical considerations which already consider diversity as an essential property of complexity (Page,
2011), industry experts are surveyed regarding the drivers and consequences of application land-
scape diversity which allows their comparison with drivers and consequences of application
landscape complexity. Furthermore, goals are identified, which are currently the reason why
companies increase or decrease application landscape diversity. By assessing the relevance of
these goals the relevance of this thesis is again substantiated.

11

1. Motivation

Chapter 1

Introduction

Chapter 2

Foundations & Related work

Chapter 4 & 5

Diversity

quantifications

Chapter 3

Diversity

perceptions

Chapter 6

Diversity

dynamics

Chapter 7

Evaluation

Chapter 8

Conclusions & Future research

Figure 1.3.: Outline of the thesis

In Chapter 4 (diversity framework), a detailed conceptual framework describing different as-
pects contributing to diversity is developed based on existing literature. To substantiate the
diversity understanding within the context of application landscapes the general framework is
mapped to the concepts used to describe application landscapes. Therefore, a clear understand-
ing of EA elements and classes of EA elements is established based on common set theory and
Description Logics (DLs). By using different real-world examples, concrete instantiations of the
diversity framework are described.

In Chapter 5 (diversity quantification), appropriate metrics are selected to quantify the differ-
ent aspects belonging to the diversity framework. For these, benefits and drawbacks are assessed
via expert interviews. To quantify the disparity aspect—an aspect currently neglected by EAM
literature—a metric commonly used by ecologists is used and adapted to be applicable also for
the context of application landscapes. In addition, a software solution is presented which imple-
ments the identified metrics and can be integrated with an existing EAM tool. To demonstrate
the usefulness of both metrics and software support application landscape descriptions of four
different companies are used.

In Chapter 6 (diversity dynamics), the prevalent notion of structural complexity is comple-
mented by a dynamical view (see Sterman, 2000). Therefore, typically existing feedback loops
within the application landscape system which influence the degree of IT standardization are
identified from literature. Based on these dynamic hypotheses a system dynamics model is de-
veloped visualizing their interactions. By several expert interviews the validity of the model is
assessed. The model helps enterprise architects to holistically understand the implications of
their diversity decisions and can also serve as means for communication with different stake-
holders.

12

1. Motivation

In Chapter 7 (evaluation), the previously developed artifacts, i.e., diversity indicators, tool
support and system dynamics model, are evaluated to assess their applicability and utility. The
evaluation takes place in cooperation with four different companies. These companies belong
to different industry sectors, e.g., financial services and production, and vary in size. In each
company a case study is conducted in which the artifacts are adapted to organization-specific
needs. The successful application of the developed artifacts demonstrates their usefulness.

In Chapter 8 (conclusion and outlook), the contributions of this thesis are summarized and
critically reflected. Thereby, possible limitations are identified and open questions for future
research are proposed.

13

14

CHAPTER 2

Foundations and related work

“It’s all about fundamentals. You’ve got to get

fundamentals down because otherwise the

fancy stuff isn’t going to work.”

Randy Pausch, The Last Lecture

To lay down the foundation of this thesis the research results of several related disciplines are
outlined in this chapter. First, an introduction to system theory is given focusing on complex
systems and different notions of complexity found in literature. Then, Enterprise Architecture
Management (EAM)—a discipline trying to improve Business-IT alignment—is outlined in par-
ticular with respect to related work on IT standardization. Due to the fact that IT assets are
viewed as valuable resources in this thesis the resource-based view of the firm is also introduced.
Special emphasis is directed to the notion of digital options created by IT resources. Finally, re-
lated work on complexity and diversity of enterprise architectures is summarized and categorized
using a self-created framework.

2.1. Complex adaptive systems

Complexity—an emergent property of a system—can be found in various different research
areas (Mainzer, 2007). To lay the foundation for this thesis a short overview about general
systems theory (see Bertalanffy, 1968) as well as complex systems theory (see Weaver, 1948)
is provided. Furthermore, the fundamentals of socio-technical systems are reviewed because an
application landscape (as defined in Chapter 1.1) falls into this category of systems.

15

2. Foundations and related work

2.1.1. General systems theory

The idea of a theory for systems has first been formulated by Bertalanffy (1968). He states that
“there exist models, principles, and laws that apply to generalized systems or their subclasses, ir-
respective of their particular kind, the nature of their component elements, and the relationships
or "forces" between them. It seems legitimate to ask for a theory, not of systems of a more or
less special kind, but of universal principles applying to systems in general” (Bertalanffy, 1968,
p. 32). But to apply such theory of systems we need to know what a system is. Unfortunately,
there is no consistent definition established among the different research communities. Never-
theless, systems are used to describe problems in various disciplines, e.g. social sciences (see
Luhmann, 1984) and politics (see Waltz, 2010). For this thesis, the following definition of a
system will be used which is in line with the perceptions of Wiener (1965); Bertalanffy (1968);
Bunge (1979); Luhmann (1984) and Bossel (2004a).

Definition: System
A system is a set of elements and their interrelations which are delimited by their
environment. Such elements can be tangible or intangible components forming the
system by their interactions which address a common goal. A system is considered to
be open if interaction with the environment can occur.

According to this definition, Figure 2.1 depicts the different aspects of a system. In the center,
the different elements of a system are indicated by boxes. These elements interact with each other
via feedback. Together, system elements and their feedback patterns form the structure of a
system. The system boundary indicated by a bold line separates the system from its environment
and therefore from other systems. As indicated by arrows, the environment can have various
different impacts on a system. Likewise, the system itself can impact its environment.

E2

E1

E4 E5

E3

Environment

System
Elements

Feedback

System

boundary

Impact Impact

Figure 2.1.: Constituents of systems based on Bossel (2004a, p. 36)

According to Luhmann (1984, p. 15), general system theory and their interdisciplinary efforts
might form a paradigm shift in sense of Kuhn (1962). Based on the foundation of general systems
theory many other research streams evolved. These include, for example, cybernetics (see Ashby,
1956; Beer, 1967; Wiener, 1965) and complex systems theory (see Weaver, 1948) whereas the

16

2. Foundations and related work

latter laid the foundation for topics like self-organization, emergence and autopoiesis. Merali and
McKelvey (2006) argue that complexity science might be able to initiate a paradigm shift also
in the field of information systems research. The following section will introduce the concepts
of complex systems theory relevant for this thesis.

2.1.2. Complex systems theory

In the glamor of various success stories complexity science is still an interdisciplinary research
area without a commonly agreed definition of complexity (Johnson, 2007). Therefore, it is not
surprising that different views of complexity emerged over time. To get a concise overview about
different notions of complexity a multi-dimensional framework unifying the most prevalent views
on complexity is developed in this section (see also Schneider et al. (2014)). Explicating one’s
notion of complexity can avoid misunderstandings and identify underrepresented notions within
a specific field of research.

Organized and disorganized complexity

The idea of complexity within systems goes back to Weaver (1948). He was the first distin-
guishing between simple systems, systems of organized complexity and systems of disorganized
complexity. Thereby, problems or systems of simplicity are mostly concerned with few variables
which applies, for example, to machines like radios or automobiles. Thus, respective questions
about such systems can be answered with standard maths. By contrasts, problems of disorga-
nized complexity focus on a very large amount of variables which qualify for the application of
probability theory and of statistical mechanics. The following two examples given by Weaver
(1948) explain the difference.

Example 2.1: Simple systems. Imagine a single ivory ball on a billiard
table. A simple problem is analyzing and predicting the motion of the ball
as it moves about on the table.

Predicting the movement in such scenario is quite simple. Not many variables need to be taken
into account and standard maths can be applied. However, this is different in next example.

Example 2.2: Disorganized complex system. Consider a large billiard
table with millions of balls rolling over its surface colliding with one another
and with the side rails.

17

2. Foundations and related work

In order to predict the movement of any single ball, a large amount of variables needs to be
tracked. Although the detailed history of each ball’s movement might not be traceable, certain
important questions can be answered by using probability theory and of statistical mechanics:

∙ On the average how many balls per second hit a given stretch of rail?

∙ On the average how far does a ball move before it is hit by some other ball?

∙ On the average how many hits per second does a ball experience?

The third kind of systems distinguished by Weaver (1948) are systems of organized complexity.
Regarding the number of variables, these systems form a middle region between the other two.
In addition, problems within such systems, as contrasted with the disorganized situations with
which statistics can cope, show the essential feature of organization. Such questions include, for
example:

∙ Why does salt water fail to satisfy thirst?

∙ Why does the amount of manganese in the diet affect the maternal instinct of an animal?

∙ Why is one chemical substance a poison when another, whose molecules have just the same
atoms but assembled into a mirror-image pattern, is completely harmless?

For problems like these, statistical methods do not hold the key. They involve dealing simulta-
neously with a sizable number of factors which are interrelated into an organic whole. The next
example illustrates these aspects.

Example 2.3: Organized complex system.
On what does the price of wheat depend?

To answer this question, a substantial number of relevant variables needs to be taken into account
and they are all interrelated in a complicated, but nevertheless not in an arbitrary fashion.

Qualitative and quantitative complexity

Qualitative complexity refers to the qualitative evaluation of a certain attribute or variables of
a system. In such case, the system or problem under consideration is considered to be complex
implying a set of possible other characteristics or to be not complex, i.e. simple. A good example
for a qualitative notion of complexity is the “El Farol Problem” described by Arthur (1994).

Example 2.4: Qualitative complexity and the El Farol Problem. In
this multiple-stage game, participants have to decide whether or not to visit

18

2. Foundations and related work

a bar in each round. All “players” prefer to enjoy a drink at the bar rather
than staying at home, but the bar has a maximum capacity of seats. For
the players, it is less enjoyable to attend an overcrowded bar than staying
at home. In each round, each player has to decide to attend the bar or not.
After the round it can be determined whether he/she is better off doing so.

In this artificial game—which is actually very close to many real world situations—the success of
each participant’s decision depends on the decisions of all other players. Remembering decisions
of others will not provide new insights for the next round since the participants’ decisions might
change in each round. Therefore, this problem is considered to be a complex problem. The type
of complexity is independent from the number of players, the number of rounds or the memory
capacity of players. A qualitative notion of complexity is also used by researchers studying
complex system phenomena such as self-organization (see Kauffman, 1993), emergence (see
Anderson et al., 2002) or dynamical systems (see Gardner, 1970). Thereby, the authors attribute
complexity to the system under consideration without trying to calculate how complex a system
is.

The qualitative notion of complexity is also prevalent among researchers from the fields of
cybernetics. Achievements there include, for example, Ashby’s law or requisite variety. In this
law it is stated that only “variety can destroy variety” (Ashby, 1956, p. 207). This leads to
the insight that every good regulator of a system must have a model of that system (Conant
and Ashby, 1970) and have at least equal variety. Likewise, Beer (1967) founded the field of
management cybernetics by building the Viable System Model (VSM) based on Ashby’s law.
Thereby, a viable system is organized in a way as to meet the demands of surviving in a changing
environment. As visualized in Figure 2.2, it consist of five interacting subsystems, operation,
coordination, control, planning and identity, and has been applied in various contexts, e.g.
project management (see Britton and Parker, 1993), organizational modeling (see Brocklesby
and Cummings, 1996) and enterprise architecture management (see Buckl et al., 2009).

∙ System one (operation) contains the primary activities of the system under consideration,
which directly interact with the environment. Entities need to be viable by them self.

∙ System two (coordination) includes the information channels and bodies, which ensure
that the primary activities of system one work in coordination. Here, self-organization
occurs.

∙ System three (control) represents the structures and controls, which establish the re-
sponsibilities and rights to maintain the resource allocation of system one.

∙ System four (planning) is concerned with a holistic and future-oriented perspective to
support strategic decision making.

∙ System five (identity) is responsible for managing the overall policy decisions. It should
provide clarity about the overall direction, values, and purpose of the system under con-
sideration and serves as a mediator between systems three and four.

In addition to the qualitative notion of complexity, other researchers apply a quantitative notion

19

2. Foundations and related work

System 1

Operation

System 2

Coordination

System 3

Control

System 4

Planning

System 5

Identity

Present

Environment

Future

Environment

Figure 2.2.: The viable system model according to Beer (1967)

of complexity. For example, a classic measure of complexity has been proposed by Kolmogorov
(1963). It describes the length of the shortest computer program capable of generating a given
string. Another well-known quantitative measure is entropy (Shannon, 1948) which can be
understood as a measure for uncertainty in a message. Other approaches have been developed
to measure (computing) complexity as well, for instance, based on the number and variety
of both components and their interactions within a system (Schneberger and McLean, 2003).
In computer science the complexity of an algorithm is usually determined as a function of its
input length. Algorithms are classified according to their asymptotic behavior for large inputs
using Landau notation (Bachmann, 1894). To determine algorithmic complexity, the number of
calculations or the amount of memory consumption is typically of interest.

Subjective and objective complexity

Another way to distinguish different notions of complexity is to demarcate the subjective from
the objective notion. Objective complexity refers to a notion of complexity that is independent
from the observer of a system. Complexity is considered to be a property of the system under
observation, much in the same way as mass or volume of a physical body (Fioretti, 1999). Such
objective views are prevalent, for example, in the domain of qualitative complexity where system
properties like emergence (see Anderson et al., 2002) are investigated. The same applies to many
complexity metrics as their results are free of individual influence (Landauer, 1988).

However, complexity can also be considered to be a property of the relationship between a system
and its observer (Rosen, 1977). If an observer perceives a system as complex, his/her mental
model of the system cannot explain his/her observations. In contrast to the objective notion of
complexity, the subjective notion requires an individual observing the system. Researchers define
subjective measures, for example, based on mental categories of the observer (see Fioretti, 1999)
or as being composed of other objective measures (Flückiger and Rauterberg, 1995, csee[).

20

2. Foundations and related work

Structural and dynamic complexity

Another important notion of complexity is structural complexity, which is also known as com-
binatorial or detail complexity (Sterman, 2000). It covers a pattern of system components, i.e.
the number of variables as well as the cause-and-effect-relationships between them. A struc-
tural notion of complexity is employed, for example, in network research where cyclic groups,
spanning sub-graphs and extended connectivity play an important role (see Bonchev and Buck,
2005). The two well-known measures of complexity, i.e. Kolmogorov complexity and Shannon
entropy, also apply a structural notion of complexity.

In contrast, dynamic complexity refers to the observation of multifaceted interdependencies
as well as changes of interactions between variables of a system. According to Sterman (2000,
p. 21), “dynamic complexity arises from the interactions among the agents over time”. In complex
(dynamic) systems, the impact of actions often cannot be reversed; therefore a comparison of
system states of the past and the present is rather difficult. With several interacting feedbacks,
determining an exclusive effect of a certain variable is hardly possible because it is likely that
other variables change as well. As a consequence, system behavior interpretation is usually
complicated. Additionally, delays in cause and effect have to be considered which can result
in system instability and influence the dynamics of a system. Dynamic complexity arises, for
example, when systems are heavily interacting with each other and the natural world or if actions
influence future choice options (Sterman, 2000). The dynamic complexity notion has also been
applied in the socio-economic discipline (Forrester, 1961).

2.2. Enterprise architecture management

When referring to Enterprise Architecture Management (EAM), it is necessary to distinguish
between the object under consideration, i.e. an enterprise architecture, and a respective manage-
ment approach called enterprise architecture management or enterprise architecting. To form an
unambiguous foundations of used terms, both will be outlined in the next sections. In addition,
the main goal of EAM, i.e. achieving Business-IT alignment, will be briefly explained. Finally,
related work on the topic of IT standardization and diversification is described as it forms the
basis of application landscape diversity management.

2.2.1. Enterprise architecture

The idea of documenting the an enterprise architecture dates back to the 1980s when Zachman
(1987) published the first EA framework. Thereby, the goal of an enterprise architecture is—as
indicated by its name—to describe the architecture (system structure) of an entire enterprise.
The major differentiator is that it tries to integrated previously existing modeling approaches
used in different organizational units separately. Thereby, it addresses, for example, business as
well as IT related aspects. Up to now, literature provides several different definitions for enter-
prise architectures. Extensive surveys regarding different definitions of EA have been conducted,
for example, by Schönherr (2008) and Kotusev et al. (2015). For example, a popular definition
has been developed by the MIT Center for Information System Research.

21

2. Foundations and related work

The enterprise architecture is the organizing logic for business processes and IT
infrastructure, reflecting the integration and standardization requirements of the
company’s operation model (Ross et al., 2006, p. 9).

Many other enterprise architecture definitions (see Winter and Fischer, 2007; Buckl et al.,
2007) are build upon the ISO/IEC/IEEE 42010 standard defining architectural descriptions
of software-intensive systems.

[An enterprise architecture is the] fundamental organization of a system, embodied
in its components, their relationships to each other and the environment, and the
principles governing its design and evolution (International Organization for Stan-
dardization, 2007).

Accordingly, the definition of an enterprise architecture used throughout this thesis is built upon
the ISO standard and related work (International Organization for Standardization, 2007; Buckl,
2011).

Definition: Enterprise Architecture (EA)
EA is the fundamental conception of the organization in its environment, embodied in
its elements, their relationships to each other and to its environment, and the principles
guiding its design and evolution.

It is important to mention, that “every system and organization has an architecture” (Rechtin,
1999, p. 175) no matter whether it is documented or not. If such architecture should be docu-
mented, a layered approach proved to be useful (Winter and Fischer, 2007; The Open Group,
2011). Because literature not yet agreed upon the amount of layers used to describe an EA or
their specific names, one specific approach suitable for this thesis is chosen. As visualized in
Figure 2.3, the approach presented by Buckl (2011) consists of three layers. These include the
business & organization layer, the application & information layer and the infrastruc-
ture & data layer. Displayed vertically, it also contains cross-cutting aspects including visions
& goals, strategies & projects, and principles & standards, representing elements which
are not part of, but exert influence on any of the elements organized in layers. In addition,
abstraction layers are used to encapsulate functionalities of the underlying layer or cross-cutting
aspect. Besides the different elements grouped into layers and cross-cutting aspects, the relation-
ships between these elements are essential because they reflect the alignment between business
and IT.

Based on this conceptual understanding of an EA and complex systems (see Chapter 2.1.2)
the preliminary definition of an application landscape provided in Chapter 1.1 can be further
elaborated. In addition, an overview of typical elements of an application landscape can be
found in Chapter 5.1.

Definition: Application landscape
The application landscape covers all components of the application and infrastruc-
ture layer as well as their relationships. Furthermore, people directly interacting with
these components by using or designing them also belong to the extended application
landscape system.

22

2. Foundations and related work

S
tr

a
te

g
ie

s
 &

 P
ro

je
c
ts

P
ri
n
c
ip

le
s
 &

 S
ta

n
d
a
rd

s

Business Capability

Business & Organization

Business Service

Application & Information

Infrastructure Service

Infrastructure & Data

V
is

io
n
s
 &

 G
o
a
ls

Q
u
e
s
ti
o
n
s
 &

 K
P

Is

Figure 2.3.: Layered approach to EA documentation according to Buckl (2011)

Embodied in the enterprise architecture the application landscape forms an open system which
is influenced by the rest of the organization, i.e. its environment, and simultaneously impacts the
organization. The goal of the function or process managing an Enterprise Architecture (EA) is,
among others, to align these mutual impacts by considering the systems behavior and changing
its structure if required. The next section provides an overview about other goals of EAM as
well as typical approaches.

2.2.2. Enterprise architecture management and business-IT alignment

Within Enterprise Architecture Management (EAM) research, a great diversity regarding goals,
concepts and used languages exists. For example, Schelp and Winter (2009) analyze different
language communities within the context of EAM research. Their analysis framework distin-
guishes between a meta-model which is used to describe an EA and a procedure model specifying
how an EA is managed. The research framework is used to analyze the contributions of seven
major academic groups. As a result, the authors conclude that most of the research groups
constitute local language communities with a self-developed language and method. The same
diversity can also be found in practice where organizations pursue different goals with their EAM
function (see Buckl et al., 2010) and apply different methods and visualizations (Buckl et al.,
2008; Matthes et al., 2015). In addition, this diversity is reflected by the vast amount of EAM
frameworks developed by researchers (see Frank, 2002; Wegmann, 2002; Aier et al., 2009; Buckl
et al., 2010), practitioners (see Lankhorst, 2009; Niemann, 2005; Schekkerman, 2008; Keller,
2012; Hanschke, 2013), public institutions (see MoD, 2008; DoD, 2009) and standardization
bodies (see The Open Group, 2011). Given the fact that no agreed-upon definition of EAM has
been developed until now the definition of Buckl (2011) will be used because it is in line with
the understanding of an enterprise as complex system (Buckl et al., 2009).

23

2. Foundations and related work

Definition: Enterprise Architecture Management
Enterprise Architecture Management (EAM) is a continuous and self maintaining man-
agement function seeking to improve the alignment of business and IT and to guide the
managed evolution of an (virtual) enterprise. Based on a holistic perspective on the en-
terprise furnished with information from other enterprise-level management functions
it provides input to, exerts control over, and defines guidelines for these enterprise-level
management functions (Buckl, 2011).

According to this definition, EAM functions have to regard the enterprise as a whole and form
a continuous approach targeting at an improvement of the alignment of business and IT. As
visualized in Figure 2.4, EAM functions need to exchange data and interact with other enterprise
management disciplines like demand, portfolio and strategy management while acting like a
“glue” (Buckl et al., 2009). In addition, the definition given above emphasizes that the EAM
function should guide the managed evolution as defined by Murer et al. (2008). The idea here
is not to set specific goals for each project within an enterprise. Instead, an evolution channel
should be defined which ensures that each modification to the EA results in both agility and
business value gains. This is also in line with viewing the enterprise as complex system in which
the absence of central control is always a feature (Ladyman et al., 2013). By refraining from
putting an EAM function in place to act like a central control for the enterprise architecture
other management disciplines like demand and project management keep their influence on the
actual design.

If an organization decides to implement an EAM function, different values can be achieved. For
example, Niemi (2008) analyzed existing literature on EAM benefits and validated identified
benefits with focus group interviews with practitioners. Thereby, the author identified at least
27 different benefits an organization can get from executing EAM. Figure 2.5 categorizes these
benefits according to being measurable and attributable to EAM.

A complementary study on the question how EAM leads to organizational benefits has been
conducted by Tamm et al. (2011). Therein, four different benefit enablers are identified: or-
ganizational alignment, information availability, resource portfolio optimization and resource
complementarity. For example, the organizational alignment enabler covers benefits like inte-
grated view of the enterprise and improved communication. The information availability enabler
covers aspects like shared reference information and improved understanding of resources and
processes. The resource portfolio optimization enabler covers aspects like discovery and elimi-
nation of redundancy. The resource complementarity enabler consists of aspects like improved
resource integration and enhanced interoperability. The respective theory developed by Tamm
et al. (2011) distinguishes between benefits that can flow from EAM directly and benefits that
can be achieved only through the implementation of the EA plans, i.e., from an EA-guided op-
erating platform. Furthermore, the extend to which these four benefit enablers can be realized
depends on the EA quality which can be assessed, for example, by the following aspects: Ap-
propriate scope-detail-cost balance, appropriate CIO skills, clear and agreed-upon architecture
principles, documentation tools, effective project management, skilled architecture team, suffi-
cient (on-going) funding and stakeholder acceptance & involvement. Given this general overview
about EAM and its potential benefits, in the following, the main goal of EAM, i.e. fostering
business-IT alignment, is explained in more detail.

24

2. Foundations and related work

Updated planned

landscape

Demand

Management

IT Architecture Management

Identify calls

for action

Strategy and

Goals Management

Project Life Cycle

Define and

describe initiative

Fine-tune and plan

initiative

Prioritise and

approve initiative

Implement and control

initiative

Begin operation and

close initiative

Planned and

to-be landscapes

Working document

of planned landscape

If needed

alignment

Updated planned

landscape
Planned landscape

(final)Offering architectural patterns

and solution patterns

Guidelines

Initiative

ticket
If needed

alignment

Initiative

approved

Guidelines
Project

plan

M J J A S O N D

1

2

3

4

5

Document

contribution

Check

conformance

Reporting, adjusting

Ticket

Database

A <<Subsystem>>

Web-Client (Browser)

A <<Subsystem>>

Rich-Client (Application)

A <<Subsystem>>

Web-Client (Browser)

A <<Component>>

Presentation Logic

A <<Component>>

Presentation Logic

A <<Component>>

Business Logic

I <<Subsystem>>

Web Server

A <<Component>>

Static Content

I <<Subsystem>>

Application Server

A <<Component>>

Presentation Logic

A <<Component>>

Business Logic

I <<Component>>

Database Connector

I <<Component>>

System Interface

If needed

alignment

Project Portfolio Management

Incorporate

guidelines and

evaluation

criteria

Incorporate into

portfolio

Evaluate concerning

strategies and objectives,

plan and coordinate

Plan and

prioritise

Synchronization Management

Incorporate

into

synchroplan

Adjust with

synchroplan

Detail

synchroplan

Monitor, coordinate &

control initiatives

Enterprise Architecture Management

Delivery of

planned and as-

is landscapes

Document

changes in

landscape

Coordinate with other

initiatives and to-be

landscape

Transfer to planned

landscape

Incrementally detail

landscape changes

Transfer planned to

as-is

Figure 2.4.: The EAM function acting as a glue according to Buckl et al. (2009)

According to Hevner et al. (2004, p. 78) business-IT alignment is “central to the IS discipline”.
Various studies showed that business-IT alignment affects profit, productivity, sales growth and
reputation (Chan et al., 1997, 2006; Oh and Pinsonneault, 2007; Tallon, 2007; Preston and
Karahanna, 2009). Furthermore, “sound business-IT alignment is a key prerequisite for business
processes to be supported effectively by information technology, especially in large organiza-
tions” (Murer et al., 2008, p. 163). This includes, for example, that business requirements
towards IT are defined in a systematic way, that IT departments understand and accept these
requirements and that they deliver IT solutions fulfilling these requirements. Enterprise Ar-
chitecture Management (EAM) becomes essential to ensure business-IT alignment because the
effort for operating and maintaining a growing application landscape may grow even faster than
linear with the number of applications (Murer et al., 2008, p. 163). Therefore, the following tasks
need to be carried out: requirements need to be prioritized system-wide according to the busi-
ness and IT strategy, projects need to be defined with clear not-overlapping scopes and ensuring
that each project contributes to the target architecture envisioned by the architects and stake-
holders. It is important to note that “alignment evolves into a relationship where the function of
IT and other business functions adapt their strategies together” (Luftman, 2000). Furthermore,
achieving business-IT alignment requires, for example, support from senior management, strong
leadership, appropriate prioritization and thorough understanding of both business and technical
environments. The holistic and structured approach of EAM is one means to achieve business-IT
alignment (Winter and Fischer, 2007; Wegmann, 2002; Zarvic and Wieringa, 2006).

25

2. Foundations and related work

Indirect Strategic

Hard Intangible

Improved

alignment with

partners

Improved

customer

orientation

Improved risk

management

Increased

market value

Improved

asset

management

Improved

innovation

Improved staff

management

Increased

quality

Improved

business

processes

Improved

management of

IT investments

Increased

efficiency

Reduced

complexity

Improved

alignment to

business

strategy

Improved

change

management

Improved

strategic

agility

Improved

business-IT

alignment

Improved

communication

Increased

stability

Increased

economies of

scale

Increased

reusability

Reduced

costs

Increased

interoperability

and integration

Increased

standardization

Shortened

cycle times

Evolutionary EA

development &

governance

Provides a

holistic view of

the enterprise

Improved

decision

making

Weakly

Strongly

A
tt

ri
b

u
ta

b
le

 t
o

 E
A

Non-quantifiable Quantifiable
Measurable

Figure 2.5.: Categorized EAM benefits according to Niemi (2008)

2.2.3. IT standardization and diversification

IT standardization is a prevalent means in Enterprise Architecture Management (EAM). After
decades of uncontrolled growth a standardized IT landscape forms the first level of maturity
in EAM endeavors (Ross et al., 2006). Especially literature from practitioners presents IT
standardization as a core task of enterprise architects (Niemann, 2005; Keller, 2012; Hanschke,
2013). The use of company-wide standards to manage IT resources is also advocated by promi-
nent standardization bodies (The Open Group, 2011). The goal of EA standards is to guide
IT departments and business units in their technical choices and project-level decisions related
to data and application design (Boh and Yellin, 2007). Cost reduction through economies of
scale (DeSanctis and Jackson, 1994) is the most prominent and frequently mentioned expectation
of IT standardization activities. Another important reason for standardization is interoperabil-
ity which is especially required when new business models should be implemented requiring
integration among business units (Tanriverdi, 2005). However, little empirical research has
been conducted to verify these claims. On the contrary, IT standardization can also result in
drawbacks, e.g., it restricts business units resulting in less optimal IT solutions (Ross et al.,
2006; Boh and Yellin, 2007) and hinders exploratory activities. In addition, organizations need

26

2. Foundations and related work

to commit substantial amounts of time and resources to create, implement, and maintain EA
standards (Kim and Everest, 1994). To cope with a changing environment, organizations need
redundant processes and local autonomy, i.e. regional deviations from standards have to be
tolerated (Bossel, 2004a; Schneider and Matthes, 2014a). Hence, enterprise architects face the
challenge of defining an appropriate degree of diversity within the IT landscape to provide ap-
propriate solutions for business departments while keeping costs for running the IT in mind (see
Murer et al., 2008). In general, the ability to pursue disparate things at the same time is called
ambidexterity (Gibson and Birkinshaw, 2004) which in this context requires to achieve both
IT standardization and IT differentiation (Gregory et al., 2015). This will be referred to as
application landscape landscape diversity management. According to the enterprise ecological
adaptation school of thought (Lapalme and de Guerre, 2013), EA must contribute to fostering
innovation and enterprise-in-environment co-evolution; hence managing diversity is an impor-
tant concern that goes beyond cost reduction. It is important to note that EA standards can be
set to manage different kinds of IT resources. For example, Boh and Yellin (2007) distinguish
the following types:

1. EA standards for physical IT infrastructure management

2. EA standards for human IT infrastructure management

3. EA standards for integrating business applications

4. EA standards for enterprise data integration

The first category considers IT infrastructure elements, i.e underlying technologies required to
run business applications such as operating systems, database management systems or web
servers. The second category regards standards to manage human IT resources, e.g., organi-
zational IT skills, expertise, competencies and knowledge. The third category targets at the
standardization of the application portfolio and the fourth category on the definition of stan-
dards for data elements. The focus of this thesis is on technical elements of the enterprise
architecture. This includes the first as well as the third category of standards mentioned by Boh
and Yellin (2007).

Up to now, the consequences of standardizing IT are not fully understood. For example, there
is are no longitudinal comparative studies available in which the impact of standardization on
costs is measured. Furthermore, EAM literature uses inconsistent terms when considering the
diversity within application landscapes and lacks a unified conceptual understanding of diversity
(see Chapter 5.2). Apart from that, technology diversification has been identified as a driver for
business growth (Granstrand and Oskarsson, 1994). Nevertheless, it remains unclear in how far
this holds also true for the diversification of IS or IT components.

2.3. Resource-based view of the firm

A major research question for the economics discipline and especially the strategic management
discipline is how companies can create competitive advantage. A popular and often applied
theory—the resource-based view of the firm (Wernerfelt, 1984)—tries to explain competitive
advantage with superior resources a company has access to. When managing IT resources with

27

2. Foundations and related work

respect to their diversity impacts on competitive advantage cannot be ruled out. Therefore, this
chapter describes the resource-based view as well as its implications for an enterprise’s applica-
tion landscape. Furthermore, the concept of organizational agility (see Tallon and Pinsonneault,
2011)—a capability allowing enterprises to react on a changing environment—is introduced be-
cause it explains why enterprises need to perform exploitative (e.g. IT standardization) as well
as exploratory (e.g. IT differentiation) tasks whereas both require managing diversity.

2.3.1. Competitive advantage based on superior resources

Wernerfelt (1984) coined the term of the resource-based view of the firm—a theory relating
competitive advantage to superior resources the company has access to. Elements of the theory
can also be found in earlier works, e.g. in Penrose (1959). In contrast to other theories at that
time, the resource-based view theory shifts the focus from the product side of a company to the
resource side. The resource perspective seems to provide a basis for addressing some key issues
in the formulation of a strategy for diversified companies, such as (Wernerfelt, 1984):

1. On which of the firm’s current resources should diversification be based?

2. Which resources should be developed through diversification?

3. In what sequence and into what markets should diversification take place?

4. What types of firms will it be desirable for this particular firm to acquire?

Initially, the concept of “resources” covered tangible and intangible assets tied semipermanently
to the firm including, for example, brand names, in-house knowledge of technology, trade con-
tacts, machinery and capital. As the theory evolved, resources have been distinguished from
capabilities (Amit and Schoemaker, 2012). Resources are tradable and non-specific to the firm
and are converted to final products or services. Capabilities, in contrast, are firm-specific and
are used to combine resources within the firm using organizational processes. Because not all
resources and capabilities might be able to create competitive advantage, Amit and Schoemaker
(2012) define strategic assets as the set of difficult to trade and imitate, scarce, appropriable
and specialized resources and capabilities. Accordingly, Figure 2.6 shows desired characteristics
of the firm’s resources and capabilities.

Making decisions regarding strategic assets, i.e. resources and capabilities, occurs ordinarily in
a setting that is characterized by (1) Uncertainty about (a) the economic, industry, regulatory,
social, and technological environments, (b) competitors’ behavior, and (c) customers’ prefer-
ences; (2) Complexity concerning (a) the interrelated causes that shape the firm’s environments,
(b) the competitive interactions ensuing from differing perceptions about these environments;
and by (3) Intraorganizational conflicts among those who make managerial decisions and those
affected by them (Amit and Schoemaker, 2012). Nevertheless, strategic assets are considered to
be a primary reason for competitive advantage implying that management has to make the right
decisions although the mentioned conditions of uncertainty, complexity and conflict are usually
hard to articulate or model. Figure 2.7 summarizes the key concepts of the resource-based view
of the firm based on Barney (1991) and Amit and Schoemaker (2012). In the next chapter, the
concept of organizational agility is introduced as new business imperative and applications of

28

2. Foundations and related work

Rents due

to Firm‘s

Strategic

Assets

Scarcity
Low

Tradeability

Inimitability

Limited

Substitutability

Complementarity

Overlap with

Strategic

Industry Factors

Durability Appropriability

Figure 2.6.: Desired characteristics of the firm’s resources and capabilities according to Amit
and Schoemaker (2012)

the resource-based view in the domain of IS are described to highlight how IT resources can
create organizational agility and therefore competitive advantage.

2.3.2. Organizational agility and digital options

The resource-based view of the firm theory presented in the previous chapter explains how re-
sources and capabilities can create competitive advantage. Thereby, the impact of environmental
change is underrepresented within the theory although it is this kind of change separating good
from bad resource allocation decisions. The dynamic capabilities framework (Teece et al., 1997)
extends the resource-based view to incorporate environmental and technological change. Teece
et al. (1997, pp. 522-523) argue that “a firm’s previous investments and repertoire of routines
constrain its future behavior;” and that “opportunities for learning will be ‘close in’ to previous
activities and thus will be transaction and production specific”. This implies that firms invest
in particular types of resources and learn how to use those resources over time by developing
asset-specific skills and accompanying routines (Cohen and Levinthal, 1990). Due to the fact
that today enterprises are faced with changing environments and increasing uncertainty due
to rapid development of new technologies, increasing globalization of markets and the rise of
innovative new forms of organization (Sanchez, 1997; Jones, 2010), agility has emerged as a key
business imperative (Tallon and Pinsonneault, 2011). In this context, agility can be defined as
follows.

29

2. Foundations and related work

Resources

Capabilities

Competitive advantage

 Valuable

 Rare

 In-imitable

 Non-substitutable

 Information-based organizational processes

 Firm-specific

 Improve the productivity of resources

 Value-creating strategy

 Maintain a combination of resources that cannot

be built up in a similar manner by competitors

Strategic assets

fuel

enable

Figure 2.7.: Key concepts of the resource-based view of the firm

Definition: Organizational agility
Organizational agility is defined as the ability to detect and respond to opportunities
and threats with ease, speed, and dexterity.

(Tallon and Pinsonneault, 2011)

Up to now, several IS researchers analyzed in how far the design of IT systems impacts orga-
nizational agility. For example, Galliers (2006) argues that “while the alignment concept may
be intuitively appealing, an issue that has remained relatively unchallenged and unquestioned
is how to align a relatively fixed ICT that is implemented in an organization with a business
strategy and associated information requirements that are in constant need of adjustment, while
keeping in line with the dynamic nature of the organization’s business imperatives”. Conse-
quently, IT systems have to be agile. Another example is provided by Weill et al. (2002) who
investigate the enabling role of IT infrastructure for organizational agility. Based on the analysis
of 180 electronically based business initiatives they conclude that agility requires time, money,
leadership and focus and that successful companies have a clear picture about their overall in-
frastructure capability, i.e. a detailed and up-to-date EA description, and how each incremental
investment contributes to it.

To enhance their agility, organizations rely progressively on IT (Sambamurthy et al., 2003),
whereby IT emerges as a strategic differentiator. Ferrier et al. (1999) argue that firms possess-
ing a more complex base of resources and capabilities are in an advantageous position to launch
competitive actions. Thereby, agility requires the exploration and exploitation of opportunities
for market arbitrage. Exploratory activities target long-term success by conducting research
and experiments whereas exploitative activities target short-term success by establishing and
refining routines (Levinthal and March, 1993). In other words, exploitative innovations involve
improvements in existing components and build on the existing technological trajectory, whereas
exploratory innovation involves a shift to a different technological trajectory (Benner and Tush-
man, 2002). Hence, the requirements regarding the diversity of IT systems differ across areas

30

2. Foundations and related work

within the application landscape whether they are subject to exploration or exploitation. This
is also in line with general systems research describing the tension of systems orienting towards
scarce resources, i.e. efficiency or exploitation, or changes in the environment, i.e. adaptivity or
exploration (Bossel, 2004a; Schneider and Matthes, 2014a). The tension between standardiza-
tion, an activity related to exploitation, and flexibility which is required to adapt to a changing
environment has been addressed by many IS researchers (Hanseth et al., 1996; Kettinger et al.,
2010) and will be further discussed in Chapter 3.2.

To explain how IT resources can actually create competitive advantage through creating agility
and therefore qualify for a comprehensive diversity management approach, Sambamurthy et al.
(2003) draw on the concept of digital options which are the result of IT infrastructure invest-
ments. In this context, digital options can be considered as rights to future investment choices
based on an initial expenditure without a current obligation for full investment.

Definition: Digital options
Digital options are a set of IT-enabled capabilities in the form of digitized enterprise
work processes and knowledge systems.

(Sambamurthy et al., 2003)

According to Amram and Kulatilaka (1999), when path dependencies in the form of prior learn-
ing, investment or experience guide prospects for exploiting emergent opportunities (as outlined
before), the holding of options is economically advantageous. In addition, Fichman (2004) ar-
gues that “firms that make such investments retain full exposure to the upside potential of the
technology should subsequent events prove favorable to deployment, but they can limit losses
to just the positioning investment if future events prove unfavorable”. Accordingly, increasing
the diversity among IT systems can be regarded valuable as long as new digital options are
created and technology choices are made based on entrepreneurial alertness. As visualized in
Figure 2.8, the theory presented by Sambamurthy et al. (2003) distinguishes between two fun-
damental processes. First, the capability building processes integrate IT and business resources
into organizational capabilities. Thereby, entrepreneurial alertness facilitates the conversion of
IT investments and capabilities into digital options because strategic foresight is vital so that
executives can anticipate the opportunities and business value available in information technolo-
gies. Second, entrepreneurial action processes make use of provided digital options to foster
creative combination of agility and entrepreneurial alertness for the launch of competitive ac-
tions. For example, companies having all three kinds of agility enabled through digital options
will detect a promising opportunity for product innovation through customer agility, will be able
to execute the action with speed because of their operational agility and architect an innovative
multichannel distribution through their partnering agility. Finally, the complexity of competitive
actions the company is able to perform is increased thus creating competitive advantage.

Interestingly, EAM has been identified to foster organizational agility as well. By conducting
case studies with four medium-sized companies, Fallmyr and Bygstad (2014) found that EAM
is actually increasing organizational agility, in particular the capability to respond to external
changes. Thereby, the authors disagree with concerns about EA as a new IT bureaucracy
producing mountains of technically oriented documentations, which are very difficult to handle

31

2. Foundations and related work

Capability-Building Process Entrepreneurial Action Process

IT Competence
• Investment scale

• IT capabilities

Digital Options
• Process reach

• Process richness

• Knowledge reach

• Knowledge richness

Agility
• Customer agility

• Partnering agility

• Operational agility

Competitive Actions
• Number of actions

• Complexity of action

repertoire

Entrepreneurial

Alertness
• Strategic foresight

• Systemic insight

Figure 2.8.: Capability-building and entrepreneurial action based on on digital options according
to Sambamurthy et al. (2003)

and keep consistent with the evolving enterprise. Most often, business-IT alignment is a major
goal of any EAM initiative (see Chapter 2.2). Hence, it is important to demarcate alignment
and agility. As Tallon and Pinsonneault (2011) point out, “firms with similar levels of alignment
between their IT and business strategy could have different agility depending on their respective
IT infrastructure flexibility”.

It can be stated that alignment targets at internal coordination between business and IT depart-
ments whereas agility tries to integrate both in order to cope with a changing business environ-
ment. Nevertheless, ambidexterity—the capability of performing both exploration and exploita-
tion in parallel—is required to “ensure short-term IT contributions and continuous progress
of IT projects while simultaneously working toward IT transformation program success as a
foundation for IT-enabled business transformation” (Gregory et al., 2015), especially during IT
platform design, i.e. balancing IT standardization versus IT differentiation.

2.4. Complexity-based approaches to EAM

Over the recent years, the complexity view has been adopted by several researches active in the
EAM discipline. For example, Vessey and Ward (2013) apply the complexity theory worldview
which conceives of organizations and IS as complex adaptive systems that co-evolve over time,
to develop a theory of sustainable IS alignment. Two relevant books summarizing many of the
different approaches have been edited by Goetze and Jenssen-Waud (2013) and Saha (2014).
Their analysis reveals that the different notions of complexity prevalent in general literature
(see Chapter 2.4.1) are also found within the EAM literature. To better analyze related work
relevant for this thesis and to structure it, a conceptual framework describing different notions
of complexity is developed. Subsequently, this framework is applied to structure related work
identified by following the guidelines for structured literature reviews (Webster and Watson,
2002; vom Brocke et al., 2009).

32

2. Foundations and related work

2.4.1. A framework based on identified complexity notions

In Chapter 2.1.2 four different dimensions of complexity notions prevalent in literature have
been identified. First, the organized vs. disorganized notion presented by Weaver (1948)
distinguishes complex problems based on the applicability of statistics. Second, the qualitative
vs. quantitative notions can be distinguished based on the point of view whether complexity
can be measured (Kolmogorov, 1963) or is a characteristic of a system summarizing phenomena
like emergence (see Anderson et al., 2002) and self-organization (see Kauffman, 1993). Third,
the subjective vs. objective dimension differentiates whether complexity is regarded to be a
characteristic of the relationship between a system and its observer (Rosen, 1977) or the system
itself (see Fioretti, 1999). Fourth, structural vs. dynamic notions of complexity can be
distinguished. While the structure of a system can be complex (see Kolmogorov, 1963) the same
holds true for its behavior (Sterman, 2000).

In this chapter, the independence of these dimensions is demonstrated by providing different
examples from well-known literature in which different complexity notions are combined in
various ways. Furthermore, a framework integrating all four orthogonal dimensions is presented.
The framework will be used to explicitly document complexity notions used throughout this
thesis.

2.4.1.1. Independence of complexity notion dimensions

Stephan Wolfram (1994) became famous for his groundbreaking research on one-dimensional
cellular automata. Thereby, a cellular automaton consists of a regular grid of cells where each
cell can have one of two states, i.e. on or off. Based on a given start configuration, i.e. specific
states of the first line of the grid, a fixed rule is applied to calculate the states of the cells in the
next line of the grid—a new generation. Such rule is applied to each cell individually and takes
the states of the cell’s neighborhood (typically its adjacent cells) into account. For example,
rule 110 is described in Table 2.1.

current pattern 111 110 101 100 011 010 001 000
new state for center cell 0 1 1 0 1 1 1 0

Table 2.1.: Rule 110 for Wolfram’s cellular automata

Based on their dynamic behavior Wolfram (1984) classified cellular automata into four distinct
classes:

∙ Class 1: Almost all initial configurations relax after a transient period to the same fixed
configuration.

∙ Class 2: Almost all initial configurations relax after a transient period to some fixed point
or some periodic cycle of configurations, but which one depends on the initial configuration.

∙ Class 3: Almost all initial configurations relax after a transient period to chaotic behavior.

∙ Class 4: Some initial configurations result in complex localized structures, sometimes long-
lived.

33

2. Foundations and related work

Figure 2.9.: Cellular automaton with rule 110 and 250 iterations

The most interesting class is Class 4, because Wolfram claimed that cellular automata belonging
to this class can form universal Turing machines. The property of universality has at least been
proven for Rule 110 (Cook, 2004) which was presented above and is visualized in Figure 2.91.

As already outlined by Schneider et al. (2014), for his classification of cellular automata, Wolfram
combined the notion of dynamic complexity with the notion of objective complexity since
individuals are not involved in the classification process. It is solely based on the patterns created
by a cellular automaton. Since the four classes form a nominal scale rather than an ordinal scale
he also applied the notion of qualitative complexity instead of measuring the complexity of
cellular automata. Finally, statistical methods are not used to describe complexity of cellular
automata so the notion of ordered complexity is applied.

Sterman (2000) applied another combination of complexity notions although analyzing—like
Wolfram—the dynamic behavior of systems. With several experiments, Sterman analyzes how
people understand the behavior of complex systems. For example, the Beer Distribution Game
can be used to demonstrate how far from optimum people’s decisions are in a relatively simple
game. In this game subjects seek to minimize costs as they manage the production and distribu-
tion of a commodity. Though simplified compared to real firms, the task is dynamically complex
because it includes multiple feedbacks, time delays, nonlinearities, and accumulations (Ster-
man, 1994). Therefore, Sterman (1994) concludes that the mental models people use to guide
their decisions are dynamically deficient because they “adopt an event-based, open-loop view of
causality, ignore feedback processes, fail to appreciate time delays between action and response
and in the reporting of information, do not understand stocks and flows, and are insensitive to
nonlinearities that may alter the strengths of different feedback loops as a system evolves”.

When people learn in complex systems, Sterman (1994) distinguishes two types of learning. First,
during single-loop learning “decision makers compare quantitative and qualitative information
about the state of the real world to various goals, perceive discrepancies between desired and

1http://mathworld.wolfram.com/Rule110.html

34

2. Foundations and related work

Figure 2.10.: Double-loop learning in complex systems according to Sterman (1994)

actual states, and take actions that (they believe will) cause the real world to move toward
the desired state”. Based on the idea of Forrester (1961), decisions are the result of applying a
decision rule or policy to information about the world as we perceive it. Therefore, double-loop
learning—as visualized in Figure 2.10—is more promising because it allows people to alter one’s
worldview.

We can easily see that Sterman (2000) considers subjective complexity as well as dynamic
complexity. By assuming that there are different degrees to which people are able to understand
complex systems, for example, if they perform double-loop learning, and that quantitative models
of complex systems can be developed he also applies a notion of quantitative complexity
although statistics might not be useful, i.e. ordered complexity.

By comparing the different notions of complexity being used by Wolfram (1994) and Sterman
(2000) it becomes apparent that the notion of dynamic complexity can be combined with the
notion of objective complexity (see Wolfram, 1994) as well as subjective complexity (see Ster-
man, 2000). The same holds true for qualitative and quantitative complexity although both
authors apply a notion of ordered complexity. Accordingly, the question arises if a similar
diverse combination of complexity notions can be found in the area of structural complexity.

Milgram (1967), for example, analyzed the structure of complex networks like social graphs
and came up with the famous small-world property. Such networks have some very appealing
properties and can be found in different areas. For example, the neural network of the worm
Caenorhabditis elegans, the power grid of the western United States and the collaboration graph
of film actors form such small-world networks (Watts and Strogatz, 1998). These networks dis-
play enhanced signal-propagation speed, computational power and synchronizability. Figure 2.11
shows how small-world networks reside somewhere between order and randomness.

As visualized in Figure 2.11, in small-world networks vertices are mostly connected to their
neighbors but some of them are also connected to vertices far away. Thereby, small-world
networks are highly clustered like a regular graph, yet with small characteristic path length, like
a random graph.

35

2. Foundations and related work

Regular

p = o

Small-world Random

-----------------------+~ p = 1
Increasing randomness

Figure 2.11.: Small-world networks according to Watts and Strogatz (1998)

Obviously, the authors apply an objective complexity notion since networks are analyzed
without regarding the relationship with its observer. The authors apply a notion of qualitative
complexity since their goal is not to measure the complexity of networks like social graphs but
to explain why complex networks exhibit, for example, increased signal-propagation speed like
in the experiment conducted by Milgram (1967) in which the median was only six hops in the
social graph of arbitrary people who tried to deliver a letter to a randomly chosen person.

In contrast, Frese (1987) developed the idea of comprehensive complexity describing the rela-
tionship between a software user and a software system. In this context, complexity refers to
decision necessities which should be optimized. The author also argues that control over one’s
activities should be increased at the expense of other features, e.g. complexity. Here, complexity
is measured in terms of the number of goals, plans and signals as well as the number of their
relationships between those and especially the number of conditional relationships. This allows
to distinguish between a novice and an expert because although the number of elements stays the
same the expert has to make less decisions than the novice thus experiencing less complexity.

Frese (1987) applies a notion of subjective complexity due to the fact that is regarded as “a
characteristic of the interaction of the person with the environment” respectively the software
system. By counting the number of different elements which increase the perceived complexity,
he also applies a notion of quantitative and structural complexity. Thereby, statistical
methods might be useful, thus the notion of disorganized complexity is present.

By comparing the different approaches of Milgram (1967) and Frese (1987), it can be stated that
they combine different notions of complexity although both focus on structural complexity.
While Frese (1987) defines complexity as a property of the relationship between a software
user and a software system, thus having a notion of subjective complexity, Milgram (1967)
applies a notion of objective complexity when he classifies networks. Likewise, the authors
differ in their consideration of measures. Small-world networks form a class of networks based
on the structure of their edges (qualitative complexity) but comprehensive complexity can
be measured (quantitative complexity). Nevertheless, both authors focus on disorganized
complexity because statistical methods are used.

The analysis of the complexity notions applied during the research activities conducted by Wol-
fram (1994); Sterman (2000); Milgram (1967) and Frese (1987) demonstrates the independence

36

2. Foundations and related work

Structure vs.
Dynamics

Subjective vs.
Objective

Qualitative vs.
Quantitative

Organized vs.
Disorganized

Wolfram (1994) Dynamics Objective Qualitative Organized
Sterman (2000) Dynamics Subjective Quantitative Organized
Milgram (1967) Structure Objective Qualitative Disorganized
Frese (1987) Structure Subjective Quantitative Disorganized

Table 2.2.: Analysis of complexity notions in literature

of the complexity notions introduced in Chapter 2.1.2. Table 2.2 summarizes respective notions
of complexity applied by the different authors. It shows that within the dynamic notion arbi-
trary combinations within the other dimensions are possible. Likewise, the same holds true for
the structural notion of complexity. The objective as well as the subjective notion of complex-
ity are combined with various manifestations of the other dimensions. Consequently, it can be
concluded that any combination of complexity notions seems to be possible.

So far, it has been shown that in well-known complexity literature at least four distinct dimen-
sions of different notions of complexity can be distinguished. By the examples given above, it
has also been demonstrated that these dimensions can be combined in different ways. Based on
this foundation, a conceptual framework for classifying complexity literature is developed in the
next chapter complemented by a simple notation. This framework will then be used to classify
existing work on complexity and therefore diversity in the context of enterprise architecture
management.

2.4.1.2. A visual vehicle and notation

Based on the insight that in established literature at least four different dimensions of complexity
notions can be distinguished (resting on the role of the observer, time, measures and statistical
methods), all works addressing complexity or complex systems could be classified accordingly.
Given the fact that these four dimensions seem to be independent a respective framework con-
sisting of a visual vehicle and a simple notation can be developed. The visual vehicle is shown
in Figure 2.12.

In this framework the horizontal axis is used to distinguish between the objective and subjective
notion—each represented by a single small cube. The vertical axis is used to distinguish between
the notions of structural and dynamic complexity. The qualitative-quantitative distinction is
indicated by the third dimension of the cube. To visualize the fourth dimension distinguishing
between ordered and disordered complexity different colors are used within the cube. The chosen
representation clearly shows which notions of complexity exist and how the different notions can
be combined. It has to be pointed out that a clear separation of notions within the same
dimension is not always possible and that there can be a grey area in between. Furthermore, it
is also possible to apply, for example, both a quantitative and a qualitative notion. Therefore,
the conceptual framework serves as a basis for categorization not for detailed complexity notion
descriptions.

