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Abstract— As the application of probabilistic models in
robotic applications increases, the necessity of a systematic
robot-control method that considers the effects of multiple
uncertainty sources becomes more evident. Motivated by human
sensorimotor findings, in this work we study the stochastic
locally optimal feedback control problem with high-order cost
statistics where dynamics have multiple additive noise sources
and cost variability produced by each uncertainty source
is evaluated marginally. We present risk-sensitive and cost-
cumulant solutions for this problem for non-linear dynamics
and non-quadratic costs. Locally optimal solutions are found by
iteratively performing a linear quadratic approximation around
a nominal trajectory, solving the local problem and updating the
trajectory until convergence. Simulation results of a point mass
robot and a two-link manipulator validate the applicability of
the proposed approach and illustrate its peculiarities.

I. INTRODUCTION

The use of probabilistic models and estimation methods

in robotics is rapidly increasing. In the quest of producing

autonomous cognitive robots, probabilistic methods are the

most recurrent machine learning tool, with applications such

us sensing the environment and the robot’s state [1] or

learning dynamical models of task execution behavior [2].

When aiming for robot control based on such models, the

decision-making process has to cope with their intrinsic

probabilistic uncertainty. Although the usual approach con-

siders the expectation of uncertain estimations, the level of

uncertainty itself might be a key parameter to enhance task

performance. As an example, consider the task of grasping

an object with uncertain pose. Its expected value is only

a coarse estimation of its probabilistic representation. Its

variance, though, may reveal more certainty in some degrees

of freedom; control design targeting those more aggressively

while allowing more variability in others may be key for

task success. Similarly, in a navigation task though a clut-

tered environment where obstacles have different levels of

uncertainty, the possibility of collision may vary significantly

depending on the obstacles’ variances. In order to exploit

the potential of probabilistic estimations, a systematic and

flexible control approach that considers potential variability

appears as a necessary step.

Recent findings suggest that human sensorimotor behavior

is the result of the minimization of a cost function with

explicit consideration of noise in the dynamics [3]. The

standard treatment in these settings is to minimize the

expected value of the resulting stochastic cost. In contrast,
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human decisions under variability have been more accurately

modeled by risk-sensitive decision-makers [4], which also

considers cost variance. These results motivate us to consider

high order cost statistics for control in robotic applications.

Several works explore the synthesis of uncertainty-

dependent decisions in robotic settings from an optimality

perspective. In order to do so, the performance measure

applicable to deterministic settings is modified in order to

account for the uncertainty’s variance. For instance, en-

hanced collision avoidance is achieved including an additive

cost term representing the probability of collision in [5].

Similarly, variance-dependent stiffness is synthesized adding

prediction variance to the performance measure as in [6].

The inverse of the variance is also used as a weighting

term for measuring distance to desired states in [7] or [8].

The heterogeneity of these solutions highlights the lack of a

systematic approach to uncertainty-dependent control.

Local approximations to non-linear systems are an ef-

fective solution to nonlinear robot control problems. The

iterative linear quadratic Gaussian (iLQG) method presented

in [9] which is a simplified version of Stochastic Differential

Dynamic Programming (SDDP) [10] is a recurrent example.

The resulting locally optimal feedback policies have been

applied in many robot navigation problems combined with

belief roadmaps [11] or adding the state variance as a part of

an augmented state [12]. All these approaches consider the

expected value of the random cost as a performance measure,

neglecting cost variance.

In this work we study the stochastic locally optimal

feedback control problem considering high-order cost statis-

tics. Dynamics are assumed to have multiple additive noise

sources and cost variability produced by each uncertainty

source is evaluated marginally. We present risk-sensitive

and cost-cumulant solutions for this problem for non-linear

dynamics and non-quadratic costs. Locally optimal solutions

are found by iteratively performing a linear quadratic approx-

imation around a nominal trajectory, solving the local prob-

lem and updating the trajectory until convergence. We further

study the high-order statistics evaluation of static uncertainty

sources in two common robotic problems. Simulation results

of a point mass robot and a two-link manipulator validate the

applicability of the proposed approach.

The rest of this paper is organized as follows. Section II

formally defines the problem and approach. Section III

and Section IV present the risk-sensitive and cost-cumulant

solutions for the linear quadratic setting. The main iteration

of the algorithm is described in Section V. Experimental

simulations are illustrated in Section VI.