37

2. Foundations and related work

structure

dynamics

objective subjective

qualitative

quantitative

ordered disordered

Figure 2.12.: The Complexity Cube: A framework unifying different notions of complexity based
on Schneider et al. (2014)

To explicitly document the applied notions of complexity, for example, for a single publication,
an understandable notation can be used (Schneider et al., 2014). The purpose of such notation
is to facilitate literature research activities because similar works can be identified more easily
and grouped into clusters. Since the proposed framework (see Figure 2.12) consists of four
dimensions, a quadruple notation is proposed. To define such notation, four sets—each covering
the notions of one dimension—need to be introduced first to form the foundation:

𝐷1 := {𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒}
𝐷2 := {𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐}
𝐷3 := {𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒, 𝑞𝑢𝑎𝑙𝑖𝑡𝑎𝑡𝑖𝑣𝑒}
𝐷4 := {𝑜𝑟𝑑𝑒𝑟𝑒𝑑, 𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑒𝑑}

(2.1)

Given the four sets introduced in Equation 2.1, the set of applied complexity notions (ACN) can
be defined as a quadruple as follows:

𝐴𝐶𝑁 := (𝑥1, 𝑥2, 𝑥3, 𝑥4), 𝑥1 ⊆ 𝐷1, 𝑥2 ⊆ 𝐷2, 𝑥3 ⊆ 𝐷3, 𝑥4 ⊆ 𝐷4,∀𝑥𝑖, 1 ≤ 𝑖 ≤ 4, 𝑥𝑖 ̸= ∅ (2.2)

Therein, each element 𝑥𝑖 of the quadruple is a subset of one of the previously defined dimensions
to categorize notions of complexity. Furthermore, these elements cannot be the empty set
because one aspect of each dimension can be and needs to be chosen. As stated in the following

38

2. Foundations and related work

example, this notation can be used to document the applied notions of complexity for a single
publication. Because the elements of the quadruple (𝑥𝑖) are defined as subsets of a dimension—
and not as strict subset—it allows to assign both poles of a dimension in case this is necessary.

Example 2.5: Application of the ACN notation. The work of Sterman
(2000) has previously been classified to use the following notions of com-
plexity: subjective, dynamic, quantitative, organized. Therefore, the ACN
quadruple looks like follows:

𝐴𝐶𝑁𝑆𝑡𝑒𝑟𝑚𝑎𝑛 := ({𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒}, {𝑑𝑦𝑛𝑎𝑚𝑖𝑐}, {𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒}, {𝑜𝑟𝑔𝑎𝑛𝑖𝑧𝑒𝑑})

On the basis of the conceptual framework for different notions of complexity and the simple
notation to document applied complexity notions introduced in this chapter, the next chapter
summarizes related work on complexity in the EAM domain and analyzes prevalent notions of
complexity.

2.4.2. An overview about EA complexity literature

Within the domain of Enterprise Architecture Management (EAM), insights gained by general
complexity science have already been used to advance the field. To provide an overview about
existing literature dealing with the concept of complexity in the EAM field and to lay down the
foundation for the detailed diversity considerations in Chapter 4, a literature review is performed
and described in this chapter. The results are presented and analyzed by the application of the
complexity framework developed in the previous chapter and thereby extend the literature review
conducted by Schuetz et al. (2013) who focused on complexity in the IS field in general.

2.4.2.1. Literature review process

As outlined by vom Brocke et al. (2009), “science is a cumulative endeavour as new knowledge
is often created in the process of interpreting and combining existing knowledge”. Therefore,
the existing literature in the domain of EAM, in which the concept of complexity is used, is
analyzed (see also Schneider et al., 2014). Thereby, the common guidelines for literature reviews
presented by Webster and Watson (2002) have been used to guide the process which is visualized
in Figure 2.13.

In the first step, the books of Goetze and Jenssen-Waud (2013) as well as Saha (2014)—both
dealing with complexity in the field of EAM—have been analyzed to get an overview about
existing works on this topic as well as used terminology and authors active in this field. Based
on these insights, the EBSCOhost database, Science Direct, ISI Web of Science and the search
engines of ACM, IEEE and Google scholar have been consulted in January and February 2014 to
search for relevant publications. As search terms the following keywords have been used to query

39

2. Foundations and related work

Book
analysis

Database
search

Backward
and

forward
search

Filtering
Author-
centric

description

Concept-
centric

description

Questions
for future
research

Figure 2.13.: Literature review process for EAM complexity publications

these databases for titles and abstracts: “enterprise architecture” AND “complex*”. Due to the
frequent usage of these terms, the result list had to be filtered for publications dealing with the
concept of complexity in the first place. After filtering ten particularly relevant articles have been
identified. Although a backward as well as a forward search has been conducted on that basis
no additional publications could be identified which are relevant in this context. The results are
presented by an author-centric approach first (see Chapter 2.4.2.2) to provide a chronological
overview. As suggested by Webster and Watson (2002), the results of this literature review are
then also presented in a concept-centric way (see Chapter 2.4.2.3). Thereby, the concepts, i.e.
dimensions of complexity notions, previously introduced are used to create a concept matrix.
Based on this analysis questions for future inquiry are derived.

2.4.2.2. Literature review results

In this chapter, the results of the previously described literature review are presented by an
author-centric approach as carried out by Schneider et al. (2014). Figure 2.14 provides a chrono-
logical overview of the identified articles.

Janssen and Kuk (2006) regard enterprises as complex adaptive systems (see Chapter 2.1.2) and
attribute them properties like emergence and self-organization in order to derive requirements
for a suitable EAM function. In addition, the authors provide concrete architectural guidelines
which have been used to design an EAM function for a governance agency. These include, for
example, that diversity is important but should be created with care and that targets should not
be set without constraints. These guidelines target at both the enterprise’s structure and dynam-
ics. Furthermore, the authors do not consider the system’s observer nor use statistical methods.
Consequently, the complexity notions applied in the work of Janssen and Kuk (2006) can be clas-
sified as 𝐴𝐶𝑁𝐽𝑎𝑛𝑠𝑠𝑒𝑛2006 = ({𝑞𝑢𝑎𝑙𝑖𝑡𝑎𝑡𝑖𝑣𝑒}, {𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐}, {𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒}, {𝑜𝑟𝑑𝑒𝑟𝑒𝑑}).

Buckl et al. (2009) applied a complex adaptive system view on enterprises and used Beer’s
VSM (see Chapter 2.1.2) to derive and classify different duties of an Enterprise Architecture

40

2. Foundations and related work

2006 2007 2008 2009 2010 2011 2012 2013 2014

Janssen and

Kuk (2006)

Dern and

Jung (2009)

Mocker

(2009)

Saat et al.

(2006)

Buckl et al.

(2009)

Kandjani et

al. (2013)

Schuetz et

al. (2013)

Kandjani et

al. (2012)

Zadeh et al.

(2012)

Lagerström

et al. (2014)

Figure 2.14.: Timeline showing literature review results

Management (EAM) function. Thereby, the authors distinguish between reactive and proactive
tasks as well as EAM governance. Reactive tasks include setting up a structure, e.g. an intranet,
where standards can be viewed and communicated to respective stakeholders. In contrast,
proactive tasks are concerned with a holistic and future-oriented perspective to support strategic
decision making. This includes, for example, EA analysis and target EA development as well
as transformation planning. EA governance tasks are performed by system five according to
the VSM and include the adoption of the overall management function and the provision of
guidance to maintain the identity, i.e. the purpose of the EAM system. By using a well-
accepted cybernetic model the authors are able to provide a framework to categorize EAM
tasks in order to assess the completeness of existing EAM approaches. The authors have not
attempted to measure how complex an organization is, focused on the structure of each VSM
system, classified the enterprise as a complex adaptive system and focused on a manageable
number of variables. Consequently, their complexity notion can be expressed as 𝐴𝐶𝑁𝐵𝑢𝑐𝑘𝑙2009 =
({𝑞𝑢𝑎𝑙𝑖𝑡𝑎𝑡𝑖𝑣𝑒}, {𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙}, {𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒}, {𝑜𝑟𝑑𝑒𝑟𝑒𝑑}).

Saat et al. (2009) derive requirements for the design of an EA planning activity based on chaos
theory. By attributing properties like sensitivity to initial conditions to the enterprise and there-
fore its architecture the authors clearly apply a qualitative notion of complexity here. Based on
such attributions implications are derived. For example, different change volatilities and lifecy-
cles of architectural elements may decrease the predictability of to-be models and therefore add
complexity to EA planning. Furthermore, the authors identify structural invariance at different
scales, for example, recurring structures and methods for planning the entire EA and or parts of
it or a single architectural element (e.g. business application) and parts of it (e.g. components).
In contrast to these structural aspects an enterprise’s attraction to specific configurations is also
assessed. Given the decreasing predictability for the suitability of to-be models with increas-
ing temporal planning scope, multiple alternative versions of to-be models are developed. This
enables enterprise architects to know several possible trajectories for the EA although it is not
entirely predictable which trajectory the organization will chose. Obviously, the observer of the
system is not part of the authors’ considerations. Due to the fact that they do not use statis-
tical methods, they apply an organized notion of complexity. Consequently, this work can be
classified as 𝐴𝐶𝑁𝑆𝑎𝑎𝑡2009 = ({𝑞𝑢𝑎𝑙𝑖𝑡𝑎𝑡𝑖𝑣𝑒}, {𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙, 𝑑𝑦𝑛𝑎𝑚𝑖𝑐}, {𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒}, {𝑜𝑟𝑑𝑒𝑟𝑒𝑑}).

41

2. Foundations and related work

Dern and Jung (2009) describe an IT architecture governance approach based on complex-
ity measures. These measures focus on the structural complexity of the EA by consider-
ing the number of IT systems, their information exchange relationships and their homogene-
ity. The architect or any other observer is not part of their considerations. Similar to other
quantitative approaches, their proposed metric for IT complexity aggregates numbers and cal-
culates ratios, respectively. Consequently, their work can be classified as 𝐴𝐶𝑁𝐷𝑒𝑟𝑛2009 =
({𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒}, {𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙}, {𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒}, {𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑒𝑑}).

Mocker (2009) provides an empirical evaluation of different EA complexity measures. The
measures used to quantify the application architecture complexity include, for example, interde-
pendencies of applications, diversity of technologies, deviation from standard technologies and
redundancy. Thus, a quantitative as well as structural notion of complexity is applied. Obvi-
ously, the observer of the architecture is not part of these measures and statistics play a major
role, implying 𝐴𝐶𝑁𝑀𝑜𝑐𝑘𝑒𝑟2009 = ({𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒}, {𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙}, {𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒}, {𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑒𝑑}).

Zadeh et al. (2012) explore whether the principles of cybernetics can provide a theoretical ba-
sis for interpreting EA principles derived through practice. Therefore, the authors use the
Viable System Model (VSM) as well as its application to IT governance, the Viable Gov-
ernance Model (VGM), to demonstrate how the architecture principles of The Open Group
Architecture Framework (TOGAF) (see The Open Group, 2011) relate to those cybernetic
concepts. The authors show that the nine business principles of TOGAF can be mapped
to well-known cybernetic concepts like viability, recursion, cohesion, coordination and home-
ostasis. For instance, the TOGAF principle Maximize Benefit to the Enterprise is mapped
to the cybernetic principles viability and cohesion. Beside applying this qualitative notion
the authors also apply a quantitative notion due to their reliance on Ashby’s law of req-
uisite variety (see Ashby, 1956). The principles analyzed by the authors are mainly con-
cerned with the structure of the enterprise architecture and not its dynamics while focus-
ing on a manageable amount of variables. Consequently, their work can be classified as
𝐴𝐶𝑁𝑍𝑎𝑑𝑒ℎ2012 = ({𝑞𝑢𝑎𝑙𝑖𝑡𝑎𝑡𝑖𝑣𝑒, 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒}, {𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙}, {𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒}, {𝑜𝑟𝑑𝑒𝑟𝑒𝑑}).

Kandjani et al. (2012) use the concept of EA cybernetics to determine the complexity of global
software development projects. Thereby, the authors drop the idea that such projects are de-
signed systems because deliberate design and control episodes are intermixed with emergent
change episodes. To measure complexity the authors use three different indicators, e.g., by
the number of relevant states of a system’s environment. Furthermore, the axioms of ex-
tended axiomatic design theory are used to decrease the complexity of global software devel-
opment projects. The authors conclude that life cycle activities of such projects should be
made as independent, controlled and uncoupled as possible so that the designer can predict
the next relevant states of the life history and avoid a chaotic change. To minimize informa-
tion content of planning projects the management office should include the critical members
from global software development companies with the most tacit knowledge of their compa-
nies. The used complexity metrics are independent of any system observer and by asking for
the independence axiom within projects, the authors encourage a decoupled design focusing the
projects structure. Finally, statistical methods are not part of their approach which results in
𝐴𝐶𝑁𝐾𝑎𝑛𝑑𝑗𝑎𝑛𝑖2012 = ({𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒}, {𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙}, {𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒}, {𝑜𝑟𝑑𝑒𝑟𝑒𝑑}).

42

2. Foundations and related work

Kandjani et al. (2013) present a co-evolution path model which is based on the idea of Ashby’s
law of requisite variety (see Ashby, 1956). This model shows that each time the complex-
ity of an enterprise’s environment changes, the enterprise itself has to adjust its complexity
accordingly. Because this adjustment, i.e. co-evolution, is a dynamic process, it is unlikely
that the enterprise will exactly end up with the required complexity. Therefore, the model
describes the path the enterprise’s complexity will take along the optimal, i.e. required, com-
plexity. This path is formed by the desired complexity, the desired excess complexity which
is needed to achieve the desired complexity and the edge of chaos or undesired excessive
complexity. In the latter state, the controller has to decrease the complexity to ensure en-
terprise viability. Because the system observer has no influence on the complexity calcula-
tions the complexity notions applied in this work can be formalized as 𝐴𝐶𝑁𝐾𝑎𝑛𝑑𝑗𝑎𝑛𝑖2013 =
({𝑞𝑢𝑎𝑙𝑖𝑡𝑎𝑡𝑖𝑣𝑒, 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒}, {𝑑𝑦𝑛𝑎𝑚𝑖𝑐}, {𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒}, {𝑜𝑟𝑑𝑒𝑟𝑒𝑑}).

Schuetz et al. (2013) present an approach to measure the structural complexity of EAs. Based
on the framework developed by Schneberger and McLean (2003), the authors define the com-
plexity of an EA as the number and heterogeneity of its elements and their relationships.
To measure the amount elements are counted. To measure the heterogeneity Shannon en-
tropy (see Shannon, 1948) has been selected due to several appealing properties in this con-
text, for example, regarding additional characteristics, shifts in the classification, effects of
small sets of elements and effects of proportional changes. In this approach, an individual
system observer is not considered and the use of statistical methods is obvious resulting in
𝐴𝐶𝑁𝑆𝑐ℎ𝑢𝑒𝑡𝑧2013 = ({𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒}, {𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙}, {𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒}, {𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑒𝑑}).

Lagerström et al. (2014) applied a concept well known in the software architecture domain,
namely Design Structure Matrices (see Baldwin et al., 2013), to reveal the hidden structure of
an application landscape. Therein, the authors model the application landscape as graph in
which business applications form the nodes and their (reverse) information flows form the edges
because they are interpreted as dependencies between business applications. Based on this graph,
the overall architecture can be classified either as core-periphery, multi-core or hierarchical. Ex-
periments conducted by the authors found only application landscapes which have been classified
as core-periphery so far. In such setting, each business application is assigned to one out of four
categories based on the number of their transitive dependencies: core, control, shared or periph-
ery. The core applications form the largest cyclic group within the graph. Control applications
depend on that core while the core itself depends on the shared applications. Periphery applica-
tions are only loosely coupled to the core. In addition, the so called propagation cost metric can
be calculated. It is defined as the density of the visibility matrix (an adjacency matrix with tran-
sitive edges). Intuitively, propagation cost equals the fraction of the architecture affected when
a change is made to a randomly selected element. For example, a propagation cost of 25% indi-
cates that one-fourth of the architecture may be affected when a change is made to a randomly
selected software application. Thereby, a concrete observer of the architecture is not considered
implying 𝐴𝐶𝑁𝐿𝑎𝑔𝑒𝑟𝑠𝑡𝑟𝑜𝑒𝑚2013 = ({𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑎𝑡𝑖𝑣𝑒}, {𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙}, {𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒}, {𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟𝑒𝑑}).

43

2. Foundations and related work

2.4.2.3. Analyzing prevalent complexity notions in EA research

In this chapter, the previously identified work related to complexity in the domain of Enterprise
Architecture Management (EAM) will be presented in a concept-centric way as recommended
by Webster and Watson (2002). The concepts used to structure the related work are provided
by the complexity framework presented in Chapter 2.4.1. Based on the ACN-quadruples already
defined for each work, Table 2.3 summarizes which notions of complexity have been applied.

Related work ACN D1 ACN D2 ACN D3 ACN D4

Janssen and Kuk (2006) qualitative structural,
dynamic

objective organized

Buckl et al. (2009) qualitative structural objective organized
Saat et al. (2009) qualitative structural,

dynamic
objective organized

Dern and Jung (2009) qualitative structural objective disorganized
Mocker (2009) qualitative structural objective disorganized
Zadeh et al. (2012) qualitative,

quantitative
structural objective organized

Kandjani et al. (2012) qualitative structural objective organized
Kandjani et al. (2013) qualitative,

quantitative
dynamic objective organized

Schuetz et al. (2013) quantitative structural objective disorganized
Lagerström et al. (2014) quantitative structural objective disorganized

Table 2.3.: Overview of EA complexity publications classified by complexity notions based on
Schneider et al. (2014)

When analyzing the chronologically ordered works listed in Table 2.3, a trend with respect to
the applied notions of complexity in 𝐴𝐶𝑁 𝐷1 can be observed. At the beginning the qualitative
notion has been prevalent but after a while the quantitative notion became equally famous.
This trend is reasonable because understanding the impact of complexity science on the field of
EAM research qualitatively seems to be a prerequisite for measuring complexity. By analyzing
𝐴𝐶𝑁 𝐷2, it can be seen that the dynamic notion of complexity is still underrepresented in cur-
rent literature because most authors focused on structural complexity. The analysis of 𝐴𝐶𝑁 𝐷3

reveals that all authors applied an objective notion of complexity. This implies that so far com-
plexity is regarded to be a property of the system, i.e. EA, and not of the relationship between
the architecture and its observer. Finally, the analysis of 𝐴𝐶𝑁 𝐷4 shows that both organized
and disorganized notions of complexity are represented equally. It can be concluded that future
research should especially tackle the question how to describe dynamic as well as subjective com-
plexity in the domain of EAM. In addition, the different complexity approaches published so
far need to be complemented by additional experiments in real-world settings (see Schuetz et al.
(2013); Lagerström et al. (2014)) and guidance for companies whether to increase or decrease
their EA’s complexity needs to be developed because it is missing up to now.

44

CHAPTER 3

Application landscape complexity and diversity perceptions in practice

“Change is accelerating, and as the complexity

of the systems in which we live grows, so do

the unanticipated side effects of human

actions, further increasing complexity.”

John D. Sterman, Learning in and about

complex systems

As will be pointed out in this chapter, the diversity within an application landscape is a consti-
tuting aspect of its structural, objective and also subjective complexity. To begin with, causes
and consequences of application landscape complexity as perceived by experienced practitioners
are identified via focus group interviews. Then, the results of an online survey are presented
indicating application landscape diversity (1) benefits and drawbacks expected and realized in
practice, (2) steering mechanisms currently used in practice and (3) target values guiding man-
agement processes.

3.1. Application landscape complexity perception in practice

Given the various notions of complexity applied in scientific Enterprise Architecture Management
(EAM) literature identified in the previous chapter, it is also of interest how practitioners today
perceive application landscape complexity. Therefore, the results of focus group interviews are
presented in this chapter. Foremost, the results include common drivers and consequences of
application landscape complexity as perceived by practitioners.

45

3. Application landscape complexity and diversity perceptions in practice

3.1.1. Focus group interview approach

As described earlier, even among scientists there exists no agreed-upon definition for the term
complexity (Johnson, 2007). To get one step further towards understanding complexity in the
context of EAM and to complement approaches identified in literature, perceived drivers and
consequences of application landscape complexity are identified in this chapter. The effects of
complexity presented here are the results of exploratory focus group interviews (see Calder,
1977) with enterprise architects which have been conducted to gain insights about the following
questions:

∙ What do today’s enterprise architects perceive to be the key drivers of application land-
scape complexity?

∙ What do today’s enterprise architects perceive to be the key consequences of application
landscape complexity?

To answer these questions, a total of two consecutive focus group interviews was conducted, each
lasting for half a day with a total of ten participants from eight different companies. Both focus
groups were held in a metropolitan area in the south-east of Germany. The focus groups were
formed in accordance with guidelines traditionally followed in the marketing research field (see
Bellenger et al., 1976). Respondents were screened to ensure that they were currently or recently
considered with application landscape complexity during their daily business. Only companies
and respective architects have been invited which already actively try to manage or measure
application landscape complexity. The resulting group was homogeneous with respect to job
experience (all participants had more than ten years of relevant experience). Identities of par-
ticipating firms were revealed to focus group participants to build trust and interest within the
group. Industry branches represented in the group cover automotive, pharmaceuticals, banking,
insurance and consulting. All companies are headquartered either in Germany or Switzerland
but most of them operate on a global scale. The interviews were part of a broader research ac-
tivity with this focus group which met five times between January 2013 and February 2014. The
topic addressed by the group together with scientists from the Technische Universität München
was Complexity of Application Landscapes—Measures, Models, Management (CALM3). Ques-
tions asked by the moderator during interviews were mostly directly linked to the two main
questions of the focus group interviews. If necessary, complementary questions regarding men-
tioned drivers and consequences have been asked to stimulate discussions. The approach is
therefore consistent with procedures recommended for marketing theory development by sev-
eral scholars (e.g. Deshpande, 1983; Bellenger et al., 1976). As described in the following, the
responses of focus group participants about drivers and consequences of application landscape
complexity were remarkably consistent across companies and industry sectors.

3.1.2. Drivers and consequences of application landscape complexity

The focus group participants mentioned the following drivers for application landscape com-
plexity and achieved consensus about their impact. As indicated below, many of them are in
line with previous research on application landscape complexity.

46

3. Application landscape complexity and diversity perceptions in practice

Local decision making Especially in federated or decentralized IT organizations, local decision
making is prevalent. Local can have two meanings here. First, local can refer to the actual
location of a business unit. For example, in the United States (US) decisions affecting the
application landscape are not coordinated with departments in Europe. Second, local can
refer to different business departments. For example, decisions affecting the application
landscape made by the production department are not coordinated with decisions made by
the sales department. This driver is in line with Ross et al. (2006) who identified business
silos to be the first level of EA maturity.

Business complexity A driver setting a lower bound for application landscape complexity is the
complexity of the business supported by the application landscape. For example, the more
customer segments are targeted and the more sales channels and products are offered, the
more complex the enabling IT will be. This driver for application landscape complexity is
in line, for example, with Mocker and Ross (2013) who observed an increasing application
landscape complexity at USAA after business complexity has been increased.

Legal requirements Legal requirements can drive the complexity of application landscapes in two
different ways. First, new legal requirements force the implementation of new features.
For example, Basel III1 and Solvency II2 require ad-hoc reporting of financial data which is
usually realized by IT systems. Second, in some branches, e.g. financial services, authori-
ties raise requirements regarding IT systems as well as their development and management
processes. Such cross-functional requirements might increase the application landscape’s
complexity due to underspecification, lack of required knowledge to interpret these require-
ments and the need for involving many stakeholders as well as IT systems.

Technological progress Given the accelerating technological progress, the complexity of applica-
tion landscapes increases. For example, current trends like “bring your own device” (see
Ghosh et al., 2013) or continuous delivery (see Humble and Farley, 2010) impose changes
to an existing application landscape. In addition, the exploitation of new paradigms such
as in-memory databases (see Kemper and Neumann, 2011) requires tremendous change
within an application landscape, thus increasing its complexity.

Short-term optimization If new business capabilities should be supported by IT usually there are
two different ways: a “quick and dirty” way and an architecturally consistent way. This is,
for example, also reflected by the managed evolution approach proposed by Murer et al.
(2008) which tries to balance both opportunities in the long run. If the quick and dirty
approach is chosen too often for short-term optimization, the complexity of the application
landscape increases. Schmidt and Buxmann (2010) also reported that the solution scope
of system changes is typically local and focused on short-term goals while Gregory et al.
(2015) consistently observed an organizational tendency to drift toward short-term IT
demands.

To complement these factors driving application landscape complexity, the focus group partici-
pants achieved consensus about the following consequences of application landscape complexity
during the respective discussions:

1http://www.bis.org/publ/bcbs188.htm
2http://ec.europa.eu/finance/insurance/solvency/solvency2/index_de.htm

47

3. Application landscape complexity and diversity perceptions in practice

Costs An increase in application landscape complexity is considered to cause an increase in
related costs. In this context, costs occur on various levels or phases which are all affected.
These include, for example, operating costs, maintenance costs and development costs.
Especially the interconnectedness of business applications can result in increasing project
sizes which in turn are considered to increase costs. The same effect is attributed to
increasing management efforts. The impact of complexity on costs is in line with the
observations made by, e.g., Ashkenas (2007) and Mocker (2009).

Errors An increase in application landscape complexity results in an increase in errors during
operations. To justify this consequence of application landscape complexity on the focus
group participants calculated correlation coefficients for application landscape complexity
(number of applications, number of interfaces, heterogeneity of technology components,...)
and incidents. Thereby, a significant correlation between both could be observed. Although
not having performed similar calculations, other participants agreed with this observation.

Skill dependency Complexity within an application landscape might vary, e.g., across functional
domains. People such as architects, developers or business analysts considered with a sin-
gle domain for many years are able to understand the respective complexity better than
newcomers. If changes should be made with in a distinguished domain people under-
standing the IT systems in that domain are required. Therefore, an increase in application
landscape complexity is considered to result in an increasing dependency on specific people
and their skills.

Agility In general, application landscape complexity is associated with decreasing agility meaning
an increased time-to-marked for new IT systems. This is in line, e.g., with the observations
made by Ross et al. (2006, p. 11) and can be explained by an increase in interconnectedness
of IT system and therefore propagation of changes (Lagerström et al., 2014). Nevertheless,
this opinion of the focus group is in contradiction with digital options theory stating that
an increase in IT capabilities provides more digital options which can be used to create
agility (Sambamurthy et al., 2003). Thus, a detailed analysis of this application landscape
consequence is required (see Chapter 3.2.3).

Shadow IT An increase in application landscape complexity is associated with an increase of
shadow IT. Here, shadow IT does not only cover IT systems directly setup by business
units without knowledge of the IŢ department, it also includes IT systems business units
put in place because government structures do not prevent them to do so. The reason
why business units might act like this could be due to increasing time-to-market if the
central IT department is responsible for the introduction of a new system or expected
cost savings. Thereby, this expectation is in line with previous research (Rentrop and
Zimmermann, 2012).

During the discussions within the focus group interviews, the following drivers or consequences
have also been mentioned: limited sourcing opportunities, increasing training period for new
employees and missing modularity. Due to missing consensus within the group and partial
overlap with other drivers or consequences these concepts have been excluded from further
considerations.

It is important to note that there was consensus in the group that heterogeneity of application

48

3. Application landscape complexity and diversity perceptions in practice

landscape components is also a driver for application landscape complexity. Nevertheless, it
has been decided that heterogeneity—and therefore diversity—is an inherent part of complexity
(as is the amount of application landscape components) and can therefore be excluded from the
drivers and consequences list. Figure 3.1 visualizes the main results of the focus group interviews
approved by all participants. The input created by the focus group interviews is not intended
to reflect how strongly the different relationships shown in Figure 3.1 are. Conclusions about
the absolute or relative strength would require a quantitative approach in which strength of
conviction is specifically measured.

AL Complexity

Cost

Error rate

Skill dependency

Agility

Shadow IT

+

+
+

-

+

Local

decisions
Business

complexity
Legal

requirements

Technological

progress

Tactical

solutions

+
+ + +

+

Figure 3.1.: Drivers and consequences of application landscape complexity as presented by
Schneider and Matthes (2014b)

3.2. Application landscape diversity perceptions in practice

To complement the previously described perceptions of application landscape complexity in
practice, this chapter focuses on perceptions about the effects of application landscape diversity.
The goal is to analyze which benefits and drawbacks of standardization or differentiation can be
realized in practice. Although a quantitative approach seems to be suitable to develop a detailed
picture of today’s diversity management approaches and their effects in practice, it would be
difficult due to missing conceptualizations of both standardization and affected properties, e.g.
agility or costs. In addition, as will be outlined in Chapter 5.3, suitable metrics to quantify
variables required for quantitative analyzes are also missing. Therefore, the goal of the online
survey presented in this chapter is to make the first step towards a broader understanding of
today’s application landscape diversity management approaches in practice. Beside the analysis
of goals pursued by diversity management and respective means, perceived effects of application
landscape diversity for which either contradictory assertions are found in literature or empirical
evidence is scarce, are inquired.

49

3. Application landscape complexity and diversity perceptions in practice

3.2.1. Theoretical foundation and propositions

In this chapter, existing theories regarding the effects of application landscape diversity are
reviewed. Based on this foundation several questions are derived which will be addressed by an
online survey described in the following chapter.

Diversity’s impact on costs

Although research on the management, governance and enforcement of IT standards within
organizations is relatively limited (van Wessel et al., 2005), increasing costs are frequently at-
tributed to application landscape diversity which is in line with the micro economic principle of
economies of scale. Table 3.1 analyzes a selection of statements about the relationship between
application landscape diversity or standardization and related costs. From this analysis one can
see that different authors expect or observed an increase in related costs if the diversity within
the application landscape increases. However, the cost concept used so far seems to be quite
general because different kinds of costs are often not distinguished. Due to missing empirical
evidence for cost reduction related to standardization (Boh and Yellin, 2007), it should be as-
sessed whether practitioners are able to realize cost savings by means of reducing diversity of
application landscapes.

Statement Source

“[IT] centralization facilitates standardization, integra-
tion, and economies of scale.”

DeSanctis and Jackson (1994)

“Research suggests that IT standardization can help to
considerably reduce the overall IT costs of a company.”

Mueller et al. (2015)

“Reducing the heterogeneity of infrastructure components
would enable organizations to better leverage the invest-
ment in physical IT infrastructure across units.“

Boh and Yellin (2007)

“[S]upporting a large number of different IT platforms
complicates systems development and increases mainte-
nance costs.”

Boh and Yellin (2007)

“The new [standardized] infrastructure services introduced
cost savings and new capabilities.”

Ross et al. (2006, p. 38)

“Fewer [IT] platforms mean lower cost.” Ross et al. (2006, p. 74)
“The advantages of a homogenous business bus are [..] cost
savings in implementing new and maintaining existing ap-
plications.”

Puschmann and Alt (2004)

Table 3.1.: Selected propositions on application landscape diversity and costs

50

3. Application landscape complexity and diversity perceptions in practice

Diversity’s impact on IT system integration

In literature, diversity is frequently considered to hamper interoperability among IT systems.
Table 3.2 provides an overview of respective statements. One can see that standards here
consider both IT components and data transfer protocols. Due to the fact that often differ-
ent standards exist on the market or within an application landscape, it should be assessed if
standardization fosters interoperability of IT systems and if different standards used in parallel
hinder interoperability.

Statement Source

“Standards help collaboration among vendors to provide
integrated information system to the end-users. This helps
to provide simplified IT infrastructure with seamless inte-
gration of divergent systems.”

Kumbakara (2008)

“EA standards for physical IT infrastructure reduce the
heterogeneity and increase the compatibility of IT in-
frastructure components across business units by limiting
technology choices, reducing the number of platforms sup-
ported, and defining standard protocols to enable commu-
nication between systems.”

Boh and Yellin (2007)

“Standards provide harmonized applications of IT prod-
ucts, facilitate the interchange of information, and pro-
vide appropriate degree of interworking amongst various
systems.”

Ngosi and Jenkins (1993)

“After all, an IT standard is not a means in itself, but a
means to an end: interoperable applications.”

Jakobs (2005, p. xiii)

“[T]he use of standards leads to the uniformity of objects
and therefore enables and facilitates interaction between
at least two objects.”

Buxmann et al. (1999)

Table 3.2.: Selected propositions on application landscape diversity and interoperability

Diversity’s impact on innovation

Previous research associates decreasing application landscape diversity, i.e. standardization,
with an increase in innovation (Ross et al., 2006; Hui et al., 2013). Table 3.3 provides an overview
of selected propositions. However, increasing application landscape diversity, i.e. differentiation,
has also been identified as means to increase innovation capabilities (Gregory et al., 2015).
Given these contradictory statements the question arises whether practitioners can realize more
innovation by using standardized IT or more diverse IT.

51

3. Application landscape complexity and diversity perceptions in practice

Statement Source

“[S]tandardized data and processes allow for process inno-
vation closer to the customer.”

Ross et al. (2006, p. 99)

“[Technical standards] form the basis for new technology
and promote technical innovation through regulation of
accumulated technical experience.”

Hui et al. (2013)

“Usually a standard is a restriction in one layer that cre-
ates lots of possibilities, freedom, flexibility and incentives
to innovation in other layers, either above or below the
standard.”

Vrancken (2006)

“Winning the support from business and Bank1’s top man-
agement during year 5 of our case was enabled by syner-
gistically blending IT efficiency with IT innovation and
accommodating IT standardization needs with business
demands for IT differentiation.”

Gregory et al. (2015)

Table 3.3.: Selected propositions on application landscape diversity and innovation

Diversity’s impact on agility

In addition to innovation, application landscape diversity is expected to influence an organiza-
tion’s agility. Therefore, Table 3.4 provides an overview of selected propositions. Again, one
can see that literature yields inconsistent assertions about the influence of diversity on organiza-
tional agility. For example, according to Ross et al. (2006), a less diverse application landscape
increases global flexibility whereas according to Wybo and Goodhue (1995), a less diverse ap-
plication landscape can reduce flexibility of individual subunits. Therefore, the question arises
how practitioners currently experience the impact of application landscape diversity regarding
organizational flexibility.

Diversity’s impact on manageability

As described earlier, application landscape design is today considered to be a main task of
enterprise architects. Accordingly, the desired degree of diversity might be influenced by its
impact on the manageability of the application landscape. Table 3.5 provides some selected
statements about the impact of diversity on manageability. For example, according to Mueller
et al. (2015), IT standardization represents a possible means to reduce (subjective) complexity
and to ease application landscape management. Therefore, the question arises if practitioners
actively decrease diversity within the application landscape to ease its management and maintain
control.

52

3. Application landscape complexity and diversity perceptions in practice

Statement Source

“[W]hen uncertainty comes mainly from task complexity
or environmental instability unique to individual subunits
[..] semantic standards can reduce the flexibility of an
individual subunit to redesign its systems to best meet its
unique information requirements.”

Wybo and Goodhue (1995)

“[T]he use of standardized technologies increases global
flexibility by reducing technical complexity and thus re-
ducing implementation time.”

Ross et al. (2006)

“Usually a standard is a restriction in one layer that cre-
ates lots of possibilities, freedom, flexibility and incentives
to innovation in other layers, either above or below the
standard.”

Vrancken (2006)

Table 3.4.: Selected propositions on application landscape diversity and agility

Statement Source

“[S]tandards are essential for companies to manage and
maintain control over their IT.”

Mueller et al. (2015)

“[S]etting and controlling a well-defined, robust set of IT
standard are the foundation for effective IT governance.”

Park et al. (2006)

Table 3.5.: Selected propositions on application landscape diversity and manageability

3.2.2. Survey design

To collect data required for assessing the current state of application landscape diversity man-
agement in practice regarding previously mentioned goals, an exploratory online survey has been
designed and conducted as “initial research, which forms the basis of more conclusive research.
It can even help in determining the research design, sampling methodology and data collection
method” (Singh, 2007, p. 64). The following chapters describe the data collection method and
provide an overview about the experts who participated in the survey.

Data collection method

As outlined above, assessing both application landscape diversity and its effects in practice and
applying quantitative methods to prove some previously derived hypotheses is currently not pos-
sible due to missing concepts, metrics and data. Therefore, the survey described in this chapter
only collects data about the perceptions of enterprise architects and software engineers regarding
previously selected effects. In addition to answering structured questions, participants are also
asked to comment on their answers and share their experience and mental models via open-ended
questions. Thereby, a broad overview about currently applied diversity management approaches
can be derived, recurring reasons or effects identified and misunderstandings avoided.

53

3. Application landscape complexity and diversity perceptions in practice

The survey was conducted by Schneider et al. (2015b) in the middle of 2015. Invitation links
to the online survey were mailed to enterprise architects and software engineers from Germany,
Austria and Switzerland who had previously collaborated in research endeavors with the chair or
visited respective conferences. A detailed overview of respondents is given in the next chapter.
The available alternatives to answer questions were predetermined by the researchers and gen-
erated using existing literature (see previous chapter) as well as the researchers’ own experience.
To assess whether application landscape diversity has an impact on certain other properties,
common Likert scales were used. As with most research designs, the one described and used
here has limitations. First, the number of responses is not as large as it would be expected, e.g.,
for a causal research survey. Second, the sample is not random which might bias the results
although it remains unclear in which way. Third, only selected effects of standardization are
assessed. However, it needs to be noted that ”an exploratory study [as described here] may not
have as rigorous a methodology as it is used in conclusive studies, and sample sizes may be
smaller” (Nargundkar, 2003, p. 41).

Description of responses

In total, 47 practitioners correctly filled out and returned the initial survey while 24 answers were
excluded because of missing answers or missing expertise. Due to the anonymous submission
opportunity, it cannot be excluded that a certain company participated twice. However, all 37
participants for which their identities are known work for different companies or in two cases
different branches within the same company. The companies that returned the survey were from
a wide range of industries (see Figure 3.2) and different sizes (see Figure 3.3). However, most
of them stem from the financial, technology and production sector and have more than 50,000
employees.

33%

24%

17%

7%

2%

2%

2% 2% 11%

Finance, Assurance, Estate

IT, Technology, Internet

Production

Government

Communication, Public Utilities

Retail, Whole Sales

Nonprofit

Service

Other

33%

24%

17%

7%

2%

2%
2%

2%
11%

Finance, Assurance, Estate

IT, Technology, Internet

Production

Government

Communication, Public Utilities

Retail, Whole Sales

Nonprofit

Service

Other

Figure 3.2.: Industry sectors of participants

2%

9%

28%

14%

47%

11 - 25 FTEs

26 - 250 FTEs

1,000 - 10,000 FTEs

10,001 - 50,000 FTEs

> 50,000 FTEs

2%

9%

28%

14%

47%

11-25 FTEs

26 - 250 FTEs

1,000 - 10,001 FTEs

10,001 - 50,000 FTEs

> 50,000 FTEs

Figure 3.3.: Company sizes

The respondents are mostly enterprise architects (57%), followed by IT managers (15%), con-
sultants (15%) and project managers (7%). 76% have more than nine years of professional
experience. According to their own assessment, 26% of the respondents rated the maturity of
their EAM function low, 50% medium and 24% high. In about one half of the participating
companies the EAM initiative is manly IT driven, in the other cases it is both business and IT
driven. In about three fourths of the participating companies (76%), the EAM initiative has
been started five years ago or earlier. One third (31%) of the respective enterprises has started
to manage their EA more than ten years ago. In 89% of these companies, the EAM initiative has

54

3. Application landscape complexity and diversity perceptions in practice

the support of the upper management. Of 43 respondents, 83% stated that IT standardization
is a key challenge for their organization. Accordingly, only 15% of the respondents classify their
current application landscape as highly standardized. 53% classify their degree of standardiza-
tion as medium while 32% have a low degree of standardization, i.e. a high degree of diversity,
within their application landscape. However, 89% confirmed that responding quickly to changes
in the environment of the enterprise is either important or very important.

3.2.3. Data analysis

In this chapter, the analysis of the survey responses is described. First, the current state of
diversity management in practice is assessed. Second, the impact of application landscape
diversity on the previously described aspects is examined.

Current state of diversity management in practice

To assess the motivation behind application landscape diversity management in today’s com-
panies, the most prominent reasons for IT standardization are identified. When asked for the
main reasons why their company tries to decrease the diversity of its application landscape, 85%
of the respondents named cost reduction. This main goal is followed by maintaining control
and manageability (66%), enhancing integration and collaboration (55%), implementing security
guidelines (45%) and implementing regulatory requirements (26%). In addition, the enhance-
ment of IT operations was mentioned because less diverse knowledge is needed. Interestingly,
no value-adding goal has been mentioned at all.

Because there is no consistent knowledge available about how to standardize an application
landscape, companies were asked about common means they implement to do so. Table 3.6
provides an overview about respective answers.

Means Implemented Not implemented

Definition of standard products 38 8
Definition of technical platforms 37 9
Requiring concessions for non-standard products 33 13
Definition of standard compliant target architecture 32 14
Definition of architecture principals 31 15
Transformation/migration of existing solutions 29 17

Table 3.6.: Currently implemented means for decreasing application landscape diversity

It is interesting to see that most means currently used to manage diversity target on guiding
future decisions. The active migration to standard products is not as often used as other means.
However, 75% of the respondents confirmed that only specific areas of the application landscape
are subject to standardization. Therefore, it is not surprising that 63% of the respondents
answered that, in the company they work for, application landscape diversity is actively increased
in specific areas. These areas include, for example, non-core business areas like HR payroll and

55

3. Application landscape complexity and diversity perceptions in practice

areas in which distinction from competitors should be achieved. Therefore, as listed in Table 3.7
different means are currently used in practice to achieve an increase in application landscape
diversity. The most popular means is to define multi-product strategies, e.g. for relational
database management systems. In some cases diversification is also achieved be either reducing
the influence of the central IT management division or by starting completely new business units.
Respondents also mentioned that diversity is increased via extending the portfolio of standard
products or via permitting more exceptions. However, 35% or the respondents were not aware
of any means currently used to increase application landscape diversity.

Means Implemented Not implemented

Multi-product strategy 17 29
New subsidiaries or companies 6 40
Reduction of central management 6 40
Respective specifications 3 43

Table 3.7.: Currently implemented means for increasing application landscape diversity

Although application landscape design is a core task of enterprise architects, it remains unclear
which leverage points qualify for starting standardization efforts and if enterprise architects
are usually able to exert their influence on them. According to the participating companies, the
various layers of an EA are not equally suitable for standardization (see Figure 3.4). For example,
infrastructure elements are considered to be a better leverage point than technical components.
Furthermore, business applications should be preferred to business processes whereas business
objects or data is considered to be least useful for standardization. By looking at the distribution
of the influence enterprise architects usually have on these layers, it becomes obvious that they
cannot influence all suitable leverage points equally (see Figure 3.5). For example, enterprise
architects have more influence on the standardization of data than on business processes although
they are less suitable for standardization. Among the survey participants, 61% attributed high
or very high relevance to business processes but only 16% have also high or very high impact on
their design. Figure 3.5 additionally indicates that the current influence of enterprise architects
is heavily IT focused and less business focused. Accordingly, enterprise architects might not
be able to manage diversity within the application landscape alone due dependencies to other
layers they cannot fully design.

0% 20% 40% 60% 80% 100%

Data

Business processes

Applications

Technical components

Infrastructure

very low low medium high very high

0% 20% 40% 60% 80% 100%

Data

Applications

Business processes

Infrastructure

Technical components

very low low medium high very high

Figure 3.4.: Standardization leverage points

0% 20% 40% 60% 80% 100%

Business processes

Data

Applications

Technical components

Infrastructure

very low low medium high very high

Figure 3.5.: Influence of enterprise architects

56

3. Application landscape complexity and diversity perceptions in practice

Benefits and drawbacks of application landscape diversity

As mentioned before, expected cost savings are the most prominent reason why the companies
participating in this survey decrease the diversity of their application landscape. Accordingly,
81% of the respondents think that IT standardization reduces IT costs either significantly (41%)
or slightly (40%). Interestingly, only 41% of these companies confirmed that respective cost
assessments are actually carried out. Thus, it can be concluded that the unanimous opinion of
practitioners today is that diversity is directly associated to costs although some critics can also
be found. When asked about the expected amount of realizable cost savings, 25% expect savings
less or equal to 5% of the overall IT budget. Only 13% expect a potential for savings greater
than 20% of the IT budget. Thereby, the greatest potential for savings is attributed to operating
costs (95%), followed by maintenance costs (86%) and costs for new IT developments (68%).
However, 60% of the respondents could not confirm the statement that a more diverse application
landscape produces more incidents during operation. Out of 30 respondents who answered the
question about a specific case in which disregard of a standard yielded monetary losses 37% were
able to describe such case. These cases included, for example, the development of redundant
infrastructures (ESB, DWH) and the parallel development of different user interfaces.

In addition to saving costs, keeping the application landscape under control and reducing its
complexity has been identified as the second most important reason why companies try to
reduce the diversity of their application landscape. Although only 66% of the respondents
named maintaining manageability as a reason for decreasing application landscape diversity,
93% confirmed that standardization is a suitable means to achieve it. Consequently, it can be
regarded as a suitable means to reduce application landscape complexity. However, out of 38
respondents who answered a question about the quality of standardized solutions 74% think that
they result in sub-optimal local solutions. Furthermore, 39% report that they have seen such
behavior often or very often. An additional portion of 39% said that standardization yields sub-
optimal local solutions at least sometimes leaving only 22% saying that less optimal solutions
occur only rarely or never.

Regarding the hypothesized increase of interoperability due to decreasing diversity, 91% of the
respondents were able to describe at least one case in which the usage of complementary stan-
dards was successful. Here, an interesting correlation can be observed. In 31% of the responding
companies “many” such cases could be observed and only in 9% none could be observed. Every
of the former companies uses a specific EAM framework while non of the latter companies uses
such framework. In total, 67% of the respondents agreed that IT standardization fosters interop-
erability. However, only 8% of these companies actually assess the impact of standardization on
interoperability. In addition, 62% of the respondents agreed that the existence of incompatible
standards is prevalent and hinders integration of IT systems.

The impact of application landscape diversity on innovation is manifold. First, 70% of the
respondents were able to describe at least one case in which standardization was fostering tech-
nological innovation. In addition, the same amount of respondents agreed that standardization
on a specific layer can foster innovation on the next layer above. This includes, for example,
company-wide unified communication solutions, single sign on solutions and consistent source
code management through a single team server. The most frequently mentioned enhancements

57

3. Application landscape complexity and diversity perceptions in practice

due to standardization include data aggregation and business process optimization. However,
this needs to be viewed in the light of the previously described limitations of standardized ap-
plication landscapes regarding the fulfillment of (local) demands and the fact that 75% of the
respondents confirmed (6% refused) that business departments expected to generate innovations
require a higher degree of application landscape diversity.

63% of the respondents confirm that application landscape diversity impacts the agility of busi-
ness departments. The respondents mention, for example, that standard solutions can be com-
missioned faster and therefore business units can use them earlier. Furthermore, 81% of the
respondents confirmed that standardization results in technology or vendor dependence. 53%
ranked this impact strong or very strong. Thus, agility can be limited if diversity is decreased.

In summary, the conducted survey confirmed not only the need for decision support in the
context of application landscape diversity management but also revealed questions for future
research. For example, cost savings are the most prominent reason why companies today try
to standardize their application landscape. However, this comes with drawbacks such as less
optimal business solutions and technology dependence. Up to now, it remains unclear which
type of costs can be reduced (operation costs, maintenance costs or development costs) and to
what extend this is actually achievable. In particular, there is no evidence that cost savings can
be achieved via standardization while maintaining the same level of functionality. In future, a
quantitative approach might yield more detailed insights here. Beside that, enterprise architects
currently not always have the required influence within the organization to manage the diversity
of the most important parts of the EA. In addition, application landscape diversity seems to
be related to subjective complexity because standardization has been mentioned as a suitable
means to maintain manageability of the application landscape. This aspect will be discussed in
following chapter.

3.3. The role of diversity for application landscape complexity

So far, application landscape complexity has been discussed with regard to its drivers and
consequences as they are perceived in practice (Chapter 3.1). In addition, the results of a survey
assessing the perceived drivers and consequences of application landscape diversity have been
presented (Chapter 3.2). Accordingly, this chapter outlines the theoretical assumptions about
the relation of complexity and diversity in general and relates application landscape complexity
and diversity by comparing the previously described observations.

3.3.1. Theoretical insights for systems in general

In complexity theory (see Holland, 1995; Kauffman, 1995), internal diversity is regarded as a
fundamental requisite of systems to achieve a higher rate of adaptability. This is in line with
Ashby (1956) who argues that a system has to embody as much variety as its environment. In
addition to Ashby’s law of requisite variety, Allen (2001) proposed the law of excess diversity,
stating that a sustainable evolutionary strategy requires an amount of internal diversity supe-
rior to that of the environment. To conclude, diversity constitutes an important element in

58

3. Application landscape complexity and diversity perceptions in practice

short- and long-term adaptability (Andriani, 2001). These general observations should there-
fore also hold true for organizations which are frequently regarded as complex systems (Buckl
et al., 2009; Ladyman et al., 2013). Self-organization, a system property attributed to complex
systems (Ashby, 1947; Kauffman, 1993) also depends on diversity of system elements enabling
autocatalysis (Juarrero, 2000). Therefore, it can be summarized that (1) adaptive strategies
are more successful if agents and systems are internally diverse and (2) the transition from an
aggregate to a system is also dependent upon internal diversity (Andriani, 2001).

Another research area in complex systems investigations is robustness (Jen, 2005). Although
many definitions of robustness exist (Krakauer, 2006), it can be generally defined as the ability
of a system to maintain functionality in the face of some change or disturbance. Thereby,
robustness needs to be distinguished from stability which refers to the tendency of a system
to return to an equilibrium after facing some change. In contrast, the concept of robustness
covers continuous sustainability as well as responsiveness to shocks. Thus, it expands on the
notion of resilience which considers the ability of a system to recover from trauma (Page, 2011).
Organizations can achieve robustness by performing both exploration and exploitation (March,
1991). In order to explore, at least a temporal increase in diversity is required (Page, 2011). In
ecology, for example, robustness is directly liked to diversity as it is considered to be a measure
of the preservation of species diversity upon species removal (Krakauer, 2006).

Diversity can also have a stabilizing effect in complex systems. Kirman and Vriend (2001)
present a simple market model in which individual buyers and sellers are allowed to strike up
relationships with one another. If buyers differ in the price at which they value the goods,
then buyers with relatively high values tend to pay higher prices. According to Page (2011),
in this model diversity produces complexity through the web of connections and reputations
that emerge from the system. Without diversity nothing interesting would happen. But with
diversity market prices stabilize over time although the behavior of agents forms a complex
system.

In the field of information systems, complexity is often regarded as number and variety of both
computing components and component interactions (Schneberger and McLean, 2003). This
concept has recently been transferred to the domain of enterprise architectures (Schuetz et al.,
2013). Thereby, complexity has been defined as the number and heterogeneity of both EA
elements and their interactions. Accordingly, heterogeneity, i.e. one aspect of diversity (see
Chapter 4), seems to form an integral part of information systems and enterprise architecture
complexity.

3.3.2. Empirical insights for application landscapes

Although theoretical propositions about the relationship of diversity and complexity exist, it
should be assessed whether this relationship can also be proven empirically in the context of
application landscapes. Therefore, in addition to the effects of application landscape diversity
analyzed in Chapter 3.2.3, the respondents were also asked about the influence of application
landscape diversity on the drivers and consequences identified for application landscape complex-
ity in Chapter 3.1.2. The drivers for application landscape complexity identified via focus group
interviews include local decision making, business complexity, legal requirements, technological

59

3. Application landscape complexity and diversity perceptions in practice

progress and short-term optimization. The consequences of application landscape complexity
include costs, errors, skill dependence, inflexibility and shadow IT. Accordingly, the survey par-
ticipants were asked if each of the identified drivers of application landscape complexity is also
a driver for application landscape diversity. Table 3.8 summarizes the results.

Driver (Strong) Confirmation Indecision (Strong) Refusal

Local decision making 92% 6% 2%
Business complexity 60% 23% 17%
Legal requirements 13% 9% 78%
Technological progress 83% 6% 11%
Short-term optimization 87% 9% 4%

Table 3.8.: Complexity drivers and their influence on diversity

The results indicate strong support for the proposition that the drivers of application landscape
complexity are also drivers for its diversity with one exception, i.e. legal requirements. Although
the increasing speed of new laws impacting application landscapes and their increasing scope
drive the complexity of application landscapes, the opposite seems to be true for its diversity.
According to the survey participants (78%), it becomes easier to comply to legal regulations if
the application landscape is less diverse.

Likewise, the practitioners survey about effects of application landscape diversity was used
to assess whether it yields the same consequences as application landscape complexity does.
Table 3.9 summarizes the results.

Consequence (Strong) Confirmation Indecision (Strong) Refusal

Costs 81% 17% 2%
Errors 41% 38% 21%
Skill dependence 78% 15% 7%
Inflexibility 37% 17% 46%
Shadow IT 57% 21% 22%

Table 3.9.: Complexity consequences influenced by diversity

As the survey results indicate, application landscape diversity has similar consequences as ap-
plication landscape complexity has. This includes at least increasing costs and increasing skill
dependence. An increase in errors during operation is also slightly confirmed. In contrast, 46%
of the respondents see an increase in flexibility due to an increase in diversity. This is partly
in line with the previously described analysis results regarding flexibility. Furthermore, there
is support for the proposition that diversity does not increases shadow IT (57%) contrary to
the observed effect of application landscape complexity. However, it can be concluded that also
from an empirical point of view the concepts of complexity and diversity are quite similar in the
context of application landscapes as they share many drivers and also consequences. Figure 3.6
summarizes these outcomes by indicating drivers and consequences similar as well as different
(highlighted in green) to application landscape complexity.

60

3. Application landscape complexity and diversity perceptions in practice

AL Diversity

Cost

Error rate

Skill dependency

Agility

Shadow IT

+

+
+

+

-

Local

decisions
Business

complexity
Legal

requirements

Technological

progress

Tactical

solutions

+
+ - +

+

Figure 3.6.: Drivers and consequences of application landscape diversity

61

62

CHAPTER 4

A conceptual framework for application landscape diversity

“It is time for parents to teach young people

early on that in diversity there is beauty and

there is strength”.

Maya Angelou, Women of the Year Gala 2009

As outlined in Chapter 2, enterprises in general and application landscapes in particular form
complex systems. To survive in their environment, these systems need to balance exploration
and exploitation activities with regard to their resources which are a major source for creat-
ing competitive advantage (see Chapter 2.3). When considering the complexity of application
landscapes diversity plays a crucial role (see Chapters 2.4 and 3) although a detailed conceptual
understanding in this context is still missing. Therefore, the goal of this chapter is to develop
such conceptual understanding of diversity in the context of application landscapes. Based on
EA meta-models and description logics, four different aspects of diversity are derived including
variation, variety, balance and disparity. Thereby, this chapter provides the foundation for
the upcoming diversity metric development in Chapter 5.