II. PROBLEM SETTING AND APPROACH

Consider a robot with dynamics given by the completely

observed controlled diffusion process

dxr(t) = fr(xr(t),u∗(t))dt+ GrdBr(t) , (1)

where xr ∈ R
n, u∗ ∈ R

m represent the robot’s state and

control input respectively, Br is a n-dimensional standard

Brownian motion noise defined in the complete probability

space (Ωr,Fr,Pr), Gr ∈ R
n×n is its infinitesimal vari-

ance and xr
0 is the initial state. Additionally, let xg ∈ R

n

and xo ∈ R
n be a desired trajectory to follow and the state

of an obstacle respectively

dxg(t) = fg(xg(t))dt+ GgdBg(t)

dxo(t) = fo(xo(t))dt+ GodBo(t) , (2)

where Bg and Bo are n-dimensional standard

Brownian motion noises defined in complete probability

spaces (Ωg,Fg,Pg) and (Ωo,Fo,Po) respectively,

Gg ∈ R
n×n and Go ∈ R

n×n their infinitesimal variances

and x
g
0 and xo

0 their respective initial states 1.

The measure evaluating the performance of a candidate

control law u∗(·) is given by cost function

J(u∗(·)) = hTc
(xr(Tc), x

g(Tc), x
o(Tc))

+

Tc∫

t=0

h(t,xr(t),xg(t),xo(t),u∗(t))dt , (3)

where Tc is the time horizon, h is the cost rate and hTc

the final cost. This performance index is usually designed

penalizing both the distance to the desired goal xg and the

necessary control efforts u∗ while favoring configurations

distant to obstacles xo.

As (3) is usually defined in terms of errors between robot

and obstacle and robot and goal and in order to keep a

compact formulation, let ξ∗ be the joint state such that

ξ∗ = [(xg − xr) (xo − xr)]T. (4)

The robot-obstacle-goal dynamics are then compactly formu-

lated as

dξ∗(t) = f(ξ∗(t),u∗(t))dt+
S∑

s=1

GsdBs(t) , (5)

where S is the number of independent Brownian mo-

tions (three in our particular case), Bs is the correspond-

ing n-dimensional standard Brownian motion noise defined

in the s-th probability space (Ωs,Fs,Ps) for s = 1 · · ·S,

and Gs and f are defined such that (1), (2) and (4) hold.

The optimal control solution is given by the control

law u∗(·) that minimizes (3) constrained to dynamics (5)

and (4). Due to the stochastic nature of (5), the cost to be

optimized is a random variable. Hence, prior to finding an op-

timal solution, an interpretation of the random cost in terms

1The fact that all elements (robot, goal and obstacle) follow stochastic
dynamics might appear as an extreme case. However, the application of
probabilistic models for approximating plant dynamics [6], dynamic obstacle
motions [13] or desired goal dynamics [14] gives cause for this setting.

of a deterministic performance measure is necessary. A valid

approach consists of evaluating a statistical measure of (3)

usually limited to the expected value, i.e. EP[J ] and where

the expectation is defined in the product probability space of

all uncertainty sources, i.e. the probability space (Ω,F ,P)
given by

Ω = Ω1 × Ω2 × · · · × ΩS F = F1 ×F2 × · · · × FS ,
(6)

where × denotes the Cartesian product and P is the joint

measure defined on the measurable space (Ω,F). However,

this formulation has two drawbacks: (i) all statistics further

than the expected value are neglected even when higher-order

measures enable richer uncertainty-dependent decisions and

(ii) the evaluation of the statistics in probability space (6)

considers all random variables jointly. This limits the way

cost variability influence decisions: it might be beneficial

that cost fluctuations induced marginally by the obstacle’s

randomness influence the robot’s decisions in a different

manner as the goal’s stochasticity.

Concerning the first issue, we consider an arbitrary linear

combination of K high-order cumulants

κ
(1)
P

(J) +
K∑

r=2

γrκ
(r)
P

(J) , (7)

where κ
(r)
P

denotes the r-th cumulant calculated in probabil-

ity space (Ω,F ,P). In the following we will informally refer

to higher order statistical terms present in the summation

of (7) as cost variability. Note that high order statistical

terms are also denoted risk measures in modern portfolio

theory [15]. Cumulants are derived by means of the cumulant

generating function

ΨP(θ) = log EP[exp{θJ}] .

Its power series expansion is given by

ΨP(θ) =
∞∑

r=1

θr

r!
κ
(r)
P

(J) , (8)

where

κ
(r)
P

(J) =
∂rΨP(θ)

∂θr

∣∣∣∣
θ=0

, (9)

providing a compact way to calculate the desired cumulants.

Regarding the second issue, in order to evaluate the

cost variability produced marginally by the s-th stochastic

process, we define its corresponding marginal dynamics as

dξ∗(t) = f(ξ∗(t),u∗(t))dt+ GsdBs(t) . (10)

We then aim for the analysis of (7) constrained to each of

the marginal dynamics. The optimization criterion considered

through this work is given by

min
u(·)

Ξ = min
u(·)

1

S

( S∑

s=1

κ
(1)
Ps

(J) +

K∑

r=2

γr,sκ
(r)
Ps

(J)
)

(11)

where the cumulants defined in the s-th probability space are

constrained to the s-th marginal dynamics (10). Although



we do not solve the original problem with dynamics (5)

this formulation provides more flexible decision-makers,

enabled only by means of a marginal treatment of uncertainty

sources. Instrumental in this problem is the choice of the

weighting factors: cost variability terms with a positive

weighting factor γr,s will increase the overall cost while

negative weighting factors produce the opposite effect. When

all γr,s = 0 the expected value is recovered, which neglects

any risk measure. In line with portfolio theory nomenclature,

we will denote these three cases where γr,s > 0, γr,s = 0
and γr,s < 0 as risk-averse, risk-seeking and risk-neutral

respectively, as a description of the optimizer’s attitude

towards a certain risk measure.

Interestingly, risk-sensitive control [16] is a particular

case of cost cumulant minimization [17], where weighting

factors are given by the McLaurin coefficients of the power

series (8). In fact, the risk sensitive functional defined in

the s-th probability space is given by θ−1
s ΨPs

(θs) and we

could similarly formulate problem (11) when K = ∞ as

min
u

∗(·)
Ψ = min

u
∗(·)

1

S

S∑

s=1

θ−1
s ΨPs

(θs)

= min
u

∗(·)

1

S

( S∑

s=1

κ
(1)
Ps

(J) +

∞∑

r=2

θr−1
s

r!
κ
(r)
Ps

(J)
)
, (12)

by fixing the the high order statistics weighting factors to the

above-mentioned McLaurin coefficients divided by θs. The

cost functional to minimize reduces therefore to an average

of standard risk-sensitive functionals. Due to its relevance

we will explore both the risk-sensitive (12) and the K-cost-

cumulant control (11) problems.

A. Approach

The solution of (12) or (11) with non-linear dynam-

ics and arbitrary costs is in general not attainable. As

an alternative, we aim for a local optimum by means

of a numerical solution. By linearizing the dynamics and

quadratically approximating the cost around a discretized

nominal trajectory
(
ξ∗0···T ,u

∗

0···T−1

)
, a discrete-time linear

quadratic (LQ) approximation of state and control deviations,

i.e. ξ = (δξ∗ − ξ∗) and u = (δu∗ − u∗) is obtained. Its

solution is a gradient towards the local optimum, found by

iteratively updating the nominal trajectory and repeating the

whole process until convergence.

The local deviations problem is defined as follows. Time

is discretized in T steps with sample time ∆ = Tc/(T ). The

linearized marginal dynamics at time step k are given by

ξk+1 = Akξk +Bkuk + ǫsk , (13)

where Ak ∈ R
n×n, Bk ∈ R

n×m, ǫsk ∈ R
n is an indepen-

dent identically distributed Gaussian random variable such

that N (ǫsk|0,Σ
s
k) and x0 = 0. These quantities are calcu-

lated as

Ak = In +∆
∂fk
∂ξ∗k

Bk = ∆
∂fk
∂u∗

k

Σs
k = ∆Gs

k
2 .

The control input is constrained to the form

uk = lk + Lkxk , (14)

where lk is an affine input and Lk ∈ R
m×n is the feedback

matrix. The cost functional (3) results in the quadratic

approximation

J(ξ0,u0···T−1) =
1

2
ξTTQT ξT + ξTTqT +

T−1∑

k=0

1

2
ξTkQkξk+

+ ξTkqk + qk +
1

2
uT

kRkuk + uT

krk, (15)

where Qk ∈ R
n×n, Rk ∈ R

m×m, qk ∈ R
n and rk ∈ R

m

and qk ∈ R, with Qk ≥ 0 and Rk > 0, are computed as

qk = ∆hk qk = ∆
∂hk

∂ξ∗k
Qk = ∆

∂2hk

∂(ξ∗k)
2

rk = ∆
∂hk

∂u∗

k

Rk = ∆
∂2hk

∂(u∗

k)
2
.

The local deviations problem consists of minimizing (11)

or (12) with J as in (15) and constrained to (13) and (14). In

Section III, we first explore the risk-sensitive solution solving

problem (12). Results on cost cumulant control follow in

Section IV solving the more general problem (11). The main

iteration which drives the nominal trajectory towards the

local optimum is explained in Section V.

III. RISK-SENSITIVE SOLUTION

In this section we study the solution to the average of

marginal risk-sensitive LQ problems Ψ. A discrete-time LQ

optimal control problem is solved by means of dynamic

programming applying Bellman’s optimality principle.

For simplicity, consider first the risk-sensitive problem in

a single probability space. The cost function to minimize is

then θ−1ΨP(θ) constrained to dynamics

ξk+1 = Akξk +Bkuk + ǫk , (16)

where ǫk ∈ R
q is an independent Gaussian random variable

with N (ǫk|0,Σk). Assume the system is at sample time k.