4.1. Description logics and enterprise architecture meta-models

To describe the architecture of an enterprise, the respective architect needs to be aware of relevant
components as well as their relations. The components and relations to be modeled can, for
example, be defined by an EA meta-model. Therefore, such meta-model defines the scope of
an architectural description of an enterprise. To provide a holistic view on the enterprise, such
meta-model typically contains both business related and information systems related components

63

4. A conceptual framework for application landscape diversity

as well as their interrelationships. Most EAM frameworks provide such EA meta-model, e.g.
the TOGAF content metamodel (The Open Group, 2011), the ArchiMate language (Lankhorst,
2009) and different research approaches, for example the essential layers defined by Winter and
Fischer (2007) or the information model patterns observed by Ernst (2008). Therefore, the
actual meta-model used to develop architectural descriptions of an enterprise provides the basis
for considering the diversity of modeled components and relations. It is important to note that
EA meta-models are typically organization-specific because of individual information demands.
Thus, no generally applicable meta-model satisfying all requirements currently exists.

To describe diversity of EA components, a more abstract modeling approach is required to
be independent of concrete, organization-specific EA model and meta-model manifestations. In
biology end ecology, for example, diversity of an ecosystem is described by the diversity of species
living therein (MacArthur and MacArthur, 1961; Hill, 1973; Ying-Hui et al., 2014). In the context
of economics, diversity of people and workforce has been considered based on ethnics (Alesina
and La Ferrara, 2004) and gender (Campbell and Mínguez-Vera, 2008). As we can easily see,
from all the different diversity approaches present in various disciplines, a more abstract model
of systems under investigation can be derived. In each case the modeler needs to be aware of
individuals (e.g. a person or an animal) and the concept which is used to uniformly describe a
set of individuals (e.g. male or dog). Therefore, the formal approach of description logic seems
to be appropriate to model a system under investigation, e.g. an application landscape, to allow
consistent diversity assessments. To lay the foundation for the diversity framework developed
in this chapter, description logics are introduced, followed by an application of description logic
to EA meta-models.

4.1.1. Introduction to description logics

DLs are a family of formal knowledge representation languages which is used, for example,
in artificial intelligence for formal reasoning on concepts of an application domain, e.g. in
software design and analysis based on UML diagrams (see Berardi et al., 2005). Within DL
intensional knowledge, i.e general knowledge about the problem domain, is represented by the
TBox. Likewise, the extensional knowledge, i.e. knowledge which is specific to a particular
problem, is represented by the ABox. Both can be defined as follows.

Definition: TBox
The TBox contains intensional knowledge in the form of a terminology and is built
through declarations that describe general properties of concepts.

(Baader, 2003, p. 12)

Definition: ABox
The ABox contains extensional – also called assertional – knowledge that is specific to
the individuals of the domain of discourse.

(Baader, 2003, p. 13)

64

4. A conceptual framework for application landscape diversity

In this context, intensional knowledge is usually considered to be stable whereas extensional
knowledge is usually thought to be contingent and therefore subject to change. Therefore, it can
be concluded that two fundamental components are sufficient to formally describe the knowledge
of a problem domain, e.g., an application landscape: concepts and their relationships (TBox)
and individuals assigned to concepts (ABox). The key relationship between concepts is the
is-a relationship. For example, a woman can be defined by the following declaration:

𝑊𝑜𝑚𝑎𝑛 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ 𝐹𝑒𝑚𝑎𝑙𝑒 (4.1)

It is important to note that concepts have to be defined acyclic, i.e., that concepts are neither
defined in terms of themselves nor in terms of other concepts that indirectly refer to them. In
contrast, the ABox contains assertions about individuals usually called membership assertions.
This is expressed by the following example provided by Baader (2003):

𝐹𝑒𝑚𝑎𝑙𝑒 ⊓ 𝑃𝑒𝑟𝑠𝑜𝑛(𝐴𝑁𝑁𝐴) (4.2)

In this example, the individual ANNA is a female person. Given the above definition of woman,
one can derive from this assertion that ANNA is also an instance of the concept Woman. Fig-
ure 4.1 illustrates the general relationship of individuals and concepts. Thereby, individuals are
considered to be atomic elements which cannot be divided into smaller elements. Usually, they
represent things existing in the real world which can be named. Concepts are used to group and
thereby describe individuals which are similar with respect to a certain aspect. A single individ-
ual can be described by many concepts whereas a single concept can describe many individuals.
In addition, concepts can form hierarchies, i.e. a concept can be defined by using other concepts.
In the previous example, Female is a concept used to describe individuals directly whereas the
concept Women is solely defined based on other concepts.

Concept

Individual

TBox

ABox

Figure 4.1.: General components of description logics

In literature, a variety of DLs can be found. These can be distinguished by the operators they
allow. For example, Schmidt-Schauß and Smolka (1991) introduce the attributive language (𝒜ℒ)

65

4. A conceptual framework for application landscape diversity

as a minimal language that is of practical interest. If A and B are used for atomic concepts,
the letter R for atomic roles and the letters C and D for concept descriptions, the 𝒜ℒ language
provides the following syntax rules.

𝐶,𝐷 → 𝐴| (atomic concept)
⊤| (universal concept)
⊥| (bottom concept)

¬𝐴| (atomic negation)
𝐶 ⊓𝐷| (intersection)
∀𝑅.𝐶| (value restriction)
∃𝑅.⊤ (limited existential quantification)

(4.3)

More complex versions can be generated by adding other constructors, e.g. union (𝒰), full
existential quantification (ℰ), inverse properties (ℐ) and number restrictions (𝒩). Nevertheless,
to describe the knowledge about EAs the 𝒜ℒℐ language is sufficient (see Chapter 4.1.3) which
is created by adding inverse properties.

4.1.2. Examples of EA meta-models

The development of meta-models is a common approach to guide the description of knowledge
about the architecture of an enterprise. These meta-models are similar to an ontology because
they define the existing types of elements as well as their relationships. Instead of providing
only general knowledge about description concepts, e.g. by description logics, such meta-models
define not only what should be modeled but also what should not be modeled. Furthermore,
they provide typical concepts used to model the architecture of an enterprise allowing direct
application with minor adaptations instead of developing these concepts from scratch (e.g. a
new TBox for EA for every company). To provide an overview about typical elements of an EA
meta-model, exemplary approaches from literature and practice are reviewed in the following.

The previously mentioned industry standard TOGAF (The Open Group, 2011) contains the
so called content metamodel which describes the concepts used in TOGAF. It is intended to
provide guidance for organizations that wish to implement their architecture description within
an EAM tool. Within the content metamodel, the following core terms are defined and correlated
with each other:

Actor: A person, organization, or system that is outside the consideration of the architecture
model, but interacts with it.

Application Component: An encapsulation of application functionality that is aligned to imple-
mentation structuring.

Business Service: Supports business capabilities through an explicitly defined interface and is
explicitly governed by an organization.

66

4. A conceptual framework for application landscape diversity

Data Entity: An encapsulation of data that is recognized by a business domain expert as a
discrete concept. Data entities can be tied to applications, repositories, and services and
may be structured according to implementation considerations.

Function: Delivers business capabilities closely aligned to an organization, but not explicitly
governed by the organization.

Information System Service: The automated elements of a business service. An information sys-
tem service may deliver or support part or all of one or more business services.

Organization Unit: A self-contained unit of resources with goals, objectives, and measures. Or-
ganization units may include external parties and business partner organizations.

Platform Service: A technical capability required to provide enabling infrastructure that supports
the delivery of applications.

Role: An actor assumes a role to perform a task.

Technology Component: An encapsulation of technology infrastructure that represents a class of
technology products or a specific technology product.

In addition, the content metamodel provides six different extensions which can be used if required
in a specific context. When all extensions are applied to the core content metamodel, a number
of new metamodel entities are introduced. Figure 4.2 illustrates which entities are contained in
the core content metamodel as well as which entities are introduced by extensions.

Another part of the TOGAF standard is the ArchiMate language (Lankhorst, 2009). It provides
a more detailed meta-model and is supported by many architecture description tools, e.g. Archi1

and BizzDesign architect2. Figure 4.3 illustrates the core concepts of the ArchiMate language.
A detailed description of the elements is provided by the current ArchiMate specification3.

In addition to industry standards like TOGAF and ArchiMate several research groups focused
on the development of conceptual meta-models to guide the development of architectural de-
scriptions of enterprises. For example, Winter and Fischer (2007) identified essential layers and
artifacts of EA meta-models. These include:

∙ Strategy specification: hierarchy of organizational goals and success factors, product/ser-
vice model (including partners in value networks), targeted market segments, core compe-
tencies, strategic projects, maybe business principles, dependencies between these artifacts

∙ Organization/process specification:

– Specification of structure: organizational unit hierarchy, business location hierarchy,
business role hierarchy (including skills requirements), dependencies between these
artifacts

– Specification of behavior: business function hierarchy, business process hierarchy in-

1http://www.archimatetool.com
2http://www.bizzdesign.com/tools/overview/
3http://pubs.opengroup.org/architecture/archimate2-doc/

67

4. A conceptual framework for application landscape diversity

Architecture Principles, Requirements, And Roadmap

Business Architecture

Motivation

Driver

Goal

Principle

Objective

Measure

Gap

Data Architecture Application Architecture Technology Architecture

Constraint Assumption Requirement

Work package Capability

Organization

Organizational

Unit

Actor

Role

Location

Function

Function

Business Service

Contract

Service Quality

Process

Event

Control

Product

Data Entity

Logical Data

Component

Physical Data

Component

Information Systems

Service

Logical Application

Component

Physical Application

Component

Platform Service

Logical Technology

Component

Physical Technology

Component

Figure 4.2.: TOGAF content metamodel with extensions according to The Open Group (2011)

cluding inputs/outputs (internal and external business services including service lev-
els), metrics (performance indicators), service flows

– Specification of information logistics: business information objects, aggregate infor-
mation flows

– Dependencies between these artifacts, e.g. responsibilities or information require-
ments

∙ Application specification:

– Specification of applications and application components

– Specification of enterprise services and service components

∙ Software specification:

– Specification of software components: functionality hierarchy, message hierarchy

– Specification of data resources: conceptual, logical and physical data models

68

4. A conceptual framework for application landscape diversity

Figure 4.3.: Core concepts of the ArchiMate meta-model according to Lankhorst (2009, p. 91)

– Dependencies between these artifacts, e.g. data usage by software components

∙ Technical infrastructure specification:

– Specification of IT components: hardware units, network nodes, etc.

– Dependencies between these artifacts

∙ Specification of dependencies between layers, e.g.:

– Organizational goals/success factors vs. process metrics

– Products/services vs. process deliverables

– Organizational units vs. applications (ownership)

– Activities vs. applications

– Applications/enterprise services vs. conceptual data entity types

– Applications/enterprise services vs. software components (composition)

In Ernst (2008), typical segments of EA meta-models observed in industry are collected. In
this collection, some concrete patterns modeling more technical components can be found. For
example, I-Pattern I-30 (Ernst, 2008, p. 199) includes a concept named Support Relationship
which is used to model the relationship between Business Applications, Organizational Units
and Business Processes. This concept is required, if the model should be able to express the
fact that a Business Application is used within more than one Business Process by more than
one Organizational Unit, but at least one of these Organizational Units uses another Business
Application for at least one of these Business Processes.

69

4. A conceptual framework for application landscape diversity

Based on these exemplary descriptions of existing EA meta-models the following conclusions
can be drawn:

1. An enterprise architecture description consists of individuals which are grouped by the
concepts defined in the meta-model.

2. Relevant characteristics of individuals are described based on the attributes specified in
the meta-model.

3. Concepts in the meta-model might be interrelated, e.g., within a hierarchy.

4. Concepts used within EA meta-models vary between frameworks and organizations.

5. Concepts presented in literature, frameworks and used in practice are often similar al-
though addressed in different vocabularies, for example, business applications, business
processes and infrastructure elements (see also Chapter 5.1 for a unified EA meta-model).

4.1.3. Diversity considerations based on different EA meta-model elements

As outlined by Baader (2003), the advantage of conceptual models, e.g., EA descriptions, is
that they abstract away irrelevant details and allow more efficient examination of the current
as well as past and projected future states of the universe of discourse, i.e., the enterprise.
Likewise, DLs subscribe to an object-centered view of the world. Their ontology includes notions
like individuals, their relationships and concepts grouping individuals into classes. Therefore,
DLs provide the abstract formal definition of EA meta-model elements required to consider
diversity of these elements without being tied to specific architecture frameworks. As outlined
before, diversity is usually assessed on the concept level not on the level of individuals. By
definition, individuals are separate entities which differ significantly. Thus diversity of two or
more individuals can never be zero. This is different on the concept level. Depending on the
concepts used to describe the individuals concepts can be defined to be equal, thus having no
diversity. When applying the notions of individuals, roles and concepts to EA models in general
and application landscapes in particular, a corresponding mapping is required.

First, some individuals might be quite concrete such as a person or a legal entity of a company.
Others might be more abstract like a business goal or a business application. To be considered
an individual, it is important to have an identity which allows them to be distinguished from
each other and to be counted. What is to be considered an individual depends on what should be
done with the information (Baader, 2003, p. 353). When modeling an application landscape, this
imposes several questions which cannot be answered easily. For example, when considering an
infrastructure element like an Oracle Database Server, each installation of this product can
be regarded as an individual. This approach would be typical within the IT service management
domain because each installation can be subject to failures independently of others. In the
context of EAM, typically a different approach is preferred. The enterprise architect is usually
only interested in the fact that Oracle Database Servers are part of the EA (see Chapter 5.3
for more examples derived from practice). The second question arising is how to model different
versions of the same product. If the enterprise architect is interested in the existence of different
versions of, for example, Oracle Database Servers, each version has to be modeled as an

70

4. A conceptual framework for application landscape diversity

individual. In such case, the Oracle Database Server itself cannot be an individual anymore
but has to be modeled as concept.

Second, the concepts used to describe the set of relevant individuals forming the EA needs to
be defined. This can be done, for example, by using or adapting one of the EA frameworks
introduced in the previous chapter. Continuing with the aforementioned example, the concept
Oracle Database Server can be introduced as an atomic/primitive concept to describe the
different versions considered to be individuals. Furthermore, the concept Infrastructure
Element can be introduced as another concept grouping all individuals being an Oracle

Database Server as well as other individuals being, for example, DB2 Database Servers.

Oracle Database Server ⊑ Infrastructure Element

DB2 Database Server ⊑ Infrastructure Element
(4.4)

Given such concept relation, diversity within a concept can be assessed by analyzing respective
sub-concepts as well as their instances. This becomes particularly important if diversity should
not only be analyzed for the whole application landscape but also for different areas within the
application landscape, e.g. for different domains or organizational units.

Third, EA meta-models explicitly define relations between individuals and therefore concepts.
For example, a typical relation is modeled between Business Applications and Infrastruc-
ture Elements. In such case, it is assumed that a Business Application is composed of
several Infrastructure Elements. In DLs this can be expressed by roles. For example, the
fact that business application A is composed of Oracle Database Server 10g would be described
as follows:

Oracle Database Server(ORACLE DATABASE SERVER 10g)

Business Application(A)

composedOf(A, ORACLE DATABASE SERVER 10g)

(4.5)

Instead of stating that a Business Application is composed of Infrastructure elements
one could also say that an Infrastructure Element is used by a Business Application.
This could easily be expressed by defining an inverse role as follows:

usedBy ≡ (inverse composedOf) (4.6)

This example demonstrates the necessity of the DL 𝒜ℒℐ to represent enterprise architecture
knowledge because relationships are usually navigated in both directions.

Finally, it can be concluded that the application of DLs provides a formal way of representing
EA knowledge contained in organization-specific EA models based on organization-specific or
EA framework-specific meta-models. This enables the development of a comprehensive and
organization-independent diversity framework using only the notions of individuals, roles and
concepts, within the next chapters.

71

4. A conceptual framework for application landscape diversity

4.2. Variation: Differences between individuals

When considering diversity of application landscapes, at least four different dimensions have to
be regarded (Stirling, 2007; Page, 2011). In this chapter, the first dimension, variation, will
be introduced and illustrated with examples. Thereby, understanding variation will provide the
basis for the other three dimensions because it distinguishes diversity among individuals from
diversity among concepts.

4.2.1. Derivation and definition

In his comprehensive work on diversity and complexity, Page (2011) identified three fundamen-
tal types of diversity: (1) diversity within a type, (2) diversity of types and (3) diversity of
compositions. Thereby, the notion of types is used to distinguish between diversity within types
(variation) and across types (diversity). Although this approach should comply with the intu-
itive understanding of most people, if applied to a concrete domain, a formal definition of types
and instances is required. As outlined before, this could be achieved, for example, by using
Description Logics (DLs) to describe the universe of discourse. Thereby, an existing EA meta-
model can be used. What Page (2011) calls a type is equivalent to a concept in DL. Likewise,
instances represent the same notion as do individuals. Accordingly, the first dimension to be
considered when assessing application landscape diversity can be defined as follows:

Definition: Variation
Variation is defined as diversity within a concept. This refers to differences in the
amount of some attribute or characteristic.

(Page, 2011, p. 20)

In general, “variation allows for local search, provides responsiveness to minor changes in the
environment and serves as an engine for diversity of types” (Page, 2011, p. 3). It therefore plays
an important role in enabling adaptability and robustness of complex systems. Considering,
for example, birds belonging to the same species, the individuals exhibit variation in wing size
and beak length. Not only can such differences produce a survivability advantage for some
individuals of that species, they also allow the species to adapt to a changing environment. The
demarcation of variation, i.e. differences among individuals, from diversity among concepts is
crucial because it defines aspects which are not of interest at the concept level. Such approach
is also typical in other disciplines, e.g., organizational science, where diversity is considered at
unit level rather than considering focal unit member’s differences from other members (Harrison
and Klein, 2007). Figures 4.4 and 4.5 illustrate the meaning of variation both figuratively and
exemplarily.

In Figure 4.4, the variation dimension of diversity, i.e., diversity among individuals, is illustrated
by eight individuals which differ in terms of color and diameter. In this case, all individuals
belong the same concept shape. Likewise, Figure 4.5 exemplifies the variation dimension of
diversity by depicting five different animals which also differ in terms of their color. Note that
the common concept used here is animals and not concrete species like cats and dogs. If the

72

4. A conceptual framework for application landscape diversity

Figure 4.4.: Figurative illustration of variation Figure 4.5.: Exemplary illustration of variation

concept used here would not be animals but cats, five different cats would have been depicted all
differing in terms of their color and maybe size. Accordingly, what is considered to be variation
depends on the modeling approach of a respective universe of discourse. Given such approach,
variation lays the foundation for considering diversity among concepts.

4.2.2. Exemplary application

The notion of variation introduced in the previous chapter can easily be transferred to the con-
text of application landscapes. Therefore, the individuals of interest need to be defined first.
When considering, for example, Database Management System (DBMS), different individuals
might be observed within an application landscape. Using DL, an exemplary application land-
scape might be modeled as follows.

Example 4.1: Variation within application landscapes: Databases.
Here, five different DBMS individuals are used to exemplify variation:

Database ⊑ Infrastructure Element

Database(ORACLE # 371)

Database(ORACLE # 376)

Database(MongoDB # 21)

Database(MongoDB # 45)

Database(DB2 # 33)

(4.7)

Given these five instances of DBMS, one can easily imagine that they may
differ with respect to various characteristics, e.g., the number of tables in
their schema, their vendor, the date of installation or the current amount
of stored data. Nevertheless, all individuals belong to the same concept,
i.e. Database. Therefore, differences between these individuals need to be
distinguished from differences between concepts, e.g. between Databases
and other Infrastructure Elements like operating systems.

73

4. A conceptual framework for application landscape diversity

As can be seen from the example above, it depends on the modeling approach at which level
diversity is assessed. Here, concrete instances of database management systems have been
regarded as individuals. Nevertheless, an enterprise architect might also consider a concrete
product, e.g. ORACLE, as an individual depending on the questions to be answered. To
ensure consistency, one of both approaches has to be chosen. In addition, variation within
application landscapes cannot only be observed among infrastructure elements. For example,
differences between business applications can also be regarded as variation. This is illustrated
in the following example.

Example 4.2: Variation within application landscapes: Application.
In this example, four different individuals, i.e. SAP business application
instances, are used to exemplify variation:

SAP ⊑ Business Application

SAP(FI/CO # 11)

SAP(FI/CO # 12)

SAP(CRM # 21)

SAP(CRM # 22)

(4.8)

In this example, two different instances of the “same” SAP application exist.
Reasons include redundancy requirements or different application scopes like
Europe and the US. Given these four instances of SAP applications one can
easily imagine that these individuals differ with respect to various charac-
teristics. Such characteristics include, but are not limited to: the number
of users, the date of installation as well as the daily amount of transactions.
Nevertheless, all individuals belong to the same concept, i.e. SAP. There-
fore, the differences between these individuals need to be distinguished from
differences between concepts, for example between SAP and other Business
Applications like Microsoft applications.

As demonstrated by the two examples above, what is considered to be variation depends on the
modeling approach of the enterprise architect. If the architect decided for a suitable approach,
this diversity dimension provides the foundation for the remaining three diversity dimensions
considering diversity among concepts (not among individuals), due to the fact that concepts
used for grouping individuals always neglect a certain amount of diversity between them. By
neglecting variation, the attention and respective analyses can focus on diversity aspects relevant
to the enterprise architect.

74

4. A conceptual framework for application landscape diversity

4.3. Variety: Different concepts to describe a set of individuals

As outlined before, diversity can be distinguished into three types (Page, 2011). The previously
described dimension of variation covers the first type, i.e. diversity among individuals. The
second type, i.e. diversity among concepts, requires more detailed elaboration. A seminal work
in this area has been presented by Stirling (2007). He distinguishes three different types of
diversity among concepts: variety, balance and disparity. Because all of them are relevant to
describe diversity in the context of application landscapes, all three aspects will be introduced
in the following chapters.

4.3.1. Derivation and definition

“When people speak of diversity, they tend to mean differences of types” (Page, 2011, p. 22).
Therefore, a clear distinction of diversity and variation is required. Based on achievements in
other disciplines like ecology, economics, taxonomy, palaeontology, complexity and information
theory, Stirling (2010) considers variety as necessary property of diversity. It is defined as
follows.

Definition: Variety
Variety is the number of diverse categories of ’option’ into which a system may be
apportioned. It is the answer to the question: “how many options do we have?”

(Stirling, 2010)

Variety is the fundamental aspect of diversity at the concept level. Differences between individ-
uals (variation) are neglected. Only the number of concepts needed to describe the universe of
discourse is of interest. Therefore, variety is similar to the category count already proposed by
MacArthur (1965). To describe the diversity of ecosystems, counting the number of species is a
fundamental approach. Other examples of variety considerations include the simple enumeration
of firms or products in economics (Kauffman, 1993; Saviotti and Mani, 1995) or the counting of
fuels or technologies in energy policy (UK Department of Energy, 1988). Therefore, it can be
stated that all else being equal, the greater the variety, the greater the diversity (Stirling, 2007).
Figures 4.6 and 4.7 illustrate the meaning of variety both figuratively and exemplarily.

Figure 4.6.: Figurative illustration of variety Figure 4.7.: Exemplary illustration of variety

Figure 4.6 depicts five different concepts to illustrate the variety dimension of diversity. In
contrast to Figure 4.4 which shows eight individuals belonging to five different shapes, Figure 4.6

75

4. A conceptual framework for application landscape diversity

includes only one element for each of those concepts although a different amount of individuals
per concept might exist within the universe of discourse. These individuals might as well be
subject to variation that is not visible at the concept level. Given the example of species
depicted in Figure 4.5, Figure 4.7 shows the corresponding variety by including one concept for
each species, i.e. dog, cat and mouse, to describe individuals existing in the universe of discourse.
Color and size are not represented because they form aspects of variation not variety.

4.3.2. Exemplary application

The notion of variety introduced in the previous chapter can easily be transferred to the context
of application landscapes. Therefore, the concepts required to describe the individuals existing
in the universe of discourse, i.e. the application landscape, need to be identified. As mentioned
before, concepts considered relevant might vary from organization to organization. Usually, they
can be derived directly from the EA meta-model in use. The following example describes how
the variety of database management systems can be assessed if the EA meta-model contains a
class named Database having an attribute vendor.

Example 4.3: Variety within application landscapes: Databases.
Based on the vendor of a database (which is an infrastructure element) con-
cepts can be derived which are able to classify instances of database man-
agement systems used by the company under investigation. As pointed out
by Baader (2003) modeling the two required conditions for each concept
separately is essential in this context.

Database ⊑ Infrastructure Element

Database < (the vendor (one-of ’Oracle ’IBM ’MongoDB))

Oracle DB ⊑ Database

Oracle DB < (fills vendor ’Oracle)

IBM DB ⊑ Database

IBM DB < (fills vendor ’IBM)

MongoDB ⊑ Database

MongoDB < (fills vendor ’MongoDB)

(4.9)

By counting the required concepts to describe the individuals in this example
the variety of the universe of discourse can be assessed. Here, three different
concepts are used which are by definition disjoint. Note that variation, as
presented in Example 4.1, is not considered here.

As can be seen in the example above, it depends on the modeling approach how diversity of
database management systems is assessed. Here, concepts have been derived based on the vendor

76

4. A conceptual framework for application landscape diversity

of each individual. Other approaches might use the product line or the paradigm of each database
management system individual. In addition, variety within application landscapes can not only
be observed among infrastructure elements. For example, the amount of required concepts to
describe business applications can also be regarded. This is illustrated in the following example
by introducing concepts for applications which are compliant to the target landscape and for
those which are not.

Example 4.4: Variety within application landscapes: Application.
In this example, four different individuals, i.e. SAP business application
instances which have been used earlier, are used to exemplify variety. They
are distinguished based on their compliance to the target architecture. In
this example, SAP FI/CO individuals are considered to be compliant with
the target architecture but SAP CRM individuals are not considered to be
compliant because other tools, e.g. Salesforce4, should be used in the future.

Business Application < (the compliant (one-of ’yes ’no))

Compliant BAs ⊑ Business Application

Compliant BAs < (fills compliant ’yes)

Non-Compliant BAs ⊑ Business Application

Non-Compliant BAs < (fills compliant ’no)

(4.10)

In this example, two disjoint concepts are used to describe the individuals
of business applications with regard to their compliance to the target archi-
tecture. Given these concepts one can easily assess the variety of business
applications which is two. Compared with the previous example of database
management systems the variety in this example is lower because fewer con-
cepts have been used. Again, differences among individuals belonging to
the same concept are neglected because this aspect belongs to the variation
dimension.

As demonstrated by the two examples above, variety can be clearly distinguished from variation
especially if description logics are used to model the universe of discourse, i.e the application
landscape. Again, variety assessments also depend on the modeling approach used by the en-
terprise architect but typical concepts can be derived from existing EA meta-models. This
offers flexibility to assess diversity in general and variety in particular from different viewpoints.
Existing complexity and diversity approaches already regard variety of application landscapes
although addressed in different vocabularies (Mocker, 2009; Schuetz et al., 2013; Schneider et al.,
2015c).

4http://www.salesforce.com

77

4. A conceptual framework for application landscape diversity

4.4. Balance: Distribution of individuals among concepts

The second type of diversity among concepts identified by Stirling (2007) is balance. This
dimension will be introduced in this chapter and applied to the context of application landscapes
by providing two examples.

4.4.1. Derivation and definition

In addition to variety, which regards only the number of existing concepts, balance also regards
the distribution of instances among these concepts. It can be defined as follows.

Definition: Balance
Balance is a function of the pattern of apportionment of individuals across concepts.
It is the answer to the question: “how much of each type of thing do we have?”

(Stirling, 2007)

Similar to variety, balance abstracts from differences between individuals (variation) but reflects
the fact that a different amount of individuals per concept might be present. In ecology, bal-
ance is often also referred to as evenness (Pielou, 1969) whereas concentration is often used
in economics (Finkelstein and Friedberg, 1967). Therefore, different measures of balance have
been developed, including, for example, Shannon entropy (Shannon, 1948), Gini index (Gini,
1912) and Herfindahl-Hirschman index which is used by American authorities to calculate mar-
ket concentrations (Shapiro, 2010). In the context of EA, balance has also been referred to as
heterogeneity (Schuetz et al., 2013). Independently of a concrete measure, balance and therefore
diversity increases the more equal the distribution of individuals among the existing concepts is.
The more dominant a single concept is with respect to its number of individuals the lower the
overall balance is, thus diversity decreases. It can be concluded, that all else being equal, the
more even is the balance, the greater the diversity (Stirling, 2007). Figures 4.8 and 4.9 illustrate
the meaning of balance both figuratively and exemplarily.

Figure 4.8.: Figurative illustration of balance Figure 4.9.: Exemplary illustration of balance

Figure 4.8 depicts five different bars representing the amount of individuals belonging to the re-
spective concept to illustrate the balance dimension of diversity. The bars are ordered from left
to right in decreasing order. Although not necessary, this visualization facilitates the interpre-
tation of balance within the universe of discourse. In this dimension, individuals are considered

78

4. A conceptual framework for application landscape diversity

again but differently from the variation dimension. As outlined in Chapter 4.2, variation re-
gards the differences between individuals. In contrast, balance treats all individuals belonging
to the same concept equally but distinguishes concepts based on their relative frequency. For
the example used previously, Figure 4.9 illustrates balance with the three concepts cat, dog and
mouse having a different amount of individuals, i.e., one or two.

4.4.2. Exemplary application

The notion of balance introduced in the previous chapter can easily be transferred to the context
of application landscapes. Therefore, the individuals existing in the universe of discourse, i.e. the
application landscape, have to be assigned to their respective concepts. Again, the concepts used
to describe these individuals might be company-specific. The following examples demonstrate
different balances for two hypothetical application landscapes.

Example 4.5: High balance within application landscapes. In this
example, the concepts of Example 4.3 are used combined with the individ-
uals already used in Example 4.1. Here, five different individuals belong to
three different concepts which are all subsets of the Database concept. In
addition, another individual belonging to the IBM DB concept has been
added.

Database ⊑ Infrastructure Element

Database < (the vendor (one-of ’Oracle ’IBM ’MongoDB))

Oracle DB ⊑ Database

Oracle DB < (fills vendor ’Oracle)

IBM DB ⊑ Database

IBM DB < (fills vendor ’IBM)

MongoDB ⊑ Database

MongoDB < (fills vendor ’MongoDB)

Oracle DB(ORACLE # 371)

Oracle DB(ORACLE # 376)

MongoDB(MongoDB # 21)

MongoDB(MongoDB # 45)

IBM DB(DB2 # 33)

IBM DB(DB2 # 30)

(4.11)

In this example, the individuals are equally distributed among three different
concepts. Therefore, this application landscape exhibits high balance and
thus high diversity. Note that variation is not considered here.

79

4. A conceptual framework for application landscape diversity

In contrast, the following example shows an application landscape exhibiting low balance among
database management systems due to concentration of instances within one concept.

Example 4.6: Low balance within application landscapes. In this
example, the concepts of the previous example are used but different indi-
viduals are assumed.

Database ⊑ Infrastructure Element

Database < (the vendor (one-of ’Oracle ’IBM ’MongoDB))

Oracle DB ⊑ Database

Oracle DB < (fills vendor ’Oracle)

IBM DB ⊑ Database

IBM DB < (fills vendor ’IBM)

MongoDB ⊑ Database

MongoDB < (fills vendor ’MongoDB)

Oracle DB(ORACLE # 371)

Oracle DB(ORACLE # 376)

Oracle DB(ORACLE # 377)

Oracle DB(ORACLE # 379)

MongoDB(MongoDB # 45)

IBM DB(DB2 # 30)

(4.12)

Here, the individuals are clearly concentrated within the Oracle DB con-
cept. Therefore, this application landscape exhibits low balance and thus
low diversity.

As demonstrated by the two examples above, balance can be determined based on the amount
of individuals assigned to each concept used to describe an application landscape. Therefore, it
is interrelated with the variety dimension because the more concepts are used, the higher the
balance becomes. Note that if only a single concept is used, balance will always be zero. In
addition, balance treats all concepts equally important thus assuming a nominal scale. Balance
does not answer the question whether the desired concepts have more individuals than non-
desired concepts. Only the distribution of individuals is considered. Existing complexity and
diversity approaches already regard balance (e.g. Schuetz et al., 2013) although referred to as
heterogeneity.

80

4. A conceptual framework for application landscape diversity

4.5. Disparity: Degree of difference among concepts

The third dimension of diversity among concepts identified by Stirling (2007) is disparity. It
considers the degree of difference among used concepts and is explained in this chapter.

4.5.1. Derivation and definition

In addition to variety and balance, Stirling (2007) derived a third dimension of diversity among
concepts: disparity. It can be defined as follows.

Definition: Disparity
Disparity refers to the manner and degree in which the concepts may be distinguished.
It is the answer to the question: “how different from each other are the concepts of
thing that we have?”

(Stirling, 2007)

Considering disparity is essential because the balance dimension and all its metrics do not
consider the degree to which the analyzed concepts differ (Page, 2011). This implies, for example,
that without considering disparity a basket with three apples, three pears and three oranges
exceeds the diversity of another basket with seven apples, one orchid and one pencil. In both
baskets the number of concepts (variety) is equal but the distribution of individuals among
these concepts (balance) is more concentrated in the second basket; thus the second basket
exhibits less diversity. Intuitively, most people would assign higher diversity to the second
basket because of larger differences of things included. Therefore, the two former dimensions
need to be complemented by the disparity dimension to cover all relevant aspects of diversity. In
fact, it is judgments over disparity, which necessarily govern the resolving of categories used to
characterize variety and balance (Stirling, 2007). Figures 4.10 and 4.11 illustrate the meaning
of disparity both figuratively and exemplarily.

Figure 4.10.: Figurative illustration of disparityFigure 4.11.: Exemplary illustration of disparity

Figure 4.10 depicts three of the aforementioned concepts. Their degree of difference, i.e. dis-
parity, is indicated by a dendrogram. A dendrogram is often used to illustrate the arrangement
of clusters produced by hierarchical clustering (Everitt, 1998, p. 96). In this case, square and
triangle are considered to be more similar to each other than both are compared to the moon.

81

4. A conceptual framework for application landscape diversity

The reason is that square and triangle are both made of straight lines whereas the moon is con-
structed by two curved lines. A similar example is shown in Figure 4.11 to indicate the disparity
of species. Here, dogs and cats are considered to be more similar than they are compared to
mice. The foundation for creating the dendrogram is the taxonomy used in ecology and biology
to classify species based on the time back to the most recent common ancestor (Weitzman,
1992). Dogs and cats both belong to the group of carnivore and their most recent common
ancestor lived about 55 million years ago (Solé et al., 2014). In contrast, the most recent com-
mon ancestor of mice and both cats and dogs belongs to the group of boreoeutheria which is
about 100 million years old (O’Leary et al., 2013). In general, it can be concluded that all else
being equal, the more disparate are the represented elements, the greater the diversity (Stirling,
2007). Because disparity has not yet been considered in the context of application landscape
management (see Chapter 5.2), two examples are provided in the next chapter.

4.5.2. Exemplary application

Applied to the context of application landscapes, disparity can be observed among various
concepts. To get sensible results, disparity should be considered among sub-concepts. The
following example demonstrates disparity among database management systems—a sub-concept
of infrastructure elements.

Example 4.7: High disparity within application landscapes. In this
example, the concepts of the previous example are used to describe an ap-
plication landscape exhibiting high disparity.

Database ⊑ Infrastructure Element

Database < (the vendor (one-of ’Oracle ’IBM ’MongoDB))

Oracle DB ⊑ Database

Oracle DB < (fills vendor ’Oracle)

IBM DB ⊑ Database

IBM DB < (fills vendor ’IBM)

MongoDB ⊑ Database

MongoDB < (fills vendor ’MongoDB)

(4.13)

Given these concepts, disparity can be considered to be high, because the
concept MongoDB differs in many aspects from the other to concepts. For
example, it does not follow the relational paradigm and is not supported
by a very large vendor. If the concept MongoDB would be replaced by a
concept SQL Server, the disparity would decrease because concepts would
then be more similar.

82

4. A conceptual framework for application landscape diversity

Similar to infrastructure elements, disparity can also be considered for business applications.
The following example demonstrates how low disparity can be observed, for example, based on
technical characteristics of business applications.

Example 4.8: Low disparity within application landscapes. In this
example, two different concepts are used to describe the individuals of the
concept Business Application in the area of customer relationship man-
agement which exhibit low disparity.

Business Application < (the vendor (one-of ’SAP ’Oracle))

SAP CRM ⊑ Business Application

SAP CRM < (fills vendor ’SAP)

Siebel CRM ⊑ Database

Siebel CRM < (fills vendor ’Oracle)

(4.14)

Given these concepts, disparity can be considered to be low, because the two
concepts are very similar with regard to the defined aspects. For example,
the individuals of both concepts are all on-premise solutions. If the concept
Siebel CRM would be replaced by a concept Salesforce, the disparity
would increase because concepts would then be less similar since Salesforce
is a cloud-based solution.

The examples above illustrate that the actual distribution of individuals among the used concepts
is not considered in the disparity dimension. Nevertheless, disparity assessments depend on the
(subjective) selection of criteria used to describe the difference between two or more concepts.
Such characteristic define the distance between concepts. The larger this distance gets, the
greater the diversity.

4.6. A unified view on application landscape diversity

In previous chapters different dimensions of diversity have been introduced. In this chapter,
these dimensions are unified to a comprehensive framework which is sufficient to describe and
assess diversity of application landscapes. Thereby, interrelations between these dimensions are
revealed as well as limits of their manageability.

4.6.1. Conceptual framework

Based on the different dimensions of diversity introduced in the previous chapters, a unified
framework for application landscape diversity can be derived. Thereby, the framework needs to

83

4. A conceptual framework for application landscape diversity

distinguish between diversity among individuals (variation) as well as diversity among concepts
used to describe these individuals. The latter includes three different dimensions, i.e. variety,
balance and disparity. If applied to a specific universe of discourse, i.e. an application landscape,
the distinction between individuals and concepts is fundamental. Therefore, variation is placed
in the middle of the framework which is depicted in Figure 4.12.

Balance
How are

instances

distributed?

Variety
How many

different concepts

do we have?

Disparity
To which

degree differ

our concepts?

Variation
What are

differences of

individuals?

Figure 4.12.: Unified diversity framework for application landscapes following Stirling (2010)

Based on the demarcation of variation in a specific universe of discourse, the concepts required
to describe instances can be derived, e.g. from an EA meta-model. When considering diversity
one moves from the gray area in the middle of the diversity framework to the blue area including
these concepts. There, three different dimensions need to be distinguished. First, variety regards
the number of different concepts used to describe individuals. The more concepts are used the
greater the diversity. Second, balance regards the pattern of distribution of individuals among
these concepts. The more similar the distribution is to an equal distribution the greater the
diversity. Third, disparity regards the degree to which concepts in use differ from each other.
The greater the distance between these concepts the greater the disparity and therefore the
diversity of the universe of discourse. Despite multiple disciplines and various contexts, “there

84

4. A conceptual framework for application landscape diversity

seems no other obvious candidate for a fourth important general property of diversity beyond
these three” (Stirling, 1998). The examples given in the previous chapters demonstrate how each
of these three dimensions can be observed within application landscapes.

Although all three dimensions are necessary to describe diversity each one by its own is insuf-
ficient. Nevertheless, each dimension constitutes the other two (Stirling, 2007). This in turn
highlights difficulties with existing diversity concepts as well as associated indicators that focus
exclusively on subsets of these dimensions (Eldredge, 1992). If management decisions would be
based on such limited understandings of diversity the resulting application landscape might not
exhibit the intended properties. Regarding variety and balance, for example, requires a previous
understanding of disparity. As May (1990) points out, an ecological community comprising 20
varieties of beetle is less diverse than the one comprising less than 20 species drawn from different
insect, reptile and mammalian taxa. Likewise, an electricity system is less diverse if it comprises
equal contributions from brown coal, lignite, oil and gas than if it is an equal mix of coal, nuclear
and renewable energy (Stirling, 1994). However, a category like renewable energy might itself be
considered to be highly diverse if it is equally apportioned into wind, solar, hydro, tidal, biomass,
landfill gas, etc. The focus of attention in each case is neither on variety nor balance, but on
disparity (Stirling, 2007). In the context of application landscapes, taking variety or balance as
proxies for diversity can thus be highly sensitive to subjective construction and partitioning of
taxonomies. For example, if diversity of DBMSs should be assessed, the diversity might be large
due to several concepts and an equal distribution (e.g. SQL and NoSQL databases as well as
databases specialized for OLAP and for OLTP). But the set of relational databases which forms
a subset of the database concept might exhibit low diversity.

The need for considering all three dimensions together is demonstrated by the following example.
Figure 4.13 shows three different concepts (variety) used to describe database management
system individuals of two different application landscapes. In addition, a dendrogram indicates
the assumed distance between these concepts (disparity) complemented by bars indicating the
relative frequency of each concept with regard to the number of its individuals (balance).

70% 5% 25% 70% 25% 5%

SQL Server Oracle 11g MongoDB SQL Server Oracle 11g MongoDB

Figure 4.13.: Exemplifying the need for an integrated view of three diversity dimensions

Note that the only difference between these application landscapes is that the relative frequencies
of concepts Oracle andMongoDB have been changed. When all three dimensions of diversity
are considered independently, the diversity of both application landscapes would be considered

85

4. A conceptual framework for application landscape diversity

to be equal. In both cases three different concepts are used (equal diversity). Because the same
concepts are used the degree of difference between these concepts is equal (equal disparity).
By assessing the relative frequencies of each concept, the degree of concentration is equal in
both cases because the relative frequency values are equal (equal balance). Nevertheless, by
considering all three dimensions together, one would attribute higher diversity to the second,
i.e. right, application landscape, due to fact that the relative frequency of the more exotic
concept MongoDB is higher compared to the other case. In addition, given the deliberations
above, it is also obvious that a change in variety is likely to cause a change in balance as well as in
disparity. This needs to be considered especially when applying metrics to measure diversity.

4.6.2. Applications to enterprise architectures

As outlined earlier, the diversity framework described in the previous chapter can be applied
to arbitrary EA descriptions. To support decisions regarding an increase or decease of diversity
within an application landscape, describing diversity is not sufficient. Instead, the specifics of an
EA, especially dependencies between its elements, need to be considered during diversity man-
agement. Typically, enterprise architectures are divided into several layers (see Chapter 4.1.3).
Therefore, changing the diversity within the application landscape might not be possible in the
general case due to dependencies to other layers or cross-cutting aspects. Therefore, diversity
within the application landscape needs to be distinguished in inter-layer induced diversity as
well as intra-layer induced diversity which are defined as follows.

Definition: Inter-layer induced diversity
Inter-layer induced diversity covers the amount of diversity with respect to variety,
balance and disparity which is induced by individuals or components belonging to
another EA layer.

Definition: Intra-layer induced diversity
Intra-layer induced diversity covers the amount of diversity with respect to variety,
balance and disparity which is solely induced by individuals or components belonging
to the same EA layer.

The following example illustrates the need for such distinction.

Example 4.9: Inter-layer induced diversity. Imagine a business process
P being part of the business architecture requires the use of a specific business
application A. Imagine further, that another, similar business process Q
requires the use of another business application B due to its design. Neither
business application A is able to support business process Q nor business
application B is able to support business process P.

86

4. A conceptual framework for application landscape diversity

In such case, the diversity appearing on the application landscape layer, i.e. two different
concepts with some kind of individual distribution having a significant disparity, is induced by
individuals belonging to another layer.

Example 4.10: Intra-layer induced diversity. Imagine a business pro-
cess being part of the business architecture requires the use of a customer
relationship management application. Imagine further, that another process
requires also the use of a customer relationship management application.
Therefore, two different customer relationship management applications are
in use.

If two different applications are used to satisfy the requirements mentioned in Example 4.10,
this diversity is considered as intra-layer induced. Both business processes consider the customer
relationship management application as a black box. The same would be true if, for example,
two different business applications require a relational database but two different products are
used to satisfy this requirement.

It is important to note that changing, e.g. reducing, intra-layer induced diversity might be
easier because changes have to be made only locally. In the case of inter-layer induced diversity
changing diversity might be more complicated or time-consuming because dependent individuals
belonging to other EA layers might have to be adapted as well. Figure 4.14 visualizes the
differences between inter-layer and intra-layer induced diversity by showing explicit dependencies
among layers causing inter-layer induced diversity and omitting more general dependencies (e.g.
requirements for a relational database) allowing for intra-layer induced diversity.

Business architecture

Application architecture

Infrastructure architecture

inter-layer induced intra-layer induced

M
an

ag
em

en
t

im
p

li
ca

ti
o

n
s

explicit dependencies

Figure 4.14.: Demarcation of inter- from intra-layer induced diversity

87

88

CHAPTER 5

Measuring structural complexity and diversity of application landscapes

“You can’t control what you can’t measure.”

Tom DeMarco, Controlling Software Projects

In this chapter, indicators are developed to quantify diversity of application landscapes—one
aspect contributing to an application landscape’s complexity. These indicators provide decision
support for enterprise architects by enabling them to monitor the evolution of their application
landscape’s diversity and measure the impact of standardization or diversification activities. Af-
ter describing the research approach in detail, indicators already used in practice are assessed
(see Chapter 5.1). Identified indicator patterns are then complemented by indicators identified
by a thorough literature review (see Chapter 5.2). Together with several companies from Ger-
many and Switzerland all indicators suitable to quantify complexity in general and diversity in
particular are assessed regarding their utility for practitioners (see Chapter 5.3). To allow a full
quantification of all aspects contributing to an application landscape’s diversity—as presented
in Chapter 4—two new indicators are proposed to complement existing indicators (see Chap-
ters 5.4.3 and 5.4.4). Finally, a prototypical implementation of a software solution supporting
the calculation of complexity and diversity indicators is presented (see Chapter 5.5).

To lay the foundation for this chapter it needs to be noted that in literature the term metric is
not always defined in a similar manner. For example, Fenton and Pfleeger (1997, p. 323) consider
a metric to be “any number extracted from a software entity” and state that each measure is
a metric but not vice versa. In contrast, in mathematics a metric is defined as a “measure of
distance” (Poels and Dedene, 2000). Any function 𝛿 : 𝑋 ×𝑋 → 𝑅 is a “measure of distance” if

89

5. Measuring structural complexity and diversity of application landscapes

it satisfies the following conditions:

non-negativity: ∀𝑥, 𝑦 ∈ 𝑋 : 𝛿(𝑥, 𝑦) ≥ 0

identity: ∀𝑥, 𝑦 ∈ 𝑋 : 𝛿(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦

symmetry: ∀𝑥, 𝑦 ∈ 𝑋 : 𝛿(𝑥, 𝑦) = 𝛿(𝑦, 𝑥)

triangle inequality: ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 : 𝛿(𝑥, 𝑦) ≤ 𝛿(𝑥, 𝑧) + 𝛿(𝑧, 𝑦)

(5.1)

Accordingly, for this work a metric will be defined as follows:

Definition: Metric
A metric is a measure of distance which satisfies the conditions of non-negativity,
identity, symmetry and triangle inequality.

In this chapter, the term measure or indicator is used to denote numbers derived from software
entities as long as the requirements of a metric are not fulfilled.

5.1. Complexity and diversity indicators used in practice

The first step towards the development of application landscape diversity indicators is to identify
and analyze solutions already developed and implemented in practice. By following the Pattern-
based Design Research method (Buckl et al., 2013) these solutions should be documented by
using the EAM pattern language (Buckl et al., 2007). The EAM pattern language distinguishes
three different kinds of patterns:

M-Patterns Methodologies define steps to be taken in order to address given concerns. Further-
more, as a guidance for applying the method, statements about its intended usage context
are provided, which include the concerns to which the methodology can be applied. Some-
times these patterns are also called Process Patterns (Moser et al., 2009).

V-Patterns Viewpoints provide the languages used by methodologies. A viewpoint proposes a
way to present data stored according to one or more information model patterns.

I-Patterns Information models represent underlying models for the data visualized in one or
more viewpoints. An information model pattern conveys an information model fragment
including the definitions and descriptions of the used information objects.

In addition to these three types of EAM patterns and in accordance with the IEEE/ISO stan-
dard 420101 (International Organization for Standardization, 2007), the EAM pattern language
includes a list of recurring concerns. They serve as an entry point and help to select appropriate
patterns within a given context based on stakeholder’s requirements. Figure 5.1 depicts the con-
ceptual model underlying the EAM pattern language. Note that a problem can be divided into
a goal and a concern and only the concern is relevant for EAM patterns. In addition, Schnei-
der and Matthes (2015) proposed to include metric patterns as a special kind of visualization
pattern.

90

5. Measuring structural complexity and diversity of application landscapes

EAMPattern

name
identifier
alias
summary
version
example
context
solution
implementation
knownUses
consequences
credits

M-Pattern V-Pattern I-Pattern

Problem

identifier
description
forces

variantOf

* - variant

1 - original

seeAlso

*

*

addresses

*1

Figure 5.1.: Conceptual model of the EAM pattern language (Ernst, 2008)

5.1.1. Data collection process

In November 2013, six different organizations and one consulting company have been asked to
share their currently implemented approaches to manage and measure application landscape
complexity and diversity. These companies have been selected due to their experience in and
maturity of their EAM in general and complexity management in particular. Every participant
has been involved in complexity management activities at his/her organization for more than
one year. As shown in Table 5.1, most organizations are active in the financial service sector on
a global scale and are headquatered either in Germany or Switzerland. They employ between
8,000 and more than 100,000 Full Time Equivalents (FTEs). As indicated by the last column,
the application landscapes to be managed vary between 157 and more than 5,000 business
applications. Every organization delegated one or two enterprise architects to present their
current approach to complexity and diversity management in a one day workshop. Based on these
presentations and subsequent queries pattern candidates could be identified and documented.
Afterwards, the technique of hermeneutics (see Gadamer, 1975) has been used to develop a
deeper understanding of these indicators as well as their context.

5.1.2. Observed metric patterns

The data collection described in the previous chapter resulted in the observation of varying
approaches to measure and manage application landscape diversity. The smallest approach
consists of only four indicators whereas the most extensive approach consists of 22 indicators
with specialized software support for their calculation and visualization. By conducting the
hermeneutic circle and having conversations with the enterprise architects in order to remove

91

5. Measuring structural complexity and diversity of application landscapes

Id Industry sector Headquarter Employees Number of applications

1 Banking Switzerland >10,000 FTEs 157
2 Banking Germany >8,000 FTEs 247
3 Banking Germany >52,000 FTEs 1,898
4 Insurance Germany >14,000 FTEs 234
5 Banking Switzerland >46,000 FTEs 3,734
6 Automotive Germany >100,000 FTEs >5,000

Table 5.1.: Companies involved in metric pattern collection

ambiguity, six indicators which were used by at least one half of the participating companies
could be identified (see also Schneider et al., 2015c). These indicators are based on the following
sets of EA entities and relationships:

𝐴 denotes the set of all business applications

𝐷 denotes the set of all functional domains

𝐴𝑏𝑢𝑦 denotes the set of all COTS business applications

𝐴𝑏𝑢𝑦 ⊆ 𝐴

𝐴𝑚𝑎𝑘𝑒 denotes the set of all custom business applications

𝐴𝑚𝑎𝑘𝑒 ⊆ 𝐴

𝐴𝑏𝑢𝑦𝐶𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑒 denotes the set of all customized COTS business applications

𝐴𝑏𝑢𝑦𝐶𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑒 ⊆ 𝐴

𝐴𝑏𝑢𝑦 ∩𝐴𝑚𝑎𝑘𝑒 ∩𝐴𝑏𝑢𝑦𝐶𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑒 = ∅
𝐼 denotes the set of all infrastructure components

𝐹 denotes the set of all business function

𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ⊆ 𝐴×𝐷

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 ⊆ 𝐴×𝐴

𝑢𝑠𝑒𝑠 ⊆ 𝐴× 𝐼

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠 ⊆ 𝐴× N
𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠 ⊆ 𝐴× 𝐹

(5.2)

Baesd on this formal and consistent terminology the observed metric patterns can be described
as follows:

Number of Applications: 4 out of 6 companies count the total number of business applications
they have in their application landscape as well as the number of business applications
belonging to a specific domain (𝑑) given a relation called 𝑎𝑠𝑠𝑖𝑔𝑒𝑛𝑑 which maps applications

92

5. Measuring structural complexity and diversity of application landscapes

to domains (see Equation 5.4). A higher number is associated with a higher application
landscape or domain complexity.

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 := |𝐴| (5.3)

𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠𝑑 := |{𝑎 | 𝑎 ∈ 𝐴 ∧ 𝑑 ∈ 𝐷 ∧ 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑎, 𝑑)}| (5.4)

Number of Information Flows: 6 out of 6 companies count the number of interfaces or information
flows each business application has based on a relation named 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑. A higher number
is associated with a higher application complexity. Thereby, an information flow is usually
considered as a directed relationship between two business applications. Therefore, the
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 relation is not necessarily symmetric.

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑓𝑙𝑜𝑤𝑠 := |{(𝑎, 𝑏) | 𝑎, 𝑏 ∈ 𝐴 ∧ 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑎, 𝑏)}| (5.5)

Customization Level: 4 out of 6 companies assess the customization level of their applications.
Therefore, they classify their applications as buy, make or buy and customize resulting in
three disjoint subsets of 𝐴. The more business applications belong to the buy category, i.e.
|𝐴𝑏𝑢𝑦|, the least complex is the application landscape. This metric can also be calculated for
a single domain (see Equation 5.7). The maximum value of this metric indicating a complex
application landscape or domain which consists only of customized business applications
(𝐴𝑏𝑢𝑦𝐶𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑒 = 𝐴) is 5, given the definition of the 𝑐𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 function shown in
Equation 5.6. Respectively, the minimum value indicating a lest complex application
landscape or domain is 1 (𝐴𝑏𝑢𝑦 = 𝐴).

𝐶𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙 :=

∑︀
𝑎∈𝐴

𝑐𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑎)

|𝐴|

𝑐𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑎) =

⎧⎪⎨⎪⎩
1 if 𝑎 ∈ 𝐴𝑏𝑢𝑦

3 if 𝑎 ∈ 𝐴𝑚𝑎𝑘𝑒

5 if 𝑎 ∈ 𝐴𝑏𝑢𝑦𝐶𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑒

(5.6)

𝐶𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐿𝑒𝑣𝑒𝑙𝑑 :=

∑︀
𝑎∈𝐴𝑑

𝑐𝑢𝑠𝑡𝑜𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑎)

|𝐴𝑑|
𝐴𝑑 := |{𝑎 | 𝑎 ∈ 𝐴 ∧ 𝑑 ∈ 𝐷 ∧ 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑(𝑎, 𝑑)}|

(5.7)

Number of Infrastructure Elements: 4 out of 6 companies count the number of infrastructure com-
ponents used to realize a business application according to Equation 5.8. A higher number
is associated with a higher application complexity.

𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑎 := |{𝑖 | 𝑖 ∈ 𝐼 ∧ 𝑢𝑠𝑒𝑠(𝑎, 𝑖)}| (5.8)

93

5. Measuring structural complexity and diversity of application landscapes

Functional Scope: 3 out of 6 companies assess the functional scope for each business application.
According to Equation 5.9, it is determined either by the application’s function points
or by the number of business functions realized by the particular application. A higher
functional scope is associated with a higher complexity.

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑐𝑜𝑝𝑒1 :=
∑︁
𝑎∈𝐴

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠(𝑎)

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑐𝑜𝑝𝑒2 := |{𝑓 | 𝑓 ∈ 𝐹 ∧ 𝑎 ∈ 𝐴 ∧ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠(𝑎, 𝑓)}|
(5.9)

Functional Redundancy: 6 out of 6 companies assess if different applications provide the same
functionality. A higher rate of functional redundancy is associated with a higher complexity
since single changes then affect multiple applications. Therefore, this metric is closely
related to diversity management.

𝑅𝑒𝑑𝑢𝑛𝑑𝑎𝑛𝑐𝑦𝑓 := |{𝑎 | 𝑎 ∈ 𝐴 ∧ 𝑓 ∈ 𝐹 ∧ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠(𝑎, 𝑓)}| (5.10)

A complete documentation of these metric patterns according to the structure required by the
EAM pattern language (Matthes et al., 2012; Schneider and Matthes, 2015) can be found in
Appendix A.

5.1.3. Integrated information model

To establish a common understanding of the information necessary to calculate the identified
metric patterns described above an information model for each metric pattern has been derived
by consistently modeling the required sets of EA elements and relations among them as intro-
duced in Equation 5.2. The model elements used here adhere to the definitions used by the EAM
Pattern Catalog (see Buckl et al., 2008) for compatibility reasons and the actual fit with prac-
titioners’ understanding. For example, metric pattern Number of Applications is defined on the
set of all Business Applications whose elements are linked to a Functional Domain (see
Equation 5.4). The metric is then to be calculated by summing up the number of Business
Applications which belong to a particular Functional Domain. Metric pattern Number of
Information Flows is defined on the same set of Business Applications and adds a concept
named Information Flow which links two Business Applications (one as source and the
other as target of the information flow). Although this could be modeled by an association in the
Unified Modeling Language (UML), it is modeled as distinct class because practitioners usually
add more information to describe an Information Flow, e.g. the protocol it uses. The cal-
culation of metric pattern Customization Level is based on a property of the concept Business
Application which is called Customization Level. This property can assume values like
buy, make or buy and customize which can be modeled by an enumeration type. To calculate the
Number of Infrastructure Elements an additional concept Infrastructure Component needs
to be included. The calculation of diversity metric pattern Functional Scope requires either the
concept of Function Points or the concept of Business Functions. Therefore, Business
Applications can either have a property Function Points or they can be linked to one or

94

5. Measuring structural complexity and diversity of application landscapes

Figure 5.2.: An information model representing the data needed to calculate observed diversity
metric patterns (Schneider et al., 2015c)

more Business Functions to explicitly model which functionality is provided instead of just
modeling the amount of functionality. The calculation of diversity metric pattern Functional
Redundancy requires the inclusion of the concept Business Function which is linked to all
Business Applications supporting it. If one particular Business Function is supported by
more than one Business Application the functional redundancy increases.

By integrating all concepts necessary to calculate the identified metric patterns an integrated
information model can be derived. Such model is visualized in Figure 5.2. It can be used to define
the information which has to be collected when diversity metric patterns should be implemented
or which metric patterns can already be implemented based on available information.

5.2. Complexity and diversity indicators presented in literature

In this chapter, complexity and diversity indicators found in literature are presented. First, the
data collection process, i.e. a literature review, is outlined followed by a detailed description of
its results.

5.2.1. Data collection process

To completely reconstruct the accumulated knowledge in the domain of complexity and diversity
indicators which forms the basis for the subsequent indicator development a literature review is
necessary to complement metric patterns observed in practice (vom Brocke et al., 2009). This
literature review is realized according to the guidelines presented by Webster and Watson (2002)
and follows the process suggested by vom Brocke et al. (2009). Defining the review scope is the

95

5. Measuring structural complexity and diversity of application landscapes

Focus

Goal

Organization

Perspective

Audience

Coverage

Integration Criticism Central issues

Neutral representation Espousal of position

Specialized scholars General scholars Practitioners General public

Exhaustive Exhaustive & selective Representative Pivotal

Characteristic Categories

Historical Conceptual Methodological

Research outcomes Research methods Theories Applications

Figure 5.3.: Instantiated taxonomy of literature reviews according to Cooper (1988)

first step. vom Brocke et al. (2009) suggest to use the framework provided by Cooper (1988)
which is visualized and instantiated by highlighting relevant characteristics in grey in Figure 5.3.
In order to identify existing indicators used for complexity or diversity quantification in the
context of application landscapes the conducted literature review focuses on research outcomes
with the goal of identifying central issues. The results are organized conceptually, presented
neutrally and targeted at an audience of scholars in general. The results presented here include
only a sample that typifies larger groups of articles to be representative.

5.2.2. Identified quantification approaches

The next step is to conceptualize the topic by reviewing seminal textbooks or handbooks
first (Baker, 2000) and performing a subsequent concept mapping (Rowley and Slack, 2004).
Therefore, the books by Saha (2014), Goetze and Jenssen-Waud (2013) and Page (2011) have
been analyzed. During the subsequent concept mapping process the insights already achieved
during the development of the conceptual basis (see Chapter 2.4.1) have been used additionally
to identify key concepts as well as respective synonyms. The query “enterprise architect*” AND
(diversity OR variety OR heterogeneity OR standard*) AND (metric OR measure) exemplifies
the final search strings which has been used to consult the following scientific databases: EB-
SCOhost, Science Direct, ISI Web of Knowledge (Web of Science database), ACM, IEEE, and
AIS. During the search period (10/22/2014 to 10/31/2014) 93 publications have been identified
in total. After screening their titles and abstracts 84 of them had to be removed because they
do not treat the concept of diversity as a central subject matter. As suggested by Webster
and Watson (2002), for the nine remaining articles a forward and backward search has been
performed. Accordingly, Table 5.2 summarizes representative articles about complexity and
diversity metrics applicable in the context of application landscapes.

Boh and Yellin (2007) analyze to what extent the use of EA standards helps organizations
to improve sharing and integrating IT resources across the enterprise. Therefore, the authors
quantify the heterogeneity of infrastructure components and physical IT by counting the number
of different technologies in use. Consequently, the approach only considers the variety aspect of
diversity. Balance and disparity aspects are disregarded. The authors conclude that the use of
EA standards has a significant effect on reducing diversity of IT infrastructure components.

96

5. Measuring structural complexity and diversity of application landscapes

Standardization Variety Balance Disparity Complexity

Boh and Yellin
(2007)

X X X

Keuntje and
Barkow (2010)

X X X

Lagerström et al.
(2014)

X

Mocker (2009) X X X X
Schuetz et al.
(2013)

X X X X

Table 5.2.: Representative results of the diversity metric identification literature review

Keuntje and Barkow (2010) argue that standardization is a considerable activity to manage
application landscape complexity. Thereby, standardization is understood as an activity which
initially constitutes some particular technologies to be standard technologies and then tries to
minimize the number of technologies which are not standard technologies. To assess the current
degree of standardization the authors propose a metric named conformity index (𝐶𝐼). It is
defined as the number of standard conforming technologies divided by the total number of
technologies in use:

𝐶𝐼 :=
𝑎𝑚𝑜𝑢𝑛𝑡_𝑜𝑓_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠

𝑡𝑜𝑡𝑎𝑙_𝑎𝑚𝑜𝑢𝑛𝑡_𝑜𝑓_𝑡𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑒𝑠
(5.11)

As one can see in Equation 5.11, when measuring the amount of diversity within an appli-
cation landscape, the authors only consider the actual number of concepts/types. Therefore,
their diversity notion is limited to the variety aspect while balance and disparity aspects are
disregarded.

Lagerström et al. (2014) identify areas of high complexity within application landscapes by
applying an approach known from software engineering to reveal the hidden external structure
between software applications. Based on data about information flows between software applica-
tions the Design Structure Matrix approach is applied (see Steward, 1981). If the corresponding
algorithm classifies the architecture of an application landscape as core-periphery architecture,
the core applications are considered to be more complex than periphery applications. This as-
sumption is based on the fact that, given the cyclic dependencies within the core, changes to
those applications might propagate through the application landscape and cause additional and
unforeseen costs. In addition to this classification the authors propose an indicator called prop-
agation cost (𝑃𝐺) which is based on the 𝑉 𝐹𝐼𝑖 (Visibility Fan-In) of each software application
(𝑁) defined as the number of software applications that directly or indirectly depend on this
particular software application. The 𝑃𝐺 indicator is defined as follows:

𝑃𝐶 :=

∑︀𝑁
𝑖=1 𝑉 𝐹𝐼𝑖
𝑁2

, 𝑖 ∈ 𝑁 (5.12)

Consequently, the authors consider application landscape complexity without referring to stan-
dardization in general or any diversity aspect in particular.

97

5. Measuring structural complexity and diversity of application landscapes

Mocker (2009) analyzes the causes and impacts of application landscape complexity. There-
fore, he derived four different constructs in order to assess the complexity of a given application
landscape: interdependency, diversity of technologies, deviation from technology standards and
overlap/redundancy. These constructs are measured by specific indicators. Interdependency (𝐼)
is thereby defined as the sum of all incoming and outgoing interfaces of all software applica-
tions (𝑁).

𝐼 :=

𝑁∑︁
𝑖=1

𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠_𝑜𝑢𝑡+ 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒𝑠_𝑖𝑛, 𝑖 ∈ 𝑁 (5.13)

The diversity of technologies (𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑡𝑒𝑐ℎ) is defined as the number of different types used
as operating system or database management system. Therefore, 𝑇 can either be set of all
operating system products or database management products.

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦𝑡𝑒𝑐ℎ :=

𝑇∑︁
𝑖=1

𝑖, 𝑖 ∈ 𝑇 (5.14)

The deviation from technology standards construct is operationalized by one indicator for oper-
ating systems and one for database management systems. Both are calculated based on following
exemplary definition:

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 := 1− 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑡_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔_𝑠𝑦𝑠𝑡𝑒𝑚𝑠

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔_𝑠𝑦𝑠𝑡𝑒𝑚𝑠
(5.15)

The overlap/redundancy construct is measured by the overlap indicator which is defined as the
portion of supported business processes which are also supported by another software application.
Therefore, it describes the degree to which an application covers certain functionality already
covered by other applications:

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 := 1− 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠_𝑐𝑜𝑣𝑒𝑟𝑒𝑑_𝑏𝑦_𝑜𝑡ℎ𝑒𝑟𝑠

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑_𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠
(5.16)

Analyzing these indicator definitions (Equations 5.13 – 5.16), one can conclude that Mocker
(2009) regards only the variety aspect of diversity, e.g. in Equation 5.14, and a particular
disparity aspect, e.g. in Equation 5.16. Hence, he neglects the balance aspect of diversity. The
author refrains from providing general applicable metric definitions.

Schuetz et al. (2013) define a general measure of EA complexity based on the amount and het-
erogeneity of both EA elements and their relationships. To calculate heterogeneity the authors
analyze various measures of heterogeneity and conclude that Shannon entropy is best suitable
for EA heterogeneity quantification. Therefore, the entropy measure (𝐸𝑀) is defined as:

𝐸𝑀 := −
𝑛∑︁

𝑖=1

𝑝𝑖𝑙𝑛(𝑝𝑖) 𝑤𝑖𝑡ℎ 𝑝𝑖 :=
𝑥𝑖∑︀𝑛
𝑗=1 𝑥𝑗

𝑥𝑖 := 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑖

(5.17)

By using Shannon’s entropy, Schuetz et al. (2013) account for both variety and balance when
measuring diversity within application landscapes. Hence they neglect the disparity aspect of
diversity.

98

5. Measuring structural complexity and diversity of application landscapes

All articles identified by this literature review are concerned with the complexity of application
landscapes. With the exception of Lagerström et al. (2014) all other authors propose standard-
ization as means to reduce complexity. Therefore, several indicators are proposed to calculate
application landscape diversity in order to monitor standardization success. As can be seen in
Table 5.2, variety is the common aspect of diversity which is considered by all those indica-
tors. Furthermore, Schuetz et al. (2013) provide the only approach which generally accounts
for the balance aspect of diversity. The aspect of disparity is generally unaccounted for. Only
Mocker (2009) uses a very basic notion of it to define his indicator for the functional redundancy
of business applications. Therefore, we can conclude that a comprehensive approach to diver-
sity quantification which accounts for all three aspects (variety, balance, disparity) is missing.
Thereby, a generally applicable metric to calculate disparity for arbitrary EA model elements
has not been developed yet. Furthermore, it remains unclear which of the identified metrics is
actually useful for practitioners.

5.3. Benefits and drawbacks of existing indicators

The analysis of existing indicators to quantify application landscape diversity described in the
previous chapters revealed that scholars propose several metrics while practitioners recurrently
use others. Therefore, the question of interest is which of those indicators are actually useful
for practicing enterprise architects. Schneider et al. (2015c) state that there are basically two
different possibilities to evaluate the suitability of the identified complexity and diversity in-
dicators: quantitatively and qualitatively. A quantitative evaluation could, e.g., additionally
measure consequences of high application landscape complexity or diversity and then calculate
the correlation coefficient for both indicators. In case of a strong correlation the respective
metrics could be considered useful due to their predictive ability. Nevertheless, there are some
issues associated with such evaluation approach. First, the cause-and-effect relationships be-
tween complexity/diversity and other variables, e.g. costs, might be non-linear, delayed in time
or simply unknown. Furthermore, the cause-and-effect relations might be multi-causal instead
of mono-causal meaning that there might be other causes having the same effect as well as other
effects having the same cause. Therefore, a qualitative evaluation approach is preferred here.

The first step towards a qualitative evaluation of identified indicators’ utility is to define utility
in this context. In general, utility can be defined as the ability of something to satisfy needs
or wants. According to the economic utility theory of Neumann and Morgenstern (1953) util-
ity reflects the preferences of decision makers by assigning a number to each decision maker’s
alternatives to convey their relative attractiveness. Therefore, it is required to identify char-
acteristics of complexity and diversity indicators which determine their utility for enterprise
architects. Because preferences of organizations and individual enterprise architects might vary
and an absolute scale for numerical utility measurement is absent it is refrained from measuring
total utility in this context which is in line with Pareto (1906). In stead, the results of an as-
sessment considering relevant characteristics will be provided which allows enterprise architects
to make better informed decisions about implementing one or more of the identified complexity
and diversity indicators.

99

5. Measuring structural complexity and diversity of application landscapes

5.3.1. Assessment framework

To develop an assessment framework for the utility of complexity and diversity indicators appli-
cable for application landscapes, enterprise architects from six different organizations as well as
one EA consultant have been asked for their assessment criteria during a half-day workshop in
2013. After several group discussions consensus about the following relevant characteristics has
been reached:

Management suitability: Complexity and diversity indicators for application landscapes are used
to inform decisions of higher level managers. Therefore, such indicators need to be un-
derstandable without greater effort. Understandability in this context includes but is not
limited to simple calculation instructions, comprehensible impact analyses, summable met-
ric results and intuitive visualizations. A metric can thus be suitable either for general
managers or just for specialists.

Data collection effort: All indicators rely on appropriate EA descriptions. The creation of such
descriptions requires a significant amount of data collection efforts. Therefore, the nec-
essary data collection effort should be kept to a minimum for complexity and diversity
indicators. Accordingly, required data can either be typically available, collectable with
additional effort or require a large data collection.

Capability to express perceived complexity: Usually, enterprise architects already have an individ-
ual idea about which parts of their application landscapes show high complexity or diver-
sity. In general, complexity and diversity indicators should be able to formally express this
subjective instinct to a sufficient degree. Therefore, an indicator can either comply to the
perceived complexity and diversity of enterprise architects or not.

Clarity: A complexity or diversity indicator provides clarity if it is defined in an unambiguous
fashion. In this context unambiguous means that the calculation description does not give
rise to any discussions about its validity. Thus an indicator definition can be regarded to
be either arbitrary, ambiguous or clear.

Figure 5.4 visualizes the four different characteristics which will be used to assess the utility of
identified complexity and diversity indicators. In addition, it provides concrete manifestations
for each characteristic.

Management suitability

Data collection effort

Perception compliance

Clarity Arbitrary Ambiguous Clear

Characteristic Manifestation

Data typically available Additional effort Large effort

Suitable for specialists Suitable for general managers

Compliant Not compliant

Figure 5.4.: Framework for complexity and diversity indicator utility assessment

100

5. Measuring structural complexity and diversity of application landscapes

5.3.2. Evaluation data description

To apply the evaluation framework introduced in the previous chapter and to assess the utility
of the complexity and diversity indicators identified by the literature review those indicators
need to be applied to real-world data. Therefore, four different companies have been asked
to share their EA descriptions and allow for respective calculations. All four companies are
part of the financial service sector and have already participated in the industry metric analysis
described in Chapter 5.1. For the evaluation companies with ids 1, 2, 3 and 4 shared their EA
data (see Table 5.1). To ensure comparability of indicator results across different companies
the organization-specific data models had to be transformed to conform with the integrated
information model visualized in Figure 5.2. These transformations include the renaming of
classes and attributes, reverting the direction of relations and the transformation of attributes
to relations, and vice versa. Thereby, it was possible to apply a logical mapping from the existing
individual information model concepts to the corresponding core model concepts in each of the
four cases.

As outlined by Schneider et al. (2015c), the four companies provided data according to Table 5.3.
Therein, an overview of consolidated data is provided by giving the number of entities for
every type and respectively the ratio of maintained values for attributes and relations of the
corresponding type. A hyphen means that the corresponding company does not maintain the
corresponding concept and thus could not provide it. The relations uses (Operating system)
and uses (Database system) of type Business application are referring to specific categories of
Infrastructure components. These are the only specific categories of Infrastructure components
which are provided by at least two of the four companies. An Infrastructure component’s type
refers to its vendor or component class, e.g., Windows could be the type of Windows XP. When
asked about the data quality the enterprise architects could not promise complete data but
all of them are satisfied with the data quality and use this data for decision support in their
organizations.

5.3.3. Indicator assessment results

In order to assess the utility of all identified complexity and diversity indicators the first step is
to apply them to real-world data. This has been done in four different cases as described in the
previous chapter (see Table 5.3). The extent to which companies are able to provide the required
data will be used to assess the characteristic data collection effort. Then, based on the calculation
results and corresponding interviews with respective enterprise architects the compliance with
their perception is assessed. Both characteristics management suitability and clarity have then
been assessed during a half-day workshop with all participating enterprise architects. Please
note that the metrics presented by Mocker (2009) are not evaluated separately because they are
mostly included in the set of indicators observed in practice. The only indicator not covered
is the overlap indicator for which no evaluation data could be obtained. In the following the
results of the evaluation are presented.

101

5. Measuring structural complexity and diversity of application landscapes

Concept C1 C2 C3 C4

Business application 157 247 1898 234
- customization level 100 % 89 % 100 % 100 %
- function points - 99 % 24 % 98 %
- programming languages - 45 % - 72 %
- implements (Use Case) - - - -
- supports (Business function) - 97 % - -
- belongs to (Functional domain) 100 % 99 % 87 % 100 %
- uses (Operating system) - 67 % 90 % 83 %
- uses (Database system) - 48 % 60 % 67 %
Business function - 580 - -
Functional domain 13 16 33 41
Infrastructure component (Operating system) - 9 15 12
- type - - 100 % 100 %
Infrastructure component (Database system) - 10 8 10
- type - - - -
Information flow 539 827 8252 1214
- protocol 100 % - 100 % 100 %
- from (Business application) 100 % 100 % 100 % 100 %
- to (Business application) 100 % 100 % 100 % 100 %

Table 5.3.: Indicator evaluation data (Schneider et al., 2015c)

5.3.3.1. Observed industry indicators

In Chapter 5.1 several complexity and diversity indicators have been observed recurrently in
practice. To assess the utility of these indicators according to the assessment framework pre-
sented in Chapter 5.3.1 the goal is to calculate all these indicators in every of the previously
presented cases. Due to the fact that not every company was able to provide the necessary data
not every indicator could be calculated in every case. Accordingly, the actually calculated indi-
cators are summarized in Table 5.4. Therein, for every indicator the ranges as well as the average
value are included. For example, the Number of Information flows per application provides in-
sights about an application landscape’s connectedness. Although in Case 3 an application with
a maximum of 319 information flows could be observed—which is almost three times as much
information flows as the most connected application in Case 4 (122) has—the average number of
information flows is much smaller in Case 3 compared to Case 4 (8.7 instead of 10.4). In addi-
tion, the Customization level indicator shows how different the analyzed application landscapes
are regarding their respective sourcing strategy. For example, in Case 2 the range values reveal
that there exists a domain which includes only customized standard software (5 is the maximum
value), which is mostly an unwanted situation according to the respective enterprise architect.
Likewise, in Case 3 one can see that there exists a domain which consists only of unmodified
standard software products. Nevertheless, the comparability of some indicators is limited due to
different underlying models. For example, the minimum and maximum values of the Functional
scope indicator for Cases 3 and 4 highlight this fact. Furthermore, the indicator results need to

102

5. Measuring structural complexity and diversity of application landscapes

Indicator C1 C2 C3 C4

Application-level metrics
Number of
Information flows

[0;108], 2.5 [0;70], 6.7 [0;319], 8.7 [0;122], 10.4

Number of Infrastructure
components

- [0;20], 4.7 [0;22), 0.4 [0;13], 3.9

Function scope
(Function points)

- [1;34], 6.7 [1;56], 7.3 [10;400], 178.9

Functional scope
(Business functions)

- [0;34], 6.7 - -

Domain-level metrics
Number of
Applications

[6;28], 14 [1;53], 16 [1;194], 50 [6;88], 25

Number of
Information flows

[10;195], 83 [1;390], 110 [0;1316], 491 [23;580], 282

Customization
level

[1.4;3.9], 3 [1.4;5], 2.7 [1;3.5], 2.5 [2;3.3], 2.5

Number of Infrastructure
components

- [0;103]; 7.6 [0;44], 11.5 [9;34], 19.5

Functional scope
(Function points)

- [0;559], 22 [0;295], 67 [440;13810]; 4655

Functional scope
(Business functions)

- [0;543], 22 - -

[min;max], average

Table 5.4.: Industry metric calculation results (Schneider et al., 2015c)

be analyzed on a more fine-grained (domain-specific) level to reveal more insights. It is unlikely,
for example, that a company has a general sourcing strategy for all domains. Instead, different
strategies are used for different domains and therefore the indicator analysis needs to be done
in more detail than is possible here (Schneider et al., 2015c). Based on the actual indicator
calculation, subsequent interviews with enterprise architects and a group discussion among all
participating enterprise architects, it can be summarized that the complexity and diversity in-
dicators identified in industry are suitable for general managers, do not require additional data
collection efforts because most of the data is usually available, are compliant with experts’ per-
ceptions of complexity and diversity but some are ambiguous regarding their definition due to
the lack of a coherent theory. These assessment results are visualized in Figure 5.5.

5.3.3.2. Heterogeneity indicator evaluation

The heterogeneity-based diversity indicator proposed by Schuetz et al. (2013) is defined in a
generic fashion. Therefore, it has to be instantiated before it can be applied to the EA data
provided by four different companies. Because there exist no guidelines for deriving such concrete

103

5. Measuring structural complexity and diversity of application landscapes

Management suitability

Data collection effort

Perception compliance

Clarity Arbitrary Ambiguous Clear

Characteristic Manifestation

Data typically available Additional effort Large effort

Suitable for specialists Suitable for general managers

Compliant Not compliant

Figure 5.5.: Observed industry indicator assessment results

instantiations the given data is used as a foundation and all sensible possibilities are analyzed.
Table 5.5 provides a detailed overview about all derived heterogeneity indicators. Due to the
scope of this thesis and with regard to the available data all indicators are either defined on
the application landscape layer (A) or the infrastructure layer (I). The analyzed heterogeneity
metric is applicable for both EA entities (T) and relationships (R) which is also indicated in
Table 5.5. Instead of providing all calculation results for all indicators in every case—which is of
limited interest here—the indicator Coupled domain heterogeneity will be highlighted because it
provided interesting insights into the architectures of the companies and because this indicator
was realizable in all four cases. First, it will be explained more precisely how this indicator
was calculated and what insights enterprise architects can derive from this indicator. As can
be seen from Table 5.5, the indicator Coupled domains focuses on the application layer and
architecture element’s relations. The indicator considers the interfaces of applications assigned
to a functional domain D and the heterogeneity of the functional domains, a given domain
D is coupled with (Schneider et al., 2015c). Coupling between domains is determined by the
information flows of the applications assigned to these domains.

Example 5.1: Coupled domain heterogeneity. Let application APP1
be assigned to domain D1 and let it have three interfaces to three other
applications, each assigned to a distinct domain. In this case, the interfaces
of APP1 would be equally distributed among three domains. Now imagine
an application APP2 assigned to domain D1 having three interfaces to three
applications, all assigned to domain D2. Because of the concentration of the
interfaces on one domain, the functional heterogeneity of the interfaces of
APP2 is lower than the functional heterogeneity of the interfaces of APP1.

To compare calculated values of Coupled domain heterogeneity with target values such target
values have to be defined first. During the aforementioned workshop such target values have
been developed. According to the enterprise architects, applications assigned to a value generat-
ing domain, e.g. loans, trades or sales in case of banking institutions, should—in principle—have
low functional heterogeneity. Usually, those applications should share their data and services
only with a limited amount of other systems, e.g. a data warehouse, outside of their domain.

104

5. Measuring structural complexity and diversity of application landscapes

Indicator A I T R Cases Interpretation

Customization level X X
C1 C2
C3 C4

Heterogeneity of Customiza-
tion levels (make, buyAnd-
Customize or buy) of a do-
main’s applications

Business functions X X C2
Heterogeneity of business
functions supported by a
domain’s applications

Component categories X X
C1 C2
C3 C4

Heterogeneity of infrastruc-
ture components of a given
component category (e.g. op-
erating systems, databases,
etc.)

Coupled domains X X
C1 C2
C3 C4

Heterogeneity of the func-
tional domains a given do-
main is coupled with, whereas
the coupling between do-
mains is determined by their
applications and information
flows between them

Databases X X
C2 C3
C4

Heterogeneity of databases
used by a domain’s applica-
tions

Interface implementation
(Application)

X X
C1 C3
C4

Heterogeneity of the technical
implementations of an appli-
cation’s information flows

Interface implementation
(Domain)

X X
C1 C3
C4

Heterogeneity of the techni-
cal implementations of the in-
formation flows of a domain’s
applications

Operating systems X X
C2 C3
C4

Heterogeneity of the operat-
ing systems used by a do-
main’s applications

Operating system types X X C3 C4

Heterogeneity of the operat-
ing system types (e.g., vendor
and version) used by an appli-
cation

Programming languages X X C2 C4

Heterogeneity of program-
ming languages the applica-
tions of a domain are based
on

A = Application layer I = Infrastructure layer T = Components R = Relations

Table 5.5.: Selected heterogeneity-based indicators (Schneider et al., 2015c)

105

5. Measuring structural complexity and diversity of application landscapes

However, applications providing data or services to various other domains, e.g. the Data Ware-
house (DWH), are expected to have higher functional heterogeneity regarding their coupled
applications. Domains providing corporate management services, e.g. human resources, ac-
counting or risk management, should have an average amount of heterogeneity regarding their
coupled domains, because they need to exchange data more than value creating domains but
less than DWHs. Due to the fact that Cases 1, 2 and 3 originate from the banking sector their
domain models are very similar. Therefore, on the highest level a mapping of the differently
named domains is possible. Based on such corresponding general domain model the Coupled
domain heterogeneity values are calculated and summarized in Table 5.6. Therein, the numbers
equivalent entropy measure (𝐸𝑀𝐴) denotes the calculated heterogeneity of the domain’s coupled
domains which allows for cross-domain comparisons. Furthermore, for each domain and case
the number of characteristics (NC), i.e. the number of different domains that domain is coupled
with via information flows between its business applications, is provided. The number of actual
information flows is indicated by the number of entities (NE) column.

C1 C2 C3

Domain 𝐸𝑀𝐴 NC NE 𝐸𝑀𝐴 NC NE 𝐸𝑀𝐴 NC NE
Expected
coupling
heterogeneity

Loans 7.9 13 153 5.15 9 213 18.69 28 588 low
Sales 7.96 10 71 7.86 11 129 16.16 27 285 low
Legal audit 5.59 11 112 3.2 5 34 13.52 28 203 medium
HR 3.39 4 10 4.95 6 17 10.44 24 174 medium
Controlling 7.8 12 124 8.73 12 67 12.99 30 1069 medium
Risk 4.52 6 40 5.81 8 62 5.77 27 1124 medium
DWH 6.84 20 90 9.23 14 249 15.75 29 946 high
Number of
domains

13 16 33

𝐸𝑀𝐴 = Numbers Equivalent Entropy Measure
NC = Number of Characteristics NE = Number of Entities

Table 5.6.: Coupled domain heterogeneity indicator results (Schneider et al., 2015c)

By analyzing the 𝐸𝑀𝐴 values of Table 5.6 we can see that each application landscape is amend-
able regarding its compliance towards the target state description provided in the last column.
In general, the DWH domain has a higher coupled domain heterogeneity compared to the others.
In Case 2, it actually has the highest value as expected by the target state description. While
the Loans domain has a relatively low 𝐸𝑀𝐴 value—as expected—the value generating domain
sales has a relatively high value in Case 2. This can be regarded as a domain of interest for
the enterprise architect because here the reduction of heterogeneity might be appropriate. A
positive example can be found in the Risk domain of Case 3. As expected, this domain has a low
to medium heterogeneity of coupled domains. By comparing the number of coupled domains
(NC) with the others this fact might be kept hidden from the enterprise architect. Counting
information flows (NE) would also yield to other results which might be misleading.

106

5. Measuring structural complexity and diversity of application landscapes

When confronted with their individual indicator results of all indicators introduced and de-
scribed in Table 5.5, the respective enterprise architects agreed that these results match with
their expectations. It should be highlighted that the enterprise architect of Case 1 was sur-
prised about one application which was ranked as one of the most heterogeneous applications
with respect to information flows (Interface implementation). It turned out that this specific
application which has been neglected by the enterprise architect up to this point in time was a
DWH. The reason why it has been neglected during heterogeneity considerations was that it is
classified as an IT application not as a business application. Therefore, it can be concluded that
indicators in general and the heterogeneity-based indicator proposed by Schuetz et al. (2013) in
particular assist enterprise architects due to their objective nature. Although this indicator has
a strong theoretical foundation and is clearly defined its management suitability is—according
to the participating enterprise architects—limited because the calculation description is quite
difficult to understand (it contains logarithms and a sigma sign). In addition, indicator results
cannot be aggregated, e.g., from sub-domains to domains which aggravates understandability.
As illustrated in Table 5.3, not all companies were able to provide the required data for this
indicator. Therefore, it can be considered to cause an additional data collection effort at least
for some companies. Accordingly, indicator assessment results are visualized in Figure 5.6.

Management suitability

Data collection effort

Perception compliance

Clarity Arbitrary Ambiguous Clear

Characteristic Manifestation

Data typically available Additional effort Large effort

Suitable for specialists Suitable for general managers

Compliant Not compliant

Figure 5.6.: Heterogeneity indicator assessment results

5.3.3.3. Topology indicator evaluation

The indicators proposed by Lagerström et al. (2014) are based on the topology of the applica-
tion landscape which is determined by applications and their information flows. The approach
consists of two parts: a clustering algorithm and the indicator Propagation cost. The clustering
algorithm creates four distinct clusters of applications: core applications, control applications,
shared applications and periphery applications. Thereby, the core and shared applications are
considered to be the most complex applications because changes to those applications might
propagate through large parts of the application landscape resulting in unforeseen efforts. The
Propagation cost indicator yields the amount of possibly affected applications if a randomly
chosen application is changed. In order to assess the indicators’ utility the clustering algorithm
as well as the propagation cost indicator have been applied to all four real-world EA descriptions
available. The results are depicted in Table 5.7. Because this approach has never been applied to
an entire application landscape before, the first question of interest is the indicators’ plausibility.
The calculation results indicate that all four application landscapes under investigation share
some similarity in terms of cluster sizes. For example, the application landscape core varies
between 37% and 55%. It is interesting to see that the core forms the largest cluster in nearly

107

5. Measuring structural complexity and diversity of application landscapes

Cluster / Indicator C1 C2 C3 C4

Core 38 % 55 % 45 % 37 %
Control 14 % 7 % 7 % 17 %
Shared 8 % 11 % 13 % 3 %
Periphery 40 % 27 % 35 % 21 %
Propagation cost 24 % 41 % 30 % 21 %

Table 5.7.: Topology-based indicator results (Schneider et al., 2015c)

all cases followed by the periphery. Therefore, it can be concluded that the clustering algorithm
yields sensible results across organizations. A deeper analysis of the results reveals some signif-
icant differences among the four cases. For example, the largest core consists of 55% (Case 2)
while the smallest core consists only of 37% (Case 4). Therefore, on a relative scale the largest
core is about 50% larger than the smallest which is an indicator of higher complexity. An even
greater difference can be found in the comparison of the different propagation costs. The cal-
culated propagation cost in Case 2 is about two times the propagation cost observed in Case 4.
Therefore, changes to applications in Case 2 are much more likely to create unforeseen additional
changes compared to Case 4. Again, the interviews with respective enterprise architects revealed
that in all cases applications which are perceived to be highly complex are clustered either as
core or as shared application while applications having low perceived complexity are clustered
as control or periphery application. The data necessary to calculate the Propagation cost indi-
cator and to apply the clustering algorithm consists only of applications and their information
flows. This is fundamental EA data which was available in all four cases. The definition of the
calculation rule is unambiguous and leaves no room for speculations. However, the enterprise
architects have been doubtful regarding the indicator’s suitability to actually manage or steer
and application landscape towards the intended goal. Therefore, the indicator is only suitable
for specialists not for general managers. Nevertheless, the indicator might be appropriate to
prioritize change projects with respect to their potential change propagation. The results of this
indicator assessment are visualized in Figure 5.7.

Management suitability

Data collection effort

Perception compliance

Clarity Arbitrary Ambiguous Clear

Characteristic Manifestation

Data typically available Additional effort Large effort

Suitable for specialists Suitable for general managers

Compliant Not compliant

Figure 5.7.: Topology-based indicator assessment results

108

5. Measuring structural complexity and diversity of application landscapes

5.3.3.4. Indicator correlation analysis

When indicators are presented to higher-level executives for decision support usually their num-
ber should be minimal in order to avoid the inclusion of irrelevant data. To reduce the number
of indicators required to achieve a holistic view on the complexity and diversity of application
landscapes correlations between the results of two indicators can indicate a dependence of their
outcomes. Therefore, correlation coefficients have been calculated for all pairs of indicators in all
four use cases introduced before. Because for most pairs no correlation could be identified focus
will lie on those having high correlation coefficients. By using the indicator results as input the
statistical software R (see R Core Team, 2014) has been used to calculate respective Pearson
correlation coefficients. This coefficient takes values between -1 and 1 and describes the degree
of a linear dependence between two variables. Here, a high dependence is assumed, if the corre-
lation coefficient is greater than 0.4 for two complexity indicators. Table 5.8 depicts respective
correlation coefficients as well as their significance according to a two-sided t-test based on the
following schema: * indicates a p-value <0.05, ** indicate a p-value <0.01 and *** indicate a
p-value <0.001.

Total number of
information flows

Total functional
scope

Number of applications

C1: -0.08
C2: 0.71 **
C3: 0.75 ***
C4: 0.68 ***

C2: 0.82 ***
C3: 0.63 ***
C4: 0.97 ***

Total functional scope
C2: 0.61 *
C3: 0.63 ***
C4: 0.73 ***

-

Table 5.8.: Industry indicator correlations and their significance (Schneider et al., 2015c)

As can be seen in Table 5.8, the indicators Number of applications, Number of Information flows
and Functional scope strongly correlate with each other on a very significant level for domains
in Cases 2, 3 and 4. Therefore, it can be concluded that the more applications are part of
a particular domain, the more information flows and function points this domain has. While
this result is not surprising, it contributes to the plausibility of these indicators. Nevertheless,
it needs to be highlighted that such correlation could not be found in Case 1 for which only
one correlation could be calculated because of missing data for the other indicators. However,
because correlation does not imply causation (Wright, 1921), a deeper inspection of the observed
and strongly significant correlation is required.

In addition, Table 5.9 summarizes the relevant correlation coefficients for the identified cluster
of heterogeneity-focused indicators. By analyzing the correlation coefficients in Table 5.9, one
can see strong evidence for a correlation between the Operating system heterogeneity, Database
heterogeneity and Customization level heterogeneity. Therefore, we can conclude that if the het-
erogeneity of customizations within a domain is very high, it is likely that the operating systems
and databases used in this particular domain are also heterogeneous. Again, this observation
needs to be used for future research about reasons causing this correlation.

109

5. Measuring structural complexity and diversity of application landscapes

Operating system
heterogeneity

Database
heterogeneity

Customization level
heterogeneity

C2: 0.67 **
C3: 0.29 ***
C4: 0.68

C2: 0.69 **
C3: 0.43 ***
C4: 0.62 ***

Database
heterogeneity

C2: 0.84 ***
C3: 0.61 ***
C4: 0.31 *

-

Table 5.9.: Observed heterogeneity-focused indicator correlations (Schneider et al., 2015c)

To determine the correlation between heterogeneity-based as well as observed industry indicators
and topology-based indicators logistic regression models have been used because the topology-
based indicator is not interval scaled. Although there exist some significant correlations, e.g.
a p-value <0.001 for the Functional scope and the application clusters in Case 3, no empirical
evidence for a general correlation between heterogeneity-focused or observed industry indicators
and topology-based indicators could be found. Therefore, it seems that they measure indepen-
dent aspects of application landscape complexity.

5.3.3.5. Indicator assessment summary

In the previous chapters the indicator assessment framework developed in Chapter 5.3.1 has
been used to assess the utility of all complexity and diversity indicators applicable for appli-
cation landscapes which have been either observed in practice (see Chapter 5.1) or identified
via a structured literature review (see Chapter 5.2). The assessment is based on the actual
calculation of these indicators in four different real-world use cases, subsequent interviews with
corresponding enterprise architects and a group discussion during a half-day workshop in 2014.
Based on the individual assessment results visualized in Figures 5.5, 5.6 and 5.7, the following
conclusions can be drawn:

∙ Indicators observed in industry are better suited for general managers than heterogeneity
or topology-based indicators. Nevertheless, heterogeneity and topology-based indicators
provide useful insights for specialists.

∙ Non of the analyzed indicators requires huge data collection efforts. For most indicators
the data is typically available from EA repositories. Only the heterogeneity-based indicator
might cause some additional data collection effort because it requires detailed information
about specific attributes which might not yet be documented.

∙ Surprisingly, all indicators were able to identify highly complex applications according to
respective enterprise architects’ perceptions.

∙ Only the heterogeneity and topology-based indicators are based on a sound and clear
definition. Indicators observed in industry (especially the Customization level indicator)
are defined in an ambiguous fashion which could not be resolved because there was no
consensus about the impact of customized software and customized products.

110

5. Measuring structural complexity and diversity of application landscapes

∙ Strong significant correlations have been found between indicators Number of applications,
Number of Information flows and Functional scope. Therefore, one of those indicators
might be enough as decision support.

∙ No correlation could be found between the different types of indicators. Therefore, it seems
that they all measure different aspects of complexity and diversity.

In accordance with the literature review, the enterprise architects participating in this indicator
evaluation were missing a context sensitive measure of diversity which accounts for the dis-
tance between two types of interest and therefore provides concrete decision support regarding
standardization questions.

5.4. Metric selection and development

The analysis of complexity and diversity indicators currently used in practice (see Chapter 5.1)
as well as documented in literature (see Chapter 5.2) resulted in the identification of various
indicators with different benefits and drawbacks (see Chapter 5.3). Compared to the conceptual
understanding developed in Chapter 4 these indicators only cover the variety and balance aspects
of diversity. Neither available literature nor experienced practitioners provide a metric for the
disparity aspect. Therefore, such metric is developed and presented in this chapter. In addition,
an indicator describing balance not only between different products but also among different
versions of a single product is presented; thus overcoming current restrictions to nominal scales.

5.4.1. The Goal-Question-Metric approach

A common approach to develop (software) metrics is the Goal-Question-Metric approach (Basili
and Weiss, 1984; van Solingen and Berghout, 1999). It uses goal-directed data collection to
evaluate methodologies with respect to the claims made for them. The initial goal of the Goal-
Question-Metric approach was to illustrate how to obtain valid data that may be used both
to learn more about the software development process and to evaluate software development
methodologies in production environments. Nevertheless, the approach proved to be suitable
also in other domains, e.g., business process model analysis (Ghani et al., 2008). In total, the
Goal-Question-Metric approach consists of six consecutive steps (see Figure 5.8).

Within the first step, the goals of the data collection are established. Such goals could either
focus on the evaluation of a methodology relative to the claims made for it or be relevant
for all methodologies. This step ensures that the obtained data includes the patterns one is
looking for. In the second step, a list of questions of interest is developed based on the defined
goals. These questions are used to identify data parameters and categorizations. If questions of
interest are not or cannot be formulated, goals are not well defined. Once the questions have
been established, categorization schemes may be constructed. Generally, each question induces a
categorization scheme. In order to collect the required data for calculating metrics and answering
the established questions of interest a data collection form is developed in step four. Such data
collection form has to solve the conflict between the desire to gather a complete, detailed set
of data and the need to minimize the time and effort involved in supplying this data. In the

111

5. Measuring structural complexity and diversity of application landscapes

Establish Goals

Develop Questions

Establish Data Categories

Design and Test Data Collection Form

Collect and Validate Data

Analyze Data

Figure 5.8.: The Goal-Question-Metric approach according to Basili and Weiss (1984)

best case, data suppliers are involved in the form design process. With such data collection
form at hand in step five the actual data collection can take place. Validation of collected data
consists of checking the forms for correctness, consistency and completeness. Within the final
step, the collected data is analyzed by calculating metrics to answer the established questions
of interest. If necessary, the Goal-Question-Metric approach allows iterating among the steps
several times (Basili and Weiss, 1984).

The first step of the Goal-Question-Metric approach (see Basili and Weiss, 1984) is to define the
goal of data collection and analysis. To specify goals in a structured way the GQM templates
proposed by Caldiera et al. (1994) can be used (van Solingen and Berghout, 1999). The GQM
template requires to formulate a sentence of the following structure:

Analyze the object under measurement
for the purpose of understanding, controlling, or improving the object
with respect to the quality focus of the object that the measurement focuses on
from the viewpoint of the people that measure the object
in the context of the environment in which measurement takes place

Table 5.10.: GQM template according to Caldiera et al. (1994)

Based on this template, the goal for which metrics should be developed here can be defined as
follows:

Goal:

Analyze the application landscape description for the purpose of controlling its evolu-
tion with respect to its diversity from the viewpoint of an enterprise architect in the
context of a specific enterprise.

Based on this established goal, the next step requires the derivation of questions of interest.

112

5. Measuring structural complexity and diversity of application landscapes

These questions will serve as a basis for data categorization later on. Therefore, the object of
analysis, i.e. an application landscape description, needs to be decomposed into relevant parts
to be analyzed. Such categorization can be achieved by referring to the constituting parts of an
application landscape as already described in Chapter 4.1 as well as the typical interest of today’s
enterprise architects as identified in Chapter 5.1. The former include business applications on the
one hand and infrastructure components on the other hand. The latter distinguishes different
types of clusters of infrastructure components, e.g., database systems, operating systems or web
servers. In addition, the diversity framework presented in Chapter 4 provides the dimensions of
interest regarding the previously established goal. These include variety, balance and disparity.
Based on the empirical observations described in Chapters 3 and 5.1, the scope of the questions of
interest can be limited to specific domains instead of considering the whole application landscape
at once. Accordingly, the following questions of interest can be derived for both, the application
landscape scope or a domain-centric scope:

∙ How many different types of business applications belong to the application landscape?

∙ How are business application instances distributed among the different types associated
to the application landscape?

∙ How different are the types of business applications belonging to the application landscape
from each other?

In addition to business applications, technical components, e.g., database management systems
and operating systems, can also be assessed. Most of the data categories which can be derived
from these questions have already been stated above. Still missing are the criteria which are used
to define difference among types. These criteria are of course type-specific, i.e. the difference
among database systems is determined differently from the difference among operating systems.
Furthermore, these criteria might also be company-specific. Therefore, it is refrained from
providing a common and complete set of criteria here. Instead, concrete examples will be
presented in Chapters 5.4.4, 7.3 and 7.5.

5.4.2. Reusing metrics for variety and balance quantification

To assess variety in a set of (EA) elements the number of used concepts needs to be calcu-
lated (Stirling, 2007; Page, 2011). Respective indicators have already been described in liter-
ature and are also used in practice. For example, Schuetz et al. (2013) count the number of
database products used within an application landscape as part of their heterogeneity consid-
erations, Mocker (2009) counts the number of operating systems per application and four out
of six companies count the number of infrastructure components used to realize a business ap-
plication (Schneider et al., 2015c). In each case, several concepts are used to describe a set of
individuals, e.g, the name of a database product is used to describe all installations of this prod-
uct. Furthermore, a concept exists for the union of these concepts, e.g., database. Therefore,
it can be concluded, that counting the number of concepts used to describe a set of individuals
which all belong to a more general concept is already a suitable indicator to quantify variety.

To quantify balance, not only the number of concepts needs to be regarded but also the distri-
bution of individuals (Stirling, 2007; Page, 2011). Therefore, entropy measures qualify for the

113

5. Measuring structural complexity and diversity of application landscapes

quantification of balance. Literature provides a large set of entropy or concentration measures
including the Herfindahl Index (Herfindahl, 1950), Horvath Index (Horvath, 1970) and Shannon
Entropy (Shannon, 1948). To select an appropriate measure for balance quantification in the
context of EAM, Schuetz et al. (2013) provide an analysis of these measures with respect to shifts
in classification and the effect of small sets or elements and conclude that Shannon Entropy is
best suited. However, this approach allows only to assess balance if there is no relationship
between the concepts under investigation which needs to be considered. For example, a specific
database product might be used in different versions. Therefore, time provides a natural order
of these versions. Because entropy and concentration measures work on nominal scales they
cannot capture such ordinal scale and therefore their decision support is limited in such cases.
In the following chapter a suitable measure is presented closing this research gap.

5.4.3. A novel metric for balance quantification

As outlined before, balance is a function of the pattern of apportionment of individuals across
concepts. To quantify balance one needs to be aware of the scale used to describe the dis-
tribution of individuals. According to Stevens (1946), the scale could be either nominal (no
relationship between concepts), ordinal (a total order of concepts is known) or interval (degree
of difference between concepts is known). The aforementioned measure proposed by Schuetz
et al. (2013) which is based on Shannon Entropy (Shannon, 1948) disregards any relationship
between concepts. Therefore, it is only suitable for nominal scales. Accordingly, it falls short
in describing balance in case a natural order of concepts exists. Such case can be found, for
example, when elements of an application landscape exhibiting adolescence should be identified.
According to Schneider et al. (2016), adolescence can be identified by analyzing the distribution
of individuals among the different versions of a product in use. The more old versions are in
use, the greater the adolescence of the respective product. In this case, the release cycle of the
product defines a natural order of its versions. Accordingly, balance measures based on nominal
scales fall short in characterizing the pattern of distribution. A concentration on the oldest
version means something different than a concentration on the newest version, but to express
this fact concepts need to be treated ordinal. In the following, a respective measure proposed
by Schneider et al. (2016) able to express the pattern of distribution also for ordinal scaled data
based on skewness is presented.

The term adolescence can be understood in different ways. In the following, adolescence will be
defined for internal or external business applications and technical components which are subject
to release management and therefore a controlled lifecycle. In case of external components, this
lifecycle is fully controlled by the respective vendor. Adolescence becomes visible, for example, if
a specific version runs out of maintenance support. Accordingly, it can be defined as follows.

114

5. Measuring structural complexity and diversity of application landscapes

Definition: Adolescence of IT components
An IT component ages due to the availability of newer major or minor versions of the
same product as well as the availability of a succession product of the same vendor.
The degree of adolescence of a an IT component is thus the skewness of the distribution
of its instances among its versions.

(Schneider et al., 2016)

In the following, papers addressing subjects similar to the adolescence concept are presented to
provide an overview of the scientific knowledge.

Since more than two decades, researchers examine legacy information systems (Kardasis and
Loucopoulos, 1998). Although age is not a sufficient condition, most legacy systems are char-
acterized by a high age. In this context, age is not limited to the software itself but can also
apply to the respective hardware. Common issues in the context of legacy systems include, but
are not limited to, slow and expensive hardware, high maintenance costs and difficulties during
integration with other IS (Bisbal et al., 1999).

In the context of IT controlling, the lifecycle of business applications is commonly concerned.
This lifecycle can be divided into the phases planning, initial development, production, extension
and retirement (Zarnekow et al., 2004). Thereby, the total age of such application is determined
as the time-span between the beginning of planning and the end of its retirement, or the current
date for applications being still in production. The extent of enhancements and changes carried
out during its lifetime is therefore usually neglected.

In the course of searching for application landscape complexity drivers, Mocker (2009) identified
the age of business applications as a major influence factor. Thereby, age has been defined as the
number of years since the first go-live day of a certain business application. Again, the extent of
maintenance carried out is not considered. In addition, no relationship between age and other
aspects like functional redundancy or deviation from standards could be observed.

The amount of time a certain IT component is used, i.e. its age, has impact on the usage of new
technologies due to path dependence (Fürstenau and Kliewer, 2015). The so-called lock-in effect
is also described by Arthur (1989) and shows how difficult the migration of old technologies to
new technologies can be.

An intuitive understanding of age in the context of application landscapes can be found in
Hanschke (2014). Age, among other aspects, is here used to describe the current health condition
of a business application. Thereby, functionally similar applications can be compared easily. The
adolescence of an application landscape is thereby mentioned as a potential problem although a
detailed elaboration of age is missing.

Conceptualizing adolescence of IT components

Determining the age of an IT component based on the day of introducing the component in the
application landscape falls short in many respects. On the one hand, an IT component, e.g. a
business application, is mostly composed of other components (The Open Group, 2011) which

115

5. Measuring structural complexity and diversity of application landscapes

are subject to their own lifecycle raising the question of how to aggregate the age of different
components. On the other hand, IT components are subject to maintenance activities (Zarnekow
et al., 2004) which raises the question of the meaning of age in such context. In addition,
especially for COTS products, the day of introducing the component in the application landscape
cannot be considered to be equal to the day of finishing production of this component. Therefore,
it can be much older. After finishing the initial development, often continuous development takes
place. Thereby, intermediate versions are released after certain time-intervals (Ramakrishnan,
2004). An analysis of such product reveals that it can change significantly during its lifecycle
and a new version could sometimes be compared to a completely new product.

An illustrating example can be found in the operating system developed by Microsoft. Using
the initial release as kind of birthday would imply that an installation of the recently released
Windows 10 would be 30 years old due to the fact that Windows 1.0 has been released on
November, 20𝑡ℎ 1985. When instead the day of introducing a component into the application
landscape is used to denote a component’s birthday, an installation of Windows XP in 2006
would be regarded to be one year old in 2007 although Windows XP has been released already
in 2001. In fact, the component should be considered aged when it was first installed in 2006.

Although a business application can be distinguished clearly from IT components such as op-
erating systems or database management systems, this is not trivial for other IT components
such as libraries or programming languages. Again, this rises the question how the age of such
components influences the age of the business application. In addition, comparing the age of
different IT components is difficult due to fact that their release cycles might differ significantly.
The faster the development of a certain component proceeds, the faster it ages and becomes
adolescent. Focusing solely on time, this aspect is not addressed adequately. Therefore, a con-
ceptualization of age and adolescence is required allowing quantification and comparison as well
as application to all IT components.