Given a control law uk···T−1 in the form (14) and having

observed ξk, the remaining cost is calculated by means of

the backwards recursion

θ−1ΨP(θ, ξk,uk···T−1) = J(ξk,uk)

+ θ−1ΨP(θ, ξk+1,uk+1···T−1) , (17)

where the quantity θ−1ΨP(θ, ξk,uk···T−1) is denoted the

cost-to-go.

The following lemma solves (17) in closed form yielding

a quadratic form on ξk.

Lemma 1. If (Σk
−1 − θWk+1) > 0 for k = 0 · · ·T − 1, the

analytic solution to (17) is given recursively by the quadratic

form

θ−1ΨP(θ, ξk,uk···T−1) =
1
2ξ

T

kWkξk + ξTkwk + wk , (18)



where

Wk = Qk +AT

kW̃k+1Ak + LT

kHkLk +GT

kLk + LT

kG

(19)

wk = qk +AT

k w̃k+1 + LT

kHklk + LT

kgk +GT

k lk (20)

wk = qk + w̃k+1 +
1

2
lTkHlk + lTkgk (21)

with

Hk = Rk +BT

k W̃k+1Bk Gk = BkW̃k+1Ak

gk = rk +BT

k w̃k+1

and final conditions WN = QN ,wN = qN , wN = qN and

W̃k+1 = Wk+1 + θWk+1(Σk
−1 − θWk+1)

−1Wk+1 (22)

w̃k+1 = wk+1 + θWk+1(Σk
−1 − θWk+1)

−1wk+1 (23)

w̃k+1 = wk+1 + θwk+1
T(Σk

−1 − θWk+1)
−1wk+1

−
1

2
θ−1 logFk , (24)

with Fk = |Iq − θWk+1Σk| and FT = 1.

Proof. The solution to the Bellman equation (17) entails only

some complication in the term θ−1ΨP(θ, ξk+1,uk+1···T−1).
Assuming quadratic form (18) holds yields

θ−1ΨP(θ, ξk+1,uk+1···T−1) =

θ−1 log EP[exp{θ(ξ
T

k+1Wk+1ξk+1 + ξTwk+1 + wk+1)}] .

Let now Mk = Akξk + Bkuk. Considering the system
dynamics (16), the expression for the expectation is given
by the Gaussian integral

1√
(2π)n|Σk|

exp
{
θ
(1
2
M

T

kWk+1Mk +M
T

kwk+1 + wk+1

)}

·

∫
exp

{
−

1

2
ǫ
T

k(Σ
−1
k − θWk+1)ǫk

+ ǫ
T

k

(
2θWk+1Mk + θwk+1

)}
dǫk .

If (Σ−1
k − θWk+1) > 0, this expression has analytical

solution [16] yielding
√

|
(
Σ−1

k − θsWk+1

)
−1

|

|Σk|

· exp {θs
1

2
M

T

k W̃k+1Mk + θsM
T

k w̃k+1 + θsw̃k+1}

where W̃k+1, w̃k+1, and w̃k+1 are defined as in (22), (23)

and (24). Substituting into (17) and constraining uk to (14)

yields expressions (19), (20) and (21). �

The cost-to-go for problem (12), i.e. the remaining average

cost of all marginal problems at time step k, follows now

straightforwardly as

Ψ(ξk,uk···T−1) =
1

2
ξTkW kξk + ξTkwk + wk , (25)

where

W k =
1

S

S∑

s=1

W s
k wk =

1

S

S∑

s=1

= ws
k wk =

1

S

S∑

s=1

ws
k

and where W s
k , ws

k and ws
k are the quadratic coefficients

resulting from applying lemma 1 in the s-th probability space

constrained to the s-th marginal dynamics, i.e. with Σk = Σs
k

and θ = θs. Note that the overall cost given control pol-

icy u0···T−1 corresponds to the cost-to-go at k = 0,

i.e. Ψ(ξ0,u0···T−1).
The risk-sensitive solution is computed applying Bell-

man’s optimal equation, i.e. minimizing (25) w.r.t Lk and lk
at each step of the backwards recursion yielding

Lk =− (Rk +BT

k W̃ k+1Bk)
−1(BT

k W̃ k+1Ak)

lk =− (Rk +BT

k W̃ k+1Bk)
−1(BT

k w̃k+1 + rk) , (26)

where

W̃ k =
1

S

S∑

s=1

W̃ s
k w̃k =

1

S

S∑

s=1

= w̃
s
k w̃k =

1

S

S∑

s=1

w̃s
k ,

and where W̃ s
k , w̃

s
k and w̃s

k follow from computing (25).

IV. COST-CUMULANT SOLUTION

In this section we approach the cost-cumulant control

problem (11) studied in [15] for the continuous-time case

and in [18] for the discrete-time case. We extend it here

to our problem setting with a more general family of LQ

systems and explore the average of marginal cost-cumulant

problems. In contrast to the risk-sensitive solution, the cost-

cumulant control problem allows more flexible decision-

makers as the number of considered cumulants and their

respective weighting factors are design parameters.