Release management forms a common approach to manage dependencies between releases of
IT components and to ensure stability of all its elements (Ramakrishnan, 2004). In the sense
of an application landscape, both business applications and infrastructure components are sub-
ject to a specific release cycle. This release cycle could be managed either exogenous (by the
product vendor) or endogenous (by the company itself). In contrast to the time since the in-
troduction of a component, the release cycle clearly defines a predecessor-successor-relationship
which forms a stable foundation for the consideration of IT component’s age. However, this
implies the usage of an ordinal scale, because the intervals between single releases must not be
equal, independently of considering time, functionality or other criteria for comparison. The
frequency of certain releases of the same IT component within an application landscape can be
mapped to a distribution function by using the predecessor-successor-relationship. The shape,
i.e. the location, of such distribution function in turn provides hints regarding the adolescence
of the respective IT component. Accordingly, location parameters like median, mean, standard
deviation and skewness as measures for the aggregation of the distribution function’s location
qualify for adolescence considerations.

116

5. Measuring structural complexity and diversity of application landscapes

Indicator design

A measure of adolescence has to fulfill certain additional requirements. For example, the naive
approach to determine the age for each release/version, calculate the average value (maybe
weighted by the frequency of instances) and compare it to a target value should, according to
the aforementioned reasons, not be used. Especially the determination of a target value cannot be
achieved in general for arbitrary IT components and a specific determination requires additional
effort and profound knowledge about each IT component. Instead, by using relative frequencies
of release instances, a distribution function can be derived which can be described on an ag-
gregated level by location parameters. To define a suitable indicator quantifying adolescence of
IT components, such location parameter needs to fulfill the following characteristics (Schneider
et al., 2016):

1. The more old versions of an IT component are used, the higher the adolescence.

2. If a certain instance is migrated to a newer version, the adolescence decreases.

3. Older versions have stronger influence on adolescence than less older versions.

4. The ratio of instances per version determines an IT components adolescence, not the
absolute number of instances.

5. The distribution function requires only the predecessor-successor-relationship between ver-
sions, no distances.

6. The availability of a new release, even if not part of the application landscape yet, yields
an increase of the IT component’s adolescence.

Requirements 1 and 2 are derived directly from the previously described definition of adoles-
cence. Requirements 3 and 4 are commonly desired properties of indicators like measures of
concentration which describe distributions (Hall and Tideman, 1967; Shapiro, 2010). Require-
ment 5 reflects both, the limitations regarding commonly available data and the difficulty of
defining the age of a certain release absolutely. For example, it is conceivable that a DBMS is
released in version 5.8 and then new features are released in version 6.0. Because the migration
to version 6.0 might require extensive effort, the respective vendor might release version 5.9 after
version 6.0 to fix some software errors. Accordingly, the chronological order of these versions
does not mirror the typical migration path for companies. Solely the predecessor-successor-
relationship provides information about the order of certain releases. Therefore, the indicator to
be developed has to be computable based on ordinal data. Assuming interval-scaled data is not
possible because neither are the time-intervals between releases equal nor is the effort required
for migration equal. Requirement 6 reflects the impact of the technological progress and ensures
that the adolescence of an IT component increases if new versions are released.

Among the possible location parameters for describing the distribution function of releases,
especially the skewness parameter qualifies for capturing adolescence of IT components. Thereby,
different skewness definitions can be used. Table 5.11 provides an overview of commonly used
skewness parameters including their respective calculation rule based on the works of Handl
(1985) and Klein (1999).

117

5. Measuring structural complexity and diversity of application landscapes

Skewness Origin Calculation Foundation

𝑆𝑂𝐼 Klein (1999) −(𝑘 − 1) + 2
𝑘−1∑︀
𝑖=1

𝐹𝑋(𝑥𝑖)
Values of the

distribution function

𝑏2(𝑎)
Groeneveld
and Meeden

(1984)

𝐹−1(0.25) + 𝐹−1(0.75)− 2𝐹−1(0.5)

𝐹−1(0.75)− 𝐹−1(0.25)

Median and quantil
distances

𝑆 Oja (1981)
𝐸(𝑋)− 𝐹−1(0.5)√︀

𝑉 𝑎𝑟(𝑋)

Median and standard
deviation

𝑀𝐶𝑛
Brys et al.
(2004)

𝑚𝑒𝑑𝑥𝑖≤𝑚𝑛≤𝑥𝑗

(𝑥𝑗 −𝑚𝑛)− (𝑚𝑛 − 𝑥𝑖)

𝑥𝑗 − 𝑥𝑖

Median and values of
the distribution

function

Table 5.11.: Common skewness measures found in literature

Each of the aforementioned skewness measures satisfies requirements 1 to 4. Requirement 6 is
in the narrower sense not fulfilled by any skewness measure but can be satisfied by adapting the
data input accordingly. Thereby, when calculating means or standard deviations, newer versions
have to be added as characteristic attribute with frequency 0. Because only the skewness measure
proposed by Klein (1999) is able to calculate skewness for ordinal scaled data (requirement 5)
the other measures disqualify due to their assumption of equal distances between the different
versions of an IT component. Accordingly, this measure satisfies all requirements and is therefore
selected to calculate adolescence of IT components. The general computation rule is defined
as follows. Thereby, 𝑘 denotes the number of characteristics, i.e. the number of versions of
the respective IT component. 𝐹𝑋(𝑥𝑖) denotes the expected value for an instance to be of
characteristic 𝑥𝑖 or a smaller characteristic which can also be denoted as 𝑃 (𝑋 ≤ 𝑥𝑖). In other
words, this represents the accumulated relative frequency of characteristic 𝑥𝑖.

−(𝑘 − 1) + 2
𝑘−1∑︁
𝑖=1

𝐹𝑋(𝑥𝑖) (5.18)

Given the exemplary distribution depicted in Figure 5.9, the adolescence of the Windows com-
ponent can, according to Equation 5.18, be calculated as follows.

−(6− 1) + 2

(︂
30

300
+

110

300
+

121

300
+

202

300
+

292

300

)︂
= −0, 027 (5.19)

The negative sign in combination with a small absolute value shows that the distribution is
slightly left skewed implying that a little bit more new versions are in use. If the result is divided
by 𝑘 − 1, the measure is transformed to a superior representation whose results are normalized
between −1 and 1. The resulting measure satisfies also the requirement that arbitrary IT
components can be compared with regard to their adolescence independently of the amount of
different versions in use.

When calculating adolescence, all releases of a certain IT component in use have to be considered.

118

5. Measuring structural complexity and diversity of application landscapes

0

20

40

60

80

100

Windows 2000 Windows XP Windows Vista Windows 7 Windows 8 Windows 8.1

Figure 5.9.: Fictitious distribution of operating system instances with respect to their versions
(Schneider et al., 2016)

Older releases which were never used or are not used anymore, do not need to be considered. The
smallest characteristic is therefore the oldest actually used version of an IT component. If an
organization uses more than one version, it is possible, that a version available on the market has
been skipped. Such version has to be considered only, if it is part of the migration path of older
versions. If there is no plan to use such version at all, it can also be skipped as characteristic.
The largest characteristic is determined by the newest version used by the organization or the
most recent version available on the market if using this version is considered possible and
sensible. Figures 5.10 and 5.11 illustrate the behavior of the indicator in case of extreme left or
extreme right skew by using absolute frequencies. In the left case, the indicator will result in 1
indicating the highest possible adolescence. In the right case, the indicator will result in nearly
-1 indicating the absence of adolescence.

0

10

20

30

40

50

60

V2 V3 V4 V5 V6

Figure 5.10.: Extreme right skewed distribution

0

10

20

30

40

50

60

V2 V3 V4 V5 V6

Figure 5.11.: Extreme left skewed distribution

Indicator visualization

For communication purposes and to increase the comprehensibility of application landscape
properties, visualizations are frequently used (Hanschke, 2014; Lankes et al., 2005). Due to the
fact that interpreting the results of the previously introduced indicator to quantify adolescence
of IT components requires knowledge about its value range as well as the meaning of the minus-
sign, an intuitive visualization is developed and presented in the following. Commonly used

119

5. Measuring structural complexity and diversity of application landscapes

1

1 -1 0,4

Figure 5.12.: Exemplary visualization of an adolescence value of -0.4 (Schneider et al., 2016)

box-plots seem to be inappropriate here, because they also require detailed knowledge about
quartiles and their construction. Histograms can be interpreted without additional knowledge
but do not provide an aggregated perspective on the distribution, thus limiting the ability
to comprehend adolescence instantly. Therefore, a visualization based on the skewness of the
distribution function is used to visualize adolescence directly. The visualization is based on
characteristics of histograms, but reduces them to a simple triangle capturing only relevant
information. The construction of the triangle begins by placing a horizontal line which will be
removed afterwards. The edge opposing this line is placed based on a fixed distance as well as
a mapping of the interval of potential indicator results [-1;1] to the length of the longest side
of the triangle which resides on the line already drawn. Thereby, the sign has to be negated.
Figure 5.12 shows an exemplary visualization for an adolescence value of -0.4 including also the
axes used for construction.

In contrast to a histogram visualization containing the actual relative or absolute frequency
for each version in use, the presented visualization indicates only the distribution of instances
among different versions according to their skewness. Thereby, additional details are consciously
omitted to increase the comparability of adolescence values for different IT components. By
going without the coordinate system, a schematic visualization of adolescence is created. A
detailed example with real-world data for both, the indicator and the visualization, is provided
in Chapter 7.4.

5.4.4. A novel metric for disparity quantification

In the context of EAM, measuring disparity among concepts is currently unaddressed in lit-
erature (see Chapter 5.2). In general, distance measures are appropriate to quantify disparity
among concepts (Page, 2011). In particular, as proposed by Stirling (2007), the metric presented
by Weitzman (1992) is suitable to quantify disparity. Therefore, the remainder of this chapter
develops and presents a novel metric based on Weitzman (1992) to assess disparity in the context
of EAM.

The approach presented by Weitzman (1992) to quantify disparity uses a given distance function
𝑑(𝑥, 𝑦) where 𝑥, 𝑦 ∈ 𝑆 and 𝑆 is the set of all species (concepts). Thereby, the distance 𝑑(𝑥, 𝑦)

120

5. Measuring structural complexity and diversity of application landscapes

stands for the number of (possibly weighted) character-state differences between elements 𝑥 and
𝑦. This distance function has to satisfy the following conditions:

non-negativity: ∀𝑥, 𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) ≥ 0

identity: ∀𝑥, 𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦

symmetry: ∀𝑥, 𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)

(5.20)

Note that these conditions equal those already presented in Equation 5.1 without the condition of
triangle-inequality which allows the usage of non-metric distances. Given such distance function
disparity denoted as 𝑉 (𝑆) is recursively defined as:

𝑉 (𝑆) = 𝑚𝑎𝑥
𝑥∈𝑆

{𝑉 (𝑆 ∖ 𝑥) + 𝑑(𝑥, 𝑆 ∖ 𝑥)} (5.21)

Equation 5.21 can be interpreted as follows (Page, 2011).

1. Let 𝑆 equal the empty set and set 𝑉 (𝑆) = 0.

2. Randomly chose a concept to add to 𝑆.

3. Chose a concept 𝑦 of least distance to a member of 𝑆 according to 𝑑(𝑥, 𝑦). Then increase
𝑉 (𝑆) by the distance from 𝑦 to 𝑆 and add 𝑦 to 𝑆.

4. If not all concepts belong to 𝑆 go to Step 3.

The metric proposed by Weitzman (1992) shows some very appealing properties. For exam-
ple, the metric is able to calculate the loss of disparity in case a specific concept and all its
individuals become extinct. If exactly one concept out of 𝑛 concepts has to perish, e.g. due
to budget constraints, and there is a choice the most intuitive answer is that one of the two
most closely related concepts should become extinct in order to preserve as much disparity as
possible. However, Weitzman (1992) already stated that—depending on the context—for the
same collection of objects using different distance functions might be appropriate. Therefore,
the outcome and expressiveness of this metric is strongly determined by the definition of the
particular distance function. If such distance function is based on differences in attributes (as
suggested by Weitzman (1992) and Page (2011)) a suitable distance function has to be developed
for each specific case. Although there might exist common attributes of general interest, each
concept to be assessed with regard to disparity is likely to exhibit specific attributes which need
to be taken into account. Accordingly, characteristics used to determine distance between two
database systems differ from those used for operating systems. To exemplify the approach, a
hypothetical example is presented in the following.

Demonstration example

To exemplify the approach of measuring disparity within application landscapes the metric’s
applicability is demonstrated for DBMSs. In previous analyses regarding EA diversity or com-
plexity DBMSs have often been used to demonstrate new metrics (Mocker, 2009; Schuetz et al.,
2013) and practitioners often collect respective data (Schneider et al., 2015c). Previous research

121

5. Measuring structural complexity and diversity of application landscapes

focused on product vendors as a distinguishing characteristic which falls short as a single input
for a context-sensitive distance function. Therefore, a generic distance function for DBMSs is
derived first based on some general differentiating characteristics. Although not being tied to a
specific organizational problem this distance function can be used to demonstrate the benefits
of quantifying disparity. The goal is not to propose a distance function suitable for all cases but
to provide a reasonable example.

One fundamental characteristic of each DBMS is its paradigm. Most of the instances in opera-
tion today follow the relational paradigm developed by Codd (1970). Nevertheless, there is an
increasing number of DBMSs based on other paradigms which are often summarized under the
term NoSQL (Fowler and Sadalage, 2012). Another characteristic of DBMSs is their focus on
different use cases. While On-line Transactional Processing (OLTP) DBMSs focus on ensuring
ACID properties of database transactions (Gray, 1981), On-line Analytical Processing (OLAP)
DBMSs focus on decision support use cases (Chaudhuri and Dayal, 1997). Especially in busi-
ness environments the price of a product, i.e. DBMS, is an easily conceivable characteristic. On
a general level it can therefore be distinguished between expensive products offered by major
vendors, e.g. Oracle, Microsoft and IBM, and open source or free products like MySQL and
PostgreSQL. Although there are generally more characteristics conceivable, only these three
characteristics are used to define the distance of DBMSs here.

The respective distance function should be metric to allow the representation of concepts, i.e.,
DBMS products, as points in Euclidean space. If each of the aforementioned characteristics is
considered as a capability, each concept can be represented by a vector of length equal to the
number of capabilities 𝑛. According to the capabilities provided by each type of DBMS, this
vector 𝑥 is filled with ones and minus ones, assuming an equal weight of all capabilities:

𝑥𝑖 =

{︃
1, if capability is provided

−1, otherwise
(5.22)

As denoted in Equation 5.23, the distance of two DBMSs 𝑥 and 𝑦 can then be defined as the
Euclidean distance between them. Other distance functions like the Jaccard index (Jaccard,
1912) would be equally appropriate.

𝑑(𝑥, 𝑦) =

⎯⎸⎸⎷ 𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2 (5.23)

Accordingly, the minimum distance between two concepts, ie.e DBMS, is zero which occurs if
both concepts equal exactly regarding considered capabilities. If two concepts differ in every
single capability the distance function maximizes at

√
4𝑛 where 𝑛 denotes the number of capa-

bilities. This way, the introduced distance function can be considered as a measure of overlap
between concepts. The more overlap, the smaller their distance. Furthermore, it satisfies the
conditions described in Equation 5.20 and is therefore a valid distance function for the Weitz-
man metric. To see the contribution of disparity to diversity consider two different EA models
named A and B with DBMS instances according to the distribution given in Table 5.12. If
the number of different types, i.e. variety, is calculated both EA models yield the same result

122

5. Measuring structural complexity and diversity of application landscapes

DBMS Model A Model B

MongoDB 5 25
Oracle 11g 25 5
Microsoft SQL Server 70 70

Table 5.12.: EA models where varying diversity is not discriminated by conventional indicators

of three concepts. If the distribution of instances is taken into account to quantify balance,
both EA models yield the same result again due to equal relative frequencies. However, taking
disparity into account one can recognize that the products of Microsoft and Oracle share more
characteristics than they do with MongoDB, e.g. the SQL interface and the relational model.
Table 5.13 describes the vectors used for distance calculations.

DBMS SQL NoSQL OLAP OLTP Expensive Cheap

MongoDB -1 1 1 -1 -1 1
Oracle 11g 1 -1 1 -1 1 -1
Microsoft SQL Server 1 -1 1 -1 1 -1

Table 5.13.: Hypothetical vectors to describe DBMS disparity

Because both models include exactly the same concepts, the disparity metric yields to the same
result. As stated before, all three dimensions of diversity have to be considered in parallel.
Representing the disparity as tree (dendrogram) and using the data of Table 5.13 an integrated
view on the diversity of both models can be derived as visualized in Figure 5.13.

Figure 5.13.: Graphical representation of varying diversity discriminated only by disparity

This small hypothetical example demonstrates that the diversity of EA model B is higher than
the diversity of EA model A because it consists of more individuals of the most disparate

123

5. Measuring structural complexity and diversity of application landscapes

concept, i.e. MongoDB. Therefore, the three dimensions of diversity need to be considered
together because each dimension measured in isolation yields equal results in this example.
Due to the fact that existing EA diversity indicators are not able to distinguish between the
two (fundamentally different) models, the concept of disparity allows enterprise architects to
view their technology portfolio from a new perspective thus providing better decision support
for diversity management. However, “it is difficult indeed to contemplate any single general
index of diversity that could aggregate properties of variety, balance and disparity in a uniquely
robust fashion” (Stirling, 2007). In the following chapters the required data for calculating the
previously introduced disparity metric is derived as required by Basili and Weiss (1984) followed
by an empirical evaluation.

Data collection

In order to be able to calculate the disparity metric introduced before, required data needs to be
collected. Although paper might be a usable medium (as initially suggested by Basili and Weiss
(1984)), a software solution like an EA repository might also be suitable to collect the required
data. Such tool allows, e.g., for distributed and repeated data collection which is automatically
stored and therefore can be reused for other purposes easily. The conceptual model representing
data required for disparity assessments is depicted in Figure 5.14.

Disparity Criterion
name : String

Category
name : String

Infrastructure Element
name : String

Functional Domain
name : String

Business Application
name : String

* *

evaluated by

* 1
belongs to

 *

 *
uses

* 1
belongs to

Figure 5.14.: Conceptual model for data collection

To assess disparity, concepts such as Infrastructure Elements representing different products need
to be described by additional concepts, i.e., Categories. These categories could, for example,
distinguish between Database Management Systems, Operating Systems and Web Servers. At
this level, the concepts for which disparity should be assessed are defined. Subsequently, for each
Category the desired characteristics for distance calculations need to be documented. Based
on these criteria, the associated Enfrastructure Elements need to be extended with respective
ratings. The relationship from Infrastructure Elements to Business Applications and Functional
Domains is required to assess disparity also on the level of functional domains and not only for
the whole application landscape.

Basili and Weiss (1984) suggest to test the developed data collection form before starting to
actually collect data. Although each company will have to test a concrete instantiation of the
previously introduced form on its own, its general applicability should be demonstrated here.
Therefore, three different questions will be answered:

∙ Are companies able to collect the required data?

124

5. Measuring structural complexity and diversity of application landscapes

∙ Are tools available supporting data collection?

∙ Do enterprise architects have access to the required information to analyze it?

An analysis of current EA practice reveals that companies typically document their EA by
modeling business applications and infrastructure elements which have been used to build
them (Schneider et al., 2015c). In addition, infrastructure elements are usually classified to
some sort of taxonomy, i.e. domains. Therefore, it can be concluded that companies are able to
collect required data at least for DBMS and Operating System (OS), tools to store such data
are available and enterprise architects have access to required data.

Empirical evaluation

To evaluate in how far the previously introduced disparity metric is able to provide relevant
information to enterprise architects, the metric is applied to real-world EA descriptions and
enterprise architects are interviewed accordingly. Therefore, this evaluation addresses both in-
ternal validity and external validity (Campbell et al., 1963). To demonstrate the additional facet
of diversity added by the disparity metric, three real-world EA models which have already been
described in Chapter 5.3.2 serve as a basis for practical evaluation.

Table 5.14 shortly recapitulates the origin of the data as well as its relevant characteristics.
In each case a snapshot of the entire EA model from 2014 was available. For demonstration
purposes the focus lies on the disparity of DBMS products used by these companies. Therefore,
the number of types indicates the number of different DBMS products in use without considering
different versions of these products (variation). The number of DBMS instances represents
the number of business applications using one of these DBMS products. Therefore, it is not
necessarily equal to the real number of operating instances but from an enterprise architect’s
point of view thoroughly the more interesting number. Furthermore, Table 5.14 provides the
total number of business applications modeled by the respective enterprise architects.

Case Industry
branch

Company
size

Headquarter DBMS
types

DBMS
instances

Business
applications

1 Banking Large Germany 8 1,144 1,898
2 Banking Middle Germany 10 185 247
3 Insurance Middle Germany 8 147 234

Table 5.14.: Description of disparity evaluation data

When asked about data quality, the respective enterprise architects answered that they are
satisfied with this data and use it as basis for EA related decisions. To compare the three EA
models described above two types of DBMS (and its corresponding instances) had to be removed
due to different modeling approaches. Thus, the DBMS type called Excel with two instances
and the DBMS type called no data storage from the model of Case 3 have been excluded because
although present in the EAs of Cases 1 and 2 such instances have not been documented.

To calculate variety and balance indicators regarding DBMS types and instances in these three

125

5. Measuring structural complexity and diversity of application landscapes

cases the indicators proposed by Mocker (2009) and Schuetz et al. (2013) are used (see Chap-
ter 5.4.2). Disparity is calculated using the metric proposed by Weitzman (1992) and the general
distance function presented at the beginning of Chapter 5.4.4. Table 5.15 summarizes the re-
sults.

Case Variety Balance Balance (norm.) Disparity

1 8 1.653 5.227 8.485
2 10 1.568 4.795 8.485
3 8 1.122 3.074 11.314

Table 5.15.: Empirical DBMS diversity measurement results

By comparing Cases 1 and 3 one can see that although the number of DBMS products in use
is equal, in Case 3 more disparity has been achieved. Likewise, if Cases 1 and 2 are compared,
the disparity is equal but in Case 2 two more DBMS products are in use. Based on these
observations, Case 3 seems to have lowest variety and balance but also exhibits the largest
disparity and can therefore be regarded superior to the other cases.

In Case 1, the application landscape is partitioned by a three-layered model of functional do-
mains. Due to the large extend of the application landscape, the respective enterprise architects
manage diversity not on a global level but on a domain level. Therefore, variety, balance and
disparity indicators are also calculated for each available domain. The results show many do-
mains having equal variety and balance so disparity is analyzed especially for these domains. For
example, the following domains showed a variety of 2.83 and a balance of 0.693 (which equals
an equal distribution of 2 concepts) although having a different number of DBMS instances and
different DBMS concepts: Compliance Services, Operational Risk, Product Conditions, Legal,
Enterprise Application Integration, and Technical Services. Without considering disparity all
these domains would be attributed to have equal diversity. Applying the basic distance function
presented before different results can be obtained (see Table 5.16). To exemplify the approach
of applying weighting factors for some capabilities and therefore adjust the distance function
towards the strategic orientation of the company, Table 5.16 also shows the values of weighted
disparity. Thereby, the possible Euclidean space has been extended. In this example, a differ-
ence in use case is considered to add more distance to two DBMSs than a difference in their
paradigm. Consequently, the weighted disparity values for the OLTP and OLAP capability take
values of either 2 or -2.

Regarding the disparity metric results, an enterprise architect can easily identify domains where
standardization, i.e. reduction of diversity, can be performed although a maximum of disparity
should be preserved. In the example given above the domain EAI is a good candidate for
variety reduction. Reducing the number of DBMS products there comes with the minimal loss
of disparity (while variety and balance losses are equal for all domains) because according to
the defined capabilities the two DBMSs are not different. However, the metric results can only
help in finding a spot to start deeper inspections. Technology components such as DBMSs
might be tied to application components and diversity reduction might therefore not be feasible
without changes on other architectural levels. However, with regards to internal validity it can
be concluded that the analyzed disparity metric provides additional information and behaves as

126

5. Measuring structural complexity and diversity of application landscapes

Domain (instances) Variety Balance Disparity Disparity
(weighted)

Concepts

Compliance Services (4) 2 0.693 2.83 2.83 MS SQL, Oracle
Operational Risk (2) 2 0.693 2.83 4 Sybase, Oracle
Product Conditions (4) 2 0.693 2.83 2.83 DB2, IMS
Legal (2) 2 0.693 4 4.90 MS SQL, Sybase
EAI (2) 2 0.693 0 0 DB2, Oracle
Technical Services (2) 2 0.693 2.83 2.83 Oracle, IMS

Table 5.16.: Extract of the diversity measurement results for Case 1

expected. To ensure also external validity interviews with enterprise architects are performed
an described in the following.

To evaluate to what extend practicing enterprise architects value the proposed disparity metric
for supporting diversity management twelve interviews in nine sessions are conducted. Table 5.17
describes the background of the interviewees. All interviews have been conducted either face-
to-face or via telephone and lasted between 45 and 78 minutes.

Id Role Industry Experience

1 Global Chief Enterprise architect Pharma > 10 years
2 Enterprise architect Banking 9 years
3 Enterprise architect Banking > 10 years
4 Enterprise architect Banking > 10 years
5 Enterprise architecture consultant Automotive > 10 years
6 Enterprise architect Insurance 7 years
7 Enterprise architect Insurance > 10 years
8 Enterprise architect Automotive 6 years
9 Enterprise architect Banking > 10 years
10 Enterprise architect Banking > 10 years
11 Enterprise architect Banking > 10 years
12 Enterprise architecture consultant Consulting > 10 years

Table 5.17.: Overview about interviewed experts from industry for disparity metric evaluation

After a detailed presentation of the metric, its calculation rules as well as the exemplary re-
sults presented previously, four different questions have been used to assess the usability of the
disparity metric for practitioners:

1. Do you confirm that in general an increase in diversity is related to an increase in the
number of available capabilities?

2. Do you confirm that your budget for IT operations is limited or that currently IT costs
should be reduced?

127

5. Measuring structural complexity and diversity of application landscapes

3. Are you currently using a similar approach to analyze which capabilities would get lost in
case of standardization?

4. Would a disparity assessment provide you information relevant for decision making?

Regarding the first question, every single interviewee answered with yes. This indicates the
general relevance of the disparity metric. Similarly, the second question has also been answered
with yes by every interviewee. However, Interviewee 9 mentioned that the company he is working
for just started to measure costs and therefore the numbers might increase in the long-run.
Likewise, Interviewee 5 remarked that budget constrains only exist for IT operations. The
novelty of the evaluated approach is confirmed by the fact that all interviewees stated that
they do not use or are aware of any similar approach. Only variety is currently assessed by
Interviewees 1, 2, 3, 4, 10 and 11 and balance is assessed only in the company Interviewee 4 is
working for.

Regarding question four, answers are more diverse. In total, eight out of twelve interviewees
agreed that the presented approach would be beneficial for them. For example, Interviewee 3
said that it is

“exactly what I need because we have to introduce a new NoSQL database to sup-
port new business demands but all metrics assessing application landscape diversity
decrease. With disparity I would have an argument why it is no problem that other
metrics decrease.”

Likewise, Interviewee 5 explained his answer with the following statement:

“Considering and assessing disparity would fuel discussions about IT value in the
company I am working for. Such discussions currently do not take place, only costs
are discussed.”

However, Interviewees 7, 8, 10 and 11, doubted that it is possible to define the required criteria
for assessing disparity. For example, Interviewee 11 noted that

“it might be to hard to find consensus among all stakeholders regarding the distance
function. Without consensus criteria might be considered arbitrary and metric results
would lack acceptance.”

Similarly, Interviewee 12 added:

“Disparity measurement according to the presented approach could provide an in-
teresting perspective to enterprise architects if used as an internal tool. Achieving
group-wide consensus might be too time-consuming.”

Accordingly, it can be concluded that the disparity measurement based on the approach of
Weitzman (1992) is not only novel in the context of EAM but is also expected to provide rele-
vant information to support diversity management decisions in many cases. However, defining
relevant characteristics is assumed to be time-consuming and consensus among all stakeholders
might be difficult to achieve.

128

5. Measuring structural complexity and diversity of application landscapes

5.5. Integrated software support for diversity metric calculations

To enable enterprise architects to assess their application landscape’s diversity based on the pre-
viously introduced indicators a software supporting required calculations is desirable. Therefore,
such software support is described in this chapter which has been developed according to the
design science paradigm.

To develop software support enabling enterprise architects to use the previously described com-
plexity and diversity indicators an objective-centered entry point to the design science research
method proposed by Peffers et al. (2007) is applied (see Figure 5.15). Therefore, the first step is
to define the specific research problem and justify the value of the solution (see Chapter 5.5.1).
The second step is to infer the objectives of a solution, i.e. requirements, from the problem
definition and knowledge of what is possible and feasible (see Chapter 5.5.2). The third step is
to create the artifact which in this case is, according to Hevner et al. (2004), an instantiation (see
Chapter 5.5.3). The fourth step is to demonstrate the use of the developed software artifact to
solve one or more instances of the problem (see Chapter 5.5.4). The fifth step is to observe and
measure how well the artifact supports a solution to the problem (see Chapter 5.5.5). According
to Peffers et al. (2007), this activity involves comparing the objectives of a solution to actual
observed results from use of the artifact in the demonstration. The final step is to “communi-
cate the problem and its importance, the artifact, its utility and novelty, the rigor of its design,
and its effectiveness to researchers and other relevant audiences such as practicing professionals,
when appropriate” (Peffers et al., 2007) which is achieved by this thesis.

Communication

Presentation

within a focus

group

Evaluation

Requirements

satisfaction

based on real

data

Demonstration

Metrics

presented in

Chapter 5

Design &

Development

Metric

implementation

with Tricia,

TxL and R

Define

Objectives of a

Solution

Requirements

from literature

and case

studies

Identify

Problem &

Motivate

Automated

calculation of

diversity

metrics

Problem-

Centered

Initiation

Objective-

Centered

Solution

Design and

Development

centered

initiation

Client/

Context

Initiated

Figure 5.15.: The research approach to develop an integrated software solution for diversity
metric calculations

5.5.1. Problem identification and motivation

Most organizations implementing EAM functions do not assess their application landscape’s
diversity, even if they are actively pursuing a decrease of diversity through standardization ac-
tivities. Thus, many organizations invest in application landscape standardization programs
without being able to evaluate whether their programs/measures lead to a decrease of diver-

129

5. Measuring structural complexity and diversity of application landscapes

sity. Without a formal diversity measure calculation they are not able to identify differences in
standardization success among different architectural layers or business domains. The diversity
metrics introduced in Chapter 5.4 provide such formal approach but rely on software performing
the required calculations. Because some of these metrics have been developed only recently
predefined implementations do not exist. Furthermore, the required capabilities necessary to
define these metrics go beyond standard arithmetic or even SQL functions. A recent analysis of
13 EAM tools revealed that current tool support regarding the use of a Domain Specific Lan-
guage (DSL) which might be helpful is also scarce (Hauder et al., 2013a). To use and visualize
the results of metric calculations they need to be integrated with an EAM tool. The development
and subsequent dissemination of a software supporting the calculation of diversity metrics that
can be applied to arbitrary EA descriptions would enable researchers to assess the impact of
different standardization methods across different companies. Further, such tool support would
provide the means enabling practitioners to perform continued monitoring of their application
landscape’s diversity.

5.5.2. Objectives of the solution

The objective of the software solution to be developed is to allow enterprise architects to calculate
diversity metrics based on an organization-specific EA model. The metrics to be supported
include at least the metrics introduced in Chapter 5.4: the number of types, the balance of types
(based on entropy and skewness formulas) and the disparity of types (based on the Weitzman
metric). Furthermore, the solution needs to fulfill the following requirements:

R1 Generic metric implementation. The solution needs to implement metrics in a generic fash-
ion which allows their application on arbitrary EA model elements because application land-
scape diversity is determined by the diversity of different EA elements (see Chapter 5.2).

R2 Adequate performance. Modeling application landscapes consisting of approx. 5,000 business
applications and more than 20,000 information flows between them (as observed, e.g., for a
German car manufacturing company) results in a significant amount of data. This data needs
to be processed in order to calculate, e.g., the clustering metric introduced in Chapter 5.2 or
the disparity metric introduced in Chapter 5.4.4. Because the complexity of the algorithms
used to calculate these metrics is equal to 𝑂(𝑛2), information processing needs to be efficient
in order to provide timely results for enterprise architects.

R3 Implementation reuse. For many algorithms efficient implementations already exist. There-
fore, the software to be developed should be able to exploit this fact rather then forcing the
user to reimplement standard algorithms (e.g. the transitive closure for the classification
metric introduced in Chapter 5.2) which might result in less efficient and error-prone metric
implementations.

R4 Type safety. Matthes et al. (2013) argue why EAM tools should support emerging EA meta-
models to avoid the so-called ivory tower syndrome. A software implementing diversity
metrics which are calculated based on an emerging model is required to ensure type safety
of metrics. When, for example, an attribute within the EA meta-model is renamed, all

130

5. Measuring structural complexity and diversity of application landscapes

metrics using the data referenced by this attribute need to be adjusted accordingly to ensure
continuous operability.

R5 Meta-information. Previous research on the documentation of metrics in the context of
EAM highlighted the necessity to document additional information for each metric. This
includes, e.g., a description, measurement frequency, interpretation, consumer and owner
role, and a target value (Matthes et al., 2012). Accordingly, the software to be developed
needs to be able to allow such documentation for each diversity metric.

R6 Change monitoring. Observing EA metrics over time has been identified as an important
requirement to provide actual decision support (Schneider et al., 2015c). Such time-series
analysis requires a stable definition of it’s corresponding metric. Therefore, any software
supporting diversity design decisions has to monitor changes to metric definitions and provide
adequate transparency.

R7 Extensibility. Ad-hoc information demands have been identified as a major challenge for
enterprise architects (Hauder et al., 2013b). Therefore, the definition of complexity and
diversity metrics has to be possible without creating too much implementation costs, e.g.
for compilation, deployment or restart. Furthermore, a newly defined metric should be
calculated with the latest data available.

5.5.3. Design and development

Given the requirements listed above, the next step towards the desired software solution is the
development of a system design (Bruegge and Dutoit, 2010), i.e., a software architecture design.
It decomposes the whole system into reasonable subsystems and regards the fact that EAM tools
are already available on the market. During system design, the Separation of Concerns is a soft-
ware engineering principle one should strictly follow (Dijkstra, 1982, pp. 60-66). By analyzing
the requirements mentioned above, two major concerns can be distinguished. First, require-
ments R1 – R3 cover aspects related to the actual calculation of metrics. Second, requirements
R4 – R7 cover aspects related to data and metric management which are typically addressed by
EAM tools. Therefore, the proposed architecture design consists of two main components: one
module for calculation and one module for data and metric management.

Implementing the calculation component with respect to requirements R1 – R3 is not a trivial
task, particularly due to performance requirements. Therefore, already existing computing envi-
ronments like R1 or Matlab2 might be used to realize the calculation component. The concrete
tool choice depends on several aspects like availability of programming language knowledge, par-
ticular technical features or license costs. Therefore, the choice regarding the implementation
of the calculation component might be organization-specific which implies that the data and
metric management component needs to be loosely coupled with the calculation component in
that sense that it makes no assumptions about its internals.

Therefore, a common interface for exchanging data between those two components has to be
defined. The data exchange format needs to be compatible with a wide range of data sources as

1http://www.r-project.org/
2http://www.mathworks.com/products/matlab/

131

5. Measuring structural complexity and diversity of application landscapes

well as different computing environments. Especially in the case that two different calculation
engines or data sources should be used in parallel such common protocol is needed. The most
common data format for such purposes is the Comma-separated values (CSV)3 format. This
should be sufficient because there are no requirements known requiring a richer data exchange
format. The design decision to allow different realizations of the calculation component has
several implications on the metric management component. First, metric calculation rules need
to be developed in file formats readable by the chosen calculation component. Therefore, the
data and metric management component needs to be able to store such file formats.

Implementing the data and metric management component from scratch might also not be
expedient because different EA tools already exist on the market. Furthermore, most companies
might not be willing to change their EA tool just to perform metric calculations. Because the
scope of the desired software solution covers only metric management and calculations in the
context of EA modeling, it is assumed that such data management component is already in
place. This component can be a simple spreadsheet or database application storing all relevant
EA information in one case or a comprehensive EAM tool offering a wide range of features in
another case. Because the technical features and integration possibilities vary largely among
available EA tools (Matthes et al., 2008), two different scenarios need to be distinguished. First,
if a simple data management component (e.g. Microsoft Excel) is used to store EA information,
data selection needs to be done manually to provide the necessary CSV-Interface to be used
by the calculation component. In this scenario, the calculation component is also responsible
for visualizing and rendering calculation results. Second, if an advanced EA tool is used which
is able to delegate the calculation of metrics to the calculation component, this tool is also
responsible for processing the calculation results. In such case, the user gets a single integrated
interface to interact with EA data.

To best of our knowledge, no EA tool is able to simply integrate computation environments like
R or Matlab. However, to build a solution satisfying the requirements stated in Chapter 5.5.2,
an existing tool satisfying requirements R4 – R7 has to be extended. This extension covers
mainly a delegation mechanism for performant metric calculations. Therefore, the design of the
prototypical implementation of the desired software solution is based on two existing tools which
will be combined to fulfill the requirements listed in the previous chapter: Hybrid Wikis (Matthes
et al., 2011) and R. R is a language and environment for statistical computing and graphics.
Therefore, it will be used to address requirements R1 – R3. Hybrid Wikis are an Enterprise 2.0
tool which has been successfully used to support EAM initiatives (Matthes et al., 2013). Hybrid
Wikis in combination with the Model-based Expression Language (MxL) (see Reschenhofer
et al., 2014) are used to address requirements R4 – R7.

Accordingly, the architecture of the prototypical implementation consists of two main compo-
nents:

R environment The R environment is responsible for executing metric calculations. The defini-
tion of a metric needs to be passed as an R script. External libraries necessary to calculate
metrics need to be installed by the administrator manually or via respective instructions
within the particular script. The R language provides a rich set of predefined functions
allowing a fast implementation of metrics.

3http://tools.ietf.org/html/rfc4180

132

5. Measuring structural complexity and diversity of application landscapes

MxL Execution
(Evaluation of expressions)

lo
a
d
 &

 tra
n
s
fo

rm

exec

p
a
rs

e

runExternalScript()

R

temp.csv

Store
Computing

Environments
v
is

u
a
liz

a
tio

n

s
e
le

c
t d

a
ta

MxL query

(a) HybridWiki scenario

EAM Tool

lo
a
d
 &

 tra
n
s
fo

rm

exec

R

temp.csv

Store
Computing

Environments

s
e
le

c
t d

a
ta

SQL query

manual

automated

Tasks:

(b) Generic EA tool scenario

Figure 5.16.: Two scenarios for the structure and control flow of the intended software solution

TxL and Tricia The TxL module of the Hybrid Wiki implementation Tricia is responsible for
selecting and projecting the data required for metric calculation. In addition, it is used to
render and cache the metric results for the user. It is based on MxL (Reschenhofer et al.,
2014).

Figure 5.16 shows the intended flow of actions when a metric should be calculated for each
of the two possible scenarios. In both scenarios metric calculation rules are implemented in a
programming language interpretable for the chosen computation environment.

The HybridWiki scenario depicted in Figure 5.16a starts with the manual task of data selection.
In this scenario, the user selects the data he or she wants to use for metric calculation by defining
a MxL query. Here, the MxL language can also be used to define the data format expected by
any particular metric (for details refer to Chapter 5.5.4). Consequently, the type checker of
MxL is able to validate each data selection before actually executing it to prevent erroneous
data selection queries. Based on the data selection query, the MxL component is responsible
for loading the required data from the underlying database and store it temporally in CSV
format. In this prototypical implementation, the MxL component needs to be aware of the R
installation in order to call it. Therefore, a small extension to the existing MxL component has
been implemented: the runExternalScript method. The signature of this method is as follows:

133

5. Measuring structural complexity and diversity of application landscapes

1 runExternalScript(pathToComputationEnvironment:String,
2 scriptToExecute:String,
3 fileInput :Set<Set<Object>>,
4 textInput:Set<String>)
5

Listing 5.1: The runExternalScript method for executing metric calculations

Accordingly, the new method takes the local installation path to the chosen computation envi-
ronment, e.g. R, as first parameter. As a second parameter, the actual script, i.e. the calculation
rule of a metric, needs to be given. This allows the storage of metric calculation rules as Hy-
bridWiki elements. Not only can HybridWiki implementations enforce access rights on metric
definitions but also track changes. Furthermore, the experienced user can define metric cal-
culation rules directly within the HybridWiki environment without opening a shell or editor
specific a particular computation environment. The third parameter is a set of sets containing
objects/entities stored within HybridWikis, i.e. the data. Finally, the fourth parameter is a set
of additional strings which should be passed to the calculation environment as additional argu-
ments. For convenience, specialized MxL methods for available calculation environments can be
added during runtime. For the R environment used in this prototype the following method has
been defined:

1 runRScript(scriptToExecute:String, dataInput:Set<Set<Object>>,
2 textInput:Set<String>) {
3 runExternalScript("concreteRpath", scriptToExecute, dataInput, textInput);
4 }
5

Listing 5.2: A convenient MxL expression for executing R scripts

When such method needs to be evaluated, the MxL component will first load the objects spec-
ified by ordinary MxL operators within the third argument. Due to already available MxL
functionality, selection and projection operations can be performed on the underlying EA data.
After loading the specified data, the runExternalScript method transforms this data and stores
it temporally as a CSV file. Then, the script provided as second parameter will also be stored
temporally. Finally, it will execute a command within the operating system’s command prompt
based on the given path (first parameter), the actual script to be executed (path to the created
file) and additional parameters (path to the created CSV files and text parameters). To allow
also standalone operation of the calculation component it is configured to write the result of
the script execution back to the command prompt. All values appearing here will be parsed
automatically by the MxL component and mapped to a simple table. These values are than
accessible for the user and can be used for additional calculations or visualizations within MxL
expressions. A detailed example including screenshots is presented in the subsequent section.

Because not every company uses HybridWikis to store EA related information, this prototype
is build to support also the scenario in which an arbitrary EAM tool is used (see Figure 5.16b).
Although the main control flow is similar, in this scenario the degree of automation and re-
sult processing is different. First, data selection routines might probably not be stored within
the EAM tool. Therefore, it might be necessary to store Structured Query Language (SQL)
statements or similar queries somewhere else and execute them when necessary. The selected

134

5. Measuring structural complexity and diversity of application landscapes

data needs then be transformed to be stored as CSV file because this is the generic data format
understood by most calculation environments. After script execution the results might not be
sent back to the EAM tool because of missing interfaces. Therefore, the built-in functional-
ity of calculation environments has to be used. All common platforms provide numerical and
graphical result representations which allows also this stand-alone scenario. The next section
demonstrates how previously described diversity metrics can be implemented with R and their
integration in the HybridWiki implementation Tricia.

5.5.4. Prototype demonstration

To demonstrate the feasibility of diversity metric calculation using the previously introduced
software solution based on R and the HybridWiki implementation Tricia a concrete use case
will be described. The implementation of diversity metrics presented in Chapters 5.2 and 5.4
is performed by using the R environment and publicly available libraries. Together, all metric
implementations are bundled within an R library named diversity for easier exchange and in-
stallation. This library includes the following methods for which the library name is later on
used as prefix:

∙ variety (counts the number of concepts)

∙ balance.nominal (calculates Shannon entropy of concepts and individuals)

∙ balance.ordinal (calculates skewness for ordered concepts and individuals)

∙ disparity (calculates the Weitzman metric for concepts)

∙ disparity.minLoss (returns the set of elements minimizing disparity loss when removed)

∙ dendrogram (renders a dendrogram of concepts based on euclidean distance)

The first implemented metric covers the variety aspect of diversity. As depicted in Listing 5.3,
it counts the number of given types. It makes no assumptions about these types so it can be
used to count the number of different operating systems in use exactly like different database
management systems.

1 diversity . variety <− function(observations) {
2 length(unique(observations))
3 }
4

Listing 5.3: R implementation of the variety indicator

The next indicator which has been implemented is the balance indicator based on the Shannon
entropy (see Shannon, 1948). The implementation depicted in Listing 5.4 makes use of the
entropy package4 and is therefore only three lines long. This demonstrates the reuse of existing
implementations (see requirement R3).

4http://cran.r-project.org/web/packages/entropy/entropy.pdf

135

5. Measuring structural complexity and diversity of application landscapes

1 diversity .balance.nominal <− function(observations) {
2 entropy::entropy.empirical(observations)
3 }
4

Listing 5.4: R implementation of the nominal balance metric

To complement balance calculations based on nominal data, the ordinal-based metric has been
implemented according to Listing 5.5. Thereby, an inner function is defined first, to calcu-
late cummalitve absolute frequencies (𝐹𝑋(𝑥𝑖)). After summing up all cumulative absolute fre-
quencies, the intermediate result is divided by the total number of instances because relative
frequencies need to be used. Finally, the division by 𝑘 leads to the normalized result of this
indicator.

1 diversity .balance.skewness <− function(data, normalize=TRUE) {
2 # Inner function to calculate cumulative frequencies
3 cumulativeFrequency <− function(data, i) {
4 sum(data[1:i])
5 }
6

7 # Number of variable states minus 1
8 k <− length(data)−1
9

10 # Result variable
11 r <− 0
12

13 # Sum of all cumulative frequencies
14 for(i in 1:k) {
15 r <− r + cumulativeFrequency(data, i)
16 }
17

18 # Formula according to Ingo Klein
19 # Division by sum(data) is necessary because relative frequencies are required and
20 # above absolute frequencies have been used
21 r <− −k+(2*r/sum(data))
22

23 # Normalization if desired
24 if (normalize) {
25 r <− r/k
26 }
27

28 return(r)
29 }
30

Listing 5.5: R implementation of the ordinal balance indicator

The fourth metric implementation addresses the disparity aspect of diversity. It calculates the
metric proposed by Weitzman (1992) based on the input data. In addition, two parameters can
be set to overwrite their default value. First, it is assumed that the data has no type names
included in the first column. If so, the first column of the data table has to be removed because
these names will not be used during distance calculations. If the data is provided with such type
names, the optional parameter removeFirstColumn can be set to TRUE. By default, distances

136

5. Measuring structural complexity and diversity of application landscapes

will be calculated using the euclidean distance. If another distance function should be used, the
second optional parameter dist_method can be set to one of these values: maximum, manhattan,

canberra, binary or minkowski. For example, the binary method can be chosen, if disparity
characteristics are only modeled in a yes/no fashion. What will happen is that the Jaccard
distance (see Jaccard (1912)) will be calculated instead of the euclidean distance.

First, depending on the value of the removeFirstColumn parameter, the first column of the
provided data set will be removed (lines 3–5). Within the next step (line 8), the distance matrix
is calculated based on the value of the dist_method parameter. For further processing, the result
is transformed to the matrix data type. The next three lines (9–11) only initialize variables used
during the upcoming calculation. The originVector variable includes all columns of the distance
matrix except the first one. The reason is that the first column, i.e. the first element of the
input data, is directly assigned to the resultVector variable. Instead of the first column, the
first row could also be chosen due to the fact that a distance matrix is always symmetric. The
weitzman variable will hold the intermediate results for the metric and is returned at the end.
Next (line 14), within the distance matrix the values on the diagonal representing the distance
from each element to it self (which is usually 0) is set to infinity. This eases the search for
the minimum distance within the distance matrix for pair-wise elements (𝑥, 𝑦) for which 𝑥 ̸= 𝑦
holds.

In line 17, the actual metric calculation begins. For each type to be processed, i.e. each column
of the distance matrix, the type (column) including the smallest distance value to the result set
is identified. This is done by the min() function which uses only the resultVector part of the
distance function. In the first iteration, this would be only the first type we already selected. In
line 19, the index of that type is selected based on the identified distance minimum. Then, the
identified minimum distance value needs to be added to the intermediate result. Therefore, the
weitzman variable is incremented accordingly (line 21). The identified type will then be added
to the resultVector variable (line 22). Finally, all row and column values within the distance
matrix belonging to the types already considered, i.e. included in the resultVector variable,
will be set to infinity to neglect them during the next iteration because we are not interested
in distance values among already processed types. The last step of the disparity method is
to return the accumulated value of least distances among given types stored in the weitzman

variable.

The benefit of the metric proposed by Weitzman (1992) is that it can be used to identify those
types which minimize the lost disparity if removed. Therefore, an additional implementation is
provided named disparity.minLoss which is depicted in Listing 5.7. After initializing a vector
of length equal to the number of types included in the input data (line 4), a separate vector
is initialized to store the names of the given types (line 7) so that the plain data can be used
for further processing (line 10). Then, the disparity metric is calculated for all data subsets for
which exactly one type has been removed (lines 13 – 16). Thereby, it makes use of the previ-
ously introduced disparity function (see Listing 5.6) and stores results in the weitzmanResults
variable. Finally, the disparity.minLoss function returns the names of the types for which the
remaining disparity is maximized (line 21).

137

5. Measuring structural complexity and diversity of application landscapes

1 diversity . disparity <− function(data, removeFirstColumn=FALSE, dist_method="euclidean") {
2 # Delete the first column of input data if it contains names
3 if (removeFirstColumn) {
4 data <− data[,2:ncol(data)]
5 }
6

7 # Load data and initialize variables
8 distance_matrix <− as.matrix(dist(data, method=dist_method, diag=T))
9 originVector <− c(2:ncol(distance_matrix))

10 resultVector <− c(1)
11 weitzman <− 0
12

13 # Normalize table
14 for (i in 1:ncol(distance_matrix)) { distance_matrix[i,i] <− Inf }
15

16 # Calculate metric
17 for (i in 2:ncol(distance_matrix)) {
18 minVal <− min(distance_matrix[,resultVector])
19 minInd <− which(distance_matrix[,resultVector] == minVal)%%nrow(distance_matrix)
20 if (minInd[1] == 0) minInd <− nrow(distance_matrix) else minInd[1]
21 weitzman <− weitzman + minVal
22 resultVector <− c(resultVector, minInd[1])
23 distance_matrix[minInd[1],resultVector] <− Inf
24 distance_matrix[resultVector,minInd[1]] <− Inf
25 }
26

27 #Return result
28 weitzman
29 }
30

Listing 5.6: R implementation of the disparity metric

1 diversity . disparity .minLoss <− function(daten) {
2 # Initialize vector to store Weitzman results
3 weitzmanResults <− rep(c(NA),each=nrow(daten))
4

5 # Store type names in separate vector
6 names(weitzmanResults) <− daten[,1]
7

8 # Store data without type names in separate matrix
9 data <− daten[,2:ncol(daten)]

10

11 # Calculate Weitzman diversity for all combinations where exactly one type is omitted
12 for(i in 0:(nrow(data)−2)) {
13 subdaten <− data[c(0:i,(i+2):nrow(data)),]
14 weitzmanResults[i+1] <− diversity.disparity(subdaten)
15 }
16

17 # Calculate Weitzman diversity also for the last combination where the last type is omitted
18 weitzmanResults[nrow(data)] <− diversity.disparity(data[c(0:i ,(i+2):nrow(data)),])
19

20 # Print names of types which can be removed in order to maximize the remaining Weitzman diversity
21 names(which(weitzmanResults==max(weitzmanResults)))
22 }
23

Listing 5.7: R implementation for decision support regarding type removal
138

5. Measuring structural complexity and diversity of application landscapes

To support also the stand-alone scenario (see Chapter 5.5.3) the diversity library also includes a
function to plot a dendrogram (see Listing 5.8). It is a tree-like diagram frequently used to illus-
trate the arrangement of clusters, e.g. based on the distance calculated by the disparity metric.
Therefore, it takes the input data as a first parameter and a boolean value removeFirstColumn
as second parameter indicating whether the first column of the provided data needs to be re-
moved because it includes the names of the types (lines 1 – 4). Similar to the disparity metric,
the distance matrix is calculated for the given input data using the euclidean method (line 6).
By using the hclust function, a hierarchical cluster analysis is performed using the calculated
distances. Initially, each object is assigned to its own cluster and then the algorithm proceeds
iteratively, at each stage joining the two most similar clusters, continuing until there is just a
single cluster5. By calling the plot function on the result of the hclust function the actual
image showing the dendrogram is created (line 8).

1 diversity .dendrogram <− function(data, removeFirstColumn=FALSE) {
2 if (removeFirstColumn) {
3 data <− data[,2:ncol(data)]
4 }
5

6 distance_matrix <− dist(data, method="euclidean", diag=T)
7 hierarchical _cluster_analysis <− hclust(distance_matrix)
8 plot(hierarchical _cluster_analysis, hang=−1, labels=daten[[1]])
9 }

10

Listing 5.8: R implementation for rendering a dendrogram based on the disparity metric

5.5.5. Technical evaluation and conclusion

In this section, it is evaluated in how far the requirements presented in Chapter 5.5.2 are reached
by the software solution presented in the previous section. Therefore, concrete instances of the
diversity metrics introduced before will be implemented and applied to application landscape
data which has already been used in Chapter 5.3.

Preparation

To set up the prototypical implementation, it is necessary to set up an instance of the HybridWiki
implementation Tricia including a relational database management system on a server. Then,
the R environment needs to be installed on the same machine. Because the diversity library
relies on the entropy library, this library needs to be installed as well. Finally, Tricia needs to
be told the installation path of R in order to be able to start it. The easiest way of doing this
is to create a MxL function named runRscript for this purpose during runtime. As depicted
in Listing 5.9, it uses the built in function runExternalScript (see Listing 5.1) and statically
passes the R installation path as first parameter. The runRscript function might, for example,

5https://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html

139

5. Measuring structural complexity and diversity of application landscapes

look like Listing 5.9. The second, third and fourth parameter of the runExternalScript method
are simply passed as parameters of the runRscript function.

1 (script :String, data:Sequence<Sequence<Object>>, params:Sequence<String>) =>
2 runExternalScript("C:\Programs\R\R−3.1.2\bin\x64\Rscript.exe", script, data, params)
3

Listing 5.9: MxL function for conveniently executing R scripts

Variety metrics

To calculate the variety of operating systems as well as database management systems two
different metrics should be defined by adhering to the following structured approach:

1. Store R script for variety calculations in Tricia as HybridWiki instance of type Script and
add an attribute named name with the value variety.

2. Develop MxL functions for the R script defining its interfaces

3. Create a new wiki page and instantiate these functions by selecting concrete data

While the first step is straightforward and needs no further explanations, the second step is
important to ensure type safety, for example, for operating systems and database management
systems. Listing 5.10 shows such implementation to be used for calculations using operating
systems data. Within varietyOfOperatingSystems definition, the type of the two parameters
can be further constrained. To be type safe with operating systems, the type of the first pa-
rameter named data needs to be set to Sequence<’Operating system’> because Sequence is
the data type for sets in MxL and Operating system is the HybridWiki type used to identify
operating systems. By putting this parameter into square brackets when calling the runRScript
function it is guaranteed that only one data set is used as required by the variety function (see
Listing 5.9) although the runRScript function generally allows multiple data sets. The second
parameter can be omitted because the variety metric does not need any further parameters, i.e.
an empty sequence can be used.

1 (data:Sequence<’Operating system’>) =>
2 runRScript(find(’Script ’) . single (name="variety"), [data], [])
3

Listing 5.10: MxL function to describe the interface of variety calculations for operating systems

Up to now, the calculation rule for the variety metric has been uploaded to the HybridWiki im-
plementation Tricia and respective MxL function definitions, i.e. interfaces, have been developed
to ensure type safety when calling this metric. Therefore, the only step missing is the concrete
instantiation of this metric. This is usually done on a new wiki page on which concrete metric
results should be displayed. Listing 5.11 shows such implementation for the variety of operating
systems. In addition, Listing 5.12 shows another implementation in which variety is calculated
only for Operating systems used by Business applications belonging to the Card management

140

5. Measuring structural complexity and diversity of application landscapes

domain. After selecting the desired data, it needs to be transformed to comply with the CSV
format by calling the asCSV() function.

1 let data = find(’Operating system’).asCSV() in
2 varietyOperatingSystems(data)
3

Listing 5.11: MxL function for calculating the variety of operating systems

As one can see easily, it is possible to perform arbitrary data selections by using the
MxL language inside Tricia and calculate the variety metric accordingly. Because the
varietyOperatingSystems metric has been defined as an interface to the generic variety metric,
type safety can be guaranteed.

1 let domain = find(’Domain’).where(name="Card management") in
2 let applications = domains.selectMany(get ’Business Application’ whereis belongsTo) in
3 let data = applications.selectMany(get ’Operating system’ whereis uses).asCSV() in
4 varietyOperatingSystems(data)
5

Listing 5.12: MxL function for calculating the variety of operating systems (advanced)

Balance metrics

Similar to the variety metric described in the previous section, the R implementation of the
balance metric (see Listing 5.4) is stored in Tricia as HybridWiki instance of type Script. Its
name attribute is set to balance to enable an easy access to the metric implementation via
MxL. Then, for the convenient usage, an MxL function acting as an interface to the metric
implementation is defined. An exemplary MxL function for calculating balance of Operating
systems named balanceOperatingSystems is shown in Listing 5.13. It takes only a sequence of
Operating systems as a parameter. Thereby, it is guaranteed, that exactly one data set is sent
to the runRScript function although in general it allows multiple data set.

1 (data:Sequence<’Operating system’>) =>
2 runRScript(find(’Script ’) . single (name="balance"), [data], [])
3

Listing 5.13: MxL function to describe the interface of balance calculations for operating systems

Again, the third parameter of the runRScript() function can be omitted because the balance
implementation does not require any additional parameters. To actually use this metric, the
third step is to create a new Wiki page on which metric results should be shown. If, for example,
the balance of Operating systems within a specific domain has to be calculated, the respective
MxL call might look like Listing 5.14. Similarly, the ordinal balance metric could be implemented
and used.

141

5. Measuring structural complexity and diversity of application landscapes

1 let domain = find(’Domain’).where(name="Card management") in
2 let applications = domains.selectMany(get ’Business Application’ whereis belongsTo) in
3 let data = applications.selectMany(get ’Operating system’ whereis uses).asCSV() in
4 balanceOperatingSystems(data)
5

Listing 5.14: MxL function for calculating the balance of operating systems

Disparity metric

The first step in implementing the disparity metric in Tricia is similar to the two metrics de-
scribed in the previous sections: store the R implementation as a new HybridWiki instance of
type Script and give it a unique name attribute value, e.g. disparity. In contrast to the variety
and balance functions, the disparity function is able to parse additional parameters. According
to its definition (see Listing 5.6), the first additional parameter is a flag indicating if the provided
data still contains names which need to be removed. The second additional parameter indicates
the type of distance function to be used. Therefore, the MxL function needs to account for
this fact. Because MxL is used to select appropriate data, the first additional parameter is not
needed here. However, the second parameter is needed to allow the user to specify the kind
of distance function to be used. Therefore, the disparityOperatingSystems function not only
takes a typed parameter for data selection but also takes a parameter for distance method speci-
fication. The ? behind the type specification of this parameter indicates that this is an optional
parameter. Therefore, in line 2 the function needs to check whether it has been supplied or not.
If a value has been supplied, this value is passed to the runRScript function. Otherwise, an
empty sequence is passed.

1 (data:Sequence<’Operating system’>, method:String?) =>
2 let param = if method <> null then [‘‘method=’’ + method)] else [] in
3 runRScript(find(’Script ’) . single (name="disparity"), [data], param)
4

Listing 5.15: MxL function describing the interface of disparity calculations for operating systems

In comparison to the other two metrics, the disparity metric expects a more comprehensive
data format. To calculate pair-wise distances between elements, the desired characteristics and
respective manifestations for each instance have to be selected. Listing 5.16 shows a possible
instantiation for Operating systems. The selection of the desired operating system characteristics
occurs within the asCSV() function. Here, five different attributes are selected to calculate pair-
wise distances.

1 let domain = find(’Domain’).where(name="Card management") in
2 let applications = domains.selectMany(get ’Business Application’ whereis belongsTo) in
3 let data = applications.selectMany(get ’Operating system’ whereis uses).asCSV([Server, Client,

Embedded, Real−time, GUI]) in
4 disparityOperatingSystems(data)
5

Listing 5.16: MxL function for calculating the disparity of operating systems

142

5. Measuring structural complexity and diversity of application landscapes

Requirements satisfaction

In the previous sections, it has been evaluated in how far the identified metrics regarding the
three aspects of diversity can be implemented within the HybridWiki implementation Tricia.
By using Tricia’s expression language MxL to select required data stored within Tricia and by
calling the runExternalScript() function which delegates calculations to an R environment all
metrics can be realized in Tricia.

Regarding the requirement for generic metric implementation (R1), it can be concluded that
the designed solution fulfills this requirement. Metric implementations are done by using the
R language without referring to any types or data within a concrete EA model. Then, MxL is
used to define desired interfaces for concrete metrics. Because data selection is also done with
MxL arbitrary EA models are supported.

Regarding the requirement for adequate performance of metric calculations (R2), we can state
that for a typical size of input data metric calculations are performed timely. Variety and balance
metrics are in 𝑂(𝑛) and the number of considered EA elements typically does not exceed 10,000.
Therefore, a common desktop computer can perform these calculations in less than 1 second.
Although the disparity metric is in 𝑂(𝑛2) input data is usually not very large. Usually, a
company might not use more than 100 database systems or operating systems. In the four cases
described in Chapter 5.3.2, not more than ten different types of operating systems or database
systems have been observed. In addition, many R functions and libraries are implemented in
low-level programming languages like C and Fortran which minimizes computation overhead.

Regarding the requirement for implementation reuse (R3), we can state that by using an existing
open source statistical computing environment like R this requirement is fulfilled. The reuse of
existing implementation has been exploited, for example, during development of the balance
metric (see Listing 5.4). There, the existing library entropy has been used without any further
implementation efforts.

Regarding the requirement for type safety (R4), we can state that this requirement is fulfilled
by the proposed software solution. Type safety is guaranteed by using MxL which provides this
feature out of the box. When implementing a new metric, the user just has to define a new MxL
custom function which uses the desired types and maps them to the untyped R implementation.
In addition, if the underlying EA meta-model changes, types used within metric definitions are
changed automatically.

Regarding the requirement for additional information (R5), we can state that the proposed
software solution fulfills it. The requirement is addressed in so far that each metric within the
HybridWiki implementation Tricia can be enriched with additional structured and unstructured
information. As described before, the R code of each metric is stored as a HybridWiki instance.
Therefore, it can be documented at runtime like any other HybridWiki instance.

Regarding the requirement for change monitoring (R6), we can state that it is fulfilled by the
same means like requirement R5. Tricia provides a change history for every HybridWiki instance
and therefore also for metrics including the generic implementation as well as each concrete
instantiation. Therefore, each change made to metric is recognized and previous versions can be
restored.

143

5. Measuring structural complexity and diversity of application landscapes

Regarding the requirement for extensibility (R7), we can state that HybridWiki fulfills it by
nature. As demonstrated above, each metric has been added to the system during runtime.
Therefore, it is possible to implement new metrics also at runtime without a need for a server
shutdown or re-deployment. Ad-hoc information demands can therefore be satisfied.

144

CHAPTER 6

Using system dynamics to support application landscape design decisions

“Most important, and most difficult to learn,

systems thinking requires understanding that

all models are wrong”.

John D. Sterman, Jay Wright Forrester Prize

Lecture, 2002

In previous chapters, suitable indicators able to quantify diversity of application landscapes
have been presented. They assist enterprise architects in measuring diversity to analyze the
current application landscape, define target values for future states of the application landscape
and monitor the impact of design decisions over time. However, these indicators fall short in
explaining why diversity increases or decreases over time because only structural aspects are
regarded and it is assumed that a single designer or architect is in place who is able to steer
diversity. As already outlined in Chapter 2.1.2, enterprises should be regarded as complex sys-
tems. Therefore, they are not only subject to structural complexity which can be assessed by
previously presented indicators but also inhabit dynamic complexity. This includes, for ex-
ample, phenomena like emergence (Morel and Ramanujam, 1999; Goldstein, 1999), non-linear
behavior (Poincaré, 2003) and path-dependence (David, 1985) and they are often made up by
autonomous agents without any central control (Mitchell, 2011). Therefore, beside the ability to
quantify diversity, understanding causal dependencies within an organization influencing diver-
sity becomes vital for enterprise architects. Knowledge about how actors, such as business unit
managers, enterprise architects and software developers, influence each other’s decisions leads to
improved alignment and coordination of actors’ decisions. Hence, when considering principles
guiding the architectural evolution, we need to account for both explicit principles defined by
enterprise architects (Richardson et al., 1990; Greefhorst and Proper, 2011) as well as implicit
principles emerging within the complex system. To cover implicit principles and model causal

145

6. Using system dynamics to support application landscape design decisions

relationships influencing an EA, several authors already proposed to extend EA descriptions
with System Dynamics (SD) models (Kaisler et al., 2005; Rashid et al., 2009; Golnam et al.,
2010) and social aspects (Molnar and Korhonen, 2014).

To get one step further towards a method enabling enterprise architects to develop SD mod-
els (see Forrester, 1961; Sterman, 2000), this chapter outlines based on Schneider et al. (2015a)
the state-of-the-art in SD modeling within the context of EAM by performing a structured liter-
ature review to motivate the approach and describe the problem. Based on existing work on SD
modeling, design guidelines for a method enabling enterprise architects to develop SD models are
developed. To demonstrate the guidelines’ applicability a concrete Causal Loop Diagram (CLD)
describing diversity management activities occurring within companies based on input gathered
from literature is derived. This prototypical CLD is then evaluated by a series of expert inter-
views. Based on the analyzed interview results additional design guidelines accounting for EAM
specifics are derived.

6.1. System dynamics foundations

“Without modeling, we might think we are learning to think holistically when we are actually
learning to jump to conclusions” (Senge, 1990, p. 183). Instead of relying on gut feeling, a well-
crafted model can close the feedback loop by which humans learn by showing the implications
of their assumptions (see Figure 6.1). To model also dynamic behavior of systems, System
Dynamics (SD) can serve as powerful tool by integrating both mathematical and methodological
aspects. Initially proposed by Forrester (1961), SD is an approach to understanding the behavior
of complex systems over time. Thereby, two different types of models are commonly used:
Causal Loop Diagrams (CLDs) and Stock-and-Flow Diagrams (SFDs). Thereby, CLDs provide
a macroscopic view on causalities within a system whereby SFDs provide a more detailed and
quantitative view on a system allowing also for simulations (Agyapong-Kodua et al., 2012).

6.1.1. Learning in and about complex dynamic systems

The discipline of systems thinking tries to understand a system by analyzing dependencies and
interactions between its elements. Within that discipline, different schools of system thinking
exist (Richardson, 1999; Lane, 1993). For example, some authors argue for qualitative meth-
ods (e.g. Checkland, 1985) while others emphasize formal modeling (e.g. Forrester, 1961). “The
challenge facing all is how to move from generalizations about accelerating learning and systems
thinking to tools and processes that help us understand complexity, design better operating poli-
cies, and guide organization- and society-wide learning” (Sterman, 1994). Thereby, all learning
depends on feedback (Forrester, 1961). As visualized in Figure 6.1, decisions influencing the
real world are based on feedback from the real world. This basic feedback loop can also be
observed in management literature. For example, the Plan-Do-Check-Act cycle (Shewhart and
Deming, 1939) describes exactly this kind of feedback loop. Thereby, “decision makers compare
quantitative and qualitative information about the state of the real world to various goals, per-
ceive discrepancies between desired and actual states, and take actions that (they believe will)
cause the real world to move toward the desired state” (Sterman, 1994). However, decisions are

146

6. Using system dynamics to support application landscape design decisions

also the result of applying decision rules or policies to information (Forrester, 1961) which are
themselves conditioned by institutional structures, organizational strategies and cultural norms.
These in turn are governed by the mental models of the real world hold by the decision maker.
Argyris (1985) calls this kind of learning single-loop learning because the mental models of the
decision maker stay unchanged. Therefore, it is a process whereby the decision maker learns to
reach his or her current goals in the context of his or her existing mental models. Based on the
works of Axelrod (2015); Bower and Morrow (1990); Cheng and Holyoak (1985); Schank and
Abelson (2013), mental models can be defined as follows.

Definition: Mental model
Mental models are collections of routines, scripts, or schemata for selecting possible
actions, cognitive maps of a domain, typologies for categorizing experience, pointers
from instances of a phenomenon to analogous instances, logical structures for the
interpretation of language, or attributions about individuals we encounter in daily life.

(Sterman, 1994)

In contrast to single loop learning, double loop learning occurs if information feedback is used
to change mental models (Argyris, 1985) which is illustrated by Sterman (2000) in Figure 6.2.
Hereby, the same information, filtered and processed through different decision rules might yield
a different decision. Systems thinking targets at enabling this kind of learning for decision
makers.

Figure 6.1.: Single loop learning according to
Sterman (2000)

Figure 6.2.: Double loop learning according to
Sterman (2000)

Forrester (1961) identified several barriers to learning via single loop learning. For example,
feedback loops may reflect both anticipated and unanticipated side effects of the decision maker’s
actions, there may be positive as well as negative feedback loops and these loops might contain
nonlinearities. In addition, time delays between taking a decision or action and observing the
effects are common and problematic, information about the system under investigation is missing
and controlled experiments are not feasible. One means to overcome such barriers to learning

147

6. Using system dynamics to support application landscape design decisions

is using virtual worlds for experimentation (Sterman, 1994). Therefore, at least two different
kinds of modeling approaches exist which are briefly introduced in the following chapters.

6.1.2. Causal Loop Diagrams

As Sterman (2000, p. 137) points out, “Causal Loop Diagrams (CLDs) are an important tool for
representing the feedback structure of systems. Long used in academic work, and increasingly
common in business, CLDs are excellent for quickly capturing your hypotheses about the causes
of dynamics, eliciting and capturing the mental models of individuals or teams and communi-
cating the important feedbacks you believe are responsible for a problem”. CLDs consist of two
main types of elements: variables and arrows denoting causal influences among these variables.
Usually, important feedback loops are also identified in diagrams. Figure 6.3 shows a simple
example for a CLD. Therein, the variable Birth Rate is determined by both the Population and
the Fractional Birth Rate. Each causal link is assigned a polarity, either positive (+) or negative
(–) to indicate how the dependent variable changes when the independent variable changes. A
plus sign indicats a positive relation between two variables implying that they change in the same
direction. A minus sign indicates a negative relation implying that they change in the opposite
direction. Consequently, a closed loop of such relations has either a balancing or a reinforcing
effect on involved system variables. The type of such loop is typically indicated by respective
symbols in their center. In addition, if cause and effect are subject to a significant delay in time,
two parallel lines perpendicular to the respective causal link can be used to indicate such time
delay.

Figure 6.3.: Causal loop diagram notation according to Sterman (2000)

In the given example, a reinforcing cycle exists between Birth Rate and Population. If the
population increases, the number of births will also increase. If the number of births increases,
the population will increase. However, one cannot determine if, for example, the birth rate
will increase at a given point in time, because it depends on more than one cause, i.e. both
the fractional birth rate and the size of the population. A huge collection of CLDs providing
additional examples from different disciplines has been developed by Bossel (2004b) and should
be consulted by the interested reader.

Unfortunately, CLDs do not distinguish between stocks accumulating resources over time and
flows altering such stocks. In the given example, Population is a stock. In contrast, the Birth
Rate is a flow which can only add new individuals to the population. It can never decrease

148

6. Using system dynamics to support application landscape design decisions

it. Therefore, a second type of SD diagram can be used which is introduced in the following
chapter: Stock-and-Flow Diagrams.

6.1.3. Stock-and-Flow Diagrams

According to Sterman (2000), CLDs are especially useful to capture mental models and to
communicate the results of a completed modeling effort. However, to overcome their limitation
in capturing the stock and flow structure of a system, Stock-and-Flow Diagrams (SFDs) can
be used to complement CLDs. Thereby, stocks give systems inertia and provide them with
memory. They also create delays by accumulating the difference between inflows to a process
and its outflows. Within SFDs, different modeling elements can be used. For example, stocks
are represented by rectangles and flows by pipes pointing into or out of a stock. Valves are used
to control flows. To model sources or sinks of flows outside the boundary of the model, the
cloud symbol is used. According to Mass (1977), stocks are critical in generating the dynamics
of systems. For example, they characterize the state of the system and provide the basis for
actions and decouple rates of flow and create disequilibrium dynamics. An exemplary SFDs is
shown in Figure 6.4.

Figure 6.4.: Stock-and-Flow Diagram notation according to Sterman (2000)

In the given example, the stock of receivables is increased by billings and decreased by payments
received and by defaults. The flow of billings is conserved in the sense that an invoice remains
on the stock until it explicitly flows out via one of two flows. Over time, the rate by which
new billings are created or payments are received might change. Therefore, the stock Accounts
Receivable might also increase or decrease accordingly. However, a decrease of the rate of billings
does not necessarily decrease the stock of accounts receivable because a lower (positive) rate still
adds more resources to the stock. In addition, the growth of a stock does not only depend on the
rate of inflow but also on the ratio of in- and outflows. Because a stock is fully determined by its
in- and outflows over time, stock values can be computed by differential equations. Therefore,
SFDs can be used for system simulation, thus enabling a double loop learning by providing a
virtual world.

To exploit the benefits of both CLDs and SFDs, both types of SD diagrams can be combined.
By this way, for example, the variables causing changes to the rates modeled in a SFDs can be
modeled by CLDs elements. Together, they form the basis for all kinds of SD models.

149

6. Using system dynamics to support application landscape design decisions

6.2. System dynamics in enterprise architecture management

System Dynamics (SD) models have already been used successfully in several disciplines in-
cluding, for example, project management (Sterman, 2000), economics (Bossel, 2004b) and so-
ciology (Bossel, 2004b). Thus, the goal of this chapter is to provide an overview about SD
applications within the Enterprise Architecture Management (EAM) field. Therefore, the re-
sults of a literature review as presented by Schneider et al. (2015a) are outlined.

6.2.1. Literature review approach

According to the guidelines for reviewing literature presented by Webster and Watson (2002),
the literature review process started by systematically searching relevant databases. In this
case, IS journals (AIS senior scholars basket), academic databases (ScienceDirect, IEEE Xplore,
ACM DL, GoogleScholar, SpringerLink) and IS conferences (AMCIS, ICIS, ECIS) have been
considered. The search was based on the combination of the terms “Enterprise Architecture” or
“Enterprise Architecting” and “System Dynamics”, “Causal Loop” or “Causal Model” and was
limited to title, keywords and abstract. The search revealed 23 initial results. After removing
both irrelevant articles and duplicates, seven articles remained. To avoid omitting relevant
references, a forward and backward search has been performed subsequently. According to the
framework for classifying literature reviews provided by Cooper (1988), this literature review
focuses on research outcomes, tries to provide integration, uses a neutral representation and
covers only representative articles. Therefore, representative articles for each identified approach
are presented in the following section.

6.2.2. Literature review results

To set up an architecture for virtual enterprises, Assimakopoulos and Riggas (2006) present a
methodology based on SD. This methodology consists of four steps: identification of business
process and interactions, creation of model’s structure, testing model using SD software and
model evaluation. This methodology is applied to a real world use case in which several SFDs
have been developed. According to the authors, “provided a framework for the rapid and efficient
integration of the business processes of the participating companies in the virtual enterprise”.

Golnam et al. (2010) present an approach to support choice making by integrating SD and their
Systemic Enterprise Architecture Methodology. The proposed approach consists of six major
steps. In the first step, a conceptualization of the as-is architecture of the enterprise is developed
complemented by enterprise models and SFDs. Based on a given scenario, these models are
used for simulation. If the simulation yields a problem to be addressed, potential solutions are
generated and one of them is selected. Accordingly, a to-be architecture for the enterprise is
developed, the SFDs are modified and simulation is performed again. If the potential solution
solves the identified problem, the process comes to an end. The approach is demonstrated by a
fictitious example which is inspired by a real world case. Thereby, the authors present concrete
SFDs modeling the cash in- and outflows of the company and demonstrate the approach’s
applicability.

150

6. Using system dynamics to support application landscape design decisions

Stressing the importance “to explicate and analyze the whys” of an enterprise architecture Sunkle
et al. (2013) propose an approach integrating the use of the i* language1 and SD models, in
particular SFDs. Instead of transforming EA models to SD models as proposed by Golnam et al.
(2010), Sunkle et al. (2013) propose to begin with EA models, get i* models via meta-model
mapping and then construct SD models over i* models with the help of provided guidelines.
Based on a case study the authors demonstrate the methods applicability. Thereby, a concrete
SFD is presented.

By applying and extending systems of systems engineering, Wojcik and Hoffman (2006) devel-
oped a framework for representing complex enterprise characteristics. The framework suggests
a hierarchy of models corresponding to different scales of scope and time for the enterprise
focusing on enterprises’ interactions with the external world. Such dynamics are modeled us-
ing a combined highly optimized tolerance and game theory approach allowing for quantitative
analyses.

Rashid et al. (2009) present a unified modeling-based method to help with the evaluation of
organization design and change decisions. This method consists of three phases: CIMOSA-based
enterprise modeling, CLD modeling and simulation modeling. The method has been evaluated
during a case study. After the identification of issues of concern via enterprise modeling, concrete
CLDs are created for two such issues in which dynamic behavior seems to be the cause.

Based on the distinction of Ossimitz (2000) between system thinking-1 (quantitative oriented
using concepts of stocks and flows) and system thinking-2 (qualitative oriented using mental
models and delay loops), one can conclude that current literature trying to integrate SD modeling
and EA modeling falls mostly in the first category. Approaches of the second category are
currently underrepresented. Nevertheless, current literature offers special purpose SFDs, some
CLDs and respective simulations (Schneider et al., 2015a). However, a consistent method of SD
model development in the context of EAM is still missing.

6.3. A causal loop diagram modeling application landscape

diversity

Given the general suitability of SD models to capture dynamic complexity (Sterman, 2000) and
successful applications of SD models to complement EA models (Rashid et al., 2009; Golnam
et al., 2010; Sunkle et al., 2013) the goal of this chapter is to develop such model to foster
understanding of dynamic behavior influencing diversity of application landscapes. As described
by Schneider et al. (2015a) dynamic hypotheses are derived from literature and transferred to
CLDs. The individual CLDs are then integrated into one consistent CLD describing various
different causal dependencies influencing application landscape diversity. To validate the model’s
utility, a series of expert interviews is performed. Based on the results, additional guidelines
could be derived.

1http://http://www.cs.toronto.edu/km/istar/

151

6. Using system dynamics to support application landscape design decisions

6.3.1. System dynamics modeling design guidelines

Although SD modeling has a long tradition in science (Forrester, 1961) and already proved to
be valuable in practice (Sterman, 2000), practitioners within the EAM discipline have not yet
adopted this technique. As outlined by Schneider et al. (2015a), one reason therefore might
be the absence of a concrete method for developing SD models within companies. Existing
methods, for example the methods described by Sterman (2000) and Luna-Reyes and Andersen
(2003), are very general in nature, do not account for specifics within companies and assume
the presence of experienced modelers and workshop facilitators. Designing a method consisting
of concrete activities, their sequence of execution, a role model, a meta-model and appropriate
techniques is a difficult task. In order to get one step further in achieving this goal, Schneider
et al. (2015a) derived five design guidelines for such method grounded in general problem solving
techniques, EAM context as well as EA artifact requirements.

Guideline 1: Distinguish a divergent and a convergent creation phase

Within the domain of complex problem solving, prominent approaches distinguish a divergent
phase from a convergent phase (Isaksen and Treffinger, 1985; Jonassen, 1997). Within the diver-
gent phase as many sensible solutions as possible should be identified without any biases. In the
subsequent convergent phase solution candidates are systematically analyzed and inappropriate
solutions are rejected. Therefore, it becomes vital that input data for SD modeling is collected
in a decentralized way. Conducting workshops might be inappropriate because the group might
then be subject to process-losses common in groups. These include, for example, production
blocking (Diehl and Stroebe, 1987), social loafing (Karau and Williams, 1993), social inhibi-
tion (Bond and Titus, 1983) and group polarization (Myers, 2009). Consequently, a method for
SD model generation in the context of EAM has to distinguish a divergent from a convergent
phase during data collection.

Guideline 2: Gather input from heterogeneous people

There is empirical evidence that the development process for solutions to difficult problems,
especially in ecology and psychology, becomes better the more people try to solve it due to their
different views implied by their diverse backgrounds (Surowiecki, 2005). Application landscape
design is about coordinating the architectural development across levels and departments in an
organization (Weiss et al., 2013); hence, a multitude of stakeholders is involved. To include
relevant dynamic behaviors accurately, SD models have to be developed based on the opinions
of as many diverse viewpoints as possible. While single individuals might not be able to describe
a certain behavior of the enterprise objectively and correctly, a group of people is more likely
to do so. A good example for the inappropriateness of homogeneous input for SD modeling
is described by Sterman (1994). Several people working in functions contributing to order
fulfillment have been interviewed about their company’s supply chain and all of them had mental
models completely overestimating the impact of order fulfillment. If more diverse people had
been asked, including customers, accountants and suppliers a more accurate view of the supply
chain would have been derived.

152

6. Using system dynamics to support application landscape design decisions

Guideline 3: Model for the purpose of learning

Because every model has a clear purpose, it cannot include all aspects present in real world (Sta-
chowiak, 1973). To ensure a feasible scope and allow for timely results (Sterman, 2000), this
holds true also for SD models. Consequently, a SD model cannot be complete (Sterman, 2002)
and therefore modelers have to identify and maintain a model boundary. Previous research
identified that for EA artifacts, accurate granularity and consistency are more important than
actuality and completeness (Farwick et al., 2011). Thus, SD models should focus on feedback
loops generally unaccounted for in decision makers’ mental models. In addition, if used as
communication tool with the intention of teaching, i.e. changing inaccurate mental model, SD
models have to respect their related cognitive load (Sweller, 1994). Hence, they should limit
both intrinsic and extraneous cognitive load by limiting modeled phenomena as well as refrain
from adding irrelevant information, repetitions, numerous references or visual distractions.

Guideline 4: Ensure transparency

Correctness has been identified as an important property of any EA artifact and used data
sources as one potential reason for erroneous products (Niemi and Pekkola, 2013). As mental
models extracted via interviews are the primary data source during SD model development their
correctness cannot be proven. Instead, traceability of the origin of model elements, i.e. variables
and their causal effects, needs to be provided to foster comprehensibility and trust (Wegmann,
2002). Therefore, the origin of each causal effect has to be documented in detail. This includes
at least the technique and date of elicitation as well as the organizational role of the modeler.

Guideline 5: Validate with data

According to Sterman (2000), validating and enhancing qualitative models by simulation is es-
sential to foster learning. Although system thinking techniques (Senge, 1990) and soft systems
analysis approaches (Checkland, 1985) are able to enhance understanding about complex situ-
ations, they do not allow conducting experiments. Especially if experimenting is infeasible in
the real world—as it is for application landscape design—simulations become a suitable tool
to understand complex system mechanisms without relying on feedback from real world; thus,
enabling faster learning. Although an SD model does not need to be able to reproduce any
historic data (Sterman, 2000), data can be used to demonstrate that a model is able to show,
for example, general trends.

6.3.2. Modeling approach

Following the advice for SD model development given by Homer and Oliva (2001), the modeling
approach starts by deriving dynamic hypotheses. While there exists a broad range of suitable
data-gathering techniques (see Luna-Reyes and Andersen, 2003), here the initial set of dynamic
hypotheses is derived from literature and personal experience gained from several action research
endeavors (Buckl et al., 2013; Sein et al., 2011). As described by Schneider et al. (2015a),

153

6. Using system dynamics to support application landscape design decisions

the initial brain-storming session of the author team was performed without interaction. The
identified hypotheses were then discussed and harmonized. Thereby, the process adhered to
guideline 1 (see Chapter 6.3.1). Each hypothesis was then substantiated by respective literature.
Subsequently, for each identified dynamic hypothesis a visual representation by means of a
CLD has been created. Because each part of the developed CLDs is therefore linked to its
source in literature, required transparency is provided (guideline 4). After the identification of
five relevant dynamic hypotheses, the hypothesis generation process has been stopped to allow
readers to learn from the resulting model (guideline 3) without being overwhelmed. Because each
hypothesis can be mapped to a different role within an organization heterogeneity of perspectives
is ensured (guideline 2). However, due to missing data a simulation of the model is not performed
(guideline 5) and left for future research.

6.3.3. Dynamic hypotheses

As described in the previous section, five dynamic hypotheses have been derived from literature
and personal experience. Each of these hypotheses is outlined in the following and complemented
with the respective CLD.

Network effect

If people focus on one single activity, they increase their skill disproportional to those focusing
on a set of diverse activities (Page, 2011). This includes, for example, system administrators
operating a specific database product instead of operating a set of diverse products. Therefore, if
an organization employs highly qualified system administrators, the respective products receive
an increasing attractiveness for both solution and enterprise architects due to the availability of
efficient operations. Accordingly, although a set of alternative solutions, e.g. database products,
is part of the application landscape, a few products will increase in their number of instances
over time. This observation is also in line with path-dependence identified by Fürstenau and
Kliewer (2015). Figure 6.5 shows the respective CLD for the network effect hypothesis.

The CLD depicted in Figure 6.5 can be read as follows. The lower the diversity within the
application landscape, i.e. the higher the degree of standardization, the easier it is for IT
operators to increase their skills for a certain technology. An increasing skill level of IT operators
leads directly a higher productivity. When solution architects have to make technology selections,
technologies for which highly productive IT operators are available are preferred. The more
often these products are used, the higher the degree of standardization gets. Consequently, a
reinforcing feedback loop exists driving standardization within application landscapes.

Technological progress

Respective literature indicates that a high degree of standardization within the application land-
scape has a declining effect on the scope of technical possibilities (Sharpe, 1983). As technology
diffusion proceeds slowly and therefore its effects are likely to materialize after considerable de-
lay (Baron and Schmidt, 2013), the notifiable impact of standardization on technical possibilities

154

6. Using system dynamics to support application landscape design decisions

Figure 6.5.: CLD modeling network effect

is also delayed. Once the narrowing technological scope has been recognized, the attractiveness
of non-standard technologies increases (Richen and Steinhorst, 2005). Thus, the diversification
pressure increases accordingly yielding to less diversity within the application landscape. To-
gether, these causal relationships create a balancing feedback loop as visualized in Figure 6.6.

Figure 6.6.: CLD modeling technological progress

The CLD depicted in Figure 6.6 can be read as follows. If the degree of standardization within the
application landscape increases, after a considerable amount of time the technological possibili-
ties decrease due to continuous development of new IT products. As a result, solution architects
begin to favor non-standard technologies to exploit capabilities of new products. This in turn
yields an increase in pressure for diversification which decreases the degree of standardization.

155

6. Using system dynamics to support application landscape design decisions

Shadow IT

Aside from the direct effect on diversity, diversification pressure also impacts the incentive of
business departments to develop local solutions, i.e. shadow IT (Rentrop and Zimmermann,
2012), which are not corresponding to defined standards. Reasons therefore include, for ex-
ample, increasingly tech-savvy users, easy access to web-based solutions and available end user
computing tools (Barker and Fiedler, 2011), but also misalignment of business demands and pro-
vided IT solutions (Györy et al., 2012). Hence, with a rising number of local, i.e. not centrally
managed, solutions the actual standardization degree within the application landscape declines
although enterprise architects might not notice the decline. A CLD visualizing this dynamic
hypothesis is shown in Figure 6.7.

Figure 6.7.: CLD modeling shadow IT

The CLD depicted in Figure 6.7 can be read as follows. If the degree of standardization within
the application landscape increases, after a considerable amount of time the technological pos-
sibilities decrease due to continuous development of new IT products. As a result, solution
architects begin to favor non-standard technologies to exploit capabilities of new products. This
in turn yields an increase in pressure for diversification. Unlike in Figure 6.6, the increased
pressure for diversification causes an increase in local IT solutions. Accordingly, the degree of
standardization is reduced implicitly.

IT cost cutting

Decreasing application landscape diversity and therefore increasing the degree of standardization
has been identified as one means to decrease IT costs (Richardson et al., 1990; Richen and
Steinhorst, 2005; Boh and Yellin, 2007). Similar to the previously described network effect,
the more IT cost savings could be realized, the more requests for standardization are brought
forward. Therefore, IT projects and solution architects are constrained with regard to available

156

6. Using system dynamics to support application landscape design decisions

Figure 6.8.: CLD modeling IT cost cutting

technologies which in turn increases the degree of standardization over time. These causal
relationships form a reinforcing feedback loop which is visualized in Figure 6.8.

The CLD depicted in Figure 6.8 can be read as follows. As described before, an increase in the
degree of standardization leads to an increase in employees’ skill levels which in turn increases
productivity. The increasing productivity enables the realization of IT cost savings. This success
then drives the number of requests for additional cost savings because the approach proved to
be successful. A typical way to achieve standardization is an increase in the extent to which
technology choices in projects are constrained. Finally, the degree of standardization is thereby
increased.

Maintaining the decision-scope

Due to high switching costs and network effects, lock-in effects hinder enterprises from changing
suppliers in response to both predictable and unpredictable changes in efficiency (Fürstenau and
Kliewer, 2015; Farrell and Klemperer, 2007). Reasons therefore can be, for example, increased
specialization of employees and incompatible technologies. The augmenting dependency on
certain technologies thus limits the respective decision scope of solution architects. As this
limitation is only recognized after a considerable amount of time, the actual perception of the
limited decision scope occurs after a certain delay. Subsequently the pressure on diversification
is increased (Richen and Steinhorst, 2005) yielding an increase in the degree of standardization.
A CLD showing this balancing feedback loop is depicted in Figure 6.9.

The CLD shown in Figure 6.9 can be read as follows. An increase in the degree of standard-
ization causes an increase in employees’ skill level. This in turn increases the dependence on
certain technologies due to lock-in effects. Thereby, the decision scope regarding the use of new
technologies gets limited. After a certain time delay, the perceived limitation of the decision
scope increases. Likewise, the pressure for diversification increases which yields a decrease of
the degree of standardization within the application landscape.

157

6. Using system dynamics to support application landscape design decisions

Figure 6.9.: CLD modeling maintenance of decision scope

6.3.4. Integrated CLD model

The next step towards developing a CLD modeling dynamic hypotheses about application land-
scape behavior with respect to its diversity is to integrate the previously presented CLDs. There-
fore, recurring variables need to be unified and causal relationships need to be integrated. Fig-
ure 6.10 shows how the different phenomena described in the previous sections interrelate and
simultaneously affect the degree of technological standardization within application landscapes.
Therein, various colors are used to demarcate different dynamic hypotheses.

Although quite simple in its notation, the CLD depicted in Figure 6.10 is not as understandable
as the CLDs modeling only one phenomenon. Nevertheless, it shows how the different phenom-
ena interrelate with each other. In addition, one can see easily that numerous feedback loops of
different types (reinforcing and balancing) influence the diversity of application landscapes. In
addition, different perspectives are included, for example, perceptions of solution architects, IT
operators and external influences like the technological progress. To which degree the individual
dynamic hypotheses described in previous sections and the integrated CLD shown in Figure 6.10
conform to actual perceptions of practitioners is evaluated in the next chapter.

6.4. Model evaluation and additional guidelines

As outlined by Schneider et al. (2015a), the goal of this evaluation is to assess whether the
dynamic hypotheses modeled in the previously introduced CLD (see Figure 6.10) conform with
actual observations by experienced practitioners and whether it can serve as a tool to foster
communication among different stakeholders of application landscape design.

158

6. Using system dynamics to support application landscape design decisions

Figure 6.10.: Integrated CLD for application landscape diversity

6.4.1. Evaluation setting

The evaluation of the CLD presented in Figure 6.10 is performed by means of expert inter-
views (see Bogner et al., 2009) which is a suitable method to validate and improve mental
models contained in CLDs (Ford and Sterman, 1998). Therefore, according to the evaluation
framework proposed by Cleven et al. (2009), this evaluation approach is qualitative, evaluates
a model, follows the epistemology of interpretivism and considers the artifact against the real
world.

In total, eight interviews with experienced practitioners have been conducted. Table 6.1 provides
an overview about the interviewees’ backgrounds. None of the interviewees was familiar with SD
in general or CLDs in particular. However, all interviewees were familiar with standardization
efforts currently taking place in their organization.

As depicted in Table 6.1, experts from different industries and different levels of experience
have been interviewed. Although the sample is not representative, statements of high quality
can be expected as respondents have diverse backgrounds (Surowiecki, 2005) and are faced

159

6. Using system dynamics to support application landscape design decisions

Id Role Industry Experience

1 Enterprise architecture consultant Insurance 3 years
2 Project manager (business) Automotive > 10 years
3 Project manager (IT) Gas industry 6 years
4 Project manager (business) Automotive 3 years
5 Head of Sales & Marketing Analytics Pharma > 10 years
6 Enterprise architect Automotive 2 years
7 IT revision Service industry 1 year
8 Solution architect Automotive > 10 years

Table 6.1.: Overview about interviewed experts from industry (Schneider et al., 2015a)

with standardization issues during their daily work. Interviews have been conducted in a semi-
structured way following a questionnaire divided into three major sections: an assessment of
the interviewee’s general point of view on application landscape standardization, a stepwise
presentation and evaluation of the individual dynamic hypotheses and an evaluation of the
modeling notation. Interviews have been conducted face-to-face or via video conference tools and
lasted between 57 minutes and 93 minutes. During interviews the interviewees have been asked
to focus on their own experience to allow for identifying individual examples for explanations.
Due to the broad topic under investigation, the advice given by Goguen and Linde (1993) was
followed and the last part of the interviews was done in conversation-style to get a deeper
understanding of difficult aspects.

6.4.2. Interview results

At the beginning of the structured part of the interviews, a short introduction not longer than
five minutes—similar to Chapter 6.1.2—about the notation of CLDs has been given to respective
interviewees. Subsequently, based on concrete examples questions about CLDs have been asked
to assess whether the interviewee is able to read and interpret a CLD. Surprisingly, all eight
interviewees demonstrated their understanding of the used notation. They were able to answer
questions about dynamic hypotheses, positive and negative impacts as well as transitive impacts
correctly. Furthermore, all of them were able to transfer the presented hypotheses to their
individual experiences. However, in all cases a verbal explanation of the respective model was
necessary to guide the interviewee through the presented model. This observation is in line with
Sterman (2000) who posited that a SD model should never be used without a textual description.
In some cases interviewees did not consider time delay symbols correctly.

When thinking about presented dynamic hypotheses, most interviewees began to speculate about
the organizational role mostly concerned about the presented phenomena. Likewise, every ex-
pert used his personal experience and role understanding for interpreting the presented models.
Therefore, it can be concluded that role information is important for these interviewees.

Regarding the confirmation of presented dynamic hypothesis surprisingly all interviewees agreed
with every presented CLD although the strength of individual phenomena was ranked differently.

160

6. Using system dynamics to support application landscape design decisions

Statements like “yes this behavior can take place in an organization but in my organization
respective countermeasures are in place” were therefore quite common during interviews. The
influence factors the interviewees considered to have more impact obviously correlated with their
organizational role and therefore their mental model of the system. This observation is in line
with observations made by Sterman (1994).

In two cases, a significant change of the interviewee’s mental model could be observed. Before the
dynamic hypotheses have been presented each interviewee was asked to describe the causes and
effects of application landscape standardization. In these two cases the interviewee mentioned
only one or two. When asked the same question after presenting the CLDs, both stated that
they would consider the presented additional effects as well. In both cases, the work experience
of the interviewees was less than five years.

After the introduction and discussion of each dynamic hypotheses, the interviewees have been
confronted with the integrated CLD depicted in Figure 6.10. At first glance, most of the in-
terviewees were overwhelmed by the model. However, after associating the already presented
model parts with the integrated model, all of them understood the integrated model as well.
When asked for benefits of the integrated model, “getting a general overview” and “getting a
consolidated view on a single variable displaying all identified impacts and effects” have been
mentioned frequently. Nevertheless, the missing “single message of the diagram” was also men-
tioned twice.

When asked for potential applications of the presented CLD, all interviewees mentioned the
largest benefits for communicating within diverse stakeholders. Thereby, single loop diagrams
as well as the integrated model would be useful if combined. Nevertheless, three experts limited
potential target groups by excluding top managers due to the diagrams’ specific notation.

In conclusion, the content of the integrated CLD, i.e., the presented dynamic hypotheses, was
confirmed by the experience of different interviewees. Furthermore, the different CLDs are
expected to be able to foster communication in addition to commonly used EA artifacts to
create shared understanding among application landscape designers.

6.4.3. EAM-specific modeling guidelines

In addition to the modeling guidelines already described in Chapter 6.3.1, three new guidelines
could be derived from previously described interview results and additional comments made
during interview sessions. These guidelines are described in the following.

Guideline 6: Explicitly include roles

As mentioned by different interviewees, in presented feedback loops usually different people are
involved. Therefore, the model would be easier to understand if the respective organizational
roles are included in the diagram. On the one hand, the reader could then faster locate feedback
loops relevant for him or her which provides a good starting point to understand the whole
diagram. On the other hand, if feedback loops are doubted, additional information about con-

161

6. Using system dynamics to support application landscape design decisions

cerned roles could remove such doubts. Therefore, an additional layer should be used for CLDs
indicating concerned organizational roles via color-coding or additional icons.

Guideline 7: Use consistent terminology and provide definitions

Four out of eight interviewees pointed out that it is essential to use a consistent terminology in
CLDs especially if they are used as means for communication among different language commu-
nities. This not only implies usage of organization-specific vocabulary but also the provision of
detailed definitions of variables and ideally also causal relationships. To achieve this, a unified
glossary can be used.

Guideline 8: Limit the number of modeling elements for presentation

Although modeling elements like the delay symbol are required to indicate system behavior cor-
rectly and foster formal modeling, some of them should be excluded from model visualizations if
used for communication. This includes, for example, the delay symbol as well as symbols indi-
cating loop direction and type. During the performed interview sessions it became apparent that
some people struggle with these elements when trying to understand a CLD. Two interviewees
mentioned that they feel distracted by these elements because there is no important information
in them. Therefore, a configurable visualization should be used instead of presenting a complete
or a formal model.

162

CHAPTER 7

Artifact evaluation

“What I mean by the word quality cannot be

broken down into subjects and predicates. This

is not because quality is mysterious but

because quality is so simple, immediate and

direct”.

Robert Piercing, Zen and the art of

motorcycle maintenance, 1974

7.1. Evaluation approach

In this chapter, the management support system consisting of a conceptual framework of ap-
plication landscape diversity (see Chapter 4), corresponding indicators (see Chapter 5.4) and
respective software implementations (see Chapter 5.5) is evaluated. In line with Franz and
Robey (1984) who suggest the use of ideographic rather than nomothetic research strategies
for the information systems field and inline with Benbasat et al. (1987) who identified case
studies as one particular suitable ideographic method, the results of four different case studies
are reported. Conducting a case study to evaluate the developed management support system
is appropriate because this research is still at an early, formative stage (Roethlisberger, 1977)
targeting a practice-based problem where the experiences of the actors are important and the
context of action is critical (Benbasat et al., 1987), e.g., during the development of appropri-
ate distance functions (see Chapter 5.4.4). Accordingly, the artifacts described in this thesis are
evaluated with respect to the utility provided in solving actual problems of practitioners (Hevner
et al., 2004). Based on the framework for evaluating design science research artifacts proposed

163

7. Artifact evaluation

by Cleven et al. (2009), the evaluation approach described in this chapter can be classified as
follows. The methods and constructs are evaluated qualitatively following the interpretivism
because it is assumed that the evaluation results depend on the individual characteristics of the
evaluating subject. Furthermore, the evaluation pursues a knowledge generation function and
uses case studies and prototypes as methods. The evaluated objects are the artifacts themselves
and the position of the researcher performing the evaluation is internally, i.e., it is carried out by
the designer of the artifacts after its implementation. Figure 7.1 summarizes the classification
of the evaluation approach described in this chapter.

Qualitative Approach

Artifact Focus

Artifact Type

Epistemology

Function

Method

Object

Ontology

Perspective

Position

Reference Point

Time

Quantitative

Artifact Artifact construction

Realism Nominalism

Technical Organizational Strategic

Construct Model Method Instantiation Theory

Positivism Interpretivism

Knowledge Control Development Legitimization

Action research Case study Field experiment Formal proofs

Controlled experiment Prototype Survey

Economic Deployment Engineering Epistemological

Externally Internally

Ex ante Ex post

Artifact against research gap Artifact against real world Research gap against real world

Variable Value

Figure 7.1.: Instantiation of the evaluation framework proposed by (Cleven et al., 2009)

In the following chapters, four different case studies are described. First, the disparity metric
is used to support decisions about technical platforms for a single business application at a
large financial service provider. Second, the disparity and adolescence metrics together with
the prototypical implementation and the system dynamics model are used to justify increasing
IT costs at a mid-sized manufacturing company. Third, the adolescence metric together with
the prototypical implementation are used to support enterprise architects at a large insurance
company to assess diversity within their application landscape. Fourth, the disparity metric
is used to support a diversification decision regarding technology components at a large car
manufacturing company. Table 7.1 provides an overview of these case studies and the artifacts
evaluated in each case. Although the findings might not be fully generalizable, the participating
companies exhibit some variety with regard to their size as well as their industry sector. However,
all operate on a global scale.

164

7. Artifact evaluation
C
as
e
st
u
d
y

D
is
p
ar
it
y

A
d
ol
es
ce
n
ce

Im
p
le
m
en
ta
ti
on

S
y
st
em

d
y
n
am

ic
s

In
d
u
st
ry
se
ct
or

F
T
E
s

Case 1 X Financial services >100,000
Case 2 X X X X Manufacturing >20,000
Case 3 X X Insurance >21,000
Case 4 X Automotive > 230,000

Table 7.1.: Overview about case studies and evaluated artifacts

7.2. Case 1: Supporting single application design at a large

financial service provider

In this case study, the company under investigation was facing a difficult decision regarding the
identification of a suitable technical platform for one of their business applications. To support
this decision, the complexity and therefore also the diversity of two potential platforms should
be taken into account. Accordingly, the goal of this case study is to evaluate in how far the
disparity metric presented in Chapter 5.4.4 can provide useful information in such case.

Organization: The respective company is a globally operating financial service provider head-
quartered in Italy. While IT operations have been carved-out to a service company, the respon-
sible enterprise architects are part of the holdings central IT department. In 2013, this company
employed more than 100,000 people and achieved a revenue of more than 10 billion Euro. Some
years ago the company went through a large merger with another financial service provider.
Since then, the EAM team is distributed across different countries. The case study described
here is conducted with architects responsible for the technical architecture of the company. This
function has been established many years ago and all participating architects have more than
10 years of relevant professional experience. To store architectural information, the company
uses one of the market leading software applications. Like other financial service providers, this
company is facing cost pressure in particular in the IT department. Accordingly, a recently
raised proposal to move the EAM tool to a new technical platform was brought into question.
Beside functional and non-functional requirements the complexity of the new platform should
also be considered due to the goal to reduce the overall complexity of the application landscape.
However, the company does not have appropriate means to quantify complexity or diversity of
technical platforms.

Course of action: To manage the technical components, i.e. components used to build business
applications which are independent of any business requirements such as operating systems or
database management systems, the architects developed a comprehensive taxonomy to classify
such components. On the lowest level, individual technical elements are modeled. On the next
level valid and admissible technical components are defined comprising hardware, software and

165

7. Artifact evaluation

facilities. One or more of such components are then integrated to a technical platform. In case of
the EAM tool, two different technical platforms exist which could be used as a foundation. First,
together with three architects a suitable approach to assessing the complexity of such technical
platforms has been developed. As input, the complexity and diversity indicators described in
Chapter 5 as well as a comprehensive study performed by the company in 2012 have been used.
It has been decided that counting the amount of technical elements used to build a platform
is sufficient to assess complexity. Accordingly, only the variety aspect of diversity is regarded.
However, the architects noticed that counting technical elements is not a suitable means to
compare all kinds of platforms. If a platform offers more capabilities, it is likely to require
more technical elements. Accordingly, it needs to be ensured that two platforms are relatively
equal in terms of their capabilities in order be comparable by counting their technical elements.
Therefore, the disparity of technical platforms has to be considered additionally. As described in
Chapter 5.4.4, the disparity metric is always context-sensitive and therefore cannot be applied
to arbitrary technical platforms. Fortunately, the company already uses a classification schema
for their technical platforms. As visualized in Figure 7.2, it distinguishes between infrastructure,
platform and software services as well as presentation, data, business logic and other layers. One
cannot assume that to provide each kind of capability modeled by this matrix an equal amount
of technical elements is required. Therefore, if a technical platform provides additional or other
capabilities the number of technical components might be biased significantly. However, if two
technical platforms provide the same capabilities, the number of technical elements as complexity
indicator can be compared. To assess how different the provided capabilities of two platforms
are their disparity needs to be assessed. As presented in Chapter 5.4.4, this requires a distance
function for technical platforms. Here, after consultation with the company’s architects, it has
been decided that the distance function should be based on the matrix shown in Figure 7.2.
Each cell of this matrix describes a capability which can either be fulfilled or not. To calculate
the degree to which two platforms provide the same capabilities, the Jaccard (1912) coefficient
can be used. Based on this distance function the Weitzman (1992) metric can be calculated
accordingly. However, this second step is trivial because only two platforms are considered and
therefore the metric result is equal to the distance function.

Presentation Logic Data …

SaaS

PaaS

IaaS

Figure 7.2.: Matrix to describe technical platforms (excerpt)

In the actual case, two different technical platforms (TP1 and TP2) were analyzed. Both
platforms included technical elements for data storage, operating systems and data transfer.
TP1 was composed of five technical elements covering presentation, logic and data on the IaaS
and PaaS layer of the technical platform matrix. In contrast, TP2 was composed of nine technical
elements covering also presentation, logic and data on the IaaS and PaaS layer of the technical
platform matrix. Accordingly, the complexity of TP1 is defined as five and of TP2 as nine; thus

166

7. Artifact evaluation

TP2 is more complex. The Jaccard coefficient defined as 𝑇𝑃1∩𝑇𝑃2
𝑇𝑃1∪𝑇𝑃2 for these two platforms is

one because they provide equal capabilities according to the technical platform matrix. Due
to the obvious absence of disparity, the number of technical components can be used to assess
complexity of TP1 and TP2. Accordingly, TP2 is more complex than TP1. An in-depth analysis
revealed that the reason for this difference in complexity is mostly driven by the ability of TP2
to store data in a cluster rather than on a single server thus providing high availability.

Results: In a final workshop, in which four IT architects as well as the head of the technical
architecture division participated, the results of the complexity and disparity assessment for
the concrete case of the technical platform used to run the EAM tool were discussed. All
participants considered the information provided by the applied indicators to be very helpful
with regard to the upcoming decision. Assessing disparity to ensure that the results of the
element counting metric are actually comparable was especially welcomed. Hereby, the easiness
and comprehensibility of the calculation was named as additional benefit. Therefore, the IT
architects decided to implement this indicator in their currently used EAM tool and calculate it
also for future decisions. However, they planned to replace the quite abstract matrix by a more
detailed model to increase the expressiveness of the metric in the future. All in all, the company
decided to use this approach also for future decisions and to work on an extended approach.
Thus, the question addressed by this case study whether the disparity metric presented in
Chapter 5.4.4 is able to provide relevant information for application landscape design decisions
can be answered positively based on the presented case.

7.3. Case 2: Supporting standardization at a mid-sized

manufacturing company

In this case study, the company under investigation wanted to assess the complexity and diversity
of the application landscape in order to justify a recent cost increase of the IT on the one hand
and identify potential for complexity reduction on the other hand. To provide the required
information to senior managers, all artifacts presented in this thesis including the adolescence
metric (Chapter 5.4.3), the disparity metric (Chapter 5.4.4), the prototypical implementation
(Chapter 5.5) and the system dynamics model (Chapter 6.1.2) were used. Accordingly, the goal
of this case study is to evaluate to which degree these artifacts provide utility in the described
context.