Following a similar treatment to the previous section, we

first consider a single probability space and dynamics (16).

From lemma 1, the cumulant generating function of the cost-

to-go at time step k is given by

ΨP(θ, ξk,uk···T−1) = θ
(1
2
ξTkWkξk + ξTkwk + wk

)
.

Recall that the r-th cumulant is calculated by means of

expression (9). In the following, in line with previous work,

the notation f(θ)[r] denotes the r-th derivative of f(θ) w.r.t θ

at point θ = 0, i.e. f(θ)[r] = ∂rf(θ)
∂θr

∣∣∣
θ=0

. An r = 0 index

corresponds to the function itself at θ = 0. Additionally, Cj
r

denotes the binomial coefficient
(
j
r

)
.

Cost cumulants are calculated recursively in a similar

manner to [18], yielding the following lemma.

Lemma 2. The d-th cost cumulant of the random cost (15)

at sample time k is given by

κ
(d)
P

(Jk···T−1) = d
(

1
2ξ

T

kW
[d−1]
k ξk + ξTkw

[d−1]
k + w

[d−1]
k

)

where for d = 1

W
[0]
k =Qk +AT

kW̃
[0]
k+1Ak + LT

kH
[0]
k Lk +G

[0]T
k Lk + LT

kG
[0]

k

w
[0]
k =qk +AT

k w̃
[0]
k+1 + LT

kH
[0]
k lk + LT

kg
[0]
k +G

[0]T
k lk

w
[0]
k =qk + w̃

[0]
k+1 +

1

2
lTkH

[0]
k lk + lTkg

[0]
k



with

H
[0]
k = Rk +BT

k W̃
[0]
k+1Bk G

[0]
k = BT

k W̃
[0]
k+1Ak

g
[0]
k = rk +BT

k w̃
[0]
k+1

and final conditions W
[0]
N = QT ,w

[0]
N = qT , w

[0]
N = qT and

for d > 1

W
[r]
k =AT

kW̃
[r]
k+1Ak + LT

kH
[r]
k Lk +G

[r]T
k Lk + LT

kG
[r]
k

w
[r]
k =AT

k w̃
[r]
k+1 + LT

kH
[r]
k lk + LT

kg
[r]
k +G

[r]T
k lk

w
[r]
k =w̃

[r]
k+1 +

1

2
lTkH

[r]
k lk + lTkg

[r]
k

with

H
[r]
k = BT

k W̃
[r]
k+1Bk G

[r]
k = BT

k W̃
[r]
k+1Ak

g
[r]
k = BT

k w̃
[r]
k+1

and final conditions W
[r]
N = 0n×n,w

[r]
N = 0, w

[r]
N = 0 and

W̃
[r]
k+1 = W

[r]
k+1 + r

r−1∑

j=0

Cj
r−1W

[j]
k+1ΣkW̃

[r−1−j]
k+1 (27)

w̃
[r]
k+1 = w

[r]
k+1 + r

r−1∑

j=0

Cj
r−1W

[j]
k+1Σkw̃

[r−1−j]
k+1 (28)

w̃
[r]
k+1 = w

[r]
k+1 + r

r−1∑

j=0

Cj
r−1w

[j]
k+1Σkw̃

[r−1−j]
k+1

+
T−1∑

t=k

Tr(H
[r−1]
t ) (29)

with H
[r]
t = (r + 1)W

[r]
t+1Σt + r

r−1∑
j=1

Cj
r−1W

[j]
t+1ΣtH

[r−1−j]
t .

Proof. The results for W
[r]
k , w

[r]
k and w

[r]
k are straightfor-

ward from their definitions in (19), (20) and (21). For the

proof of expression W̃
[r]
k+1 and H

[r]
t see [18]. The solution

to w̃
[r]
k+1 and w̃

[r]
k+1 is derived with the same procedure. The

definition of w̃k+1 from (23) is reformulated as

w̃k+1 = wk+1 + θWk+1(Σ
−1
k − θWk+1)

−1wk+1

= wk+1 − (Σ−1
k − θWk+1 − Σ−1

k )

(Σ−1
k − θWk+1)

−1wk+1

= (Iq − θWk+1Σk)
−1wk+1 ,

from which we can write

w̃k+1 = wk+1 + θWk+1Σkw̃k+1 .

Applying Leibniz’s Theorem twice we get

w̃
[r]
k+1 = w

[r]
k+1 + θ(Wk+1Σkw̃k+1)

[r] + r(Wk+1Σkw̃k+1)
[r−1]

= w
[r]
k+1 + θ(Wk+1Σkw̃k+1)

[r] + r

r−1∑

j=0

Cj
r−1W

[j]
k+1Σkw̃

[r−1−j]
k+1 ,

which after evaluating θ = 0 yields (28).

The procedure for w̃
[r]
k+1 is similar. �

The evaluation of the average of marginal cost-cumulants

from (11) at time step k follows immediately as

Ξ(ξk) =
1
2ξ

T

kŴkξk + ξTk ŵk + ŵk , (30)

where

Ŵk =
1

S

S∑

s=1

K∑

r=1

rγr,sW
s
k
[r−1]

ŵk =
1

S

S∑

s=1

K∑

r=1

rγr,sw
s[r−1]
k+1

ŵk =
1

S

S∑

s=1

K∑

r=1

rγr,sw
s
k
[r−1]

and where W s
k
[r] and ws

k
[r] and ws

k
[r] are the quadratic

coefficients of the r-th cumulant resulting from applying

lemma 2 in the s-th probability space constrained to the s-th

marginal dynamics and γ1,s = 1.

The solution to the cost cumulant control problem (11)

follows from minimizing (30) w.r.t Lk and lk at each step

of the backwards recursion yielding

Lk =− (Rk +BT

k

̂̃
W k+1Bk)

−1(BT

k

̂̃
W k+1Ak)

lk =− (Rk +BT

k

̂̃
W k+1Bk)

−1(BT

k
̂̃wk+1 + rk) , (31)

where

̂̃
W k =

1

S

S∑

s=1

K∑

r=1

γr,sW̃
s[r−1]
k

̂̃wk =
1

S

S∑

s=1

K∑

r=1

γr,sw̃
s[r−1]
k

and where W̃
s[r−1]
k+1 and w̃

s[r−1]
k+1 result from the computation

of the r-th cumulant in the s-th probability space in (30).

The effect of weightings γr,s on the resulting cost (30)

is evident: risk-aversion is achieved by selecting γr,s > 0
and thereby increasing the resulting quadratic coefficients.

Selecting γr,s < 0 has the opposite effect yielding a risk-

seeking evaluation.

V. MAIN ITERATION

A numerical approximation that computes locally optimal

solutions in nonlinear and non-quadratic problems requires a

procedure that iteratively approximates and updates a nomi-

nal trajectory. The main iteration of our approach follows the

iLQG algorithm presented in [9]. In this section we summa-

rize it pointing out the subtle changes that arise due to the

different problem setting. The resulting algorithm is either

an iterative Linear Exponential Quadratic Regulator (iLEQR)

for the risk-sensitive case or an iterative K-Cost Cumulant

Regulator (iKCCR) for the cost cumulant optimization.

In order to find a local optimum and given an ini-

tial state ξ∗0, the algorithm iterates around the nomi-

nal control trajectory u∗

0···T−1 by calculating the opti-

mal control deviations that improve the expected perfor-

mance. At the i-th iteration, the optimal solution is de-

noted u
∗(i)
0···T−1 = u

∗(i)
0···T−1 + L

(i)
0···T−1ξ0···T−1 and is up-

dated to obtain the next u
∗(i+1)
0···T−1 following the next steps:

1) The corresponding state trajectory ξ∗0···T is computed

simulating the discretized dynamics, for instance by

Euler integration .i.e. ξ∗k+1 = ξ∗k +∆f(ξ∗k,u
∗(i)
k ).
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Fig. 1. Optimal trajectories and feedback gains for a 2D point mass damper robot xr tracking goal xg with noisy passive mass-damper system dynamics
and where γn = 2 and γp = 7 for a horizon of Tc = 0.5s. Initial states of robot and goal are x

r
0 = [0 0], ẋr

0 = [0 0], xg
0 = [0.1 0.1] and ẋ

g
0 = [1 −0.5].

Results are shown every 0.02s. Ellipses represent the corresponding feedback gain matrices in terms of their eigenvectors.

2) An LQ approximation of state and control de-

viations, i.e. ξk = δξ∗k − ξ∗k and uk = δu∗

k − u∗

k

around (ξ∗0···T ,u
∗

0···T−1) is computed as explained in

Section II-A.

3) The optimal deviations law uk = lk + Lkξk is com-

puted by means of either the risk-sensitive (26) or cost-

cumulant solution (31).

4) As solution uk holds only in the close vicinity of

the current nominal trajectory, a line search algo-

rithm aims for an adapted step in the feedforward

component of uk that yields a policy improvement

as u
∗(i+1)
k (α) = u

∗(i)
k + αlk + L

(i+1)
k ξk, where α is

the line search parameter. If it converges, finish, oth-

erwise go back to 1).

Note that the evaluation of the expected performance in

step 4) is not straightforward. As analytical expressions

of (11) or (12) for arbitrary problems are rarely available,

an LQ approximation of the cost around the new trajectory

is obtained as in step 2) and its expected performance is

computed by means of lemma 1 or 2 respectively.