Organization: The respective company is a globally operating producer of different kinds
of optical goods and machines headquartered in Germany. In 2014, the company employed
more than 20,000 people and achieved a revenue of more than 4 billion Euro. Although the
different sectors can independently decide about required IT support to a certain degree, IT
governance is centralized. Thus, the company runs a federated approach to IT management.
The enterprise architecture function is thereby located in the central IT department and has
been established some years ago. Important duties include, but are not limited to, collecting
architectural data, providing respective reports and assessing the application landscape from a
company-wide rather than sector-specific view. This case study was conducted mainly with the
chief enterprise architect.

167

7. Artifact evaluation

Indicator Source

Number of interfaces per application Schneider et al. (2015c)
Degree of deviation from standard OS Mocker (2009)
Degree of deviation from standard DBMS Mocker (2009)
Heterogeneity of OS Schuetz et al. (2013)
Heterogeneity of DBMS Schuetz et al. (2013)
Number of application Schneider et al. (2015c)
Customization level Schneider et al. (2015c)
Number of technical component Schneider et al. (2015c)
Adolescence of OS Chapter 5.4.3
Adolescence of DBMS Chapter 5.4.3
Disparity of applications Chapter 5.4.4

Table 7.2.: Complexity and diversity indicators selected for implementation in case study two

Course of action: Based on the assumption that IT complexity drives IT costs (see Chap-
ter 3.2.3), the first step in this case study was to select appropriate indicators able to quantify
complexity and diversity of the company’s application landscape. Therefore, the set of indicators
presented in Chapter 5 was analyzed with regard to several criteria based on the organizational
context of the company.

These criteria include:

∙ scientific soundness

∙ known use cases (implementations in practice)

∙ availability of data within the company

∙ feasibility of implementation

∙ comprehensibility

∙ subjective rating of the enterprise architect

By this approach, the initial set of 21 indicators could be reduced to eleven. For the remaining
eleven indicators several implementations are known, data is available via the EAM tool, imple-
mentation seems to be feasible, comprehensibility is either easy or moderate and the subjective
rating was positive. Table 7.2 provides an overview of the selected indicators.

As can be seen from Table 7.2, the disparity metric as well as the adolescence metric fulfill the
criteria of the company and were selected by the enterprise architect due to their promising
decision support. Interestingly, the disparity metric was considered to be useful for assessing
redundancy of business applications within certain domains rather than for technical components
(see Chapter 7.2). Although suitable also for other kinds of technical components, operating
systems and database management systems have been chosen as a first step towards adolescence
calculations, because for those the required data was available. In the following, only these three
metrics are considered because the others are irrelevant for this evaluation.

168

7. Artifact evaluation

Operating system V1 V2 V3 V4 V5 V6 Adolescence

OS1 21 43 -0.34
OS2 1 -1.00
OS3 7 -1.00
OS4 6 -1.00
OS5 1 -1.00
OS6 2 -1.00
OS7 19 2 -0.81
OS8 1 25 27 -0.49
OS9 8 72 959 303 145 -0.30
OS10 3 1 -0.50
OS11 4 -1.00
OS12 1 1 4 5 4 2 -0.18
OS13 1 0 1.00
OS14 1 -1.00
OS15 3 77 1 0.02
OS16 2 3 2 2 2 0.05

Table 7.3.: Distribution of operating system instances among versions

First, the adolescence of operating systems was assessed by calculating the respective indicator
as described in Chapter 5.4.3 based on a snap shot of the EAM tool’s database. Thereby, the
prototypical implementation described in Chapter 5.5 was used which is later described in detail.
In total, 16 different operating system product lines were in use. For seven of these, only one
version was currently in operation which was considered to be the most recent version usable.
Therefore, there is no adolescence of these components and the indicator results per definition
in -1. However, for the other nine components different versions were in use. Table 7.3 shows
these versions with the respective number of instances. As one can easily see from the respective
numbers, adolescence can be observed especially for OS13, OS15 and OS16. The negative sign
of the other components indicates that more new versions than old versions are in use. After
presenting this result to the company, this observation was confirmed by the enterprise architect.
Thereby, the adolescence indicator results made it easier to identify operating systems currently
subject to adolescence which relates to the balance aspect of diversity.

As one can see easily, a plain visualization of the distribution of versions for each operating
system is not sufficient to identify operating systems having high adolescence. Figures 7.3
and 7.4 show exemplarily the distributions of versions belonging to OS9 and OS12. If the
enterprise architect wants to initiate the migration of old versions for the operating system
having most adolescence, such representation makes it difficult to select the right one because
there is no clear representation of adolescence included.

Likewise, the adolescence of Database Management Systems (DBMSs) was assessed. In total, 18
different DBMS product lines were currently used by the company. For ten of these DBMSs, only
one version was in use and therefore adolescence needs not to be considered. For the others,
adolescence can be calculated because two or more different versions were in use. Table 7.4

169

7. Artifact evaluation

0%

10%

20%

30%

40%

50%

60%

70%

V1 V2 V3 V4 V5

Figure 7.3.: Version distribution of OS9

0%

5%

10%

15%

20%

25%

30%

35%

V1 V2 V3 V4 V5 V6

Figure 7.4.: Version distribution of OS12

summarizes the data about DBMSs and their versions in use. By analyzing the adolescence of
DBMS components 3, 10, 16 and 17, one can see easily that they are subject to adolescence
due to their positive sign. Therefore, for those components instances of old versions need to be
migrated to new versions in order to limit their adolescence. In contrast, e.g. DBMS9, DBMS14
and DBMS15 have highly negative adolescence values. Accordingly, most of their versions in
use were quite new so there was currently no need for action. Again, the adolescence indicator
facilitated the identification of technical components for which more old than new versions are
in use by providing a quantitative perspective on their valuated balance of their versions.

In the course of the development of a new indicator to quantify potential redundancy among the
company’s business applications, the disparity metric introduced in Chapter 5.4.4 has been used.
Thereby, functional redundancy is assessed based on a matrix which combines the company’s
domain model with its process model. The arising cells form the capabilities which have to be
supported by at least one business application. If more than one application is located in such
cell, these applications might be subject to functional redundancy. However, this must not be
the case, because some domains might require more than one single business application for a
given process. Therefore, the disparity of such applications can provide the basis for assessing
functional redundancy within a cell of this matrix. If applications are different with respect to a
desired characteristic, they are not redundant. If they are considered to be equal, i.e. disparity
is 0, they can be considered to be redundant which needs to be proven by an in-depth analysis.

Based on the same snap-shot of the EA repository, the disparity metric has been used in the
aforementioned context. In this case, the respective company was using 841 business applications
which were grouped into 8 domains and supported 49 high-level business processes. This yields
an average of 2.15 applications per capability. Taking into account, that not all domains are
relevant for each business process, e.g. supply chain management is a domain not required
for order processing, the amount of relevant combinations of business processes and domains
decreases to 126 yielding an average number of 6.67 applications per capability. Because for
some capabilities, the number of applications is largely above the average, e.g. 31 applications
to support supply chain management in logistics processes, the disparity metric was used to
assess how different these applications are with respect to desired characteristics. Two main
characteristics have been identified in cooperation with the enterprise architect and a demand
manager of the company under investigation: country and supplier. The country where logistic

170

7. Artifact evaluation

DBMS V1 V2 V3 V4 V5 V6 Adolescence

DBMS1 4 -1.00
DBMS2 1 -1.00
DBMS3 1 0 1.00
DBMS4 1 -1.00
DBMS5 1 -1.00
DBMS6 1 -1.00
DBMS7 3 -1.00
DBMS8 1 53 103 179 48 5 -0.04
DBMS9 1 27 -0.93
DBMS10 8 56 0.75
DBMS11 8 -1.00
DBMS12 11 -1.00
DBMS13 1 -1.00
DBMS14 2 5 -0.43
DBMS15 2 8 -0.50
DBMS16 2 0 1.00
DBMS17 2 1 1 0.25
DBMS18 2 -1.00

Table 7.4.: Distribution of database management system instances among versions

processes are carried out is a desired characteristic which differentiates business applications from
each other in this area because of the different legal requirements which often cannot be fulfilled
by a single application. In addition, different suppliers often require different applications for
process integration. Taking these two aspects into account, the distance among all business
applications could be calculated as described in Chapter 5.4.4. In this case, the total disparity
value is not of interest but the single distance values are. Interestingly, only one application had a
distance of 0 to another application and can therefore be considered to be functional redundant.
All other applications differ in at least one characteristic. Accordingly, this capability is not
subject to functional redundancy although one application has to be assessed in detail. This
fact could easily be derived by the application of the disparity metric. By the same approach,
another capability for which several different applications were used could be assessed. However,
in a third case, the calculation of the disparity metric yielded lots of applications having zero
distance to other applications. Accordingly, the respective applications are considered to be
functional redundant and the company decided to assess the potential for retiring them. After
the calculation of several disparity values, the final assessment could be enhanced. The coarse-
grained capabilities could be split up into smaller capabilities based on the desired characteristics
for disparity. The number of capabilities to be supported rose to 203. Accordingly, the average
number of applications per capability decreases to 4.14. Regarding the utility of the disparity
metric introduced in Chapter 5.4.4 in this context, both, the enterprise architect as well as the
demand manager agreed that “to provide an overview about the potential redundancy within the
application landscape, disparity assessments help a lot”. Furthermore, the redundancy metric

171

7. Artifact evaluation

will be used by the company to steer the application landscape which would be too inaccurate
without disparity considerations.

To calculate the previously described indicator results, the prototypical implementation pre-
sented in Chapter 5.5 was used. Therefore, the whole application landscape data was exported
as CSV file from the company’s EAM tool. In this case, the data selection was performed
manually by extending the R scripts respectively. On average, this required about 30 min. per
indicator and resulted in a reusable solution. The calculation was performed based on the imple-
mentations already described. The results were then written to a CSV file again. The resulting
file can be used for further processing, if required, or stored to allow historical analyses in the
future. Although it would have been desired to see calculation results directly in the EAM tool,
this was not possible due to technical limitations of the tool used by the company. Therefore,
the stakeholders at the company were satisfied with this implementation approach. However,
after the case study, the company decided to implement these indicators with a different tech-
nology supported by the EAM tool vendor but according to the same architecture. Thereby,
the R language has been replaced by Extensible Stylesheet Language Transformations (XSLTs).
The reason for using another language was that the company needed external technical support
which is currently not available for the prototypical implementation described in Chapter 5.5.
Both approaches have been valued superior to a solution based on Microsoft Excel because they
require less manual interaction.

Because increasing standardization and reuse of both technical components and business appli-
cations were on the list of goals to be achieved by the EAM function, the System Dynamics
model presented in Chapter 6.1.2 was used to reflect on the problem and appropriate strategies.
During a half-day workshop together with the enterprise architect responsible for guiding stan-
dardization activities, the modeling notation as well as its content were evaluated. First, the
existence of the modeled cause-and-effect relationships has been confirmed. For example, due to
the technological progress new types of applications and technical components have to be used
or are required by the business which increases the application landscape’s diversity. This can
be seen, for example, in the adolescence of some components described before. However, the
shadow IT causal loop is not that strong in the respective company due to the federated model
of IT governance. In the past, the network effect combined with the IT cost cutting loop were
very dominant in the company. By outsourcing the IT function more and more to an IT service
provider, the whole IT landscape was limited to the technologies and capabilities of the provid-
ing company. As described by the SD model, this in turn lead to decreasing freedom regarding
the decision-scope. Accordingly, the company insourced some crucial parts of the application
landscape and searched for a second IT provider to complement the first. In addition to the fact
that the CLD model described in Chapter 6.1.2 is able to describe the history of the company’s
application landscape for the past years with respect to its degree of diversity, the model itself
was recognized to be useful also for communication among different stakeholders today. The
evaluating enterprise architect speculated that maybe senior managers might be confused by
the notation and large amount of content, but some colleagues of other departments might be a
suitable audience. In such cases the CLD is expected to provide a holistic understanding of the
problem. Finally, the enterprise architect draw the conclusion that neither total standardiza-
tion nor diversification are desired or achievable and that the degree of diversity will vary over

172

7. Artifact evaluation

time. Therefore, it can be concluded that the developed CLD is able to transfer its message and
provides utility at least in this case.

Results: As demonstrated above, the adolescence as well as the disparity metric were able to
provide useful information to the stakeholders of the company. In a final workshop, the head of
IT governance, the enterprise architect and a demand manager all agreed that these metrics are
valuable for their work. Finally, the company decided to implement these indicators and perform
calculations every three month in order to be able to see trends over time. The implementation
approach was similar to one proposed in Chapter 5.5. The set of selected indicators has also been
presented to senior IT managers and is likely to be used for application landscape design decisions
in the future. Thus, it can be concluded that both indicators, the suggested implementation
approach as well as the SD model provided utility in this case.

7.4. Case 3: Supporting technology governance at a large

insurance company

In this case study—which is also partly described by Schneider et al. (2016)—the company under
investigation was facing the challenge to identify technology components used in their application
landscape which are subject to adolescence. These technology components are considered to
increase security threats and risks due to accumulated migration efforts. Accordingly, the goal
of this case study is to evaluate if the adolescence indicator presented in Chapter 5.4.3 is able
to support respective enterprise architects to identify adolescence in their application landscape.
Thereby, the prototypical implementation presented in Chapter 5.5 is used.

Organization: This case study took place in a globally operating insurance company head-
quartered in Germany. In 2013, the company employed more than 21,000 people and achieved
a revenue of more than 28 billion Euro. The company consists of a holding which owns several
quite independent subsidiaries in different countries. To consistently steer the architecture of the
whole group, a significant part of the EAM function is situated in the holding. This case study
was performed in cooperation with enterprise architects responsible for the group-wide techni-
cal architecture in particular their standards. Therefore, the goal of this department is that
as many technical components as possible adhere to the defined set of standards. Furthermore,
independently of these standards the department needs to assure that the whole landscape is up-
to-date in order to minimize security threats and accumulating efforts for migration. However,
the identification of such old components was a tough challenge for the enterprise architects be-
cause of several reasons. First, the variety of technical components removes the possibility that
a single person or small team of enterprise architects is able to judge if a specific technological
component is too old to be used due to missing component-specific expertise. Second, assessing
each component individually would be associated with high efforts due to the large amount of
different components in use which was considered to be unaffordable.

Course of action: To evaluate if the adolescence indicator presented in Chapter 5.4.3 is able
to support the enterprise architects of the respective company in identifying adolescence among
the technical components of the application landscape, it was applied to the areas of operating
systems and database management systems. Thereby, the enterprise architects were happy to

173

7. Artifact evaluation

see that only information about the components, their versions, their predecessor/successor
relationships and their number of instances was required because this data was already available
and no additional data collection effort was required. To calculate the adolescence indicator, the
required data available in CSV format was directly fed into the prototypical software solution
presented in Chapter 5.5. Table 7.5 summarizes the provided data about operating systems.
Without influencing the results in general, information about some operating systems is not
disclosed here due to data protection reasons.

OS V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 Adolescence

OS1 20 235 -0.8431
OS3 243 3 777 2 397 5 6 5 1167 5 32 0.0198
OS4 6 14 -0.4000
OS6 2 1587 1496 1 0.0102

Table 7.5.: Distribution of operating system instances among versions

As can be seen from the adolescence calculation results, there was no adolescence of OS1 because
only a few instances of old versions were running. The same was true for OS4. However, OS3
and OS6 exhibit adolescence indicated by the positive sign of the indicator results. Although
this impression might be easily derived for OS6 due to its clear distribution slightly skewed to
the right, without the indicator it might be difficult to assess adolescence of component OS3.

The same procedure was used to assess DBMS components. Likewise, Table 7.6 summarizes the
provided data. However, in this case not always the newest release of a certain component was
in use. Therefore, the newest versions were added with zero instances in consultation with the
respective enterprise architects if these versions would get the approval for usage. Again, without
influencing the results in general, information about some database management systems is not
disclosed here due to data protection reasons.

DBMS V1 V2 V3 V4 V5 V6 V7 V8 Adolescence

DBMS1 8 2 37 100 4 9 -0.0925
DBMS2 16 135 13 16 0 0 0.5356
DBMS3 12 23 8 0 0.3953
DBMS4 8 154 56 331 1 -0.1482
DBMS5 1 135 2 6 30 1 51 2 0.2456

Table 7.6.: Distribution of database management system instances among versions

According to Table 7.6, DBMS components 1 and 4 do not show any adolescence. However, the
other DBMS components do show significant adolescence. Especially the DBMS2 instances are
mostly old and the two most recent versions are not in operation at all. But also DBMS3 and
DBMS5 do show high adolescence values which can be seen by the positive sign and the relatively
high absolute value of the adolescence indicator result. To provide an integrated overview about

174

7. Artifact evaluation

the DBMS products in use, the visualization presented in Chapter 5.4.3 can be used. Figure 7.5
integrates and visualizes the results of Table 7.6.

1 -1

DBMS1

DBMS2

DBMS3

DBMS4

DBMS5

Figure 7.5.: Integrated visualization of DBMS adolescence values

Results: The results of the adolescence analysis have been presented to respective IT architects
and IT executives from the central IT department. Thereby, the three questioned experts
highlighted that

“the normed quantification of adolescence leads to a better comparability of technical
domains across subsidiaries in different countries”.

In addition, all experts agreed on that the provided information is useful for them and a future
usage of the indicator is appreciated. Furthermore, the quantification facilitates the development
of a prioritization of required activities for respective IT components or respective subsidiaries.
In addition, the loosely coupled software solution again proved its utility because the calculation
of the aforementioned indicators could be done easily based on CSV files as input.

7.5. Case 4: Supporting technology diversification at a large

automotive company

In this case study, the participating company was facing a challenge in selecting appropriate
technology components to increase the application landscape’s diversity in certain areas including
application servers and DBMSs. Accordingly, the goal of this case study is to evaluate if the
disparity metric described in Chapter 5.4.4 can support this decision.

Organization: The participating company in this case study is a globally operating car manu-
facturer headquartered in Germany. In 2014, the company employed more than 230,000 people
and achieved a revenue of more than 120 billion Euro. The company is divided into several
divisions including cars, buses and trucks. Therefore, the IT governance in general and the
EAM function in particular follow a federated approach. However, the responsibility for the
technical architecture is located at the central part of the IT department. Due to several rea-

175

7. Artifact evaluation

Application server Source access JEE Footprint

AS1 Open source No Small
AS2 Open source No Small
AS3 Open source Yes Medium
AS4 Open source Yes Medium
AS5 Open source Yes Medium
AS6 Open source Yes Large
AS7 Closed source Yes Large

Table 7.7.: Application server candidate assessment for disparity

sons, the application landscape of the company was highly standardized regarding application
servers. Because of emerging demands from business, the one-size-fits-all application server in
use was no longer able to fulfill all requirements. Therefore, the EAM team decided to increase
the diversity of the application landscape in this area to provide a suitable basis for IT projects.
To identify suitable complementary products, the enterprise architects performed an evaluation
of products available on the market. Thereby, the disparity should be increased with respect to
some desired characteristics. However, the variety should not exceed a certain limit. In this case
study, the already performed analysis is repeated by using the disparity assessment approach
presented in this thesis to allow a comparison of both approaches.

Course of action: The company under investigation provided a list of nine characteristics
which have been used to identify suitable application server products as well as an assessment
of seven candidate products including the product currently used. An analysis of these nine
characteristics revealed that only three of them are relevant for disparity because several mani-
festations of these characteristics are desired. This includes, for example, the access to the source
code as well as the Java Enterprise Edition (JEE) support. The company would like to have
both, closed source and open source application servers to fulfill different demands. Likewise,
JEE application servers are still required although not in every case. In contrast, the other
characteristics form mandatory requirements which are therefore not related to disparity. For
example, a selected product needs to be compliant to several operating systems and develop-
ment and operations support needs to be available. It is obvious, that for those characteristics
only one manifestation is desired and not both ends of the respective dimension, i.e. a product
being not compliant to several operating systems currently used by the company. To assess the
disparity of the candidate products, each has been assessed based to the characteristics relevant
for disparity in this context (see Table 7.7). The footprint summarizes the size of an application
server in terms of installation and operating efforts.

Based on these manifestations, the distance matrix for all candidate products has been computed
based on Euclidean distances. As visualized in Figure 7.6, a dendrogram has then been used to
visualize the distances of all candidate products. The strategy of the respective company was to
increase the variety of application servers only slightly, i.e. not more than three different prod-
ucts should be used. Accordingly, the currently used component AS7 should be complemented
by a maximum of two additional components. The selection can be facilitated by using the
dendrogram. If AS7 is already set and only two components should be chosen which maximize

176

7. Artifact evaluation

the disparity among application servers, the dendrogram defines two clusters: AS1 and AS2
form the first cluster and AS3, AS4, AS5 and AS6 form the second cluster. If one component
of each cluster is chosen, the disparity is maximized. Thereby, it makes no difference, which
component is selected. In addition, the selection process within each cluster can be facilitated
by the characteristics initially omitted. Based on the respective assessments, for example, AS1
is preferred to AS2 and is therefore selected within the first cluster. Likewise, AS5 is selected out
of the second cluster due to its superiority with regard to the initially omitted characteristics.
The set consisting of AS1, AS5 and AS7 forms the recommended selection for application servers
in this context based on a maximization of disparity and subsequent consideration of additional
quality criteria.

AS1 AS2 AS3 AS4 AS5 AS6 AS7

Figure 7.6.: Dendrogram for application server candidate products

Results: The recommendation generated by using the disparity metric equals the result of the
unstructured approach carried out by the company under investigation. To assess the utility
of the disparity approach, an enterprise architecture consultant who was involved in the initial
assessment of the company was interviewed. Thereby, he confirmed that the disparity approach
is more comprehensible as well as repeatable. In addition, it seems to be feasible and easy
to understand. He highlighted and praised the importance of distinguishing disparity-related
aspects form general quality aspects in the context of such decisions. That the results equal
those of the initial unstructured assessment adds additional credibility to the approach. However,
additional decision support regarding the identification of the appropriate number of clusters was
mentioned as a potential for improvement as well as an integrated view unifying the dendrogram
and the ranking of their components based on the quality criteria assessment. It can be concluded
that the disparity metric proposed in Chapter 5.4.4 performed as well as the company’s current
approach but provides a more comprehensible and reusable process and visualization to guide
decisions increasing an application landscape’s diversity.

177

178

CHAPTER 8

Conclusion

“If I have seen further, it is because I am

standing on the shoulders of giants.”

Sir Isaac Newton, A letter in 1676

The success of application landscape design is strongly influenced by decisions affecting the
application landscape’s diversity. Thereby, three different aspects of diversity need to be con-
sidered at the concept level: variety, balance and disparity. Due to the huge extent of many
application landscapes, enterprise architects and other application landscape designers rely on
support systems as, for example, respective indicators to make better informed design decisions.
As has been proven by a thorough literature review, currently proposed complexity or diversity
indicators fail in addressing all relevant diversity aspects. Practitioners trying to apply and
adopt existing indicators experience several difficulties in doing so. This thesis solves the afore-
mentioned problem by presenting the missing diversity indicators as well as a new viewpoint on
the problem of standardization following the complex systems paradigm. Recalling the research
objective as stated in the introduction, the results of this thesis are presented, a critical reflection
on the findings is provided to describe the limitations of this research and suggestions for future
research are provided.

8.1. Summary of results

In Chapter 1, the experienced research gap motivated by both, a literature review as well as
industry expert interviews, has been discussed and the main research objective of this thesis has
been defined as follows:

179

8. Conclusion

What kind of decision support do enterprise architects require to design an application
landscape with regard to its diversity?

This research objective has been subdivided into five research questions (see Chapter 1.1). These
research questions guide the design and structure of this thesis. In the following, the individual
contributions of the single chapters are summarized and discussed in order to answer the research
questions.

In Chapter 2, the foundation for this thesis has been developed. First, to introduce the idea that
diverse IT components provide different capabilities and therefore value although they might in-
crease required costs, the digital options theory described by Sambamurthy et al. (2003) is used.
In addition, this idea is backed by the challenge of ambidexterity (see Gibson and Birkinshaw,
2004) requiring both, application landscape standardization and differentiation (Gregory et al.,
2015), as well as the resource-based view of the firm (see Wernerfelt, 1984). To guide the de-
velopment of respective decision support, enterprises are viewed as complex systems (see Buckl
et al., 2009). Accordingly, existing literature on complexity has been analyzed and a com-
plexity framework describing different prevalent notions of complexity has been developed.
This framework has then been used to classify the existing related work—identified by a lit-
erature review following the guidelines of Webster and Watson (2002)—which resulted in the
observation that both the subjective notion and the dynamic notion of complexity are currently
underrepresented in the EAM literature.

In Chapter 3, the two concepts application landscape complexity and application landscape di-
versity have been analyzed regarding their antecedents, consequences and management means
based on empirical investigations. By means of focus group interviews, typical drivers and con-
sequences of application landscape complexity have been identified to complement the scarce
literature in this area. The findings were then complemented by an online survey with 47 partic-
ipants from industry which revealed that there is a strong interrelation between both concepts
in the context of application landscapes. The identified effects of application landscape
diversity answer the second research question and include, for example, increasing costs as
well as technology and vendor independence. By comparing the results of both studies and
considering research on complex systems in general, the relationship between application land-
scape complexity and diversity has been elaborated in detail resulting in both, similarities and
differences.

In Chapter 4, a conceptual framework for application landscape diversity has been pre-
sented. It includes all diversity aspects relevant for the design of application landscapes and is
based on ideas and insights developed in other fields including system science and ecology (see
Stirling, 2007; Page, 2011). The previously dominant concepts of variety and heterogeneity are
thereby complemented by the concepts of balance (for nominal and ordinal data) and disparity.
Furthermore, the application of description logics demonstrates a formal way of assessing ap-
plication landscape diversity by clearly distinguishing between individuals subject to variation
and concepts subject to variety, balance and disparity. Thus, the conceptual diversity framework
provides an answer to the first research question and a shared terminology for future research
activities.

In Chapter 5, the core contribution of this thesis has been presented: quantitative indicators

180

8. Conclusion

to measure application landscape diversity. Therefore, existing complexity and diversity
indicators have been identified from literature by following the guidelines of Webster and Watson
(2002), complemented by observations of practitioners by following the guidelines of Buckl et al.
(2013) for Pattern-based Design Research. Together with several industry experts, benefits and
drawbacks of currently existing indicators have been assessed. By following the GQM approach
of Basili and Weiss (1984), for each dimension of the described diversity framework concrete
indicators have been selected from previous EAM research or designed based on findings from
other disciplines. For variety and balance of unordered EA elements, the indicators proposed
by Mocker (2009) and Schuetz et al. (2013) appeared to be suitable. However, for balance of
ordered EA elements as well as disparity, no suitable indicators have been found. Accordingly,
the adolescence indicator and a disparity metric have been designed to close this research gap and
answer the third research question. In addition, an implementation of all indicators has been
presented by using the R language together with an architecture description and implementation
of a prototypical software solution which answers the fourth research question.

In Chapter 6, the currently underrepresented dynamic notion of complexity in EAM has been
addressed by developing a SD model explaining organizational behavior regarding application
landscape diversity. Thereby, dynamic hypotheses on cause-and-effect relationships have been
generated based on respective literature and experience. The CLD emerging from these hypothe-
ses has then been analyzed with regard to its correctness and its ability to foster shared under-
standing among application landscape designers. The performed expert interviews confirmed
the model’s validity and revealed its potential to create shared understanding about ongoing
dynamics. By modeling relevant phenomena which can be influenced by application landscape
designers, complemented by typical diversity management means identified via the practitioner
survey, the CLD answers the fifth research question. The CLD has been supplemented with
guidelines derived from literature and interviews to foster the creation of organization-specific
SD models by practicing enterprise architects.

In Chapter 7, the previously developed artifacts including the adolescence indicator, the disparity
indicator, the prototypical software solution and the CLD, are evaluated via four different
case studies following the recommendations of Benbasat et al. (1987). In the first case study,
the disparity indicator has been successfully used to inform a decision regarding the complexity
of technical platforms suitable for a business application at a large financial service provider. In
the second case study, all four artifacts have been successfully used to assess the complexity and
diversity of a mid-sized manufacturing company’s application landscape and explain increasing
IT costs. In the third case study, the adolescence indicator has been used successfully to identify
technical components subject to adolescence within the application landscape of a large insurance
company. In the fourth case study, the disparity indicator has been used successfully to support
a decision concerning an increase of application server diversity at a large car manufacturing
company. Thereby, it has been shown that the artifacts developed and presented in this thesis
can be applied in practice.

8.2. Critical reflection

Hevner et al. (2004) outline several quality criteria for design science research including rigor

181

8. Conclusion

and relevance. Beyond the contributions to the knowledge base, some aspects regarding rigor
and relevance have been unaddressed in this thesis and have to be considered as limitations.

In Chapter 3, the relationship between application landscape complexity and diversity has been
assessed. However, a definite answer to the question how both concepts interrelate could not be
derived. Neither literature nor industry expert opinions revealed a clear relationship between
both. One reason might be the absence of an agreed-upon definition of both concepts. Therefore,
applicability of diversity metrics for complexity quantification might be questioned.

The novel metrics presented in Chapter 5 form the basis of the developed decision support.
However, there is no theory available describing in which direction the metric values should
be pushed. Therefore, the decision support is limited in so far that it does not provide target
values for all kinds of EA elements within the context of every organization. Furthermore, the
significance of the described metrics is constrained by the availability of a thorough and up-to-
date architectural description. If an organization is not in possession of the required information,
the metrics are not applicable. In addition, metrics in general provide only an aggregated view
on selected aspects of the system under investigation. Therefore, a single metric should not be
used to determine the results of all related decisions.

Considering diversity is always based on a mental model or ontology of a system’s observer. As
described in Chapter 4, diversity can be regarded among individuals or among concepts describ-
ing these individuals. While individuals are different to each other by definition, considering
diversity at the concept level has been identified to be more expedient. However, there exists
no proven method to define appropriate concepts. Therefore, the significance of the presented
metrics is also constrained by the concepts used by the enterprise architect. While this enables
their usage for arbitrary EA meta-models, this fact could also be regarded as a limitation. For
example, this aspect becomes especially obvious for the disparity metric introduced in Chap-
ter 5.4.4. Although this metric enables enterprise architects to measure disparity for the first
time, it requires not only the definition of organization-specific criteria determining the dis-
tance between two concepts but also the definition of different characteristics for each type of
EA element which should be considered. Accordingly, the significance of the provided metrics
relies on the enterprise architect’s ability to define an appropriate EA meta-model as well as
characteristics important for diversity considerations in his or her individual context.

The SD model presented in Chapter 6 considers only a limited amount of relevant behaviors. Al-
though evaluated with several industry experts, it cannot be excluded that significant behaviors
are missing. The same limitation regarding the scope holds true for the performed practitioners
survey. The number of 47 participants might not be representative for the whole industry. In
addition, participants were all working for German-speaking companies which might limit the
ability to transfer the results to other countries.

Although the artifacts presented in this thesis have been successfully evaluated in four case
studies, it cannot be assumed, that they are applicable in every context. This especially includes
the presented software solution which has not been used in practice productively so far.

182

8. Conclusion

8.3. Outlook

The contributions of this thesis provide an innovation in the field of EAM and lay the foundation
for future research activities in the field. In the remainder of this chapter, potential future
research topics are discussed.

The diversity concept used in this thesis is influenced by the theory of digital options (see Sam-
bamurthy et al., 2003) and previous research on IT standardization (see Boh and Yellin, 2007) as
presented in Chapters 2.2 and 2.3. Further related disciplines that could contribute to more so-
phisticated techniques to guide diversity management are portfolio theory (see Markowitz, 1952),
monopoly theory (see Smith and Skinner, 1991) and task-technology fit theory (see Goodhue
and Thompson, 1995). Especially the identification of tools or methods to find an optimal de-
gree of diversity in general or within a particular context can be enhanced. In addition, further
applications of the developed indicators and the SD model in practice are of interest. Long-term
observations of organizations that apply the developed indicators could provide further infor-
mation on the applicability of the indicators and allow researchers and practitioners to reflect
on changing degrees of diversity. Thus, longitudinal studies would open a new research field in
which changes of application landscape diversity can be investigated.

The complexity and diversity understanding used within this thesis considers business appli-
cations or technical components as the units of analysis. These units might also be subject
to an internal complexity or diversity (see Lilienthal, 2009; Partridge and Krzanowski, 1997).
Therefore, it is of interest how application landscape complexity and diversity are related to
application complexity and diversity. Future research needs to clarify, whether they can be
regarded separately or need to be considered simultaneously due to their mutual influence. Of
special interest is also, whether the presented indicators are also suitable to quantify diversity
within a single software system. Likewise, the relationship between application landscape com-
plexity and business complexity needs to be analyzed in more detail (Schmidt, 2015). Again,
the mutual impact of both concepts needs to be understood to guide future design decisions in
organizations.

The indicators presented in this thesis allow enterprise architects to quantify relevant aspects
of application landscape diversity. The results of the practitioners survey as well as the CLD
modeling organizational behavior provide hints how to influence application landscape diver-
sity. With these tools at hand, future research activities can apply statistical methods to assess
how application landscape diversity influences other relevant characteristics of an enterprise.
These characteristics might include, but are not limited to, adaptability to a changing envi-
ronment (see e.g. Kandjani et al., 2013), different kinds of IT costs (see Boh and Yellin, 2007)
and the complexity of the company’s business (see Schmidt, 2015). Therefore, appropriate tool
support exceeding the functionality of the presented prototypical solution with, for example,
visualization capabilities for different stakeholders and time-line analyses would be desirable.

183

184

Bibliography

Kwabena Agyapong-Kodua, Richard H. Weston, and Svetan Ratchev. The integrated use of en-
terprise and system dynamics modelling techniques in support of business decisions. Advances
in Decision Sciences, 2012, 2012. ISSN 2090-3359. doi: 10.1155/2012/804324.

Stephan Aier, Stephan Kurpjuweit, Jan Saat, and Robert Winter. Enterprise Architecture
Design as an Engineering. AIS Transactions on Enterprise Systems, 1(1):36–43, 2009.

Alberto Alesina and Eliana La Ferrara. Ethnic diversity and economic performance. Journal of
Economic Literature, 43(3):762–800, 2004.

Peter M. Allen. A complex systems approach to learning in adaptive networks. International
Journal of Innovation Management, 5(2):149–180, 2001. ISSN 1363-9196.

Raphael Amit and Paul J. H. Schoemaker. Strategic assets and organizatioal rent. Strategische
Managementtheorie, 14(1):33–46, 2012. ISSN 3110803402.

Martha Amram and Nalin Kulatilaka. Real Options: Managing Strategic Investment in an
Uncertain World. Harvard Business School Press, Cambridge, 1999.

Angela Andal-Ancion, Phillip A. Cartwright, and George S. Yip. The Digital Transformation of
Traditional Businesses. MIT Sloan Management Review, 44(4):34–41, 2003. ISSN 15329194.

Carl Anderson, Guy Theraulaz, and J-L Deneubourg. Self-assemblages in insect societies. In-
sectes Sociaux, 49(2):99–110, 2002. ISSN 0020-1812.

Pierpaolo Andriani. Diversity, knowledge and complexity theory: some introductory issues.
International Journal of Innovation Management, 5(02):257–274, 2001. ISSN 1363-9196.

Chris Argyris. Strategy, change and defensive routines. Pitman Publishing, 1985. ISBN
0273023292.

W. Brian Arthur. Competing technologies, increasing returns, and lock-in by historical events.
The Economic Journal, 99(394):116–131, 1989. ISSN 0013-0133.

W. Brian Arthur. Inductive reasoning and bounded rationality. The American economic review,
pages 406–411, 1994. ISSN 0002-8282.

185

Bibliography

W. Ross Ashby. Principles of the Self-Organizing Dynamic System. The Journal of general
psychology, 37(2):125–128, 1947. ISSN 0022-1309.

William Ross Ashby. An introduction to cybernetics. Chapman & Hall, London, 1956. ISBN
0-416-68300-2.

Ron Ashkenas. Simplicity-minded management. Harvard Business Review, 85(12):101–109,
2007. ISSN 0017-8012.

Nikitas A. Assimakopoulos and Anastasios N. Riggas. Designing a virtual enterprise architecture
using structured system dynamics. Human Systems Management, 25(1):13–29, 2006. ISSN
0167-2533.

Robert Axelrod. Structure of decision: The cognitive maps of political elites. Princeton University
Press, 2015. ISBN 1400871956.

Franz Baader, editor. The description logic handbook: theory, implementation, and applications.
Cambridge University Press, 2003. ISBN 0521781760.

Paul Bachmann. Die analytische zahlentheorie. Teubner, 1894.

Michael J. Baker. Writing a literature review. The Marketing Review, 1(2):219–247, 2000. ISSN
1469-347X.

Carliss Baldwin, Alan MacCormack, and John Rusnak. Hidden structure: Using network meth-
ods to map system architecture. Harvard Business School Working Paper (13-093), 2013.

Sandra Barker and Brenton Fiedler. Developers, Decision Makers, Strategists or Just End-
users? Redefining End-User Computing for the 21st Century: A Case Study. Journal of
Organizational and End User Computing (JOEUC), 23(2):1–14, 2011. ISSN 1546-2234.

Jay Barney. Firm resources and sustained competitive advantage. Journal of management, 17
(1):99–120, 1991. ISSN 0149-2063.

Justus Baron and Julia Schmidt. Technological Standardization, Endogenous Productivity and
Transitory Dynamics, 2013.

Victor R. Basili and David M. Weiss. A methodology for collecting valid software engineering
data. IEEE Transactions on Software Engineering, 10(6):728–738, 1984.

Jörg Becker. Strukturanalogien in Informationsmodellen. In Wolfgang König, editor,
Wirtschaftsinformatik ’95, pages 133–150. Physica-Verlag HD, 1995. ISBN 978-3-642-63388-1.

Stafford Beer. Cybernetics and Management. English Universities Press, London, 2nd ed edition,
1967. ISBN 9780340045947.

Danny N. Bellenger, Goldstucker, Kenneth L Bernhardt Jac L, Kenneth L. Bernhardt, and
Jac L. Goldstucker. Qualitative research in marketing. American Marketing, Chicago, 1976.
ISBN 1613112157.

Izak Benbasat, David K. Goldstein, and Melissa Mead. The case research strategy in studies of
information systems. MIS Quarterly, pages 369–386, 1987.

186

Bibliography

Mary J. Benner and Michael Tushman. Process management and technological innovation: A
longitudinal study of the photography and paint industries. Administrative science quarterly,
47(4):676–707, 2002. ISSN 0001-8392.

Daniela Berardi, Diego Calvanese, and Giuseppe de Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168(1-2):70–118, 2005. ISSN 00043702. doi: 10.1016/j.artint.2005.05.
003.

Ludwig von Bertalanffy. General system theory: Foundations, development, applications. George
Braziller, New York, 1968.

Jesús Bisbal, Deirdre Lawless, Bing Wu, and Jane Grimson. Legacy information systems: Issues
and directions. IEEE Software, 16(5):103–111, 1999.

Alexander Bogner, Beate Littig, and W. Menz. Interviewing experts. Research methods series.
Palgrave Macmillan, Basingstoke and New York, 2009. ISBN 0230220193.

Wai Fong Boh and Daniel Yellin. Using enterprise architecture standards in managing infor-
mation technology. Journal of Management Information Systems, 23(3):163–207, 2007. ISSN
0742-1222.

Danail Bonchev and Gregory A. Buck. Quantitative measures of network complexity. In Com-
plexity in Chemistry, Biology, and Ecology, pages 191–235. Springer, 2005. ISBN 0387232648.

Charles F. Bond and Linda J. Titus. Social facilitation: a meta-analysis of 241 studies. Psycho-
logical bulletin, 94(2):265, 1983. ISSN 1939-1455.

Hartmut Bossel. Systeme, Dynamik, Simulation: Modellbildung, Analyse und Simulation kom-
plexer Systeme. Books on Demand, Norderstedt, 2004a. ISBN 9783833409844.

Hartmut Bossel. Systemzoo 3: Wirtschaft, Gesellschaft und Entwicklung, volume 3 of Systemzoo.
Books on Demand, Norderstedt, 2004b. ISBN 9783833412417.

Gordon H. Bower and Daniel G. Morrow. Mental models in narrative comprehension. Science,
247(4938):44–48, 1990. ISSN 0036-8075.

G. A. Britton and J. Parker. An explication of the viable system model for project management.
Systems Practice, 6(1):21–51, 1993. ISSN 0894-9859.

John Brocklesby and Stephen Cummings. Designing a viable organization structure. Long Range
Planning, 29(1):49–57, 1996. ISSN 0024-6301.

Bernd Bruegge and Allen H. Dutoit. Object-oriented software engineering: Using UML, patterns,
and Java. Prentice Hall, Boston, 3rd ed. edition, 2010. ISBN 0136061257.

G. Brys, Mia Hubert, and A. Struyf. A robust measure of skewness. Journal of Computational
and Graphical Statistics, 13(4):996–1017, 2004.

Sabine Buckl, Alexander M. Ernst, Josef Lankes, Kathrin Schneider, and Christian M. Schweda.
A pattern based approach for constructing enterprise architecture management information
models. Wirtschaftinformatik Proceedings 2007, page 65, 2007.

187

Bibliography

Sabine Buckl, Alexander M. Ernst, Josef Lankes, and Florian Matthes. Enterprise Architecture
Management Pattern Catalog, 2008.

Sabine Buckl, Florian Matthes, and Christian M. Schweda. A Viable System Perspective on En-
terprise Architecture Management. In Proceedings of the International Conference on Systems,
Man and Cybernetics. IEEE, 2009. ISBN 978-1-4244-2794-9.

Sabine Buckl, Thomas Dierl, Florian Matthes, and Christian M. Schweda. Building Blocks
for Enterprise Architecture Management Solutions. In Practice-driven research on enterprise
transformation, pages 17–46. Springer, 2010. ISBN 3642167691.

Sabine Buckl, Florian Matthes, Alexander W. Schneider, and Christian M. Schweda. Pattern-
based Design Research–An Iterative Research Method Balancing Rigor and Relevance. In
Jan vom Brocke, Riitta Hekkala, Sudha Ram, and Matti Rossi, editors, Design Science at the
Intersection of Physical and Virtual Design, pages 73–87. Springer, Berlin, Heidelberg, 2013.
ISBN 3642388264.

Sabine M. Buckl. Developing organization-specific enterprise architecture management functions
using a method base. PhD thesis, München, Technische Universität München, Diss., 2011,
2011.

Mario Augusto Bunge. A world of systems, volume 4 of Treatise on basic philosophy. D. Reidel
Publishing, Boston, 1979.

Peter Buxmann, Tim Weitzel, Falk von Westarp, and Wolfgang König. The standardization
problem: an economic analysis of standards in information systems. In K. Jakobs and
Williams R., editors, Proceedings of the 1st IEEE conference on standardisation and inno-
vation in information technology, 1999.

Bobby J. Calder. Focus groups and the nature of qualitative marketing research. Journal of
Marketing research, 47(4):353–364, 1977. ISSN 0022-2437.

Gianluigi Caldiera, Victor R. Basili, and Dieter Rombach. Goal question metric paradigm.
Encyclopedia of Software Engineering, 1:528–532, 1994.

Donald Thomas Campbell, Julian C. Stanley, and Nathaniel Lees Gage. Experimental and
quasi-experimental designs for research, 1963.

Kevin Campbell and Antonio Mínguez-Vera. Gender Diversity in the Boardroom and Firm
Financial Performance. Journal of Business Ethics, 83(3):435–451, 2008. ISSN 0167-4544.
doi: 10.1007/s10551-007-9630-y.

Capgemini. IT-Trends 2014: IT-Kompetenz im Management steigt, 2014.

Rudolf Carnap. The logical structure of the world -: And pseudoproblems in philosophy. Open
Court classics. Open Court, Chicago and La Salle, Ill., 2003. ISBN 9780812695236.

Yolande E. Chan, Sid L. Huff, Donald W. Barclay, and Duncan G. Copeland. Business strategic
orientation, information systems strategic orientation, and strategic alignment. Information
Systems Research, 8(2):125–150, 1997.

188

Bibliography

Yolande E. Chan, Rajiv Sabherwal, and Jason Bennett Thatcher. Antecedents and outcomes of
strategic IS alignment: an empirical investigation. Engineering Management, IEEE Transac-
tions on, 53(1):27–47, 2006. ISSN 0018-9391.

Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and OLAP technol-
ogy. ACM SIGMOD Record, 26(1):65–74, 1997. ISSN 01635808. doi: 10.1145/248603.248616.

Peter Checkland. From optimizing to learning: A development of systems thinking for the 1990s.
Journal of the Operational Research Society, pages 757–767, 1985. ISSN 0160-5682.

Patricia W. Cheng and Keith J. Holyoak. Pragmatic reasoning schemas. Cognitive psychology,
17(4):391–416, 1985. ISSN 0010-0285.

Anne Cleven, Philipp Gubler, and Kai M. Hüner. Design alternatives for the evaluation of design
science research artifacts. In Proceedings of the 4th International Conference on Design Science
Research in Information Systems and Technology. ACM, 2009. ISBN 1605584088.

Edgar F. Codd. A relational model of data for large shared data banks. Communications of the
ACM, 13(6):377–387, 1970. ISSN 00010782.

Wesley M. Cohen and Daniel A. Levinthal. Absorptive capacity: a new perspective on learning
and innovation. Administrative science quarterly, pages 128–152, 1990. ISSN 0001-8392.

Roger C. Conant and W. Ross Ashby. Every good regulator of a system must be a model of
that system†. International journal of systems science, 1(2):89–97, 1970. ISSN 0020-7721.

Matthew Cook. Universality in elementary cellular automata. Complex Systems, 15(1):1–40,
2004. ISSN 0891-2513.

Harris M. Cooper. Organizing knowledge syntheses: A taxonomy of literature reviews. Knowl-
edge in Society, 1(1):104–126, 1988. ISSN 0897-1986.

Paul A. David. Clio and the Economics of QWERTY. The American economic review, pages
332–337, 1985. ISSN 0002-8282.

Kenyon B. De Greene. Sociotechnical systems: factors in analysis, design, and management.
Prentice-Hall, Englewood Cliffs, N.J., 1973. ISBN 9780138215538.

Tom DeMarco. Controlling software projects: Management, measurement & estimation. Yourdon
Press, New York, NY, 1982. ISBN 9780131717114.

Gernot Dern and R. Jung. IT-Architektur-Governance auf Basis von Kennzahlen zur Komplex-
itätsmessung. Zeitschrift für Controlling, 21(12):669–672, 2009.

Gerardine DeSanctis and Brad M. Jackson. Coordination of information technology manage-
ment: Team-based structures and computer-based communication systems. Journal of Man-
agement Information Systems, 10(4):85–110, 1994. ISSN 0742-1222.

Rohit Deshpande. Paradigms Lost: On Theory and Method in Research in Marketing. Journal
of Marketing, 47(4):101, 1983. ISSN 00222429. doi: 10.2307/1251403.

189

Bibliography

Michael Diehl and Wolfgang Stroebe. Productivity loss in brainstorming groups: Toward the
solution of a riddle. Journal of personality and social psychology, 53(3):497, 1987. ISSN
1939-1315.

Edsger Wybe Dijkstra. Selected writings on computing: A personal perspective. Texts and
monographs in computer science. Springer-Verlag, New York, 1982. ISBN 9783540906520.

U.S.A DoD. Department of Defense Architecture Framework (DoDAF), 2009. URL http:

//dodcio.defense.gov/Portals/0/Documents/DODAF/DoDAF_v2-02_web.pdf.

Niles Eldredge. Systematics, ecology, and the biodiversity crisis. Columbia University Press,
1992. ISBN 0231075286.

Fred E. Emery. Characteristics of socio-technical systems: The emergence of a new paradigm of
work. ANU/CCE: Canberra, 1959.

Alexander M. Ernst. Enterprise Architecture Management Patterns. In Joseph Yoder and Ade-
mar Aguiar, editors, Proceedings of the 15th Conference on Pattern Languages of Programs.
ACM, 2008. ISBN 1605581518.

Brian Everitt. The Cambridge Dictionary of Statistics. Cambridge University Press, Cambridge,
UK and New York, 1998. ISBN 9780521593465.

Terje Fallmyr and Bendik Bygstad. Enterprise Architecture Practice and Organizational Agility:
An Exploratory Study. In 47th Hawaii International Conference on System Sciences (HICSS),
pages 3788–3797, 2014. doi: 10.1109/HICSS.2014.471.

Joseph Farrell and Paul Klemperer. Coordination and lock-in: Competition with switching costs
and network effects. Handbook of industrial organization, 3:1967–2072, 2007. ISSN 1573-448X.

Matthias Farwick, Berthold Agreiter, Ruth Breu, Steffen Ryll, Karsten Voges, and Inge Han-
schke. Requirements for automated enterprise architecture model maintenance. In Runtong
Zhang, José Cordeiro, Xuewei Li, Zhenji Zhang, and Juliang Zhang, editors, Proceedings of the
13th international conference on enterprise information systems, pages 325–337. SciTePress,
2011. ISBN 9789898425560.

Norman E. Fenton and Shari Lawrence Pfleeger. Software metrics: A rigorous and practical
approach. PWS Pub., Boston, 2nd edition, 1997. ISBN 9780534954253.

Walter J. Ferrier, Ken G. Smith, and Curtis M. Grimm. The role of competitive action in
market share erosion and industry dethronement: A study of industry leaders and challengers.
Academy of management journal, 42(4):372–388, 1999. ISSN 0001-4273.

Robert G. Fichman. Real options and IT platform adoption: Implications for theory and prac-
tice. Information Systems Research, 15(2):132–154, 2004.

Michael O. Finkelstein and Richard M. Friedberg. The application of an entropy theory of
concentration to the Clayton Act. Yale Law Journal, pages 677–717, 1967. ISSN 0044-0094.

Guido Fioretti. A subjective measure of complexity. Advances in Complex Systems, 2(04):
349–370, 1999. ISSN 0219-5259.

190

http://dodcio.defense.gov/Portals/0/Documents/DODAF/DoDAF_ v2-02_web.pdf
http://dodcio.defense.gov/Portals/0/Documents/DODAF/DoDAF_ v2-02_web.pdf

Bibliography

M. Flückiger and M. Rauterberg. Komplexität und Messung von Komplexität, 1995.

David N. Ford and John D. Sterman. Expert knowledge elicitation to improve formal and mental
models. System Dynamics Review, 14(4):309–340, 1998. ISSN 1099-1727.

Jay Wright Forrester. Industrial dynamics. MIT press Cambridge, MA, 1961.

Martin Fowler and Pramod J. Sadalage. NoSQL distilled. Addison-Wesley, Boston, Mass. and
London, 2012. ISBN 0321826620.

Ulrich Frank. Multi-perspective enterprise modeling (MEMO) -conceptual framework and mod-
eling languages. In Proceedings of the 35th Annual Hawaii International Conference on System
Sciences (HICSS), pages 1258–1267. IEEE, 2002. ISBN 0769514359.

Ulrich Frank. Towards a pluralistic conception of research methods in information systems
research, 2006.

Charles R. Franz and Daniel Robey. An investigation of user-led system design: rational and
political perspectives. Communications of the ACM, 27(12):1202–1209, 1984. ISSN 00010782.

Michael Frese. A theory of control and complexity: Implications for software design and inte-
gration of computer system into the work place. In M. Frese, E. Ulich, and W. Dzida, editors,
Psychological Issues of Human Computer Interaction in the Work Place. Elsevier Science Pub-
lishers B.V., 1987.

Daniel Fürstenau and Natalia Kliewer. Exploring Enterprise Transformation from a Path Depen-
dence Perspective: A Recycling Case and Conceptual Model. In O. Thomas and F. Teutenberg,
editors, Proceedings der 12. Internationalen Tagung Wirtschaftsinformatik (WI 2015), pages
363–377, 2015.

Hans-Georg Gadamer. Hermeneutics and Social Science. Philosophy & Social Criticism, 2(4):
307–316, 1975. ISSN 0191-4537.

Robert D. Galliers. Strategizing for Agility: Confronting Information. In Kevin C. Desouza,
editor, Agile Information Systems, pages 1–15. Routledge, 2006. ISBN 978-0-7506-8235-0.

Martin Gardner. Mathematical games: The fantastic combinations of John Conway’s new soli-
taire game “life”. Scientific American, 223(4):120–123, 1970.

Abd Ghani, Abdul Azim, Tieng Wei Koh, Geoffrey Muchiri Muketha, and Pei Wen Wong. Com-
plexity metrics for measuring the understandability and maintainability of business process
models using goal-question-metric (GQM). International Journal of Computer Science and
Network Security, 8(5):219–225, 2008. ISSN 1738-7906.

Arnab Ghosh, Prashant Kumar Gajar, and Shashikant Rai. Bring your own device (BYOD):
Security risks and mitigating strategies. Journal of Global Research in Computer Science, 4
(4):62–70, 2013. ISSN 2229-371X.

Cristina B. Gibson and Julian Birkinshaw. The antecedents, consequences, and mediating role
of organizational ambidexterity. Academy of management journal, 47(2):209–226, 2004. ISSN
0001-4273.

191

Bibliography

Corrado Gini. Variabilità e mutabilità. Reprinted in Memorie di metodologica statistica (Ed.
Pizetti E, Salvemini, T). Rome: Libreria Eredi Virgilio Veschi, 1, 1912.

John Goetze and Anders Jenssen-Waud, editors. Beyond alignment: Applying systems thinking
in architecting enterprises. College Publications, 2013. ISBN 9781848901162.

Joseph A. Goguen and Charlotte Linde. Techniques for requirements elicitation. Proc. RE’93 -
First IEEE Symposium on Requirements Engineering, pages 152–164, 1993.