VI. EVALUATION

In order to illustrate the peculiarities of the proposed

approach in simple robotic scenarios, we apply the iterative

algorithm from Section V on simulations of a point-mass

robot and a two-link manipulator. In both settings we con-

sider a cost function

J(u(·)) = hg(x
r(Tc),x

g(Tc)) +

Tc∫

t=0

hg(x
r(t),xg(t))

+ ho(x
r(t),xo(t)) + hso(x

r(t),xso) + hu(u(t))dt ,
(32)

where hg = 1
2ξ

∗TQgξ
∗ and hu = 1

2u
∗TRu∗

penalize distance to goal and control ef-

forts, ho = w exp{−0.5(xr − xo)TQo(x
r − xo)} favor

configurations distant to dynamic obstacles and hso has

similar definition considering a static obstacle xso.

A. 2D Point-Mass robot

Consider a two-dimensional point robot with posi-

tion xr ∈ R2, no orientation and second-order dynamics

given by the mass-damper system

M ẍr +Dẋr = u∗ ,

where M,D ∈ R
2 are the mass and the damping. We first

consider a task consisting only of following a goal xg ∈ R2

whose stochastic dynamics are constrained to a pas-

sive mass-damper system with noise, i.e. ho = hso = 0
in (32). This is an equivalent scenario to the prob-

lem of tracking a learned Dynamical Movement Prim-

itive (DMP) [19] with a probabilistic estimator for its

nonlinear forcing term. The error state of the system

is given by ξ∗ = [(xg − xr)T (ẋg − ẋr)T]T. The opti-

mal policy takes the form u∗ = u∗ + [Lx
g Lẋ

g ]ξ. In the

following results, parameters were fixed to M = I2 kg,

D = I2 Ns/m, R = 10−2I2, Qg = diag{ 1 1 0.1 0.1 } ,

∆ = 10−2 and Tc = 0.5s. Goal dynamics are assumed to

have infinitesimal variance Gg = I4 and identical mass and

damping to the robot’s.

Optimal trajectories and positional gains Lx
g for several

cost cumulant and risk-sensitive controllers are depicted

in Fig. 1. The solution corresponding to the expected

cost depicted in Fig. 1(a) serves as the risk-neutral refer-

ence. Fig. 1(e) and Fig. 1(i) show risk-sensitive solutions

in their seeking and averse variants respectively. The risk-

seeking policy not only adopts significantly lower feed-

back gains but also adapts its feedforward trajectory to a

less accurate positional tracking. This policy is desirable

when goal uncertainty suggests more flexibility, e.g. in

PbD (Programming by demonstration) settings [14]. The

risk-averse solution has the opposite effect, tracking goal

dynamics more aggressively as well as increasing feedback

gains. This behavior is in accordance with navigation sce-

narios where uncertainty may hinder performance [5]. Cost-

cumulant solutions are shown in Fig. 1(f), Fig. 1(g), Fig. 1(h)

for the second, third and fourth cumulant in their risk-

averse variants. All three cases are similar: the feedforward
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Fig. 2. Optimal trajectories and feedback gains for a 2D point mass damper robot xr tracking goal xg with passive mass-damper system dynamics and
avoiding obstacle x

o with noisy passive mass-damper system dynamics and where γn = 1.9 and γp = 3 for a horizon of Tc = 0.5s. Initial states of robot,
goal and obstacle are x

r
0 = [0 0], ẋr

0 = [0 0], xg
0 = [0.1 0.1], ẋg

0 = [1 − 0.5], xo
0 = [0.15 0.15] and ẋ

o
0 = [1 − 0.5]. Results are shown every 0.02s.

trajectory is significantly adapted aiming for more accurate

tracking together with higher feedback gains. Their risk-

seeking counterparts depicted in Fig. 1(b), Fig. 1(c), Fig. 1(d)

show little difference w.r.t the risk-neutral policy Fig. 1(a).

We now include a dynamic obstacle with position xo with

passive mass-damper dynamics with noise. This is a similar

setting to the one considered in [13]. The error state of the

system is now given by

ξ∗ = [(xg − xr)T (ẋg − ẋr)T (xo − xr)T (ẋo − ẋr)T]T .

The ho term in (3) cost is now parameterized

as Qo = 200I2 and w = 0.1. The optimal policy is now

u∗ = u∗ +

[
Lx

g Lẋ
g

Lx
o Lẋ

o

]
ξ. Obstacle dynamics are assumed

to have infinitesimal variance Go = I4 and identical mass

and damping to the robot’s.

The optimal trajectory, positional goal gain Lx
g and

obstacle gain Lx
o for several cost cumulant and risk-sensitive

controllers are illustrated in Fig. 2 considering only the

marginal variability produced by the obstacle’s uncertainty.

The standard risk-neutral policy is shown in Fig. 2(a). Risk-

sensitive solutions are depicted in Fig. 2(e) and Fig. 2(i)

for the risk-seeking and the risk-averse variants. The risk-

seeking solution decreases obstacle gains Lx
o dramatically

and as a consequence positional gains increase. In contrast,

the risk-averse solution adapts feedforward terms, choosing

a trajectory further away to the obstacle. Cost-cumulant

solutions are illustrated in Fig. 2(f), Fig. 2(g), Fig. 2(h) for

risk-averse variants of the second, third and fourth cumulant

respectively. Especially for the fourth cumulant, solutions

show adapted trajectories aiming for configurations distant

to the obstacle. The risk-seeking cost-cumulant solutions

are shown in Fig. 2(b), Fig. 2(c), Fig. 2(d) for the second,

third and fourth cumulant respectively. In contrast to the

risk-sensitive solution from Fig. 2(e), feedforward terms are

significantly adapted obtaining a trajectory closer to the

obstacle, especially for the fourth cumulant.

We now explore solutions considering both the goal’s

and the obstacle’s marginal variabilities. We consider goal

and obstacle variability it in a risk-seeking and risk-averse
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Fig. 3. Optimal trajectories and feedback gains of the same problem
from Fig.2 considering both the goal’s and the obstacle’s marginal vari-
ability, where γn = 3.5 and γp = 3. Results are shown every 0.02s.

way respectively. Results for a risk-sensitive and a mean-

variance controller are depicted in Fig. 3. The mean-variance

solution is depicted in Fig. 3(b), which clearly shows a

different trajectory to the risk-neutral one from Fig. 3(a). It

is also interesting to compare this solution with Fig. 2(f), as

both policies consider the same risk-averse marginal obstacle

variability γ2
p VarPo

[J ]. The inclusion of the risk-seeking

marginal goal variability −γ2
n VarPo

[J ] demands less accu-

rate goal tracking enabling a more pronounced adaptation to

the obstacle’s stochasticity. Similar although less remarkable

are the results for the risk-sensitive optimization shown

in Fig. 3(c).

B. Two-link manipulator

We consider now a torque-controlled arm with two joints

moving in the horizontal plane with inverse dynamics

M(θ)θ̈ + C(θ, θ̇) + Bθ̇ = τ ,

where θ ∈ R2 are the joint angles, M(θ) is the inertia

matrix, C(θ, θ̇) is the vector of centripetal and Coriolis

forces, B is the joint friction matrix and τ ∈ R2 are

the joint torques. Following [9] we set the mass of each
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Fig. 4. Optimal trajectories and feedback gains for a two-link manip-
ulator x

r tracking goal x
g with passive mass-damper system dynamics

and avoiding obstacle x
o with noisy passive mass-damper system dy-

namics including static obstacles and where γn = 6 and γp = 3. The
static obstacle considered is normally distributed, centered at (−0.1, 0.45)
with covariance matrix 0.3I2. Initial states of robot, goal and obstacle
are x

r
0 = [0.3 0.4], ẋr

0 = [0 0], xg
0 = [0.3 0.4], ẋg

0 = [0 − 0.7], xo
0 =

[0.42 0.4] and ẋ
o
0 = [0.3 − 0.6]. Results are shown every 0.02s.

link to m1 = 1.4kg and m2 = 1.1kg, the length of each

link to l1 = 0.3m and l2 = 0.33, the moments of inertia

to I1 = 0.025 kg ·m2 and I2 = 0.045 kg ·m2 and we assume

the center of mass of each link is placed at the link’s center.

The joint friction matrix is set to B =

[
0.05 0.025
0.025 0.05

]
. We

consider a similar setting as in Fig. 3 but adding a static

normally distributed obstacle in the scene by enabling the

term hso in (32) with Qo = I2 and w = 0.1 and evaluating its

expectation a priori 2. The rest of the parameters are identical

to the previous subsection.

Optimal trajectories and feedback gains are shown

in Fig. 4 for the expected cost policy in comparison with

the mean variance solution. The risk-averse evaluation of

obstacle variability drives the optimal trajectory away from

the expected obstacle trajectory acting in a conservative

manner. This effect is also boosted by the risk-seeking

evaluation of goal variability, which provides less tracking

accuracy thereby enabling a more pronounced avoidance of

the static obstacle.

2The expectation of an exponential already considers obstacle variability,
see for instance [20]

VII. CONCLUSION AND FUTURE WORK

In this work we present a systematic approach to the

design of uncertainty-dependent decision-makers. Our ap-

proach extends the family of solutions of the iLQG frame-

work by considering high-order cost statistics either by

means of a risk-sensitive optimization or an arbitrary number

of cost cumulants. The exploration of multiplicative noise

settings and model predictive control and belief-space im-

plementations are the matter of our ongoing work.
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