Jeffrey Goldstein. Emergence as a construct: History and issues. Emergence, 1(1):49–72, 1999.
ISSN 1521-3250.

Arash Golnam, Ann van Ackere, and Alain Wegmann. Integrating system dynamics and en-
terprise modeling to address dynamic and structural complexities of choice situations. In
Tae-Hoon Moon, editor, Proceedings of The 28th International Conference of The System
Dynamics Society. Wiley, 2010. ISBN 978-1-935056-05-8.

Dale L. Goodhue and Ronald L. Thompson. Task-technology fit and individual performance.
MIS Quarterly, 19(2):213–236, 1995.

Ove Granstrand and Christer Oskarsson. Technology diversification in “MUL-TECH” corpora-
tions. IEEE transactions on Engineering Management, 41(4):355–364, 1994. ISSN 0018-9391.

Jim Gray. The transaction concept: Virtues and limitations. In Proceedings of the Seventh
International Conference Very Large Databases. Tandem Computers Incorporated, 1981.

Danny Greefhorst and Henderik Alex Proper. Architecture Principles. Springer, Berlin, Heidel-
berg, 2011. ISBN 978-3-642-20279-7.

Robert Gregory, Mark Keil, Jan Muntermann, and Magnus Mähring. Paradoxes and the Nature
of Ambidexterity in IT Transformation Programs. Information Systems Research, 26(1), 2015.

Richard A. Groeneveld and Glen Meeden. Measuring Skewness and Kurtosis. The Statistician,
33(4):391–399, 1984. ISSN 00390526.

Andreas Györy, Anne Cleven, Falk Uebernickel, and Walter Brenner. Exploring the shadows: IT
governance approaches to user-driven innovation. Proceedings of the 20th European Conference
on Information Systems, Barcelona, Spain, 2012.

Jürgen Habermas. Theorie des kommunikativen Handelns: Vol 1: Handlungsrationalikit und
gesellschaftliche Rationalisierung. Suhrkamp, Frankfurt/M, 1981.

Marshall Hall and Nicolaus Tideman. Measures of concentration. Journal of the American
Statistical Association, 62(317):162–168, 1967. ISSN 0162-1459.

Andreas Handl. Maßzahlen zur Klassifizierung von Verteilungen bei der Konstruktion adap-
tiver verteilungsfreier Tests im unverbundenen Zweistichproben-Problem. PhD thesis, Freie
Universität Berlin, Berlin, 1985.

Inge Hanschke. Strategisches Management der IT-Landschaft: Ein praktischer Leitfaden für das
Enterprise-Architecture-Management. Hanser, München, 2013. ISBN 3446435093.

192

Bibliography

Inge Hanschke. Lean IT-Management–einfach und effektiv: Der Erfolgsfaktor für ein wirksames
IT-Management. Carl Hanser Verlag GmbH Co KG, 2014. ISBN 3446441999.

Ole Hanseth, Eric Monteiro, and Morten Hatling. Developing information infrastructure: The
tension between standardization and flexibility. Science, technology & human values, 21(4):
407–426, 1996. ISSN 0162-2439.

James Harrington. In my opinion. CIO, 12(23):19, 1999.

David A. Harrison and Katherine J. Klein. What’s the difference? Diversity constructs as
separation, variety, or disparity in organizations. Academy of Management Review, 32(4):
1199–1228, 2007. ISSN 03637425.

Matheus Hauder, Sascha Roth, Christopher Schulz, and Florian Matthes. Current Tool Support
for Metrics in Enterprise Architecture Management. In Günter Büren, Reiner R. Dumke,
Christof Ebert, Jürgen Münch, and Manfred Seufert, editors, DASMA Software Metrik
Kongress (Metrikon 2013), 2013a. ISBN 978-3-8440-2350-3.

Matheus Hauder, Sascha Roth, Christopher Schulz, and Florian Matthes. An Examination
Of Organizational Factors Influencing Enterprise Architecture Management Challenges. In
Proceedings of the 21st European Conference on Information Systems, 2013b.

Orris C. Herfindahl. Concentration in the US steel industry. Columbia University, 1950.

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science in information
systems research. MIS Quarterly, 28(1):75–105, 2004.

M. O. Hill. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology, 54(2):
427, 1973. ISSN 0012-9658. doi: 10.2307/1934352.

John H. Holland. Hidden order: How adaptation builds complexity. Helix books. Addison-Wesley,
Reading, Mass., 1995. ISBN 9780201442304.

Jack Homer and Rogelio Oliva. Maps and models in system dynamics: a response to Coyle.
System Dynamics Review, 17(4):347–355, 2001. ISSN 1099-1727. doi: 10.1002/sdr.224.

Janos Horvath. Suggestion for a comprehensive measure of concentration. Southern Economic
Journal, pages 446–452, 1970. ISSN 0038-4038.

Liu Hui, Bai Dianyi, and Liu Jin. A study on the mechanism of relationship among intellectual
property rights, technical innovation and standardization. In 6th International Conference on
Information Management, Innovation Management and Industrial Engineering (ICIII), pages
593–597. IEEE, 2013. ISBN 978-1-4799-3985-5. doi: 10.1109/ICIII.2013.6703656.

Jez Humble and David Farley. Continuous delivery: reliable software releases through build, test,
and deployment automation. Pearson Education, 2010. ISBN 0321670221.

International Organization for Standardization. ISO/IEC 42010:2007 Systems and Software En-
gineering - Recommended Practice for Architectural Description of Software-Intensive Systems
(ISO/IEC 42010 IEEE Std 1471-2000), 2007.

193

Bibliography

Scott G. Isaksen and Donald J. Treffinger. Creative problem solving. The Basic Course. New
York: Bearly Limited, 1985.

Paul Jaccard. The Distribution of the Flora in the Alpine Zone. New Phytologist, 11(2):37–50,
1912. ISSN 0028-646X.

Kai Jakobs. Advanced Topics in Information Technology Standards and Standardization Re-
search, Volume 1. IGI Global, 2005. ISBN 1591409403.

Marijn Janssen and George Kuk. A Complex Adaptive System Perspective of Enterprise Ar-
chitecture in Electronic Government. In 39th Hawaii International Conference on System
Sciences (HICSS), 2006.

Erica Jen. Robust design: Repertoire of biological, ecological, and engineering case studies. Santa
Fe Institute studies in the sciences of complexity. Oxford University Press, New York, 2005.
ISBN 0195165322.

Neil F. Johnson. Two’s Company, Three is Complexity: A simple guide to the science of all
sciences. Oneworld, Oxford, 2007. ISBN 1851684883.

David H. Jonassen. Instructional design models for well-structured and III-structured problem-
solving learning outcomes. Educational Technology Research and Development, 45(1):65–94,
1997. ISSN 1042-1629.

Gareth R. Jones. Organizational theory, design, and change. Pearson, 2010. ISBN 0138157111.

Alicia Juarrero. Dynamics in action: intentional behavior as a complex system. Emergence, 2
(2):24–57, 2000. ISSN 1521-3250.

S. H. Kaisler, F. Armour, and M. Valivullah. Enterprise Architecting: Critical Problems. In
38th Annual Hawaii International Conference on System Sciences, 2005. doi: 10.1109/HICSS.
2005.241.

Hadi Kandjani, Peter Bernus, and Lian Wen. Enterprise Architecture Cybernetics for Complex
Global Software Development: Reducing the Complexity of Global Software Development
Using Extended Axiomatic Design Theory. In 7th IEEE International Conference on Global
Software Engineering (ICGSE), pages 169–173, 2012. doi: 10.1109/ICGSE.2012.19.

Hadi Kandjani, Peter Bernus, and Sue Nielsen. Enterprise Architecture Cybernetics and the
Edge of Chaos: Sustaining Enterprises as Complex Systems in Complex Business Environ-
ments. In 46th Hawaii International Conference on System Sciences (HICSS), pages 3858–
3867, 2013. doi: 10.1109/HICSS.2013.199.

Steven J. Karau and Kipling D. Williams. Social loafing: A meta-analytic review and theoretical
integration. Journal of personality and social psychology, 65(4):681, 1993. ISSN 1939-1315.

Panos Kardasis and Peri Loucopoulos. Aligning legacy information systems to business processes.
In Advanced Information Systems Engineering, volume 1413 of Lecture Notes in Computer
Science, pages 25–39. Springer, 1998.

Stuart A. Kauffman. The origins of order: Self-organization and selection in evolution. Oxford
University Press, New York, 1993. ISBN 9780195079517.

194

Bibliography

Stuart A. Kauffman. At home in the universe: The search for laws of self-organization and
complexity. Oxford University Press, New York, 1995. ISBN 9780195111309.

Wolfgang Keller. IT-Unternehmensarchitektur: Von der Geschäftsstrategie zur optimalen IT-
Unterstützung. dpunkt.verlag, Heidelberg, 2 edition, 2012. ISBN 3898647684.

Alfons Kemper and Thomas Neumann. HyPer: A hybrid OLTP&OLAP main memory database
system based on virtual memory snapshots. In 27th International Conference on Data Engi-
neering (ICDE). IEEE Operations Center, 2011. ISBN 1424489598.

William J. Kettinger, Donald A. Marchand, and Joshua M. Davis. Designing enterprise it
architectures to optimize flexibility and standardization in global business. MIS Quarterly
Executive, 9(2):95–113, 2010.

Jan H. Keuntje and Reinhard Barkow. Enterprise-architecture-Management in der Praxis: Wan-
del, Komplexität und IT-Kosten im Unternehmen beherrschen. Symposion, Düsseldorf, 1 edi-
tion, 2010. ISBN 3939707708.

Young-Gul Kim and Gordon C. Everest. Building an IS architecture: Collective wisdom from
the field. Information & Management, 26(1):1–11, 1994. ISSN 0378-7206.

Alan P. Kirman and Nicolaas J. Vriend. Evolving market structure: An ACE model of price
dispersion and loyalty. Journal of Economic Dynamics and Control, 25(3):459–502, 2001.
ISSN 0165-1889.

Ingo Klein. Systematik der Schiefemessung für ordinalskalierte Merkmale, 1999.

Andrei N. Kolmogorov. On tables of random numbers. Sankhya: The Indian Journal of Statis-
tics, Series A, pages 369–376, 1963.

Svyatoslav Kotusev, Mohini Singh, and Ian Storey. Consolidating Enterprise Architecture Man-
agement Research. In 48th Hawaii International Conference on System Sciences (HICSS),
2015.

David C. Krakauer. Robustness in Biological Systems: a provisional taxonomy. In Complex
systems science in biomedicine, pages 183–205. Springer, 2006. ISBN 0387302417.

Thomas S. Kuhn. The structure of scientific revolutions. University of Chicago press, 1962.
ISBN 0226458148.

Narayanan Kumbakara. Managed IT services: the role of IT standards. Information Manage-
ment & Computer Security, 16(4):336–359, 2008. ISSN 0968-5227.

James Ladyman, James Lambert, and Karoline Wiesner. What is a complex system? European
Journal for Philosophy of Science, 3(1):33–67, 2013. ISSN 1879-4912.

Robert Lagerström, Carliss Baldwin, Alan MacCormack, and Stephan Aier. Visualizing and
Measuring Enterprise Application Architecture: An Exploratory Telecom Case. In 47th Hawaii
International Conference on System Sciences (HICSS), 2014.

Rolf Landauer. A simple measure of complexity. Nature, 336:306–307, 1988. ISSN 0028-0836.

195

Bibliography

DavidC Lane. With a little help from our friends: how third generation system dynamics and the
problem structuring techniques of’soft’OR can learn from each other. City University Business
School Discussion Paper ITM/93/DCL2.(A shortened version of this paper is available in
(1993) System Dynamics, pages 235–244, 1993.

Joscf Lankes, Florian Matthes, and André Wittenburg. Softwarekartographie: Systematische
Darstellung von Anwendungslandschaften. In O. K. Ferstl, E. J. Sinz, S. Eckert, and T. Is-
selhorst, editors, 7. Internationale Tagung Wirtschaftsinformatik, pages 1443–1462. Physica-
Verlag, 2005. ISBN 3790815748.

Marc Lankhorst, editor. Enterprise Architecture at Work. Springer, 2009. ISBN 3642296505.

James Lapalme and Donald W. de Guerre. An Open Socio-Technical Systems Approach to En-
terprise Architecture. In John Goetze and Anders Jenssen-Waud, editors, Beyond alignment.
College Publications, 2013. ISBN 9781848901162.

Daniel A. Levinthal and James G. March. The myopia of learning. Strategic Management
Journal, 14(S2):95–112, 1993. ISSN 1097-0266.

Carola Lilienthal. Architectural complexity of large-scale software systems. In 13th European
Conference on Software Maintenance and Reengineering. IEEE, 2009. ISBN 0769535895.

Paul Lorenzen. Konstruktive Wissenschaftstheorie, volume 93 of Suhrkamp Taschenbuch Wis-
senschaft. Suhrkamp, Frankfurt am Main, 1974. ISBN 9783518076934.

Jerry Luftman. Assessing business-IT alignment maturity. Communications of the Association
for Information Systems, 4, 2000. ISSN 1529-3181.

Niklas Luhmann. Soziale systeme. Suhrkamp, Frankfurt am Main, 1984. ISBN 3518576844.

Luis Felipe Luna-Reyes and Deborah Lines Andersen. Collecting and analyzing qualitative data
for system dynamics: methods and models. System Dynamics Review, 19(4):271–296, 2003.
ISSN 1099-1727.

Robert H. MacArthur. Patterns of species diversity. Biological reviews, 40(4):510–533, 1965.
ISSN 1469-185X.

Robert H. MacArthur and John W. MacArthur. On Bird Species Diversity. Ecology, 42(3):594,
1961. ISSN 0012-9658. doi: 10.2307/1932254.

Klaus Mainzer. Thinking in complexity: the computational dynamics of matter, mind, and
mankind. Springer Science & Business Media, 2007. ISBN 3540722289.

James G. March. Exploration and exploitation in organizational learning. Organization Science,
2(1):71–87, 1991. ISSN 1047-7039.

Salvatore T. March and Gerald F. Smith. Design and Natural Science Research on Information
Technology. Decision Support Systems, 15(4):251–266, 1995. ISSN 0167-9236.

Harry Markowitz. Portfolio selection*. The Journal of Finance, 7(1):77–91, 1952. ISSN 1540-
6261.

196

Bibliography

Nathaniel J. Mass. Stock and flow variables and the dynamics of supply and demand. Alfred P.
Sloan School of Management. System Dynamics Group, 1977.

Florian Matthes, Sabine Buckl, Jana Leitel, and Christian M. Schweda. Enterprise architecture
management tool survey 2008. Techn. Univ. München, 2008. ISBN 3000245200.

Florian Matthes, Christian Neubert, and Alexander Steinhoff. Hybrid Wikis: Empowering Users
to Collaboratively Structure Information. In 6th International Conference on Software and
Data Technologies (ICSOFT), pages 250–259, 2011.

Florian Matthes, Ivan Monahov, Alexander W. Schneider, and Christopher Schulz. Towards
a unified and configurable structure for EA management KPIs. In Trends in Enterprise
Architecture Research and Practice-Driven Research on Enterprise Transformation, pages 284–
299. Springer, 2012. ISBN 3642341624.

Florian Matthes, Christian Neubert, and Alexander W. Schneider. Fostering Collaborative and
Integrated Model and Meta-Model Development with Hybrid Wikis. Journal of Enterprise
Modelling and Information Systems Architectures, 8(1), 2013.

Florian Matthes, Alexander W. Schneider, Matheus Hauder, and Pouya Aleatrati. EAM Pattern
Catalog v2: (to appear), 2015.

Robert M. May. Taxonomy as destiny. Nature, 347(6289):129–130, 1990. ISSN 0028-0836.

Yasmin Merali and Bill McKelvey. Using Complexity Science to effect a paradigm shift in
Information Systems for the 21st century. Journal of Information Technologz, 21:211–215,
2006.

Stanley Milgram. The small world problem. Psychology today, 2(1):60–67, 1967.

Melanie Mitchell. Complexity: A guided tour. Oxford University Press, Oxford and New York,
2011. ISBN 0199798109.

Martin Mocker. What is Complex about 273 Applications? Untangling Application Architec-
ture Complexity in a case of European Investment Banking. In 42nd Hawaii International
Conference on System Sciences (HICSS), 2009. ISBN 0769534503.

Martin Mocker and Jeanne W. Ross. USAA: Capturing Value from Complexity, 2013.

U. K. MoD. Ministry of defence architecture framework, 2008. URL https://www.gov.uk/

mod-architecture-framework.

Wolfgang A. Molnar and Janne J. Korhonen. Research paradigms and topics in Enterprise
Engineering analysis of recent conferences and workshops. Eighth International Conference on
Research Challenges in Information Science (RCIS), 2014. doi: 10.1109/RCIS.2014.6861071.

Benoit Morel and Rangaraj Ramanujam. Through the looking glass of complexity: The dynamics
of organizations as adaptive and evolving systems. Organization Science, 10(3):278–293, 1999.
ISSN 1047-7039.

197

https://www.gov.uk/mod-architecture-framework
https://www.gov.uk/mod-architecture-framework

Bibliography

Christoph Moser, Stefan Junginger, Matthias Brückmann, and Klaus-Manfred Schöne. Some
Process Patterns for Enterprise Architecture Management. In Software Engineering (Work-
shops), pages 19–30, 2009.

Thomas Mueller, Sven Dittes, Frederik Ahlemann, Nils Urbach, and Stefan Smolnik. Because
Everybody is Different: Towards Understanding the Acceptance of Organizational IT Stan-
dards. In 48th Hawaii International Conference on System Sciences (HICSS), 2015.

Stephan Murer, Carl Worms, and Frank J. Furrer. Managed evolution. Informatik-Spektrum,
31(6):537–547, 2008. ISSN 0170-6012.

David G. Myers. Group Polarization. In John M. Levine and Michael A. Hogg, editors, Ency-
clopedia of group processes and intergroup relations, pages 361–365. Sage Publications, 2009.
ISBN 1452261504.

R. Nargundkar. Marketing Research-Text & Cases 2E. Tata McGraw-Hill, 2003. ISBN
9780070528055.

John von Neumann and Oskar Morgenstern. Theory of games and economic behavior. Princeton
University Press, Princeton, 1953.

Theodora N. Ngosi and John O. Jenkins. Software standards: an information requirements
framework. Journal of Information Technology, 8(2):82–91, 1993. ISSN 0268-3962.

Klaus D. Niemann. Von der Unternehmensarchitektur zur IT-Governance: Bausteine für
ein wirksames IT-Management. Edition CIO. Vieweg, Wiesbaden, 1. edition, 2005. ISBN
9783528058562.

Eetu Niemi. Enterprise architecture benefits: Perceptions from literature and practice. In Eetu
Niemi, Tanja Ylimäki, and Niina Hämäläinen, editors, Evaluation of enterprise and software
architectures: critical issues, metrics and practices. University of Jyväskylä, 2008.

Eetu Niemi and Samuli Pekkola. Enterprise Architecture Quality Attributes: A Case Study. In
46th Hawaii International Conference on System Sciences (HICSS), pages 3878–3887, 2013.
doi: 10.1109/HICSS.2013.201.

Wonseok Oh and Alain Pinsonneault. On the assessment of the strategic value of information
technologies: conceptual and analytical approaches. MIS Quarterly, pages 239–265, 2007.

Hannu Oja. On location, scale, skewness and kurtosis of univariate distributions. Scandinavian
Journal of Statistics, pages 154–168, 1981. ISSN 0303-6898.

Maureen A. O’Leary, Jonathan I. Bloch, John J. Flynn, Timothy J. Gaudin, Andres Giallom-
bardo, Norberto P. Giannini, Suzann L. Goldberg, Brian P. Kraatz, Zhe-Xi Luo, and Jin
Meng. The placental mammal ancestor and the post–K-Pg radiation of placentals. Science,
339(6120):662–667, 2013. ISSN 0036-8075.

Wanda J. Orlikowski and Stephen R. Barley. Technology and institutions: What can research on
information technology and research on organizations learn from each other? MIS Quarterly,
25(2):145–165, 2001.

198

Bibliography

Günther Ossimitz. Entwicklung systemischen Denkens: theoretische Konzepte und empirische
Untersuchungen. Profil, 2000.

Scott E. Page. Diversity and complexity. Primers in complex systems. Princeton University
Press, Princeton, N.J, 2011. ISBN 1400835143.

Vilfredo Pareto. Manuale di economia politica. Societa Editrice, 1906.

Hang Yeop Park, Sung Hwa Jung, Young-Joong Lee, and Ki Cheol Jang. The Effect of Improving
IT Standard in IT Governance. In International Conference on Computational Intelligence
for Modelling, Control and Automation. IEEE, 2006. ISBN 0769527310.

Derek Partridge and W. Krzanowski. Software diversity: practical statistics for its measurement
and exploitation. Information and Software Technology, 39(10):707–717, 1997. ISSN 0950-
5849.

Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chatterjee. A Design Science
Research Methodology for Information Systems Research. Journal of Management Informa-
tion Systems, 24(3):45–77, 2007. ISSN 0742-1222.

Edith Tilton Penrose. The Theory of the Growth of the Firm. Wiley, New York, 1959. ISBN
0198289774.

Evelyn C. Pielou. An introduction to mathematical ecology. An introduction to mathematical
ecology, 1969.

Geert Poels and Guido Dedene. Distance-based software measurement: necessary and sufficient
properties for software measures. Information and Software Technology, 42(1):35–46, 2000.
ISSN 0950-5849.

Henri Poincaré. Science and method. Dover Publications, Mineola, N.Y, dover ed edition, 2003.
ISBN 9780486432694.

Karl Popper and Hubert Kiesewetter, editors. Die offene Gesellschaft und ihre Feinde I. Mohr
Siebeck, Tübingen, 8 edition, 2003. ISBN 3-16-148068-6.

David S. Preston and Elena Karahanna. Antecedents of IS strategic alignment: a nomological
network. Information Systems Research, 20(2):159–179, 2009.

Thomas Puschmann and Rainer Alt. Enterprise application integration systems and
architecture-the case of the Robert Bosch Group. Journal of Enterprise Information Manage-
ment, 17(2):105–116, 2004. ISSN 1741-0398.

R Core Team. R: A Language and Environment for Statistical Computing, 2014. URL http:

//www.R-project.org/.

Murali Ramakrishnan. Software release management. Bell Labs Technical Journal, 9(1):205–210,
2004. ISSN 10897089. doi: 10.1002/bltj.20015.

S. Rashid, Tariq Masood, and R. H. Weston. Unified modelling in support of organization design
and change. Journal of Engineering Manufacture, 223(8):1055–1079, 2009.

199

http://www.R-project.org/
http://www.R-project.org/

Bibliography

Eberhardt Rechtin. Systems architecting of organizations: Why eagles can’t swim. CRC Press,
1999. ISBN 0849381401.

Christopher Rentrop and Stephan Zimmermann. Shadow IT. Management and Control of
Unofficial IT. ICDS, pages 98–102, 2012.

Thomas Reschenhofer, Ivan Monahov, and Florian Matthes. Type-Safety in EA Model Analysis.
In 18th International Enterprise Distributed Object Computing Conference Workshops and
Demonstrations (EDOCW), pages 87–94. IEEE, 2014.

Gary L. Richardson, Brad M. Jackson, and Gary W. Dickson. A principles-based enterprise
architecture: Lessons from Texaco and Star Enterprise. MIS Quarterly, pages 385–403, 1990.

George P. Richardson. Feedback thought in social science and systems theory. System dynamics
series. Pegasus Communications, Waltham, MA, 1999. ISBN 9781883823467.

Albrecht Richen and Ansgar Steinhorst. Standardization or harmonization? you need both.
European Health Informatics (November 2005), page 5, 2005.

Fritz Jules Roethlisberger. The Elusive Phenomena. Harvard Business School, Division of
Research, Bosten, Massachusetts, 1977.

Robert Rosen. Complexity as a System Property. International Journal of General Systems, 3
(4):227–232, 1977. ISSN 0308-1079. doi: 10.1080/03081077708934768.

Jeanne W. Ross, Peter Weill, and David C. Robertson. Enterprise Architecture as Strategy: Cre-
ating a Foundation for Business Execution. Harvard Business Press, 2006. ISBN 1591398398.

Jennifer Rowley and Frances Slack. Conducting a literature review. Management Research News,
27(6):31–39, 2004. ISSN 0140-9174.

Jan Saat, Stephan Aier, and Bettina Gleichauf. Assessing the Complexity of Dynamics in Enter-
prise Architecture Planning-Lessons from Chaos Theory. In Robert C. Nickerson and Ramesh
Sharda, editors, Proceedings of the 15th Americas Conference on Information Systems, AM-
CIS 2009, San Francisco, California, USA, August 6-9, 2009. Association for Information
Systems, 2009.

Pallab Saha, editor. A systemic perspective to managing complexity with enterprise architecture.
Advances in business information systems and analytics (ABISA) book series. Business Science
Reference, Hershey, PA, 2014. ISBN 9781466645196.

Vallabh Sambamurthy, Anandhi Bharadwaj, and Varun Grover. Shaping agility through digital
options: Reconceptualizing the role of information technology in contemporary firms. MIS
Quarterly, 27(2):237–263, 2003.

Ron Sanchez. Preparing for an uncertain future: Managing organizations for strategic flexibility.
International Studies of Management & Organization, pages 71–94, 1997. ISSN 0020-8825.

Pier Paolo Saviotti and G. S. Mani. Competition, variety and technological evolution: a replica-
tor dynamics model. Journal of Evolutionary Economics, 5(4):369–392, 1995. ISSN 0936-9937.

200

Bibliography

Roger C. Schank and Robert P. Abelson. Scripts, plans, goals, and understanding: An inquiry
into human knowledge structures. Psychology Press, 2013. ISBN 1134919662.

Jaap Schekkerman. Enterprise architecture good practices guide: how to manage the enterprise
architecture practice. Trafford, 2008. ISBN 1425156878.

Joachim Schelp and Robert Winter. Language communities in enterprise architecture research. In
Vijay Vaishanvi and Sandeep Purao, editors, Proceedings of the 4th International Conference
on Design Science Research in Information Systems and Technology (DESRIST), 2009. ISBN
978-1-60558-408-9. doi: 10.1145/1555619.1555650.

Christian Schmidt. Business Architecture Quantified: How to Measure Business Complexity.
In Daniel Simon and Christian Schmidt, editors, Business Architecture Management, Man-
agement for Professionals, pages 243–268. Springer International Publishing, 2015. ISBN
978-3-319-14570-9. doi: 10.1007/978-3-319-14571-6\textunderscore13.

Christian Schmidt and Peter Buxmann. Outcomes and success factors of enterprise IT ar-
chitecture management: empirical insight from the international financial services industry.
European Journal of Information Systems, 20(2):168–185, 2010. doi: 10.1057/ejis.2010.68.

Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with complements.
Artificial Intelligence, 48(1):1–26, 1991. ISSN 00043702.

Scott L. Schneberger and Ephraim R. McLean. The complexity cross: implications for practice.
Communications of the ACM, 46(9):216–225, 2003. ISSN 00010782.

Alexander W. Schneider and Florian Matthes. Using Orientor Theory for Coherent Decision
Making for Application Landscape Design. In Daniel Krob, Frédéric Boulanger, Gérard Morel,
and Jean-Claude Roussel, editors, Proceedings of the Poster Workshop at the 2014 Complex
Systems Design and Management Conference, 2014a.

Alexander W. Schneider and Florian Matthes. Unternehmensarchitekturgestütztes Controlling
zur Beherrschung der IT-Komplexität. Zeitschrift für Controlling, 26(12):694–699, 2014b.

Alexander W. Schneider and Florian Matthes. Evolving the EAM Pattern Language. In Pro-
ceedings of the 20th European Conference on Pattern Languages of Programs. (to appear),
2015.

Alexander W. Schneider, Marin Zec, and Florian Matthes. Adopting Notions of Complexity
for Enterprise Architecture Management. In Proceedings of the 20th Americas Conference on
Information Systems (AMCIS), 2014.

Alexander W. Schneider, Anna Gschwendtner, and Florian Matthes. Using System Dynam-
ics Models to Understand and Improve Application Landscape Design. In O. Thomas and
F. Teutenberg, editors, Proceedings der 12. Internationalen Tagung Wirtschaftsinformatik (WI
2015), 2015a.

Alexander W. Schneider, Anna Gschwendtner, and Florian Matthes. IT Architecture Standard-
ization Survey. Technische Universität München, Munich, Germany, 2015b.

201

Bibliography

Alexander W. Schneider, Thomas Reschenhofer, Alexander Schuetz, and Florian Matthes. Em-
pirical Results for Application Landscape Complexity. In 48th Hawaii International Confer-
ence on System Sciences (HICSS), 2015c.

Alexander W. Schneider, Christian M. Schweda, and Florian Matthes. Identifikation überalterter
Komponenten in einer IT-Architektur. In Tagungsband der Multikonferenz Wirtschaftsinfor-
matik (MKWI). under review, 2016.

Marguerite Schneider and Mark Somers. Organizations as Complex Adaptive Systems: Im-
plications of Complexity Theory for Leadership Research. The Leadership Quarterly, 17(4):
351–365, 2006. ISSN 1048-9843.

Marten Schönherr. Towards a common terminology in the discipline of enterprise architecture.
In Stephan Aier, Pontus Johnson, and Joachim Schelp, editors, Pre-Proceedings of the 3rd
Workshop on Trends in Enterprise Architecture Research, pages 107–123, 2008.

Alexander Schuetz, Thomas Widjaja, and Jasmin Kaiser. Complexity in Enterprise Architec-
tures - Conceptualization and Introduction of a Measure from a System Theoretic Perspective.
In 21st European Conference on Information Systems (ECIS), 2013.

Maung Sein, Ola Henfridsson, Sandeep Purao, Matti Rossi, and Rikard Lindgren. Action design
research. MIS Quarterly, 35(1):37–56, 2011.

Peter Senge. The fifth discipline: The art and science of the learning organization. New York:
Currency Doubleday, 1990.

Claude Shannon. A Mathematical Theory of Communication. Bell System Technical Journal,
27(3):379–423, 1948.

Carl Shapiro. The 2010 horizontal merger guidelines: From hedgehog to fox in forty years.
Antitrust Law Journal, pages 49–107, 2010. ISSN 0003-6056.

William F. Sharpe. Microcomputer Perspectives: Economies of Scale, Technological Progress
and Standardization. Financial Analysts Journal, pages 25–27, 1983. ISSN 0015-198X.

Walter Andrew Shewhart and William Edwards Deming. Statistical method from the viewpoint
of quality control. Courier Corporation, 1939. ISBN 0486652327.

Kultar Singh. Quantitative social research methods. Sage Publications, Los Angeles, 2007. ISBN
8132101197.

Adam Smith and Andrew S. Skinner. The wealth of nations. World Scientific, 1991.

Floréal Solé, Richard Smith, Tiphaine Coillot, Eric de Bast, and Thierry Smith. Dental and
tarsal anatomy of ‘ Miacis ’ latouri and a phylogenetic analysis of the earliest carnivoraforms
(Mammalia, Carnivoramorpha). Journal of Vertebrate Paleontology, 34(1):1–21, 2014. ISSN
0272-4634. doi: 10.1080/02724634.2013.793195.

Dean R. Spitzer. Transforming performance measurement: Rethinking the way we measure and
drive organizational success. American Management Association, New York, 2007. ISBN
0814430090.

202

Bibliography

Herbert Stachowiak. Allgemeine Modelltheorie. Springer-Verlag, Wien, New York, 1973. ISBN
9783211811061.

John Sterman. Business dynamics: Systems thinking and modeling for a complex world.
Irwin/McGraw-Hill, Boston, 2000. ISBN 9780072387377.

John D. Sterman. Learning in and about complex systems. System Dynamics Review, 10(2-3):
291–330, 1994. ISSN 1099-1727. doi: 10.1002/sdr.4260100214.

John D. Sterman. All models are wrong: reflections on becoming a systems scientist. System
Dynamics Review, 18(4):501–531, 2002. ISSN 1099-1727.

Stanley S. Stevens. On the Theory of Scales of Measurement. Science, 103(2684):677–680, 1946.
ISSN 0036-8075. doi: 10.1126/science.103.2684.677.

Donald V. Steward. The design structure system: a method for managing the design of complex
systems. IEEE transactions on Engineering Management, 28(3):71–74, 1981. ISSN 0018-9391.

Andrew Stirling. Diversity and ignorance in electricity supply investment: Addressing the solu-
tion rather than the problem. Energy Policy, 22(3):195–216, 1994. ISSN 0301-4215.

Andrew Stirling. On the economics and analysis of diversity. Science Policy Research Unit
(SPRU), Electronic Working Papers Series, Paper, 28:1–156, 1998.

Andy Stirling. A general framework for analysing diversity in science, technology and society.
Journal of the Royal Society Interface, 4(15):707–719, 2007. ISSN 1742-5689.

Andy Stirling. Multicriteria diversity analysis: a novel heuristic framework for appraising energy
portfolios. Energy Policy, 38(4):1622–1634, 2010. ISSN 0301-4215.

Sagar Sunkle, Suman Roychoudhury, and Vinay Kulkarni. Using Intentional and System Dynam-
ics Modeling to Address WHYs in Enterprise Architecture. Proceedings of the International
Conference on Software Engineering and Applications, 2013.

James Surowiecki. The wisdom of crowds. Random House LLC, 2005. ISBN 0307275051.

John Sweller. Cognitive load theory, learning difficulty, and instructional design. Learning and
instruction, 4(4):295–312, 1994. ISSN 0959-4752.

Paul P. Tallon. A process-oriented perspective on the alignment of information technology and
business strategy. Journal of Management Information Systems, 24(3):227–268, 2007. ISSN
0742-1222.

Paul P. Tallon and Alain Pinsonneault. Competing perspectives on the link between strategic
information technology alignment and organizational agility: insights from a mediation model.
MIS Quarterly, 35(2):463–486, 2011.

Toomas Tamm, Peter B. Seddon, Graeme Shanks, and Peter Reynolds. How Does Enterprise
Architecture Add Value to Organisations? Communications of the Association for Information
Systems, 28:141–168, 2011. ISSN 1529-3181.

Hüseyin Tanriverdi. Information technology relatedness, knowledge management capability, and
performance of multibusiness firms. MIS Quarterly, 29(2):311–334, 2005.

203

Bibliography

David J. Teece, Gary Pisano, and Amy Shuen. Dynamic capabilities and strategic management.
Strategic Management Journal, 18(7):509–533, 1997. ISSN 1097-0266.

The Open Group. TOGAF Version 9.1, 2011. URL http://pubs.opengroup.org/

architecture/togaf9-doc/arch/.

UK Department of Energy. Privatising Electricity: Command 322, HMSO, London, UK, 1988.

Rini van Solingen and Egon Berghout. The goal/question/metric method: A practical guide for
quality improvement of software development. McGraw-Hill, London and Chicago, 1999. ISBN
9780077095536.

Robert van Wessel, Pieter Ribbers, and and De Vries, Henk. On the effects of IS company stan-
dards on business process performance. In 4th Conference on Standardization and Innovation
in Information Technology, pages 254–267, 2005.

N. Venkatraman. IT-enabled business transformation: from automation to business scope re-
definition. Sloan management review, 35:73, 1994. ISSN 0019-848X.

Iris Vessey and Kerry Ward. The Dynamics of Sustainable IS Alignment: The Case for IS
Adaptivity. Journal of the Association for Information Systems, 14(6), 2013. ISSN 1536-
9323.

Iris Vessey, Venkataraman Ramesh, and Robert L. Glass. Research in information systems:
An empirical study of diversity in the discipline and its journals. Journal of Management
Information Systems, 19(2):129–174, 2002. ISSN 0742-1222.

Jan vom Brocke, Alexander Simons, Bjoern Niehaves, Kai Riemer, Ralf Plattfaut, and Anne
Cleven. Reconstructing the Giant: On the Importance of Rigour in Documenting the Liter-
ature Search Process. In Sue Newell, Edgar Whitley, Nancy Pouloudi, Jonathan Wareham,
and Lars Mathiassen, editors, Proceedings of the 17th European Conference on Information
Systems (ECIS), 2009.

Jos L.M. Vrancken. Layered models in IT standardization. In International Conference on Sys-
tems, Man and Cybernetics, pages 3862–3865, Taipei, Taiwan, 2006. IEEE. ISBN 1424400996.

Kenneth N. Waltz. Theory of international politics. Waveland Press, 2010. ISBN 1478610530.

D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’ networks. Nature, 393
(6684):440–442, 1998. ISSN 0028-0836. doi: 10.1038/30918.

Warren Weaver. Science and Complexity. American Scientist, 536(36):536–544, 1948.

Jane Webster and Richard T. Watson. Analyzing the Past to Prepare for the Future: Writing
a Literature Review. MIS Quarterly, 26(2):13–23, 2002.

Alain Wegmann. The Systemic Enterprise Architecture Methodology (SEAM). Business and IT
Alignment for Competitiveness, 2002.

Peter Weill, Mani Subramani, and Marianne Broadbent. Building IT infrastructure for strategic
agility. Sloan management review, 44, 2002. ISSN 0019-848X.

204

http://pubs.opengroup.org/architecture/togaf9-doc/arch/
http://pubs.opengroup.org/architecture/togaf9-doc/arch/

Bibliography

Simon Weiss, Stephan Aier, and Robert Winter. Institutionalization and the Effectiveness of
Enterprise Architecture Management. In Richard Baskerville and Michael Chau, editors,
Proceedings of the 34th International Conference on Information Systems, 2013.

Martin L. Weitzman. On diversity. The Quarterly Journal of Economics, 107(2):363–405, 1992.
ISSN 0033-5533.

Birger Wernerfelt. A resource-based view of the firm. Strategic Management Journal, 5(2):
171–180, 1984. ISSN 1097-0266.

Norbert Wiener. Cybernetics or Control and Communication in the Animal and the Machine.
MIT press, 1965. ISBN 026273009X.

Thomas Wilde and Thomas Hess. Forschungsmethoden der Wirtschaftsinformatik.
Wirtschaftsinformatik, 49(4):280–287, 2007. ISSN 0937-6429. doi: 10.1007/s11576-007-0064-z.

Robert Winter and Ronny Fischer. Essential Layers, Artifacts, and Dependencies of Enterprise
Architecture. Journal of Enterprise Architecture, 2007.

L. A. Wojcik and K. C. Hoffman. Systems of Systems Engineering in the Enterprise Context:
A Unifying Framework for Dynamics. In International Conference on System of Systems
Engineering, pages 22–29, 2006. doi: 10.1109/SYSOSE.2006.1652268.

Stephen Wolfram. Universality and complexity in cellular automata. Physica D: Nonlinear
Phenomena, 10(1):1–35, 1984. ISSN 0167-2789.

Stephen Wolfram. Cellular automata and complexity: collected papers. Addison-Wesley Reading,
1994.

Sewall Wright. Correlation and causation. Journal of agricultural research, 20(7):557–585, 1921.

Michael D. Wybo and Dale L. Goodhue. Using interdependence as a predictor of data standards.
Theoretical and measurement issues. Information & Management, 29(6):317–329, 1995. ISSN
0378-7206.

Ling Ying-Hui, Wang Li-Sheng, Guo Xiao-Fei, Xiang Hao, Zhang Yun-Hai, Ding Jian-Ping,
Zhang Zi-Jun, and Zhang Xiao-Rong. Assessment of genetic diversity among the twelve
Chinese meat goat breeds using Weitzman approach. JAPS, Journal of Animal and Plant
Sciences, 24(4):986–990, 2014. ISSN 1018-7081.

John A. Zachman. A framework for information systems architecture. IBM systems journal, 26
(3):276–292, 1987. ISSN 0018-8670.

Mohammad Esmaeil Zadeh, Gary Millar, and Edward Lewis. Mapping the Enterprise Archi-
tecture Principles in TOGAF to the Cybernetic Concepts–An Exploratory Study. In 45th
Hawaii International Conference on System Science (HICSS), pages 4270–4276, 2012. doi:
10.1109/HICSS.2012.422.

Rüdiger Zarnekow, Walter Brenner, and Dipl-Ök Jochen Scheeg. Untersuchung der Lebenszyk-
luskosten von IT-Anwendungen. Wirtschaftsinformatik, 46(3):181–187, 2004. ISSN 0937-6429.

205

Bibliography

Novica Zarvic and Roel J. Wieringa. An Integrated Enterprise Architecture Framework for
Business-IT Alignment. In Proceedings of the 18th International Conference on Advanced
Information Systems Engineering (CAiSE’06), pages 262–270. Namur University Press„ 2006.

206

Abbreviations

ACID Atomicity, Consistency, Isolation, Durability

CLD Causal Loop Diagram

CEO Chief Executive Officer

COTS Commercial of the shelf

CSV Comma-separated values

DBMS Database Management System

DWH Data Warehouse

DL Description Logic

DSL Domain Specific Language

EA Enterprise Architecture

EAM Enterprise Architecture Management

FTEs Full Time Equivalents

GQM Goal-Question-Metric

207

Bibliography

IS Information System

ISR Information Systems Research

IT Information Technology

JEE Java Enterprise Edition

MxL Model-based Expression Language

OLAP On-line Analytical Processing

OLTP On-line Transactional Processing

OS Operating System

SD System Dynamics

SQL Structured Query Language

SFD Stock-and-Flow Diagram

TOGAF The Open Group Architecture Framework

UML Unified Modeling Language

US United States

VGM Viable Governance Model

VSM Viable System Model

XSLT Extensible Stylesheet Language Transformation

208

APPENDIX A

Appendix

Metric patterns observed in industry

The following metric patterns have been observed in industry. Details about the observation
process as well as additional information can be found in Chapter 5.1. The documentation
follows the guidelines described by Matthes et al. (2012) and Schneider and Matthes (2015). If
a certain metric is also described in literature, the respective source is provided in the intended
section.

209

A. Appendix

Number of interfaces per business application

This measure indicates the number of in- and outgoing interfaces (information flows) of the

business application to other business applications.

Description

Ensure compliance

Foster innovation

Improve capability

 provision

Improve project

 execution

Increase disaster

 tolerance

Increase homogeneity

Increase management

 satisfaction

Increase transparency

Reduce operating cost

Reduce security

 breaches

Goals

Sum of numbers of

interfaces that are in-,

respectively outgoing

from the business

application to other

business applications.

Calculation

EAM-KPI-0054

Code

Mapping:

Organization-specific instantiation

Name in model Mapped name Contacts Data sources

Business Application

name

source

target

Information flow

protocol

KPI property Property value Observed values

Measurement frequency

Interpretation

KPI consumer

KPI owner

Target value

Planned value(s)

Tolerance value(s)

Escalation rule

Mocker (2009)

Sources

Information model

Properties:

Layers

S
tr

a
te

g
ie

s
 &

 P
ro

je
c
ts

P
ri

n
c
ip

le
s
 &

 S
ta

n
d
a
rd

s
 Business Capabilities

Organization & Processes

Business Services

Application & Information

Infrastructure Services

Infrastructure & Data

V
is

io
n
s
 &

 G
o
a
ls

Q
u
e
s
ti
o
n
s
 &

 K
P

Is

210

A. Appendix

Number of redundant business functions per business application

This measure indicates the number of redundant business functions supported by a business

application that are also covered by another business application.

Description

Ensure compliance

Foster innovation

Improve capability

 provision

Improve project

 execution

Increase disaster

 tolerance

Increase homogeneity

Increase management

 satisfaction

Increase transparency

Reduce operating cost

Reduce security

 breaches

Goals

Counting the number

of business functions

of a business

application that are

also supported by an

another business

application.

Calculation

EAM-KPI-0058

Code

Mapping:

Organization-specific instantiation

Name in model Mapped name Contacts Data sources

Business Application

name

supports

Business function

name

KPI property Property value Observed values

Measurement frequency

Interpretation

KPI consumer

KPI owner

Target value

Planned value(s)

Tolerance value(s)

Escalation rule

Mocker (2009)

Sources

Information model

Properties:

Layers

S
tr

a
te

g
ie

s
 &

 P
ro

je
c
ts

P
ri

n
c
ip

le
s
 &

 S
ta

n
d
a
rd

s
 Business Capabilities

Organization & Processes

Business Services

Application & Information

Infrastructure Services

Infrastructure & Data

V
is

io
n
s
 &

 G
o
a
ls

Q
u
e
s
ti
o
n
s
 &

 K
P

Is

211

A. Appendix

Number of used business applications by a functional domain

This measure indicates the number of used business applications by a functional domain of a

company.

Description

Ensure compliance

Foster innovation

Improve capability

provision

Improve project

execution

Increase disaster

tolerance

Increase homogeneity

Increase management

satisfaction

Increase transparency

Reduce operating cost

Reduce security

breaches

Goals

Sum of number of

used business

applications by a

functional domain of a

company.

Calculation

EAM-KPI-0063

Code

Mapping:

Organization-specific instantiation

Name in model Mapped name Contacts Data sources

Business Application

name

belongs to

Functional domain

name

KPI property Property value Observed values

Measurement frequency

Interpretation

KPI consumer

KPI owner

Target value

Planned value(s)

Tolerance value(s)

Escalation rule

Information model

Properties:

Layers

S
tr

a
te

g
ie

s
 &

 P
ro

je
c
ts

P
ri

n
c
ip

le
s
 &

 S
ta

n
d
a
rd

s Business Capabilities

Organization & Processes

Business Services

Application & Information

Infrastructure Services

Infrastructure & Data

V
is

io
n
s
 &

 G
o
a
ls

Q
u
e
s
ti
o
n
s
 &

 K
P

Is

Schneider et al. (2015)

Sources

212

A. Appendix

Standard conformity of business applications

This measure indicates the standard conformity of business applications by classifying business

applications of a domain according to their customization level. The customization level of a

business application can be buy, make or buy and customize.

Description

Ensure compliance

Foster innovation

Improve capability

 provision

Improve project

 execution

Increase disaster

 tolerance

Increase homogeneity

Increase management

 satisfaction

Increase transparency

Reduce operating cost

Reduce security

 breaches

Goals

For calculating the

standard conformity for a

specific domain, transform

each business

application’s customization

level to 1 (buy), 3 (make),

or 5 (buyAndCustomize)

and take the average

according to their daily

practice

Calculation

EAM-KPI-0064

Code

Mapping:

Organization-specific instantiation

Name in model Mapped name Contacts Data sources

Business Application

name

customizationLevel

belongs to

Functional domain

name

CustomizationLevel

buy

make

buyAndCustomize

KPI property Property value Observed values

Measurement frequency

Interpretation

KPI consumer

KPI owner

Target value

Planned value(s)

Tolerance value(s)

Escalation rule

Schneider et al. (2015)

Sources

Information model

Properties:

Layers

S
tr

a
te

g
ie

s
 &

 P
ro

je
c
ts

P
ri

n
c
ip

le
s
 &

 S
ta

n
d
a
rd

s
 Business Capabilities

Organization & Processes

Business Services

Application & Information

Infrastructure Services

Infrastructure & Data

V
is

io
n
s
 &

 G
o
a
ls

Q
u
e
s
ti
o
n
s
 &

 K
P

Is

213

A. Appendix

Number of infrastructure components used by business application

This measure indicates the number of infrastructure components used by a specific business

application.

Description

Ensure compliance

Foster innovation

Improve capability

provision

Improve project

execution

Increase disaster

tolerance

Increase homogeneity

Increase management

satisfaction

Increase transparency

Reduce operating cost

Reduce security

breaches

Goals

Sum of numbers of

infrastructure

components which are

used by a business

application.

Calculation

EAM-KPI-0065

Code

Mapping:

Organization-specific instantiation

Name in model Mapped name Contacts Data sources

Business Application

name

uses

Infrastructure

component

name

KPI property Property value Observed values

Measurement frequency

Interpretation

KPI consumer

KPI owner

Target value

Planned value(s)

Tolerance value(s)

Escalation rule

Schneider et al. (2015)

Sources

Information model

Properties:

Layers

S
tr

a
te

g
ie

s
 &

 P
ro

je
c
ts

P
ri

n
c
ip

le
s
 &

 S
ta

n
d
a
rd

s Business Capabilities

Organization & Processes

Business Services

Application & Information

Infrastructure Services

Infrastructure & Data

V
is

io
n
s
 &

 G
o
a
ls

Q
u
e
s
ti
o
n
s
 &

 K
P

Is

214

A. Appendix

Functional scope of a business application

This measure indicates the functional scope of a business application.

Description

Ensure compliance

Foster innovation

Improve capability

provision

Improve project

execution

Increase disaster

tolerance

Increase homogeneity

Increase management

satisfaction

Increase transparency

Reduce operating cost

Reduce security

breaches

Goals

For calculating the

functional scope of a

business application, one

can take the

functionPoints of a

business application or

the sum of business

functions which are

supported by the

business application.

Calculation

EAM-KPI-0066

Code

Mapping:

Organization-specific instantiation

Name in model Mapped name Contacts Data sources

Business Application

name

functionPoints

supports

Business function

name

KPI property Property value Observed values

Measurement frequency

Interpretation

KPI consumer

KPI owner

Target value

Planned value(s)

Tolerance value(s)

Escalation rule

Schneider et al. (2015)

Sources

Information model

Properties:

Layers

S
tr

a
te

g
ie

s
 &

 P
ro

je
c
ts

P
ri

n
c
ip

le
s
 &

 S
ta

n
d
a
rd

s Business Capabilities

Organization & Processes

Business Services

Application & Information

Infrastructure Services

Infrastructure & Data

V
is

io
n
s
 &

 G
o
a
ls

Q
u
e
s
ti
o
n
s
 &

 K
P

Is

215

	Table of Content
	List of Figures
	List of Tables
	List of Examples
	1 Motivation
	1.1 Problem statement and research questions
	1.2 Contributions of this thesis
	1.3 Epistemological position and research design
	1.4 Outline of this thesis

	2 Foundations and related work
	2.1 Complex adaptive systems
	2.1.1 General systems theory
	2.1.2 Complex systems theory

	2.2 Enterprise architecture management
	2.2.1 Enterprise architecture
	2.2.2 Enterprise architecture management and business-IT alignment
	2.2.3 IT standardization and diversification

	2.3 Resource-based view of the firm
	2.3.1 Competitive advantage based on superior resources
	2.3.2 Organizational agility and digital options

	2.4 Complexity-based approaches to EAM
	2.4.1 A framework based on identified complexity notions
	2.4.2 An overview about EA complexity literature

	3 Application landscape complexity and diversity perceptions in practice
	3.1 Application landscape complexity perception in practice
	3.1.1 Focus group interview approach
	3.1.2 Drivers and consequences of application landscape complexity

	3.2 Application landscape diversity perceptions in practice
	3.2.1 Theoretical foundation and propositions
	3.2.2 Survey design
	3.2.3 Data analysis

	3.3 The role of diversity for application landscape complexity
	3.3.1 Theoretical insights for systems in general
	3.3.2 Empirical insights for application landscapes

	4 A conceptual framework for application landscape diversity
	4.1 Description logics and enterprise architecture meta-models
	4.1.1 Introduction to description logics
	4.1.2 Examples of EA meta-models
	4.1.3 Diversity considerations based on different EA meta-model elements

	4.2 Variation: Differences between individuals
	4.2.1 Derivation and definition
	4.2.2 Exemplary application

	4.3 Variety: Different concepts to describe a set of individuals
	4.3.1 Derivation and definition
	4.3.2 Exemplary application

	4.4 Balance: Distribution of individuals among concepts
	4.4.1 Derivation and definition
	4.4.2 Exemplary application

	4.5 Disparity: Degree of difference among concepts
	4.5.1 Derivation and definition
	4.5.2 Exemplary application

	4.6 A unified view on application landscape diversity
	4.6.1 Conceptual framework
	4.6.2 Applications to enterprise architectures

	5 Measuring structural complexity and diversity of application landscapes
	5.1 Complexity and diversity indicators used in practice
	5.1.1 Data collection process
	5.1.2 Observed metric patterns
	5.1.3 Integrated information model

	5.2 Complexity and diversity indicators presented in literature
	5.2.1 Data collection process
	5.2.2 Identified quantification approaches

	5.3 Benefits and drawbacks of existing indicators
	5.3.1 Assessment framework
	5.3.2 Evaluation data description
	5.3.3 Indicator assessment results

	5.4 Metric selection and development
	5.4.1 The Goal-Question-Metric approach
	5.4.2 Reusing metrics for variety and balance quantification
	5.4.3 A novel metric for balance quantification
	5.4.4 A novel metric for disparity quantification

	5.5 Integrated software support for diversity metric calculations
	5.5.1 Problem identification and motivation
	5.5.2 Objectives of the solution
	5.5.3 Design and development
	5.5.4 Prototype demonstration
	5.5.5 Technical evaluation and conclusion

	6 Using system dynamics to support application landscape design decisions
	6.1 System dynamics foundations
	6.1.1 Learning in and about complex dynamic systems
	6.1.2 Causal Loop Diagrams
	6.1.3 Stock-and-Flow Diagrams

	6.2 System dynamics in enterprise architecture management
	6.2.1 Literature review approach
	6.2.2 Literature review results

	6.3 A causal loop diagram modeling application landscape diversity
	6.3.1 System dynamics modeling design guidelines
	6.3.2 Modeling approach
	6.3.3 Dynamic hypotheses
	6.3.4 Integrated CLD model

	6.4 Model evaluation and additional guidelines
	6.4.1 Evaluation setting
	6.4.2 Interview results
	6.4.3 EAM-specific modeling guidelines

	7 Artifact evaluation
	7.1 Evaluation approach
	7.2 Case 1: Supporting single application design at a large financial service provider
	7.3 Case 2: Supporting standardization at a mid-sized manufacturing company
	7.4 Case 3: Supporting technology governance at a large insurance company
	7.5 Case 4: Supporting technology diversification at a large automotive company

	8 Conclusion
	8.1 Summary of results
	8.2 Critical reflection
	8.3 Outlook

	Bibliography
	Abbreviations
	A Appendix

